I. PENDAHULUAN 1. Latar Belakang Mekanika klasik atau mekanika Newton adalah teori tentang gerak yang didasarkan pada konsep konsep massa dan gaya dan hukum-hukum hukum-hukum yang menghubungkan konsep-konsep fisis ini dengan besaran kinematika. Semua gejala dalam mekanika klasik dapat digambarkan dengan menggunakan hanya tiga hukum sederhana yang dinamakan hukum Newton tentang gerak. Hukum Newton menghubungkan percepatan sebuah benda dengan massanya dan gaya-gaya gaya-gaya yang bekerja padanya. Pada pratikum kali ini, kita akan mengamati gerak pada mesin atwood dan menggambarkan atau menghitung menggunakan hukum-hukum Newton tentang gerak. Dengan memvariasikan massa beban dan jarak pada mesin atwood kita dapat memperoleh gaya gesek sistem, menentukan percepatan gravitasi dan juga percepatan benda.
2. Tujuan
Menentukan percepatan gravitasi menggunakan mesin at wood. Menentukan gaya gesek pada mesin atwood dengan menggunakan mekanika klasik atau mekanika Newton.
II. DASAR TEORI Mesin Atwood banyak dilukiskan dalam buku teks. Pada dasarnya ia terdiri atas dua massa M1 dan M2 yang dihubungkan dihubungkan dengan tali melalui katrol.
Jika M1 = M2 maka dua massa ini mulai bergerak dengan percepatan
dimana g percepatan gravitasi. Rumus ini mengandalkan bahwa massa katrol dan bahwa tidak ada gesekan. Akan tetapi, dalam keadaan sesungguhnya rumus (1) mungkin tidak berlaku. Untuk menambahkan pengaruh katrol mudah saja, dengan menambah pengaruh katrol maka diperoleh:
| | dimana 2R jarak antara dua tali dan I momentum kelembaman katrol. Dengan mengabaikan bahwa gaya gesek F ges konstan, maka koreksi selanjutnya memberikan:
|| Perhatikan bahwa dua koreksi tersebut membuat bahwa percepatan menjadi lebih kecil daripada yang diberikan oleh rumus (1). Dalam eksperimen ini anda akan menyelidiki rumus (3). Massa-massa M1 dan M2 dalam gambar 2 dianggap sama besar. Di atas M 1 ditempatkan beban ekstra m yang menyebabkan sistem dalam jarak antara A dan B melakukan gerak dipercepat. Di titik B beban ekstra terjebak dan M 1 diberhentikan di C. 1. Nyatakanlah a (percepatan melalui lintasan AB) dalam jarak AB dan waktu t AB. Substitusikanlah harga-harga itu dalam rumus (3) dan selidikilah (3) secara grafis. Ini berarti anada harus menentukan besaran yang sesuai untuk divariasikan, lalu diplot di sumbu horisontal dan juga ambil besaran lain lagi yang diplot di sumbu vertikal. Dari grafik ini simpulkanlah g dan F ges. Substitusi tersebut diperoleh
̅
dengan menjadi:
̅ = jarak A dan B sehingga rumus persamaan (3)
̅ 2. Apa yang terjadi dengan rumus (3) jika m diambil di B. Selidikilah hal ini secara grafis dengan mengukur dan memplot besaran-besaran yang sesuai. Tentukan harga Fges dari grafik ini. Anda punya alasan untuk memperkirakan bahwa besar F ges tergantung dari kecepatan. 3. Andaikan bahwa seseorang punya pikiran untuk mengeliminir efek dari katrol. Caranya adalah dengan mengukur percepatan pada lintasan AB dengan dua m yang diberikan (umpama m1 dan m2) lalu diperoleh dua harga percepatan a1 dan a2. Di
rumus (1) anda telah menyatakan a dalam AB dan t AB. Buktikanlah untuk anda sendiri bahwa g memang bisa ditulis tanpa tergantung pada I /R 2, yaitu:
Hitung harga g dan F ges dengan cara ini.
ROTASI KATROL DIIKUTKAN
Kita mengandaikan M 1 > M2. Pada mulanya sistem dalam keadaan diam (gambar 3) sedang M1 dan M2 masing-masing berada di atas lantai setinggi h 1 dan h2. Tenaga total (potensial + kinetik) seluruh sistem adalah
dimana
Mkat = massa katrol h = tinggi katrol di atas lantai g = percepatan gravitasi
Tenaga potensial pada lantai diambil nol, tetapi hal ini bukan syarat esensiil, bisa diambil harga sekehendak. Tidak ada tenaga kinetik karena sistem diam.
Sekarang M2 dilepaskan, maka massa M1 dan M2 mulai bergerak dengan percepatan a, setelah sesaat kemudian situasi dilukiskan oleh gambar 4. Maka tenaga total sekarang menjadi
Tiga suku pertama merupakan tenaga potensial sistem dan tiga suku terakhir merupakan tenaga kinetiknya. v
= kecepatan M1 dan M2 = kecepatan sudut katrol =
⁄
= momen kelembaman katrol
Syarat tambahan adalah karena panjang tali tetap,
Dari ilmu kenematika dasar anda bisa menjabarkan bahwa:
Berdasarkan hukum kekekalan tenaga, maka: persamaan (6) = persamaan (7) Dengan memasukkan persamaan (6) – (9) diperoleh:
GESEKAN IKUT SERTA
Kita mengandaikan M1 > M2. Rumus (1) ditulis lagi dalam bentuk:
Rumus ini mengandaikan tidak ada gesekan. Gaya gesekan Fges menyebabkan percepatan sistim berkurang. F ges dapat dimasukkan dalam rumus (11) dengan menentukannya sebagai suku negatif di ruas kanan, maka:
Sehingga percepatannya adalah
Jika efek rotasi katrol diikutkan juga, maka rumus percepatan menjadi:
III. METODE EKSPERIMEN 1. Alat dan Bahan
Katrol
2 buah beban dengan massa sama
Beban ekstra
Stopwatch
Penggaris panjang
Tali
2. Skema Percobaan
3. Tata Laksana
Alat dan bahan disiapkan, kemudian dirangkai sesuai skema percobaan
Untuk variasi beban, beban ekstra ditambahkan pada M 1
M2 dijepit pada penjepit, kemudian dilepas
tab, t bc dan s bc dicatat, lalu beban tambah lagi pada M1 untuk variasi beban sebanyak 5 kali untuk variasi jarak, beban ekstra ditambahkan pada M 1 M2 dijepit pada penjepit, kemudian dilepas tab, t bc dan s bc dicatat, lalu jarak sab diubuh (2cm) sebanyak 5 kali
4. Analisa Data a. Variasi masa beban
y
m
x
c
( ) ( ) ⁄ ( ) ( )
y
m
x
⁄
b. Variasi jarak
y
m
x
⁄ y
m
x
( ) ( ) Keterangan:
- Mk = 136,25 g
M = 77,1 g
IV. HASIL a. Data
Variasi beban m (kg)
tab (s)
t bc (s)
sab (m)
s bc (m)
0,005
1,25
2,72
0,25
0,25
0,01
0,9
1,81
0,25
0,12
0,015
0,87
1,46
0,25
0,39
0,02
0,62
1,35
0,25
0,59
0,025
0,57
1,15
0,25
0,48
m (kg)
tab (s)
t bc (s)
sab (m)
s bc (m)
0,001
0,9
1,81
0,25
0,12
0,001
1,06
1,69
0,27
0,2
0,001
0,91
1,54
0,29
0,23
0,001
1
1,44
0,31
0,36
0,001
1
1,38
0,33
0,26
Variasi jarak
b. Grafik
c. Perhitungan
Variasi masa beban NO
x
y
x 2 (x10-4)
y2
xy
1
0,005
0,64
0,25
0,41
0,0032
2
0,01
1,23
1
1,52
0,012
3
0,015
1,32
2,25
1,75
0,02
4
0,02
2,60
4
6,77
0,052
5
0,025
3,08
6,25
9,47
0,077
Σ
0,075
8,88
13,75
19,92
0,16
Metode regresi
∑ ∑ ∑∑ ∑
∑ ∑ ∑ ∑ ∑ ∑ ] [ ∑ ∑
* +
0,51
∑ ∑ √ 0,51
32.26
∑ ∑ ∑ ∑ ∑ ∑
∑ √ ∑∑
Perhitungan gravitasi
( )
⁄ ( ) ⁄ ⁄
Perhitungan gaya gesek
( ) ( ) 0,019 N
Perhitungan percepatan
⁄
Variasi beban NO
x
y
x2
y2
xy
1
4
1,23
16
1,52
4,94
2
3,7
0,89
13,72
0,79
3,3
3
3,45
1,21
11,89
1,46
4,16
4
3,23
1
10,41
1
3,23
5
3,03
1
9,18
1
3,03
Σ
17,41
5,33
61,2
5,77
18,65
Regresi
∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ] [ ∑ ∑ * +
0,023
∑ ∑
√ 0,023
0,03
Perhitungan gravitasi
⁄ ⁄ ⁄
Perhitungan gaya gesek
( ) ( ) 0,52 N
0,01 N
V. PEBAHASAN Pada pratikum kali ini pratikan melakukan percobaan pada mesin atwood. Pada mesin atwood ini pratikan akan mengamati gerak pada sistem mesin atwood tersebut. Gerak pada mesin atwood itu di gambarkan atau dihitung menggunakan hukum-hukum Newton tentang gerak. Pemvariasian yang dilakukan pada mesin atwood ini ada dua, yaitu pemvariasian pada massa beban dan pada jarak. Pada pemvariasian massa beban perhitungan gravitasi yang didapat adalah
⁄
.
Hasil ini jika dibandingkan dengan literatur yang
ada masih cukup jauh. Hal ini mungkin disebabkan ketidak tepatan pratikan menentukan
̅ ⁄ ̅ ⁄
tabnya. Untuk perhitungan gaya gesek data yang diperoleh adalah -
.
Tanda minus menandakan gaya gesek mengurangi gaya (menghambat) pada sistem. Gaya gesek ini adalah gaya gesek yang dialami sistem pada lintasan
perhitungan percepatan, data yang didapat adalah
. Sedangkan
. Untuk percepatan
sistem, percepatan berbanding lurus dengan percepatan gravitasi dan berbanding terbalik dengan massa-massa beban pada mesin atwood.
Pemvariasian yang kedua, pemvariasian dilakukan pada jarak percepatan gravitasi pada pemvariasian ini adalah
(sab). Perhitungan
. Jika dibandingkan dengan
literatur yang ada, data ini masih cukup jauh. Hal ini mungkin disebabkan ketidak tepatan pratikan menentukan tabnya. Sedangkan untuk pergitungan gaya gesek, data yang diperoleh
̅
adalah lintasan
.
Gaya gesek ini adalah gaya gesek yang dialami sistem pada
.
Jika dibandingkan data perhitungan percepatan gravitasi antara pemvariasian massa beban dan jarak, pemvariasian massa beban diperoleh lebih baik. Hal ini mungkin disebabkan
ketidak tepatan pratikan menentukan tabnya dan juga mungkin disebabkan ketidak
̅
tepatan menentukan jarak
(sab) nya.
VI. KESIMPULAN
Percepatan gravitasi yang diperoleh adalah: - variasi massa beban - variasi
⁄
jarak
Data percepatan gravitasi, pemvariasian massa beban yang diperoleh lebih bagus jika dibandingkan pemvariasian jarak.
⁄
Gaya gesek yang diperoleh adalah: - variasi mass a beban - variasi jarak -
VII. REFERENSI Laboratorium Fisika dasar II UGM. 2010. Buku panduan pratikum Fisika dasar II yogyakarta: FMIPA UGM.
Yogyakarta, 13 mei 2013 Pratikan
Asisten
Haposan Trijaya Sinaga
Monica Novianti