KOLOM Pengetian Kolom Kolom adalah elemen struktur yang berfungsi untuk menahan beban aksial tekan vertikal yang berasal dari beban balok dan pelat diatasnya. Kolom menempati posisi yang paling penting didalam sistem struktur bangunan. Kegagalan kolom akan berakibat langsung pada runtuhnya komponen struktur lainnya yang berhubungan di atasnya. Jenis-jenis kolom beton bertulang : 1.
Kolom menggunakan pengikat sengkang lateral, kolom ini merupakan kolom beton yang ditulangi dengan batang tulangan pokok memanjang, yang pada jarak tertentu diikat dengan pengkat sengkang arah lateral.
2.
Kolom menggunakan pengikat spiral, pengikat tulangan pokok memanjang adalah tulangan spiral yang dililitkan sekeliling bentuk heliks menerus sepanjang kolom.
3.
Struktur kolom komposit, kolom ini merupakan komponen struktur tekan yang diperkuat pada arah memanjang dengan balok beton baja profil atau pipa, dengan atau tanpa tulangan diberi tulangan pokok.
46
Kolom beton bertulang mempunyai tulangan longitudinal yang paralel dengan arah beban yang disusun menurut pola segi empat, bujur sangkar atau lingkaran. Batasan 1% – 8% dari luas penampang kolom beton Ag lazim digunakan untuk menentukan jumlah tulangan ini karena persentase yang lebih besar tidak ekonomis dan sering kali mempersulit pemasangannya. Tulangan ini pada umumnya diikat oleh tulangan melintang yang ditempatkan dalam internal tertentu yang disebut dengan tulangan sengkang. Sengkang berfungsi
untuk mengurangi bahaya pecah
(spliting) beton yang dapat mempengaruhi daktilitas beton tersebut.
2.5.1.
Pertimbangan Desain Perencanaan suatu kolom terutama didasarkan pada kekuatan dan kekakuan
penampang lintangnya terhadap aksi beban aksial dan momen lentur. Kekuatan dalam kombinasi beban aksial dan lentur ini harus memenuhi keserasian tegangan dan regangan. Kekuatan rencana suatu kolom beton bertulang dapat diperoleh dengan mengalikan kekuatan nominal dengan faktor reduksi Ø. Berdasarkan SNI 03-2847-2002, regangan maksimum pada serat tekan terluar beton diambil sebesar 0,003. Penggunaan hubungan tegangan-regangan yang berbeda untuk beton dapat menghasilkan sedikit perbedaan dalam nilai kekuatan penampang. Kekuatan tarik beton diabaikan dalam perhitungan.
2.5.2. Dasar – Dasar Perhitungan Kolom Menurut SNI-03-2847-2002, ada empat ketentuan terkait perhitungan kolom : 1.
Kolom harus direncanakan untuk memikul beban aksial terfaktor yang bekerja pada semua lantai atau atap dan momen maksimum yang berasal dari beban terfaktor pada satu bentang terdekat dari lantai atau atap yang ditinjau. Kombinasi pembebanan yang menghasilkan rasio maksimum dari momen terhadap beban aksial juga harus diperhitungkan.
2.
Pada konstruksi rangka atau struktur menerus pengaruh adanya beban tak seimbang pada lantai atau atap terhadap kolom luar atau dalam harus diperhitungkan,
47
demikian pula pengaruh dari beban eksentris karena sebab lainnya juga harus diperhitungkan. 3.
Dalam menghitung momen akibat beban gravitasi yang bekerja pada kolom, ujungujung terjauh kolom dapat dianggap jepit, selama ujung tersebut menyatu (monolit) dengan komponen struktur lainnya.
4.
Momen-momen yang bekerja pada setiap level lantai atau atap harus didistribusikan pada kolom diatas dan dibawah lantai tersebut berdasarkan kekakuan relative kolom dengan juga memperhatikan kondisi kekangan pada ujung kolom.
2.5.3. Ketentuan Perencanaan Kolom Beberapa ketentuan yang penting untuk diperhatikan dalam perencanaan kolom, seperti hal-hal berikut ini : 1. Luas tulangan total (Ast) Menurut pasal 12.9.1 SNI 03-2847-2002, luas total (Ast) tulangan longitudinal kolom harus memenuhi syarat berikut : 0,01. Ag ≤ Ast ≤ 0,08. Ag .............................................................. (2.61) dengan : Ag = luas bruto penampang kolom (mm2) Ast = luas total tulangan memanjang (mm2)
2. Diameter tulangan geser (sengkang) Diameter begel kolom (Øbegel) disyaratkan : 10 mm ≤ Øbegel ≤ 16 mm ........................................................................ (2.62)
3. Gaya tarik dan gaya tekan pada penampang kolom Kolom yang sering dijumpai/digunakan pada bangunan gedung yaitu kolom dengan penampang segi empat seperti pada Gambar 2.13. Jika kolom menahan beban eksentris Pn, maka pada penampang kolom sebelah kiri menahan beban tarik yang akan
48
ditahan oleh baja tulangan, sedangkan sebelah kanan menahan beban tekan yang akan ditahan oleh beton dan baja tulangan. Gaya tarik bagian kiri ditahan oleh tulangan, sebesar Ts = As .fs
(2.63)
Gaya tekan yang ditahan beton bagian kanan, sebesar Cc = 0,85.fc’.a.b
(2.64)
Sedangkan gaya tekan yang ditahan oleh tulangan kanan (Cs), yaitu : a. Jika luas beton tekan diperhitungkan, maka Cs = As’.( fs’ - 0,85.fc’)
(2.65)
b. Jika luas beton tekan diabaikan, maka Cs = As’. fs’ ........................................................................................ (2.66) Selanjutnya dengan memperhatikan keseimbangan gaya vertikal pada Gambar 2.13.c, diperoleh gaya aksial Pn = Cc + Cs - Ts ................................................................................. (2.67)
4. Nilai regangan dan tegangan baja tulangan Besar regangan baja tulangan dapat ditentukan berdasarkan perbandingan 2 segitiga yang sebangun pada Gambar 2.13.b. Untuk regangan tarik baja tulangan sebelah kiri, dihitung sebagai berikut :
49
s d c
c ' c
sehingga diperoleh
s
d c c ' c ...
(2.68)
Untuk regangan tekan baja tulangan sebelah kanan, dihitung sebagai berikut :
s' c ds '
c' c
sehingga diperoleh
s '
c ds ' c ' c ..... (2.69)
Untuk baja tulangan (tarik maupun tekan) yang sudah leleh, maka nilai regangannya diberi notasi : εy, dan dihitung dengan persamaan εy = fy / Es dengan Es = 200000 MPa ................................................. (2.70) Selanjutnya tegangan baja tulangan tarik dan tekan dihitung dengan persamaan fs = εs.Es dan fs’ = εs’.Es ................................................................... (2.71) Jika εs (atau εs’) ≥ εy, maka tulangan sudah leleh, dipakai fs (atau fs’) = fy
5. Kolom dengan beban aksial tekan kecil Pada pasal 11.3.2.2 SNI 03-2847-2002, untuk komponen struktur yang memakai fy ≤ 400 MPa dengan tulangan simetris dan dengan (h – ds – ds’) / h ≥ 0,7 boleh dianggap hanya menahan momen lentur saja apabila nilai Ø.Pn kurang dari 0,1.fc’.Ag (dan Ø .Pn,b ( dengan Ø = 0,65 untuk kolom dengan tulangan sengkang) Untuk kolom dengan tulangan sengkang berlaku ketentuan berikut : a. Jika beban Pu (Pu = Ø.Pn) ≥ Puφ, maka nilai Ø = 0,65.......................... (2.72) b. Jika beban Pu (Pu = Ø.Pn) < Puφ, maka nilai Ø =0,8 -
0,15.Pu Pu
........... (2.73)
Untuk kolom dengan tulangan spiral berlaku ketentuan berikut c. Jika beban Pu (Pu = Ø.Pn) ≥ Puφ, maka nilai Ø = 0,70.......................... (2.72)
50
d. Jika beban Pu (Pu = Ø.Pn) < Puφ, maka nilai Ø =0,8 -
0,10.Pu Pu
........... (2.73)
dengan : Pu = Gaya aksial tekan perlu atau gaya aksial tekan terfaktor Puφ = Gaya aksial tekan terfaktor pada batas nilai Ø Pn,b = Gaya aksial nominal pada kondisi regangan penampang seimbang (balance) Ø = Faktor reduksi kekuatan Ag = Luas bruto penampang kolom
6. Penempatan tulangan kolom Tulangan kolom ditempatkan/diatur seperti dibawah ini
sb = lapis lindung beton (pasal 9.7.1) = 50 mm, jika berhubungan dengan tanah atau cuaca dan D ≥ 19 mm = 40 mm, jika tidak berhubungan dengan tanah atau cuaca dan D < 19 mm sn = jarak bersih antar tulangan (pasal 9.6.3) ≥ 1,5 . D atau ≥ 40 mm ds1 = sb + Øbegel + D/2.................................................................. (2.74)
51
ds2 = Sn + D ................................................................................... (2.75) 7. Jumlah tulangan longitudinal dalam satu baris Jumlah tulangan longitudinal maksimal perbaris dirumuskan sebagai berikut :
m=
b - 2.d s1 D Sn
............................................................................ (2.76)
dengan : m = jumlah tulangan longitudinal perbaris b = lebar penampang kolom ds1 = jarak decking pertama, sebesar tebal lapis lindung beton+ Øbegel + D/2 Sn = jarak bersih antar tulangan menurut Gambar 2.14 D = diameter tulangan longitudinal
52
2.5.4 Pengaruh Beban Aksial pada Penampang Kolom 2.5.4.1. Pengaruh Beban Aksial pada Penampang Kolom saat Kondisi Beban Sentris Pada kondisi ini beban tepat pada sumbu kolom sehingga beton dan baja tulangan dalam kondisi tekan. Kekuatan
penampang
kolom
dengan beban sentris ditentukan dengan menganggap
bahwa
semua
baja
tulangan (A1 dan A2) sudah mencapai leleh, jadi tegangan baja tulangan fs = fs’ = fy. Regangan tekan beton sudah mencapai batas maksimal, yaitu εc ‘ = εcu ‘ = 0,003. Gambar 2.16 Kolom dengan Beban Sentris
Pada kondisi beban sentris, dapat dianalisa seperti berikut : 1.
Menentukan luas penampang kolom Ag = b.h = luas bruto penampang kolom, mm 2 .............................. (2.77) Ast = A1 + A2 = luas total baja tulangan, mm2 ................................. (2.78) An = Ag – Ast = luas bersih beton, mm2 ........................................... (2.79)
2.
Menghitung gaya tekan pada kolom Gaya tekan beton : Cc = 0,85.fc’.An ................................................... (2.80) Gaya tekan tulangan : C1 = A1.fy ....................................................... (2.81) C2 = A2.fy ........................................................ (2.82)
53
3.
Menghitung P0 Dengan mempertimbangkan kesetimbangan gaya vertical harus nol, maka diperoleh : P0 = Cc + C1 + C2 = 0,85.fc’.An + A1.fy + A2.fy = 0,85.fc’.(Ag - Ast) +( A1 + A2).fy
Sehingga diperoleh persamaan : P0 = 0,85.fc’.(Ag - Ast) + Ast. fy ............... (2.83) Dalam SNI 03-2847-2002 diperoleh rumus : Pn
maks
= 0,8. P0 (kolom dengan tulangan sengkang) .......................... (2.84)
Pn
maks
= 0,85. P0 (kolom dengan tulangan spiral) .............................. (2.84)
Kuat rencana dihitung dengan memasukkan faktor reduksi kekuatan pada kuat nominalnya, jadi kuat rencana pada penampang kolom dengan beban sentries dihitung dengan persamaan berikut : Ø.Pn
maks
= 0,8. Ø .P0 (kolom dengan tulangan sengkang)
Ø.Pn
maks
= 0,85. Ø .P0 (kolom dengan tulangan spiral)
2.5.4.2. Pengaruh Beban Aksial pada Penampang Kolom saat Kondisi beban Tidak Sentris Pada dasarnya sangat jarang sekali dalam struktur kolom terjadi kondisi beban sentris dimana tidak terjadi momen pada kolom, karena sesungguhnya struktur kolom biasanya akan tersambung dengan balok yang mengakibatkan ada momen dua arah baik dari sumbu kuat ataupun sumbu lemah kolom. Bila suatu batang dibebani gaya aksial P dan momen M, biasanya gaya aksial dan momen ini dapat digantikan dengan gaya P yang bekerja pada eksentrisitas e
M . P
Pembebanan kedua tersebut bersifat statik ekivalen dengan yang pertama dan prinsip ini juga berlaku pada kolom beton bertulang. Bila nilai ε relatif kecil, seluruh penampang
54
akan tertekan, dan bila nilai P ataupun ε relatif besar, kegagalan akan terjadi dengan hancurnya beton yang disertai dengan pelelehan tulangan tekan pada sisi yang lebih terbebani.
Gaya Pengganti
Tulangan tekan pada kolom yang terbebani eksentris pada tingkat beban ultimit umumnya akan mencapai tegangan leleh kecuali jika beban tersebut kecil, atau menggunakan baja mutu tinggi, atau dimensi kolomnya relatif kecil. Sehingga umumnya diasumsikan bahwa baja tulangan tekan sudah leleh, kemudian baru regangannya diperiksa apakah memenuhi ketentuan ini. Berdasarkan nilai eksentrisitas yang bekerja pada kolom maka nilai e dibagi menjadi 4 kategori, yitu: 1. Nilai eksentrisitas e kecil Jika nilai e kecil maka momen yang terjadi menjadi kecil ( M=P.e) sehingga sera tarik pada sisik kiri kolom menjadi kecil dan serat tekan pada sisi kanan beton menjadi cukup besar, Maka kegagalan kolom ditentukan hancurnya material beton disisi kanan ( serat beton yang tertekan). Sehingga kondisi ini adalah kondisi tekan menentukan (Under reinforced ).
55
2. Nilai eksentrisitas e sedang Jika nilai e sedang maka momen yang terjadi juga tidak begitu besar. serat tarik pada sisi kiri kolom mencapai leleh bersamaan dengan itu serat beton sisi kanan hancur dan mencapai regangan maksimun. Sehingga kondisi ini adalah kondisi seimbang (balanced). 3. Nilai eksentrisitas e besar Jika nilai e besar maka momen yang terjadi juga besar. serat tarik pada sisi kiri kolom mencapai leleh. Serat beton sisi kanan masih kuat menahan beban tekan. Kegagalan ditentukan oleh lelehnya baja disisi kiri, Sehingga kondisi ini adalah kondisi tarik menentukan.(Over reinforced) 4. Nilai eksentrisitas e sangat besar Jika nilai e sangat besar maka momen yang terjadi juga sangat besar. Beban p aksial dapat diabaikan k keadaan ini seolah olah kolom beton mendapat gaya tarik dan momen lentur saja.
Berdasarkan besarnya regangan pada tulangan baja yang tertarik, keruntuhan dapat dibagi menjadi: 1. Keruntuhan tarik (Tension failure) Keruntuhan kolom diawali dengan lelehnya tulangan tarik dimana pada kondisi ini Pu < Pb, yang berarti juga εs > εy atau c < cb 2. Keruntuhan seimbang (Balance failure) Keruntuhan ini ditandai dengan lelehnya tulangan tarik bersama-sama dengan runtuhnya beton bagian tekan, dimana Pu = Pb atau fs = fy. 3. Keruntuhan tekan (Compression failure) Kolom dibagian tekan lebih dahulu runtuh tapi baja tariknya belum leleh dan pada kondisi ini Pu > Pb atau εs < εy atau c > cb.
56
Keadaan beban aksial yang bekerja pada penampang kolom dibedakan atas 2 jenis, yaitu beban sentris dan beban eksentris. Untuk penampang kolom dengan beban eksentris, dibedakan menjadi 4 jenis, yaitu : 1. Penampang kolom pada kondisi beton tekan menentukan 2. Penampang kolom pada kondisi seimbang 3. Penampang kolom pada kondisi tulangan tarik menentukan 4. Penampang kolom dengan eksentrisitas sangat besar, sehingga beban Pn dianggap nol (diabaikan)
1. Penampang Kolom pada Kondisi Beton Tekan Menentukan Jika beban Pn pada kondisi beban sentris digeser ke kanan, maka pada penampang kolom sebelah kiri mulai menahan beban tarik relatif kecil, sehingga baja tulangan tarik belum leleh, sedangkan penampang kolom sebelah kanan tetap menahan beban tekan yang cukup besar, sehingga dapat menyebabkan retak beton tekan. Kekuatan penampang kolom pada kondisi ini bergantung pada kekuatan tekan dari beton. Hal ini dapat dilukiskan pada Gambar 2.17
57
Gambar 2.17 Kolom dengan beban eksentris
Batas pada penampang kolom yang menahan tegangan tarik (di sebelah kiri) dan menahan tegangan tekan (di sebelah kanan) berupa garis lurus yang tegangannya nol disebut garis netral. Pada penampang kolom dengan kondisi beton tekan menentukan, regangan tekan beton telah mencapai batas ultimit (εcu =0,003), tulangan tekan As’ telah mencapai leleh (fs’ = fy), tetapi tulangan tarik As belum leleh (εs < εy atau fs < fy). Pada kondisi beban sentris, dapat dianalisa seperti berikut : a. Cari tinggi blok tegangan beton tekan persegi ekuivalen a a = β1.c .......................................................................................... (2.85) Untuk f’c ≤ 30Mpa
β1=0,85 f’c
Untuk f’c > 30Mpa
1 = 0,85 - 0,05
( f ' c 30) 7
Tapi β1 ≥ 0,65 b. Tentukan nilai regangan dan tegangan pada tulangan tarik maupun tulangan tekan yang terjadi pada kolom. Untuk regangan tarik baja tulangan sebelah kiri, dihitung sebagai berikut :
s d c
c ' c
sehingga diperoleh
s
d c c ' c
(2.86)
Untuk regangan tekan baja tulangan sebelah kanan, dihitung sebagai berikut :
s' c ds '
c ' c
sehingga diperoleh
s '
c ds ' c ' c ........... (2.87)
58
Untuk baja tulangan (tarik maupun tekan) yang sudah leleh, maka nilai regangannya diberi notasi : εy, dan dihitung dengan persamaan εy = fy / Es dengan Es = 200000 MPa ............................................ (2.88) Selanjutnya tegangan baja tulangan tarik dan tekan dihitung dengan persamaan fs = εs.Es dan fs’ = εs’.Es .............................................................. (2.89) Jika εs (atau εs’) ≥ εy, maka tulangan sudah leleh, dipakai fs (atau fs’) = fy
c.
Cari beban aksial dan momen lentur yang ditahan oleh kolom. Beban aksial yang ditahan oleh kolom dapat dihitung berdasarkan Gambar 2.17,
yaitu dengan cara menjumlahkan beban vertical = 0, sedangkan untuk momen lentur dihitung dari beban-beban Ts, Cc dan Cs pada Gambar 2.17 dikalikan dengan jarak masing-masing beban ke sumbu kolom. Untuk mempermudah hitungan, maka proses hitungan dibuat dalam bentuk Tabel, dapat dilihat pada Tabel 2.8.
d. Hitung Ø.Pn dan Ø.Mn Tabel 2.8 Hitungan gaya aksial dan momen lentur kolom Gaya (kg)
Lengan ke
Momen (kgm)
sumbu(m)
-Ts = - As . fs
-Zs = - (h/2-ds)
Ts . Zs
Cc = 0,85.fc’.a.b
Zc = (h/2-a/2)
Ts . Zs
Cs = As’ . fs’
Zs ’= (h/2-ds’)
Ts . Zs
Jumlah : Pn
Mn
2. Penampang Kolom pada kondisi seimbang Pada penampang kolom dengan kondisi seimbang, maka tulangan tarik mencapai leleh (εs = εy) bersamaan dengan regangan beton tekan mencapai batas retak atau batas ultimit (εc’ = εcu’ = 0,003). Pada kondisi ini diperoleh jarak antara garis netral dan tepi
59
beton tekan = cb, dan distribusi regangan pada penampang kolom dapat dilihat pada Gambar 2.18.
d
εs
Cb
εs’
εc’= 0,003
Gambar 2.18 Distribusi regangan pada kondisi penampang seimbang Menentukan nilai cb
cb
cu '
cb
d cu ' s
cu '.d cu ' s
Dengan memasukkan nilai εs = εy = fy/Es dan εcu’ = 0,003 akan diperoleh
cb
600.d 600 f y
................................................................................ (2.90)
Selanjutnya dengan menggunakan Tabel 2.8 dapat dihitung gaya aksial Pn,b dan momen lentur Mn,b, serta gaya aksial rencana Ø.Pn,b dan momen rencana Ø.Mn,b dengan rumus : Ø.Pn dan Ø.Mn ........................................................................................ (2.91)
3. Penampang kolom pada kondisi tulangan tarik menentukan Luas penampang beton tarik yang berubah semakin besar, akan menyebabkan regangan tulangan tarik melebihi batas leleh. Dengan demikian, kekuatan penampang kolom pada kondisi ini ditentukan oleh kuat leleh tulangan tarik dan kondisi ini disebut penampang kolom pada kondisi tulangan tarik menentukan atau kondisi patah tarik. Analisa pada kondisi ini pada umumnya sama dengan analisa pada kondisi lainnya.
60
4. Penampang kolom pada kondisi beban Pn = 0 Untuk penampang kolom dengan beban aksial Pn = 0, berarti kolom hanya menahan momen lentur saja. Karena hanya menahan momen lentur, maka kolom tersebut dianalisa seperti balok biasa. Hal ini dapat dilihat pada Gambar 2.19. Momen nominal dan momen rencana kolom dihitung dengan menggunakan rumus-rumus seperti pada hitungan momen nominal serta momen rencana balok, dan dengan faktor reduksi kekuatan = 0,8. Proses hitungan dilaksanakan dengan rumus-rumus berikut : 1. Dihitung nilai a, amin leleh, amaks leleh a=
( As As ' ). f y 0,85. f c '.b
amaks,leleh =
amin,leleh =
.............................................................................. (2.38)
600.1 .d d 600 f y
......................................................................... (2.39)
600. 1 .d s ' 600 f y
......................................................................... (2.40)
2. Dikontrol kondisi tulangan tekan, untuk menetapkan nilai a yang benar. a. Jika a ≥ amin,leleh maka tulangan tekan sudah leleh b. Jika a < amin,leleh maka tulangan tekan belum leleh, nilai a dihitung lagi seperti berikut :
1) p =
2) q =
600. As ' As . f y 1,7. f c '.b
................................................................ (2.92)
600.1 .d s '.As ' 0,85. f c '.b
................................................................ (2.93)
61
3) a = ( p 2 q ) p ...................................................................... (2.94) 4) fs’ =
a 1 .d s ' 600 a .................................................................. (2.95)
3. Dikontrol kondisi tulangan tarik dengan syarat semua tulangan tarik sudah leleh, yaitu nilai a harus ≤ amaks,leleh 4. Dihitung momen nominal Mn dan momen rencana Mr Mnc = 0,85.fc’.a.b.(d-a/2)
.................................................................... (2.42)
Mns = As’.fs’.(d-ds’) ................................................................................. (2.96) Mn = Mnc + Mns ..................................................................................... (2.41) Mr = Ø.Mn ............................................................................................... (2.29)
a. Tampak tegak
As
ds
As’
h
ds’
b. Penampang kolom
εs
εs’
εcu’
c. Diagram regangan a = β1.c
0,85.fc’ Ts
C
C
d. Diagram tegangan
62
Gambar 2.19 Kolom dengan beban Pn = 0 Diagram Interaksi Kolom Diagram interaksi adalah diagram yang menyatakan hubungan kombinasi antara beban aksial dam momen lentur. Besarnya momen dan beban aksial yang mampu ditahan oleh kolom tergantung dari dimensi dan pembesiannya. Hubungan antara beban aksial dan momen lentur dinyatakan dengan diagram interaksi kolom M-N Diagram interaksi kolom dibuat dengan menggunakan dua buah sumbu, yang masing masing sumbu menggambarkan besaran gaya aksial dan besaran momen yang terjadi. Contoh diagram Interaksi kolom dapat dilhat pada contoh dibawah ini:
63
Dari gambar diatas kemapuan kolom menahan beban aksial sebesar Pu dan momen perlu Mu, Nilai Pu dan Mu diplotkan pada sumbu diagram. Buat garis datar dan garis vertikal yang menghubungkan Pu dengan Mu, titik potong garis terbut di R. Dari diagram terlihat bahwa titik R berada didalam diagran interkasi kuat rencana, Maka disimpulkan kolom mampu menahan beban aksial dan kolom yang direncanakan, Jika titik R berada diluarkan diagrama rencana maka di simpulkan bahwa kolom tidak mampu menahan beban yang bekerja.
Contoh Perhitungan
1. Buatlah diagram interaksi kolom dengan kuat minimal dan kuat rencana untuk kolom persegi berukuran 400mmx400mm, dengan tulangan kiri A1 dan tulangan kanan A2 masing masing mneggunakan 5D22, jika di ketahui jarak ds=60 mm, mutu beton f’c=20Mpa dan baja tulangan Fy=300 Mpa 2. Apakah kolom Mampu menahan beban Pu = 1280 KN dengan Mu =150 Kn-m?
64
Jawab
Es =200000Mpa=200kN/mm2 F’c=20 Mpa =0,02 Kn/mm2 Fy=300Mpa=0,3kN/mm2 ԑy=fy/Es =300/200000=1,5.10 ˉ³ A1=A2=5.(1/4)*π*22²=1900,66mm2 Ast=A1+A2=2*1900,66=3801,32mm2
a. Tinjauan Beban Sentris Po
= 0,85.f’c(Ag-Ast) + Ast.fy = 0,85*20(400*400-3801,32)+3801,32*300 = 3795773,56=3795,77kN
Ø.po
= 0,65*3795,77=2467,25 Kn
Pn ,max
= 0,8*Po=0,8*3795,77=3036,62kN
Ø. Pn ,max= 0,65*3036,62=1973,80 kN
b. Tinjauan Beton tekan menentukan (terjadi jika c>cb) .
.
227mm
Diambil c=300mm (>cb) a =β1*c =0,85*300=255mm ԑ1
100 60 ∗ 0,003 300
0,4.10ˉ³ < ԑy
65
sehingga di peroleh : f1=Ԑ1.Es ԑ2
100 60 ∗ 0,003 300
0,4.10ˉ³*200=0,008kn/mm2
2,4.10ˉ³ > ԑy sehingga
f2= fy=0,30 kN/mm2 Gaya (kN)
Lengan ke pusat(m)
-T1=-1900,66*0,08=-152,05
-z=(0,4/2-0,6)=-0,140
212,29
Cc=0,85*0,02*255*400=1734,00
Zc=(0,4-0,255)/2=0,0725
125,72
C2=1900,66*0,3=570,20
Z2’=(0,4-0,255)/2=0,140
125,72
Jumlah Pn=2152,15
Ø.Pn Ø ,M max
Momen (kN-m)
= 0,65*2152,15=1398,90kN Kn = 0,65*226,84=147,45 kN
Mn=226,84
66
c. Tinjauan pada keadaan seimbang (terjadi pada nilai cb=227mm)
a =β1*c =0,85*227=193 mm ԑ1
f1 = fy
ԑ2′
227 60 ∗ 0,003 227
∗ 0,003
0,30
1,5.10ˉ³ = ԑy
/mm2
2,21.10ˉ³ > ԑy sehingga
f2’= fy=0,30 kN/mm2
Gaya (kN)
Lengan ke pusat(m)
-T1=-1900,66*0,30=--570
-z1=(0,4/2-0,6)=-0,140
79,83
Cc=0,85*0,02*193*400=1312,4
Zc=(0,4-0,193)/2=0,1035
135,83
C2=1900,66*0,3=570,20
Z2’=(0,4-0,60)/2=0,140
Jumlah Pn=1312,4
Ø.Pn Ø ,M max
Momen (kN-m)
= 0,65*1312,40=853,06 kN = 0,65*295,49=192,07 kN
79,83 Mn,b=295,49
67
d. Keadaan tulangan tarik menen tukan (terjadi pada nilai c < cb) Diambil c=160mm,sehingga a =β1*c
=0,85*160=136 mm ԑ1
240 60 ∗ 0,003 160
f1 = fy ԑ2′
160 60 ∗ 0,003 160
0,30
3,38.10ˉ³ > ԑy
/mm2
1,88.10ˉ³ > ԑy sehingga
f2’= fy=0,30 kN/mm2
Gaya (kN)
Lengan ke pusat(m)
-T1=-1900,66*0,30=--570,20
-z1=(0,4/2-0,6)=-0,140
79,83
Cc=0,85*0,02*136*400=924,80
Zc=(0,4-0,136)/2=0,132
122,07
C2=1900,66*0,3=570,20
Z2’=(0,4/2-0,60)=0,140
79,83
Jumlah Pn=924,8
Ø.Pn Ø ,M max
= 0,65*924,8=601,12 kN = 0,65*281,73=183,127 kN-m
Batas struktur dianggap hanya menahan momen lentur, pada Pu Ø =0,10*f’c*b*h=0,1*20*400*400=320000N=320kN Pu Ø = Ø .Pn,b =853,06kN Dipilh yang kecil yaitu Pu Ø=320kN
Momen (kN-m)
Mn,b=281,73
68
e. Keadaan keadaan beban P=0 Diambil c=160mm,sehingga a =β1*c =0,85*160=136 mm Pada keadaan ini di hitung seperti balok. Karena luas tulangan tekan dan tulangan tarik sama (A2’=A1) maka tulangan tekan pasti belum leleh. 600 ∗ 2 1,7
p
1∗ ∗
600 ∗ 1900,66 1900,66 ∗ 300 1,7 ∗ 20 ∗ 400
′
q
600 ∗ β1 ∗ A2 ∗ ds′ 0,85 ∗ ∗
600 ∗ 0,85 ∗ 1900,66 ∗ 60′ 0,85 ∗ 20 ∗ 400
41,9263
8552,97
41,9263
8552,97
41,9263
59,616
f2
600
β1 ∗ ds′
600
59,616 0,85 ∗ 60 59,616
86,715
Mnc=0,85*f’c*a*b(d-a/2) =0,85*20*59,616*400(340-59,616/2) = 125748362,6 Nmm Mns = As’*f2’*(d-ds’) = 1900,66*86,715(340-60) = 46148404,9 Nmm Mn=Mnc + Mns =171896767,6 Nmm=171,90 kN-m
Nilai kuat rencana
Ø=0,65
Ø.Mn = 0,65*171,90=111,73kN-m
Ø=0,80
Ø.Mn = 0,80*171,90=137,52kN-m
69