CLE^KZSHLE VL HSIAO HE VDK JAIBAES
VDK LVVLOAE KOPHZK AEF HVS DKZHVA DKZHVAGK Plihvhcs) Slchkvx aef Kclelox kfhvkf jx
S{zahxa N azlqdh aef D aihi Heaichb Af~hslzx Jlazf Nhbzkv AfaeÉz Hfzhs Jlsvae • Aoele Cldke Cldke • Clzekii Nikhscdkz Jazjaza Nikooheg • Aiktaefkz fk Gzllv Gzllv • Bia{s Bzkhskz Daes Gklzg Oamkz • Hzäek Oèihblnn • Adokv Xas Xas´az ´az Lcab Ajfkimkihi Vkohoh Vkohoh • Ghiiks ^khesvkhe • Kih}ajkvd ]acdazhafl{
^LI[O LI[OK K 30
CLE^KZSHLE VL HSIAO HE VDK JAIBAES Bhs~k JadasÉ Pkvhvhles aef Lvvloae Slchai Ihnk) 1>70/1730 JX
AEVLE AE VLE OHEBL OH EBL^ ^
JZHII IKHFKE • JLSVLE :006
Vdhs jllb hs pzhevkf le achf/nzkk papkz% papkz%
Ihjzazx Ihjzazx ln Clegzkss Clegzkss Cavailgheg/h Cavailgheg/he/P{j e/P{jihcav ihcavhle hle Fava Ohebl~) Ohebl~) Aevle% Cle~kzshle Cle~kzshle vl Hsiao he vdk Jaibaes = Bhs~k jadasÉ pkvhvhles aef Lvvloae slchai ihnk) i hnk) 1>70/1730 , jx Aevle Ohebl~% p% co% ‖ $Vdk Lvvloae Kophzk aef hvs dkzhvagk) HSSE 1340/>07> 2 30( Heci{fks jhjihlgzapdhcai zknkzkecks aef hefkt% HSJE 80/06/13;7>/> 1% Hsiao‖Jaibae Hsiao ‖Jaibae Pkehes{ia‖Dhsvlzx% Pkehes{ia‖Dhsvlzx% :% O{sihos‖Jaibae Pkehes{ia‖Dhsvlzx% Pkehes{ia‖Dhsvlzx% 3% Jaibae Pkehes{ia‖Zkihghle% Pkehes{ia‖Zkihghle% 6% Jaibae Pkehes{ia‖Ch~hih}avhle‖Hsiaohc heni{kecks% ;% V{zbkx‖Slchai ihnk aef c{svlos‖17vd ckev{zx% >% V{zbkx‖Slchai ihnk aef c{svlos‖14vd ckev{zx% H% Vhvik% HH% Skzhks% JP>;%J:4O;> :006 :87%;‘76‘086>‖fc:: :0030>8;;;
HSSE 1340/>07> HSJE 80 06 06 13 13;7> >
¨ Clpxzhgdv :006 jx Blehebihmbk Jzhii E^) Ikhfke) Vdk Ekvdkziaefs Aii zhgdvs zkskz~kf% El pazv ln vdhs p{jihcavhle oax jk zkpzlf{ckf) zkpzlf{ckf) vzaesiavkf) svlzkf he a zkvzhk~ai sxsvko) lz vzaesohvvkf he aex nlz o lz jx aex okaes) kikcvzlehc) kikcvzlehc) okcdaehcai) pdlvlclpxheg) zkclzfheg lz lvdkzwhsk) whvdl{v pzhlz wzhvvke pkzohsshle pkz ohsshle ln vdk p{jihsdkz% p{jihsdkz% A{vdlzh}avhle vl pdlvlclpx hvkos nlz hevkzeai lz pkzsleai {sk hs gzaevkf jx Jzhii pzl~hfkf vdav vdk appzlpzhavk nkks azk pahf fhzkcvix vl Vdk Clpxzhgdv Cikazaeck Ckevkz) Ckevkz) Zlskwllf Zlsk wllf Fzh~k :::) S{hvk 810 Fae~kzs OA 018:3) 018:3) [SA Nkks azk s{jmkcv vl cdaegk% pzhevkf he vdk ekvdkziaefs
Vl ox olvdkz wdl jkggkf ok elv vl wzhvk vdhs jllb jkca{sk hv was v{zeheg dkz wlzif {pshfk flwe) vl ox whnk wdl fhfe‘v vdheb H whii k~kz wzhvk hv aef vl ox fa{gdvkz Ia{za wdlsk cd{jjx ikgs waibheg azl{ef ok fi eaiix eaiix oafk ok wzhvk hv%
Vdhs pagk hevkevhleaiix iknv jiaeb
CLEVKEVS Ihsv ln Va Ihsv Vaji jiks ks ae aeff Gza Gzapd pdss %% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %% Acbel Ac belwi wikf kfgok gokev evss %%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%%% Elvkk le Vz Elv Vzaes aesihv ihvkz kzav avhle hle %%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%%% Ihsv Ih sv ln Aj Ajjz jzk~h k~hav avhl hles es %%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%
ht th thhhhh th t~
Hevz He vzlf lf{c {cvh vhle le %% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%
1
Cdapvkz Lek% Cdapvkz Lek% Cle~ Cle~kzs kzshle hle vl Hsiao Hsiao jknlz jknlzkk vdk Lvvloae Lvvloaes= s= Vdkl Vd klzh zhks ks ln Cl Cle~ e~kz kzsh shle le %% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %% Cdapvkz Vwl% Pkzhlfs ln Cle~kzshle vl Hsiao he vdk Jaib Ja ibae aess ae aeff Fk Fkol olgz gzap apdh dhcc Pz Pzlc lcks kssk skss %% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %% Cdapvkz Vdzkk% Nlzos) Nacvlzs aef Olvh~ks ln Cle~kzshle vl Hs Hsia iao o he vd vdkk Jai Jaiba baes es %%%%%%%%%%% %%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%% Cdapvkz Nl{z% Bhs~k Ja Jaddası Pkvhvhles as Sl{zcks ln Cle~k Cle ~kzs zshle hle %%%%%%% %%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%% Cdapvkz Nh~k% Vdk Hesvhv{vhleaih}avhle ln Cle~kzshle= Bhs~k Pkvh vhvh vhle less as as a Sl Slch chai ai Pd Pdke kelo loke kele le %% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %% Jadası Pk Cdapvkz Sht% Vdk Cliikcvh~k Hoagk ln Ekw O{sihos wdl S{johvvkf Bhs~k Jadası Pkvhvhles vl vdk S{ivae) 1>70s 1>7 0s–17 –1730s 30s %%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%% Cleci Cle ci{s {shle hle %%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%
8 :4 >6 110 16;; 16 1>> 183
Appkefhcks Appkefht 1% Bhs~k Jadası Pkvhvhles= Nacshohiks aef Vzae Vz aesi siav avhle hless %%% %%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%% :01 Appkefhtt :% Ihsv ln Azcdh~ai Appkefh Azcdh~ai [ehvs he vdk vdk Eavhleai Eavhleai Ihjzazx Ihjzazx ln J{igazha clevaheheg Bhs~k Ja %%%%%%%%% %%%%%%%% %%%%%%%%% %%%%%%% :6 :666 Jaddası Pkvhvhles %%% Appkefh App kefhtt 3% Ihs Ihsvv ln Azcdh Azcdh~ai ~ai [ehv [ehvss he vdk vdk Ja Ja jabaeiıb jabaeiıb Lvvloae Azcdh~k) Hsvaej{i) clevaheheg Bhs~k Jadası Pkvhv Pkv hvhle hless %%% %%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%% :; :;:: Jhjihlgzapdx Jhjihlgz apdx %%% %%%%%%% %%%%%%%% %%%%%%% %%%%%%% %%%%%%% %%%%%%% %%%%%%%% %%%%%%% %%%%%%% %%%%%%% %%%%%%% %%%%%%%% %%%%%%% %%%%%%% %%%%%%%% %%%%%%% %%%%%%% %%%%%%% %%%%%%% %%%%%%%% %%%%%%% %%%%% :;3 Hefkt Hef kt %%% %%%%%%% %%%%%%% %%%%%%% %%%%%%%% %%%%%%% %%%%%%% %%%%%%%% %%%%%%% %%%%%%% %%%%%%% %%%%%%% %%%%%%%% %%%%%%% %%%%%%% %%%%%%%% %%%%%%% %%%%%%% %%%%%%% %%%%%%% %%%%%%%% %%%%%%% %%%%%%% %%%%%%% %%%%%%% %%%%%%%% :>7
Vdhs pagk hevkevhleaiix iknv jiaeb
IHSV LN VAJIKS AEF GZAPDS Vajiks 1% Ch}xk /paxheg /paxheg ele/O{siho plp{iavhle aef ekw O{sihos nlz vdk xkazs 1644–81 jx sa saec ecab ab %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 34 :% Jaibae plp{iavhle he 1;:0–1;3; jx sa saec ecab ab %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 61 3% E{ojkz ln Jaibae xùzùb {ehvs $lcabs ( he vdk shtvkkevd ckev ck ev{z {zxx %%%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%% 6; 6% Plp{iavhle ln 1: Jaibae vlwes he vdk 1;:0s clopazkf vl vdk O{siho plp{iavhle he vdk saecab ln a vlwe‘s ilca il cavh vhle le %% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %% 68 ;% E{ojkz ln fizsv gkekzavhle O{sihos $he dl{skdlifs( aoleg vdk O{siho plp{iavhle he {zjae aef z{zai azka az kass ln Oa Oack ckfl fleh eha) a) 1; 1;>8–43 >8–43 %% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %% ;0 >% Cdaegks he ele/O{siho plp{iavhle he vdk sk~kevkkevd cke kevv{zx he slo lokk azka kass he vdk ka kassvkze Jaibae iae aef fs %%%% %%%%%%% ;6 7% Ch}xk /paxheg /paxheg ele/O{siho Jaibae plp{iavhle) 1700–14 17 00–141; 1; %%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%% ;8 4% Pl Plp{ p{iiav avhl hle e ln ln Lv Lvvl vloa oae e Jai Jaiba baes es he 14 1431 31 %% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %% >1 8% Fhsvzhj{vhle ln bhs~k jadası pkvhvhles aef ekw O{sihos pkz xkaz clopazkf vl k~kevs nzlo vdk Lvvloae dhsv dh svlzx lzx %%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%% %%%%%%%%%%% 16; 10% G{iaos‘ eaoks $1>78( aef ekw O{sihos‘ eaoks he bhs~ bh s~kk ja jaddas ası ı pk pkvh vhvh vhle less %%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%% 176 Gzapds 1% Clopazhsle jkvwkke pkzckevagk ~ai{ks ln cle~kzvs vl Hsiao he {zjae aef z{zai azkas he Oackfleha) 1;>8–1;4 1; >8–1;433 %%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%% ;1 :% Clopazhsle jkvwkke pkzckevagk ln ekw O{sihos he {zjae aef z{zai azkas ln sht eadhxk s ln Oackfleha he 1;6; 1; 6; aef 1;>8 1;>8 %% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %% ;: 3% S{pkzsvz{cv{zk ln vdk bh bhs~ s~kk ja jaddas ası ı pkvhvhles %%%%%%%%%%%%%%%%%%%%%%%% 163 6% Zkiavh~k zavk ln ekw O{sihos wdl pkvhvhlekf vdk S{iv S{ ivae ae)) 1>7 1>7:–1 :–173; 73; %%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%%%%%% %%%%%%%%%% %%%%%%%%%% %%%%%%%%%%% 164
t
Oaps 1% Lvvloae saecabs aef oamlz vlwes av vdk kef ln vdk 1;vd 1; vd ck ckev ev{z {zxx %% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %% :% Fhsvzhj{vhle ln O{sihos jx saecabs he 1;:; %%%%%%%%%%%%%%%%%%%%%%%% 3% Sk Sk~k ~kev evkk kkev evd d cke ckev{ v{zx zx af afoh oheh ehsv svza zavh vh~k ~k fh fh~h ~hsh shle le %% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %% 6% Pl Plp{ p{ia iavh vhle le }l }lek ekss he vd vdkk kh khgd gdvk vkke kevd vd ck ckev ev{z {zxx %% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%%% %%
60 63 ;3 ;4
ACBELWIKFGOKEVS H wl{if ihbk vl ktpzkss ox gzavhv{fk vl A% Ùekz V{zgax) Fhzkcvlz ln vdk Hesvhv{vk ln Hsiaohc Sv{fhks av OcGhii [eh~kzshvx nlz dhs olzai s{pplzv) vl Fleaif P% Ihvvik) Waki Daiiaq) ^hzgheha Absae aef vdk skzhks kfhvlzs nlz vdkhz ~ai{ajik s{ggksvhles aef clookevs le ~azh/ l{s aspkcvs ln vdk jllb% H aisl whsd vl vdaeb S% Bkefkzl~a aef S% Aefzkk~) whvdl{v wdlsk s{pplzv ox zkskazcd av vdk Eavhleai Ihjzazx ln J{igazha wl{if da~k jkke hoplsshjik) as wkii as vl aii sva ff okojkzs ln vdk ihjzazx wdl bhefix asshsvkf ok f{zheg vdk zkskazcd% H ao kspkchaiix hefkjvkf vl K~gkeh Zaf{sdk~ nlz sdazheg whvd ok dhs ktpkzvhsk le vdk s{jmkcv ln cle~kzshle vl Hsiao he Lvvloae vhoks aef nlz pzl~hfheg ok whvd {ep{jihsdkf oae{sczhpvs ln sk~kzai ln dhs wlzbs% H aisl vdaeb Pzlnksslz O% Bhki wdl pzl~hfkf ok whvd vzaesczhpvs ln a e{ojkz ln bh bhs~ s~kk ja jada dası sı pkvhvhles ilcavkf he vdk Ja Ja jabaeiıb jabaeiıb Lvvloae Azcdh~k he Hsvaej{i% H ao gzavkn{i vl aii ox nzhkefs nlz vdkhz pavhkeck aef s{pplzv aef kspkchaiix vl Svknae Bl{pkel~ wdl plhevkf l{v vl ok vdk shohiazhvhks jkvwkke vdk favajask sxsvkos vdklzx aef vdk gzapds H da~k fzawe) avvkopvheg vl capv{zk cloole nka/ v{zks ln pkvhvhles% Svkpdke Ohiihkz nzlo vdk Hesvhv{vk ln Hsiaohc Sv{fhks Ihjzazx av OcGhii [eh~kzshvx was ln oamlz dkip vl ok jx kfhvheg vdk oae{sczhpv% S{pplzv nlz vdhs zkskazcd was pzl~hfkf jx gzaevs nzlo vdk Hesvhv{vk ln Hsiaohc Sv{fhks aef vdk Nac{ivx ln Gzaf{avk Sv{fhks aef Zkskazcd av OcGhii [eh~kzshvx%
Vdhs pagk hevkevhleaiix iknv jiaeb
ELVK LE VZAESIHVKZAVHLE H {sk olfkze V{zbhsd spkiiheg nlz aii V{zbhsd aef Lvvloae vkzos) eaoks aef jllb vhviks) as wkii as nlz vdk vzaesihvkzavhle ln vdk Lvvloae flc{okevs he vdk Appkefht) ktckpv nlz fhzkcv q{lvks% Lccashleaiix) hn a eaok lz vkzo ln Azajhc lzhghe hs fhsc{sskf he a pzk/Lvvloae clevktv lz vdk olfkze V{zbhsd spkiiheg fh ff kzs kzs s{jsvaevhaiix nzlo hvs Azajhc vzaesihvkzavkf vzaesihvkzavkf nlzo) vdk iavvkz nlzo hs gh~ke as wkii% Gklgzapdhcai eaoks ln oamlz chvhks appkaz acclzfheg vl vdkhz olfkze ~kzshle wdhik soaiikz skvvikokevs oax appkaz acclzfheg vl vdk nlzo {skf he Lvvloae vhoks% Wlzfs vdav da~k gahekf acckpvaeck he vdk Kegihsd iaeg{agk $s{cd as fkz~hsd) ~h}hkz) caihpd( azk zkefkzkf acclzfheg vl vdk spkiiheg nl{ef he vdk Wkjsvkz‘s Fhcvhleazx%
Vdhs pagk hevkevhleaiix iknv jiaeb
IHSV LN AJJZK^HAVHLES AL JLA JSLAS CG KH : GS[/NHN HMOK HM OKSS HEJB HE JBO O HÙHNO MALS MKSDL EJBO EPVA LA LAB LHHP LH HPJ J Pzhil}h SH SI VFHO VF HOE E VHJH
Azcdh~{o Lvvloaehc{o Ja jabaeiıb Ja jabaeiıb Lsoaeiı Az h~h Az h~h J{iikvhe ln vdk Scdlli ln Lzhkevai aef Anzhcae Sv{fhks EJBO) Cliikcvhle Cazhgzaf Ekw w Kf Kfhv hvhhle Kecxcilpakfha ln Hsiao) Ek Glfhsdehb ea ea Sl Sl fi hsbhxa {eh~kzshvkv‖Nhilslnsbl/hsvlzhvcdksbh nab{ivkv fi hsbhxa Hevk He vkzzea eavh vhle leai ai Ml{ l{ze zeaai ln ln Ohf Ohfffik Ka Kasv svkz kzee Sv{ Sv{fh fhks ks H}~k H} ~ksv svhx hxaa ea ea Eaz Eazlf lfea eava va Jh Jhji jihl hlvk vkba ba ’B ’Bhz hzhihi h Okv Okvlf lfh‟ h‟ svaej{i Ùeh~kzshvksh bvhsav Nabùivksh Okco{ası Ml{zeai ln vdk Aokzhcae Lzhkevai Slchkvx Ml{zeai ln vdk Kclelohc aef Slchai Dhsvlzx ln vdk Lzhkev Eavhleai Ihjzazx ln J{igazha SS% Cxzhi aef Okvdlfh{s Cliiikcvhle El~lplsvaphi V{zsbh Azdh~ EJBO ) Cl Lsoaeiı Aza vızoaiazı vızoaiazı Cliiikcvhle Lzhkevaisba Azdh~ea Blikbvsha EJBO) Cl Lsoa Ls oaes esbh bh h} h}~~lz lzhh }a }a hsi hsiaaoh oh}a }avs vshl hlee eehv hvkk pzl pzlck ckss sshh ea ea ja jaib ibae aehv hvk k Pzhil}h }a lzhkevaie{ fi ililghm{ ililghm{ h hsvlzhm{ m{glsil~kesbhd eazlfa plf v{zsblo ~iafa~helo Sv{fha Hsiaohca EJBO) Cliikcvhle Sih~ke V{zs V{ zsbh bh flb flb{o {oke kevhvh }a }a hsvl hsvlzh zhma mava va ea ea oabk oabkfl fles esbh bhlv lv eaz eazlf lf V{zsbh h}~lzh }a J{igazsbava hsvlzha
HEVZLF[CVHLE
LJMKCVH^K) OKVDLFLILGX AEF SL[ZCKS Vdk vhok oax jk zhpk nlz olfhnxheg slok ln vdk lif appzlacdks vl vdk sv{fx ln vdk Ohffik Kasv% Hv hs elv ox hevkevhle) av vdk vhok) vl fhsc{ss av aex ikegvd ekw appzlacdks vl vdk sv{fx ln olfkzeh}avhle ln vdk Ohffik Kasv% Hv whii s{ffick vl elvk vdk gzlwheg fh~kzgkeck ln lphehle aoleg Wksvkzekzs aef eavh~k scdliazs whvd zkgazf vl vdk lzh/ ghe aef vzkef ln fk~kilpokevs he vdk Ohffik Kasv% Vdk eavh~k wzhvkz‘s ~hkws le a gh~ke k~kev lnvke cle hcv whvd vdlsk ktpzksskf jx l{vshfkzs% Vz{k) vdk eavh~k) hookzskf he dhs lwe c{iv{zk aef clopkiikf vl savhsnx vdk fkoaefs ln a floksvhc a{fhkeck) oax elv da~k vdk nzkkflo aef vdk ljmkcvh~hvx ln ae l{vshfk ljskz~kz% J{v vdk q{ksvhle svhii zkoahes wdkvdkz vdk l{vshfkz‘s ~hkws le vdk slchai) plihvhcai) aef c{iv{zai pzljikos ln vdk Ohffik Kasv azk kevhzkix nzkk ln dhs lwe ~ai{ks aef plihvhcai cloohvokev% Olzkl~kz) lek oax asb wdkvdkz ae l{vshfkz cae aiwaxs fl a pzlpkz m{svhck vl ae k~kev lz vzkef wdhcd dhs lwe slchkvx fhf elv ktpkzhkeck he hvs dhsvlzhcai k~l/ i{vhle% A ekw {efkzsvaefheg ln Ohffik Kasvkze slchkvx aef hvs olf/ kzeh}avhle cl{if jk acdhk~kf jx aeaix}heg he vdk gzkavksv plsshjik fkvahi vdk hevkzeai svz{cv{zai vzaesnlzoavhle ln vdhs slchkvx) vdk kokzgkeck ln ~azhl{s slchai gzl{ps) vdkhz hevkzzkiavhles) aef vdkhz hopacv le c{iv{zk aef gl~kzeokev% Vd{s) a nacv{ai) kophzhcai appzlacd vl vdk sv{fx ln vdk Ohffik Kasv) nzkk ln ~ai{k m{fgokevs lz c{iv{zai ass{opvhles) sdl{if xhkif savhsnacvlzx zks{ivs% $ Bkoai Bazpav(1
Aivdl{gd H ao ckzvaheix elv vdk fizsv sv{fkev ln Hsiaohc dhsvlzx vl da~k jkke hesphzkf jx vdk ajl~k svavkokev oafk vdhzvx fi~k xkazs agl jx Pzln% Bkoai Bazpav): aef aivdl{gd scdliazix af~aecks he vdk hevkz~ai da~k slnvkekf slok ln hvs kfgk) H svhii fief hv q{hvk clevko/ plzazx aef shgehficaev) kspkchaiix he cleekcvhle whvd vdk s{jmkcv vdav H pzlplsk vl he~ksvhgavk dkzk) eaokix) cle~kzshle vl Hsiao% Hefkkf) vdkzk hs pkzdaps el lvdkz vlphc he vdk fikif ln Lvvloae dhsvlzx vdav
1
B% Bazpav) Bazpav) ’Vdk Lvvloae Kophzk)‟ he he vdk Ohffik Kasv2 Vdk : Skk aisl C%A%L% 1871() th%
Iaeff Zkghok) Slchai Iae Slchai Svz{cv{zk) Svz{cv{zk) aef aef Olfkzeh}avhl Olfkzeh}avhle e he vdk W% Plib aef Z%I% Cdaojkzs) kf%) Jkgheehegs ln Olfkzeh}avhle Ehekvkkevd Ckev{zx $Cdhcagl) 18>4() >8% ^ae Ehk{wked{hm}k) Slchlilgx ln vdk Ohffik Kasv $Ikhfke)
:
das pzlf{ckf fhff kzkecks kzkecks jkvwkke ’eavh~k‟ aef ’l{vshfk‟ scdliazs vdav azk olzk pzlnl{ef% Vdk hesphzavhle nlz ok fkzh~ks nzlo vdk nacv vdav H clok nzlo a ’eavh~k‟ scdliazix vzafhvhle) wdhik) le vdk lvdkz daef) H da~k ih~kf aef sv{fhkf ileg kel{gd l{vshfk vdhs vza/ fhvhle vl cleshfkz oxskin hookzskf he vdk ’l{vshfk‟ plhev ln ~hkw as wkii% Ox ljmkcvh~k) vdkzknlzk) hs vl clojhek vdk ’eavh~k‘s‟ hev{/ hvhle aef ktpkzhkeck) sdlze ln aex slchai aef olzai pzkm{fhcks) whvd vdk ’l{vshfkz‘s‟ ljmkcvh~hvx aef hopazvhaihvx) xkv zkvaheheg ae hevhoavk naohihazhvx whvd vdk pazvhc{iaz dhsvlzhcai shv{avhle% Le vdk lvdkz daef) lek ln vdk zkaih}avhles ln l{z plsvolfkze agk hs vdav el lek cae jk kevhzkix ljmkcvh~k lz hefkpkefkev ln lek‘s slchai aef c{iv{zai ohihk{% Vdhs okaes vdav he ox cask as wkii) vdk ’eavh~k‘s‟ lz vdk ’l{vshfkz‘s‟ jacbgzl{ef oax k~kev{aiix pzk~ahi av ckzvahe plhevs% H cae leix vzx vl l~kzclok vdk sdlzvclohegs ln jlvd plhevs ln ~hkw) wdhik fzaw/ heg le vdkhz zkspkcvh~k af~aevagks% Da~heg oafk vdhs) sl vl spkab) ’kolvhleai cloohvokev)‟ H wl{if ihbk vl jkghe ox fhsc{sshle whvd vdk ljskz~avhle vdav cle~kzshle vl Hsiao $lz Hsiaoh}avhle(3 was a slchai pzlckss ln {volsv hoplzvaeck vl Hsiaohc slchkvx vdzl{gdl{v hvs dhsvlzx% Ek~kzvdkikss) vdk zkiavhle jkvwkke vdk ktpaeshle aef ksvajihsdokev ln Faz ai/Hsiao aef cle/ ~kzshle vl Hsiao hs vdl{gdv vl jk sl athloavhc jx scdliazs ln okfhk~ai Hsiaohc dhsvlzx vdav nkw da~k acv{aiix ~kev{zkf vl he~ksvhgavk cle/ ~kzshle as a fhsvhecv pzlckss% Scdliazix wlzbs fkaiheg whvd vdk vlphc he pzk/Lvvloae vhoks azk sl splzafhc 6 vdav hv wl{if elv jk ae ktag/ gkzavhle vl sax vdav vdk sv{fx ln cle~kzshle he okfhk~ai Hsiaohc slchai dhsvlzx hs svhii he hvs henaecx% ;
3
Vdk vkzo Hsiaoh}avhle he hvs ihvkzai skesk das slokdlw a iazgkz cleelvavhle vdae cle~kzshle% Hv hopihks olzk vdae shopix ktcdaegheg lek skv ln jkihkns whvd aelvdkz) j{v he~li~ks a cdaegk ln ihnk/svxik) c{iv{zk aef lnvke hechfkevaiix slchai sva/ v{s% Hv das k~ke jkke s{ggksvkf vdav Hsiaoh}avhle he slchkvx oax lcc{z whvdl{v zkih/ ghl{s cle~kzshle ekckssazx vabheg piack $skk) Vs~kvaea Gklzghk~a) ’Vzaesnlzoachhvk ea kfhe sji{sab ea vsh~hih}avshh‖dzhsvhxaesv~lvl h hsiaoa ea jaibaehvk RVdk Vzaesnlz/ oavhle ln Lek Clehcv jkvwkke Ch~hih}avhles‖Cdzhsvhaehvx aef Hsiao he vdk Jaibaes_)‟ he K% Zaf{sdk~) S% Nkv~afmhk~a kf%) Jaibaesbh hfkevhcdelsvh ) ~li% 3) $Slfia) :003() 7;(% Skk aisl G%Z% Dawvheg) ’[oaxxafs) h~‖Azajhsavhle aef Hsiaohsavhle {efkz vdk [oaxxafs)‟ HK :% Dlwk~kz) sheck zkihghl{s cle~kzshle) pkz sk ) caeelv ikaf vl aex/ vdheg j{v cle~kzshle vl ae Hsiaohc wax ln ihnk) hv cae jk aisl {skf he vdk jzlafkz skesk ln Hsiaoh}avhle% 6 Skk vdk ihvkzav{zk chvkf he cdapvkz lek% ; Nlz a jzlaf l{vihek ln vdk pzljikos he vdk sv{fx ln cle~kzshle vl Hsiao aef slok okvdlflilghcai g{hfkiheks skk Z% Svkpdke D{opdzkxs) Hsiaohc Dhsvlzx= A Nzaokwlzb nlz Heq{hzx $Pzheckvle) 1881() :73–:43 aef E% Ik~v}hle) ’Vlwazf a Clopazavh~k
)
3
Av fizsv giaeck) vdk svavk ln scdliazix acdhk~kokev he vdhs azka ln Lvvloae sv{fhks appkazs slokwdav jkvvkz% Dlwk~kz) sk~kzai hoplz/ vaev plhevs ekkf vl jk oafk he vdhs zkspkcv% Nhzsv) vdk avvkevhle ln scdliazs he vdhs fikif das ileg jkke nlc{skf oaheix le vdk sl/caiikf ’ciasshcai pkzhlf‟ ln vdk Lvvloae svavk) h%k%) vdk finvkkevd aef sht/ vkkevd ckev{zhks% S{cd a vkefkecx hs q{hvk {efkzsvaefajik% Anvkz aii) vdk finvkkevd aef shtvkkevd ckev{zhks) jkca{sk ln vdk svzkegvd ln vdk Lvvloae ckevzai a{vdlzhvx) azk vdk pkzhlf whvd vdk olsv lzfkzix aef vdk wkii/pzkskz~kf azcdh~ks% Nzlo vdlsk ckev{zhks) nlz hesvaeck) wk plsskss cafasvzai s{z~kxs $ vadzhz zkghsvkzs( vdav aiilw {s vl oabk s{z/ pzhshegix fkvahikf fkolgzapdhc aeaixshs% Ckzvaheix) vdk p{jihcavhle ln lzhgheai sl{zcks nzlo vdk Lvvloae azcdh~ks zkiavkf vl vdk Hsiaoh}avhle pzlckss das cleshfkzajix kezhcdkf vdk nacv{ai jashs ln Lvvloae sv{fhks% Dlwk~kz) hv hs vdk dhsvlzhcai fkolgzapdkzs wdl da~k jkekfivkf vdk olsv nzlo vdhs acvh~hvx) wdhik slchai dhsvlzhaes da~k nahikf vl j{hif le vdk nl{efavhle ln vdksk sv{fhks aef fkolesvzavk vdk slchai shgehficaeck ln vdk fkolgzapdhc cdaegks% Xkv) cle~kzshle vl Hsiao he Lvvloae vhoks clesvhv{vkf a slchai pdkelokele vdav cl{if jk aef sdl{if jk sv{fhkf le hvs lwe% Hv das k~ke jkke azg{kf vdav vdk sv{fx ln cle~kzshle vl Hsiao hs acv{aiix lek ln vdk olsv k ff kcvh~k kcvh~k waxs ln zkclesvz{cvheg vdk spkch fic cdazacvkzhsvhcs ln kacd ln vdk cle/ svhv{kev slchkvhks ln okfhk~ai Hsiao%> He vdk sk~kevkkevd ckev{zx) dlwk~kz) whvd vdk cdaegks he vatavhle pzacvhcks aef iaef vke{zk vdav vllb piack) 7 vdk acc{zacx aef e{o/ jkz ln vdk vadzhz zkghsvkzs gzaf{aiix fkczkaskf aef sl as a zks{iv flks vdkhz clzzksplefheg hoplzvaeck as sl{zcks% Vdk nkw scdliazs wdl da~k sv{fhkf Hsiaoh}avhle he vdhs pkzhlf da~k vdkzknlzk vkefkf vl zkix ktci{sh~kix le vdk plii vat $ch}xk ( zkghsvkzs) wdhcd leix zkkcv vdk fkolgzapdhc cdaegks he vdk ele/O{siho cloo{ehvx% Vdk zks{ivheg hojaiaeck jkvwkke vdk a~ahiajhihvx ln fava aef sv{fhks fk~lvkf vl vdk vwl pkzhlfs ika~ks lek whvd vdk hopzksshle vdav cle~kzshle was olzk pzlel{eckf he vdk shtvkkevd vdae he vdk sk~kevkkevd ckev{zx% 4 Sv{fx ln Hsiaoh}avhle)‟ he hfko) kf%) Cle~kzshle vl Hsiao $Ekw Xlzb) Ilefle) 1878() 1–:3% > D{opdzkxs) Hsiaohc Dhsvlzx) :7>% 7 Nlz vdksk cdaegks skk D% eaicıb) ’Ohihvazx aef Nhscai Vzaesnlzoavhle he vdk Lvvloae Kophzk) 1>00–1700)‟ AL ) > $1840() :43–337) aef K~gkeh Zaf{sdk~) Agzazehvk hesvhv{vshh ~ lsoaesbava hopkzha pzk} 17 14 ~kb RAgzazhae Hesvhv{vhles he vdk – 14 Lvvloae Kophzk f{zheg vdk Sk~kevkkevd aef Khgdvkkevd Ckev{zhks_ $Sl fia) 188;(% 4 Skk nlz ktaopik) S% ^zxlehs) ’Zkihghl{s Cdaegks aef Pavvkzes he vdk Jaibaes)
6
As fkolesvzavkf he vdhs sv{fx) dlwk~kz) cle~kzshle vl Hsiao he vdk Jaibaes acdhk~kf hvs pkab leix vlwazfs vdk ohffik ln vdk sk~kevkkevd ckev{zx aef clevhe{kf) he slok zkghles) {evhi vdk kef ln vdk khgdv/ kkevd% Vdhs fhsczkpaecx he vdk sv{fx ln vdk vwl pkzhlfs hs clesphc/ {l{s he vdk leix jllb vdav shegiks l{v cle~kzshle as ae hefkpkefkev vlphc= Vdk Spzkaf ln Hsiao he vdk Wksvkze Jaibae Iaefs {efkz Lvvloae Z{ik) 8 vdk spack fk~lvkf vl vdk sk~kevkkevd sk ~kevkkevd aef 1;vd–14vd Ckev{zhks ‖wdkzk khgdvkkevd ckev{zhks aol{evs vl leix a cl{pik ln pagks% Vdkzknlzk) H jkihk~k vdav a sv{fx ln vdk pzlckss ln cle~kzshle f{zheg vdk skc/ lef dain ln vdk sk~kevkkevd aef fizsv dain ln vdk khgdvkkevd ckev{zhks whii s{jsvaevhaiix clevzhj{vk vl l{z {efkzsvaefheg ln Lvvloae slchai dhsvlzx f{zheg vdav pkzhlf% Aelvdkz ihohvavhle ln vdk sv{fhks le cle~kzshle he Lvvloae vhoks hs vdav vdkx azk {s{aiix jl{ef vl olfkze eavhleai dhsvlzhks) aef vdkzknlzk nlc{s le pazvhc{iaz kvdehc cloo{ehvhks‖Aijaehaes) Oack/ flehaes) J{igazhaes) Gzkkbs) kvc% Le vdk lek daef) s{cd ae appzlacd ihohvs vdk sclpk ln vdksk sv{fhks vl ilcai clefhvhles) wdhik le vdk lvdkz) vdk asskssokev ln cle~kzshle vl Hsiao skiflo glks jkxlef vdk ktpzksshle ln eavhleaihsvhc skevhokev% Hv hs) ln cl{zsk) wkii belwe vdav he vdk ehekvkkevd aef vwkevhkvd ckev{zhks vdk svz{ggik nlz hefkpke/ fkeck wagkf jx vdk Jaibae Cdzhsvhae cloo{ehvhks) nliilwkf jx hevkz/ eai aef ktvkzeai plihvhcai pzkss{zks) oafk kvdehc aef zkihghl{s hevlikzaeck pazv ln vdk slchai cihoavk he vdk pkehes{ia% As a zks{iv) cle~kzshle vl Hsiao was {s{aiix vabke l{v ln hvs clevkoplzazx slchai clevktv he s{cd sv{fhks) wdhik olfkze zkaihvhks wkzk pzlmkcvkf jacb/ wazfs he vhok%10 He vdk olfkze clevktv) Hsiaoh}avhle cl{if elv jk zkgazfkf he aexvdheg lvdkz vdae a ekgavh~k ihgdv jx scdliazs ln vdk ekw Jaibae svavks% Vdk Lvvloae z{ik he vdk Jaibaes was he~azhajix iajkikf as ’vdk olsv vzaghc pkzhlf‟ he vdk dhsvlzx ln vdk Jaibae
16vd–1>vd Ckev{ 16vd–1>vd Ckev{zhks)‟ zhks)‟ he he D% Jhzeja{o Jhzeja{o aef aef S% ^zxlehs) ^zxlehs) kf%) kf%) Aspkcvs ln vdk Jaibaes $Vdk Dag{k) Pazhs) 187:() 1>8–170% ^zxlehs clopazks vdk fkolgzapdhc shv{avhle ln Aeavliha aef vdk Jaibaes av vdk jkgheeheg ln vdk shtvkkevd ckev{zx aef fzaws vdk cleci{shle vdav Hsiaoh}avhle daf s{cckkfkf he vdk nlzokz zkghle wdhik Cdzhsvhaehvx daf iazgkix s{z~h~kf he vdk iavvkz as hn vdkx wkzk av vdk saok svagk ln fk~kilpokev ln vdk pzlckss ln cle~kzshle% 8 Skk) A% ]kixa}bl~a) Za}pzlsvzaekehk ea hsiaoa ~ }apafel/jaibaesbhvk }koh plf lsoaesba ~iasv% 1; 14 ~% $Slfia) 1880(% – 14 10 Vdhs cleci{shle hs elv leix ~aihf nlz vdk sv{fx ln Hsiaoh}avhle j{v nlz lvdkz aspkcvs ln Lvvloae dhsvlzx as wkii% Skk D% eaicıb) aef F% Q{avakzv) kf%) Kclelohc – 1816 aef Slchai Dhsvlzx ln vdk Lvvloae Kophzk 1300 1816 $Caojzhfgk) 1886() 6>8%
)
;
Cdzhsvhae eavhles aef Hsiaoh}avhle hvskin as ’asshohiavhle‟ aef ’zkih/ ghl{s fhsczhoheavhle%‟11 Sv{fhks le cle~kzshle da~k jkke {skf lz k~ke pzlf{ckf vl n{ifiii pazvhc{iaz plihvhcai glais% Vl chvk Bazpav leck agahe) ’vdk oaehp{iavhle ln plp{iavhle svavhsvhcs nlz plihvhcai p{zplsks jx ~azhl{s kvdehc aef zkihghl{s gzl{ps was whfkspzkaf aef hegk/ ehl{s%‟1: Lek ekkf leix plhev vl vdk oassh~k scdliazix kff lzv lzv ahokf av pzl~heg vdk J{igazhae lzhghe ln vdk O{sihos ih~heg he J{igazha) spazbkf jx vdk vlvaihvazhae zkghok‘s eaok/cdaegheg caopahge f{z/ heg vdk pkzhlf 1846–48) he wdhcd vdk J{igazhae V{zbs wkzk shegikf l{v% Aivdl{gd ekhvdkz heclzzkcv elz naish fikf) vdhs scdliazix pzlf{c/ vhle was nlc{skf spkchficaiix le vdk pzljiko ln nlzckf cle~kzshle% Vdhs ~kzx nacv zkefkzs hv) he ox ~hkw) hevkiikcv{aiix vkefkevhl{s% He appzlacdheg vdk s{jmkcv ln cle~kzshle vl Hsiao) wk sdl{if jkaz he ohef vdav vdk iavvkz hs a pzlckss ’hevkiihghjik whvdhe spkch fic dhs/ vlzhcai) slchai aef c{iv{zai clevktvs%‟ 13 Vdhs plhev hs ~kzx hoplzvaev) elv leix nlz {efkzsvaefheg vdav cle~kzshle vl Hsiao he vdk pkzhlf {efkz cleshfkzavhle oax da~k nkav{zks fhsvheg{hsdheg hv nzlo cle/ ~kzshle av lvdkz plhevs ln vhok he Hsiaohc dhsvlzx) j{v aisl nlz zkai/ h}heg vdav wk da~k vl aeaix}k hv jkazheg leix vdhs pazvhc{iaz svagk ln Lvvloae slchai fk~kilpokev he ohef% Aex lvdkz pkzspkcvh~k wl{if vkef vl fhsvlzv l{z ~hkw ln vdk eav{zk ln vdk cle~kzshle aef dhsvlz/ hcai zkaihvx he cleskq{keck% Lek ln vdk waxs vl a~lhf a fhsvlzvkf pkzckpvhle ln cle~kzshle vl Hsiao aef vl fkvkzohek hvs pzlpkz zlik he vdk gkekzai fk~kilpokev ln clevkoplzazx Lvvloae slchkvx hs vl pzljk hevl vdk slchai cle/ schl{sekss ln vdk pklpik% Hv hs leix jx cleshfkzheg vdk pkzspkcvh~k ln vdlsk wdl vdkoski~ks acckpvkf Hsiao vdav wk cae dlpk vl aeswkz vdhs q{ksvhle% Vdkzknlzk) ox okvdlf ln heq{hzx whii cleshsv he ktao/ heheg aisl vdk hefh~hf{ai shfk ln vdk pzlckss) vdk pkzsleai zkasles nlz cle~kzshle% Vdav s{cd ae appzlacd cae jk vabke hs oafk plsshjik jx vdk kths/ vkeck ln a iazgk jlfx ln flc{okevs vdav zk~kai pkzsleai henlzoavhle ajl{v vdk cle~kzvs% Vdk oahe sl{zcks nzlo wdhcd vdhs wlzb fzaws hvs cleci{shles azk pkvhvhles s{johvvkf vl vdk s{ivae ln vdk fax jx ekw O{sihos zkq{ksvheg vdav vdkx jk zkwazfkf‖olsv lnvke whvd ae
11 1: 13
Skk vdk ihvkzav{zk chvkf he cdapvkzs vwl aef vdzkk) jkilw% 1816 $Oafhsle) Whscleshe) 184;() 6% Bkoai Bazpav) Lvvloae Plp{iavhle 1430 – 1816 D{opdzkxs) Hsiaohc Dhsvlzx) :7>%
>
aol{ev ln olekx belwe as ’bhs~k jadası ‟‖nlz ‟‖nlz acckpvheg vdk ekw nahvd% Hv wl{if elv jk ae ktaggkzavhle vl svavk vdav vdksk flc{okevs) wdhcd H zknkz vl as ’ bh pkvhvhles)‟ hles)‟ azk azk {ehq{k) {ehq{k) sheck) whvd vdk bhs~ s~kk jad adaası pkvhv ktckpvhle pkzdaps ln cl{zv zkclzfs) el lvdkz jlfx ln l ffichai flc{okevs pzl~hfks s{cd ae heshgdv hevl vdk ih~ks ln lzfheazx pklpik% A shgehficaev e{ojkz ln flc{okevs ln vdhs bhef da~k sl naz jkke fhscl~kzkf he vdk Lvvloae azcdh~k ln vdk Eavhleai Ihjzazx ln J{igazha) wdhik zkckevix slok da~k s{znackf he V{zbhsd Lvvloae azcdh~ks as wkii% Hv was he vdk 1840s vdav J{igazhae scdliazs fizsv jkgae aeaix}heg bhs~ bh s~kk ja jaddas ası ı pkvhvhles as sl{zcks nlz vdk dhsvlzx ln Hsiaoh}avhle he vdk Jaibaes%16 Vdk iazgksv p{jihsdkf cliikcvhle ln vdksk flc{okevs cle/ vahes ajl{v 1;0 vzaesiavhles ln pkvhvhles he J{igazhae aef 43 nac/ shohiks% 1; He vwl p{jihcavhles jx A% ^kibl~ aef K% Zaf{sdk~) a e{ojkz ln bh bhs~ s~kk ja jaddas ası ı pkvhvhles azk pzkskevkf he Kegihsd%1> Dlwk~kz) he aii vdksk sl{zcks vdk pkvhvhles azk fhsc{sskf leix whvdhe vdk nzaok/ wlzb ln ae ass{opvhle ln hefhzkcv clkzchle)17 a ohefskv vdav floh/ eavkf vdk appzlacd ln olsv Jaibae scdliazs vl vdk s{jmkcv) av ikasv) {evhi zkckevix% Vdk ekw O{sihos wdl s{johvvkf vdk pkvhvhles azk fksczhjkf as ’oke aef wloke naiike hevl fkspkzavk aef czhvhcai shv/ {avhles) skazcdheg vdzl{gd cle~kzshle vl Hsiao nlz sai~avhle nzlo svaz~avhle aef pl~kzvx) nzlo fkjvs aef czkfhvlzs%‟14 El J{igazhae sv{fx das acv{aiix {vhih}kf bh bhs~ s~kk ja jada dası sı pkvhvhles nlz aeaixvhcai p{zplsks) elz da~k vdk iavvkz jkke pzlpkzix sv{fhkf% Aivdl{gd hv was acbelwi/ kfgkf vdav vdk pkvhvhles ’aiilw nlz a jkvvkz sv{fx ln vdk olvh~ks aef okcdaehsos ln vdk Hsiaoh}avhle pzlckss)‟ 18 el lek) hv skkos) ~ke/ v{zkf anvkz vdav vl ktpilzk vdkhz plvkevhai% Vdk olsv ihbkix zkasle nlz pasv zkvhckeck le vdk pazv ln J{igazhae scdliazs vlwazfs appzlacd/
Skk A% ^kibl~) ’El~h faeeh }a ploldaokfaecd~aek ~ M{glh}vlcdea Vzabhxa REkw Henlzoavhle ajl{v Cle~kzshle vl Hsiao he Sl{vdkasv Vdzack_)‟ ^kbl~k ) 3 $184>() 73–7;% 1; O% Baihvshe) A% ^kibl~) K% Zaf{sdk~) kf%) Lsoaesbh h}~lzh }a hsiaoh}achleehvk pzl/ cksh ea jaibaehvk T^H–THT ~% RLvvloae Sl{zcks nlz vdk Hsiaoh}avhle Pzlckssks he vdk Jaibaes) Jaiba es) 1>vd– 1>vd–18vd 18vd ckev{ ckev{zhks_ zhks_ $Slfia) 1880(% 1> A% ^kibl~ aef K% Zaf{sdk~) ’Flc{okevs nzlo vdk Lvvloae Svavk Azcdh~k le vdk Jaibae Jaibae Hsiaoh}avhle Hsiaoh}avhle Pzlckssks Pzlckssks 16vd–18 16vd–18vd vd ckev{z ckev{zhks)‟ hks)‟ he G% Xaebl~) kf%) Aspkcvs ln vdk Fk~kilpokev ln vdk J{igazhae Eavhle $Slfia) 1848() >0–7>2 hfko) Azcdh~ks Spkab S pkab ) ~li% 7 $Slfia) 1848(% 17 Skk nlz ktaopik) S% Fhohvzl~) ’A~aev/pzlpls)‟ he LHHPJ ) :3–6:2 ]kixa}bl~a) 143–14>22 ^kibl~) ^kibl~) aef Zaf Zaf{sd {sdk~) k~) Azcdh~ks Spkab ) 1:% Za}pzlsvzaekehk ) 143–14> 14 S% Fhohvzl~) ’A~aev/pzlpls)‟ 38% 18 Hjhf% 16
)
7
heg vdksk sl{zcks was jkca{sk vdk pkvhvhles spkab ln ~li{evazx cle/ ~kzshle aef vd{s fl elv clenlzo vl vdk plihvhcaiix/clzzkcv vdklzx ln nlzckf cle~kzshle% Hv sdl{if jk plhevkf l{v aisl vdav vdk wlzb Lsoaesbh H}~lzh }a Hsiaoh}achleehvk Pzlvsksh bhs~ s~kk ja jada dası sı pkvh/ ‖vdk jllb wdhcd oafk oafk bh vhles) sl vl spkab) p{jihc‖appkazkf he 1880) wdke vdk s{jmkcv ln cle~kzshle vl Hsiao daf aizkafx jkclok a ’vajll‟ s{jmkcv he J{igazhae scdliazix chzciks) pzkchskix jkca{sk ln hvs nlzokz plihvhcai cleelva/ vhle%:0 He lvdkz wlzfs) bh bhs~ s~kk jadası pkvhvhles wkzk afohvvkf as a dhs/ vlzhcai sl{zck pkz sk ) j{v vdkhz clevkevs slokdlw elv% Vdksk flc{okevs azk belwe vl V{zbhsd scdliazs as wkii% Vwl bhs~k jadası pkvhvhles) aivdl{gd whvdl{v pzlpkz zknkzkeck vl vdk azcdh~ai sl{zck) wkzk p{jihsdkf jx [}{eçaz ıiı as kazix as 1864%:1 Olsv zkckevix) bhss~k jadası pkvhvhles nzlo V{zbhsd azcdh~ks da~k jkke okevhlekf he bh a sv{fx jx Navoa Gþçkb%:: Vdk zkasle nlz s{cd zki{cvaeck le vdk pazv ln V{zbhsd scdliazs vl ktpilzk vdksk sl{zcks oax jk aisl cle/ ekcvkf vl plihvhcai clzzkcvekss% He sphvk ln vdk nacv vdav hv was vdk F{vcd scdliaz O% Bhki wdl das oafk vdk olsv shgehficaev fhscl~kzx sl naz ln s{cd flc{okevs he V{zbhsd azcdh~ks‖33 he vlvai) wksvkze scdliazs vll da~k nl{ef hv fhffic{iv vl he~ksvhgavk bh bhss~k jadası pkvhvhles jkca{sk ln vdk skczkcx lz plihvhcai skeshvh~hvx s{zzl{efheg vdko% :3 Vd{s) nlz a ~azhkvx ln
Vdhs shv{avhle das jkg{e vl cdaegk he vdk iasv cl{pik ln xkazs% Vdkzk hs a gzlwheg hevkzksv agahe he vdk s{jmkcv ln cle~kzshle as a pazv ln a ol~kokev vzx/ heg vl jzkab awax nzlo vdk nlzokz hfklilghcai appzlacd vl vdk sv{fx ln dhsvlzx% Skk nlz ktaopik) K% Zaf{sdk~) ’Fkolgzansbh h kvelzkihghl}eh pzlcksh ~ }apafehvk Zlflph pzk} 1;–14~ RFkolgzapdhc aef Kvdel/zkihghl{s Pzlckssks he vdk Wksvkze Zdlflpks) Zdlfl pks) 1;vd– 1;vd–14vd 14vd Ckev{ Ckev{zhks_)‟ zhks_)‟ Hsvlzhcdksbl jafksdvk ) 1 $1884() 6>–48% Skk aisl vdk aeswkz vl dhs sv{fx nzlo S% Fhohvzl~) a zkpzkskevavh~k ln vdk scdliazs wdl cle/ vhe{k vl oahevahe vdk vzafhvhleai appzlacd) ’Sdvk hoaok ih ea{cdeh pl}hvshh pl pzlj/ ikohvk ea hsiaoh}avshxava h safjhehvk ea j{igazsbhvk oldaokfaeh< RSdaii Wk K~kz Da~k a Schkevhfic Plshvhle le vdk Pzljikos ln Hsiaoh}avhle aef vdk Navk ln J{igazhae O{sihos<_)‟ Zdlflphca ) 1 $1888() 131–167% Olzk zkckev ktaopiks ln vdk ekw appzlacd azk A% ]kixa}bl~a) ’Hsiaoh}avhle he vdk Jaibaes as a Dhsvlzhlgzapdhcai Pzljiko= vdk Sl{vdkasv/K{zlpkae Pkzspkcvh~k)‟ he Nhbzkv Afaeız aef S{zahxa Nazlqdh) kf%) Vdk Lvvloaes aef vdk Jaibaes= A Fhsc{sshle ln Dhsvlzhlgzapdx $Ikhfke) :00:() ::3–:>>) aef K% Zaf{sdk~) ’Sohsaiav ea hsvlzhlgzansbhvk ohvl~k }a hsiaoh}achxava RVdk Okaeheg ln vdk Dhsvlzhlgzapdhcai Oxvds ln Hsiaoh}avhle_)‟ he K% Zaf{sdk~) S% Nkv~afmhk~a) kf%) Jaibaesbh hfkevhcdelsvh ) ~li 3 $Slfia) :003() 1;:–187% :1 Skk) %D% [}{eçaz ıiı) Lsoaeiı Fk~ikvhehe Okzbk} ~k Jadzhxk Vk bhiavı Vk bhiavı $Aebaza) 1864() Appkefht) Nacshohik :7 aef :4% :: Navoa Oùck Gþçkb) Zhsk ln vdk Jl{zgklhshk) Fkohsk ln Kophzk % Lvvloae Wksvkzeh}avhle aef Slchai Cdaegk $Ekw Xlzb) Ltnlzf) 188>() 3>% :3 Skk nlz ktaopik) F% D{pcdhcb) ’Sk~kevkkevd/Ckev{zx J{igazhae Ploabs= Nlzckf :0
4
zkasles) bh bhs~ s~kk ja jada dası sı pkvhvhles da~k gkekzavkf aoa}hegix ihvvik hevkzksv aoleg scdliazs as sl{zcks nlz vdk dhsvlzx ln cle~kzshle aef nlz slchai dhsvlzx he gkekzai% F{zheg ox zkskazcd he vdk Lvvloae azcdh~k ln vdk Fkpazvokev ln Lzhkevai Cliikcvhles av vdk Eavhleai Ihjzazx ln J{igazha ’SS% Cxzhi aef Okvdlfh{s)‟:6 H was ajik vl fhscl~kz >01 bhs~ s~kk jadası pkvhvhles) clevahekf whvdhe :88 azcdh~ai {ehvs%:; Pzln% O% Bhki das olzkl~kz pzl~hfkf ok whvd henlzoavhle le vdk 33 flc{okevs vdav dk fhscl~/ kzkf he vdk Lvvloae Azcdh~k ln vdk Pzhok Ohehsvkz $Ja jabaeiıb Az h~h( he Hsvaej{i%:> Vdk j{ib ln vdk flc{okevs cae jk favkf vl a pkzhlf ktvkefheg nzlo vdk kazix 1>70s {evhi vdk 1730s%
lz ^li{evazx Cle~kzvs vl Hsiao<‟ he S%J% ^azfx aef A%D% ^azfx) kf%) Slchkvx he Cdaegk= Sv{fhks he Dlelz ln Jkia B% Bhzaix $Ekw Xlzb) 1843() 30;–16% Acclzfheg vl D{pcdhcb) J{igazhae scdliazs afohvvkf he pzh~avk cle~kzsavhles vdkhz awazkekss ln hs~k ~k ja jada dası sı pkvhvhles ileg jknlzk vdkhz fizsv p{jihcavhle% Dlwk~kz) vdk kthsvkeck ln bhs p{jihcix vdkhz kthsvkeck was fkehkf% :6 H s{z~kxkf aii flc{okevs ciasshfikf as zkiavkf vl O{siho zkihghle he vdk cli/ ikcvhles 1) 1A aef CG $he vdksk cliikcvhles azk heci{fkf aii flc{okevs zkiavkf vl vdk Lvvloae ckevzai lfficks he Hsvaej{i() aef vdk kevhzkvx ln vdk cliikcvhles EPVA aef LAB) as wkii as slok cliikcvhles zkiavkf vl vdk pzl~heck‖appzlthoavkix :0)000 flc{okevs aivlgkvdkz% :; Skk Appkefht :) Ihsv ln azcdh~ai {ehvs he Vdk Eavhleai Ihjzazx ln J{igazha hs~k ~k ja jada dası sı pkvhvhles) nlz a clopikvk ihsv ln vdk azcdh~ai {ehvs% clevaheheg bhs :> Skk Appkefht 3) Ihsv ln azcdh~ai {ehvs he Ja Ja jabaeiıb jabaeiıb Lvvloae azcdh~k) Hsvaej{i) clevaheheg bhs hs~k ~k ja jada dası sı pkvhvhles%
CDAPVKZ LEK
CLE^KZSHLE VL HSIAO JKNLZK VDK LVVLOAES= VDKLZHKS LN CLE^KZSHLE Vdk Agk ln Cle~kzshles
As plhevkf l{v av vdk jkgheeheg ln vdhs sv{fx) vdk ihvkzav{zk le cle/ ~kzshle he kazix aef okfhk~ai Hsiaohc vhoks hs zavdkz ihohvkf he clo/ pazhsle vl vdk wlzbs pzlf{ckf le lvdkz vlphcs ln Hsiaohc dhsvlzx% Vdhs shv{avhle hs a zkkcvhle ln vdk a~ahiajhihvx ln dhsvlzhcai sl{zcks nlz vdk sv{fx ln cle~kzshle% Vdkzk hs) he nacv) ~kzx ihvvik henlzoavhle ajl{v cle~kzshle he vdk lvdkzwhsk aj{efaev okfhk~ai Azajhc zkih/ ghl{s ihvkzav{zk aef cdzlehciks% Acclzfheg vl J{iihkv) vdhs hs jkca{sk vdk pdkelokele hvskin was elzoaiix ae hefh~hf{ai) ele/plihvhcai) cdlhck lz ktpkzhkeck) whvdl{v pzlnl{ef zkihghl{s okaeheg% 1 Hv hs elv a s{zpzhsk vdke vdav cle~kzshle fhf elv capv{zk vdk avvkevhle ln vdk okfhk~ai Hsiaohc cdzlehcikzs aef zkihghl{s scdliazs% Ek~kzvdkikss) scdliazs da~k jkke ajik vl hfkevhnx ckzvahe gkekzai vzkefs he vdk pzlckss ln cle~kzshle aef ksvajihsd a vhoknzaok% Vdk fizsv n{efaokevai plhev hs vdav cle~kzshle vl Hsiao was elv ae hesvaev pzlckss hookfhavkix nliilwheg ohihvazx cleq{ksv% Aivdl{gd aii cleq{kzkf pklpik ’s{zzkefkzkf)‟: elv aii cle~kzvkf vl Hsiao% Hv hs acbelwikfgkf jx olsv scdliazs vdav cle~kzshle zks{ivheg nzlo ohi/ hvazx cleq{ksv was {s{aiix ihohvkf vl a soaii e{ojkz ln hefh~hf{ai casks% Leix he vdk hesvaeck ln vdk Azaj aef Jkzjkz eloafhc clo/ o{ehvhks fhf plihvhcai aiikghaeck zks{iv he cle~kzshle ke oassk %3 Nlz olsv ln vdk cleq{kzkf cloo{ehvhks vdk pzlckss was a gzaf{ai lek) nliilwheg vdk ohihvazx cleq{ksv aef ktvkefheg l~kz ckev{zhks% Vdk
Z% J{iihkv) ’Cle~kzshle Svlzhks he Kazix Hsiao)‟ he Ohcdaki Gkz~kzs aef Zao}h Mhjzae Jhbda}h) kf%) Cle~kzshle aef Clevhe{hvx= Hefhgkel{s Cdzhsvhae Cloo{ehvhks he Hsiaohc Iaefs Khgdvd vl Khgdvkkevd Ckev{zhks $Vlzlevl) 1880() 1:;% : Wdke zkiavheg vl vdk k~kevs ln vdk kazix Hsiaohc cleq{ksvs vdk clophikzs ln cdzlehciks fhf elv fhsvheg{hsd jkvwkke vdk vwl okaehegs ln vdk ~kzj asiaoa ‖’vl s{zzkefkz‟ aef ’vl acckpv Hsiao‟ $J{iihkv) ’Svlzhks)‟ 1:6(% 3 E% Ik~v}hle) ’Clopazavh~k Sv{fx)‟ >% 1
10
oagehv{fk ln cle~kzshle) dlwk~kz) heczkaskf whvd vhok) k~kev{aiix acdhk~heg a selwjaii kff kcv% kcv% Scdliazs zknkz vl vdk pkzhlf he wdhcd vdk dhgdksv e{ojkz ln cle~kzshles lcc{zzkf as ’vdk agk ln cle~kzshles%‟ Vdkzk hs a fh~kzgkeck he scdliazix lphehles) dlwk~kz) l~kz wdav ckev{zhks wk sdl{if fkshgeavk as vdk ’agk ln cle~kzshles%‟ Ae kaz/ ihkz gkekzavhle ln scdliazs) le vdk k~hfkeck ln vatavhle fig{zks nzlo Hzaq aef Kgxpv) jkihk~kf vdav vdk oamlzhvx ln ele/O{siho ele/Azajs he vdksk zkghles cle~kzvkf vl Hsiao whvdhe a ckev{zx ln vdk cleq{ksv he lzfkz vl kscapk paxheg vdk plii vat% 6 Vdk saok cleci{shle was zkacdkf whvd zkspkcv vl vdk Jkzjkzs he Elzvd Anzhca aef vdk hefhgk/ el{s plp{iavhle ln Spahe) fksphvk vdk iacb ln fhzkcv k~hfkeck% Cle~kzshle aef Vatavhle
Czhvhcai zk/ktaoheavhle ln vdk sl{zcks aef vdk heel~avh~k {sk ln slok lvdkzs) pzk~hl{six vdl{gdv ln as {ezkiavkf vl cle~kzshle) das ikf vl zk~hshle ln vdk ajl~k cleci{shles aef a s{jsvaevhai plsvplekokev ln vdk ’agk ln cle~kzshles‟‖wkii hevl vdk Ajjashf pkzhlf% Fkeekvv‘s ; sv{fx‖ Cle~kzshle was n{efaokevaiix was Cle~kzshle aef vdk Plii Vat he Kazix Hsiao ‖ hoplzvaev vl vdhs zk~hshle) sheck hv sdlwkf vdk hecleshsvkecx ln vdk jkihkn vdav vdk fkshzk vl kscapk vdk plii vat was vdk pzhoazx zkasle nlz kazix cle~kzshle% Sheck Fkeekvv‘s cleci{shle hs zkik~aev aisl vl vdk fhsc{sshle ln cle~kzshle vl Hsiao he vdk Jaibaes) hv hs ekckssazx vdav hv jk kiajlzavkf {ple dkzk he slok fkvahi% Vdk olsv hoplzvaev zkasles chvkf jx scdliazs he s{pplzv ln vdk azg{okev nlz kazix oass cle~kzshle azk vdk nliilwheg% Nhzsv) av vdk vhok ln vdk cleq{ksv) vdk Azajs ktacvkf nzlo vdk s{jmkcv pklpiks a vzhj{vk) cleshsvheg ln a fitkf aol{ev ln olekx aef agzhc{iv{zai pzl/ f{ck% Skclef) aivdl{gd vdk vzhj{vk was zahskf jx a vat le iaef aef a vat le heclok) h%k%) vdk plii vat) vdk Azajs wkzk elv cleckzekf whvd vdk okvdlfs lz vdk m{svhck ln vdk assksslzs% Vdkzknlzk) vdk vkzos ( aef mh}xa ) $Lvv% ch}xk () vabke vl okae iaef vat aef bdaz m bdaz m $Lvv% dazaç plii vat) wkzk nlz olzk vdae a ckev{zx sxelexol{s aef shgehfikf okzkix ’vzhj{vk%‟ Vdk Azajs fhf elv k~ke vdkoski~ks fhsvheg{hsd
Skk) nlz ktaopik) V%W% Azelif) Vdk Pzkacdheg ln Hsiao= A Dhsvlzx ln vdk Pzlpagavhle ln vdk O{siho Nahvd $Ilefle) 1813() 8–10) 41–4:) 103) :10% ; F%C% Fkeekvv) Cle~kzshle aef vdk Plii Vat he Kazix Hsiao $Caojzhfgk) 18;0(% 6
11
jkvwkke jkvwkk e iaef iaef aef pli pliii vat vat%% Hv Hv was was elv {e {evh vhii A%D A%D%% 1:1 1:1 $7 $738( 38( vd vdav av vd vdkk gl~kzelz ln Bd{zasae) Ea z j% Sahx z) fkczkkf vdav nzlo vdav plhev lewazfs aii pklpik) O{sihos aef ele/O{sihos) daf vl pax iaef vat) wdkzkas vdk plii vat was fkshgeavkf as a d{ohihavheg nkk vl jk pahf leix jx ele/O{si ele/O{sihos% hos% Vdhzf Vdhzf aef aef iasv) iasv) a cle~kzv vl Hsiao Hsiao was nzkk ln aex ljihgavhle ljihgavhle vl vl pax vzhj{vk) vzhj{vk) elv okzkix okzkix plii plii vat) wdhik wdhik vdk iaef he dhs plssksshle jkcaok kff kcvh~kix kcvh~kix vat/ktkopv% Vdksk svzleg kcl/ elohc olvh~ks) acclzfheg vl vdhs azg{okev) zks{ivkf he whfkspzkaf cle~kzshle%> Vdk pzljiko) acclzfheg vl Fkeekvv) hs vdav olsv ln vdk O{siho m{zhsvs aef dhsvlzhaes dhsvlzha es clevzafhcvkf vdk ajl~k plhevs% Dk jkihk~kf vdav vdksk clevzafhcvhles sdl{if elv jk fhsohsskf) he vdk wax lvdkz scdli/ azs da~k flek) as fkihjkzavk naishficavhle ktpiahekf jx vdk fkshzk vl avvzhj{vk vdk lzhghe ln clevkoplzazx kclelohc hesvhv{vhles vl vdk pkzhlf ln vdk cleq{ksv%7 Hesvkaf) Fkeekvv af~aeckf vdk hfka vdav vdk fhscl{zsk le vatavhle he kazix Hsiao sdl{if jk skke he vdk nzaok/ wlzb ln {ehq{k skvvikokevs oafk jx vdk Azajs whvd kacd ln vdk cle/ q{kzkf vkzzhvlzhks% Hn vdhs hs flek) olsv ln vdk fh ffic{ivhks pzkskevkf jx vdk clevzafhcvlzx k~hfkeck fhsappkaz% Vdk lvdkz phiiaz ln Fkeekvv‘s czhvhq{k was vdav bdaz bdaz m m aef mh}xa ) as sxelexol{s vkzos) okaev elv vzhj{vk j{v shopix vat% Olzkl~kz) vdksk vwl vkzos lzhgheaiix daf vdk spkchfic okaehegs ln iaef vat aef plii vat) zkspkcvh~kix) okaehegs vdav vdkx zkvahekf av a iavkz pkzhlf as wkii%4 Jaskf le vdksk pzkohsks) Fkeekvv s{z~kxkf vdk plsv/cleq{ksv vat/ avhle pzacvhcks he kacd ln vdk oamlz ckevzai Hsiaohc vkzzhvlzhks) eaokix Sawaf) Okslplvaoha) Sxzha) Kgxpv aef Bd{zasae% He kacd ln vdksk zkghles) dk sdlwkf dlw vdk fhff kzkev kzkev pzlgzksshle ln cleq{ksv zks{ivkf bdaz m m he fhff kzkev kzkev vatavhle skvvikokevs% He Sawaf) vdkzk pzk~ahikf bdaz iaef) h%k%) iaef vabke jx nlzck% 8 Vdk lwekz ln vdhs iaef was vdk O{siho svavk) wdhik vdk {s{nz{cv zkoahekf he vdk daefs ln vdk nlz/ okz lwekzs%10 Vdk vzaesnkz ln lwekzsdhp ln bdaz bdaz m m iaef nzlo vdk svavk vl ae hefh~hf{ai) khvdkz vdzl{gd saik vl a O{siho) lz vdzl{gd vdk cle~kzshle ln vdk plssksslz) was hiikgai {eikss vdk caihpd pkzohvvkf
> 7 4 8 10
Fkeekvv) Cle~kzshle) 3–6% Hjhf%) 6% Fkeekvv) Cle~kzshle) 1:–13% Hjhf%) :0% Hjhf%) 60–61%
1:
s{cd a vzaesnkz%11 He lvdkz zkghles‖s{cd as Okslplvaoha aef Sxzha‖ aivdl{gd vkcdehcaiix bdaz bdaz m m iaef) vdk ekwix cleq{kzkf ilcai cloo{/ ehvhks wkzk ajik vl ekglvhavk vzkavhks% 1: Vdlsk vdav daf s{zzkefkzkf ~li{evazhix ekglvhavkf a vzkavx belwe as ae adf ) wdhcd hoplskf a fitkf aol{ev ln vat2 vdlsk vdav daf s{zzkefkzkf anvkz azokf cle/ nzlevavhle wkzk nlzckf vl shge a vzkavx caiikf {i % Vdk fhff kzkeck kzkeck bdaz m m iaefs pzlpkz was vdav vdk nlzokz zkvahekf jkvwkke {i aef bdaz vdkhz lwe eavh~k afohehsvzavhle wdhik vdk iavvkz wkzk zkg{iavkf jx vdk Azajs%13 Vdk floahe iaefs aef vdk nlzokz a{vlpzacv ksvavks) k%g%) vdk plssksshles ln vdk Sassaehfs he vdk Kasv) wkzk appzlpzhavkf as bdaz bdaz m m iaef) aef slok ln vdko wkzk iavkz gh~ke awax as fikns%16 He Kgxpv) vdk vatavhle scdkok sdlwkf k~ke gzkavkz ~azhkvx% Vdkzk) Clpvhc cloo{ehvhks daf a skpazavk vat vzkavokev% He affhvhle) vdkzk was aisl bdaz bdaz m m iaef $s{cd as Aiktaefzha() wdhcd daf jkke vabke jx nlzck) aef adf vkzzhvlzx $s{cd as Pkevaplihs() wdhcd daf s{zzkefkzkf pkackn{iix aef pahf a fitkf) aee{ai s{o) vl jk ekhvdkz heczkaskf elz fkczkaskf%1; Bd{zasae as a wdlik s{zzkefkzkf pkackn{iix vl vdk Azajs aef zkckh~kf vdk svav{s ln adf iaef% Kacd chvx he Bd{zasae ekglvh/ avkf a vzkavx nlz a fitkf aol{ev ln olekx%1> Whvd zkgazf vl acv{ai vat gavdkzheg) vdk lif okvdlfs ln asskss/ okev aef cliikcvhle wkzk ajaeflekf he na~lz ln olzk shopih fikf leks) j{v vdkzk was el cdaegk he vdk bhefs ln vatks hoplskf) h%k%) iaef) plii aef ktvzalzfheazx) wdhcd daf kthsvkf ileg jknlzk vdk cle/ q{ksv% Ele/O{sihos clevhe{kf vl pax a plii vat gzafkf he aol{ev vl zkkcv vdkhz heclok% Vdk cdaegk was vdav [oaz hoplskf vdk plii vat le aii ciassks ln slchkvx% 17 Vdk iaeflwekzs aef svavk lffichais) vdl{gd nlzokzix ktkopvkf) wkzk clopkiikf vl pax hv% Sheck vdk plii vat was zkgazfkf jx vdk Pkzshaes aef Jx}aevheks aihbk as a oazb ln henkzhlzhvx) hv clevhe{kf vl hefhcavk a fkgzafkf svav{s {efkz vdk Azajs% As a zks{iv) slok ln vdk eljhihvx cle~kzvkf vl Hsiao he lzfkz vl bkkp vdkhz slchai plshvhle%14 Vd{s) le cle~kzshle) a oae was ktkopvkf
11 1: 13 16 1; 1> 17 14
Hjhf%) Hjhf%) Hjhf%) Hjhf%) Hjhf%) Hjhf%) Hjhf%) Hjhf%)
36% 67 aef ;1% 64% :>) >0 aef 73% 73% 114% >0–>1% 3:–33) >1%
13
nzlo dhs plii vat) ailek% A cle~kzv svhii daf vl pax dhs iaef vat wdhik dk svaxkf le dhs iaef) aivdl{gd hn dk kohgzavkf dk was zkikaskf nzlo vdhs j{zfke as wkii%18 He vzkavx vlwes) vatks wkzk assksskf jx vdk agkevs ln vdk hedajhvaevs) elv jx vdlsk ln vdk Azajs% Hn vdkzk was whfkspzkaf cle~kzshle whvdhe a vzkavx vlwe) vdk caihpd daf vdk plwkz vl zkf{ck vdk aol{ev ln vdk vzhj{vk%:0 Vdl{gd dk zkn{vkf vdk vdkshs vdav ele/O{sihos he~azhajix pahf vzhj{vk aef wkzk vdkzknlzk el ilegkz ljihgavkf vl fl sl {ple cle/ ~kzshle) Fkeekvv fhf elv fkex vdav vdk plii vat ailek oax da~k jkke a s{ffichkev kclelohc zkasle nlz cle~kzshle%:1 Ek~kzvdkikss) dk ljskz~kf vdav) ktckpv he Bd{zasae) vdkzk was ihvvik k~hfkeck ln vdk iavvkz lcc{z/ zheg% Vdhs pdkelokele dk avvzhj{vkf vl vdk slihfazhvx ln vdk ele/ O{siho zkihghl{s cloo{ehvx) vdk lpplshvhle ln vdk Azaj gl~kzeokev vl iazgk/scaik cle~kzshle aef vdk zki{cvaeck ln vdk iavvkz vl ktkopv cle~kzvs nzlo vdk plii vat% :: Wdav oafk Bd{zasae s{cd a spkchai cask< Vdk nacv vdav vdk ohgza/ vhle ln Azajs vl vdk zkghle was le a iazgkz scaik aef vdav) f{k vl a iacb ln lzgaeh}kf lpplshvhle vl Hsiao) cle~kzshle was olzk cloole% Wdav pzk~kevkf oass cle~kzshle was vdk nacv vdav ilcai elvajiks acv{aiix {skf vdk fkgzafheg plii vat as a wkaple agahesv Hsiaoh}avhle% Vdk pzh~hikgkf gzl{p vdav daf zkacdkf skvvikokevs whvd vdk cleq{kzlzs was iknv he cdazgk ln vdk zkghsvkzs) sl vdkx pahf vl vdk Azajs wdav was svhp{iavkf aef bkpv vdk zksv nlz vdkoski~ks% Da~heg vdk plwkz vl cliikcv vdk vatks) vdkx elv leix zkn{skf vl ktkopv cle~kzvs nzlo vdk plii vat j{v aisl sdhnvkf vdk fiscai j{zfke levl vdk iavvkz jx ktkopvheg ele/O{sihos nzlo hvs paxokev%:3 Vd{s) vdk fkczkk ln Ea z bdaz m m aef mh}xa cl{if jk zkgazfkf j% Sahx z fhsvheg{hsdheg jkvwkke bdaz as ae avvkopv vl zknlzo vdk vat sxsvko he Bd{zasae aef as appix/ heg vl vdk {ehq{k skv ln clefhvhles kthsvheg he vdhs pzl~heck leix% He lvdkz wlzfs) Fkeekvv fkolesvzavkf cle~hechegix vdav vdk plii vat ailek cl{if elv da~k aef he nacv fhf elv piax s{cd ae hoplzvaev zlik he cle~kzshle vl Hsiao anvkz vdk cleq{ksv% Vdkzk wkzk lvdkz nac/ vlzs) olsvix slchai) vdav ktkzchskf a jhggkz he {keck le vdhs pdk/ elokele‖k%g%) vdk zhsb ln ilsheg slchai svav{s) lz vdk ilcai lzgaeh}avhle aef vzafhvhles ln hefh~hf{ai ele/O{siho cloo{ehvhks% 18 :0 :1 :: :3
Hjhf%) Hjhf%) Hjhf%) Hjhf%) Hjhf%)
61–6:% 6:% 4>% 47–44% 11>–1:4%
16
J{iihkv‘s Vdklzx ln Slchai Cle~kzshle
Fkeekvv‘s cleci{shle vdav cle~kzshle vl Hsiao was ln ihohvkf ktvkev he vdk fizsv ckev{zx nliilwheg vdk cleq{ksv was s{jsvaevhavkf jx Jzkvv :6 aef Iaphf{s:; nlz Elzvd Anzhca aef Kgxpv% Vdk fizsv cdzlelilghcaiix clopzkdkesh~k aef cleckpv{aiix sl{ef ~hkw ln cle~kzshle vl Hsiao) dlwk~kz) was vdav lff kzkf kzkf jx J{iihkv% Dhs Cle~kzshle vl Hsiao he vdk Okfhk~ai Pkzhlf :> hs ln gzkav hoplzvaeck vl vdk sv{fx ln Hsiaoh}avhle% Aivdl{gd dhgdix spkc{iavh~k) hv das jkke fksczhjkf as ’heel~avh~k) pzl~lcavh~k aef hevzhg{heg)‟:7 aef okzhvs cazkn{i cleshfkzavhle% J{iihkv‘s sv{fx hs hoplzvaev elv jkca{sk ln vdk q{aevhvavh~k fava kopilxkf j{v jkca{sk hv illbs av vdk pzlckss ln cle~kzshle nzlo a o{cd jzlafkz pkzspkcvh~k) eaokix) vdav ln slchai zkiavhles% Nlz J{iihkv) cle~kzshle as vdk pzlnksshle ln aelvdkz nahvd hs elv as shgehficaev as ’slchai cle/ ~kzshle)‟ h%k%) ’cle~kzshle he~li~heg ol~kokev nzlo lek zkihghl{six fkfiekf slchai cloo{ehvx vl aelvdkz%‟:4 He dhs fhsc{sshle ln vdk slchai cleskq{kecks ln cle~kzshle vl Hsiao) J{iihkv hs g{hfkf jx vwl ’athlos‟ ln zkihghl{s cle~kzshle= 1( ’Vdk cle~kzv‘s ktpkcvavhles ln dhs ekw zkihghle whii pazaiiki dhs ktpkcvavhles ln dhs lif zkihghle)‟ :8 h%k%) pklpik wdl azk olzk lz ikss savhsfikf whvd vdkhz pzk~hl{s zkihghl{s ihnk aef wdl cle~kzv nlz wlzifix) zavdkz vdae sphzhv{ai zkasles) whii fief ihnk he vdk ekw zkihghl{s cloo{ehvx olzk appkaiheg vdk olzk hv zkskojiks vdkhz ihnk he vdk pzk~hl{s cloo{ehvx230 aef :( ’Ika~heg ashfk kcsva/
O% Jzkvv) ’Vdk Spzkaf ln Hsiao he Kgxpv aef Elzvd Anzhca)‟ he hfko) kf%) Elzvdkze Anzhca= Hsiao aef Olfkzeh}avhle $Ilefle) 1873() 1–1:% :; H% Iaphf{s) ’Vdk Cle~kzshle ln Kgxpv vl Hsiao)‟ Hszaki Lzhkevai Sv{fhks ) : $187:() :64–>:% :> Z%W% J{iihkv) Cle~kzshle vl Hsiao he vdk Okfhk~ai Pkzhlf= Ae Kssax he Q{aevhvavh~k Dhsvlzx $Caojzhfgk) 1878(% :7 O% Olzlex) ’Vdk Agk ln Cle~kzshles= A Zkasskssokev)‟ he Gkz~kzs aef Jhbda}h) Cle~kzshle aef Clevhe{hvx) 134% :4 Le vdk lek daef) J{iihkv plhevs l{v vdav nlzoai cle~kzshle vl Hsiao cleshsvkf pzhoazhix ln vdk pzle{echavhle ln khgdv wlzfs‖vdk sdad fa ‖aef vdav vdkzk was el pzhksvix he~li~kokev wdavslk~kz% Le vdk lvdkz daef) dk plhevs vdav) f{k vl hoplz/ vaev slchai cdaegks nzlo hopkzhai Zloae vhoks) he vdk hookfhavkix pzk/Hsiaohc pkzhlf slchai hfkevhvx was pzkfloheaevix zkihghl{six fkfiekf aef vd{s) ’vdk elvhle ln slchai cle~kzshle hs jlvd shgeh ficaev aef q{hvk spkchfic‟ $J{iihk $ J{iihkv) v) Cle~kzshle) 33–36(% Jx fkfieheg slchai cle~kzshle he vkzos ln hefh~hf{ai jkda~hlz) J{iihkv aisl cle~k/ ehkevix jxpassks vdk pzljiko ln eloafs‘ cle~kzshle aef ktci{fks nzlo dhs sv{fx Azajha aef Olzlccl% :8 J{iihkv) Cle~kzshle) 3;% 30 Lek ln vdk cleskq{kecks ln vdhs athlo hs vdav cle~kzshle gh~ks zhsk vl pzks/ s{zk aff kcvheg kcvheg vdk cl{zsk ln fk~kilpokev ln vdk ekw zkihghle $J{iihkv) Cle~kzshle) 3>(% :6
1;
vhc cle~kzvs) el lek whiihegix cle~kzvs nzlo lek zkihghle vl aelvdkz hn jx ~hzv{k ln cle~kzshle dk oazbkfix ilwkzs dhs slchai svav{s%‟ 31 El ikss hevkzksvheg azk J{iihkv‘s sl{zcks aef okvdlflilgx% Vdk fava nlz dhs sv{fx hs fkzh~kf nzlo jhlgzapdhcai fhcvhleazhks% Dhs svazvheg plhev hs vdk dxplvdkvhcai iheb jkvwkke cdzlelilghcaiix ~azhkf zkghleai zkpzkskevavhle aoleg >113 jhlgzapdhks) cl~kzheg vdk pkzhlf vl xkaz A%D% 1000 $1;8:( aef vdk pkzckevagk ln O{sihos he vdk plp{iavhle ln a gh~ke azka% Vdk nacv ln lek zkghle‘s jkcloheg olzk pzlohekev av a gh~ke vhok) acclzfheg vl vdk a{vdlz) wl{if jk zkiavkf {ivhoavkix vl a olzk zaphf zavk ln cle~kzshle he vdav zkghle% 3: Vl m{svhnx vdhs cleci{shle) J{iihkv illbs fizsv av gkekailghks zkclzfkf he jhlgzapdhcai fhcvhleazhks zkiavkf vl Hzae% Wdke a gkekailgx hs heh/ vhavkf jx a Pkzshae eaok) J{iihkv ass{oks vdk iavvkz vl jk vdk eaok ln vdk fizsv naohix okojkz vdav cle~kzvkf vl Hsiao% Jaskf le 6>8 s{cd gkekailghks) J{iihkv clesvz{cvs ae S/sdapkf c{z~k) fkphcvheg vdk pkzckevagk ln cle~kzshles nzlo vdk kevhzk saopik fh~hfkf hevl vwkevx fi~k/xkaz pkzhlfs) {evhi vdk ohffik ln vdk kik~kevd ckev{zx) le a c{o{iavh~k jashs%33 Jlzzlwheg vkzohelilgx aef hfkas nzlo slchlilgx) eaokix) vdk sv{fx ln heel~avhle fh ff {shle) {shle)36 J{iihkv hevkzpzkvs vdk gzapd as jkheg clopzhskf ln fi~k skgokevs% Vdk fizsv :%; pkzckev ln vdk plp{iavhle vl cle~kzv azk fkkokf ’heel~avlzs)‟ vdk ektv 13%; pkzckev ’kazix aflpvkzs)‟ vdk ektv 36 pkzckev ’kazix oamlzhvx)‟ vdk ektv 36 pkzckev ’iavk oamlzhvx‟ aef vdk fieai 1> pkzckev ’iaggazfs%‟3; Vdke J{iihkv clopazks vdk S/c{z~k vl vdk plihvhcai k~kevs nzlo vdk fizsv nl{z ckev{zhks ln O{siho z{ik he Hzae aef ljskz~ks vdav= 1% Jkgheehe Jkgheehegg he vdk xkaz xkaz 7;0) 7;0) wdke vdk vdk Ajjashf Ajjashfss clok vl vl plwkz plwkz aef whvd vdk cle~kzshle pzlckss leix 10 pkzckev clopikvkf) ele/ O{siho zk~livs jzkab l{v% Vdk zk~livs fhk l{v wdke vdk ohffik plhev ln vdk cle~kzshle pzlckss hs zkacdkf%3> J{iihkv) Cle~kzshle) 61% Hjhf%) 7–1;% 33 J{iihkv) Cle~kzshle) :3% 36 J{iihkv‘s zkasleheg jkdhef vdhs aeailgx hs vdav vdk s{pkzhlzhvx ln lek zkihghle l~kz aelvdkz) hn hv caeelv jk fkolesvzavkf he vdk saok wax as vwl vkcdehcai pzlf/ {cvs) nlz hesvaeck) cae svhii jk hef{ckf jx ~azhl{s okaes s{cd as pkzskc{vhle) fhzkcv lz hefhzkcv fieaechai zkwazfs) kvc% Jlvd zkihghl{s cle~kzshle aef heel~avhle fh ff {shle {shle azk aisl shohiaz jkca{sk ln vdk hoplzvaeck ln vdk acckss vl henlzoavhle as a pzk/ zkq{hshvk nlz vdkhz fhsskoheavhle‖J{iihkv) Cle~kzshle) 31% 3; J{iihkv) Cle~kzshle) ;1% 3> Hjhf%) 66–6>% 31 3:
1>
:% Skoh/hefkpke Skoh/hefkpkefkev fkev O{sih O{siho o fxeasvhk fxeasvhkss $Vadhzhfs( $Vadhzhfs( appkaz appkaz azl{ef 4::‖vdk ohffik plhev ln cle~kzshle‖aef jkclok heczkashegix hefkpkefkev whvd vdk pzlgzksshle ln vdk cle~kzshle $Saoaehfs) J{xhfs(%37 3% A nacvhleai nacvhleai svz{ggi svz{ggikk lcc{zs lcc{zs he vdk iasv iasv pkzhlf pkzhlf ln cle~kzs cle~kzshle‖vd hle‖vdav av ln vdk ’iaggazfs‟‖jkvwkke vdk fksckefaevs ln ’heel~avlzs‟ aef ’kazix aflpvkzs)‟ wdl vkefkf vl jk ln ilwkz ciass lzhghe) aef vdk ’kazix aef iavk oamlzhvx‟ cle~kzvs aef vdkhz fksckefaevs) wdl caok nzlo vzafhvhleaiix olzk pzlohekev naohihks% Vdhs svz{ggik hs oaehnksvkf he vdk fikifs ln iaw) vdklilgx aef pkzsleai phkvx $Daeafi ~s% Sdafi h iaw) O{ va}hih ~s% Asdazh vdklilgx) asckvhchso ~s% oxs/ vhchso(% Vdk iavvkz gzl{p‘s olzk plp{ihsv ~hkw ln Hsiao k~kev{aiix pzk~ahikf l~kz vdk cleskz~avh~k kihvhsv ~hkw ln vdk nlzokz gzl{p% 34 J{iihkv zkaih}ks) dlwk~kz) vdav vdk saok bhef ln aeaixshs caeelv jk appihkf vl vdk lvdkz Hsiaohc zkghles) sheck) whvd vdk ktckpvhle ln Spahe) pkzsleai eaoks azk vzafhvhleaiix Skohvhc% Vl l~kzclok vdhs ljsvacik J{iihkv skvs aelvdkz czhvkzhle nlz vdk pzlgzkss ln cle~kzshle% Agahe) {sheg Hzae as a vksvheg gzl{ef) dk clopazks vdk c{z~k ln plp{iazhvx ln vdk fi~k olsv fhsvhecvh~k O{siho eaoks‖O{daooaf) Adoaf) Aih) ai/Dasae aef ai/D{sahe‖vl vdk S/c{z~k ln cle~kz/ shle%38 Dk ljskz~ks vdav he svagk lek‖’heel~avlzs‟‖pzk/Hsiaohc Azajhc eaoks azk gh~ke vl aii sles ln cle~kzvs% He svagk vwl‖’kazix aflpvkzs‟‖vdk plp{iazhvx ln vdksk eaoks fkciheks aef vdk plp{iaz/ hvx ln vdk fi~k O{siho eaoks gahes gzl{ef% He svagk vdzkk‖’kazix aef iavk oamlzhvx‟‖vdk plp{iazhvx ln vdk iavvkz eaoks zhsks fza/ oavhcaiix% He svagk nl{z‖’iaggazfs‟‖vdk c{z~k clevhe{ks vl zhsk aoleg sles ln cle~kzvs) j{v fkciheks sdazpix he l~kzaii {sk% Vdkzknlzk) J{iihkv cleci{fks) vdk pkab {sk ln vdk fi~k O{siho eaoks shgehfiks vdk kef ln ’iavk oamlzhvx‟ aef vdk jkgheeheg ln vdk ’iaggazfs‟ pkzhlf% Fksphvk vdk scaevx fava a~ahiajik vl dho) J{iihkv hs ajik vl cle/ svz{cv S/c{z~ks ln cle~kzshle nlz Hzaq) Sxzha) Kgxpv) V{ehsha aef Spahe jx vabheg vdk pkab favk ln vdk O{siho eaok c{z~k as ae hefh/ cavhle ln vdk ’iavk oamlzhvx‟ pkzhlf‘s kef aef clzzkiavheg plihvhcai
37 34 38
Hjhf%) 6>–68% J{iihkv) Cle~kzshle) ;6–>:% Hjhf%) >>–>7%
17
k~kevs aef c{iv{zai dhsvlzx vl cle~kzshle acclzfheg vl vdk pavvkze ksvajihsdkf nlz Hzae%60 He Hzaq) vdk ’heel~avlzs‟ pkzhlf zl{gdix clhe/ chfkf whvd vdav he Hzae) h%k%) vdk iasv q{azvkz ln vdk sk~kevd ckev{zx% Vdk ’kazix aflpvkzs‟ pkzhlf) dlwk~kz) iasvkf vdhzvx xkazs ilegkz vdae he Hzae) kefheg he 781% Nzlo vdav plhev lewazfs) vdk cle~kzshle pzlckss heczkaskf he pack j{v ikss ktpilsh~kix vdae he Hzae% Vdk ’iavk oamlzhvx‟ pkzhlf was leix acdhk~kf he Hzaq jx 87;) h%k%) aiolsv vwl ckev{zhks iavkz% He Hzae) vdk saok pzlckss was acclopihsdkf he m{sv l~kz lek ckev{zx‖jkvwkke 7>: aef 47;%61 He Kgxpv) V{ehsha aef Sxzha) vdk cle~kzshle was av hvs dainwax plhev jx vdk ~kzx kef ln vdk ehevd ckev{zx aef hv was pzhoazhix clopikvkf $’iavk oamlzhvx‟( jx 87>) h%k%) av ajl{v vdk saok vhok as he Hzaq% 6: He Spahe) cle~kz/ shle nliilwkf vdk saok vhokvajik as he Hzaq) Sxzha aef Kgxpv) j{v zae ajl{v a ckev{zx iavk) h%k%) ;0 pkzckev daf cle~kzvkf jx 8>1 aef 46 pkzckev jx 110;%63 He lvdkz wlzfs) vdk dka~hix Cdzhsvhae azkas ln Hzaq) Kgxpv) Sxzha) V{ehsha aef Spahe cle~kzvkf av appzlthoavkix vdk saok zavk) vabheg hevl accl{ev vdk iavkz favk ln cleq{ksv ln V{ehsha aef Spahe% Le vdk lvdkz daef) vdk cle~kzshle ln ]lzlasvzhae Hzae shgehficaevix l{vpackf vdk cle~kzshle zavk he vdk lvdkz zkghles% Olzkl~kz) fksphvk vdk olzk clopihcavkf plihvhcai aef zkihghl{s dhs/ vlzx ln Hzaq) Kgxpv) Sxzha) V{ehsha aef Spahe) J{iihkv hs svhii ajik vl fkolesvzavk dlw vdk pzlckss ln cle~kzshle vl Hsiao ikf aiolsv hek~hvajix vl= 1( aevh/O{siho lz aevh/gl~kzeokev {pzhshegs nzlo vdk plhev wdke O{sihos clesvhv{vkf a shgehficaev ohelzhvx {evhi vdk pzlckss ln cle~kzshle was dainwax acclopihsdkf2 :( vdk wkabkeheg lz fhssl/ i{vhle ln ckevzai gl~kzeokev aef vdk nlzoavhle ln hefkpkefkev O{siho fxeasvhks leck cle~kzshle passkf vdk dainwax plhev2 aef 3( cle hcvs ln hevkzksv jkvwkke plp{iavhle gzl{ps cle~kzvkf av fh ff kzkev kzkev pkzhlfs leck vdk cle~kzshle pzlckss appzlacdkf hvs kef% Hv sdl{if jk plhevkf l{v vdav J{iihkv flks elv asshge olzk hoplz/ vaeck vl a shegik nacvlz lz gzl{p ln nacvlzs as a pzhoazx clefhvhle nlz cle~kzshle% He dhs ~hkw) hv hs ’acckss vl henlzoavhle‟ vdav hs vdk
Vdkzk azk vwl pkabs he vdk O{siho eaok c{z~k nlz vdksk zkghles% J{iihkv avvzhj/ {vks vdk fizsv vl vdk kazihkz plp{iazhvx ln vdksk eaoks aoleg fksckefaevs ln O{siho Azajs wdl ohgzavkf vdkzk% Vdk dhgdkz vdk fizsv pkab hs) vdk dhgdkz vdk ohgzavhle ln Azajs hs $J{iihkv) Cle~kzshle) 7:–74(% 61 J{iihkv) Cle~kzshle) 41–4:% 6: Hjhf%) 8:–108% 63 Hjhf%) 1:6% 60
14
pzkzkq{hshvk nlz cle~kzshle%66 Vdk olzk pklpik cle~kzv vl Hsiao) vdk olzk slchai hevkzacvhle jkvwkke O{sihos aef ele/O{sihos hevkesh fiks% Av vdk saok vhok) vdk pzljajhihvx aef zavk ln cle~kzshle aisl hevkeshnx% J{iihkv‘s vdklzx ln cle~kzshle hs) le vdk s{znack av ikasv) pkzs{a/ sh~k% Hv sdl{if jk zkokojkzkf) dlwk~kz) vdav hv cae aef hv das jkke dka~hix czhvhch}kf le oaex gzl{efs% Vdkzk hs) nlz hesvaeck) vdk okvdlf/ lilghcai ljmkcvhle vdav) he lzfkz nlz vdk vdklzx vl dlif) vdk oaex ass{opvhles aef dxplvdksks s{pplzvheg hv o{sv aii jk ~aihf% 6; Skclef) hv das jkke plhevkf l{v vdav J{iihkv‘s fava hs zkik~aev vl ae {zjae) wkii/kf{cavkf oaik kihvk leix) aef oax elv jk zkpzkskevavh~k ln vdk zksv ln vdk plp{iavhle%6> Vdhzf) henlzoavhle nzlo ihvkzazx sl{zcks) fksphvk hvs splzafhc aef hopzksshlehsvhc cdazacvkz) flks elv aiwaxs skko vl clhechfk whvd vdk sollvdekss ln J{iihkv‘s c{z~k) wdhcd s{g/ gksvs vdav vdk pzlckss ln cle~kzshle ohgdv da~k daf shgeh ficaev s{j/ zkghleai spkchfics%67 Fksphvk vdksk czhvhchsos) el lek das k~kz vzhkf vl he~aihfavk J{iihkv le vdk saok scaik% Anvkz aii) as J{iihkv afohvs) dhs vdklzx hs p{zkix dk{zhsvhc) h%k%) ’lek vdav hs ~ai{ajik nlz kophzhcai zkskazcd j{v {epzl~ke lz hecapajik ln pzlln%‟64 H wl{if) ek~kzvdkikss) clevkef vdav) gh~ke vdk cleshfkzajik aol{ev ln kophzhcai fava a~ahiajik nlz cle~kzshle vl Hsiao he vdk Jaibaes) hv wl{if jk {skn{i vl zk~hshv dhs fiefhegs aef vksv vdkhz ~hajhihvx he vdk iavvkz clevktv% Vdk Svagks ln Cle~kzshle he Asha Ohelz
Hn wk acckpv J{iihkv‘s cleci{shles) nlz olsv ln vdk Hsiaohc iaefs vdk pzlckss ln cle~kzshle was ksskevhaiix clopikvkf jx vdk ohffik ln vdk kik~kevd ckev{zx% Ek~kzvdkikss) J{iihkv ika~ks a oazghe ln vwkevx pkz/ ckev ln vdk plp{iavhle {ecle~kzvkf k~ke av vdhs plhev% 68 He lvdkz wlzfs) he iaefs cleq{kzkf f{zheg vdk fizsv ckev{zx ln Hsiao) vdkzk was svhii zllo nlz cle~kzshles sk~kzai ckev{zhks iavkz% ;0 N{zvdkzolzk)
66 6; 6> 67 64 68 ;0
Hjhf%) 31% D{opdzkxs) Dhsvlzx) :4:% Olzlex) ’Vdk Agk ln Cle~kzshles)‟ 134% Hjhf%) 161–166% J{iihkv) Cle~kzshle) 1:4% Hjhf%) 66% Skk nlz ktaopik Fleaif P% Ihvvik) ’Clpvhc Cle~kzshle vl Hsiao {efkz vdk
18
vdkzk wkzk aisl azkas vdav caok {efkz O{siho z{ik he vdk kik~kevd aef s{jskq{kev ckev{zhks) azkas he wdhcd vdk pzlckss ln cle~kzshle leix svazvkf av vdhs vhok% Hv hs plsshjik vdav vdk Hsiaoh}avhle ln vdksk zkghles oaehnksvs ckzvahe spkchfic nkav{zks kspkchaiix whvd vdk cle/ ~kzshle pzlckss aef j{hifheg ln Hsiaohc slchai hesvhv{vhles da~heg jkke clopikvkf kiskwdkzk% He ox zk~hkw) H sdaii nlc{s leix le vdk cle/ ~kzshle vl Hsiao he Asha Ohelz jkca{sk ln hvs ileg/vhok dhsvlzhcai vhks whvd vdk Jaibaes aef vd{s) vdk shohiaz kclelohc) slchai aef c{i/ v{zai skvvhegs ln vdk vwl zkghles% Vdkzk hs a svzhbheg shohiazhvx he vdk nacv vdav vdk Hsiaoh}avhle ln Asha Ohelz aef vdav ln vdk ckevzai Hsiaohc iaefs wkzk kacd clo/ pikvkf he ajl{v nl{z ckev{zhks% Vdk vhok nzaok ln vdk pzlckss he vdk nlzokz zkghle hs fizoix ksvajihsdkf he vdk sl{zcks% Wk belw vdav vdk Hsiaoh}avhle ln Aeavliha jkgae whvd vdk fizsv he{t ln V{zbhc eloafhc vzhjks anvkz vdk javvik ln Oae}hbkzv he 1071 aef vdav hv was iazgkix clopikvkf jx vdk jkgheeheg ln vdk shtvkkevd ckev{zx) wdke) acclzf/ heg vl Lvvloae vat zkclzfs) vdk plp{iavhle ln Aeavliha heci{fkf ikss vdae 4 pkzckev ele/O{sihos%;1 Whvd vdhs ljskz~avhle) dlwk~kz) vdk hehvhai shohiazhvx hs ktda{svkf% He clevzasv vl vdk swhnv aef s{zpzhs/ hegix pkackn{i Azaj cleq{ksvs $aijkhv p{ecv{avkf jx a nkw bkx jav/ viks( he vdk fizsv Hsiaohc ckev{zx) Asha Ohelz daf vl jk cleq{kzkf phkck jx phkck l~kz vdk cl{zsk ln nl{z ckev{zhks% Lnvke) cle~kzshle vl Hsiao he Asha Ohelz was elv vdk zks{iv ln plsv/cleq{ksv slchai fk~kilpokev j{v a clevkoplzaekl{s pzlckss lz lek nliilwheg hook/ fhavkix {ple vdk cleq{ksv% He dhs Vdk Fkcihek ln Okfhk~ai Dkiikehso he Asha Ohelz aef vdk Pzlckss ln Hsiaoh}av Hsiaoh}avhle hle nzlo vdk Kik~kevd vdzl{gd vdk Nhnvkkevd Ckev{zx);: Spkzls ^zxlehs pzkskevs Hsiaoh}avhle as vdk zks{iv Jadzå Oaoi{bs) >83–7;;,1:83–13;6)‟ JSLAS ) 38 $187>() ;;:–>82 hfko) ’Clpvhc Cle~kzvs vl Hsiao F{zheg vdk Jadzå Oaoi{b Pkzhlf)‟ he Gkz~kzs) Jhbda}h) Cle~kzshle aef Clevhe{hvx) :>3–44% Ele/O{siho cloo{ehvhks l{zhsd k~ke vlfax he oaex ln vdk zkghles fhsc{sskf ajl~k‖skk E% Ik~v}hle) ’Cle~kzshle vl Hsiao he Sxzha aef Paiksvhek aef vdk S{z~h~ai ln Cdzhsvhae Cloo{ehvhks)‟ he Gkz~kzs) Jhbda}h) Cle~kzshle aef Clevhe{hvx) :44–31:% ;1 Vdk fig{zk nlz vdk pkzhlf 1;:0–1;3;) acclzfheg vl Þ%I% Jazbae) hs 803)887 vat/paxheg O{siho dl{skdlifs aef 74)6:4 ele/O{siho) h%k%) 8: aef 4 pkzckev zkspkc/ vh~kix% Skk Þ%I% Jazbae) ’Kssah s{z iks fleeèks svavhsvhq{ks fks zkghsvzks fk zkckesk/ okev faes i‘Kophzk lvvloae a{ T^ k kv T^H k shäcik)‟ MKSDL 1 $18;4() :0) Vajik 1% Vdk fig{zks azk leix appzlthoavk) dlwk~kz) jkca{sk vdkx fl elv heci{fk ele/ O{sihos nzkkf nzlo vatks he zkv{ze nlz skoh/ohihvazx skz~hcks% ;: Spkzls ^zxlehs) Vdk Fkcihek ln Okfhk~ai Dkiikehso he Asha Ohelz aef vdk Pzlckss ln Hsiaoh}avhle nzlo vdk Kik~kevd vdzl{gd vdk Nhnvkkevd Ckev{zx $Jkzbkikx aef Ils Aegkiks) 1871(%
:0
ln nl{z ckev{zhks ln waznazk) fksvz{cvhle) phiiagk aef fkplp{iavhle%;3 Hv hs wlzvd elvheg) nlz hesvaeck) vdav) nlz vdk pkzhlf he q{ksvhle) vdk plp{iavhle acv{aiix fkcihekf nzlo ajl{v 4)000)000 ;6 vl ae ksvhoavkf ;)000)000;; av vdk jkgheeheg ln vdk shtvkkevd ckev{zx% Olzkl~kz) hn wk vabk hevl accl{ev vdk nacv vdav vdk iavvkz fig{zk heci{fks a shgehficaev he{t ln eloafhc V{zbhc vzhjks;> aef hoohgzaevs nzlo lvdkz Hsiaohc iaefs) vdk vlii le vdk eavh~k ele/O{siho plp{iavhle appkazs vl da~k jkke k~ke gzkavkz%;7 Hv cae) vdkzknlzk) jk cleci{fkf vdav cle~kzshle ln vdk eavh~k plp{iavhle ln Asha Ohelz vl Hsiao piaxkf leix a soaii pazv he vdk l~kzaii pzlckss ln Hsiaoh}avhle ln vdk zkghle aef caeelv jk zkgazfkf as vdk slik zkasle nlz vdk nlzoavhle ln Aeavlihae Hsiaohc slchkvx) {eihbk vdk cask he Hzae) Hzaq) Sxzha) Kgxpv aef Elzvd Anzhca) wdkzk hv was a oamlz nacvlz% Dkzk H ao elv acv{aiix cleckzekf whvd vdk ca{sks ln O{siho af~aeckokev he Aeavliha% Wdav hs zkik~aev vl vdhs sv{fx) zavdkz) hs dlw aef wdx vdk pzlckss ln cle~kzshle vl Hsiao vllb piack aoleg vdk zkoaheheg ele/O{sihos he Asha Ohelz% Nhzsv) hv sdl{if jk plhevkf l{v vdav dhsvlzhcai sl{zcks azk svhii iacb/
Cia{fk Cadke) dlwk~kz) plhevs vl k~hfkeck ln a gzkav fkgzkk ln vlikzavhle aef cllpkzavhle jkvwkke vdk vwl zkihghl{s cloo{ehvhks anvkz vdk fizsv vhfk ln he~ashle‖ skk Cia{fk Cadke) Pzk/Lvvloae V{zbkx $Ilefle) 18>4() :0:–:1;% Skk aisl dhs czhvh/ cai zk~hkw ln ^zxlehs‘ jllb he HMOKS 6 $1873() 11:–1:>% Ckoai Banafaz aisl fkphcvs a dhgd ik~ki ln clkthsvkeck nzlo vdk eazzlw plhev ln ~hkw ln vdk ga}h ‘s ‘s plp/ {iaz c{iv{zk‖skk Ckoai Banafaz) Jkvwkke Vwl Wlzifs= Vdk Clesvz{cvhle ln vdk Lvvloae Svavk $Jkzbkikx) Ils Aegkiks) Ilefle) 188;(% ;6 ^zxlehs) Fkcihek ) :>% ;; Jazbae) ’Kssah)‟ :6% Vdhs fig{zk hs jaskf le vdk ass{opvhle vdav a vatajik dl{skdlif cleshsvkf ln fi~k pkzsles% Hv das jkke plhevkf l{v) dlwk~kz) vdav vdk Lvvloae ’daek ‟ hs olzk ihbkix vl ~azx jkvwkke 3–6 pkzsles% Skk nlz fhsc{sshle eaicıb aef Q{avakzv) Dhsvlzx) :4% Vdkzknlzk) a zkcaic{iavhle jaskf le 3–6 pkzsles pkz ’daek ‟ wl{if p{v vdk vatajik plp{iavhle ln Aeavliha av ikss vdae nl{z ohiihle pklpik% Ek~kzvdkikss) wdke wk aff vdk ele/vatajik plzvhle ln vdk plp{iavhle) vdk acv{ai e{ojkz sdl{if elv jk o{cd fh ff kzkev kzkev nzlo wdav Jazbae pzlplskf% ;> Vdk eloafh}avhle ln vdk pkehes{ia was lek ln vdk oamlz zkasles nlz vdhs fkplp{iavhle as vdk skfkevazx plp{iavhle ol~kf l{v nzlo vdk azkas whvd ktvkesh~k he{t ln eloafs% Skk ^%I% Oèeagk) ’Hsiaoh}avhle ln Aeavliha)‟ he Ik~v}hle) Cle~kzshle ) ;4% Nlz a shohiaz ljskz~avhle whvd zkgazf vl Sxzha aef Paiksvhek skk Ik~v}hle) ’S{z~h~ai)‟ :81–301% ;7 Hv hs fl{jvn{i vdav aexjlfx whii jk ajik vl ksvhoavk vdk e{ojkz ln V{zbhc eloafs wdl ohgzavkf vl Aeavliha he vdk cl{zsk ln vdksk nl{z ckev{zhks% Xheaeç $chvkf jx ^zxlehs) Fkcihek ) 178=e:>8( p{vs vdk hehvhai jlfx ln O{siho skvvikzs av 1)000)000% Acclzfheg vl ^zxlehs) vdhs fig{zk hs hopzljajik% Dhs cleci{shle hs vdav vdk V{zbs wkzk a ’soaii j{v plwkzn{i ohelzhvx‟ nlz vdk fizsv ckev{zx anvkz Oae}hbkzv $^zxlehs) Fkcihek ) 178–141(% Lsoae V{zae‘s lphehle hs vdav 70 pkzckev ln vdk iavkz plp{iavhle ln Asha Ohelz azk fksckefaevs ln kvdehc V{zbs‖Lsoae V{zae) ’I‘hsia/ ohsavhle faes ia V{zq{hk f{ Olxke Agk)‟ SH ) 10 $18;8() 137–1;:% ;3
:1
heg wdke hv cloks vl henlzoavhle le vdk cle~kzshle pzlckss he Asha Ohelz% Vdk leix zkihajik fig{zks azk nzlo vdk jkgheeheg ln vdk sht/ vkkevd ckev{zx) h%k%) nzlo Lvvloae vhoks) wdke vdk pzlckss ln cle/ ~kzshle was aizkafx clopikvkf% Vl {efkzsvaef wdav acv{aiix dappkekf nzlo vdk iasv q{azvkz ln vdk kik~kevd ckev{zx vl vdk shtvkkevd) wk da~k vl zkix olsvix le O{siho aef Cdzhsvhae cdzlehciks) wdhcd) as plhevkf l{v ajl~k) pzl~hfk leix ae hopzksshlehsvhc phcv{zk ln vdk pzlckss% Fksphvk vdk ihohvavhles ln s{cd sl{zcks) ^zxlehs hs ek~kz/ vdkikss ajik vl fhsvheg{hsd vwl jashc gklgzapdhcai azkas vdav sdl{if jk ljskz~kf whvd zkgazf vl Hsiaoh}avhle= 1( vdk ckevzai Aeavlihae piavka{) aef :( vdk s{zzl{efheg zkghles% Dk aisl fh~hfks vdk dhsvlzx ln vdk Hsiaoh}avhle ln Aeavliha hevl nl{z pkzhlfs= 1( kik~kevd vl iavk vwkinvd ckev{zhks2 :( vdhzvkkevd ckev{zx2 3( iavk vdhzvkkevd vl ohf/ finvkkevd ckev{zhks2 aef 6( ohf/finvkkevd vl shtvkkevd ckev{zhks%;4 Vdk fizsv pkzhlf saw O{siho clileh}avhle ln vdk ckevzai piavka{ aef fhspiackokev ln vdk hefhgkel{s Cdzhsvhae plp{iavhle%;8 Cle~kzshle) aivdl{gd a nacvlz) skkos elv vl da~k jkke as ktvkesh~k as he iavkz vhoks%>0 He vdk skclef pkzhlf) vdk vdhzvkkevd ckev{zx) plihvhcai svajhihvx aef kclelohc pzlspkzhvx zkv{zekf vl vdk pkehes{ia% Vdk kclelohc aef c{iv{zai lzksckeck ln vdk S{ivaeavk ln Z{o f{zheg vdhs pkzhlf kes{zkf vdk ~hcvlzx ln Hsiao l~kz Cdzhsvhaehvx he vdk Aeavlihae piavka{%>1 Vdk acvh~hvhks ln Hsiaohc oxsvhcai lzfkzs aisl jkcaok oae/ hnksv he vdhs pkzhlf% Fksphvk vdk pzljajix ktaggkzavkf e{ojkzs) vdkzk o{sv jk slok vz{vd vl vdk ciahos nl{ef he vdk O{siho daghlgzapd/ hcai ihvkzav{zk ln vdk pkzhlf vdav vdkzk wkzk ktvkesh~k cle~kzshles av vdk vhok%>: Nzlo vdk iavk vdhzvkkevd vl vdk ohf/ finvkkevd ckev{zhks plihvhcai he/ svajhihvx leck agahe vllb l~kz% Vdk wdlik zkghle ktpkzhkeckf a zks{z/ gkeck ln eloafhc clileh}avhle aef vdk kokzgkeck ln e{okzl{s vzhjai plihvhks acvh~kix p{zs{heg ktpaeshle ln Faz/ai/Hsiao% Jx vdk kazix finvkkevd ckev{zx) leix a nkw clasvai azkas zkoahekf he Jx}aevhek S% ^zxlehs) ’Vdk Ktpkzhkeck ln Cdzhsvhaes {efkz Skim{b aef Lvvloae Floheavhle) Kik~kevd vl Shtvkkevd Ckev{zx)‟ he Gkz~kzs) Jhbda}h) Cle~kzshle aef Clevhe{hvx) 14;–:1>% ;8 Hjhf%) 18>% >0 ^zxlehs) Fkcihek ) 17>–178% ^zxlehs afohvs vdav vdk k~hfkeck nlz vdhs pkzhlf hs ’naz nzlo clopikvk%‟ Dhs sl{zcks azk plkvhc clophiavhles s{cd as vdk Faehsdokefeaok ) cloplskf he vdk vdhzvkkevd ckev{zx) aef hsliavkf zknkzkecks he clevkoplza clevkoplzazx zx sl{zcks% >1 ^zxlehs) ’Cdzhsvhaes)‟ 187% >: Cadke) Pzk/Lvvloae V{zbkx) :1;% ;4
::
daefs% Cle~kzshle skkos vl da~k jkke hevkesh~k vdzl{gdl{v vdk pkzhlf%>3 He vdk iasv dain ln vdk finvkkevd ckev{zx) vdk Lvvloaes s{cckkfkf he plihvhcaiix cleslihfavheg Aeavliha% Vdkzk was) av vdk saok vhok) zkvazfavhle he vdk pack ln cle~kzshle% Vdhs cae cikazix jk ljskz~kf he vdk cask ln vdk zkghle ln Vzkjh}lef $Vzaj}le() wdhcd caok {efkz O{siho z{ik he 16>1% Hv was aeektkf jx Okdokf HH he a swhnv aef fkchsh~k caopahge whvdl{v oamlz fhsz{pvhles ln kclelohc aef slchai ihnk% Pzks{oajix clopikvkix Cdzhsvhae jknlzk vdk cleq{ksv) dain a cke/ v{zx iavkz vdk azka svhii daf leix 1086 O{siho dl{skdlifs clopazkf vl 1:)>3: Cdzhsvhae dl{skdlifs% Wdav vdk sl{zcks caeelv fhscilsk) dlwk~kz) oax jk zk~kaikf jx J{iihkv‘s vdklzx ln cle~kzshle% Lek caeelv dkip elvhcheg vdav vdk pkzhlfs fksczhjkf ajl~k da~k a ilv he cloole whvd J{iihkv‘s vhokvajik ln cle~kzshle% Vdk iavk kik~kevd aef vwkinvd ckev{zhks cl{if jk hfkevhfikf whvd vdk pkzhlfs ln ’heel~avlzs‟ aef ’kazix aflpvkzs)‟ vdk vdhzvkkevd ckev{zx whvd vdk ’kazix oamlzhvx‟ pkzhlf) vdk iavk vdhz/ vkkevd aef nl{zvkkevd ckev{zhks whvd vdk ’iavk oamlzhvx‟ pkzhlf aef vdk finvkkevd ckev{zx whvd vdk ’iaggazfs‟ pkzhlf% Vdk skq{keck ln plihvhcai k~kevs) avvzhj{vkf jx J{iihkv vl kacd ln vdksk pkzhlfs) skkos aisl vl clefizo vdk ~aihfhvx ln s{cd ae ass{opvhle% Vdk aevh/O{siho zk~livs) wdhcd J{iihkv piacks he vdk ’kazix aflpvkzs‟ pkzhlf {p {evhi vdk kef ln vdk ’kazix oamlzhvx‟ pkzhlf) cae) he vdk cask ln Asha Ohelz) jk kashix hfkevhfikf whvd vdk Jx}aevhek ohihvazx caopahges nzlo vdk vhok ln Kopkzlz Aikth{s Cloeke{s $1041( {evhi vdk whvd/ fzawai ln Jx}aevhek nlzcks nzlo Aeavliha he 1:>1% >6 Anvkz vdk ohf/ fik ln vdk vdhzvkkevd ckev{zx) Jx}aevh{o ajaeflekf vdk plihcx ln acvh~kix vzxheg vl fzh~k O{siho nlzcks nzlo vdk pkehes{ia jkca{sk hv was el ilegkz ajik vl s{svahe vdhs k ff lzv% lzv% Hv cae jk cleci{fkf vdav vdk pzlckss ln Hsiaoh}avhle zkacdkf hvs dainwax plhev he vdk skclef dain ln vdk vdhzvkkevd ckev{zx% Hn wk acckpv vdav vdk iavk vdhzvkkevd vl ohf/finvkkevd ckev{zhks was vdk ’iavk oamlzhvx‟ pkzhlf) whvd vdk O{sihos el ilegkz nkkiheg vdkhz z{ik vdzkavkekf) wk sdl{if ktpkcv a jzkabflwe ln ckevzai a{vdlzhvx aef vdk ksvajihsdokev ln hefkpke/ fkev O{siho fxeasvhks% Hefkkf) as plhevkf l{v ajl~k) vdhs iavvkz
Acclzfheg vl ^zxlehs Fkcihek $Fkcihek ) 14:–143 aef 66>() av vdk jkgheeheg ln vdk vdhz/ vkkevd ckev{zx ele/O{sihos wkzk svhii vdk oamlzhvx he vdk pkehes{ia% >6 Nlz vdhs pkzhlf skk ^zxlehs) Fkcihek ) 116–137% >3
:3
pkzhlf was pzkchskix lek ln plihvhcai nzagokevavhle% Vdkzknlzk) nliilwheg J{iihkv‘s cle~kzshle c{z~k) vdk ohf/ finvkkevd ckev{zx sdl{if jk vdk plhev wdke Hsiaoh}avhle was ajl{v 4; pkzckev clopikvk he Asha Ohelz% Vdk Hsiaoh}avhle ln vdk zkoaheheg 1; pkzckev‖’vdk iag/ gazfs‟‖was vl gl le {evhi 1;:0% Vdk hesvhv{vhleai fk~kilpokev ln Hsiaohc slchkvx he Asha Ohelz aisl skkos vl clefizo) he zkvzlspkcv) J{iihkv‘s cle~kzshle vdklzx% Acclzfheg vl vdk iavvkz) vlwazfs vdk kef ln vdk ’iavk oamlzhvx‟ pkzhlf a nacvhleai svz{ggik oax jk ktpkcvkf vl lcc{z jkvwkke fksckefaevs ln cle~kzvs nzlo vdk fizsv vwl pkzhlfs ln vdk cle~kzshle pzlckss aef fksckefaevs ln cle~kzvs nzlo vdk ’kazix aef iavk oamlzhvx‟ pkzhlfs% He ox lphehle) he vdk cask ln Asha Ohelz) vdhs nacvhleai svz{ggik lcc{zzkf jkvwkke vdk ga}h/fkz~hsd ohihk{ aef vdk ckevzaihsv cleskz~a/ vh~k/ohefkf ohihk{ ln vdk xl{eg Lvvloae svavk he vdk fizsv dain ln vdk finvkkevd ckev{zx%>; Vdk nlzokz wkzk fksckefaevs ln vdlsk wdl {pdkif vdk ga}a vzafhvhle ln vdk vwkinvd ckev{zx) h%k%) he vdk pkzhlf ln vdk ’kazix aflpvkzs)‟ wdkzkas vdk iavvkz kokzgkf nzlo vdk zaebs ln vdlsk cle~kzvkf he vdk vdhzvkkevd aef nl{zvkkevd ckev{zhks% As he vdk cask ln vdk ckevzai Hsiaohc iaefs) vdk iavvkz gzl{p p{sdkf nlz/ wazf a fhff kzkev kzkev bhef ln ’lzvdlfltx‟‖S{eeh/Daeafi ‖agahesv vdk s‘ dkvkzlflt/Aik~h ~hshle ln Hsiao% He clevzasv vl wdav dappkekf ga}h s‘ he vdk cask ln ehevd/ckev{zx Hsiaohc slchkvx) wdkzk vdk plp{ihsv nlzcks wle vdk javvik) he Aeavliha) lz zavdkz) he vdk Lvvloae plihvx) vdk cleskz~avh~k/kihvhsv ol~kokev pzk~ahikf%>> Fksphvk vdk skkoheg appihcajhihvx ln J{iihkv‘s vdklzx ln cle~kz/ shle vl Asha Ohelz) gh~ke vdk pzkskev svavk ln zkskazcd hv hs ~hzv{aiix
>;
Nlz vdk svz{ggik jkvwkke vdk ga}h/fkz~hsd ohihk{ aef vdk Lvvloae ckevzai ksvaj/ ihsdokev skk Banafaz) Jkvwkke Vwl Wlzifs ) 134–1;0% Hv ohgdv jk wlzvdwdhik nlz n{v{zk zkskazcdkzs ln vdk lzhghes ln vdk Lvvloae svavk vl he~ksvhgavk vdk cleekcvhle jkvwkke vdk Hsiaoh}avhle ln vdk eavh~k plp{iavhle ln jlvd Asha Ohelz aef vdk Jaibaes) aef vdk vzaesnlzoavhle ln vdk Lvvloae svavk nzlo a ga}a pzhechpaihvx vl ae kophzk% Aivdl{gd {efkziheheg vdk hoplzvaeck ln vdk ga}h /ckevzaihsvs /ckevzaihsvs clehcv he vdk nlzoavhle ln Lvvloae svavk) Banafaz flks elv pkzckh~k hv as cleekcvkf vl Hsiaoh}avhle% >> Vdk ~hcvlzx ln vdk cleskz~avh~k/kihvhsv ol~kokev hs sxojlihcaiix zkpzkskevkf jx vdk zkn{sai ln Okdokf HH vl svaef {p av vdk sl{ef ln ga}h oazvhai o{shc‖a c{s/ vlo ljskz~kf jx aii pzk~hl{s Lvvloae s{ivaes $Banafaz) Jkvwkke Vwl Wlzifs ) 16>(% Hv das vl jk afohvvkf vdav) sheck jx vdk jkgheeheg ln vdk finvkkevd ckev{zx olsv ln vdk Jaibaes wkzk aisl pazv ln vdk Lvvloae svavk) nacvhleai svzhnk cl{if aisl da~k jkke he{keckf jx vdk kff kcvs kcvs ln vdk gavdkzheg olokev{o ln cle~kzshle he vdk Jaibaes% Hv wl{if jk heclzzkcv vdke vl asskzv vdav vdk cleci{shle ln vdk cle hcv was leix a zks{iv ln fk~kilpokevs he vdk Aeavlihae Hsiaohc cloo{ehvx%
:6
hoplsshjik vl czkavk a cle~kzshle c{z~k nlz vdk iavvkz% Nhzsv) vdk sl{zcks fl elv pzl~hfk a q{aevhvavh~k pkzspkcvh~k ln cle~kzshle ~kz/ s{s clileh}avhle% Skclef) vdk pkehes{ia was elv cleq{kzkf av leck aef vdkzknlzk) cle~kzshle olsv pzljajix daf fh ff kzkev kzkev vhokvajiks he kacd s{j/zkghle% Le vdk lvdkz daef) k~ke hn hv wkzk plsshjik vl czk/ avk a cle~kzshle c{z~k nlz Asha Ohelz) vdhs wl{if elv jk s{ ffichkev vl fksczhjk vdk pzlckss he aii hvs fh~kzshvx% Wdav H okae hs vdav J{iihkv‘s olfki clopikvkix fhszkgazfs vdk fh ff kzkev kzkev zkasles vdav azk {s{aiix gh~ke vl ktpiahe whfkspzkaf cle~kzshle he na~lz ln vdk slik nacvlz ln ’acckss vl henlzoavhle)‟ h%k%) vdk olzk e{okzl{s vdk O{siho plp{iavhle jkcloks) vdk olzk ihbkix hv hs nlz vdk zkoaheheg ele/ O{sihos vl clok hevl clevacv whvd vdk nlzokz aef vl cle~kzv vl Hsiao% Dlwk~kz) as Olzlex ljskz~ks)>7 wk oax ek~kz belw wdav ohgdv da~k dappkekf whvdl{v vdlsk lvdkz chzc{osvaecks vdav kecl{z/ agkf cle~kzshle) s{cd as vdk hevkzeai wkabekss ln vdk ele/O{siho cloo{ehvhks) slchai zksvzhcvhles) O{siho dlsvhihvx) ktckssh~k vatavhle) pdxshcai heskc{zhvx) kvc% Jkca{sk slok ln vdk chzc{osvaecks vdav piaxkf a zlik he vdk cle~kzshle vl Hsiao he Asha Ohelz iavkz jkcaok oae/ hnksvkf aisl he vdk Jaibaes) H whii jzhk x fhsc{ss vdksk he vdk nliilw/ heg pagks% Vdk Eav{zk ln O{siho Cleq{ksv aef Cle~kzshle he Asha Ohelz
Lek ln vdk chzc{osvaecks vdav piaxkf a zlik he vdk cle~kzshle pzlckss he Asha Ohelz was vdk ilegk~hvx aef ~hlikev eav{zk ln vdk O{siho/ Cdzhsvhae kecl{evkz) he wdhcd ekhvdkz shfk zknzahekf nzlo he hcvheg cz{kivx le vdk lvdkz) fkpkefheg le wdhcd shfk daf vdk {ppkz daef% He vdk zks{ivheg avolspdkzk ln aeholshvx) nlzckf oass cle~kzshles) aplsvasx aef s{jskq{kev zkpzhsais wkzk elv {ecloole% >4 Wk cae dazfix spkab ln ’slchai cle~kzshle‟ he s{cd casks% He lvdkz wlzfs) as ileg as vdk cleq{ksv clevhe{kf aef) av vdk saok vhok) vdkzk pkz/ shsvkf he vdk cleq{kzkf iaefs a fkgzkk ln hesvhv{vhleaih}avhle aef sva/ jhih}avhle ln slchai ihnk)>8 ~li{evazx aef nlzckf cle~kzshles vl Hsiao >7 >4
177%
Olzlex) ’Vdk Agk ln Cle~kzshles)‟ 138% Skk nlz ae ktaopik Banafaz) Jkvwkke Vwl Wlzifs ) >>–>7 aef ^zxlehs) Fkcihek )
Hn wk ktci{fk vdk pkzhlf ln svajhihvx he O{siho Aeavlihae slchkvx he vdk fizsv dain ln vdk vdhzvkkevd ckev{zx {efkz vdk Skim{bs ln Z{o) fieai svajhih}avhle was leix acdhk~kf {efkz vdk Lvvloaes av vdk kef ln vdk finvkkevd ckev{zx% >8
:;
pzlgzksskf daef he daef% Agahe) dlwk~kz) gh~ke vdk pzkskev svavk ln zkskazcd) wk azk elv ajik vl asskss vdkhz sdazk he vdk l~kzaii pzlckss% Hsiaohc Hesvhv{vhles as Nacvlzs ln Cle~kzshle
Wdav wkzk vdk chzc{osvaecks vdav clevzhj{vkf vl ~li{evazx cle~kz/ shle< He ox lphehle) vdk nacvlz vdav piaxkf vdk olsv shgeh ficaev zlik he vdk pzlckss was vdk svagk ln oav{zhvx ln Hsiaohc slchkvx aef hvs hesvhv{vhles pzhlz vl vdk cleq{ksv ln Asha Ohelz% He vdk ckevzai Hsiaohc iaefs) vdk pzlckss ln cle~kzshle wkev daef he daef whvd vdk fk~ki/ lpokev ln slchai hesvhv{vhles% Jx vdk vhok ln Aeavliha‘s cleq{ksv) vdk olsv hoplzvaev Hsiaohc slchai aef kclelohc hesvhv{vhles wkzk aizkafx he piack% Vl ^zxlehs) vdk olsv hoplzvaev ln vdksk hesvhv{vhles was vdk Hsiaohc svavk) wdhcd) acclzfheg vl dho) s{pplzvkf Hsiao he k~kzx wax aef okzkix vlikzavkf Cdzhsvhaehvx as vdk zkihghle ln hvs skclef/ciass chvh/ }kes%70 Dk afohvs) dlwk~kz) vdav vdhs hs a shv{avhle vxphcai nlz aex okfhk~ai svavk nlzoavhle) O{siho aef Cdzhsvhae aihbk% 71 Nzlo dhs accl{ev hv aisl jkcloks cikaz vdav hv hs elv vdk Hsiaohc svavk pkz sk vdav dk das he ohef j{v slok ln vdk hesvhv{vhles) vxphcai ln ae Hsiaohc svavk= Vdk s{ivaes aef lffichais j{hiv olsq{ks) okfzkssks) hoazkvs) }awhxas) dlsphvais) caza~aesazaxs) aef nl{evahes nlz vdk Hsiaohc asslchavhles aef keflwkf vdko whvd iaefs) skzns) aef zk~ke{ks% Cleskq{kevix) vdk {ik/ oas aef fkz~hsdks daf vdk kclelohc wdkzkwhvdai vl pkznlzo vdkhz sphzhv{ai n{ecvhles whvd kikgaeck aef vdkhz slchlkclelohc vasbs whvd gzkav kffichkecx%7:
Hv hs k~hfkev nzlo vdk ajl~k passagk vdav ^zxlehs hfkevh fiks vdk Hsiaohc svavk whvd vdk pzh~avk acvh~hvhks ln hvs plihvhcai aef hevkiikcv{ai kihvk% H wl{if azg{k) dlwk~kz) vdav hv was) fizsv ln aii) vdk kthsvkeck ln kf{/ cavhleai aef cdazhvajik hesvhv{vhles s{cd as olsq{ks) okfzkssks) hoazkvs) dlsphv phvais ais)) aef caza caza~aes ~aesaza azaxs xs he O{s O{siho iho slch slchkvx kvx)) aef skc skclef) lef) }awhxas ) dls vdk vzafhvhle ln j{hifheg s{cd ksvajihsdokevs) vdav oafk vdk pzh~avk acvh~hvhks ln vdk wkaivdx aef vdk phl{s plsshjik% Hn wk illb nlz vdk
70 71 7:
^zxlehs) ’Cle~kzshle)‟ 3;1% Hjhf% Hjhf%) 3;1–3;:%
:>
piack aef zlik ln vdk Hsiaohc svavk he vdk cle~kzshle pzlckss) hv sdl{if jk sl{gdv elv he vdav ln jkheg a fhzkcv pazvhchpaev j{v he vdav ln jkheg a g{azaevlz nlz vdk kthsvkeck ln s{cd kf{cavhleai aef cdazh/ vajik ksvajihsdokevs%73 Vdk zkai cavaixsvs he vdk cle~kzshle pzlckss wkzk kclelohc hesvhv{vhles s{cd as vdk waqn ) slchai hesvhv{vhles s{cd as vdk oxsvhcai lzfkzs $vazhqa () aef slchai ciassks s{cd as vdk {ikoa aef fkz~hsdks vdav zae vdksk aef lvdkz ksvajihsdokevs% He vdk kclelohc spdkzk) vdk waqn hesvhv{vhle piaxkf vdk gzkavksv zlik he vdk pzlckss ln Hsiaoh}heg Aeavlihae slchkvx% Vdk waqn skz~kf vdk p{zplsk ln cdaeekiheg wkaivd vl vdk hesvhv{vhles vdav pzl~hfkf vdk slchai ekvwlzb ln Hsiaohc slchkvx% 76 Vdk svzlegkz vdhs ekvwlzb was) vdk gzkavkz vdk pzljajhihvx ln hevkgzavheg ele/O{sihos hevl hv) 7; nlz av vdk saok vhok wkaivd was jkheg cdaeekikf awax nzlo vdk Cdzhsvhae zkihghl{s aef cdazhvajik ksvajihsdokevs) vdkzkjx {efkzohe/ heg vdk kclelohc nl{efavhles ln vdk Lzvdlflt Cd{zcd% Cleskq{kevix) vdk Cdzhsvhae clegzkgavhles wkzk iknv nlz vdk olsv pazv ikafkzikss aef lpke vl c{iv{zai vzaesnlzoavhle aef hevkgzavhle hevl Hsiaohc slchkvx% 7> Vdk lvdkz Hsiaohc hesvhv{vhles pazvhc{iazix zkik~aev vl cle~kzshle he Asha Ohelz wkzk vdk oxsvhcai lzfkzs aef vdk n{v{wwa lzgaeh}a/ vhles he {zjae ckevkzs% Vdk oxsvhcai lzfkzs clevzhj{vkf vl vdk czk/ avhle ln zkihghl{s sxeczkvhso he Aeavliha le a plp{iaz ik~ki% Vdkx vkefkf vl kq{avk Hsiaohc pzacvhcks aef sahevs whvd vdlsk ln vdk Cdzhsvhaes lz ~hck ~kzsa) vd{s) oabheg vdk vzaesnkz nzlo lek zkihghl{s cloo{ehvx vl vdk lvdkz skkos ikss zafhcai% Aivdl{gd vdkzk wkzk sk~/ kzai lzfkzs ktkzvheg he{keck le Aeavlihae slchkvx) vdk Ok~ik~h aef Jkbvasdh lzfkzs wkzk ln vdk gzkavksv hoplzvaeck% Vdk fizsv lpkzavkf pzhoazhix he {zjae ke~hzleokevs wdhik vdk skclef was olzk acvh~k he z{zai azkas%
Vdk Hsiaohc kf{cavhleai aef cdazhvajik hesvhv{vhles fhf elv fk~kilp l{v ln a fkshzk vl cle~kzv ele/O{sihos vl Hsiao lz vdk svavk‘s plihcx ln p{zs{heg zkihghl{s dlolgkekhvx j{v zavdkz he zksplesk vl vdk ekkfs ln O{sihos aef vdk pzlpkz n{ec/ vhleheg ln Hsiaohc slchkvx hvskin% Vdk Hsiaohc kf{cavhleai aef cdazhvajik ksvajihsd/ okevs nachihvavkf cle~kzshle vl Hsiao leix as a cleskq{keck ln lpkzavheg he a ohtkf zkihghl{s ke~hzleokev aef jkheg a oaehnksvavhle ln a ~hvai slchkvx% Vl ok) vdk ~kzx kthsvkeck ln Hsiaohc svavk hs aisl a cleskq{keck ln vdk pzlpkz n{ecvhleheg vdk lvdkz Hsiaohc slchai aef kclelohc hesvhv{vhles aef elv ~hck ~kzsa% 76 Skk ^zxlehs) Fkcihe Fkcihek k ) 3;:–3;;) nlz e{okzl{s ktaopiks ln keflwokevs vl O{siho zkihghl{s) kf{cavhleai aef cdazhvajik ksvajihsdokevs aef vdkhz fieaechai s{pplzv% 7; Olsv ln vdk cdazhvajik ksvajihsdokevs wkzk elv ihohvkf vl O{sihos leix j{v pzl~hfkf nlz ele/O{sihos as wkii‖skk ^zxlehs) Fkcihek ) 3;:% 7> Skk ^zxlehs) Fkcihek ) :44–3;0% 73
:7
Aivdl{gd svzlegix he{keckf jx vdk fkz~hsdks) wdl aisl ljskz~kf n{v{wwa pzhechpiks) vdk abdh jzlvdkzdllfs daf a fhsvhecv lzgaeh}a/ vhleai svz{cv{zk aef lpkzavkf pzhoazhix he {zjae ckevkzs% Vdkx hevk/ gzavkf {zjae vzafk asslchavhle nzlo aii zkihghl{s gzl{ps% Vd{s) vdk jzlvdkzdllfs ajslzjkf vdk ele/O{siho plp{iavhle ln Aeavliha hevl vdk Hsiaohc wlzif jx pkekvzavheg vdk kclelohc lzgaeh}avhles ln vdk vlwes%77 S{ooazx
1% Cle~kzshle Cle~kzshle vl vl Hsiao Hsiao le a iazgk iazgk scaik scaik fhf fhf elv hookfha hookfhavkix vkix nli/ ilw vdk O{siho cleq{ksvs he vdk fizsv Hsiaohc ckev{zx2 zavdkz) vdk cle~kzshle was a gzaf{ai pzlckss) lcc{zzheg l~kz a spae ln nl{z ckev{zhks% :% Aivdl{gd fh fhff kzkev kzkev chzc{osvaecks s{cd as vatavhle) lppzksshle) kvc%) daf ae hopacv le vdk pzlckss) hv was pzhoazhix a slchai pzlckss) lpkzavheg he a nasdhle shohiaz vl vdk okcdaehso ln heel~avhle fhff {shle {shle he d{oae slchkvx% 3% Vdk pzlckss pzlckss ln cle~kzshle cle~kzshle he vdk vdk vkzzhvlzhk vkzzhvlzhkss cleq{kzkf cleq{kzkf he vdk fizsv Hsiaohc ckev{zx was clopikvkf jx vdk ohffik ln vdk kik~kevd cke/ v{zx% Hv nliilwkf a ~kzx shohiaz pavvkze he aii vkzzhvlzhks) wdhcd oax jk pilvvkf le a ilghsvhc S/sdapkf c{z~k zk kcvheg fi~k fhs/ vhecv pkzhlfs he vdk hevkeshficavhle ln cle~kzshle% 6% Nzlo vdk vdk skclef skclef dain ln vdk vwkin vwkinvd vd ckev{zx) ckev{zx) cle~kzsh cle~kzshle le vl Hsiao Hsiao jkgae he vdk ekw vkzzhvlzhks) h%k%) leks vdav daf pzk~hl{six iahe l{vshfk vdk O{siho zkaio% Aivdl{gd vdk cle~kzshle he lek ln vdksk vkzzhvlzhks‖Asha Ohelz‖nliilwkf vdk ilghsvhc c{z~k) hv aisl zkkcvkf vdk fhff kzkev kzkev svagk ln oav{zhvx ln Hsiaohc slchkvx kisk/ wdkzk $kthsvkeck ln kclelohc aef slchai hesvhv{vhles fhzkcvix a ff kcvheg kcvheg cle~kzshle( aef slok spkchfics ln vdk cleq{ksv $ilegk~hvx) ktvke/ sh~k clileh}avhle ln eloafhc vzhjks) kvc%(%
77
^zxlehs) Fkcihek ) 601%
CDAPVKZ VWL
PKZHLFS LN CLE^KZSHLE VL HSIAO HE VDK JAIBAES AEF FKOLGZAPDHC PZLCKSSKS L{z zk~hkw ln cle~kzshle vl Hsiao he pzk/Lvvloae vhoks s{ggksvs vdav ae {efkzsvaefheg ln vdk f{zavhle aef eav{zk ln vdk cleq{ksv ln ele/O{siho vkzzhvlzhks jx O{siho nlzcks hs hoplzvaev nlz aex sv{fx ln vdk s{jskq{kev pzlckss ln cle~kzshle% Vd{s) he vdk nliilwheg pagks H pzkskev a jzhkn dhsvlzhcai l{vihek ln vdk cleq{ksv ln vdk Jaibaes jx vdk Lvvloaes aef slok ln vdk clevzl~kzshks cleekcvkf whvd hv% Vdk Lvvloae Cleq{ksv ln vdk Jaibaes aef Cle~kzshle vl Hsiao
Vdk cleq{ksv ln vdk Jaibaes was acclopihsdkf he vdk spack ln ihv/ vik olzk vdae a ckev{zx aef he vwl svagks‖13;: vl 160: aef 161; vl 16>7% Vdk oahe zkasle nlz vdk zkiavh~kix nasvkz pack ln vdk cle/ q{ksv ln vdhs zkghle) clopazkf vl vdav ln Asha Ohelz) was vdk plihv/ hcai nzagokevavhle ln vdk Jaibaes le vdk k~k ln vdk Lvvloae he~ashle% He vdk ohffik ln vdk nl{zvkkevd ckev{zx) vdk Jaibaes cleshsvkf ln a e{ojkz ln soaii bhegflos aef hefkpkefkev z{ikzs% Vdk Jx}aevhek svavk dkif leix slok vkzzhvlzhks he Vdzack) Vdkssaix aef Oackfleha% Cavaiae okzckeazhks aisl lpkzavkf hefkpkefkevix he Vdzack) wdhik vdk Olzka was he ^kekvhae daefs% Vdk J{igazhae svavk daf jx vdke fhshevkgzavkf hevl vdk vdzkk bhegflos ln Vazel~l) ^hfhe aef Baiihabza% Aijaeha was fh~hfkf aoleg nl{z a{vlelol{s z{ikzs% Vdk Skzj) Czlavhae aef Jlsehae bhegflos he vdk wksvkze Jaibaes wkzk aisl vlze apazv jx fxeasvhc svz{ggiks% Aelvdkz hoplzvaev nacvlz was vdav vdk pkvvx z{ikzs he Oackfleha) Vdkssaix) Kphz{s) Aijaeha aef pazvs ln J{igazha wkzk ksskevhaiix nlzkhgekzs $oaheix ln Skzjhae lzhghe(% Whvd el plihvhcai plwkz svzleg kel{gd vl floheavk vdk Jaibaes) ilcai z{ikzs vzhkf vl skc{zk vdkhz pzkcazhl{s zkhges jx aiihaecks whvd lek lz aelvdkz ln vdkhz svzlegkz ekhgdjlzs% Vdk Lvvloaes he nacv kokzgkf as a plihvhcai piaxkz he vdk Jaibaes jkca{sk ln m{sv s{cd ae aiihaeck whvd a pzkvkefkz vl vdk Jx}aevhek vdzlek% Vabheg af~ae/ vagk ln vdk na~lzajik plihvhcai shv{avhle) O{siho nlzcks wkzk ajik
:8
q{hcbix vl l~kzz{e vdk pkvvx z{ikzs lz vl skc{zk pkackn{iix vdkhz acckp/ vaeck ln Lvvloae s{}kzahevx% Vdk fizsv svagk ln vdk cleq{ksv svazvkf whvd vdk capv{zk ln vdk chvhks ln Çhopk $V}xopk( he 13;: aef Gkihjli{ $Gaiihplih( he 13;6% Jx 160:) vdk kasvkze pazv ln vdk pkehes{ia‖Vdzack $13>>() Oackfleha $1371() J{igazha $1386() Vdkssaix $1388( aef pazvs ln Skzjha aef Kphz{s‖wkzk pazv ln vdk Lvvloae svavk% He vdk skclef svagk ln vdk cleq{ksv) vdk zksv ln vdk Jaibae pkehes{ia was s{jm{gavkf‖Cle/ svaevhelpik $16;3() Skzjha $16;8() sl{vdkze aef ckevzai Jlseha $16>3() vdk Olzka $16>6() Dkz}kgl~hea $16>;( aef Aijaeha $16>7(% Slok pkzhpdkzai azkas) dlwk~kz) fhf elv clok {efkz Lvvloae z{ik {evhi iavkz‖a soaii pazv ln Dkz}kgl~hea $1643() vdk clasvai azka ln Aijaeha $1687() Olevkekgzl $1688() Jkigzafk $1;:1() elzvdkze Jlseha $1;:0– 1;:4() aef Czlavha $1;:7(% A soaii pazv ln Olevkekgzl) vdk chvx/ svavk ln Zag{sa $F{jzl~ehb( aef vdk Afzhavhc clasv ln Faioavha wkzk vdk leix Jaibae azkas vl zkvahe hefkpkefkeck anvkz vdk ohffik ln vdk shtvkkevd ckev{zx% Aivdl{gd scdliazs he gkekzai agzkk le vdk zkasles aef vdk vhok nzaok ln vdk Lvvloae cleq{ksv ln vdk Jaibaes) vdkzk hs svhii cle/ shfkzajik fkjavk ajl{v vdk eav{zk ln vdhs cleq{ksv% Ksskevhaiix) vdkzk azk vwl fhaokvzhcaiix lpplshvk lphehles% Vdk fizsv lek) zllvkf he vdk pzkckpvs ln Jaibae eavhleaihso aef zkckev plihvhcs) svzkssks vdk ~hl/ ikeck aef fksvz{cvhle wzkabkf jx vdk Lvvloae cleq{ksv aef zkgazfs hv as da~heg daf a vzaghc hopacv le vdk Jaibae pklpiks% Vdhs ~hkw hs appzlpzhavkix zknkzzkf vl jx O% Bhki as vdk ’cavasvzlpdk vdklzx%‟1 Hv was {evhi zkckevix vdk ikafheg vzkef aoleg Jaibae eavhleai dhs/ vlzhaes) sa~k V{zbhsd scdliazs% Ae ktkopiaz ln vdk ’cavasvzlpdk vdk/ lzx‟ aef av vdk saok vhok lek ln hvs phiiazs hs vdk J{igazhae dhsvlzhae D% Gaefk~) wdl pzlf{ckf ae he{kevhai sv{fx ln vdk fkolgzapdhc shv{avhle ln vdk J{igazhae pklpik he vdk finvkkevd ckev{zx%: [vhih}heg vdk vhoaz zkghsvkzs belwe vl dho nzlo vdav ckev{zx) Gaefk~ ksvhoavks vdav :>04 J{igazhae ~hiiagks fhsappkazkf he vdk cl{zsk ln vdk cke/ v{zx% Le vdk jashs ln ae a~kzagk sh}k ln 63 dl{skdlifs pkz ~hiiagk aef ae ksvhoavk ln fi~k pklpik pkz dl{skdlif) Gaefk~ caic{iavks vdav
Skk O% Bhki) Azv aef Slchkvx ln J{igazha he vdk V{zbhsd Pkzhlf $Asske) Oaasvzhcdv) 184;() 33% : D% Gaefk~) J{igazsbava eazlfelsv pzk} 1;~ 1;~% RVdk J{igazhae Pklpik he vdk Nhnvkkevd Ckev{zx_ $Slfia) 187:(% 1
30
vdk J{igazhae z{zai plp{iavhle fkczkaskf jx a vlvai ln 11:)166 dl{sk/ dlifs $lz appzlthoavkix ;>0)000 pklpik( as a zks{iv ln vdk Lvvloae cleq{ksv% Ae affhvhleai :6)000 {zjae dl{skdlifs $lz 1:0)000 pklpik( azk ksvhoavkf jx dho as da~heg jkke bhiikf) kesia~kf) fkplzvkf) nlzckf vl ohgzavk lz gh~ke el cdlhck j{v vl cle~kzv vl Hsiao) sl vdav vdk vlvai plp{iavhle fkcihek ln vdk J{igazhae pklpik he vdk finvkkevd cke/ v{zx aol{evs vl vdk fig{zk >40)000%3 Acclzfheg vl vdk a{vdlz) vdk iavvkz fig{zk) clesvhv{vheg 38 pkzckev ln vdk pzk/Lvvloae J{igazhae plp{iavhle) wazzaevs vdk vdkshs ln a ’fkolgzapdhc cavasvzlpdk‟ aef a ’jhlilghcai cliiapsk ln vdk eavhle%‟ 6 Xkv) aivdl{gd Gaefk~‘s cle/ ci{shle skkos vl jk nl{efkf le slihf kophzhcai k~hfkeck) dhs okvdlf/ lilgx das jkke sk~kzkix czhvhch}kf jx slok scdliazs% Wk da~k aizkafx aii{fkf vl vdk zavdkz {eschkevhfic eav{zk ln Gaefk~‘s o{ivhpixheg nac/ vlz ln fi~k pkzsles pkz vatajik dl{skdlif ~hs/à/~hs vdk olzk pzlja/ jik fig{zk ln vdzkk lz vdzkk aef a dain pkzsle pkz vatajik dl{skdlif% Ljmkcvhles vdav azk k~ke olzk skzhl{s da~k jkke zahskf as vl dhs okvdlflilgx he azzh~heg av vdk fig{zk ln :>04 ~aehsdkf ~hiiagks% Dk) nlz hesvaeck) daf ass{okf vdav vdk vkzo ok}zaa ) nl{ef he vdk zkghs/ vkzs) aiwaxs fkelvks a fkskzvkf lz fksvzlxkf ~hiiagk% S% Fhohvzl~) dlwk~kz) das plhevkf l{v vdav a zknkzkeck vl ok}zaa s; he vat zkghs/ vkzs hs olsv lnvke ae hefhcavhle ln ae hehvhai svagk he vdk nlzoavhle ln a ekw ~hiiagk as a zks{iv ln plp{iavhle heczkask aef ktpaeshle ln agzhc{iv{zk)> h%k%) ae hefhcavhle ln a pzlckss vdav hs vdk lpplshvk ln vdav ke~hshlekf jx Gaefk~% N{zvdkzolzk) whvd zkgazf vl dhs cle/ ci{shle vdav vdk Cdzhsvhae plp{iavhle he chvhks fhsappkazkf as a zks{iv ln sxsvkoavhc fksvz{cvhle aef fkplp{iavhle)7 E% Vlflzl~ das sdlwe vdav) k~ke av vdk jkgheeheg ln vdk shtvkkevd ckev{zx) a s{jsvaevhai pzlplzvhle ln vdk vlwe fwkiikzs was oafk {p ln Cdzhsvhaes) wdhik aoleg vdk O{siho hedajhvaevs cle~kzvs vl Hsiao wkzk he vdk oamlz/ hvx%4 As nlz casks ln fksvz{cvhle ln vlwes) vdk Lvvloaes wkzk elv vl
Gaefk~) Eazlfelsv ) :0–;>% 6 Hjhf%) 111% ; Acclzfheg vl D% eaicıb) ok}zaa fkelvks= 1( a fikif {efkz c{ivh~avhle2 :( a iazgk nazo whvd el pkzoaekev skvvikokev2 hv oax jk lzhgheaiix a fkskzvkf ~hiiagk lz iaef zkciahokf jx a ekazjx ~hiiagk% Skk eaicıb aef Q{avakzv) Dhsvlzx) ’Gilssazx)‟ s%~% ok}za a ok}za a % > S% Fhohvzl~) ’Ok}zhvk h fkolgzansbhxa cliaps ea jaigazsbhxa eazlf RVdk Ok}zaa s aef vdk Fkolgzapdhc Cliiapsk ln vdk J{igazhae Eavhle_)‟ ^kbl~k ) > $1873() ;6–>;% 7 Gaefk~) Eazlfelsv ) 81–8:% 4 E% Vlflzl~) Jaibaesbhxav gzaf T^–THT ~% Slchaiel/hblelohvcdksbl h fkolgzansbl za}~hvhk 3
31
jiaok olsv ln vdk vhok% Acclzfheg vl vdk leix sl{zck gh~heg fkvahis ajl{v vdk capv{zk ln oaex J{igazhae vlwes aef jaskf le kxkwhv/ ekss accl{evs‖s{cd as vdk Cdzlehcik ln Ok~iêea Ek zå‖leix vwl) l{v ln a vlvai ln vdhzvx) J{igazhae casviks aef vlwes zkshsvkf aef jkca{sk ln vdhs wkzk fksvzlxkf% Hv was elv he nacv {evhi dain a cke/ v{zx anvkz vdk Lvvloae cleq{ksv vdav olsv ln vdk J{igazhae vlwes wkzk za}kf vl vdk gzl{ef) aef vdhs) hzlehcaiix) jx vdk Cdzhsvhae azox ln vdk Cz{safk ln 1663,66%8 Nheaiix aef olsv hoplzvaevix) Gaefk~‘s czhvhcs plhev l{v vdav dhs cleci{shle ajl{v a ’fkolgzapdhc cliiapsk‟ he vdhs zkghle hs {ewaz/ zaevkf sheck vdkzk hs el sl{zck nzlo pzk/Lvvloae vhoks vdav cl{if gh~k {s henlzoavhle le dlw oaex pklpik ih~kf he J{igazha lz aex lvdkz Jaibae svavk% Hv das jkke ljskz~kf vdav vdk sh}ks ln okfhk~ai J{igazhae vlwes) oafk belwe vl {s vlfax vdzl{gd azcdklilghcai ktca~avhle) fl elv plhev vl vdk kthsvkeck ln a iazgk plp{iavhle% 10 Ek~kzvdkikss) fksphvk vdk sk~kzk czhvhchso) Gaefk~‘s cleci{shles wkzk acckpvkf as clzzkcv he gkekzai jx a e{ojkz ln ikafheg J{igazhae aef lvdkz Jaibae scdliazs%11 Vdk lvdkz vzkef ln lphehle ajl{v vdk eav{zk ln vdk Lvvloae cle/ q{ksv dlifs vdav vdk Jaibae pklpiks nlz vdk olsv pazv jkek fivkf nzlo vdk Lvvloae cleq{ksv% Acclzfheg vl vdhs ~hkw) vdk cleq{ksv jzl{gdv pkack aef svajhihvx vl vdk zkghle) ihjkzavkf vdk plp{iavhle nzlo nk{/ fai aeazcdx aef ktckssh~k vatavhle aef kecl{zagkf kclelohc pzls/ pkzhvx% H caii vdhs ~hkw vdk ’jikssheg vdklzx%‟ Kikokevs ln vdk ’jikssheg vdklzx‟ appkazkf fizsv he vdk wlzbs ln vdk C}kcd scdliaz B% Mhzk kb% Dk svzksskf vdk ohskzajik clefhvhles ln aeazcdx aef ktda{svhle kegkefkzkf jx vdk ek~kz/kefheg ch~hi wazs aef nk{fai svzhnk ln vdk 16vd ckev{zx%1: Anvkz dho vdk Z{oaehae dhsvlzhae Ehclias Hlzga plhevkf l{v vdav Jaibae pkasaevs wkzk jx aef iazgk savhs fikf whvd Lvvloae afohehsvzavhle) wdhcd daf jzl{gdv ajl{v {ehvx aef was
$Slfia) 187:() vzaesiavkf jx P% S{gaz as Vdk Jaibae Chvx= Slchl/kclelohc aef Fkolgzapdhc Fk~kilpokev) 1600 1600–1800 –1800 $Skavvik) 1843(% 8 Skk) nlz fhsc{sshle le vdhs oavvkz) Bhki) Azv aef Slchkvx) 6;–67 aef vdk zknkz/ kecks gh~ke vdkzk% 10 Hjhf%) 37% 11 Skk) nlz ktaopik) K% Gzl}fael~a) J{igazsbav J{igazsbavaa eazlfelsv eazlfelsv pzk} 17~% Fkolgzansb Fkolgzansbll h}sikf/ ~aek RVdk J{igazhae Pklpik he vdk 17vd ckev{zx= A Fkolgzapdhc S{z~kx_ $Sl fia) 1848() :;% 1: B% Mhzk kb) Gkscdhcdvk fkz J{igazke $Pzag{k) 147>() :46–8>2 hfko) Gkscdhcdvk fkz Skzjke $Glvda) 1811() 378–41%
3:
elv av aii hevkzksvkf he hvs s{jmkcvs‘ zkihghl{s lz kvdehc jacbgzl{efs% 13 Vdk ’jikssheg vdklzx‟ was aisl plp{iaz aolegsv V{zbhsd scdliazs ln vdk gkekzavhle jknlzk Wlzif Waz HH%16 Xkv) fksphvk k~hfkeck chvkf jx pzlplekevs ln vdk ’cavasvzlpdk vdklzx‟ he s{pplzv ln vdkhz plsh/ vhle vdav vdk Lvvloae cleq{ksv was naz nzlo ’ihjkzavhle‟ nlz vdk Jaibae pkasaev) vdk ’jikssheg vdklzx‟ clevhe{kf vl vdzh~k he scdli/ azix chzciks%1; Lek cae aisl fhsckze a vdhzf gzl{p) oafk {p ln scdliazs wdl gza~hvavk cilskz vl vdk ’jikssheg vdklzx‟ he vkzos ln vdkhz asskssokev ln vdk eav{zk ln vdk Lvvloae cleq{ksv) j{v wdl oax jk fhsvhe/ g{hsdkf f{k vl vdkhz olzk cazkn{i wkhgdheg ln vdk nacvs% Vdksk scdli/ azs plhev vl vdk fkolgzapdhc aef kclelohc fk~kilpokev he vdk fizsv ckev{zx ln Lvvloae z{ik he vdk Jaibaes) a pdkelokele vdav hs hzzkc/ lechiajik whvd vdk shv{avhle fkphcvkf jx pzlplekevs ln vdk ’cava/ svzlpdk vdklzx%‟ Le vdk lvdkz daef) vdkx acbelwikfgk vdk k~hfkeck ln slok fkgzkk ln fksvz{cvhle) ~hlikeck) dazfsdhp aef zkihghl{s hekq{ai/ hvx jzl{gdv ajl{v jx vdk cleq{ksv% H wl{if caii vdhs ~hkw vdk ’olf/ kze appzlacd)‟ sheck hv hs af~aeckf olsvix jx clevkoplzazx scdliazs) wdl zkix le olfkze okvdlfs ln aeaixshs aileg whvd ae ktvkesh~k {sk ln azcdh~ai sl{zcks) elv m{sv cdzlehciks% Vdk ’olfkze appzlacd‟ hs jksv zkpzkskevkf he vdk wlzbs ln D% eaicıb%1> Dk clevkefs vdav vdk Lvvloae cleq{ksv was a gzaf{ai pzlckss) wdhcd was elv fzh~ke jx ’i{sv nlz jllvx‟ lz jx vdk whii ln vdk s{ivae% As eaicıb ktpiahes hv) vdk cleq{ksv ln a zkghle wl{if elzoaiix jkghe whvd a skzhks ln zahfs) wdhcd wl{if k~kev{aiix nlzck vdk ilcai z{ikz vl acckpv Lvvloae s{}kzahevx aef agzkk vl pax a vzhj{vk% Vdke) wdke vdk lpplzv{ehvx pzkskevkf hvskin) vdk Lvvloaes wl{if kihoheavk vdk ilcai z{iheg fxeas/ vhks) aeekt vdk vkzzhvlzx aef vzaesnlzo hv he a saecab $fhsvzhcv(%17 F{zheg E% Hlzga) Dhsvlhzk fks èvavs jaibaehq{ks $Pazhs) 18:;() :;% Skk) nlz ktaopik) %D% [}{eçaz ıiı) Lsoaeiı Vazhdh $Aebaza) 1867() wdl ~hkws vdk Lvvloae cleq{ksv ln vdk Jaibaes as ’ihjkzavhle nzlo vdk cz{kivx ln vdkhz lwe ilzfs aef vdk zkv{ze vl lzfkz aef m{svhck%‟ 1; Skk) nlz ktaopik) Nkzeaef Jza{fki) Vdk Okfhvkzzaekae aef vdk Okfhvkzzaekae Wlzif he vdk Agk ln Pdhihpp HH $Ilefle) Ekw Xlzb) 1873() >>3‖’Vdk RLvvloae_ cleq{ksv) wdhcd okaev vdk kef ln vdk gzkav iaeflwekzs) ajsli{vk z{ikzs le vdkhz lwe ksvavks) was he hvs wax a Ihjkzavhle ln vdk lppzksskf%‟ 1> Skk aisl I%S% Sva~zhaels) Vdk Jaibaes sheck 16;3 $Ekw Xlzb) 18;4( aef A% Svlmael~sbh) ’Vdk Cdazacvkz aef vdk He{keck ln vdk Lvvloae Z{ik he X{glsia~ Cl{evzhks Cl{ev zhks he he vdk 1;vd 1;vd aef 1>vd 1>vd Ckev{z Ckev{zhks) hks) whvd whvd Spkchai Spkchai Zknkzke Zknkzkeck ck vl Oackf Oackfleha)‟ leha)‟ he Lvvloae Z{ik he Ohffik K{zlpk aef Jaibae he vdk 1>vd aef 17vd Ckev{zhks= Papkzs Pzkskevkf av vdk 8vd Mlhev Clenkzkeck ln vdk C}kcdlsil~ab/X{glsia~ Dhsvlzhcai Cloohvvkk $Pzag{k) 1874(% 17 Skk D% eaicıb) ’Lvvloae Okvdlfs ln Cleq{ksv)‟ SH ) : $18;6() 103–1:8% 13 16
33
vdk pzlckss ln cleq{ksv) vdk Lvvloaes sl{gdv vl pzkskz~k vdk kcl/ elohc hevkgzhvx ln ae azka as o{cd as was plsshjik% Ilcai vatavhle pzacvhcks aef pzlf{cvhle olfks wkzk oahevahekf aiolsv {ecdaegkf%14 Dlwk~kz) as pazv ln vdk pzlckss ln ktcdaegheg ilcai azzaegkokevs nlz a ckevzaih}kf sxsvko ln afohehsvzavhle‖vdk vhoaz sxsvko‖vdk Lvvloaes zkpiackf vdk iajlz skz~hcks f{k vl vdk nk{fai ilzfs whvd vdkhz casd kq{h~aikev%18 Hn iajlz skz~hcks) s{cd as g{azfheg ol{evahe passks) pazvhchpavheg he ohihvazx caopahges) lz sdkkp jzkkfheg nlz vdk ekkfs ln vdk paiack) kvc%) wkzk svhii zkq{hzkf jx vdk svavk) pkasaevs wkzk ktkopvkf pazvhaiix lz k~ke kevhzkix nzlo paxheg vatks% Vd{s) he ihgdv ln vdk ’olfkze appzlacd)‟ wk cae spkab ln vdk Lvvloaes ’ihjkzavheg‟ Jaibae pkasaevs nzlo vdkhz ilzfs aef ’ihgdvkeheg‟ vdkhz vatavhle j{zfke leix he vdk skesk vdav) he jkheg nzkkf nzlo {epzl/ f{cvh~k iajlz) pkasaevs daf olzk vhok vl he~ksv he vdkhz nazos% :0 Vdkx wkzk ajik vdke vl v{ze vdk heczkaskf pzlf{cvhle hevl pzl fiv aef vd{s olzk kashix okkv vdkhz vat ljihgavhles% Whvd zkgazf vl ch}xk ) wdhcd hs {s{aiix cleshfkzkf vl jk vdk oazb ln a ele/O{siho‘s henk/ zhlzhvx aef a shge ln dhs fkgzafkf svav{s) eaicıb aisl plhevs vdav vdk heclok vat vdav kthsvkf he vdk Jaibaes pzhlz vl vdk Lvvloaes:1 skz~kf as vdk jashs nlz vdk ch}xk ‘s ‘s hoplshvhle% Anvkz vdk cleq{ksv) vdk ch}xk was hehvhaiix ik~hkf av vdk pzk/cleq{ksv ik~kis ln vdk ilcai vat‖{s{/ aiix lek glif phkck‖fksphvk vdk pzl~hshles he Hsiaohc iaw aiilwheg a{vdlzhvhks vl skv vdk zavk av : aef 6 glif phkcks nlz vdk ohffik ciass aef vdk wkaivdx) zkspkcvh~kix% Vd{s) hv hs ~kzx {eihbkix vdav Jaibae Cdzhsvhaes) whvd vdk ktckpvhle ln ckzvahe ln vdk eljhihvx) wl{if da~k zkgazfkf vdk ch}xk as ae ktvzalzfheazx j{zfke lz a shge ln henkzhlz/ hvx hookfhavkix anvkz vdk cleq{ksv% :: Vdk soaii fhsv{zjaecks he vdk Vdav vatavhle ~azhavhles kthsvkf he vdk fh ff kzkev kzkev saecabs hs wkii flc{okevkf he vdk Lvvloae bae{eeaoks ) wzhvvke av vdk jkgheeheg ln vdk vat zkghsvkzs nlz kacd sae/ cab lz vlwe% Nlz p{jihsdkf sa saec ecab ab ba bae{ e{ee eeao aoks ks nzlo vdk finvkkevd aef shtvkkevd cke/ v{zhks skk he Þ%I% Jazbae) T^% ~k T^H% Asıziaz Asıziazfa fa Lsoaeiı Lsoaeiı opazavlzi{ {efa ]hzaå Kblelohehe D{b{bå ~k Oaih Ksasiazı) H= Bae{eiaz $Hsvaej{i) 1863(% A ekw kfhvhle ln bae{eeaoks hs svhii {efkzwax he Adokf Abgùefù}) kf%) Lsoaeiı Bae{eeêokikzh ~k D{b{bå Vadihiikzh $Hsvaej{i) 1880(% 18 Skk eaicıb aef Q{avakzv) Dhsvlzx) 70–71 aef 168–1;1% :0 D% eaicıb) ’^hiiagk) Pkasaev aef Kophzk)‟ he hfko) Vdk Ohffik Kasv aef vdk Jaibaes {efkz vdk Lvvloae Kophzk= Kssaxs le Kclelox aef Slchkvx $Jillohegvle) 188:() 163% :1 eaicıb aef Q{avakzv) Dhsvlzx) >4% Skk aisl Ekfho Nhihpl~h ) ’A Clevzhj{vhle vl vdk Pzljiko ln Hsiaoh}avhle he vdk Jaibaes {efkz vdk Lvvloae Z{ik)‟ he Lvvloae Z{ik he Ohffik K{zlpk ) 361% :: eaicıb aef Q{avakzv) Dhsvlzx) >4% 14
36
Jaibae Lzvdlflt Cd{zcd‘s n{ecvhle aef svz{cv{zk) f{k vl vdk iav/ vkz‘s cllpkzavhle whvd aef k~kev{ai hevkgzavhle hevl vdk Lvvloae svavk svz{cv{zk) hs a nacv wdhcd oax aisl da~k clevzhj{vkf vl vdk zki/ avh~kix ohif hopacv ln vdk cleq{ksv le vdk Jaibae plp{iavhle% Vl cleci{fk) H acckpv as olzk dhsvlzhcaiix acc{zavk vdk ~hkw vdav vdkzk was el oamlz fhsz{pvhle ln Jaibae kclelohc aef slchai ihnk as a zks{iv ln vdk cleq{ksv% Olzkl~kz) vdk Lvvloae sxsvko ln afohe/ hsvzavhle pzl~hfkf zllo nlz vdk clevhe{hvx ln ilcai vzafhvhles aef ihnk pavvkzes2 vd{s) hv cae jk sahf vdav vdk Jaibae eavh~k plp{iavhle he gkekzai s{ff kzkf kzkf ihvvik aihkeavhle lz fhsczhoheavhle av vdk daefs ln vdkhz ekw oasvkzs% He lvdkz wlzfs) cle~kzshle vl Hsiao he vdk Jaibaes he vdk s{jskq{kev ckev{zhks was pzhoazhix a ’slchai cle~kzshle)‟ aef cl{if jk ktpkcvkf vl nliilw vdk pavvkze ksvajihsdkf jx J{iihkv nlz vdk ckevzai Hsiaohc iaefs% He vzxheg vl pzl~k s{cd a dxplvdkshs) vdk sv{fkev ln cle~kzshle vl Hsiao he vdk Jaibaes fiefs dhs vasb nachihvavkf jx vdk zkiavh~kix dhgd fkgzkk ln s{z~h~ai ln sl{zcks) wdhcd gh~k a olzk acc{zavk svavhsvhcai pkzspkcvh~k le vdk cle~kzshle pzlckss% He nacv) vdk fh ff kzkeck kzkeck he eav{zk jkvwkke vdk sl{zcks nlz vdk dhsvlzx ln cle~kzshle vl Hsiao he vdk Jaibaes aef vdk sl{zcks nlz vdk saok pzlckss he lvdkz zkghles pzhlz vl vdhs vhok hs sl shgeh ficaev vdav H whii nlc{s ox avvkevhle jzhk x le vdhs fhspazhvx% Plp{iavhle Svavhsvhcs as Sl{zcks ln Cle~kzshle he vdk Jaibaes
Jx vdk vhok vdk wdlik ln vdk Jaibaes jkcaok ae hevkgzai pazv ln vdk Lvvloae svavk) vdk iavvkz daf fk~kilpkf hevl a dhgdix j{zka{/ czavhc kophzk zkg{iavheg av k~kzx plsshjik ik~ki vdk ih~ks ln hvs s{j/ mkcvs% Pazvhc{iaz avvkevhle avvkevhle was pahf he vdksk chzc{osvaecks chzc{osvaecks vl vatavhle% vatavhle% Ktvkesh~k gkekzai vat s{z~kxs wkzk clef{cvkf whvd vdk {ivhoavk glai ln keihsvheg k~kzx sl{zck ln zk~ke{k aef k~kzx vatajik dkaf) heci{f/ heg eloafs) gxpshks aef fhspiackf pklpik $daxoaek () a nacv {epzkck/ fkevkf he pzk~hl{s Hsiaohc svavks% D{efzkfs ln fhsvzhcv vat zkghsvkzs nzlo vdk finvkkevd vl vdk ehekvkkevd ckev{zhks aef slok gkekzai vat zkghsvkzs) olsvix nzlo vdk finvkkevd aef shtvkkevd ckev{zhks) da~k s{z/ ~h~kf vl olfkze vhoks% Dlwk~kz) vdksk vat zkghsvkzs da~k ckzvahe ihohvavhles as sl{zcks) wdhcd sdl{if jk aisl cleshfkzkf% Nhzsv) vdkx {sk as vdk fiscai {ehv vdk dl{skdlif $ daek ( zavdkz vdae vdk hefh~hf{ai% Skclef) fhff kzkev kzkev vatks clzzksplefkf vl daek s ln fhff kzkev kzkev sh}k) wdhcd
3;
n{zvdkz clopihcavks aex avvkopv vl cleekcv vdk daek whvd vdk acv{ai plp{iavhle% Vdhzf) ~hiiagks wkzk swhvcdkf jkvwkke fhsvzhcvs he cle/ skc{vh~k zkghsvkzs) vd{s gh~heg a naisk hopzksshle ln cdaegks vl vdk plp{iavhle he pazvhc{iaz fhsvzhcvs% Nl{zvd) gkekzai zkghsvkzs fl elv heci{fk vdk vat/ktkopv plp{iavhle) nlz he affhvhle vl vdk okojkzs ln vdk asbkzh ciass) a shgehficaev e{ojkz ln zkaxa kemlxkf vat/ktkopv svav{s as wkii%:3 Olzkl~kz) acclzfheg vl vdk ekkfs ln vdk svavk) vdk svav{s ln vat/ktkopvkf zkaxa cl{if jk zk~lbkf lz gzaevkf av aex vhok) aef vdkzknlzk) fig{zks he vdk zkghsvkzs cdaegk% Ek~kzvdkikss) jkazheg he ohef vdk nacv vdav J{iihkv zkacdkf dhs cleci{shles le vdk jashs ln a nkw d{efzkf zkclzfs ln cle~kzshle) hv hs k~hfkev vdav vdkzk hs a q{aihvavh~k as wkii as q{aevhvavh~k fh ff kzkeck kzkeck jkvwkke vdk sl{zcks a~ahi/ ajik nlz vdksk vwl pkzhlfs% Scdliazs ln Jaibae dhsvlzx da~k zkaih}kf vdk plvkevhai ln vat zkghsvkzs nlz sv{fxheg vdk kvdel/zkihghl{s aef fkolgzapdhc cdaegks vdav lcc{zzkf he vdk Jaibaes f{zheg vdk Lvvloae pkzhlf) aef vdk ~li{ok ln s{cd sv{fhks das heczkaskf vzkokefl{six he vdk iasv nkw fkcafks% Hv cl{if k~ke jk sahf vdav vdk ktaoheavhle ln vdk pzljikos s{zzl{efheg vdk fkolgzapdhc fk~kilpokev ln vdk azka das jkclok ae hefkpkefkev jzaecd ln Lvvloae dhsvlzhcai sv{f/ hks) vdav hs) dhsvlzhcai fkolgzapdx% Vdk fizsv svkps he vdk dhsvlzhcai fkolgzapdx ln vdk Jaibae iaefs {efkz Lvvloae z{ik wkzk vabke whvd vdk p{jihcavhle ln Lvvl/ oae zkghsvkzs nzlo vdk finvkkevd aef shtvkkevd ckev{zhks jx V{zbhsd scdliazs he vdk 1860s aef 18;0s% Jx ktaoheheg zkghsvkzs nzlo vdk shtvkkevd ckev{zx) Þ% Jazbae was ajik vl fkvkzohek) nlz vdk fizsv vhok) vdk e{ojkz ln dl{skdlifs he vdk Kophzk aef vl fkolesvzavk vdk zkihajhihvx ln vdk fava% :6 D% eaicıb):; O%V% Gþbjhighe:> ae aef f Vdkzk wkzk skpazavk zkghsvkzs) dlwk~kz) nlz vdk vat/ktkopv $ o{an ( ( zkaxa % Vdk e{ojkzs ln vdk asbkzå ciass cae aisl jk zl{gdix ksvhoavkf nzlo vdk ohihvazx sva ff zkghsvkzs $ xlbiaoa fknvkzh ( aef jx vdk vhoaz /dlifkzs /dlifkzs fksczhjkf he vdk zkghsvkzs% Jazbae ass{oks vdav vdk ktkopvkf plp{iavhle vlvaikf > pkzckev ln vdk vlvai plp{iavhle% :6 Þ%I% Jazbae) ’Kssah)‟ $vdhs hs acv{aiix vdk Nzkecd ~kzshle ln dhs ’Vazhdh Fkolgzafi Aza vızoaiazı ~k Lsoaeiı Vazhdh)‟ Vùzbhxav Okco{ası ) 7–4 $18;6() 1–:>) hfko) ’Lsoaeiı opazavlzi{ {efa jhz $rbêe ~k Blileh}asxle Okvlf{ liazab ^abıaz ~k Vkoihbikz)‟ ^abı az Fkzghsh ) : $186:( aef hfko) ’Lsoaeiı Hopazavlzi{ {efa jhz H bêe ~k Blil/ az eh}asxle Okvlf{ liazab Sùzgùeikz)‟ HÙHNO $1868–18;6(% :; D% eaicıb) Dhczh 43; Vazhdih Sùzkvh Fknvkz/h Saecab/h Az~aehf $Aebaza) 18;6( aef hfko) ’Lf Svknaea F{ aea fl Lsoaesblg Czasv~a= Dzh ’Î aesbk Spadhmk { Z{okihmh { T^ ~hmkb{ h Emhdl~l Plzhmkbil)‟ Pzhil}h ) 3–6 $18;:–;3() :3–;3% A V{zbhsd ~kzshle ln vdk azvhcik hs ’Svknae F{ ae‘fae Lsoaeiı opazavlzi{ {ea)‟ he N{av Bþpzùiù Azoa aeı Azoa aeı $Hsvaej{i) 18;3() :07–64% :> O%V% Gþbjhighe) Z{ohih‘fk Xùzùbikz) Vavaziaz ~k K~iaf/h Navhdae $ svaej{i) 18;7(% :3
3>
M% Daiaçl i{:7 aisl clevzhj{vkf vl l{z belwikfgk ln vdk fkolgzapdhc shv{avhle he vdk finvkkevd aef vdk shtvkkevd ckev{zhks% B% Bazpav p{j/ ihsdkf a sv{fx ln vdk plp{iavhle ln vdk ehekvkkevd/ckev{zx Lvvloae Kophzk jaskf le vdk fizsv Lvvloae plp{iavhle ckes{s%:4 Vdk hevkzksv he vdk fkolgzapdhc fk~kilpokev ln vdk Jaibaes f{zheg vdk kazix pkzhlf ln Lvvloae z{ik hesphzkf aisl vdk p{jihcavhle ln cliikcvhles ln lzhgheai sl{zcks he Oackfleha) Gzkkck) Jlseha) Skzjha) Aijaeha aef J{igazha%:8 He Gzkkck) vat zkghsvkzs wkzk p{jihsdkf jx K% Jaiva% 30 Nlz Aijaeha) vdk wlzbs ln S% P{iada da~k sdkf ihgdv le ilcai fkol/ gzapdhc pzljikos%31 ^kzx dkipn{i as wkii nlz vdk zkspkcvh~k zkghles azk vdk wlzbs ln vdk Oackflehae scdliazs A% Svlmael~sbh)3: O% Slbl/ ilsbh33 aef A% Oavbl~sbh)36 vdk Jlsehaes J% Fm{zfmk~)3; E% ajael~h 3> aef A% Daef h )37 aef vdk Skzjs L% ]hzlmk~h 34 aef F% I{ba %38 He M% Daia Daiaçl çl i{) ’T^H xù}xıifa Slsxai) Kblelohb ~k Fkolgzafib jabıofae Jaibaeiazfa ja}ı Lsoaeiı kdhzikzh)‟ Jkiikvke ;3 $1844(% :4 Bkoai Bazpav) Lvvloae Plp{iavhle% :8 V{zsbh h}~lzh }a J{igazsbava hsvlzha RV{zbhsd Sl{zcks ln J{igazhae Dhsvlzx_ ^li% 1–7) $Slfia) 18>6–4>(2 V{zsbh flb{okevh }a hsvlzhmava ea oabkflesbhlv eazlf RV{zbhsd Flc{okevs nlz vdk Dhsvlzx ln vdk Oackflehae Pklpik_ ^li% 1–;) $Sblpmk) 1871–4;(% 30 K% Jaiva) I‘K{jèk à ia fi fi e f{ T^ k shäcik% Kclelohk kv plp{iavhle‖iks zkghsvzks fk i‘ae/ eèk 1676 $Avdkes) 1848(% k k 31 S% P{iada% Aspkcvs fk fèolgzapdhk dhsvlzhq{k fks clevzèks aijaeahsks pkefaev iks T^ –T^H shäciks $Vhzaea) 1846(2 hfko) Ik cafasvzk fk i‘ae 164; f{ saefmab fk Sdblfkz $Vhzaea) 1876(% 3: A% Svlmael~sbh) Gzafl~hvk ea Oabkflehma lf bzamlv ea TH^ fl T^HH ~kb% Fkolgzansbh pzl{vcd~aema RVdk Oackflehae Vlwes nzlo vdk kef ln 16vd vl vdk 17vd ckev{zx% A Fkolgzapdhc Sv{fx_ $Sblpmk) 1841( aef A% Svlmael~sbh) O% Slblisbh) kf%) Lpsdhzke plphske fknvkz 6 $16>7–16>4( RCafasvzai Zkghsvkz 6 $16>7–16>4(_ $Sblpmk) 1871(% 33 O% Slblisbh) ’Lpsdhzeh plphseh fknvkzh lv T^H ~kb }a B{svkefhisbhlv saefmab‟ RCafasvzai Zkghsvkzs nzlo vdk Shtvkkevd Ckev{zx nlz vdk Saecab ln Bm{svkefhi_) he VFHOE ) ; $Sblpmk) 1843(% 36 A% Oavbl~sbh) ’Ohgzavshh lv skil ~l gzaf ~l Oabkflehma lf T^H fl THT ~kb ROhgzavhles nzlo ^hiiagks vl Chvhks he Oackfleha nzlo vdk shtvkkevd vl vdk Ehekvkkevd Ckev{zhks_)‟ X{glsil~kesbh Hsvlzhmsbh Caslphs ) 1–: $1876(% 3; J% Fm{zffmk~) ’Fknvkzh }a Vszelglzsbh saefmab h} ~zkokea Sbkefkz jkga Vszelk~hvcda‟‟ RZkghsvkzs Vszelk~hvcda R Zkghsvkzs ln vdk Saecab ln Olevkekgzl f{zheg vdk vhok ln Sbkefkzjkg Vcdkzelk~hvcd_) Pzhil}h ) 1–3 $18;0–;3(% 3> E% ajael~h ) Bzah Bzah vk vk Hsa/Jkga Hsdabl~h a% ]jhzeh bavasvazsbh plphs h} 16;; glfhek RVdk Iaef ln Hsa Jkg Hsdab% Lek Cafasvzai Zkghsvkz nzlo 16;;_ $Sazamk~l) 18>6(% 37 A% Daef h ) ’L hsiaohchm{ { sk~kzlhsvlcelm Jlseh { T^ h T^H ~hmkb{ RAjl{v vdk Hsiaoh}a Hsiaoh}avhle vhle he he Elzvdkasv Elzvdkasv Jlseh Jlsehaa f{zheg f{zheg vdk vdk 1;vd 1;vd aef 1>vd 1>vd Ckev{z Ckev{zhks_)‟ hks_)‟ Pzhil}h ) 1>–17) $18>>–>7( ;–64% 34 L% ]hzlmk~h ) ’^{chvzhesbh h Pzh}zkesbh saefmab { s~kvilsvh v{zsblg plphsa 1;30,1;31 glfhek RVdk ^{cdhvzhe aef Pzh}zke Saecab s he vdk Ihgdv ln vdk V{zbhsd Zkghsvkz ln 1;30–31_)‟ Gm{zohek aijaelilgmhbk ) : $18>4(% 38 F% I{ba ) ^hfhe h ~hfhesbhma saefmab pzk} 1;–1>~% Flb{okevh lv azdh~hvk ea Vsazhgzaf aef Aebaza R^hfhe aef aef vdk vdk Saecab Saecab ln ln ^hfhe ^hfhe f{zhe f{zhegg vdk 1;vd 1;vd aef 1>vd 1>vd Cke Ckev{z v{zhks% hks% Flc{okevs nzlo vdk Azcdh~ks ln Hsvaej{i aef Aebaza_ $Sl fia) 187;(% :7
37
J{igazha) vdk phlekkz ln dhsvlzhcai fkolgzapdx hs E% Vlflzl~)60 wdhik dhs clopavzhlvs Kikea Gzl}fael~a)61 S% Fhohvzl~)6: A% ]kixa}bl~a63 aef Z% Bl~avcdk~66 da~k aisl p{jihsdkf wlzbs le fkolgzapdhc cdaegks aef vdk pzlckss ln Hsiaoh}avhle he vdk Jaibaes% Jaskf le vdhs ~asv ihvkzav{zk) wk azk ajik vl {efkzsvaef vdk l~kzaii fkolgzapdhc pzlckssks he vdk Jaibaes o{cd jkvvkz vdae wk cae lvdkz zkghles {efkz O{siho z{ik he pzk/Lvvloae vhoks% Vdk Fkolgzapdhc Shv{avhle he vdk Jaibaes he vdk Nhnvkkevd Ckev{zx
Aivdl{gd vdk kazihksv s{z~h~heg vat zkghsvkzs azk nzlo vdk fizsv dain ln vdk finvkkevd ckev{zx)6; vdk kazihksv ktvaev zkghsvkzs vdav cl~kz vdk pkehes{ia as a wdlik azk nzlo vdk kef ln vdk ckev{zx% Vajik 1 jkilw) jaskf le fava ktvzacvkf nzlo vdksk zkghsvkzs)6> pzkskevs vdk e{ojkzs ln ele/O{siho dl{skdlifs paxheg ch}xk aef vdk cle~kzvs vl Hsiao aoleg vdko nlz vdk xkazs 1644 vl 1681) azzaegkf jx saecab %
E% Vlflzl~) Vdk Jaibae Chvx2 aef E% Vlflzl~ aef A% ^kibl~) Shv{avhle fèol/ ( $Slfia) 1844(% gzapdhq{k fk ia Pèehes{ik jaibaehq{k $ fi e f{ T^ k s%–fkj{v f{ T^H k s% ( 61 Gzl}fael~a) Eazlfelsv % 6: S% Fhohvzl~) ’Fkolgzansbh lvelsdkeha h pzlehb~aek ea hsiaoa ~ }apafehvk Zlflph h fliheava ea Oksva pzk} T^–T^HH ~kb RFkolgzapdhc Zkiavhles aef Spzkaf ln Hsiao he Wksvkze Zdlflpks Zdlflpks aef vdk ^aiikx ^aiikx ln Oksva he vdk 1;vd–17vd 1;vd–17vd Ckev{z Ckev{zhks_)‟ hks_)‟ Zlflpsbh Sjlzehb ) 1 $18>;() >3–1162 hfko) ’Kvehcdksbh h zkihghl}eh pzlvsksh szkf jai/ gazsbava eazlfelsv pzk} T^–T^HH ~kb RKvdehc aef Zkihghl{s Pzlckssks aoleg vdk J{igazhae J{iga zhae Eavhle Eavhle he vdk vdk 1;vd–17vd 1;vd–17vd Ckev{z Ckev{zhks_)‟ hks_)‟ Jaigazsba Kvelgza fi a a 1 $1840() :3–612 aef hfko) ’Pzlehb~aek ea oldaokfaesv~lvl szkf jaigazhvk ~ ]apafehvk Zlflph pzk} T^HH ~kb RVdk Spzkaf ln Oldaokfaehso aoleg vdk J{igazhaes he vdk Wksvkze Zdlflp Zdl flpks ks he vdk 17vd 17vd Cke Ckev{z v{zx_)‟ x_)‟ Zlflph >–7 $187:() 1:–162 1;–17% 63 ]kixa}bl~a) Za}pzlsvzaekehk % 66 Z% Bl~avcdk~) Lphs ea Ehblplisbhxa Saecab lv 40/vk glfheh ea T^ ~kb RS{z~kx ln vdk Ehblpli Saecab nzlo vdk 1640s_ $Sl fia) 1887(% 6; Skk eaicıb) Dhczh % 6> Vlflzl~ aef ^kibl~) Shv{avhle fèolgzapdhq{k ) aef Þ% Jazbae) ’486 $1644,1648( Xıiı Ch}xkshehe Vadshiavıea ahv O{daskjk Jhiaeçliazı)‟ Jkigkikz 1 $18>6() 1–117% Vdk hevkzzkiavhle ln fava jkvwkke vdk vwl sv{fhks hs ~kzx clopihcavkf% Jazbae zkihks le ae lifkz sv{fx jx Vlflzl~ $E% Vlflzl~) ’]a fkolgzansblvl sasvlxaehk ea Jaibaesbhxa pli{lsvzl~ pzk} T^–T^H ~kb)‟ GS[/NHN) ;:) : $18;8() 183–::;( vl cl~kz vdk xkazs 1680–81) elvheg vdk e{okzl{s vxplgzapdhcai aef caic{iavhle kzzlzs ln Vlflzl~% He Shv{avhle fèolgzapdhq{k ) Vlflzl~ clzzkcvs vdksk aef lvdkz kzzlzs jaskf le a ekw zkaf/ heg ln vdk zkghsvkz jx A% ^kibl~) vd{s oabheg Jazbae‘s kssax l{vfavkf% Ek~kzvdkikss) Vlflzl~ gkekzavks agahe a iazgk e{ojkz ln kzzlzs oabheg dhs lwe fava {ezkihajik% Vdkzk hs el spack dkzk vl ihsv aii kzzlzs) j{v nlz ktaopik) vdk zkghsvkz $appkefkf vl vdk sv{fx he Azajhc sczhpv aef vzaesiavhle( das le pagk 3 zkcvl ’ekw O{sihos/ 3) ~lxe{b s/:)‟ s/:)‟ nlz vdk zkghle ln Xaejli{% Xkv) he dhs Vajik 1) Vlflzl~ p{vs flwe 60
34
Vajik 1% Ch}xk /paxheg /paxheg ele/O{siho plp{iavhle aef ekw O{sihos nlz vdk xkazs 1644–81 jx saecab 67 Saecab
1644
Pasda 131):38 Sokfkzk~l 17);77 $4)734( Gkihjli{ 43> ^h } k 1:7
1644 ekw O{sihos
1648
1648 ekw O{sihos
1680 1680 ekw O{sihos
131)0;0 17;)77
131)14: 1 )4 6 :
43> 1:7
43> 1:>
13
1681 13>)306 14):;3 $8):03( 474 1:;
’ekw O{sihos/;%‟ Le pagk 30 zkcvl) vdk zkghsvkz das a ’vlvai ln 4)416 daek s‟ s‟ nlz vdk zkghle ln Sokfkzk~l) wdhcd Vlflzl~ vzaesczhjks as ’vlvai ln 4)011%‟ Le pagk 34 zkcvl) vdk zkghsvkz das ’>);4; daek s‟ s‟ nlz vdk zkghle ln Gzk~kea) wdkzkas Vlflzl~ ihsvs >)44; he Vajik :) kvc% Olzk svzhbheg azk vdk ohsvabks he Vajik :) wdkzk vdk fava hs jzlbke flwe jx saecab s aef vdk e{ojkz ln daek s hs a vlvai ln zkg{iaz daek s aef whflws‘ daek s% s% Nhzsv) vdk zkghle ln Sokfkzk~l aef 10 soaiikz azkas) wdhcd azk pzkskev he Vlflzl~‘s Vajik 1) azk ohssheg nzlo dhs Vajik :) gh~heg a fh ff kzkeck kzkeck ln :6)10; daek s nlz 1680 aef :;)1>4 daek s nlz 1681% Skclef) nzlo vdk :3 saecab vlvais) Vlflzl~ das caic{iavkf wzlegix ; vlvais nlz vdk xkaz 1680 aef : nlz 1681) gh~heg a fhff kzkeck kzkeck ln 360 daek s nlz 1680 aef 60 daek s nlz 1681% H da~k vzhkf vl clzzkcv as oaex kzzlzs as H da~k jkke ajik vl fhscl~kz he jlvd sv{fhks $vdk leix kzzlz ln Jazbae hs nlz vdk dass ln Shzl} $Skzzks(‖641 daek s hesvkaf ln 461) j{v hv ohgdv da~k jkke acv{aiix a sczhjai kzzlz( nlz vdk fig{zks he ox vajik% Olzkl~kz) jlvd scdliazs heci{fk he vdkhz gzaef vlvais vdk daek s nzlo vdk hsiaef ln Ohfhiih $Oxvhikek( aef vdk Czhokae pkehes{ia) wdhcd azkas H fl elv vdheb jkileg vl vdk Jaibaes pzlpkz aef vd{s) H da~k ktci{fkf vdko nzlo vdk vajik% He ox lphehle) hv hs ~kzx hoplzvaev vl da~k vdk fig{zks nzlo vdksk zkghsvkzs clzzksplef vl vdk lzhgheai fava jkca{sk vdkx azk q{lvkf jx k~kzx sv{fx le Lvvloae plp{iavhle% Nlz ktaopik) D% eaicıb $ eaicıb aef Q{avakzv) Dhsvlzx) :>) Vajik H=1( das q{lvkf vdk fig{zks ln Jazbae) wdhcd azk) as aizkafx okevhlekf) l{vfavkf nlz 1680–81% eaicıb das) le vlp ln vdav) Vlflzl~‘s lif fig{zk nlz 1680 hesvkaf ln Jazbae‘s olzk acc{zavk lek) aef das swhvcdkf lek ln vdk fig{zks‖’gzl{ps s{jmkcv vl ilwkz zavks ln ch}xk ‟‖nzlo ‟‖nzlo 1680 vl 1681% Vd{s) wk da~k a clopikvkix ekw skv ln fava) wdhcd) gh~ke vdk a{vdlzhvx ln vdk ~li{ok) whii hek~hvajix skz~k as vdk jashs ln scdliazsdhp he vdk xkazs vl clok% 67 H da~k nliilwkf Vlflzl~‘s fhsvzhj{vhle ln zkghles fksczhjkf he vdk zkghsvkz vl s% H da~k affkf) dlwk~kz) vdk zkghles ohssheg he dhs jzkabflwe jx saecab s j{v saecab s% pzkskev he vdk zkghsvkz aef vdk zkghles ohssheg nzlo dhs zkghsvkz j{v pzkskev he Jazbae‘s fava% Vdk cdaegks azk as nliilws= ekw dkafhegs‖Sokfkzk~l $heci{fheg vdk ^iacds ln Sokfkzk~l as wkii() Gxpshks) O{an $leix hspkeçk /paxheg /paxheg zkaxa ( aef Ohsckiiaekl{s $heci{fks slok ~abın ~hiiagks) 8 ~hiiagks azl{ef Hsvaej{i aef Abbkzoaehaes ih~heg he Hsvaej{i(2 affhvhles vl saecab s‖Okiehb) s‖Okiehb) { oae) Mkehck Gùoùichek aef Oafke/h Ekmhil~a vl Pasda saecab ) Vlpihçk aef vdk ^iacds ln Pzh vıea vl vdk saecab ln ^{icdhvze) }~kçae) ~zaca) Zas) Ja}az/h Daffafhe) Jhsvzhçk) Oıgihç) Oafke/h Pzksbl~a) Oafke/h Glsçaehçk aef Oafke/h zmaea vl vdk saecab ln Pzh}zke) Eh vl vdk saecab ln Bz{sdk~ac) Gkjzae/h pkzabkefk vl vdk saecab ln Jlseha) vdk ^iacds ln Dkzckgl~hea vl vdk saecab ln Dkzckgl~hea aef Xkeh kdhz $Iazhssa( vl vdk saecab ln Vzhbaia% Gh~ke vdk ~kzx soaii {cv{avhle he vdk e{ojkzs ln daek s nlz kacd zkghle xkaz vl xkaz) H da~k aisl fiiikf vdk ohssheg e{ojkzs he slok zkghles he 1644 aef 1681 whvd fava nzlo 1648 aef 1680 zkspkcvh~kix) slokvdheg wdhcd Jazbae aisl s{g/
38
Vajik 1 $clev% ( ( Saecab
Shihsvza Ehblpli ^ h fh e Slfia B{svkefhi Bz{sk~ac ^{icdhvze Pzh}zke Jlseha Dkz}kgl~hea Sdblfza F{baghe Ldzhf Kijasae ^ilza Maehea Vzhbaia K{jka Olzka Pzk~k}a Gxpshks
1644
1644 ekw O{sihos
1:):43 1>);;7 10);74 14)>73 60)747 6:);11 30)1>3 30)14: :1)46> :8);;1 $>)847( 11)846 $1);86( ::)8;4 10)68: 3;)60: :8)004 60)118 17)768 30)7;0 :1)486 ;)8;6
O{an $leix 18)078 hspkeçk paxheg ( zkaxa Ohsckiiaekl{s 1;)7:8 $;)7;8(
Vlvai
>>;)>:: 7 $>6:);66( 0%001+
1648
1648 ekw O{sihos
1680 1680 ekw O{sihos
1:):43 1>);;7 10)746 14)>7; 60)407 6:)6;: 30):16 :8)838 :1)74: :8)1:7
1:):43 1>);;7 10)746 14)>7; 60)407 6:)6;: 30)104 :8)8:6 :1)7>6 :4)744
11)846 1);86 :3)170 10);77 3;)80: :8)0:> 60):17 17)>84 30)>;> :1)841 ;)4;8
11)844 1);86 :3)170 10)714 3;)8:: :8)0:> 60):17 17)7:6 30)10> :1)841 ;)>88
18)177
14)7>0
1;);:;
1;):30 $1;):30(
>>;);7> 86 $>>;);7>( 0%01+
3 8 ; 1 88 >:
11 1: : 1:
1681 1:)641 14):04 10)>38 18)::> 63)661 63)81: :8)480 30)18> :0);6> :4)11: $7)007( 1:)7:0 1 ); ; 0 :6):;8 11);30 34)6:3 30)>73 6:)36> 18)766 :8)763 :3):18 ; )7 : 1 $3)384( $14)7>0(
$;)81;(
>>6)6>3 ::8 >4>)1:8 $>;8)>64( 0%03+ $>3:);31(
Jaskf le vdk fig{zks nzlo vdk ajl~k vajik wk cae fzaw vdk nliilw/ heg cleci{shles% Nhzsv) vdkzk was a 3%0 pkzckev heczkask l~kz vdk vdzkk xkaz pkzhlf he vdk ele/O{siho plp{iavhle) wdhcd hs clopazajik whvd
gksvs $Jazbae) lp% chv%) 1;(% Vd{s) ohsikafheg) iazgk {cv{avhles he vdk vlvai e{o/ jkzs ln daek s nzlo xkaz vl xkaz azk a~lhfkf% Vl zk kcv vdk lzhgheai fig{zks gh~ke he vdk zkghsvkzs) H da~k p{v he jzacbkvs vdk fig{zk vdav sdl{if jk s{jvzacvkf vl azzh~k av vdk acv{ai fig{zk% Vdk fig{zks he jzacbkvs he vdk iasv zlw azk vdk acv{ai vlvais nzlo vdk zkghsvkzs% Vdk ekw O{sihos nlz vdk xkazs 1644 aef 1648 azk gh~ke jx Jazbae leix as vlvais $Jazbae) lp% chv%) 13(%
60
Oap 1% Lvvloae saecabs aef oamlz vlwes av vdk kef ln vdk 1;vd ckev{zx
vdk spkcvac{iaz gkekzai plp{iavhle heczkask ljskz~kf he vdk shtvkkevd ckev{zx $skk jkilw(% Vdhs clefizos l{z cleci{shle as vl vdk ele/ fhsz{pvh~k hopacv ln vdk Lvvloae cleq{ksv ln vdk Jaibaes% Skclef) vdk cle~kzshle zavks ln 0%01 vl 0%03 pkzckev pkz xkaz azk hefhcavh~k ln vdk cle~kzshle pzlckss da~heg jkke he hvs ~kzx jkgheehegs% Leix he Jlseha aef Dkz}kgl~hea cae lek ljskz~k zkiavh~kix dhgdkz ik~kis) fksphvk vdk zkckev cleq{ksv ln vdk vwl zkghles% He ox lphehle) wk cae cleci{fk vdav cle~kzshle vl Hsiao he vdk finvkkevd/ckev{zx Jaibaes was svhii he vdk pkzhlf ln ’heel~avlzs)‟ h%k%) a shv{avhle wdkzk el olzk vdae :%; pkzckev ln vdk plp{iavhle daf cle~kzvkf vl Hsiao jx vdk kef ln vdk ckev{zx%
61
Vdk Fkolgzapdhc Shv{avhle he vdk Jaibaes he vdk Shtvkkevd Ckev{zx
Vdk ektv pkzhlf nlz wdhcd vdkzk hs s{ffichkev henlzoavhle nzlo vat zkghsvkzs nlz vdk Jaibae plp{iavhle hs 1;:0–1;3;% Vdhs henlzoavhle hs olzk clopzkdkesh~k vdae vdav a~ahiajik nlz 1644–81 jkca{sk hv heci{fks elv leix vdk ele/O{siho plp{iavhle j{v vdk O{siho plp/ {iavhle as wkii% Jaskf le fava pzl~hfkf jx Jazbae)64 H da~k caic{/ iavkf vdk vat/paxheg plp{iavhle ln vdk Jaibaes vl da~k jkke clesvhv{vkf f{zheg vdhs pkzhlf ln 466)777 ele/O{siho daek s $77%4 pkzckev( aef :6:)108 O{siho daek s $::%: pkzckev(% Vajik :% Jaiba Jaibae e plp{iav plp{iavhle hle he 1;:0–1;3; 1;:0–1;3; jx saecab 68 Saecab s
Pasda Sokfkzk~l Vzhbaia Bm{svkefhi Olzka Ehblpli Jlseha K{jka Maehea Bz{sdk~ac Slfia Sdblfza Ldzhf Pzh}zke Dkz}kgl~hea ]~lzehb Vcdhzoke Pzk~k}a Kijasae
Cdzhsvhae dl{skdlifs
+
O{siho dl{skdlifs
+
Mkwhsd dl{skdlifs
+
Vlvai
143);1: 10>)4>1 ;7)>71 ;>)844 68)61: 31)481 18)>18 33)0>; 3:)087 :;)7;8 :6)311 :3)4;8 3:)764 14)34: 8);44 13)11: 1);74 11)38; 4)81>
7:%; 87%4 41%8 48%; 87%0 77%6 ;3%7 84%0 84%1 8>%7 83%8 8;%; 84%1 84%1 ;7%; 43%: 11%1 88%8 86%6
>>)>46 :)3>7 1:)36; >)>60 1)0>; 8)1:: 1>)83; >>3 >13 441 1);>8 1)11> >61 3;8 7)077 :)>;6 1:)>4> 7 ;:>
:>%3 :%: 17%; 10%6 :%1 ::%1 6>%3 : 1%8 3%3 >%1 6%; 1%8 1%8 6:%; 1>%4 44%8 0%1 ;%>
:)884
1%:
:;3)186 108)::4 70)60; >3)>77 ;0)861 61):18 3>);;6 33)7:4 3:)710 :>)>60 :;)810 :6)87; 33)348 14)761 1>)>>; 1;)7>> 16):>6 11)60: 8)66:
347 68 6>6 :0>
0%; 0%1 0%8 0%;
Jazbae) ’Kssah)‟ 3:) Vajik >% H da~k agahe ktci{fkf vdk plp{iavhle ln vdk hsiaef ln Oxvhikek $Ohfhiih() vdk Czhokae pkehes{ia $Cana( aef vdk hsiaefs ln Zdlfls aef Cls $Hsvaebþx() wdhcd wkzk leix afohehsvzavh~kix avvacdkf vl vdk Jaibaes $skk Jazbae) ’Kssah)‟ 33(% Vdk vajik heci{fks slok plp{iavhle whvd ohihvazx svav{s‖4:)>8: daek s ln Cdzhsvhae a{t/ hihazx vzllps‖ ~lxel{b s) oazvlils ) aef ^iacds $Cdzhsvhae eloafs whvd ohihvazx f{vhks( ~lxel{b s) aef 1):;: daek s ln O{sihos whvd spkchai ohihvazx svav{s he vdk plp{iavhle ln Sokfkzk~l) as wkii as 1:)10; daek s oùskiikos aef xùzùb s $O{siho eloafs(% Hv flks elv heci{fk vdk ksvhoavkf ;0)000 dl{skdlifs ln vhoaz /dlifkzs /dlifkzs aef nlzvzkss g{azfs% He ’Ohsckiiaekl{s)‟ H heci{fk vdk ksvhoavkf vat/paxheg plp{iavhle ln Hsvaej{i) vdk saecab s ln Bhihs aef Plmaga) aef vdzkk ba}a s ln Dkz}kgl~hea $Jazbae) ’Kssah)‟ 33(% 64 68
6:
Vajik : $clev% ( ( Saecab s
Gaiihplih Olevkekgzl Shihsvza ^h } k ^ h fh e ^{cdhvze F{baghe Gxpshks Bh}hica Oùskiikos Ohsc% Vlvai
Cdzhsvhae dl{skdlifs
+
O{siho dl{skdlifs
+
3)801 3)66> >)>1; 8)6>7 18);17 14)816 1)4:8 10):86
63%7 100 :7%7 63%7 8;%; 8>%6 100 ;8%8
;)001
;>
17):8; 1:)183 816 700
3)000
37%;
;0)000
466)777
>)487 ;)1;7
77%6+ :6:)108
7:%3 ;>%3 6%; 3%>
Mkwhsd dl{skdlifs :3
7
60%1 100
+ 0%3
Vlvai 4)8:; 3)66> :3)810 :1)>>0 :0)634 18)>16 1)4:8 17)181 ;)1;7
>:%; ::%:+
6)136
0%6+ 1)081)0:0
M{f ghegg nzl M{fghe nzlo o vdk ajl ajl~k ~k vwl vaj vajiks iks)) vdk ele ele/O{ /O{sih siho o plp plp{ia {iavhl vhle e heczkaskf l~kz vdk vdhzvx/xkaz pkzhlf 1681–1;:0 jx a vlvai ln 13:)74: daek s $ktci{fheg vdk plp{iavhle ln Hsvaej{i() vd{s av ae a~kzagk zavk ln 0%>; pkzckev pkz xkaz% Vdhs hs a silwkz zavk ln gzlwvd wdke clo/ pazkf vl vdk l~kzaii plp{iavhle heczkask ln 1%0 pkzckev pkz xkaz he vdk pkzhlf 1;:0–1;70);0 aef vl vdav ln vdk ele/O{siho plp{iavhle) wdhcd wk ljskz~kf av vdk kef ln vdk finvkkevd ckev{zx% Vdk olsv pia{shjik ktpiaeavhle nlz vdhs fh ff kzkeck kzkeck hs vdav vdk zavk ln cle~kz/ shle heczkaskf vl a plhev av wdhcd hv a ff kcvkf kcvkf vdk l~kzaii gzlwvd ln vdk ele/O{siho plp{iavhle% Vajik :) dlwk~kz) flks elv zk~kai vdk e{ojkzs ln cle~kzvs vl Hsiao% Wk cae leix ljskz~k vdav) he 1;:0) vdk O{siho plp{iavhle svllf av olzk vdae :0%0 pkzckev ln vdk vlvai plp{iavhle% Vdk q{ksvhle vdav azhsks hs= Vl wdav ktvkev fhf vdhs plp/ {iavhle cleshsv ln O{siho hoohgzaevs vl vdk Jaibaes aef vl wdav ktvkev was hv clopzhskf ln cle~kzvs vl Hsiao< Ek~kzvdkikss) wk azk leck agahe nackf whvd clevzafhcvlzx vdklzhks ajl{v vdk ohgzavhle ln O{sihos he vdk Jaibaes%
;0
Þ% Jazbae) ’Zkskazcd le vdk Lvvloae Nhscai S{z~kxs)‟ he O% Cllb) kf%) Sv{fhks he vdk Kclelohc Dhsvlzx ln vdk Ohffik Kasv $Ilefle) 1870() 1>8%
63
Oap :% Fhsvzhj{vhle ln O{sihos jx saecabs he 1;:;;1
Clileh}avhle aef Cle~kzshle he vdk Jaibaes
Acclzfheg vl Jazbae) vdk shgehficaev e{ojkz ln O{sihos ih~heg he vdk Jaibaes av vdk vdk jkgheeheg ln vdk shtvkkevd shtvkkevd ckev{zx ckev{zx was vdk zks{iv zks{iv ln a iazgk e{ojkz ln O{sihos da~heg ohgzavkf vdkzk nzlo Asha Ohelz he vdk cl{zsk ln vdk nl{zvkkevd aef finvkkevd ckev{zhks% Dk fksczhjks vdhs pdkelokele as ’clileh}avhle%‟;: Hefkkf) vdkzk azk e{okzl{s zknkzkecks he Lvvloae cdzlehciks vl vdk ohgzavhle ln eloafhc vzhjks
Afapvkf jx Fleaif Phvcdkz) Dhsvlzhcai gklgzapdx ln vdk Lvvloae Kophzk= nzlo Kazihksv Vhoks vl vdk Kef ln vdk Shtvkkevd Ckev{zx $Ikhfke) 18>4(% ;: Skk Jazbae) ’Sùzgùeikz)‟ :31) aef vdk zknkzkecks gh~ke vdkzk% ;1
66
nzlo Asha Ohelz vl vdk Jaibaes) svazvheg he vdk pkzhlf ln S{ivae O{zaf H $13>0–1348() h%k%) aiolsv nzlo vdk jkgheeheg ln vdk Lvvloae pzkskeck vdkzk% Aelvdkz wa~k ln eloafs azzh~kf he vdk Jaibaes av vdk jkgheeheg ln vdk finvkkevd ckev{zx) fzh~ke wksv jx Vho{z‘s he~a/ shle ln Asha Ohelz%;3 Jazbae) dlwk~kz) hs elv ajik vl plhev vl aex zkihajik fig{zks) lvdkz vdae vdk leks gh~ke jx vdk cdzlehciks) h%k%) 30)000 vl ;0)000 ol{evkf slifhkzs% ;6 ^lhcheg vdk lpplshvk lphehle) Vlflzl~ azg{ks vdav O{siho ohgza/ vhle vl vdk Jaibaes was elv shgeh ficaev%;; Jaskf le a sv{fx jx Gþbjhighe);> Vlflzl~ kopdash}ks vdk soaii e{ojkz ln O{siho eloafs pzkskev he vdk Jaibaes vl pzl~k dhs plhev $Vajik 3(% He 1;63) vdk leix xkaz nlz wdhcd clopikvk fava kthsvs) vdkzk wkzk 1)30; eloafhc $ xùzùb ( {ehvs $lcab s( s( he vdk Jaibaes) cleshsvheg ln 10 vl 60 pklpik kacd% Vdhs) Vlflzl~ agzkks) hs clopazajik whvd vdk fig{zk ln 37)63; xùzùb daek s zkshfheg he vdk Jaibaes) gh~ke jx Jazbae nlz vdk pkzhlf 1;:0–1;3;% Ek~kzvdkikss) hv zkpzkskevs leix a soaii plzvhle ln vdk vlvai O{siho plp{iavhle av vdk vhok‖1; pkzckev) ;7 aef leix 3%; pkz/ ckev ln vdk vlvai Jaibae plp{iavhle% Jx clopazhsle) vdk O{siho eloafs he vdk pzl~heck ln Aeafli{ $Wksvkze Asha Ohelz( nlz vdk saok pkzhlf e{ojkzkf 77):>4) h%k%) :0 pkzckev ln vdk O{siho plp/ {iavhle aef 1> pkzckev ln vdk vlvai plp{iavhle% ;4 Acclzfheg vl Vlflzl~) vdk ~azhavhles he vdk e{ojkz ln Jaibae xùzùb s he vdk shtvkkevd cke/ v{zx azk hefhcavh~k ln vdk scaik ln O{siho ohgzavhle%
Hjhf%) :13% Hjhf% ;; Vlflzl~ aef ^kibl~) Shv{avhle fèolgzapdhq{k ) 30–36% ;> O% Gþbjhighe) Z{ohih‘fk Xùzùbikz % ;7 Lvdkz scdliazs {vhih}heg Jazbae‘s fava {s{aiix chvk vdk fig{zk ln 18 pkz/ ckev) pkzdaps l~kzillbheg vdk Jaibae O{siho plp{iavhle ktvzapliavkf jx Jazbae vdav H da~k heci{fkf {efkz vdk dkafheg Ohsckiiaekl{s) he Vajik : ajl~k% Nhzsv) S% ^zxlehs) ’Cdaegks)‟ 1>;) caok {p whvd vdhs fig{zk) aef vdke lvdkzs zkpkavkf hv‖skk) P% S{gaz) Sl{vdkasvkze K{zlpk {efkz Lvvloae Z{ik) 13;6–1406 $Skavvik) Ilefle) 1877() ;0=e1:–;1% ;4 Jazbae) ’Kssah)‟ 30% ;3 ;6
6;
Vaji Va jikk 3% E{ E{oj ojkz kz ln ln Jaib Jaibae ae xùzùb {ehvs $lcab s( s( he vdk shtvkkevd ckev{zx Fh~hshle;8 Eaifþbke Vaezıfa Skiaehb L~vcdk Plik ^ h }k Bl c a c ı b Vlvai
E{ojkz ln lcab s he kacd xkaz 1; 63 1 ;> > : 1>
1 ;4 ;
1> 08
:6 : 6: 6
1 1: 47
1 8> 3 :4 ; 00 1 1> 38 1 :>
87 61 1 78
1; 6
44 30 14
1 )3 0 ;
; 33
4: 0
3 3;
Aivdl{gd vdk e{ojkz ln lcab s heczkaskf he vdk shtvkkevd ckev{zx) vdhs was f{k vl ajslzpvhle ln vdk Hsiaoh}kf ilcai plp{iavhle hevl vdk s) zavdkz vdae ekw ohgzavhles%>0 Vdk soaii e{ojkz ln lcab s av lcab s) vdk jkgheeheg ln vdk sk~kevkkevd ckev{zx spkabs nlz a pzlckss ln skfkevazh}avhle aef pkzdaps k~ke zkv{ze ln V{zbhc eloafs vl Aeavliha%>1 Vd{s) Vlflzl~ cleci{fks) hv hs cle~kzshle vl Hsiao vdav ikf vl vdk iazgk sdazk ln vdk O{siho plp{iavhle av vdk jkgheeheg ln vdk sht/ vkkevd ckev{zx%>: H jkihk~k) dlwk~kz) vdav hv hs vll shopihsvhc vl cleshfkz O{siho ohgzavhle vl vdk Jaibaes as zkpzkskevkf leix jx eloafs% Jazbae) nlz ktaopik) plhevs aisl vl aelvdkz gzl{p ln O{siho skvvikzs he vdk zkghle‖vdk okojkzs ln vdk S{fi lzfkzs) oaex ln wdlo acclopa/ ehkf vdk Lvvloae azox%>3 Vl s{pplzv vdkhz acvh~hvhks aef vl bkkp vdko {efkz clevzli) vdk olsvix dkvkzlflt fkz~hsdks wkzk gzaevkf ajaeflekf iaefs as ~abın s aef vat pzh~hikgks%>6 ]kixa}bl~a hs zhgdv vl azg{k vdav hv hs ~kzx {eihbkix vdav fkz~hsdks wkzk k~kz e{okzl{s kel{gd vl caii vdko ’fkz~hsd/clileh}kzs%‟ >; Zavdkz) sdk pzlplsks vdk vkzo ’fkz~hsd/ohsshleazhks‟ as olzk appzlpzhavk% Dlwk~kz) sdk aisl
Vdk xùzùbs wkzk lzgaeh}kf hevl sht fh~hshles eaokf anvkz vdk zkghle he wdhcd vdkx wkzk ilcavkf lz jx vdk lif vzhjai eaok ln vdk eloafs wdl ohgzavkf vdkzk% >0 ]kixa}bl~a) Za}pzlsvzaekehk ) 73% >1 Vlflzl~ aef ^kibl~) Shv{avhle fèolgzapdhq{k ) 36% >: Hjhf% >3 Jazbae) ’^abıaz ~k Vkoihbikz%‟ >6 Hjhf%) :43% Skk aisl O% Bhki) ’Vdk ^abıneêok ln Zabbas Sheêe Jkg he Bazeljav $ Bazåe/êjê Bazåe/êjêf( f( aef vdk Lvvloae Lvvloae Clileh}avhle Clileh}avhle ln J{igazhae J{igazhae Vdzack Vdzack $16vd–1;vd $16vd–1;vd Ckev{zx()‟ LA) 1 $1840() 1;–31% >; ]kixa}bl~a) Za}pzlsvzaekehk ) >0% ;8
6>
p{vs nlzwazf vdk dxplvdkshs vdav a e{ojkz ln O{siho vzafksoke aef czanvsoke) okojkzs ln vdk abdh lzgaeh}avhles he vdk {zjae ckevkzs ln Asha Ohelz) wkzk aisl aoleg vdk fizsv O{siho skvvikzs he vdk Jaibaes%>> A ekw sv{fx jx K% Zaf{sdk~ skkos vl s{pplzv vdhs dxplvd/ kshs%>7 Zaf{sdk~ gh~ks as ktaopiks vdk >8 O{siho dl{skdlifs he vdk vlwe ln Fzaoa) vdk 3: O{siho dl{skdlifs he vdk vlwe ln ]hdea aef vdk ;3; O{siho dl{skdlifs he vdk vlwe ln Skzzks) olsv ln wdhcd wkzk ihsvkf he ae Lvvloae zkghsvkz ln 1674 as czanvsoke% >4 Acclzfheg vl vdk a{vdlz) vdk pzk/Hsiaohc V{zbhc eaoks ln vdk dkafs ln vdk dl{skdlifs hefhcavk vdkhz ele/Jaibae lzhghe%>8 Olzkl~kz) Zaf{sdk~ plhevs l{v vdav vdkzk was a ohgzavhle ln skfkevazx O{sihos he vdk z{zai azkas as wkii% Vdk saok zkghsvkz ln 1674) nlz ktaopik) ihsvs ;7 O{siho dl{skdlifs he vdk ba}a ln Xkehck/h Bazas{ le vdk Akgkae skasdlzk as saiv/oabkzs $v{}c{iaz (%70 Vdk a{vdlz plhevs l{v vdav saiv/ oabkzs wkzk lzgaeh}kf he a pzlnksshleai g{hif $ ckoaav ( aef vdav vdk czanv zkq{hzkf spkchai sbhiis) wdhcd wkzk vzaesnkzzkf nzlo navdkz vl sle% Vd{s) dk cleci{fks) fksphvk vdk vxphcaiix pzk/Hsiaohc V{zbhc eaoks ln olsv ln vdk saiv/oabkzs‖S{eg{z) F{zo{ ) Xad h) kvc%‖ vdkx wkzk elv eloafs%71 Vdk saiv/oabkzs wdl caok clok vl skvvik he vdk azka $wdkzk vdkx nl{efkf a ~hiiagk‖V{}c{‖aelvdkz acvhle q{hvk {evxphcai ln eloafs( aizkafx plssksskf vdk sbhii ln saiv/oabheg% Olsv pzljajix vdkx daf pzacvhckf vdkhz czanv le vdk Asha Ohelz sdlzk ln vdk Akgkae Ska% Vdkzk was aisl vdk :8 dl{skdlifs/svzleg ( ihsvkf ihsvkf he vdk vdk saok zkghsvk zkghsvkz% z%7: Acclzfheg ckoaav ln zhck/gzlwkzs çkivùbçhikz $çkivùbçhikz vl vdk a{vdlz) hv hs {eihbkix vdav vdksk zhck/gzlwkzs spzaeg nzlo vdk eavh~k plp{iavhle jkca{sk zhck was a piaev {ebelwe he vdk Jaibaes jknlzk vdk Lvvloaes% Vdk ’cdhkns‟ $ zkhs ( ln vdk zhck/gzlwheg ckoaav he 1674 wkzk vdk jzlvdkzs Daihi aef Hjzadho) wdl) acclzfheg vl vdk zkghsvkz) plssksskf a s{ivaehc fkczkk aiilwheg vdko vl gzlw zhck ’ihbk vdkhz navdkzs%‟73 Hjhf%) >:% K% Zaf{sdk~) ’Zlflph)‟ 6>–48% >4 Hjhf%) >;) >7) >4% >8 Vdhs oax elv da~k jkke vdk cask jkca{sk) as hs plhevkf l{v jx J{iihkv) aoleg cle~kzvs vl Hsiao he vdk ckevzai Hsiaohc iaefs pzk/Hsiaohc Azaj eaoks wkzk olsv plp{iaz aoleg cle~kzvs hookfhavkix anvkz vdk cleq{ksv% 70 K% Zaf{sdk~) ’Zlflph)‟ >1% 71 Hjhf%) >:% Vdk zkghsvkz acv{aiix ihsvs a gzl{p ln dl{skdlifs‖ blz{c{iaz blz{c{iaz ‖wdlsk vasb was vl bkkp he cdkcb vdk eloafs ol~heg vdzl{gd vdk azka aef vl pzk~kev vdk svzaxheg ln vdkhz ih~ksvlcb levl c{ivh~avkf iaef% Skk Zaf{sdk~) ’Zlflph)‟ >3% 7: Hjhf% 73 Hjhf% >> >7
67
Vd{s) H cleshfkz vkeajik vdk dxplvdkshs vdav O{siho ohgzavhle vl vdk Jaibaes heci{fkf) aileg whvd vdk eloafhc gzl{ps aef pkzdaps as e{okzl{s as vdko) a skfkevazx O{siho plp{iavhle nzlo Asha Ohelz% Cleshfkzheg vdk fig{zk ln 3%;–6 pkzckev as zkpzkskevheg vdk pzlplzvhle ln eloafs he vdk Jaibae pkehes{ia av vdk jkgheeheg ln vdk shtvkkevd ckev{zx) vdk e{ojkz ln O{siho hoohgzaevs vl vdk Jaibaes aef vdkhz fksckefaevs cl{if da~k jkke as dhgd as 7–4 pkzckev ln vdk vlvai Jaibae plp{iavhle%76 Vdk zkoaheheg 1;–1> pkzckev O{siho plp{iavhle wl{if da~k cleshsvkf ln cle~kzvs aef fksckefaevs ln cle/ ~kzvs vl Hsiao% Vdkzknlzk) H cleci{fk vdav jx vdk ohffik ln vdk sht/ vkkevd ckev{zx vdk skclef svagk he vdk pzlckss ln cle~kzshle he vdk Jaibaes‖vdk pkzhlf ln ’kazix aflpvkzs‟‖daf jkke clopikvkf% Vdkzk wkzk) ln cl{zsk) zkghleai ~azhavhles% He slok azkas‖Jlseha aef Dkz}kgl~hea‖olzkk vdae 60 pkzckev ln vdk plp{iavhle daf cle~kzvkf Dkz}kgl~hea‖olz vl Hsiao jx vdk ohffik ln vdk shtvkkevd ckev{zx) wdhik lvdkz azkas s{cd as K{jka) Maehea aef Pzh}zke zkoahekf pzkfloheaevix ele/ O{siho $skk Vajik :(% He vdk wksvkze Zdlflpks) 13 pkzckev ln vdk plp{iavhle daf cle~kzvkf vl Hsiao jx vdk kef ln vdk 1;30s) a fig{zk wdhcd daf zhske vl :8 pkzckev jx vdk cilsk ln vdk 1;>0s)7; wdhik he vdk saecab ln F{baghe he elzvdkze Aijaeha 1> pkzckev ln vdk plp{/ iavhle daf cle~kzvkf jx 1;71%7> Vl clopikvk l{z fhsc{sshle ln vdk O{siho ohgzavhle) H wl{if ihbk vl zkcaii vl vdk zkafkz J{iihkv‘s vdklzx vdav vdk pzkskeck ln O{sihos he a pazvhc{iaz azka hs a pzkclefhvhle nlz cle~kzshle vl Hsiao $’acckss vl henlzoavhle nacvlz‟(% H azg{k vdav aivdl{gd ekhvdkz ohehoai elz ktvkesh~k) O{siho ’clileh}avhle‟ ln vdk Jaibaes was iazgk kel{gd vl piax a shgehficaev zlik he vdk pzlckss ln Hsiaoh}avhle vdkzk% Nlz ktaopik) ehek ln vdk dl{skdlifs he vdk ckoaav ln saiv/oabkzs) oke/ vhlekf ajl~k) wkzk zkghsvkzkf as ekw O{sihos‖vwl sles ln Ajf{iiad) lek svhii zkvaheheg dhs ele/O{siho eaok aef sht nzkkf sia~ks%77 Aoleg vdk 3: O{siho dl{skdlifs ln ]hdea) vdkzk wkzk vwl oafk {p ln
76
Jaskf le dhs fig{zk ln 18 pkzckev O{siho eloafs ih~heg he vdk Jaibaes he vdk shtvkkevd ckev{zx $skk elvk ;7 ajl~k() ^zxlehs $’Cdaegks)‟ 1>;–1>>( pzlplsks vdav ’pkzdaps ;0+ ln vdk Jaibae O{siho plp{iavhle ln 1;:0–1;30 daf vdkhz lzhghes $wdkvdkz eloaf lz skfkevazx( he clileh}avhle nzlo l{vshfk vdk pkehes{ia%‟ Vdk jashc pzlplshvhle) dlwk~kz) acq{hzks ae a{za ln a{vdlzhvx he S{gaz) Sl{vdkasvkze K{zlpk ) ;1) wdkzk wk fief hv {skf aileg whvd vdk pdzask ’^zxlehs azg{ks cle~hechegix%‟ 7; Zaf{sdk~) ’Zlflph)‟ 74% 7> ]kixa}bl~a) Za}pzlsvzaekehk ) 48–80% 77 Zaf{sdk~) ’Zlflph)‟ >:%
64
ekw O{sihos aef nl{z ln nzkkf sia~ks% 74 Wk cae aisl ljskz~k vdav a gzkavkz O{siho pzkskeck oax jk nl{ef he vdk azkas whvd a gzkavkz cleckevzavhle ln xùzùb s‖vdk saecabs ln Pasda) Vcdhzoke) Shihsvza aef xùzùb s‖vdk ^h}k% Le vdk lvdkz daef) he vdk wksvkze Jaibae iaefs) wdkzk vdkzk hs el zkghsvkzkf ohgzavhle ln xùzùb s) whvd vdk ktckpvhle ln Jlseha aef xùzùb s) Dkz}kgl~hea) vdk O{siho pzkskeck was appazkevix leix : vl ; pkz/ ckev ln vdk vlvai plp{iavhle vdzl{gdl{v vdk 1;:0s% Cle~kzshle he [zjae aef Z{zai Azkas
Vdk iasv q{ksvhle vl jk fhsc{sskf whvd zkgazf vl vdk kazix pkzhlf ln Hsiaoh}avhle he vdk Jaibaes hs vdk cle~kzshle ln vdk z{zai ~kzs{s vdk {zjae plp{iavhle% Hv hs vdk gkekzai pkzckpvhle ln scdliazs vdav Hsiao/ h}avhle was olzk whfkspzkaf he {zjae ckevkzs he vdk fizsv vwl cke/ v{zhks ln Lvvloae z{ik he vdk Jaibaes) wdhik he z{zai azkas Hsiaoh}avhle was olzk pzlel{eckf he vdk s{jskq{kev ckev{zhks%78 Vdk fava s{p/ pihkf jx Jazbae40 nlz 1: hoplzvaev Jaibae vlwes av vdk jkgheeheg ln vdk shtvkkevd ckev{zx skkos vl s{pplzv vdhs ~hkw $Vajik 6( aef hv hs {s{aiix q{lvkf he vdhs cleekcvhle%41 He khgdv ln vdko) O{sihos daf ae l~kzwdkioheg oamlzhvx wdhik he vdk saecabs s{zzl{efheg vdko vdk shv{avhle was zk~kzskf% He vwl vlwes‖Ehblpli aef Vzhbaia‖O{sihos wkzk he vdk ohelzhvx) j{v wkzk svhii olzk e{okzl{s vdae he vdk s{z/ zl{efheg saecabs ) wdkzkas he vwl chvhks‖Avdkes aef Skiaehb4: ‖O{s/ ihos clesvhv{vkf a o{cd soaiikz ohelzhvx vdae vdk e{ojkzs zkclzfkf nlz vdk saecab %
Hjhf%) >7% ^zxlehs) ’Cdaegks)‟ 1>3% 40 Jazbae) ’Kssah)‟ 3;% 41 Skk nlz ktaopik ^zxlehs) ’Cdaegks)‟ 1>3% 4: ^zxlehs p{v Skiaehb he vdk fizsv gzl{p‖vlwes he wdhcd O{sihos l{ve{ojkzkf Cdzhsvhaes% Appazkevix) dk fhszkgazfkf vdk nacv vdav vdkzk vdk ;6 pkzckev svzleg Mkwhsd Mkwh sd cloo{e cloo{ehvx hvx was vwhck as iazgk as hvs O{sih O{siho o cl{evk cl{evkzpazv% zpazv% Skk ^zxleh ^zxlehs) s) ’Cdaegks)‟ 1>3% 74 78
68
Vajik 6% Plp{i Plp{iavhle avhle ln 1: Jai Jaibae bae vlwes vlwes he vdk 1;:0s clopazkf clopazkf vl vdk O{siho O{siho plp{/ iavhle he vdk saecab ln kacd vlwe‘s ilcavhle 43 C hvx Hsvaej{i $1674( Kfhzek Skiaehb Sazamk~l Iazhssa Skzzks Jhvlima Sblpmk Slfia Avdkes Ehblpli Vzhbaia
O{siho + dl{skdlifs 8);17 3)334 1)::8 1)0:6 >83 >71 >60 >30 671 11 6>4 301
;4%: 4:%1 :;%: 100 80%: >1%3 7;%0 76%4 >>%6 0%; 37%7 3>%3
Cdzhsvhae + dl{skdlifs ;)1>: ;:: 848
31%> 1:%4 :0%;
7; 3;7 171 :00 :34 :):4> 77; 363
8%4 3:%4 :0%: :3%7 33%> 88%; >:%3 61%;
Mkwhsd + dl{skdlifs 1)>67 :01 :)>6; >; 36 1:
141
+
10%: ;%1 :>%3 ;6%3 :>%3 6>%3 17%; ;%8 :>%3 6%4 :>%3 1%; :>%3 > %1 : %0 ::%1 ::%: 17%;
O{sihos he vdk saecab $ Pasda( $ Pasda( $ Jlseha( $ Vzhbaia( $ Pasda( $ Pasda( $ Pasda( $Slfia( $ K{jka( $ Ehblpli( $ Vzhbaia(
He cleckpv{aih}heg vdk henlzoavhle he Vajik 6) dlwk~kz) wk azk nackf whvd vdk saok pzljiko as wk nl{ef zkgazfheg vdk fava he Vajik :% Dlw oaex ln vdk O{sihos he vdksk vlwes wkzk ilcai cle~kzvs vl Hsiao< Dlw oaex ln vdko lzhgheavkf nzlo l{vshfk vdk pkehes{ia< S{gaz) nlz ktaopik) hevkzpzkvheg vdk fava he Vajik 6 ajl~k) asshges olzk wkhgdv vl clileh}avhle as a nacvlz vdae vl cle~kzshle% 46 Zaf{sdk~ aisl plhevs vl k~hfkeck ln clileh}avhle jkheg a iazgkz nacvlz he {zjae O{siho pzkskeck pzkskeck he vdk Jaibaes) Jaibaes) aef vl cle~kzshle cle~kzshle he z{zai azkas l{v/ pacheg cle~kzshle he {zjae azkas%4; A gzl{efjzkabheg sv{fx he vdhs zkgazf hs vdav ln O% Slblisbh) wdl das wzhvvke ajl{v Hsiaoh}avhle he Oackfleha he vdk finvkkevd aef shtvkkevd ckev{zhks%4> He dhs sv{fx) dk pzl~hfks vdk e{ojkz ln fizsv gkekzavhle O{sihos aoleg vdk O{siho dl{skdlifs he 33 eadhxk s $s{jfhsvzhcvs( ln Oackfleha f{zheg vdk skclef dain ln vdk shtvkkevd shtvkkevd ckev{zx) ckev{zx) jzlbke flwe flwe jx z{zai z{zai aef {zjae azkas $skk Vajik ;(% Hv sdl{if sdl{if jk plhevkf l{v vdav Oackfleha Oackfleha hs lek ln vdk zkghles he vdk Jaibaes vdav ktpkzhkeckf shgehficaev O{siho clileh}avhle%47 Vdk iasv cli{oe hs fkzh~kf nzlo Vajik : ajl~k% ^zxlehs $aef S{gaz anvkz dho( das ohsvabkeix p{v Jhvlima $Oaeasvız( aef Sblpmk he vdk saecab ln B{svkefhi hesvkaf ln Pasda saecab % Skk ^zxlehs) ’Cdaegks)‟ 1>6 aef S{gaz) Sl{vdkasvkze K{zlpk ) ;1= Vajik 1% 46 S{gaz) Sl{vdkasvkze K{zlpk ) ;1% 4; Zaf{sdk~) ’Zlflph)‟ >;–>8% 4> O% Slblisbh) ’Hsiaoh}acma { Oabkflehmh { T^ h T^H ~kb{ RHsiaoh}avhle he Oackfl Oac kfleha eha he vdk vdk 1;vd 1;vd aef 1>v 1>vd d cke ckev{z v{zhks_ hks_)‟ )‟ Hsvlzhvcdksbh Vcdaslphs :: $187;() 7;–48% 47 Acclzfheg vl Slblisbh $’Hsiaoh}acma)‟ 46() vdkzk daf jkke >)4>> xùzùb dl{sk/ dlifs ih~heg he 18 Oackflehae eadhxk s he vdk skclef dain ln vdk shtvkkevd ckev{zx% 43
;0
Vajik ;% E{ojkz ln fizsv gkekzavhle O{sihos $he dl{skdlifs( aoleg vdk O{siho plp{iavhle he {zjae aef z{zai azkas ln Oackfleha) 1;>8–43 44 Eadhxk
[zjae Azkas O{siho hoss Cle~kzv zvss
Sblpmk Jhvlima Pzhikp Vkvl~l Bhçk~l Blsv{z Ikzhe Jkz Mkehck/h ^azfaz Skzfick Skiaehb Fkohz Dhsaz Ek~zlblp Skzzks Fzaoa Ba~aia vhp Svz{oa Pkvzhç Flhzae Jkzl~a Blçaeh ^aiaefl~l B{oael~l Bzavl~l Vhb~k Ldzhf Glzeh Fkjaz Flieh Fkjaz Pzkspa Zkba M{pa Fajazch A~kzagk
Z{zai Azkas +
Vlvai
O{sihos Cle~kzvs +
O{sihos Cle~kzvs
+
1 ); ; 1 >04 :4: 330 40 16: 14: 346
701 :64 1:> 146 16 6: ;; 163
6;%: 60%4 66%7 ;;%4 17%; :8%> 30%: 37%:
1)001 ;>1 ;4; 346 88 360 :)144 186
17: ;> ;: 107 :8 7> 178 30
17%: 10%0 4%8 :7%8 :8%3 ::%6 4%: 1;%;
:);;: 1)1>8 4>7 716 178 64: :)370 ;74
473 306 174 :81 63 114 :36 173
36%: :>%0 :0%; 60%4 :6%0 :6%; 8%8 :8%8
;:8 47 1): 1 :
1>; 17 6>4
31%: 18%; 34%>
467 1)181 641
113 >7 41
13%3 ;%> 1>%4
1)37> 1):74 1)>83
:74 46 ;68
:0%: >%> 3:%6
:> 306 4:6 :0; 141 668 66: 1:; 41 8 : 87 ;: 303 0 :70
1> >3 314 6; 67 10; 13; :> :7 6 0 13 16 76 0 ;>
>1%; :0%7 34%> ::%0 :>%0 :3%6 30%; :0%4 33%3 66%6 0%0 13%6 :>%8 :6%6 0%0 :0%7
>11 1)7:; 3;1 :)018 770 1)141 70; 146 :>> 3: 3:> 117 ;;; 40 3>3 311
10; 6:: >; 1;0 106 13; 88 33 :: 10 61 7 >1 13 70 >7
17%: :6%; 14%; 7%6 13%; 11%6 16%0 17%8 4%3 31%3 1:%> >%0 11%0 1>%3 18%3 :1%;
>37 :)0:8 1)17; :)::6 8;1 1)>30 1)167 308 367 61 3:4 :16 >07 343 3>3 ;41
1:1 64; 343 18; 1;1 :60 :36 ;8 68 16 61 :0 7; 47 70 1:3
18%0 :3%8 3:%> 4%4 1;%8 16%7 :0%6 18%1 16%1 36%1 1:%; 8%3 1:%6 ::%7 18%3 :1%:
1>7
1;
8%0
:60
>:
:;%4
607
77
14%8
0 0 0 0 0
0 0 0 0 0
0%0 0%0 0%0 0%0 0%0
466 48 183 83 :6
;;; 7 86 10 4
>;%4 7%8 64%7 10%4 33%3
466 48 183 83 :6
;;; 7 86 10 4
>;%4 7%8 64%7 10%4 33%3
:8% 8
1>%3
:1%;
Vdk fig{zks he Vajik ; oabk cikaz vdk zaphf pzlgzkss ln Hsiaoh}avhle he chvhks% Aoleg vdk :7 eadhxk s whvd O{siho {zjae plp{iavhle) leix vdzkk $11 pkzckev( skko vl da~k daf a shgeh ficaevix gzkavkz pzkskeck Hjhf%) 4>–44% Vdk fava hs fkzh~kf nzlo vdzkk zkghsvkzs% Vdk fizsv 1> kevzhks azk nzlo a zkghsvkz favkf 1;>8) vdk ektv 11 nzlo a zkghsvkz favkf 1;70 aef vdk iasv 7 nzlo a zkghsvkz favkf 1;43% 44
;1
70 >0 ;0 k g a v e k c z k P
60 30 :0 10 0 k m p l b S
a m i l v h J
p k i h z P
l ~ l v k V
z p z z k h l z b a e { z h k a c e ~ v l s b h k J fi f s z a z k d l k i D z l I a c k / ~ h B S S z ^ h k / B k o E c k h e F k M
s k z z k S
a a i h p o a v ~ d a z a F B S
a d o c h { z v z v k S P
e a ~ a z l h z l k F J
h e ~ l a f d e c l a i B a ^
l l d s ~ ~ k l v l ~ e b a a z h o B V { B
z z f a h a z j k j d k L F F h h e i e z l l G F
a p s k z P
a b a p k { Z M
h c z a j a F
Fhsvzhcvs
Pkzckevagk ln cle~kzvs he vdk fhsvzhcv‘s {zjae azkas
Pkzckevagk ln cle~kzvs he vdk fhsvzhcv‘s z{zai azkas
Gzapd 1% Clopazhsle jkvwkke pkzckevagks ~ai{ks ln cle~kzvs vl Hsiao he {zjae aef z{zai azkas he Oackfleha) 1;>8–1;43
ln fizsv gkekzavhle O{sihos he vdk z{zai azkas) sht $:: pkzckev( appzlt/ hoavkix vdk saok pzlplzvhles aef khgdvkke $>7 pkzckev( aexwdkzk nzlo vwl vl fi~k vhoks olzk ekw O{sihos as a pkzckevagk ln vdk plp{iavhle he vdk {zjae azkas% Olzkl~kz) vdk jhggkz vdk {zjae azka $k%g%) Sblpmk) Jhvlima) Vkvl~l) Skzzks) aef Skiaehb() vdk olzk ihbkix hv was nlz ekw O{sihos vl clesvhv{vk a iazgkz skgokev ln vdk plp{ia/ vhle% Vdk fh~kzgkeck jkvwkke {zjae aef z{zai azkas whvd zkgazf vl vdk pzlplzvhle ln ekw O{sihos hs jkvvkz zkpzkskevkf jx vdk vwl iheks he Gzapd 1% Hv hs hevkzksvheg vl elvk) dlwk~kz) vdav he vdk sht eadhxk s whvdl{v O{siho {zjae plp{iavhle vdk pkzckevagk ln ekw O{sihos hs svhii q{hvk dhgd% He nacv) vdk ktci{sh~kix z{zai O{siho plp{iavhle ln vdk eadhxk ln Flieh Fkjaz zkghsvkzkf vdk dhgdksv pzkskeck ln ekw O{sihos aoleg aii s{jfhsvzhcvs‖>;%4 pkzckev% Slblisbh pzl~hfks fava nlz aelvdkz) olzk gklgzapdhcaiix ihohvkf j{v svhii ~ai{ajik ljskz~avhle‖vdk ~azhavhle ln vdk pkzckevagk ln ekw O{sihos he z{zai aef {zjae azkas ln sht eadhxk s l~kz a pkzhlf ln :; xkazs‖1;6;–1;>8 $Gzapd :(%48
48
Slblisbh) ’Hsiaoh}acma)‟ 4>–47%
;:
> 0 %0 ; 0 %0
60 %0 30 %0 :0 %0
1 0 %0 0 %0 [zjae 1;6; [zjae 1;>8 Z{zai 1;6; Z{zai 1;>8
Sblpmk
Jhvlima
Pzhikp
3 3 %; 6 ; %: 1 8 %0 1 7 %:
31 %7 60 %4 ;% 8 1 0 %0
: ;%6 6 6%7 4 %3 4% 8
Vkvl~l
Bhçk~l
37 %> ;; %4 :3 %4 : 7% 8
;0 %0 17 %; 1: %; : 8% 3
Blsv{z 1 8%3 : 8%> 1 ;%0 : :%6
Gzapd :% Clopazhsle jkvwkke pkzckevagk ln ekw O{sihos he {zjae aef z{zai azkas ln sht eadhxk s ln Oackfleha he 1;6; aef 1;>8
He 1;>8) vdk fava sdlws ae a~kzagk heczkask ln 30 pkzckev he ekw O{sihos he {zjae azkas aef 60 pkzckev he z{zai azkas) clopazkf vl 1;6;% Ek~kzvdkikss) slok zkghles svaef l{v% Nlz ktaopik) he 1;>8) vdk eadhxk ln Bhçk~l daf a soaiikz pzkskeck ln ekw O{sihos aoleg hvs O{siho {zjae plp{iavhle vdae he 1;6;% Vdk zavk ln heczkask ln ekw O{sihos he vdk z{zai azkas ln Bhçk~l $:30 pkzckev() le vdk lvdkz daef) hs shgehficaevix iazgkz vdae vdk lek ljskz~kf he vdk lvdkz eadhxk s nlz vdk saok pkzhlf% He vdk eadhxk ln Sblpmk) vdkzk hs ae heshgehficaev fzlp he vdk pzkskeck ln ekw O{sihos he z{zai azkas wdhik he {zjae azkas vdk heczkask hs ajl~k vdk a~kzagk nlz vdk pkzhlf% He ox lphe/ hle) vdk gzkavkz zavk ln heczkask ln ekw O{sihos he z{zai azkas aef vdk fkczkask he slok {zjae azkas hefhcavks vdk jkgheeheg ln a pzlckss wdhcd jkcloks o{cd olzk pzlel{eckf he vdk sk~kevkkevd ckev{zx) h%k%) vdk heczkasheg pack ln cle~kzshle he vdk cl{evzxshfk% Cle~kzshle he vdk Sk~kevkkevd Ckev{zx
Nzlo vdk ohffik ln vdk shtvkkevd ckev{zx) vdk cle~kzshle vl Hsiao he vdk Jaibaes skkos vl da~k kevkzkf hvs vdhzf pkzhlf‖’kazix oamlz/ hvx%‟ [enlzv{eavkix) hv hs olzk fh ffic{iv vl vzack vdk gzaf{ai pzlckss ln Hsiaoh}avhle he vdk nliilwheg ckev{zhks% Vdk fhshevkgzavhle ln vdk vhoaz sxsvko ikf vl a fkczkask he vdk e{ojkz ln vhoaz zkghsvkzs‖vdk
;3
oahe sl{zcks ln plp{iavhle svavhsvhcs nlz vdk shtvkkevd ckev{zx% Vl sv{fx fkolgzapdhc cdaegks he vdk sk~kevkkevd ckev{zx scdliazs azk nlzckf vl {vhih}k ch}xk zkghsvkzs as vdk leix sl{zck nlz clopzkdkesh~k svavhsvhcs% Nlz ktaopik) jaskf le s{cd zkghsvkzs) K% Gzl}fael~a nli/ ilws vdk fkolgzapdhc cdaegks he vdk sk~kevkkevd ckev{zx he 78 kasv/ kze Jaibae vat fhsvzhcvs $skk Oap 3() fkzh~heg nzlo vdko fava nlz olzk vdae 6;00 ~hiiagks%80
Oap 3% Sk~kevkkevd ckev{zx afohehsvzavh~k fh~hshle 81
80 81
Gzl}fael~a) Eazlfelsv ) 48–;:>% Afapvkf jx Phvcdkz) Dhsvlzhcai gklgzapdx%
;6
Gzl}fael~a ljskz~ks vdav vdkzk hs a fkczkask ln 33%7 pkzckev he vdk ele/O{siho plp{iavhle he vdk sk~kevkkevd ckev{zx%8: Vdk fkczkask was olzk pzlel{eckf he vdk skclef dain ln vdk ckev{zx whvd vdk fkcihek he slok azkas zkacdheg as dhgd as 70 pkzckev $Vajik >(% Vajik >% Cdaegks he ele/O{siho plp{iavhle he vdk sk~kevkkevd ckev{zx he slok azkas he vdk kasvkze Jaibae iaefs 83 ^hiaxkv
Jkzblnça Jhvlima ^hfhe ^zaema ~zaca Fkohz Dhsaz Fzaoa F{pohçk ]ekplik ]ıdea Blzça Blsv{z $ Bkszhxk( B{svkefhi Oaikl~a Okiehb Ldzhf Pkvzhç Phzlv $ kdhzbþx( Pzhikp Pzl~afha Zaflohz Skzfick Shihsvzk Slfia Hsvz{ohçk Skzzks Vhzel~l
Jkgheeheg 1 7 c%
30 – 60 s ln 17c%
+ cdaegk
;0 –8 0s l n 1 7 c%
+ Vlvai + cdaegk cdaegk
3 )4 > 0 6 )4 3 4 ; )0 0 7 ; )0 8 0 3 )7 : 8 3 )> 8 0 1 )8 0 4 6 )8 0 4 3 )> 6 7 3 ); 6 6 : )4 ; ;
3) 8> > 6) 63 3 ;) :6 4 6) 60 > : )4 : 1 :) >7 8 1) >0 8 6 ); > : 3) 07 7 3 )3 8 3 :) 06 >
: %7 – 4 %6 6 %4 – 1 3 %6 – : 6 %3 – : 7 %6 – 1 ; %7 – 7 %0 – 1 ; %> – 6 %3 – : 4 %3
: )6 0 1 3 )0 1 6 6 )0 7 4 1 ): 0 0 4 :0 1 )3 0 0 1 )> 1 3 1 ); 0 0 : )> > 0 3 )1 7 8 3 )3 0 0
–3 8% ; –3 :% 0 –: :% 3 –7 :% 4 –7 0% 8 –; 1% ; 0% : – > 7% 1 –1 3% > – >% 3 > 1% 3
– 3 7 %4 – 3 7 %7 – 1 4 %> – 7 > %6 – 7 4 %0 – > 6 %4 – 1 ; %; – > 8 %6 – : 7 %1 – 1 0 %3 1 ; %>
6 )0 1 > > )0 1 > 6 )3 7 : 1 )1 : 7 3 )> ; 4 : )> 8 0
3 )8 6 8 6 )3 7 4 1 )4 0 0 >> ; 3) ;1 4 :) ;6 7
– 1 %7 – : 7 %: – ; 4 %; – 6 1 %0 – 3 %4 – ; %3
: )6 6 0 : )> ; 8 1 )1 8 4 1 ;: : ): ; 0 1 )6 3 4
–3 4% : –3 8% 3 –3 3% 6 –7 7% 1 –3 >% 0 – 6 3% ;
– 3 8 %: – ; ; %4 – 7 : %> – 4 > %; – 3 4 %; – 6 > %;
: )> : : 1 )> 3 0 ; )1 ; : 3 )4 8 8 3 )0 ; 8 > ): : 6 ; ); 4 8 : )8 1 : 6 )3 3 : 6 )> ; 7
:) >6 0 1) 70 6 ;) 11 1 :) 7; > :) 88 8 ;) 17 0 ;) 06 > :) 84 0 6 ); 0 ; 6) 66 :
0 %7 6 %; – 0 %4 – : 8 %3 – : %0 – 1 > %8 – 8 %7 : %3 6 %0 – 6 %>
: ): 6 6 1 ); 0 0 ; )7 : 0 1 )3 4 4 : )0 0 0 : ); 3 7 3 )8 6 ; 1 )1 6 8 6 )3 ; 6 3 )8 3 7
–1 ;% 0 –1 :% 0 1 1% 8 – 6 8% > –3 3% 3 –; 0% 8 –: 1% 4 – > 1% 6 – 3% 6 –1 1% 6
– 1 6 %6 – 4 %0 1 1 %0 – > 6 %6 – 3 6 %> – ; 8 %: – : 8 %6 – > 0 %; 0 %; – 1 ; %;
Hjhf%) ;:>% Hjhf%) ;14–;:1) Vajik 168% H da~k heci{fkf he ox vajik leix 31 azkas nlz wdhcd Gzl}fael~a‘s fava hs clopikvk aef jkca{sk ln vdav vdk vlvai cdaegk he pkz/ ckevagk hs fhff kzkev kzkev nzlo vdk lek azzh~kf av jx Gzl}fael~a% 8: 83
;;
Vajik > $clev% ( ( ^hiaxkv
Nilzhea $ Ikzhe( Dlzph vk Dızsl~a v hp Vlvai
Jkgheeheg 1 7 c%
3 0 – 6 0s l n 1 7 c%
+ cdaegk
; 0 – 80 s l n 1 7 c%
+ Vlvai + cdaegk cdaegk
: )1 8 6 ;) 14 4 1) >: > 6) 17 0
: )3 : 4 3 )4 4 0 1 ); 7 4 3 )1 6 3
> %1 –: ;% : – 3% 0 –: 6% >
1) 70 0 3) :7 8 8; 6 1) 77 4
– : 7 %0 – 1 ; %; – 3 8 %; – 6 3 %6
– : : %; – 3 > %4 – 6 1 %3 – ; 7 %6
11 4) :0 8
1 0 3 )3 7 8
–1 :% ; 7 1) >4 7
– 3 0 %7
– 3 8 %6
Gzl}fael~a lff kzs kzs nl{z plsshjik ktpiaeavhles nlz vdk fkczkask he ele/ O{siho plp{iavhle= 1( a gzkavkz zavk ln olzvaihvx jkca{sk ln kph/ fkohcs2 :( kohgzavhle ln iazgk oassks ln plp{iavhle vl lvdkz cl{evzhks2 3( pdxshcai fksvz{cvhle as a zks{iv ln zkpzksshle aef 6( a gzkavkz zavk ln cle~kzshle vl Hsiao%86 Vdk a{vdlz cleci{fks) dlwk~kz) vdav hv was cle~kzshle vdav piaxkf vdk olsv hoplzvaev zlik he vdk fkolgzapdhc cdaegks%8; Gh~ke vdk fhsvzhj{vhle ln plp{iavhle he vdk azka s{z~kxkf jx Gzl}fael~a‖8:%6 pkzckev ih~heg he z{zai aef leix 7%> he {zjae azkas8> ‖vdk iazgk fkczkask he vdk ele/O{siho plp{iavhle okaes aisl vdav vdk fxeaohcs fxeaohcs ln vdk cle~kzshle cle~kzshle pzlckss) hn shegikf shegikf l{v as vdk oamlz nacvlz jkdhef fkolgzapdhc cdaegk) daf zk~kzskf nzlo vdk pzk~hl{s ckev{zx% Hv cl{if leix da~k jkke vdhs nacvlz av wlzb he vdk z{zai azkas) wdkzk olsv ln vdk plp{iavhle zkshfkf) vdav wl{if accl{ev nlz s{cd a fzaoavhc cdaegk he vdk vlvai ele/O{siho plp{iavhle% He nacv) vdk {zjae ele/O{siho plp{iavhle he vdk azka {efkz sv{fx appkazs vl da~k heczkaskf jx aiolsv fl{jik nzlo vdk nl{z pkzckev ljskz~kf he vdk pzk~hl{s ckev{zx%87 He a ekw sv{fx) dlwk~kz) Zaf{sdk~ q{ksvhles vdk zkihajhihvx ln ch}xk zkghsvkzs as sl{zcks nlz s{z~kxheg fkolgzapdhc cdaegks%84 Nhzsv) vdkx pzl~hfk ae lpplzv{ehvx vl ljskz~k cdaegks he leix vdk ele/ O{siho cloo{ehvx) wdhik cdaegks he vdk O{siho lek azk iknv vl
86 8; 8> 87 84
Hjhf%) ;:>% Hjhf%) ;4>–47% Hjhf%) ;03% Hjhf%) ;06% Zaf{sdk~) ’Sohsaiav)‟ 1;:–187%
;>
spkc{iavhles% Zaf{sdk~ svzkssks vdk faegkz ln ass{oheg vdav a fkczkask ln plp{iavhle whvdhe vdk ele/O{siho cloo{ehvx wl{if ikaf vl ae heczkask he vdk O{siho cloo{ehvx) as Gzl}fael~a daf ass{okf% Chvheg k~hfkeck nzlo khgdvkkevd/ckev{zx a~azh} zkghsvkzs nzlo vdk Ek~zlblp zkghle) wdhcd ihsv jlvd ele/O{siho aef O{siho plp{ia/ vhle) Zaf{sdk~ plhevs l{v vdav slok ~hiiagks) fksphvk dka~hix fkczkas/ heg he ele/O{siho hedajhvaevs he vdk sk~kevkkevd ckev{zx) acclzfheg vl vdk ch}xk zkghsvkzs) azk svhii zkghsvkzkf as da~heg leix ele/O{siho hedajhvaevs lz ae heshgehficaev e{ojkz ln O{sihos%88 A~azh} zkghsvkz nzlo vdk 1>60s sdlws vdav O{siho plp{iavhle das {efkzglek a sho/ hiaz pzlckss as wkii%100 Acclzfheg vl vdhs zkghsvkz) jkvwkke 1;40 aef 1>6:) vdk Cdzhsvhae plp{iavhle ln vdk ]iavhvsa zkghle das fkcihekf jx olzk vdae dain j{v O{sihos wkzk flwe jx wdlppheg 3>+ as wkii% He lvdkz wlzfs) lvdkz fkolgzapdhc nacvlzs‖olsv ln aii kph/ fkohcs aef naohek‖o{sv da~k clevzhj{vkf s{jsvaevhaiix vl vdk plp/ {iavhle fkczkask he vdk sk~kevkkevd ckev{zx as wkii% Skclef) acclzfheg vl Zaf{sdk~) hv hs elv av aii belwe wdav e{o/ jkz ln pklpik dhfks jkdhef vdk fiscai vkzo ’ch}xk daek%‟ Olsv scdli/ azs) heci{fheg Gzl}fael~a)101 ass{ok vdav hv kq{ais vdk jashc naohix dl{skdlif) h%k%) appzlthoavkix ; pklpik% A clopazhsle jkvwkke a ( vat zkghsvkz nlz vdk eadhxk ln V{zel~l nzlo ch}xk aef a fkvahikf $vadzhz vdk 1>:0s sdlws vdk zavhl jkvwkke ’zkg{iaz‟ daek aef ch}xk daek vl jk :%33%10: [sheg vdhs zavhl nlz vdk zkghle ln Ek~zlblp he 1>1>) Zaf{sdk~ fkvkzoheks vdav hvs plp{iavhle hs ajl{v 60 pkzckev iazgkz vdae Gzl}fael~a daf aevhchpavkf%103 Dlwk~kz) jx vdk ohffik ln vdk ckev{zx vdk zavhl cdaegks vl 1%01) wdhcd) {sheg Zaf{sdk~‘s okvdlf ln caic{iavhle) plhevs l{v vl k~ke iazgkz fkczkask he plp{iavhle vdae Gzl}fael~a daf sdlwe%106 He lvdkz wlzfs) cleci{shles) {sheg ch}xk daek ) whvd zkspkcv vl cdaegks he vdk plp{iavhle) cae jk zavdkz fkckh~heg%10; Hjhf%) 1>6–1>8% Skk aisl Zaf{sdk~) ’Zlflph)‟ ;;–;>% Oacdhki Bhki) ’H}iafh,]iavhvsa% Plp{iavhle Cdaegks) Clileh}avhle aef Hsiaoh}avhle he a J{igazhae Ol{evahe Ol{evahe Caevle) 1;vd–18vd Ckev{zhks)‟ he K% Zaf{sdk~) ]% Blsvl~a) Blsvl~a) O{van hk~a $Slfia) :001() 178% ^% Svlxael~) kf%) Sv{fha Dlelzko Pzlnksslzhs ^kzak O{van hk~a 101 Gzl}fael~a) Eazlfelsv ) 70% 10: Vdk acv{ai fig{zks azk= 4>8 ch}xk daek ~s% :)0:7 daek s $1:>6 n{ii dl{skdlifs aef 7>3 jacdkilz daek s zkspkcvh~kix(‖skk Zaf{sdk~) ’Sohsaiav)‟ 177% 103 Zaf{sdk~) ’Sohsaiav)‟ 143–146% 106 Hjhf%) 177 aef 14;% 10; Zaf{sdk~ gh~ks e{okzl{s ktaopiks‖lek ln vdko jkheg nlz vdk ~hiiagk ln Zlskek he vdk eadhxk ln V{zel~l% Vdk fkvahikf zkghsvkz ln 1>14–:: nlz vdk zkghle 88
100
;7
Cle~kzshle he vdk Khgdvkkevd Ckev{zx
Vdk khgdvkkevd/ckev{zx a~azh} zkghsvkzs nzlo vdk Ek~zlblp zkghle plhev aisl vl ae hevkzksvheg fk~kilpokev% ^hiiagks) svhii whvd oamlz/ hvx ln ele/O{siho plp{iavhle jx vdk ohffik ln vdk sk~kevkkevd cke/ v{zx) {efkzwkev leix pazvhai Hsiaoh}avhle {evhi vdk kef ln vdk fizsv q{azvkz ln vdk khgdvkkevd ckev{zx aef vdke zkoahekf pzkfloheaevix Cdzhsvhae {evhi vdk kef ln vdk Lvvloae z{ik he vdk zkghle% 10> Vdav aiilws Zaf{sdk~ vl cleci{fk vdav vdk pzlckss ln cle~kzshle vdav svazvkf he vdk finvkkevd ckev{zx daf jkke clopikvkf) av ikasv he vdk Ek~zlblp zkghle) jx vdk skclef q{azvkz ln vdk khgdvkkevd ckev{zx% 107 Wk cae ~kzhnx vdk ajl~k cleci{shle ajl{v clopikvhle clopikvhle ln vdk pzlckss ln cle~kzshle he vdk khgdvkkevd ckev{zx whvd vdk fava p{jihsdkf jx J% OcGlwae%104 Vdk fava hs fkzh~kf agahe nzlo ch}xk zkghsvkzs% Ek~kzvdkikss) vdkzk hs a s{jsvaevhai fh ff kzkeck kzkeck jkvwkke fava fkzh~kf nzlo pzk/khgdvkkevd/ckev{zx ch}xk zkghsvkzs aef khgdvkkevd/ckev{zx leks he vkzos ln vdk gzkavkz zkihajhihvx ln vdk iavvkz% He 1>81) vdk cliikcvhle ln ch}xk was zklzgaeh}kf jx vdk Lvvloae gl~kzeokev% Hesvkaf ln jkheg cliikcvkf le a dl{skdlif jashs) a okvdlf vlikzavkf nlz fiscai cle~kehkeck) vdk vat jkgae vl jk cliikcvkf le ae hefh~hf{ai jashs) h%k%) nzlo k~kzx ajik/jlfhkf af{iv ele/O{siho) as Hsiaohc iaw daf lzhgheaiix pzksczhjkf% Vdk plsv/1>81 ch}xk zkghsvkzs aisl nliilw a svae/ fazf oaeekz ln pzkskevavhle vdav hesphzks o{cd olzk clefifkeck he clopazheg fava nzlo lek zkghsvkz vl aelvdkz% 108 Vdk vkzzhvlzhai cle/ shsvkecx nzlo zkghsvkz vl zkghsvkz aiilws OcGlwae vl fh~hfk vdk K{zlpkae pzl~hecks ln vdk kophzk) h%k%) vdk Jaibaes) hevl fi~k }leks‖ 1( elzvd/wksv $EW(2 :( sl{vd/wksv $SW(2 3( naz elzvd/kasv $NEK(2 6( ekaz elzvd/kasv $EK(2 aef ;( sl{vd/kasv $SK(% Vdk elzvd/wksvkze }lek clopzhsks zl{gdix vdk vkzzhvlzhks ln vlfax‘s Skzjha) Jlseha) Czlavha)
ihsvs 8> dl{skdlifs aef :8 jacdkilzs he vdk ~hiiagk) wdhcd clzzksplefs vl >0 ch}xk daek s he vdk ch}xk zkghsvkz% Ajl{v vwkevx xkazs iavkz) a ch}xk zkghsvkz ln 1>38 hefh/ cavks ae heczkask ln 1: ch}xk daek s $vl vdk vlvai ln 7:() wdhik a fkvahikf a~azh} zkghs/ vkz ln 1>6: acv{aiix sdlws ;8 Cdzhsvhae dl{skdlif zkoaheheg) h%k%) a fkczkask ln 37 dl{skdlifs‖skk Zaf{sdk~) ’Sohsaiav)‟ 14:% 10> Hjhf%) 1>7% 107 Zaf{sdk~) ’Zlflph)‟ 7> aef 4;–48% 104 Jz{ck OcGlwae) ’Dkaf Vat Fava nlz Lvvloae K{zlpk) 1700–141;)‟ he hfko) Kclelohc Ihnk he Lvvloae K{zlpk= Vatavhle) Vzafk aef vdk Svz{ggik nlz Iaef) 1>00–1400 $Caojzhfgk) 1841() 40–106% 108 OcGlwae) ’Dkaf Vat)‟ 41–43%
;4
Oap 6% Plp{iavhle }leks he vdk khgdvkkevd ckev{zx
Oackfleha aef wksvkze J{igazha2 vdk sl{vd/wksvkze‖Aijaeha aef vdk Olzka2 vdk naz elzvd/kasvkze‖Fljz{fma2 vdk ekaz elzvd/kasv/ kze‖kasvkze J{igazha $whvdl{v Fljz{fma( aef vdk kasvkze dain ln vdk K{zlpkae pazv ln V{zbkx2 aef vdk sl{vd/kasvkze‖Gzkkck $whvdl{v vdk Olzka( aef vdk wksvkze pazv ln K{zlpkae V{zbkx $Oap 6(% Acclzfheg vl OcGlwae)110 vdk ele/O{siho plp{iavhle ln vdk Jaibaes as a wdlik heczkaskf jx aiolsv ;0 pkzckev l~kz vdk cl{zsk ln vdk khgdvkkevd ckev{zx $skk Vajik 7(% S{cd ae heczkask hs he sdazp clevzasv vl vdk fkcihek ljskz~kf he vdk shtvkkevd aef kspkchaiix he vdk sk~kevkkevd ckev{zhks% P{}}ikf jx vdk ’fkolgzapdhc cliiapsk‟
110
Hjhf%) 4:%
;8
Vajik 7% Ch}xk /paxheg /paxheg ele/O{siho Jaibae plp{iavhle) 1700–141; 111 Xkaz ]lek
1700
EW 86)670 EK 14:)188 NEK 37)4>3 SW 1:4)863 SK 18:)3>0
17:0
+ Ceg%
1;6)>70 >3%7 1>8)11: –7%: 33)>>0 –11%1 1:3)706 – –6%1 6%1 :0:)170 ;%1
Vlvai >3;)43; >43)31>
1760
+ Ceg%
1744
+ Ceg%
141;
+ Vlvai Ceg% Ceg%
:03);68 31%> :40)01; 37%> 307)607 8%4 140)463 >%8 183)4;1 7%: :11)83> 8%3 36)483 3%7 33)8:6 –:%4 3;)13: 3%> 113)6>4 –4%3 107)6:; –;%3 10;)77: –1%; ::6)1>8 10%8 :;3)633 13%1 :7:)07; 7%6
::;%6 1>% 3 –7% : –14%0 61% 6
7%; 7;>)868 10%4 4>4)>64 16%4 83:)3:: 7%3
6>% >
wdhcd ktvkefkf {evhi 1700) OcGlwae11: s{ggksvs vdk lpkzavhle ln nacvlzs s{cd as kphfkohcs aef naohek% 113 Vdkzk hs el fl{jv) as plhevkf l{v ajl~k) vdav vdksk vwl nacvlzs piaxkf ae hoplzvaev zlik he vdk fkolgzapdhc pzlckssks he vdk Jaibaes% Vdkx caeelv jk ihohvkf) dlw/ k~kz) leix vl vdk sk~kevkkevd ckev{zx% Waz) fksvz{cvhle) kes{heg naoheks aef kphfkohcs clevhe{kf vl jk a cdazacvkzhsvhc nkav{zk ln vdk khgdvkkevd aef vdk ehekvkkevd ckev{zhks as wkii% Acclzfheg vl F% Pae}ac)116 vdk elzvd/wksv }lek) wdhcd daf vdk dhgdksv zkclzfkf plp/ {iavhle gzlwvd he vdk khgdvkkevd ckev{zx) was lek ln vdk azkas wdhcd s{ff kzkf kzkf olsv nzlo l{vjzkabs l{vjzkabs ln vdk piag{k he vdk pkzhlf 1700–14;0‖ :3 l{vjzkabs iasvheg ;8 xkazs he vlvai% Le vdk lvdkz daef) he vdk sl{vd/wksv }lek) vdk Olzka) wdhcd ktpkzhkeckf a shgehficaev fkczkask he hvs ele/O{siho plp{iavhle) s{ff kzkf kzkf vdk ikasv nzlo vdk piag{k he vdk pkzhlf pkzhlf {efkz {efkz cleshfkzavh cleshfkzavhle% le% He ox lphehle) lphehle) vdk vdk gzaf{ai fkpik/ vhle {evhi 1700 aef s{jskq{kev zkjl{ef ln vdk ele/O{siho plp{/ iavhle cae jk ktpiahekf leix he ihgdv ln vdk oahe fkolgzapdhc pzlckss
Skk hjhf%) Appkefht= Lffichai vlvais ln dkaf vat zkckhpvs dkif jx vdk ele/ O{siho plp{iavhle ln Lvvloae K{zlpk) 1700–141;% Jkca{sk olsv ln vdk SW }lek hs ihsvkf vlgkvdkz whvd Xkeh kdhz ln vdk SK }lek he vdk zkghsvkzs ln 1700) OcGlwae gh~ks leix vdk clojhekf vlvai ln 3:1)303 nlz vdk vwl }leks he vdk iavvkz xkaz% H da~k caic{iavkf) dlwk~kz) vdk a~kzagk gzlwvd he vdk lvdkz azkas ln vdk SK }lek he vdk pkzhlf 1700–:0 vl jk 6%7 pkzckev% H s{zohsk vdke a plp{iavhle ln 18:)3>0 nlz vdk SK }lek aef 1:4)863 nlz vdk SW }lek he 1700% Vdk vajik heci{fks aisl ae ktvzapliavkf 40)000 nlz vdk Olzka $SW() 3)000 nlz Avdkes) aef 3)000 nlz Gùoùichek $SK( he 17002 :0)000 nlz Jkigzafk $EW( aef 3)000 nlz soahi Gkçhfh $NEK( he 141;‖skk hjhf%) 103% 11: Hjhf%) 43–4;% 113 Hjhf%) 4;–47% 116 F% Pae}ac) Ia pksvk faes i‘Kophzk Lvvloae) 1700–14;0 $Ik{~ke) 184;() 148–188% 111
>0
he vdk Jaibaes nzlo vdk finvkkevd ckev{zx lewazfs) h%k%) Hsiaoh}avhle% H hevkzpzkv OcGlwae‘ fig{zks as nliilws% Vdk spkcvac{iaz gzlwvd he vdk elzvd/wksvkze }lek hs vdk zks{iv ln= 1( elzvdwazf ohgzavhle nzlo vdk lvdkz }leks) olsvix nzlo vdk ol{e/ vahel{s azkas ln vdk sl{vd/wksv $Aijaeha( vl Skzjha aef Jlseha2 11; :( eav{zai heczkask2 aef 3( vdk clopikvhle $kazihkz vdae he vdk lvdkz }leks( ln vdk pzlckss ln cle~kzshle he Jlseha aef Skzjha% Vdk olzk olfksv gzlwvd he vdk sl{vd/kasvkze }lek was vdk zks{iv agahe ln vdk clojheavhle ln eav{zai heczkask aef clopikvhle) lz shgehficaev silw/ flwe) ln vdk Hsiaoh}avhle pzlckss) j{v hesvkaf ln hoohgzavhle) vdkzk was a ihohvkf kohgzavhle elzvdwazfs% Vdk hehvhai fkczkask $7%: pkz/ ckev {evhi 17:0( he vdk elzvd/kasv }lek hefhcavks vdk clevhe{avhle ln vdk pzlckss ln cle~kzshle he vdk fizsv q{azvkz ln vdk ckev{zx aef vdk s{jskq{kev svzleg zkjl{ef $:; pkzckev jkvwkke 17:0 aef 141;() hvs daiv% Slok hoohgzavhle ln Oackflehaes vl vdhs }lek hs aisl jkihk~kf vl da~k vabke piack%11> Vdk saok shv{avhle‖fkczkask {evhi 17:0 aef s{jskq{kev heczkask‖hs ljskz~ajik he vdk naz elzvd/kasv }lek as wkii% Vdk heshgehficaev gzlwvd zavk $6%6 pkzckev jkvwkke 17:0 aef 141;( aef vdk sihgdv fkczkask agahe he vdk pkzhlf 1760–1744) cae jk avvzhj/ {vkf vl vdk clevhe{heg pzlckss ln Hsiaoh}avhle 117 aef vdk fk~asvavhle ln vdk zkghle f{zheg vdk 1771–76 Z{sshae waz%114 Vdk sl{vd/wksv }lek hs vdk leix lek vl sdlw a ekgavh~k gzlwvd vdzl{gdl{v vdk pkzhlf% Vdhs cae jk ktpiahekf jx= 1( vdk clevhe{heg pzlckss ln Hsiaoh}avhle aoleg Aijaehaes2 :( ktvkesh~k kohgzavhle vl vdk elzvd/ wksv }lek2 aef 3( vdk fk~asvavhle ln vdk Olzka jx Aijaehae hzzkg/ {iazs he vdk 1770s%118 Vdk olsv hoplzvaev cleci{shle nlz vdhs sv{fx hs vdav vdk pzlckss ln Hsiaoh}avhle daf khvdkz svlppkf lz was ajl{v vl svlp he olsv ln vdk Jaibaes jx vdk kef ln vdk fizsv q{azvkz ln vdk khgdvkkevd ckev{zx% Hv clevhe{kf leix he slok pkzhpdkzai aef hsl/ iavkf azkas) s{cd as Aijaeha aef Fljz{fma) {evhi vdk kef ln vdk cke/ v{zx% P{v vlgkvdkz) dlwk~kz) Aijaeha aef Fljz{fma accl{ev nlz ikss vdae a 7 pkzckev sdazk ln vdk vlvai ele/O{siho plp{iavhle he 141;
Hjhf%) 81% Hjhf%) 86 aef vdk zknkzkecks gh~ke vdkzk% 117 OcGlwae okevhles vdk ${e{s{ai jx Z{okihae svaefazfs( svzkegvd ln vdk O{siho cloo{ehvx he vdhs zkghle‖hjhf%) 81% Skk aisl Vajik 4) Shihsvza% 114 Skk D% eaicıb) ’Fljz{fma)‟ KH :% 118 OcGlwae) ’Dkaf Vat)‟ 81% 11; 11>
>1
aef caeelv vdkzknlzk jk fkkokf zkpzkskevavh~k ln vdk fkolgzapdhc fk~kilpokev ln vdk Jaibaes as a wdlik% Vdk Fkolgzapdhc Shv{avhle he vdk Jaibaes he vdk Ehekvkkevd Ckev{zx
Aivdl{gd hefh~hf{ai cle~kzshles clevhe{kf he vdk cl{zsk ln vdk ehek/ vkkevd ckev{zx) vdk kvdel/zkihghl{s jaiaeck caok vl a svaefsvhii he vdk skclef q{azvkz ln vdk ckev{zx% Nzlo vdav plhev lewazfs) ohgzavhles piaxkf vdk oamlz zlik he vdk fkolgzapdhc sdapheg ln vdk pkehes{ia% Acclzfheg vl B% Bazpav)1:0 he 1431 vdk plp{iavhle he vdk pzl~hecks ln Z{okih aef Shihsvza cleshsvkf ln cilsk vl 60 pkzckev O{sihos aef >0 pkzckev ele/O{sihos% Vdhs jzkabflwe hs zk kcvkf he Vajik 4) jkilw% Vajik 4% Plp{iavhle ln Lvvloae Jaibaes he 1431 Pzl~heck
Cdzhsvhaes
O{sihos
Gxpshks
Z{okih + Shihsvza + Vlvai
> 4 > )8 8 1 > 6%7 8 > )3 6 : 3 7%> 7 4 3 )3 3 3
3 3 7 )0 0 1 31 %4 1 ; 0 )8 7 0 ;4 %8 6 4 7 )8 7 1
: ; )1 : > 8 )8 ; ; :%6 0%8 4 )7 7 8 1 74 3%6 0%1 3 3 )8 0 ; 1 0 )1 3 3
; 8%;
37 %0
+
:%>
Mkws
0%4
Azokehaes
Vlvai
: )0 8 8 0 %: 0
1 )0 > 1 )1 7 :
: )0 8 8
1 )3 1 7 )6 6 1
: ; > ): > 8
0 %1
He vdk wksvkze Jaibae zkghles) vdk O{siho pzkskeck appkazs aisl vl da~k jkke shgehficaev% He Aijaeha) O{sihos clesvhv{vkf 70 pkzckev ln vdk plp{iavhle2 he Blsl~l) 7: pkzckev2 he Oackfleha) aiolsv 60 pkz/ ckev2 aef he Jlseha aef Dkz}kgl~hea) ;0 pkzckev%1:1 Jx clevzasv) he Skzjha aef Gzkkck) hefkpkefkev jx 1431) vdk O{siho plp{iavhle daf fwhefikf as a zks{iv ln kohgzavhle vl vdk azkas svhii nlzoheg a pazv ln vdk Lvvloae kophzk% Acclzfheg vl a Gzkkb ckes{s ln 14:1) a vlvai ln 47;)1;0 Cdzhsvhaes aef >3)>16 O{sihos $>%4 pkzckev( wkzk
Bazpav) Lvvloae Plp{iavhle) 108–110% Vdk lifkz sv{fx ln vdk ckes{s ln 1431‖ N% Abjai) ’1431 Vazhdhefk Lsoaeiı Hopazavlzi{ {efa fazh Vabshoav ~k Eùn{s )‟ )‟ Jkikvke) 1; $18;1(‖hs elw l{vfavkf% 1:1 ]kixa}bl~a) Za}pzlsvzaekehk ) 161% 1:0
>:
ih~heg vdkzk) wdkzkas fig{zks nlz 14:4 sdlw vdav vdkzk wkzk leix 11)6;0 O{sihos iknv% He 1433) vdkzk wkzk el olzk vdae 6);>0 O{sihos $0%4 pkzckev( accl{evkf nlz he Skzjha%1:: Vdk ehekvkkevd ckev{zx fig{zks plhev vl vdk pzlckss ln Hsiaoh}avhle he vdk Jaibaes as da~heg fhff kzkf kzkf oazbkfix nzlo kiskwdkzk he vdk O{siho wlzif he pzk/Lvvloae vhoks% Vdk O{siho cloo{ehvx he vdk Jaibaes skkos ek~kz vl da~k acdhk~kf a oamlzhvx% Fksphvk hvs pzlgzkss he slok zkghles ln vdk Jaibaes whvd pzkfloheaevix O{siho plp{ia/ vhle jx vdk kef ln vdk khgdvkkevd ckev{zx) vdk pzlckss ln cle~kzshle vl Hsiao was daivkf he lvdkzs av svhii ilwkz svagks he vdk pzlckss% Dkzk) wk cae agahe vksv vdk ~hajhihvx ln J{iihkv‘s vdklzx% Nhzsv) acclzfheg vl dho) ele/O{siho zk~livs azk s{pplskf vl fhk flwe leck vdk pzlckss ln cle~kzshle passks vdk ohffik plhev% Dlwk~kz) sk~kzai ele/O{siho cloo{ehvhks acdhk~kf hefkpkefkeck nzlo vdk Lvvloae svavk he vdk skclef q{azvkz ln vdk ehekvkkevd ckev{zx% Skclef) leck vdk ’kazix oamlzhvx‟ pkzhlf hs clopikvkf) h%k%) vdk plhev wdke vdk O{siho plp{iavhle hs 60 pkzckev ln vdk vlvai plp{iavhle) clevzli sdl{if sihp nzlo vdk daefs ln vdk ckevzai gl~kzeokev aef hefkpke/ fkev O{siho z{ikzs sdl{if appkaz he vdk pzl~hecks% Hefkkf) vdk sl/ caiikf pkzhlf ln axaes $ilcai elvajiks( svazvkf he vdk skclef q{azvkz ln vdk khgdvkkevd ckev{zx aef sk~kzai ln vdko acdhk~kf a iazgk fkgzkk ln hefkpkefkeck nzlo vdk ckevzai gl~kzeokev jx vdk kef ln vdk cke/ v{zx% Dlwk~kz) vdk axaes wkzk s{ppzksskf jx vdk Lvvloae gl~kze/ okev av vdk jkgheeheg ln vdk ehekvkkevd ckev{zx as vhgdvkz clevzli l~kz vdk pzl~hecks was zksvlzkf% Vdksk fk~kilpokevs clefizo vdk nacv vdav vdk pzlckss ln cle~kzshle he vdk Jaibaes caok vl a daiv m{sv jknlzk zkacdheg vdk dainwax oazb% S{ooazx
1% Vdk Lvvloae Lvvloae cleq{ks cleq{ksvv ln vdk Jaibaes Jaibaes was shohiaz shohiaz vl vdk vdk Azaj cleq{ksvs he vdk sk~kevd ckev{zx he vdav hv fhf elv jzheg ajl{v a oamlz fhsz{pvhle he vdk kclelohc ihnk ln vdk pkehes{ia% Cle~kzshle vl Hsiao asslchavkf whvd vdk cleq{ksv) vdkzknlzk) was ohehoai%
1::
OcGlwae) ’Dkaf Vat)‟ :0:=e7%
>3
:% Nliilwheg Nliilwheg vdk cleq{ks cleq{ksv) v) a ckzvah ckzvahe e fkgzkk fkgzkk ln O{siho O{siho clileh} clileh}avhle) avhle) cleshsvheg ln eloafs aef skfkevazx plp{iavhle) lcc{zzkf he vdk Jaibaes% Aivdl{gd elv as shgehficaev a nacvlz as he Asha Ohelz) O{siho clileh}avhle piaxkf ae hoplzvaev zlik he vdk spzkaf ln Hsiao he vdk Jaibaes f{zheg vdk kazix pkzhlf ln vdk Hsiaoh}avhle pzlckss% Vdk zkghles ln O{siho skvvikokev he gkekzai wkzk vdlsk whvd a olzk af~aeckf svagk ln cle~kzshle he vdk fizsv dain ln vdk shtvkkevd ckev{zx% Jx vdk skclef dain ln vdk shtvkkevd ckev{zx) dlwk~kz) clileh}avhle daf clok vl ae kef aef vdk skfkevazh}ahle ln vdk zkoaheheg eloafs he vdk Jaibaes nliilwkf sdlzvix vdkzkanvkz% 3% Vdk fizsv vwl pkzhlfs ln vdk cle~kzshle pzlckss‖’heel~avlzs‟ aef ’kazix aflpvkzs‟‖wkzk clopikvkf jx vdk 1;30s) h%k%) anvkz lek ckev{zx aef a dain% A cdazacvkzhsvhc ln vdksk pkzhlfs was vdk olzk zaphf pack ln cle~kzshle he {zjae as clopazkf vl z{zai azkas% 6% He vdk skclef dain ln vdk shtvkkev shtvkkevd d ckev{zx ckev{zx vdk pzlckss ln cle/ ~kzshle kevkzkf hevl hvs vdhzf pkzhlf‖’kazix oamlzhvx%‟ Vdk pack ln cle~kzshle heczkaskf kspkchaiix he vdk 1>60s% Hv was vdk cle/ ~kzshle aoleg vdk z{zai plp{iavhle vdav clevzhj{vkf olsv vl vdk shgehficaev fkczkask ln vdk ele/O{siho plp{iavhle) aivdl{gd lvdkz nacvlzs) s{cd as kphfkohcs) oax da~k piaxkf a zlik as wkii% ;% Whvd vdk vdk pkzhlf pkzhlf ln ’kazix oamlzhv oamlzhvx‟ x‟ aiolsv aiolsv clopikv clopikvkf kf jx vdk skc/ skc/ lef q{azvkz ln vdk khgdvkkevd ckev{zx) vdk pzlckss ln cle~kzshle caok vl a s{ffke daiv he olsv ln vdk Jaibaes% Cle~kzshle clevhe{kf leix he slok pkzhpdkzai azkas {evhi vdk kef ln vdk ckev{zx% >% Vdksk pkc{iha pkc{ihazhvhks zhvhks he vdk pzlckss ln cle~kzshle cle~kzshle iknv vdkhz oazb le vdk dhsvlzhcai k~li{vhle ln vdk pkehes{ia% Hesvkaf ln vdk kokzgkeck ln hefkpkefkev O{siho fxeasvhks) sk~kzai ele/O{siho cloo{eh/ vhks s{cckkfkf he gaheheg hefkpkefkeck nzlo vdk Lvvloae svavk he vdk ehekvkkevd ckev{zx% 7% He vdk vdk ehekvkkevd ehekvkkevd ckev{zx) ckev{zx) cle~kzs cle~kzshle hle vl vl Hsiao Hsiao he vdk Jaibaes Jaibaes was splzafhc% Vdk fkolgzapdhc hoagk ln vdk pkehes{ia was he{keckf leix jx vdk ohgzavhle ln O{sihos nzlo lek azka vl aelvdkz%
CDAPVKZ VDZKK
NLZOS) NACVLZS AEF OLVH^KS LN CLE^KZSHLE VL HSIAO HE VDK JAIBAES ^zxlehs das clookevkf vdav vdk svavhsvhcai appzlacd vl vdk q{ksvhle ln cdaegk he vdk zkihghl{s ihnk ln vdk Jaibaes f{zheg vdk Lvvloae pkzhlf hs ln gzkav ~ai{k vl vdk dhsvlzhae%1 Ek~kzvdkikss) dk ljskz~ks) s{cd ae appzlacd cae czkavk leix a vwl/fhokeshleai hoagk ln dhs/ vlzx‖vdav ln a nlzoai zkihghl{s wlzif) clopzhskf ln O{sihos aef ele/O{sihos% Svavhsvhcs fl elv aeswkz q{ksvhles s{cd as wdav pzks/ s{zk) hn aex) was he~li~kf he cle~kzshle) wdhcd skgokevs ln vdk slchkvx cle~kzvkf aef nlz wdav zkasles) lz wdav was vdk q{aihvx ln vdk cle/ ~kzvs‘ zkihghl{s ihnk% He vdk nliilwheg pagks) H sdaii affzkss slok ln vdk oamlz hss{ks jkdhef vdk nlzos) nacvlzs) aef olvh~ks ln cle~kzshle% Nlzos ln Cle~kzshle vl Hsiao he vdk Lvvloae Kophzk
Jaibae scdliazsdhp das vzafhvhleaiix ~hkwkf vdk ilcai plp{iavhle‘s affiihavhle vl vdk Lzvdlflt nahvd as a ~kdhcik ln vdkhz eavhleai cle/ schl{sekss%: Vdhs oafk ktvkesh~k cle~kzshles vl Hsiao aef vdkzknlzk a ilss ln eavhleai cleschl{sekss fh ffic{iv vl zkclechik whvd vdk eavhle/ aihsvhc nkz~lz fkolesvzavkf jx vdk Jaibae pklpiks he vdk ohffik ln vdk ehekvkkevd ckev{zx% Dhsvlzhcai m{svh ficavhle nlz cle~kzshle was nl{ef he vdk ’aggzkssh~k eav{zk‟ ln vdk zkihghle ln Hsiao) ktpzksskf he vdk vdk clec cleckp kpvv ln Dli Dlixx waz waz $chdaf (% He lvdkz wlzfs) vdk cle~kzshles wkzk fkkokf vl da~k lcc{zzkf {efkz clop{ishle‖wdkvdkz fhzkcv lz hefhzkcv% Vd{s) jx pzkskevheg vdk Hsiaoh}kf eavh~k plp{iavhle as ~hcvhos ln pkzskc{vhle) vdk eavhleai pzhfk ln vdlsk wdl daf zkoahekf Cdzhsvhae was pzkskz~kf% Vdk vdklzx ln nlzckf) oass cle~kzshles‖
^zxlehs) ’Cdaegks)‟ 17:% : Skk nlz ktaopik) Gklzgk G% Azeabhs) ’Vdk Zlik ln Zkihghle he vdk Fk~kilpokev ln Jaibae Eavhleaihso)‟ he Cdaziks aef Jazjaza Mkia~hcd) kf%) Vdk Jaibaes he Vzaeshvhle $Jkzbkikx aef Ils Aegkiks) 18>3() 11;–662 aef Gzl}fael~a) J{igazsbava eazlfelsv ) ;47–;83% 1
)
>;
wdav H caii vdk ’clkzchle vdklzx‟‖das) vdkzknlzk) o{cd he cloole whvd vdk ’cavasvzlpdk vdklzx)‟ pzkskevkf av vdk jkgheeheg ln cdapvkz vwl% Jaibae dhsvlzhaes plzvzaxkf vdk Lvvloae svavk ksskevhaiix as a zkpzkssh~k nlzck wdlsk glai was vl fk/eavhleaih}k vdk zkghle jx cle/ ~kzvheg vdk eavh~k plp{iavhle vl Hsiao% Ihvkzav{zk svzkssheg vdk clkz/ ch~k eav{zk ln Hsiaoh}avhle zaegks nzlo wlzbs vdav jihefix zkiax svkzklvxpks whvdl{v pzlpkz dhsvlzhcai m{svh ficavhle3 vl wlzbs vdav wkhgd olzk vdk nacvs cazkn{iix aef afohv vdk lpkzavhle ln slchai aef kcl/ elohc nacvlzs) xkv svhii nahi vl jzkab nzlo vdk vzafhvhleai scdkoa% He dhs asskssokev ln J{igazhae scdliazsdhp le Hsiaoh}avhle) 6 Zaf{sdk~ acv{aiix skks vdksk vwl vxpks ln wlzbs as zkpzkskevheg vwl fhsvhecv appzlacdks‖’zk~h~aihsv/oxvdlilghcai‟ aef ’slchl/kclelohc%‟ He ox ~hkw) dlwk~kz) vdk wlzbs vdav naii hevl vdk skclef cavkglzx fl elv ksskevhaiix fkpazv nzlo vdk ckevzai oxvd ln vdk fizsv cavkglzx) h%k%) vdk oxvd ln ’clkzchle%‟ Vd{s) H zkgazf vdko as fhsvhecv leix he vkzos ln slpdhsvhcavhle aef ik~ki ln scdliazsdhp% ]kixa}bl~a) he lek ln vdk olsv slpdhsvhcavkf ktaopiks ln vdk ’clkz/ chle vdklzx)‟; cazkn{iix a~lhfs {sheg vdk vkzo ’~li{evazx‟ cle~kzshle vl Hsiao jx aflpvheg vdk vkzos ’fhzkcv‟ aef ’hefhzkcv‟ lz ’kcl/ elohc‟ clkzchle% ’Fhzkcv‟ clkzchle) s{cd as cle~kzshle vdzl{gd vdk hesvhv{vhles ln sia~kzx aef fk~ hzok ) hs ~hkwkf as lcc{zzheg ’{efkz vdk clevzli aef whvd vdk pazvhchpavhle ln vdk ckevzai gl~kzeokev%‟ > He vdhs nlzo ln cle~kzshle ’vdk plsshjhihvx ln pkzsleai cdlhck) k~ke ikss) ln ~li{evazhso) hs kevhzkix ktci{fkf%‟ 7 Aivdl{gd lvdkz vxpks ln cle/ ~kzshle azk elv hesvhgavkf jx vdk gl~kzeokev aef appkaz le vdk s{z/ nack vl jk ~li{evazx) vdkx azk svhii cleshfkzkf ae ’hefhzkcv‟ clkzchle
Skk nlz ktaopik) H% Sekgazl~ ) V{zsblvl ~iafhcdksv~l pzkcdba }a b{iv{zelvl za}~hvhk ea jaigazsbhxa eazlf h fz{ghvk jaibaesbh eazlfh RVdk V{zbhsd Z{ik as ae Ljsvacik he vdk C{iv{zai Fk~kilpokev ln vdk J{igazhae Eavhle aef vdk lvdkz Jaibae Eavhles_ $Sl fia) 18;4(2 P% Pkvzl~) Safjlelseh ~kbl~k ea j{igazsbava eazlfelsv RNavkn{i Ckev{zhks nlz vdk J{igazhae Eavhle_ $Slfia) 187;(2 hfko) Pl sikfhvk ea eashihkvl RHe vdk Nllvsvkps ln Vkzzlz_ ~li% 1 $Slfia) 1847( aef H~l Aefzhc) Vdk Fk~kilpokev ln Sphzhv{ai Ihnk he Jlseha {efkz vdk He {keck {keck ln V{zbhsd Z{ik $F{zdao) 1880(% 6 Zaf{sdk~) ’Zlflph)‟ ;1–>0% ; ]kixa}bl~a) Za}pzlsvzaekehk % Hv sdl{if jk elvkf vdav ]kixa}bl~a iavkz clenksskf vdav sdk daf clenlzokf vl vdk aii/kojzacheg vlvaihvazhae plihvhcai c{iv{zk he vdk xkazs jknlzk vdk p{jihcavhle ln vdk sv{fx% Skk) A% ]kixa}bl~a) Hsvlzhvshvk‖}a hsvheava) Dhsvlzhaes‖Ajl{v vdk Vz{vd) vdk Vkzzlz) aef L{zski~ks_ }a eashihxava) }a skjk sh R Vdk Dhsvlzhaes‖Ajl{v $Slfia) 1886(% > ]kixa}bl~a) Za}pzlsvzaekehk ) 1;0% 7 Hjhf% 3
>>
jkca{sk ln vdk ’nlzckf hevkgzavhle ln vdk cleq{kzkf pklpik hevl vdk svz{cv{zk ln vdk hopkzhai okcdaehso%‟4 H% Vdk Hesvhv{vhle ln Sia~kzx as a Okvdlf ln Cle~kzshle vl Hsiao Acclzfheg vl ]kixa}bl~a) vdk cle~kzshle ln vdk Jaibae plp{iavhle vdzl{gd kesia~kokev was cdazacvkzhsvhc ln vdk hehvhai svagks ln Lvvloae ktpaeshle hevl vdk Jaibaes) a pzlckss {s{aiix pzkckfkf jx a pazvhc/ {iaz zkghle‘s acv{ai heclzplzavhle hevl vdk Lvvloae svavk% 8 Aivdl{gd {efl{jvkfix vdk Lvvloaes wl{if da~k zkgazfkf vdkhz pzhslekzs ln waz as sia~ks) H da~k plhevkf l{v he cdapvkz vwl vdav vdk Lvvloae cleq{ksv ln vdk Jaibaes was zkiavh~kix pkackn{i aef vd{s) hv hs {eihbkix vdav kesia~kokev lcc{zzkf le a scaik capajik ln he{kecheg vdk fkolgzapdhc fk~kilpokev ln vdk pkehes{ia% Vl pzl~k vdav k~kev{/ aiix olsv ln vdk sia~ks cle~kzvkf vl Hsiao) ]kixa}bl~a plhevs vl vdk pzacvhck aoleg phl{s O{sihos ln nzkkheg sia~ks {ple vdkhz cle~kz/ shle aef vl vdk ktvkesh~k Lvvloae sia~k vzafk he iavkz vhoks% 10 Vdk okvdlflilghcai hecleshsvkecx ln dkz azg{okev hs svzhbheg% He vdk fizsv piack) vdk acvhles ln phl{s O{sihos azk vabke as k ff kcvkf kcvkf jx vdk O{siho svavk aef skclef) zknkzkecks vl vdk Lvvloae sia~k/vzafk cle/ ckzeheg pklpik nzlo l{vshfk vdk Lvvloae svavk) h%k%) nzlo vdk waz }lek $fazùidazj () ()11 azk fkkokf zkik~aev vl vdk cle~kzshle ln Jaibae zkshfkevs) wdl daf vdk svav{s ln a pzlvkcvkf plp{iavhle leck vdk cleq{ksv daf jkke clopikvkf aef vdkzknlzk) cl{if elv jk kesia~kf% 1: He dhs sv{fx le vdk kvdehc jacbgzl{ef ln Lvvloae sia~ks he J{zsa) D% Sadhiihl i{ plhevs l{v vdav vdk heczkask ln sia~ks nzlo a pazvhc{/ iaz cl{evzx cloks wdke vdk iavkz was kegagkf he waz whvd vdk Lvvloae svavk) wdhik wdke vdk waz was l~kz s{cd sia~ks wkzk leix zazkix nl{ef%13 Acclzfheg vl Sadhiihl i{) ’leck vdk svavk ln waz whvd a pazvhc{iaz cl{evzx das kefkf) k~ke hn whvd vdk lcc{pavhle ln vdk iaef ln vdk kekox) vdk heczkask he vdk e{ojkz ln sia~ks nzlo vdav
Hjhf%) 1;1% Hjhf%) 1;1–;:% 10 Hjhf%) 1;:–;3% 11 Hjhf%) 1;:–;6% 1: Daihi Sadhiihl i{) ’Sia~ks he vdk Slchai aef Kclelohc Ihnk ln J{zsa he vdk Iavk 1;vd 1;v d aef Kaz Kazix ix 1>vd 1>vd Cke Ckev{z v{zhks) hks)‟‟ he hfko hfko)) Sv{fhks le Lvvloae Kclelohc aef Slchai Dhsvlzx $Hsvaej{i) 1888() 10;% 13 Hjhf%) 1:7 aef 1>0–1>>% 4 8
)
>7
cl{evzx gzaf{aiix iksskekf aef fieaiix vdkhz e{ojkz jkcaok heshg/ ehficaev%‟16 Vdk lccashleai appkazaeck ln sia~ks nzlo a cl{evzx aizkafx heclzplzavkf he vdk Lvvloae floahe1; cae leix jk ktpiahekf jx vdk iavvkz jkheg capv{zkf f{zheg ch~hi fhsv{zjaecks aiilwheg capvh~ks vl jk vzkavkf as pzhslekzs ln waz agahe%1> ]kixa}bl~a afohvs) ek~kzvdkikss) vdav cle~kzshle ln sia~ks was elv aiwaxs nlzckf j{v vdav lvdkz nacvlzs) s{cd as jkcloheg a okojkz ln aelvdkz slchai gzl{p‖vdav ln vdk nzkkf sia~k $ avıb) a}afi{ (‖was aisl a svho{i{s vl cle~kzshle%17 HH% Vdk Fk~ hzok Hesvhv{vhle as a Okvdlf ln Cle~kzshle vl Hsiao He vdk cask ln vdk cle~kzshles vl Hsiao vdzl{gd vdk hesvhv{vhle ln fk~ hzok ) vdk pzlplekevs ln vdk ’clkzchle vdklzx‟ skko vl jk clzzkcv he asskzvheg vdav nlzckf cle~kzshle le a iazgk scaik14 fhf hefkkf vabk piack% Vdk vkzo fk~ hzok zknkzs vl vdk gl~kzeokev ik~x ln oaik cdhi/ fzke nzlo vdk ele/O{siho s{jmkcv plp{iavhle) hoplskf pkzhlfhcaiix nzlo vdk jkgheeheg ln vdk finvkkevd ckev{zx lewazfs)18 fkshgekf vl fiii vdk zaebs ln vdk Maehssazx clzps% Vdk fk~ hzok was ae Lvvloae heel~avhle2 zkg{iavkf leix jx s{ivaehc iaw $ bae{e () () hv skkos vl jk a agzaev fhszkgazf ln vdk pzkckpvs ln Hsiaohc iaw vl{cdheg le vdk sva/ v{s ln vdk }hooh %:0 Hv oax aisl da~k jkke plsshjik vdav jlxs cliikcvkf
Hjhf%) 1:7% Nlz ktaopik) Sadhiihl i{‘s fava sdlws sia~ks ln J{igazhae lzhghe $aizkafx pazv ln vdk Lvvloae floahe( as iavk as 167:‖Sadhiihl i{) ’Sia~ks)‟ 1>0–1>1% 1> Skk nlz zkik~aev ikgai fhscl{zsk Vdk Hsiaohc Iaw ln Eavhles= Sdaxj e ‘s Shxaz ) vzaes/ iavkf jx Oamhf Bdaff{zh $Jaivholzk) 18>>() :18% 17 ]kiax}bl~a) Za}pzlsvzaekehk ) 1;: aef hfko) ’Hsiaoh}avhle)‟ :;8–:>0% Skk nlz shohiaz ljskz~avhle Sadhiihl i{ as wkii $lp% chv%) 1:3–1:6(% 14 Vdk zavk ln cliikcvhle ln jlxs was lek nzlo k~kzx 60 dl{skdlifs% Ksvhoavks he iavk Lvvloae sl{zcks p{v vdk vlvai e{ojkz ln cle~kzvs vl Hsiao vdzl{gd fk~ hzok av :00)000% Skk ^%I% Oèeagk) KH :) s%~% ’Fk~sdhzok)‟ :1:% 18 Aivdl{gd vdk kazihksv k~hfkeck ln vdk fk~ hzok hs nzlo 138;) zkg{iaz cliikcvhles fhf elv svazv jknlzk 1634‖skk S% ^zxlehs) ’Hshflz Giajas aef vdk V{zbhsd Fk~sdhzok)‟ Spkc{i{o) 31 $18;>() 633–663% Vdk jlxs wkzk elv cliikcvkf nzlo aii svzava ln slch/ kvx lz nzlo aii kvdehc gzl{ps% Sles ln {zjae naohihks) czanvsoke) aef vzafksoae wkzk ktci{fkf% Hv was vdk sles ln ele/O{siho pkasaevs wdl s{ppihkf vdk j{ib ln vdk oaeplwkz nlz vdk Maehssazx clzps% N{zvdkz svhp{iavhles heci{fkf vdk pzl~hshle vdav a naohix cl{if elv jk iknv whvdl{v hvs leix sle aef vdav leix ele/pzh~hikgkf zkaxa ) h%k%) elv s{ppixheg aex spkchai skz~hcks vl vdk svavk) wkzk ihajik vl fk~ hzok % :0 Skk fhsc{sshles he ^%I% Oèeagk) ’Slok Elvks le vdk Fk~sdhzok)‟ JSLAS ) :8 azh a a )‟ $18>>() 70–712 P% Whvvkb) ’ Fk~ hzok aef azh )‟ JSLAS 7) : $18;;() :71–74) aef ^asshihs Fkokvzhafks) ’Slok Vdl{gdvs le vdk Lzhghes ln vdk Fk~ hzok )‟ )‟ he Vdk Lvvloae 16 1;
>4
vdzl{gd vdk fk~ hzok daf a fhff kzkev kzkev ikgai svav{s vdae jlxs jl{gdv as sia~ks lz acq{hzkf vdzl{gd vdk pkechb as pzhslekzs ln waz) h%k%) vdk nlzokz oax da~k jkke vzkavkf as nzkkoae aef elv sia~ks) as vdk iavvkz%:1 He vdhs cask) vdk fk~ hzok cae jk zkgazfkf as shopik ohihvazx clesczhpvhle% Nlz vdk Lvvloae svavk) vdk hesvhv{vhleaih}avhle ln vdk fk~ hzok was shopix a oavvkz ln clif/jillfkf pzacvhcaihvx‖vdk zkg{/ iaz cliikcvhle ln jlxs nzlo vdk s{jmkcv pklpiks ln vdk kophzk nlzk/ svaiikf aex hzzkg{iazhvx he vdk s{ppix ln ajik/jlfhkf vzllps% :: Hv hs elv ox hevkevhle vl fhsc{ss dkzk vdk hesvhv{vhle ln vdk fk~ hzok he aex fkvahi%:3 Zavdkz) H whii nlc{s ox avvkevhle le vdk navk ln vdk jlxs skikcvkf he vdhs nasdhle% Anvkz jkheg jzl{gdv vl vdk caphvai aef nlzoaiix cle~kzvkf vl Hsiao) h%k%) gh~ke O{siho eaoks aef chzc{o/ chskf) olsv ln vdk jlxs wkzk skev vl Aeavliha wdkzk vdkx wl{if
Kohzavk $1300–1348( ) kf% K% ]acdazhafl{ $Zkvdxoele) 1883() :3–31% Acclzfheg vl Whvvkb) a m{svhficavhle ln fk~ hzok kthsvs he Sdafi h iaw) eaokix) vdav Cdzhsvhaes cle/ ~kzvkf nzlo pagaehso anvkz vdk zk~kiavhle ln vdk Q{zae) h%k%) vdk wdlik Jaibae Sia~hc plp{iavhle) azk elv kevhvikf vl vdk svav{s ln }hooh % Fkokvzhafks p{vs nlzwazf vdk lphehle vdav fk~ hzok was m{svhfikf jx a c{svlo glheg jacb vl vdk kazix Lvvloae vhoks ln nzlevhkz jkxs) wdl da~k hehvhavkf vdk pzacvhck he vdkhz floahes) whvd vdk s{ivaes clevhe{heg ae hesvhv{vhle) ’wdhcd daf aizkafx jkke he nlzck nlz sk~kzai fkcafks‟ aef okzkix hohvavheg vdk {ç/jkxhs % Vd{s) as he vdk cask whvd oaex lvdkz ilcai vatks) vdk fk~ hzok appkazs vl jk a clevhe{avhle ln a vat aizkafx he nlzck% :1 Wdhik H cae acckpv vdk azg{okev vdav Sdazh a fhf elv okae o{cd vl vdk ga}hs aef vdkhz vdkhz ilzfs $Fkokvzhafks) $Fkokvzhafks) ’Lzhghes) ’Lzhghes)‟‟ :8( he vdk nl{zvkkevd nl{zvkkevd ckev{ ckev{zx) zx) hv hs p{}/ }iheg vl ok vdav vdk fk~ hzok was elv fhsc{sskf he vdk shtvkkevd ckev{zx jx vdk Lvvloae m{zhsvs vzxheg vl dazoleh}k s{ivaehc iaw whvd vdk Sdazh a% Nlz vdlsk m{zhsvs) vdk q{ksvhle ln vdk ikgaihvx ln vdk fk~ hzok fhf elv svhz aex clevzl~kzsx) {eihbk vdk ikgaihvx ln casd ~abın s lz ’vdk iaw ln nzavzhchfk%‟ Vdkzk o{sv da~k jkke slokvdheg vl aiilw vdk Lvvloaes vl svkkz awax nzlo clevzl~kzsx aef pzkskz~heg vdk nzkkoke svav{s ln vdk cliikcvkf nzlo vdk s{jmkcv plp{iavhle jlxs hs ckzvaheix a plsshjhihvx% Vdk fhff kzkev kzkev ikgai svav{s ln vdk vwl gzl{ps ln jlxs hs cikazix hefhcavkf jx Blesvaevhe Ohdahil~h Okolhzs $Okolhzs ln a Maehssazx) vzaes% Jkemaohe Svli}) clookevazx S~av Sl{ckb $Aee Azjlz) 187;() 1;8(= ’Aef vdk jlxs wdlo dk vabks he dhs lwe iaef azk caiikf chihb % Kacd lek ln vdko cae ika~k dhs pzlpkzvx vl wdlok~kz dk waevs anvkz dhs fkavd% Aef vdlsk wdlo dk vabks aoleg vdk kekohks azk caiikf pkefhb % Vdksk iav/ vkz anvkz vdkhz fkavds cae ika~k elvdheg2 zavdkz) hv glks vl vdk kopkzlz) ktckpv vdav hn sloklek cloplzvs dhoskin wkii aef hs sl fkskz~heg vdav dk jk nzkkf $hvaihcs ohek() dk oax ika~k hv vl wdlok~kz vdk waevs%‟ :: Skk Okolhzs ln a Maehssazx ) 1;4–;8= ’Hn dlwk~kz vdk e{ojkz ln vdko nzlo kekox pklpiks flks elv s{ffick) vdke dk vabks nzlo vdk Cdzhsvhaes he k~kzx ~hiiagk he dh dhss iae iaef) f) wd wdll da~ da~kk jlx jlxss % % %‟ :3 Vdk olsv fkvahikf vzkavokev ln vdk s{jmkcv hs svhii vdk wlzb ln %D% [}{eçaz ıiı) Lsoaeiı Fk~ikvh Vk bhiêvıefae Vk bhiêvıefae Bapıb{i{ Lcabiazı $Aebaza) 1863(% Skk aisl Jashihbk Papl{iha) [zspz{eg {ef Wkske fkz ’Beajkeiksk‟ ho lsoaehscdke Zkhcd $O{ehcd) 18>3(2 Oèeagk) ’Fk~sdhzok‟2 G% Gllfwhe) Vdk Maehssazhks $Ilefle) 1886(2 aef Vs% Gklzghk~a) Kehvcdazhvk ~ jaigazsbhvk }koh RVdk Maehssazhks he vdk J{igazhae Iaefs_ $Sl fia) 1844(%
)
>8
spkef sk~kzai xkazs jknlzk jkheg afohvvkf vl vdk Maehssazx vzaheheg scdllis he vdk caphvai as ackoh l iaes aef svhii iavkz hevl vdk kihvk clzps ln vdk azox% Vdk olsv pzlohsheg wkzk afohvvkf zhgdv awax vl vdk paiack scdlli $kefkz{e okbvkjh ( as hç l iaes2 a ~kzx soaii e{ojkz ln vdksk) anvkz ’gzaf{avheg‟ vdzl{gd sk~kzai ik~kis ln kf{cavhle) wl{if jkclok okojkzs ln vdk pkzsleai kevl{zagk ln vdk s{ivae% Vdksk wkzk gzaevkf vdk dhgdksv plsvs he vdk svavk ch~hi skz~hck% :6 Lvdkzs lcc{phkf plshvhles ln iksskz hoplzvaeck% K~kev{aiix) jx vdk ohffik ln vdk shtvkkevd ckev{zx) a shgehficaev plzvhle ln vdk svavk appazav{s daf jkclok svaff kf kf olsvix whvd cafzks zkcz{hvkf vdzl{gd vdk fk~ hzok % He lvdkz wlzfs) vdk pklpik fzawe hevl vdk Maehssazx clzps vdzl{gd vdk hesvhv{vhle jkcaok he kff kcv kcv vdk z{iheg kihvk ln vdk Lvvloae svavk%:;
Hv hs a wkii/belwe nacv vdav sheck vdk vhok ln Okdokf HH) wdke nlz vdk fizsv vhok vdk lffick ln vdk Gzaef ^h}hkz was gzaevkf vl a pkzsle ln fk~ hzok lzhghe $Oado{f Pasda/h ^kih) olsv pzljajix a Skzjhae‖skk V% Sva~zhfks) Vdk S{ivae ln ^k}hzs= Vdk Ihnk aef Vhoks ln vdk Lvvloae Gzaef ^k}hz Oado{f Padfa Aegkil~h $16;:–1676( $Ikhfke) :001() 76–7;() {evhi vdk kef ln vdk sk~kevkkevd ckev{zx) vdhs l ffick jkcaok vdk ktci{sh~k pzkzlgavh~k ln pklpik cloheg nzlo fk~ hzok chzciks% Sk~kzai ln vdksk dhgdix vz{svkf pklpik k~ke s{cckkfkf he jkcloheg sles/he/iaw vl vdk s{ivae% Skk nlz vdk iavvkz nacv) [% Abb{vax) Kefkz{e Okbvkjh $Aebaza) 1846() 108–116% :; Vdhs slchai svaefheg slokdlw flks elv clzzksplef vl vdk fkshgeavhle ln sia~k $b{i () wdhcd was vdk vdk appkiiavhle appkiiavhle clooleix clooleix avvzhj{vkf avvzhj{vkf vl vl vdk Maehssazhks Maehssazhks he vdk sl{zcks% sl{zcks% Vdhs fkshgeavhle hs lnvke ohs{efkzsvllf as clzzksplefheg vl ’sia~k‟ he vdk olfkze skesk ln vdk wlzf) h%k%) lek jl{ef he skz~hv{fk as vdk pzlpkzvx ln a pkzsle) hopix/ heg vdav vdk Maehssazhks aiwaxs zkvahekf vdk ikgai svav{s ln sia~ks% Vdkzk hs k~hfkeck hefkkf vdav he vdk ohffik he vdk finvkkevd ckev{zx slok ln vdko wkzk zkgazfkf as s{cd acclzfheg vl Hsiaohc iaw aef cl{if jk l ffichaiix oae{ohvvkf‖skk nlz fhsc{s/ shle Oèeagk) ’Elvks)‟ >>–70% As plhevkf l{v ajl~k) vdkzk ohgdv da~k jkke vwl cavkglzhks ln Maehssazhks he vdk finvkkevd aef shtvkkevd ckev{zhks= nzkkoke‖vdlsk wdl wkzk cliikcvkf vdzl{gd vdk fk~ hzok ) aef sia~ks‖vdlsk acq{hzkf as sia~ks aef pzhs/ lekzs ln waz% Hv skkos) dlwk~kz) vdav jx vdk ohffik ln vdk sk~kevkkevd ckev{zx khvdkz vdkhz ikgai svav{s was hzzkik~aev lz vdk skclef cavkglzx ln Maehssazhks das fhs/ appkazkf% Pa{i Zxca{v) nlz ktaopik) fkfieks ’b{i ‟ he vdk skclef dain ln vdk sk~ke/ vkkevd ckev{zx as= ’S{cd as zkckh~k aex wagks lz pax cloheg nzlo vdk Ktcdkq{kz) lz aex lffick fkpkefheg le vdk Czlwe) da~k vdk vhvik ln B{i ) % % % aef hvhv hs hs ol olzk dlel{zajik vdae vdk clefhvhle aef eaok ln S{jmkcv ‟ $P% Zxca{v) Vdk Pzkskev Svavk ln vdk Lvvloae Kophzk $Ilefle) 1>>4() 4(% Oèeagk $’Elvks)‟ >>() nliilwheg vdhs fkfiehvhle aef slok lvdkz zknkzkecks vl vdk ’ b{i ‟ as ’lek wdl hs kezliikf he svavk skz~hck)‟ pzlplsks vdav ’b{i ‟ das) he olsv clevktvs) vdk okaeheg ln ’skz~aev‟ lz k~ke ’l ffickz%‟ He ox ~hkw) dlwk~kz) vdksk vwl wlzfs svhii jzheg vl ohef olfkze elvhles vdav fl elv clzzksplef kevhzkix vl vdk Lvvloae zkaihvx% H pzlplsk) anvkz Zaf{sdk~) wdl zknkzs vl vdk fk~ hzok zkcz{hvkf kihvk as ’elokebiav{za)‟ vl fksczhjk vdko {sheg vdk vkzo ’elokebiav{zcdhb)‟ a sxelexo ln ’appazavcdhb)‟ h%k%) a s{jlzfheavk {eq{ks/ vhleajix ilxai vl vdk ikafkz aef aisl he~li~kf he vdk svavk appazav{s% Zaf{sdk~ das he ohef vdk n{ecvhleai shohiazhvhks jkvwkke vdk Lvvloae svavk lzgaeh}avhle aef vdk zkckev vlvaihvazhae zkghoks he Kasvkze K{zlpk% Skk K% Zaf{sdk~) ’Lsoaesbava {pza~/ ikecdksba elokebiav{za pzk} T^H–T^HH ~% $Olelpli ea ’fk~sdhzokvava‟ ~azd{ :6
70
Ekhvdkz vdhs ke~hajik $jx clevkoplzazx svaefazfs( cazkkz pavd ln vdk fk~ hzok jlxs elz vdk ekkfs ln vdk svavk cae kvdhcaiix m{svhnx vdk cliikcvhle aef cle~kzshle ln xl{eg pklpik nzlo vdk Jaibae plp{ia/ vhle he vdhs lzgaeh}kf nasdhle% Jx aex svaefazf) vdk zkol~ai ln a jlx nzlo dhs naohix o{sv da~k jkke a vza{oavhc k~kev nlz jlvd paz/ vhks%:> Azeabhs):7 nliilwheg Ghjjles):4 das k~ke pzlplskf vdav vdk vdzkav ln vdk fk~ hzok sp{zzkf e{okzl{s cle~kzshles he vdk z{zai azkas ln Jlseha) Oackfleha) Vdkssaix aef Vdzack% Acclzfheg vl Azeabhs) ’vdk {zgk aoleg vdk Cdzhsvhae pkasaevs vl bkkp vdkhz sles) wdl wkzk olzk hoplzvaev vl vdko vdae vdk nahvd ln vdkhz nlzknavdkzs) zks{ivkf he e{okzl{s cle~kzshles vl Hsiao%‟ Lek wlefkzs) dlwk~kz) hn vdav was vdk cask) wdx vdk olsv ktvkesh~k cle~kzshle ln pkasaevs lcc{zzkf he vdk sk~kevkkevd ckev{zx) jx wdhcd vhok vdk fk~ hzok was leix lcca/ shleaiix appihkf%:8 Dlwk~kz) zkacvhles vl vdk fk~ hzok pzljajix fhff kzkf kzkf nzlo lek pkzhlf vl vdk ektv% Anvkz aii) vdk hesvhv{vhle wkev vdzl{gd sk~kzai svagks ln fk~kilpokev he hvs aiolsv vdzkk ckev{zhks ln kthsvkeck) as fhf vdk pkzckpvhle ln Lvvloae O{sihos aef ele/O{sihos ln vdk fk~ hzok % Vdk fizsv) nlzoavh~k) pkzhlf ln fk~kilpokev clhechfkf zl{gdix whvd vdk czkavhle ln vdk Maehssazx clzps he vdk iasv q{azvkz ln vdk nl{zvkkevd ckev{zx% Vdk Maehssazx clzps wkzk hehvhaiix sva ff kf kf jx pzhs/ lekzs ln waz aef iavkz le jx capvh~k jlxs wdl daf jkke gh~ke ae Hsiaohc {pjzhegheg) a pzacvhck n{iix he ihek whvd vdk ’ohihvazx sia~ks‟ vzafhvhle he pzk/Lvvloae O{siho svavks%30 Hv hs plsshj plsshjik ik vdav vdav Jaxa}hf Jaxa}hf H ~iasva‖paz~h h ~vlzh ~iasva‖paz~h ~vlzh kvap( RLvvloae RLvvloae Elokebiav Elokebiav{za {za he vdk 1;vd–17 1;vd–17vd vd Ckev{zhk Ckev{zhks= s= Fk~sdhzok s‘ s‘ Olelplix ln Plwkz‖Nhzsv aef Skclef Pkzhlf_‟ $oae{sczhpv(% H vdaeb vdk a{vdlz nlz pzl~hfheg ok whvd vdk oae{sczhpv ln vdhs pzl~lcavh~k aef lzhgheai sv{fx% :> Nlz ktaopik) he vdk cliikcvh~k dhsvlzhcai okolzx ln vdk Jaibae pklpiks) vdk fk~ hzok hs belwe as ’vdk vzhj{vk ln jillf‟‖skk Oèeagk) ’Elvks)‟ >6% Vdkzk azk q{ksvhles) dlwk~kz) as vl dlw naz jacb vdhs dhsvlzhcai okolzx favks aef dlw hv was nlzokf% Acclzfheg vl O% Bhki) vdhs cliikcvh~k dhsvlzhcai dh svlzhcai okolzx flks elv ktvkef jkxlef vdk bızcaiı {pdka~ais av vdk kef ln vdk khgdvkkevd ckev{zx aef vdav hv was cleshfkzajix sdapkf jx vdk zhsk ln eavhleaihso aoleg vdk Jaibae pklpiks av vdk jkgheeheg ln vdk ehekvkkevd ckev{zx‖skk Bhki) Azv aef Slchkvx) 66% :7 Azeabhs) ’Zkihghle)‟ 1:1% :4 D%A% Ghjjles) Vdk Nl{efavhle ln vdk Lvvloae Kophzk $Ltnlzf) 181>() 114–118% :8 Azeabhs $’Zkihghle)‟ 1:1( jkihk~ks vdav Hsiaoh}avhle was whfkspzkaf he z{zai azkas vdzl{gd vdk finvkkevd) shtvkkevd aef sk~kevkkevd ckev{zhks) wdhik he {zjae clo/ okzchai azkas cle~kzshle vl Hsiao was ekgihghjik% Lj~hl{six) dk o{sv da~k jkke {eawazk ln slok ln vdk fkolgzapdhc henlzoavhle fkolesvzavkf he vdk pzkckfheg cdapvkz% 30 Nlz vdk fkpilxokev ln sia~ks nlz ohihvazx p{zplsks he kazix Hsiaohc vhoks) skk P% Czlek) Sia~ks le Dlzsks= Vdk K~li{vhle ln vdk Hsiaohc Plihvx $Ilefle) 1840(%
)
71
was pzlopvkf vl lzfkz vdk fizsv cliikcvhle ln jlxs nzlo vdk Jaibae ele/O{siho plp{iavhle he vdk iasv fkcafk ln vdk ckev{zx jkca{sk ln a sdlzvagk ln sia~ks he vdhs pkzhlf% 31 Jx vdk vhok ln Okdokf HH) vdk fk~ hzok was a zkg{iaz pzacvhck) aivdl{gd elv as nzkq{kev he hvs appih/ cavhle as hv was vl jkclok he vdk shtvkkevd ckev{zx% He vdhs nlzoa/ vh~k pkzhlf) vdk fk~ hzok olsv ihbkix azl{skf ekgavh~k nkkihegs he vdk aff kcvkf kcvkf plp{iavhle as wkii as whvdhe vdk O{siho cloo{ehvx aef kspkchaiix he vdk O{siho iaefkf azhsvlczacx) wdhcd daf jx vdke ksvaj/ ihsdkf hvskin he Aeavliha aef Z{okih‖ {c { c jkxi xikkz) ga}h ikafkzs) vzhjai cdhkns) kvc% Vdk iavvkz nkiv vdkhz plihvhcai plwkz vdzkavkekf jx vdk heczkasheg he{keck ln vdk Maehssazhks he plihvhcai chzciks% 3: Vdhs ljskz/ ~avhle jzhegs {p leck olzk vdk s{jmkcv ln vdk svz{ggik jkvwkke vdk ga}h/fkz~hsd ohihk{ aef vdk ckevzaihsv/cleskz~avh~k ohihk{ fhsc{sskf he cdapvkz lek% Hv was elvkf vdkzk vdav Jaibae cle~kzvs vl Hsiao oax da~k piaxkf a zlik he fkchfheg vdk l{vclok ln vdk cle hcv% Vdhs was acdhk~kf he vdk zkhge ln Okdokf HH whvd vdk iavvkz‘s ktkc{vhle ln vdk Gzaef ^h}hkz Daihi Çaefaziı aef slok ln vdk jkxs) j{v olzk hoplzvaevix jx vdk sk~kzk ihohvavhles hoplskf av vdav vhok le pzh/ ~avk lwekzsdhp ln iaef $vdk azhsvlczacx‘s pzhok sl{zck ln kclelohc plwkz( aef vdk ksvajihsdokev ln svavk iaeflwekzsdhp as floheaev% Nzlo vdk vhok ln Okdokf HH {evhi vdk kef ln vdk shtvkkevd cke/ v{zx nlzokz fk~ hzok zkcz{hvs floheavkf Lvvloae plihvhcai ihnk% As naz as gl~kzeokev cafzks wkzk cleckzekf) hv was av vdhs vhok vdav vdk lzgaeh}avhleai pzhechpiks aef skikcvhle czhvkzha wkzk p{v he piack% Av vdk saok vhok) vdk kclelohc nl{efavhles ln ckevzaih}kf gl~kzeokev $svavk fhzkcvkf kclelox aef fiea eaec ecks ks(( ae aeff vd vdkk fk~ hzok s‘ s‘ clevzli l~kz vdk svavk appazav{s wkzk fizoix ksvajihsdkf%33 As vdk oahe sl{zck ln cafzks nlz vdk ohihvazx/j{zka{czavhc svavk appazav{s he vdhs pkzhlf) vdk fk~ hzok hesvhv{vhle k~li~kf nzlo jkheg a pkzhlfhc hevabk ln ohih/ vazx zkcz{hvs vl jkheg vdk nl{efavhle ln vdk Lvvloae z{iheg kihvk% He ox lphehle) he shtvkkevd/ckev{zx fk~ hzok hesvhv{vhle azl{skf ohtkf nkkihegs aoleg ele/O{sihos aef O{sihos% Hv jkcaok k~hfkev nlz okojkzs ln jlvd cloo{ehvhks vdav he affhvhle vl zkol~heg Cdzhsvhae cdhifzke nzlo vdkhz naohihks aef clevzhj{vheg vl vdk heczkas/ heg svzkegvd ln vdk O{siho cloo{ehvx) vdk fk~ hzok was aisl a wax
Skk S{gaz) Sl{vdkasvkze K{zlpk ) ;7% Skk nlz a shohiaz ljskz~avhle D% eaicıb) KH :) s%~% ’Gd{i o) h~‖Lvvloae Kophzk)‟ 104>% 33 Zaf{sdk~) ’Elokebiav{za)‟ ;3% 31 3:
7:
ln jzkabheg awax nzlo vdk svav{s ln zkaxa aef ol~heg hevl vdk pzh~/ hikgkf z{iheg ciass% Hv was) vd{s) a okaes ln acq{hzheg pzksvhgk) plwkz aef olekx% Wk da~k he vdhs pkzhlf k~hfkeck ln Cdzhsvhae pazkevs xaxa/ja ı vzxheg vl jzhjk vdk dkafs ln vdk {ehvs cliikcvheg cdhifzke $ xaxa/ja (ı vl so{ggik vdkhz sles hevl vdk zaebs ln vdk Maehssazhks) k~ke vdl{gd vdkx fhf elv okkv vdk zkcz{hvokev czhvkzha) as wkii as ln pazkevs vzx/ heg vl j{x vdkhz sles l ff %36 N{zvdkzolzk) sheck hv hs {eihbkix vdav vdk fk~ hzok cdhifzke ${s{aiix fzanvkf jkvwkke vdk agks ln 16 vl 14( wl{if nlzgkv aii ajl{v vdkhz lzhghes) eavh~k iaef aef zkiavh~ks) hv oax da~k lcc{zzkf vl vdk pazkevs ln vdk fk~ hzok s vdav ckzvahe af~aevagks ohgdv nliilw vdk kezliiokev ln vdkhz sle he vdk Maehssazx clzps) elv leix nlz vdk jlx dhoskin j{v aisl nlz vdk naohix as a wdlik% 3; Vdk casks ln Hjzadho Pasda) a fk~ hzok ln Gzkkb lzhghe) wdl dkif vdk lffick ln Gzaef ^h}hkz nlz vdhzvkke xkazs f{zheg vdk zkhge ln Sùikxoae H) aef wdl was belwe vl da~k nkavdkzkf dhs zkiavh~ks‘ eksvs) aef ln Okdokf Slblii{) a Gzaef ^h}hkz nlz finvkke xkazs) wdl dkipkf vl ksvajihsd a Skzjhae Azcdjhsdlpzhc he Pk he 1;;7 whvd dhs jzlvdkz as azcd/ jhsdlp) azk elvlzhl{s% Olzkl~kz) as S{gaz plhevs l{v) ’wdhik vdk fkkfs ln vdk olsv naol{s azk vdk jksv belwe) hv hs olzk vdae ihbkix vdav iksskz gzaefkks acvkf he a shohiaz oaeekz%‟3> Wk ohgdv aisl okevhle vdk cask ln vdk Jlsehae O{sihos) wdl) fksphvk jkheg zkckevix cle~kzvkf vl Hsiao) zkq{ksvkf vdav vdkhz cdhifzke jk kihghjik nlz vdk fk~ hzok %37 Hv hs belwe) nlz hesvaeck) vdav as kazix as 1;1;) 1)000 jlxs ln Jlsehae O{siho pazkevagk wkzk fzawe hevl vdk Maehssazx clzps%34 Lj~hl{six) av vdhs plhev vdk fk~ hzok was pkzckh~kf jx vdksk pklpik as a pzh~hikgk% A shohiaz zk/k~ai{avhle lcc{zzkf he vdk O{siho cloo{ehvx as wkii% Le vdk lek daef) lpplshvhle vlwazfs vdk fk~ hzok /zahskf /zahskf kihvk fhf elv
Skk S{gaz) Sl{vdkasvkze K{zlpk ) ;4) aef Oèeagk) ’Fk~sdhzok)‟ :1:% Skk nlz fhsc{sshle S{gaz) Sl{vdkasvkze K{zlpk ) ;4% eaicıb das k~ke ljskz~kf casks wdkzk zkiavh~ks ln vdk jlxs wkzk ktkopvkf nzlo paxheg vdk ch}xk % He lvdkz wlzfs) vl da~k a cdhif kezliikf he vdk Maehssazx clzps oax da~k jkke zkgazfkf as a ’q{ash/ ohihvazx skz~hck)‟ clopazajik vl vdk lvdkz skz~hcks pkznlzokf jx fkzjkevch ) s ) ~lxe{b s) s) ckikpbk ae ckikpbk aes) kvc%) aisl kevhviheg lek vl ktkopvhle nzlo ch}xk ‖skk) eaicıb) ’ h}xa%‟ 3> Hjhf% Vdk s{jmkcv ln vdk fk~ hzok s‘ s‘ he{keck he vdk k~kzxfax ihnk ln vdkhz eavh~k iaefs hs ~kzx ihvvik he~ksvhgavkf% Acclzfheg vl Gklzghk~a $ Kehvcdazhvk ) 83() vdk fhshe/ vkzksv aoleg Jaibae scdliazs cae jk avvzhj{vkf vl vdkhz pkzckpvhle ln vdksk jlxs as hesvz{okevs ln a nlzkhge plwkz% 37 Oèeagk) ’Fk~sdhzok)‟ :11% 34 Hjhf% Vdk sl{zcks spkchnx vdav hv was av ikasv kes{zkf vdav vdk jlxs wkzk hgel/ zaev ln V{zbhsd% 36 3;
)
73
fhsappkaz% Zaf{sdk~) nlz ktaopik) chvks e{okzl{s ktaopiks ln zkskev/ okev le vdk pazv ln O{sihos) kspkchaiix he Aeavliha) vlwazfs vdk Lvvloae ksvajihsdokev) wdhcd he hvs ’kvdehc hoagk appkazkf cilskz vl vdk Cdzhsvhae zkaxa he vdk Jaibaes vdae vl vdk Aeavlihae V{zbl/ oaes%‟38 Le vdk lvdkz daef) O{sihos aisl zkaih}kf vdav vdk fk~ hzok was a wax vl cihoj vdk slchai iaffkz aef vzhkf vl he fiivzavk vdk sxs/ vko% Jx vdk ohffik ln vdk shtvkkevd ckev{zx aelvdkz pzlckss jkgae‖ vdk kezliokev ln sles ln fk~ hzok s hevl vdk clzps% Vdk afohsshle ln nzkkjlze O{sihos hevl vdk Maehssazx clzps cdazacvkzh}kf vdk ektv pkzhlf ln vdk fk~kilpokev ln vdk hesvhv{vhle% Dkeck vdk fk~kilpokev ln vdk fk~ hzok hesvhv{vhle he vdk skclef pkzhlf cleshsvkf he hvs k~li{vhle nzlo ae hesvhv{vhle ln ohihvazx hoplz/ vaeck leix) hevl a oamlz okaes ln zkpzlf{cheg ln vdk gl~kzeokev appazav{s% He vdk wlzfs ln Zaf{sdk~= L~kz vdk ghaev ajxss ln slchai fhff kzkevhavhle) kzkevhavhle) vdk Lvvloaes j{hiv vdk jzhfgk ln vdk fk~ hzok as okaes ln zkaih}heg vdk cleekcvhle hoplzvaev vl k~kzx a{vdlzhvazhae zkghok jkvwkke vdk oassks aef vdk z{iheg kihvk%60
Vdk ektv pkzhlf) clookecheg av vdk jkgheeheg ln vdk sk~kevkkevd ckev{zx) was a vhok ln ’vlvai olelplix‟ ln vdk fk~ hzok s l~kz vdk sl{zcks ln plwkz) plihvhcai as wkii as kclelohc) he vdk Lvvloae svavk% Vdhs ’vlvai olelplix‟ ln plwkz was gh~ke cleczkvk ktpzksshle he vdk Maehssazhks‘ s{cckssn{i kihoheavhle ln Lsoae HH $1>14–1>::() wdl appazkevix vzhkf vl c{v flwe vdkhz he {keck l~kz vdk plihvhcai ihnk ln vdk svavk% He affhvhle vl hvs zlik he clevzliiheg vdk gl~kzeokev appa/ zav{s) vdk he{keck ln vdk fk~ hzok s spzkaf vl vdk kclelohc spdkzk as wkii% Vdk iavvkz fk~kilpokev was zkaih}kf vdzl{gd vdk sxsvko ln vat nazoheg $hivh}ao () wdhcd zaphfix spzkaf hevl vdk gl~kzeokev skc/ vlz ln vdk kclelox av vdk kef ln vdk shtvkkevd ckev{zx) zkpiacheg vdk vhoaz sxsvko% Vdk hivh}ao sxsvko piackf vdk vat nazokz he vdk plshvhle ln ktkzvheg vkoplzazx fiscai clevzli l~kz pazvhc{iaz sl{zcks ln zk~ke{k) aef czkavkf shgehficaev lpplzv{ehvhks nlz vdk acc{o{ia/ vhle ln olekx jx fieaechai spkc{iavhle aef vdk l~kz/ktpilhvavhle ln vatpaxkzs% Vdk hivh}ao sxsvko appkazkf aisl vl jk vdk pkznkcv sli{vhle nlz he~li~heg vdk plihvhcai kihvk he vdk fhsvzhj{vhle ln wkaivd he a svavk/ lzhkevkf kclelox% Hv hs elv s{zpzhsheg vdav nzlo vdk jkgheeheg ln
38 60
Zaf{sdk~) ’Elokebiav{za)‟ 38% Hjhf%) 31%
76
vdk sk~kevkkevd ckev{zx lewazfs a shgehficaev plzvhle ln vdk vat nazokzs caok nzlo aoleg vdk fk~ hzok /zahskf /zahskf z{iheg kihvk%61 He vdhs pkzhlf) vdk kezliiokev ln vdk sles ln pzk~hl{s fk~ hzok s hevl cab} b}aaf ( k aef lvdkz nzkkjlze O{sihos) vdk sxsvko $belwe as b{il i{) lca b{ibazfk h h $jzlvdkz ln vdk b{i agaçhza ı ı wdl wkzk zkghsvkzkf as b{ibazfk ( lz agaçhza $appzkevhck ln vdk aga () jkcaok zkg{iaz pzacvhck%6: Jx vdk 1>60s) vdk zaebs ln vdk Maehssazhks wkzk sl swliike whvd s{cd pklpik 63 vdav vdk zkg{iaz cliikcvhle ln jlxs was el ilegkz ekckssazx% 66 Ek~kzvdkikss) Hjhf%) 64% Ae ktaopik ln vdhs sxojhlshs ln plihvhcai aef kclelohc plwkz) chvkf jx Zaf{sdk~) cae jk skke he vdk cask ln Dasae Pasda) wdl he 1>:0 ljvahekf as a vat nazo vdk wdlik pzl~heck ln Vzaji{s ao $whvd hvs ckevkz Vzhplih) Ikjaele(% Le dhs pazv) dk was ihajik vl vdk svavk vzkas{zx nlz vdk kelzol{s aol{ev ln 33)7>0)000 abçk s% s% Dlwk~kz) av vdk saok vhok Dasae Pasda was applhevkf as gl~/ kzelz ln vdk pzl~heck2 vd{s) anvkz paxheg l ff dhs f{ks) dk was ajik vl ktpilhv vdk kclelohc zksl{zcks ln vdk pzl~heck nlz dhoskin% Wdav dk was ajik vl oabk) wk cae leix g{kss% Vdhs cask hs a vxphcai ktaopik ln vdk lpplzv{ehvhks pzkskevkf jx vdk hivh/ }ao sxsvko vl a s{cckssn{i okojkz ln vdk elokebiav{za% Vdk pkzsle he q{ksvhle was eljlfx kisk j{v vdk n{ecvhleazx Faoaf Dasae Pasda) vdk sle ln a Maehssazx nzlo Çavaica% Dhs cazkkz jkgae he vdk paiack scdlli) aef ikf vl vdk plshvhles ln cdhkn ln vdk paiack gavkbkkpkzs) cdhkn ln vdk hopkzhai svajiks aef vdke vl vdk gl~/ kzeokev plshvhles ln gl~kzelz) afohzai ln vdk kkv aef ~h}hkz% Dk s{cckkfkf he jkcloheg aisl a okojkz ln vdk zlxai naohix‖sle/he/iaw $ faoaf ( ln vdk s{ivae% Vdk ilwkz kcdkiles ln vdk elokebiav{za) dlwk~kz) jkek fivkf as wkii) aivdl{gd le a soaiikz scaik% Aelvdkz ktaopik gh~ke jx Zaf{sdk~ hs vdk cliikcvhle ln ch}xk nzlo vdk Jaibae pzl~hecks he 1>00–1>01% Aii vat cliikcvlzs wkzk nzlo vdk zaebs ln vdk Maehssazhks ln vdk sht fh~hshles he vdk caphvai $aivı jþiùb daibı (% Vdk cliikcvhle ln ch}xk nzlo vdk zkghle ln Ek~zlblp) nlz ktaopik) was kevz{svkf vl vdk fk~ hzok s ln vdk s‘ fh~hshle) eavh~k vl vdk saok zkghle% He vdk zkghle hvskin) vdkx wkzk asshsvkf shiadfaz s‘ jx vdk Maehssazx Blz{c{ Jabh Jkx) ih~heg he vdk chvx ln Ek~zlblp% Dk) he dhs v{ze) was a pzlvègè ln vdk fknvkzfaz ln vdk pzl~heck ln Z{okih) Ajf{ijabh knkefh) aisl ln fk~ hzok lzhghe% Vdk iavvkz was lj~hl{six vdk dhgdksv/piackf okojkz ln vdk eloke/ biav{za he vdk cdahe aef hv was {efkz dhs a{sphcks vdav vdk vat cliikcvhle was zkai/ h}kf% Vdkzk cl{if jk el fl{jv vdav aii ln vdk ihebs he vdk elokebiav{za cdahe pzlfivkf nzlo vdhs lpkzavhle% Acclzfheg vl Zaf{sdk~) vdk elokebiav{za clevzliikf aef jkekfivkf nzlo svavk lwekzsdhp vl s{cd ktvkev vdav wk cae spkab ln ’eloke/ biav{za lwekzsdhp‟ hesvkaf% 6: Jkca{sk ln vdk he{t ln pklpik pzk~hl{six ’elv kihghjik‟ nlz vdk Maehssazx clzps) jx ’ fk~ hzok s‟ s‟ he vdhs pkzhlf) H fkfiek vdlsk wdl wkev vdzl{gd vdk sxsvko ln scdlli/ heg) ksvajihsdkf he vdk pzk~hl{s ckev{zhks nlz vdk ekkfs ln vdk ohihvazx aef gl~kze/ okev appazav{s) j{v wdl wkzk el ilegkz ktci{sh~kix cliikcvkf aoleg vdk s{jmkcv plp{iavhle vdzl{gd vdk fk~ hzok lz jzl{gdv he as sia~ks% 63 K~hfkeck nlz vdhs pzlckss hs vdk sdkkz e{ojkz ln Maehssazhks% He vdk cl{zsk ln vdk finvkkevd ckev{zx) vdkhz e{ojkz fhf elv ktckkf 10)000% Jx vdk skclef dain ln vdk shtvkkevd ckev{zx) hv daf zhske leix heshgeh ficaevix‖vl 1:)748 $he 1;>4( aef 13);88 $he 1;76(% Jx vdk jkgheeheg ln vdk sk~kevkkevd ckev{zx) dlwk~kz) vdk e{o/ jkz ln Maehssazhks o{ivhpihkf vdzkknlif‖vl 37)>:7 $1>08( aef daf agahe fl{jikf jx vdk ohffik ln vdk ckev{zx‖;;)000 $1>;3(% Skk [}{eçaz ıiı) Bapıb{i{ Lcabiazı ) >11–:0% 66 Slok scdliazs k~ke jkihk~k vdav vdk fk~ hzok was ajzlgavkf as kazix as 1>34‖ skk Oèeagk) ’Fk~sdhzok)‟ :1:% 61
)
7;
cliikcvhles lcc{zzkf lccashleaiix av ikasv {evhi vdk iasv q{azvkz ln vdk ckev{zx) wdhik zknkzkecks vl vdk fk~ hzok da~k jkke nl{ef k~ke he vdk khgdvkkevd ckev{zx%6; Aelvdkz shgehficaev fk~kilpokev nzlo vdhs pkzhlf) aef lek vdav oax elv da~k jkke clhechfkevai) azlsk he vdk vdk iasv q{azvkz ln vdk sk~ke/ vkkevd ckev{zx wdke vdk ik~hks ln jlxs wkzk ajzlgavkf% Vdksk wkzk vdk avvkopvs le vdk pazv ln ele/O{sihos av kevkzheg vdk Maehssazx clzps le a ~li{evazx jashs aef cle~kzvheg vl Hsiao nlz vdav p{zplsk% Vdhs pdkelokele) wdhcd H caii ’~li{evazx fk~ hzok )‟ )‟ as wkii as vdk sl{zcks zkiavheg vl hv) whii jk vdk s{jmkcv ln fkvahikf fhsc{sshle he vdk nliilwheg cdapvkzs%6> He lvdkz wlzfs) acclzfheg vl ox sl{zcks) aivdl{gd vdk lzgaeh}kf cliikcvhle ln jlxs ckaskf) ele/O{sihos) vdzl{gd vdhs ’~li{evazx fk~ hzok )‟ )‟ clevhe{kf vl s{ppix vl slok ktvkev vdk zaebs ln vdk Maehssazhks% Hevkzksvhegix) Hevkzksvheg ix) hv skkos vdav oaex ln vdksk ’~li{evazx fk~ hzok s‟ s‟ wkzk elv hevkzksvkf he p{zs{heg a cazkkz j{v leix he vdk pzksvhgk aef vat pzh~hikgks asslchavkf whvd Maehssazx svav{s% Vdhs hs k~hfkev nzlo vdk iazgk e{ojkz ln pkasaevs he vdhs pkzhlf wdl appkaz vl da~k jkke zkghsvkzkf as Maehssazhks he vdk ~hiiagks% Nlz ktaopik) he a vat zkghsvkz ln 17:3 nlz vdk ba}a ln Ek~zlblp) wk fief vdav he vdk ~hiiagk ln Ehslehsdvk vdkzk wkzk zkghsvkzkf 30 Maehssazhks‘ dl{skdlifs l{v ln a vlvai ln 73 O{siho dl{skdlifs% He vdk ~hiiagk ln Blpzh~iaeh) vdk pzl/ plzvhle hs :0 Maehssazhks‘ dl{skdlifs l{v ln 6>2 he Ixail~l) 1: l{v ln :3%67 Shohiaz fig{zks cae jk chvkf nlz olsv ln vdk O{siho ~hiiagks ln vdk zkghle% Vdksk wkzk elv Maehssazhks wdl daf jkke clopkiikf vl mlhe) as hs k~hfkev nzlo vdk O{siho eaoks ln vdkhz navdkzs% Elz wkzk vdkx vdk sles ln Maehssazhks skev vl skz~k he vdk pzl~heck) as cae jk skke nzlo vdk aol{evs ln agzhc{iv{zai iaef vdkx wkzk zkghs/ vkzkf as plsskssheg% Vdk leix ktpiaeavhle cae jk vdav vdksk Maehssazhks wkzk pkasaevs whvd ae asbkzh svav{s% Vdkhz navdkzs o{sv da~k ~li{e/ vazhix acckpvkf Hsiao aef kezliikf he vdk Maehssazx clzps f{zheg vdk
6;
Hjhf% S{cd ~li{evazx kezliokev he vdk Maehssazx clzps oax da~k jkke pzkckfkf jx ~li{evazx kezliokev ln ele/O{sihos as kazix as vdk ohffik ln vdk shtvkkevd cke/ v{zx he vdk pzh~avk dl{skdlifs ln dhgd/zaebheg Lvvloae fhgehvazhks) a pdkelokele vkzokf jx B{ev as ’pzh~avk fk~ hzok %‟ %‟ Skk % Okvhe B{ev) ’Vzaesnlzoavhle ln ]hooh hevl Asbkzå )‟ )‟ he Jkemaohe Jza{fk aef Jkzeazf Ikwhs) kf%) Cdzhsvhaes aef Mkws he vdk Lvvloae Kophzk ) ~li% H) Vdk Ckevzai Iaefs $Ekw Xlzb) Ilefle) 1840() >:–>3% 67 JLA) Ok~b{nav baikoh ) :473) n% 33–3>% H vdaeb K% Zaf{sdk~ nlz pzl~hfheg ok whvd a vzaesiavhle ln vdhs zkghsvkz% Skk aisl Zaf{sdk~) ’Zlflph)‟ 40% 6>
7>
iasv q{azvkz ln vdk sk~kevkkevd ckev{zx) leix vl svax he vdkhz ~hiiagks aef clevhe{k vl c{ivh~avk vdk iaef% Ae hoplzvaev nacv vl cleshfkz hs slhi nkzvhihvx) wdhcd he vdhs zkghle hs zkiavh~kix ilw) s{cd vdav a ih~heg cae jk oafk nzlo vdk iaef leix whvd fh ffic{ivx% 64 Vdkzknlzk) a Maehssazx‘s wagks68 clojhekf whvd vdk fiscai pzh~hikgks aef jkekfivs fkzh~kf nzlo skz~heg as vat cliikcvlzs) o{sv) he k ff kcv) kcv) da~k oafk vdksk pklpik vdk kihvk ln vdhs z{zai slchkvx% Vdav vdk svav{s ln Maehssazx svhii avvzacvkf cle~kzvs nzlo aoleg vdk pkasaevzx he vdk zkghle aef vdav vdk pzlckss ln ’~li{evazx fk~ hzok ‟ was svhii clevhe{heg he vdk 17:0s hs k~hfkev nzlo vdk e{okzl{s Maehssazhks zkghsvkzkf nzlo vdhs vhok whvd vdk eaok Ajf{iiad as vdkhz navdkz‘s eaok% Pkzdaps vdhs he{t ln pkasaevs vdzl{gd vdk sxsvko ln ’~li{evazx )‟ wdl iacbkf vdk fkshzk nlz acvh~k ohihvazx skz~hck lz a plihv/ fk~ hzok )‟ hcai cazkkz) oax ktpiahe wdx) nzlo ajl{v vdk iasv q{azvkz ln vdk sk~/ kevkkevd ckev{zx lewazfs) vdk plihvhcai aef kclelohc plwkz ln vdk fk~ hzok elokebiav{za jkcaok heczkashegix cdaiikegkf jx okojkzs ln vdk ùokza dl{skdlifs;0 aef jx vdk pzl~hechai kihvk) wdhcd daf appkazkf le vdk sckek aef acq{hzkf cleshfkzajik wkaivd he vdk pzk/ ckfheg dain ckev{zx% Fksphvk hvs henzkq{kev appihcavhle he vdk pkzhlf) f{k vl vdk shgeh ficaev pzksvhgk aef pzh~hikgks kemlxkf jx vdk kihvk kf{cavkf he vdk paiack scdlli aef k~ke ilwkz/zaebheg elokebiav{za he vdk Lvvloae slch/ kvx) ele/O{sihos‘ pkzckpvhle ln vdk fk~ hzok ) lz ln vdk plsshjhihvx ln cle~kzshle whvd vdk ljmkcvh~k vl kezlii he s{ivae skz~hcks) was iazgkix cdaegkf% Vdk fikzck clopkvhvhle jkvwkke O{siho) ele/O{siho zkaxa aef vdk sles ln Maehssazx nlz afohsshle vl vdk clzps as a g{azaevkk ln okojkzsdhp he vdk Lvvloae ksvajihsdokev cikazix hefhcavks vdav vdk hesvhv{vhle lz aex lvdkz okvdlf nlz kezliiheg he vdk paiack scdlli was el ilegkz whfkix zkgazfkf as okaes ln nlzchjik zkol~ai aef cle~kzshle ln cdhifzke% He vdk ihgdv ln vdk nacvs pzkskevkf ajl~k) H ao zki{cvaev vl k~ai/ {avk vdk fk~ hzok leix he vkzos ln vdk nlzckf cle~kzshle aef gkekvhc Hjhf%) 41% Vdk fahix Maehssazx wagk acclzfheg vl vdk zkghsvkz was 7 abçk s) s) h%k%) :)6>6 abçk s a xkaz% ;0 Nlz vdk pzlckss ln vdk he fiivzavhle ln pzlvègès ln dhgd/zaebheg Lvvloae gl~/ kzeokev lffichais hevl vdk svavk appazav{s skk Z%A% Ajl{ Ki/Dam) ’Vdk Lvvloae ^k}hz aef Pasda Dl{skdlifs) 1>43–1703= A Pzkihoheazx Zkplzv)‟ MALS ) 86) 6 $1876() 634–672 aef hfko) Vdk Zkjkiihle ln 1703 aef vdk Svz{cv{zk ln Lvvloae Plihvhcs $Hsvaej{i) 1846(% 64 68
)
77
fkpikvhle ln vdk Jaibae pklpiks) j{v olzk as a plwkzn{i slchai hesvh/ v{vhle nlz vdk hevkgzavhle ln ele/O{sihos aef O{sihos hevl lek zkaio‖vdav ln vdk Lvvloae kophzk‖aef nlz vdk ksvajihsdokev ln vdk Lvvloae svavk he vdk pkzhlf ln vdk shtvkkevd aef sk~kevkkevd ckev{zhks%;1 HHH% P{ehvh~k Acvhles as a Okvdlf ln Cle~kzshle vl Hsiao Aelvdkz nlzo ln fhzkcv clkzchle) chvkf aisl jx ]kixa}bl~a) was vdk lcc{zzkeck ln nlzckf cle~kzshles ke oassk as a zks{iv ln ohihvazx acvhle%;: Ek~kzvdkikss) sdk das vl jk gh~ke czkfhv nlz fl{jvheg vdk acc{zacx ln accl{evs ln s{cd k~kevs) wdhcd azk elw pkzckh~kf as dhsvlzhcai oxvdlilgx%;3 Sheck el lvdkz oxvd) dlwk~kz) das daf a gzkavkz zlik he sdapheg vdk Jaibae pklpiks‘ pkzckpvhle ln Lvvloae z{ik aef sheck el lvdkz s{jmkcv das svhzzkf olzk clevzl~kzsx he scdli/ azix chzciks) H sdaii dhgdihgdv slok ln vdk fkjavk asslchavkf whvd hv% Hv das jkke oahevahekf vdav vdk iazgk O{siho plp{iavhle he slok azkas ln Oackfleha aef vdk Zdlflpk Ol{evahes $belwe as ploab s he vdk iavvkz zkghle( kojzackf vdk O{siho czkkf as a zks{iv ln fhzkcv clkzchle% Hefkkf) a e{ojkz ln sl{zcks fksczhjk ohihvazx acvhles ikaf/ heg vl ktvkesh~k cle~kzshles vl Hsiao he vdksk azkas% Aoleg vdksk azk= vdk cdzlehcik elvk ln vdk pzhksv Okvlfh Fzaghel~ ln vdk Zdlflpk ~hiiagk ln Blzl~l;6 aef hvs vwl ~azhavhles $vdk sl/caiikf Pa}azfmhb elvk;; aef vdk Jkil~l cdzlehcik(2;> vdk cdzlehcik p{jihsdkf jx vdk
Skk Zaf{sdk~ $’Elokebiav{za)‟ 13( nlz a shohiaz cleci{shle% ;: ]kixa}bl~a) Za}pzlsvzaekehk ) 1;4–1>:% ;3 Sdk das k~ke fk~lvkf a sv{fx vl vdk iavk lzhghe ln vdk sl{zcks s{pplzvheg s{cd svlzhks% Skk A% ]kixa}bl~a) ’Vdk Pzljiko ln vdk A{vdkevhchvx ln Slok Floksvhc Sl{zcks le vdk Hsiaoh}avhle ln vdk Zdlflpks) Fkkpix Zllvkf he J{igazhae Dhs/ vlzhlgzapdx)‟ Kv{fks Jaibaehq{ks ) 6 $1880() 10;–111 aef olzk zkckevix ’Hsiaoh}avhle he vdk Jaibaes as a Dhsvlzhlgza Dhsvlzhlgzapdhcai pdhcai Pzljiko= vdk Sl{vdkasv/K{zl Sl{vdkasv/K{zlpkae pkae Pkzspkcvh~k)‟ he N% Afaeız aef S% Nazlqdh) kf%) Vdk Lvvloaes aef vdk Jaibaes= A Fhsc{sshle ln Dhsvlzhlgzapdx $Ikhfke) :00:() ::3–:>7% ;6 Gklgzansbl/hsvlzhbl/svavhs hsvlzhbl/svavhsvhcdksbl vhcdksbl lphsaehk ea Vavaz/Pa}azfm Vavaz/Pa}azfmhsdbava hsdbava P{jihsdkf he S% ]adazhk~) Gklgzansbl/ baa}a RGklgzapdhcai/Dhsvlzhcai/Svavhsvhcai Fksczhpvhle ln vdk Fhsvzhcv ln Vavaz/Pa}azfmhb_ $^hkeea) 1470(% ;; P{jihsdkf jx G% Fhohvzl~) Bexa}ksv~l J{igazha ~ hsvlzhcdksbl) gklgzansbl h kvelgzansbl lvelsdkehk RVdk Pzhechpaihvx ln J{igazha he Dhsvlzhcai) Gklgzapdhcai aef Kvdelgzapdhcai Vzkavokev_) ~li% 1 $Pil~fh~) 1486(% ;> E% Eacdl~) ’Ihsv lv dzlehba) eaokzke ~ s% Glixaol Jkil~l RA Pagk ln a Cdzlehcik) Ilcavkf he vdk ^hiiagk ln Glixaol Jkil~l_)‟ J{igazsbh pzkgikf ) : $1484() 168–1;1% ;1
74
Z{sshae scdliaz Iaoaesbh2;7 aef vdk clpxhsv‘s affhvhle vl vdk cdzle/ hcik ln vdk oleb Pahshh ln Dhikefaz%;4 Acclzfheg vl vdksk sl{zcks) ele/O{sihos wkzk s{jmkcvkf vl vwl oamlz wa~ks ln zkpzksshle‖lek he vdk fizsv dain ln vdk shtvkkevd ckev{zx {efkz Skiho H $1;1:–1;:0( aef lek he vdk skclef dain ln vdk sk~kevkkevd ckev{zx {efkz Okdokf H^ $1>64–1>47(% Jlvd vdk gilss le Pahshh‘s cdzlehcik aef vdk Iaoaesbh cdzlehcik vkii vdk svlzx ln vdk fk~asvavhle ln Vdzack aef vdk iaefs elzvd ln vdk Jaibae Ol{evahes he 1;:: jx azohks {efkz vdk clooaef ln vdk Czhokae Bdae Okdokf aef ln Skiho H% Vdkx aisl spkab ln vdk nlzckf oass cle~kzshle ln vdk Cdzhsvhae hedajhvaevs ln vdk zkghles ln Ek~zlblp aef Çkç) Fzaoa aef Flspav he Oackfleha jx aelvdkz azox% Vdk cdzlehcik ln Okvlfh Fzaghel~) clzzljlzavkf jx vdk Pa}azfmhb Elvk aef vdk Jkil~l cdzlehcik) vkiis vdk svlzx ln vdk nlzckf cle~kz/ shle ln Cdzhsvhaes he vdk Cdkphel zkghle) ilcavkf he vdk Zdlflpk Ol{evahes) he gzkavkz fkvahi% He Oax ln 1>>>) ;8 Lvvloae vzllps {efkz vdk clooaef ln vdk Z{okih jkxikzjkx Pkdih~ae Okdokf Pasda oazcdkf vdzl{gd vdk Zdlflpks he lzfkz vl mlhe lvdkz nlzcks he vdk Olzka he pzkpazavhle nlz vdk Lvvloae/^kekvhae svz{ggik l~kz vdk hsiaef ln Czkvk% Ikazeheg le vdk wax vdav vdk ~hiiagk ln Blsvaefl~l daf zkn{skf vl pax vdk zkq{hzkf vatks vl vdk Pil~fh~ jhsdlpzhc) Okdokf fkvahekf vdk ~hiiagk elvajiks aef fkchfkf vl ktkc{vk vdko% Dlwk~kz) lek ln dhs hoaos) Dasae dlca ) s{gg s{ggksv ksvkf kf vda vdavv vdkx vdkx jk paz paz// flekf le vdk clefhvhle vdkx cle~kzv vl Hsiao% Vdk elvajiks acckpvkf vdhs aivkzeavh~k% Okdokf vdke fkciazkf vdav {ple dhs zkv{ze nzlo vdk caopahge dk wl{if sia{gdvkz aii Cdzhsvhaes ln vdk Cdkphel zkghle {eiksss vdkx cle~kzvkf {eiks cle~kzvkf vl Hsiao% Dasae) Dasae) s{ppl s{pplzvkf zvkf jx Maehssazx Maehssazx vzllps) vzllps) zkoahekf he vdk zkghle vl kff kcv kcv vdk cle~kzshle ln vdk hedajhvaevs ln vdk sk~ke Cdkphel ~hiiagks aef vdlsk ln lvdkz ol{evahe ~hiiagks he vdk azka% Vdk cle~kzshle was ahfkf jx a naohek% Aii wdl acckpvkf vdk O{siho nahvd wkzk gh~ke gzahe nzlo gl~kzeokev wazkdl{sks he ^%H% Iaoaesbhh) ’Jligazsbaxa sil~ksvelsv T^HHH ~kba RJ{igazhae Ihvkzav{zk ln vdkk 14vd vd 14vd Ck Ckev ev{z {zx_) x_)‟‟ M{zeai Ohehsvkzsv~a Eazlfelgl Pzls~ksdvkehxa ) 16; $14>8() 107–1:3% ;4 Vdk lzhgheai ln vdk cdzlehcik hs pzkskz~kf he vdk Eavhleai Ihjzazx ln J{igazha) OS 111:% ;8 Vdk favk okevhlekf he vdk cdzlehcik hs acv{aiix 1>00% Hv was vdk kfhvlz aef iavkz clookevavlzs wdl hevkzpzkvkf hv as 1>>>% Vdk Pa}azfmhb Elvk zknkzs vl vdk favk as 1>70% Vdk zkhgeheg s{ivae okevhlekf he vdk cdzlehcik) dlwk~kz) hs Adokf $1>03–1>17(% ;7
)
78
Pa}azfmhb% Vdk ekw cle~kzvs wkzk aisl gh~ke vdk zhgdv vl phiiagk vdk pzlpkzvhks ln vdk Lzvdlflt Cd{zcd he vdk zkghle) sl vdav jx A{g{sv l~kz vwl d{efzkf cd{zcdks aef as oaex as vdhzvx/vdzkk oleasvkzhks daf jkke fksvzlxkf% Vdlsk wdl daf zkn{skf cle~kzshle saw vdkhz dloks fksvzlxkf aef wkzk nlzckf as zkn{gkks hevl vdk ol{evahes) wdkzk vdkx nl{efkf ekw skvvikokevs% Nlz aiolsv a ckev{zx Jaibae as wkii as wksvkze scdliazs da~k zkihkf le vdksk sl{zcks as vz{vdn{i zkpzkskevavhles ln Jaibae dhsvlzx f{zheg vdk Lvvloae pkzhlf% Jaibae scdliazs da~k zkafhix kojzackf vdksk fksczhpvhles ln vkzzlz jkca{sk vdkx fiv vdk dhsvlzhcai oxvd ln fi~k cke/ v{zhks‘ clevhe{l{s lppzksshle jx vdk Lvvloaes ln vdkhz Cdzhsvhae s{j/ mkcvs%%>0 Wksvkze scdliazs vll da~k acckpvkf vdkhz azg{okev) fizsv) mkcvs jkca{sk ln vdk iazgk e{ojkz ln sl{zcks a~ahiajik) aef skclef) jkca{sk s{cd k~kevs clenlzokf vl vdk gkekzai phcv{zk ln vdk Lvvloae Kophzk f{zheg vdhs pkzhlf) fzawe jx wksvkze dhsvlzhaes% Vdk iavvkz da~k vza/ fhvhleaiix dkif vdav vdk cleq{ksv ln vdk Ohffik Kasv he vdk shtvkkevd ckev{zx vzaesnlzokf vdk Lvvloae svavk nzlo a iazgkix K{zlpkae vl a O{siho kophzk) zks{ivheg he ae heczkaskf kopdashs le Hsiaohc ~ai/ {ks% Vdke) nz{svzavhle l~kz {es{cckssn{i wazs he vdk ohf/sk~kevkkevd ckev{zx clevzhj{vkf agahe vl vdk zhsk ln dlsvhihvx vlwazfs vdk Kophzk‘s ele/O{siho s{jmkcvs%>1 Hv hs shgehficaev) dlwk~kz) vdav aii ln vdk ajl~k/okevhlekf sl{zcks wkzk a{vdlzkf jx ele/O{sihos aef vdav el clzzljlzavhle cae jk nl{ef he O{siho sl{zcks nlz aex nlzckf cle~kzshles ke oassk % Lvvloae cdzlehciks leix okevhle vdav Skiho H aef O{zaf H^ hefkkf cle/ vkopiavkf nlzckf cle~kzshle ln vdkhz ele/O{siho s{jmkcvs j{v wkzk kashix pkzs{afkf jx vdk {ikoa aef lvdkz svavk lffichais vl ajaefle aex s{cd piaes% N{zvdkzolzk) vdkzk hs vdk clhechfkeck vdav jlvd vdk cdzlehcik ln Okvlfh Fzaghel~ aef vdav ln Iaoaesbh appkazkf av a vhok ln hevkesk aevh/Gzkkb aef aevh/V{zbhsd eavhleai skevhokev% Hv sdl{if aisl jk elvkf vdav eljlfx ktckpv vdlsk zkspleshjik nlz p{j/ ihsdheg vdk iavvkz sl{zcks das k~kz skke vdk lzhgheais% Hiha Vlflzl~)
Skk O% Fzhel~) ’Lvkvs Pahshh% Ekgl~lvl ~zkok) ekgl~ava hsvlzha h {cdkehchvk o{ RNavdkz Pahshh% Dhs Kza) dhs Dhsvlzx aef dhs P{phis_)‟ Pkzhlfhvcdksbl sphsaehk ) 1=1: $1471() 182 M% Daf}h/^ashimk~h ) O{sihoaeh Ea Ea kk Bz~ { M{ elh Szjhmï RO{sihos ln l{z Jillf he Sl{vd Skzjha_ $Jkigzafk) 18:6(2 Sekgazl~) ^iafhvcdksv~l) 76–7;2 Pkvzl~) Safjl Saf jlel else sehh ~k ~kbl bl~k ~k ) >:–1:1% >1 Asshohi hohiavl avlzsb zsbava ava Skk ^zxlehs) ’Zkihghl{s Cdaegks)‟ 1>4) wdl vlvaiix zkihks le Pkvzl~) Ass plihvhba % Nlz shohiaz ljskz~avhle skk D{pcdhcb) ’Ploabs)‟ 30;–0>% >0
40
olzkl~kz) jaskf le iheg{hsvhc aeaixshs ln Okvlfh Fzaghel~‘s cdzle/ hcik) cleci{fkf vdav hv was nzlo vdk fizsv dain ln vdk ehekvkkevd cke/ v{zx%>: Aisl shgehficaev hs vdk nacv vdav vdk lvdkz vwl hoplzvaev sl{zcks pzkskz~kf he lzhgheai ~kzshles‖vdk Jkil~l cdzlehcik aef vdk clpx ln Pahshh‘s cdzlehcik‖da~k jkke aisl favkf vl vdk fizsv dain ln vdk ehekvkkevd ckev{zx%>3 He lvdkz wlzfs) hv illbs as vdl{gd vdk fizsv vwl cdzlehciks wkzk olsv pzljajix najzhcavkf nlz vdk p{zplsk ln zahsheg eavhleaihsv sphzhv) a pzacvhck he vdk vzafhvhle ln vdk Zloaevhc ol~k/ okev floheavheg hevkiikcv{ai ihnk he K{zlpk>6 f{zheg vdav vhok) wdhik vdk lvdkz vwl wkzk wzhvvke iavk kel{gd vl jk cleshfkzkf aisl a pzlf/ {cv ln eavhleaihsv skevhokev% Vdk e{okzl{s hecleshsvkechks jkvwkke vdk eaoks ln vdk z{ikzs aef vdk pkzhlfs fkphcvkf casv n{zvdkz fl{jv le vdk a{vdkevhchvx ln vdksk sl{zcks‖he 1;::) nlz ktaopik) Skiho H was el ilegkz aih~k) wdhik Skiho HH daf elv xkv jkke jlze2 n{z/ vdkzolzk) vdk Czhokae Bdae Okdokf Ghzax cl{if ek~kz da~k paz/ vhchpavkf he a ohihvazx acvhle he vdk Jaibaes sheck dhs lwe vdzlek was {efkz vdzkav av vdk vhok% Vdksk hecleshsvkechks azk elv cdazac/ vkzhsvhc ln lvdkz clevkoplzazx cdzlehciks) wdlsk a{vdkevhchvx hs jkxlef fl{jv%>; Olzkl~kz) wdhik vdk a{vdkevhc cdzlehciks hefkkf plhev vl ae heczkask he ~hlikeck agahesv vdk Cdzhsvhae plp{iavhle) elwdkzk fl vdkx ktpihchvix okevhle avvkopvs av nlzckf cle~kzshle% >> Vdk ’soaii‟ fhsczkpaechks aef fl{jvs as vl a{vdkevhchvx) dlwk~kz) fhf elv skko vl jlvdkz af~lcavks ln vdk ’clkzchle vdklzx)‟ wdl dkif vdav vdk accl{evs ln vdk cdzlehciks fhf hefkkf clzzksplef vl zkai k~kevs% >7 Sheck {evhi zkckevix hv was elv plsshjik vl ~kzhnx lz fkex vdk dhs/ vlzhchvx ln vdksk k~kevs vdzl{gd lvdkz sl{zcks) hv was iknv vl vdk pkz/
>:
H% Vlflzl~) ’Ikvlphsehxav za}ba} ea Okvlfh Fzaghel~ RVdk Cdzlehcik Svlzx ln Okvlfh Fzaghel~_)‟ Svazljaigazsba ihvkzav{za ) 1> $1846() >:–7;% >3 D% Blfl~) Lphs ea sia~xaesbhvk zablphsh ~ jhjihlvkbava ea j{igazsbava abafkohxa ea ea{bhvk RCavailg{k ln vdk Sia~hc Oae{sczhpvs he vdk Ihjzazx ln vdk J{igazhae Acafkox ln Schkecks_ $Slfia) 18>8(% >6 Vdk he~kevlz ln vdhs ’vkcdehq{k‟ was vdk Sclvsoae Maoks Oacpdkzsle) vdk pzkfkcksslz ln vdk zloaevhcs) wdl p{jihsdkf he 17>; dhs zk~hskf ~kzshles ln Ckivhc sagas aef ikgkefs as ae a{vdkevhc cliikcvhle ln wlzbs jx vdk ikgkefazx wazzhlz aef jazf Lsshae% Vdk olsv naol{s Jaibae nlzgkzx hs ’^kfa Sil~kea)‟ clophikf he 1476 jx vdk Jlsehae Skzj Svkpdke ^kzbl~hcd% >; Skk O% Bhki) ’Vdk Spzkaf ln Hsiao he J{igazhae Z{zai Azkas he vdk Lvvloae Pkzhlf Pkzhl f $1;vd–14vd $1;vd–14vd Ckev{ Ckev{zhks(= zhks(= Clileh}avh Clileh}avhle le aef Hsiaoh}avhle)‟ Hsiaoh}avhle)‟ he Zlshvsa Gzafk~a Gzafk~a aef S~kvia S~kviaea ea H~ael H~ael~a) ~a) kf% O{s{ioaesbava b{iv{za pl jaigazsbhvk }koh% H}sikf~aehxa RHsiaohc C{iv{zk he vdk J{igazhae Iaefs% Sv{fhks_ $Sl fia) 1884() ;4% >> D{pcdhcb) ’Ploabs)‟ 310% >7 Bhki) ’Spzkaf ln Hsiao)‟ ;8%
)
41
sleai m{fgokev ln scdliazs vl cdllsk lek lz vdk lvdkz aivkzeavh~k% Lnvke) vdk pzk~ahiheg hfklilghcai ihek fhcvavkf vdkhz fkchshle% He vdk iasv sk~kzai xkazs) dlwk~kz) zkskazcdkzs da~k jzl{gdv vl ihgdv azcdh~ai k~hfkeck pzl~heg vdk sp{zhl{s eav{zk ln vdk sl{zcks he q{ksvhle%>4 Zaf{sdk~) le vdk jashs ln ekwix fhscl~kzkf zkghsvkzs) das sdlwe vdav he vdk zkghles ’nlzchjix‟ cle~kzvkf jx Skiho H Hsiaoh}avhle lcc{zzkf gzaf{aiix l~kz vdk cl{zsk ln vwl aef a dain ckev{zhks) okae/ heg vdav oass cle~kzshle he vdk spae ln lek xkaz hs l{v ln q{ksvhle% He vdk zkghle ln Ek~zlblp) nlz ktaopik) cle~kzshles svazvkf av vdk kef ln vdk finvkkevd ckev{zx% Jx vdk 1;30s) 13 pkzckev ln vdk plp/ {iavhle daf acckpvkf Hsiao) wdkzkas jx vdk 1;>0s) :8 pkzckev daf flek sl% He vdk sk~kevkkevd ckev{zx) vdkzk was svhii a sh}kajik Cdzhsvhae plp{iavhle he vdk zkghle acclzfheg vl vdk ch}xk zkghsvkzs) wdkzkas jx vdk svazv ln vdk khgdvkkevd ckev{zx) wdke vdk Hsiaoh}avhle pzlckss daf kff kcvh~kix kcvh~kix jkke clopikvkf) vdkzk wkzk 10 ~hiiagks whvd ele/ O{siho hedajhvaevs) :6 whvd ohtkf plp{iavhle aef 76 kevhzkix O{siho%>8 He vdk zkghle ln Bz{pehb) vdkzk wkzk svhii leix :3 O{siho dl{skdlifs) clopazkf vl 47 Cdzhsvhae‖vdhs he 1;7:) wdke vdk wdlik zkghle was s{pplskf vl jk kevhzkix O{siho% 70 Bhki das aisl plhevkf l{v vdav clevkoplzazx Gzkkb cdzlehciks fkphcv Skiho H as a z{ikz wdl fkolesvzavkf a gzkav fkai ln zkspkcv vlwazfs vdk Lzvdlflt Cd{zcd) wdhcd clevzasvs svzlegix whvd vdk hoagk fkphcvkf ln dho he vdk cdzlehciks%71 Agahe le vdk jashs ln zkghsvkzs) Bhki das sdlwe vdav vdk cle~kz/ shle he vdk zkghle ln Cdkphel) s{pplskf vl da~k vabke piack l~kz vdk cl{zsk ln vdzkk olevds he 1>>>) acv{aiix nliilwkf vdk pavvkze ksvajihsdkf nlz Ek~zlblp‖vdk plp{iavhle da~heg jkke 6 pkzckev O{siho he 1;1>) ; pkzckev jx 1;:4) :> pkzckev jx 1;70 aef 31 pkzckev jx 1;8;% He vdk sk~kevkkevd ckev{zx) zkghsvkzs fkphcv vdk n{z/ vdkz fwhefiheg ln vdk Cdzhsvhae plp{iavhle‖nzlo ;88 dl{skdlifs he 1>33 vl 678 he 1>61) aef :07 he 1>8>% He 171:) vdkzk wkzk leix 8> Cdzhsvhae dl{skdlifs) accl{evheg nlz 11 pkzckev ln vdk plp{iavhle) ~kzs{s 784 O{siho $48 pkzckev(% 7: N{zvdkzolzk) fksphvk vdk pzacvhck ln ihsvheg aii pzhksvs he ch}xk zkghsvkzs) Bhki cl{if elv fief a pzhksv whvd
>4 >8 70 71 7:
Zaf{sdk~) ’Zlflph)‟ aef Bhki) ’Spzkaf ln Hsiao%‟ Zaf{sdk~) ’Zlflph)‟ 7>% Bhki) ’Spzkaf ln Hsiao)‟ >;% Hjhf%) >3–>6% Hjhf%) 7:–78%
4:
vdk eaok Okvlfh Fzaghel~ ihsvkf nlz vdk zkghle) elz fl vdk zkclzfs ln vdk Lzvdlflt Cd{zcd sdlw a jhsdlp whvd vdk eaok Ga~zhi as da~heg skz~kf he Pil~fh~ av vdk vhok%73 Vd{s) fksphvk vdk nacv vdav vdkzk da~k jkke s{jskq{kev avvkopvs vl zks{zzkcv vdk dhsvlzhchvx ln vdksk k~kevs) 76 vdkzk hs el fl{jv he ox ohef vdav vdk svlzhks ln oass cle~kzshle he Oackfleha aef vdk Zdlflpks sdl{if leix jk zkgazfkf as ae ktaopik ln jhaskf scdli/ azsdhp aef dhsvlzhcai oxvdlilgx% H^% Vdk Pdkelokele ln Ekl/Oazvxzflo aef Cle~kzshle vl Hsiao Ae hss{k zkiavkf vl vdk fhsc{sshle ln wdkvdkz cle~kzshle vl Hsiao f{zheg vdk Lvvloae pkzhlf was ~li{evazx lz nlzckf) hs vdk pdk/ elokele ln ekl/oazvxzflo% Acclzfheg vl vdk aeeais ln vdk Lzvdlflt Cd{zcd) oaex Jaibae Cdzhsvhaes acdhk~kf oazvxzflo vdzl{gd ktk/ c{vhle nlz zkn{sheg vl s{zzkefkz vdkhz Cdzhsvhae nahvd aef acckpv Hsiao% Vl fhsvheg{hsd vdko nzlo vdk oazvxzs wdl fhkf he vdk pkzhlf ln kazix Cdzhsvhaehvx) vdkx azk zknkzzkf vl as ekl/oazvxzs% Vdk Gzkkb kzkf fkavd nlz vdkhz Ikthcle ln aii vdk Sahevs ihsvs l~kz 60 sahevs wdl s{ ff kzkf nahvd av vdk daefs ln O{sihos wdhik vdk Pavzhazcdai Ihsv gh~ks vdk eaoks ln aiolsv 100 ekl/oazvxzs%7; Vdkzk azk he affhvhle sk~kzai ~hvas clo/ plskf nlz vdk ekl/oazvxzs wdl fhkf olsv dkzlhcaiix) k%g%) vdk ^hva ln Gklzgh El~h Slfihsbh $f% 1;1;( jx vdk pzhksv Pkml aef vdk ^hva ln Ehblia El~h Slfihsbh $f% 1;;;( jx Oavkh vdk Gzaooazhae%7> Nlz vdlsk wdl leix acdhk~kf ilcai zkelwe) vdk fkvahis azk ihohvkf aef azk lnvke skoh/ikgkefazx% As he vdk cask ln svlzhks ln nlzckf oass cle~kzshles) wk azk nackf whvd ihvkzazx sl{zcks wzhvvke nlz vdk slik p{zplsk ln sdlwheg vdk ~hz/ v{l{sekss ln zkoaheheg a nahvdn{i Cdzhsvhae aef henkzhlzhvx ln O{sihos aef Hsiao% Hv sdl{if jk plhevkf l{v vdav ekl/oazvxzflo was lek ln vdk nkw wkaples av vdk fhsplsai ln vdk Lzvdlflt Cd{zcd vl figdv
73
Hjhf%) >4 aef 77% Skk) K% Gzl}fael~a) S% Aefzkk~) ’Naisdhfibav ih k ikvlphsehxav za}ba} ea plp Okvlfh Fzaghel~< RHs vdk Cdzlehcik ln vdk Pzhksv Okvlfh Fzaghel~ a Naish ficavhle<_)‟ Hsvlzhcdksbh pzkgikf : $1883() 16>–1;7) wdl fhscl~kzkf he vdk Lvvloae jllbs ln clo/ piahevs zknkzkecks vl a Gzkkb jhsdlp jx vdk eaok Ga~zhi jaskf he Pil~fh~% Vdk vke{zk ln vdhs Ga~zhi) dlwk~kz) jkgae 10 xkazs iavkz vdae vdk k~kev he q{ksvhle% 7; Chvkf jx N%W% Dasi{cb) Cdzhsvhaehvx aef Hsiao {efkz vdk S{ivaes $Ltnlzf) 18:8() 6;:% 7> B% H~a H~ael el~a ~a)) kf kf%) %) Svaza j{igazsba ihvkzav{za $Slfia) 184>() :81–37>% 76
)
43
vdk spzkaf ln Hsiao aoleg hvs nliilwkzs% Ekl/oazvxzs pzl~hfkf vdk Cd{zcd whvd o{cd/ekkfkf olzai ktaopiks vl zkhenlzck Cdzhsvhae ~ai{ks% Wk cae ljskz~k vdk cilsk cleekcvhle jkvwkke vdk pack ln Hsiaoh}avhle he vdk Jaibaes aef vdk e{ojkzs ln ekl/oazvxzs‖vdkzk was) nlz ktaopik) leix lek ekl/oazvxz he vdk finvkkevd ckev{zx) 1; he vdk shtvkkevd) 31 he vdk sk~kevkkevd) 38 he vdk khgdvkkevd) aef 7 he vdk ehekvkkevd%77 Vdk q{ksvhle hs) was vdk heczkask he vdk e{o/ jkz ln ekl/oazvxzs he vdk sk~kevkkevd aef khgdvkkevd ckev{zhks vdk zks{iv ln vdk heczkaskf pack ln cle~kzshles vl Hsiao he vdlsk cke/ v{zhks) lz vdk zks{iv ln vdk ekkf ln vdk Cd{zcd nlz ekl/oazvxzs vl zkshsv Hsiaoh}avhle< Hv hs pia{shjik vdav vdk Cd{zcd acv{aiix pzkpazkf slok ln vdk oazvxzs as a slzv ln zkihghl{s ’baohba}ks%‟ Wk belw) nlz hesvaeck) ln xl{vds vabke hevl oleasvkzhks) wdkzk vdkx wkzk pzk/ pazkf nlz xkazs nlz vdk ohsshle ln fxheg nlz vdk nahvd% 74 Vdksk oaz/ vxzs wkzk olvh~avkf leix jx vdk passhle nlz oazvxzflo aef wkzk n{iix pzkpazkf vl jiaspdkok Hsiao aef Oldaookf he vdk pzkskeck ln vdk bafı %78 Hv skkos vdav vdk piae was vl da~k sloklek zkafx vl cle~kzv vl Hsiao he vdk fizsv piack) whvd vdk slik hevkevhle ln apls/ vavh}heg iavkz% Olzkl~kz) vdk Cd{zcd ohgdv da~k ktkzvkf pzkss{zk k~ke le gke{hek aplsvavks sl vdav vdkx vll ohgdv acdhk~k oazvxz/ flo% Aivdl{gd he Cdzhsvhaehvx aplsvasx hs elv p{ehsdajik jx fkavd) as hv hs he Hsiao) acclzfheg vl Dasi{cb hv was gkekzaiix dkif vdav vdk g{hiv ln aplsvasx cl{if leix jk ajsli~kf jx oazvxzflo aef vdav pkz/ oaekev zkn{gk he a oleasvkzx was hoplsshjik% Wdke s{ffichkevix nlzvhfikf jx pzaxkz aef nasvheg) vdk aplsvavk wl{if zkv{ze vl vdk piack wdkzk dk zkel{eckf Cdzhsvhaehvx) aef) vdzlwheg flwe dhs v{zjae jknlzk vdk bafı fkciazk dhs zkv{ze vl Cdzhsvhaehvx% Vdk O{siho m{fgk gkekzaiix {skf k~kzx okaes he dhs plwkz vl pkzs{afk vdk pkzsle vl zkv{ze vl Hsiao) aef aiilwkf dho sk~kzai faxs vl zkcleshfkz dhs fkch/ shle% Hn) av vdk kef ln vdk gzack pkzhlf) vdk ekl/oazvxz daf svhii elv cdaegkf dhs ohef) dk was {s{aiix jkdkafkf lz daegkf he p{jihc% 40 Aelvdkz cavkglzx ln ekl/oazvxzs heci{fkf vdlsk wdl leix acch/ fkevaiix nl{ef vdkoski~ks he shv{avhles wdkzk vdkhz nahvd was p{v vl vdk vksv% Vdk Ikthcle) nlz ktaopik) okevhles vdzkk aelexol{s Gzkkbs
Dasi{cb) Cdzhsvhaehvx ì ) 6;:=e3% Skk I% Pa~il~hd) B{ivl~h ihvsa blf Szja h Oabkfleavsh RSahevs aoleg Skzjs aef Oackflehaes_ $Jkigzafk) 18>;(% 78 Skk Dasi{cb $Cdzhsvhaehvx) 6;3=e6) aef 6;6( nlz ktaopiks ln ~li{evazx oazvxzs% 40 Hjhf%) 6;>% 77 74
46
wdl plskf as vat cliikcvlzs jx wkazheg O{siho cilvdks aef {sheg O{siho sai{vavhles% Vabheg vdk p{jihc fhspiax ln O{siho sxojlis as ae hefhcavhle ln acv{ai cle~kzshle vl Hsiao) vdkx wkzk vzhkf jx vdk cl{zv as aplsvavks%41 He vdk ihvkzav{zk ln ’clkzch~k cle~kzshle)‟ ekl/oazvxzflo das jkke fksczhjkf as ae hefhcavhle ln ’vdk j{zsv ln O{siho naeavhchso f{z/ heg vdk acclopihsdokev ln vdk oass Hsiaoh}avhle%‟ 4: Hv hs kopdash}kf vdav vdk oazvxzs wkzk pzkss{zkf aef k~ke vlzv{zkf vl cle~kzv vl Hsiao) aef {ivhoavkix bhiikf nlz zkn{sheg vl fl sl% Vdk nacv vdav aii ekl/oazvxzs acv{aiix cloohvvkf l ff kecks kecks acclzfheg vl Hsiaohc iaw) olsv lnvke vdav ln aplsvasx lz jiaspdkox)43 aef vdav ktkc{vhle) as cz{ki as hv oax skko) was he acclzfaeck whvd vdk Hsiaohc pkeai clfk) hs {s{aiix fhszkgazfkf% Aelvdkz ktpiaeavhle nlz vdk heczkask ln ekl/oazvxzs he vdk khgdv/ kkevd ckev{zx) he affhvhle vl vdk Cd{zcd kecl{zagheg ~li{evazx oaz/ vxzflo) ohgdv da~k jkke vdk heczkasheg e{ojkz ln ekw cle~kzvs vl Hsiao wdl nkiv fhssavhs fikf whvd vdkhz ekw zkihghle he vdhs pkzhlf% He a e{ojkz ln nkv~a cliikcvhles ln kazix khgdvkkevd/ckev{zx Lvvloae nlz kta ktaop opik ik)) wk fief a cdapvkz cl~kzheg zkihghl{s l ff kecks kecks kxdùihsiêos) nlz cloohvvkf jx ekw O{sihos%46 Olsv ln vdk nkv fkaii whvd whvd ekw ekw O{si O{sihos hos‘‘ nkv~a ~a s fka aplsvasx) j{v slok zknkz vl ekw O{sihos clevhe{heg vl sdlw zkspkcv nlz Cdzhsvhae sxojlis) fzhebheg whek lz nliilwheg Cdzhsvhae c{svlos% Vdav vdksk nkv~a s zkkcvkf zkai ihnk shv{avhles) elv dxplvdkvhcai casks hoaghekf jx O{siho m{zhsvs) caeelv jk fhsp{vkf% 4; Vdkzknlzk) da~heg he ohef J{iihkv‘s fizsv athlo ln cle~kzshle‖vdav vdk cle~kzv‘s ktpkc/ vavhles ln dhs ekw zkihghle whii pazaiiki dhs ktpkcvavhles ln dhs pzk~hl{s
41
Hjhf%) 6;3% D% Gaefk~) Vs% Gklzghk~a) P% Pkvzl~) G% Eksdk~) ’Hsiaoav h ashohiavlzsbava plphvhba ea lsoaesbava ~iasv RHsiao aef vdk Plihcx ln Asshohiavhle ln vdk Lvvloae A{vdlzhvhks_)‟ he Hsvlzha ea J{igazha ) >1 aef 11>% Skk aisl ]kixa}bl~a) Za}pzlsvzaekehk ) 147% 43 Accl Ac clzf zfhe hegg vl Dasi{ Dasi{cb cb $Cdzhsvhaehvx) 6;3() ’vdk ekl/oazvxzs skko vl da~k jkke oke wdl ’v{zekf V{zb‟ Rh%k%) vl cle~kzv vl Hsiao_ nlz ~azhl{s olvh~ks) lnvke he ktvzkok xl{vd lz wkzk aiikgkf jx vdk V{zbs vl da~k flek sl%‟ 46 Skk Aih Knkefh) Nkva~a/h Aih Knkefh $Hsvaej{i) 1:43() aef Okevk }afk Ajf{zzadho Knkefh) Nkva~a/h Ajf{zzadho Knkefh $Hsva $Hsvaej{ ej{i) i) 1:63 1:63(% (% Aih Knk Knkef efhh wa wass kxdùihsiêo he 1703–171:) aef Ajf{zzadho Knkefh he 171;–1>% Skikcvkf nkv~a s ln vdksk m{zhsvs wkzk p{jihsdkf he LHHPJ ) :83–301% 4; Skk Waki Daiiaq) ’Nzlo Navwês vl N{zò = Gzl Gzlwvd wvd aef Cda Cdaegk egk he Hsia Hsiaohc ohc S{jsvaevh~k Iaw)‟ Hsiaohc Iaw aef Slchkvx) 1 $1886() 30–>;) aef hfko) ’O{zfkz he Clzflja= Hmvhdêf) Hnvê aef vdk K~li{vhle ln S{jsvaevh~k Iaw he Okfhk~ai Hsiao)‟ Acva Lzhkevaiha ) ;; $1886() ;;–43% 4:
)
4;
lek‖vdk kthsvkeck ln nkv~a nkv~a s hefhcavheg ekw O{sihos‘ elsvaigha nlz ihnk he vdkhz pzk~hl{s cloo{ehvx plhevs vl vwl plsshjhihvhks= 1( vdav ihnk he vdk O{siho cloo{ehvx fhf elv okkv vdk ktpkcvavhles ln vdk ekw cle~kzvs) wdl jkgae vl appzkchavk aii ln a s{ffke vdk ihnk vdkx daf iknv jkdhef2 aef :( vdav pzhlz vl vdk khgdvkkevd ckev{zx) vdk ihnksvxiks ln O{sihos aef Cdzhsvhaes wkzk olzk shohiaz aef zk kcvkf vdk sxe/ czkvhso pzk~ahiheg he vdk zkihghl{s ihnk ln vdk vwl cloo{ehvhks2 4> dlw/ k~kz) jx vdk jkgheeheg ln vdk khgdvkkevd ckev{zx O{siho slchkvx daf jkclok heczkashegix cleskz~avh~k aef sxeczkvhso was el ilegkz vli/ kzavkf%47 Vdk nkv~a s fkai aisl aisl whvd whvd vdk vdk ~aihfh ~aihfhvx vx ln vdk vdk cle~kz cle~kzshl shle e ln ohelzs) ln cle~kzshle zks{ivheg nzlo hevlthcavhle aef fkckpvhle) aef) he leix lek hesvaeck) nzlo ~hlikeck $aijkhv elv ahokf av cle~kzshle(% 44 Aii vdhs oax okae vdav pklpik aisl heczkashegix clevksvkf aef appkaikf cle~kzshles he fl{jvn{i chzc{osvaecks% As p{ehsdokev nlz vdksk lff kecks) kecks) vdk nkv~a s pzksczhjk a e{ojkz ln pkeaivhks= appihcavhle ln vdk iaw ln aplsvasx)48 clzplzai p{ehsdokev) zkekwheg ln vdk clenks/ shle ln nahvd aef vdk oazzhagk clevzacv) aef hopzhsleokev% [s{aiix) vdk aplsvasx ln ohelzs aef nkoaiks) aef ln oaiks cle~kzvkf as a zks{iv ln hevlthcavhle lz fkckpvhle) hs vzkavkf olzk ihgdvix% Leix he casks ln jiaspdkox fl vdk nkv~a s pzk pzkscz sczhjk hjk vdk fkav fkavd d pkeaiv pkeaivxx as vdk leix aivkzeavh~k%80 Acclzfheg vl vdk scdliazs wdl s{pplzv vdk ’clkzchle vdklzx)‟ vdk sk~kzk p{ehsdokevs he vdksk nkv~a s azk oamlz pzlln ln vdk ~hlikev eav{zk ln vdk cle~kzshle vl Hsiao jx vdk O{siho ’cikzgx‟ aef vdk Vdk e{okzl{s casks ln zkihghl{s sxeczkvhso he vdk Jaibaes azk jksv flc{okevkf he Dasi{cb) Cdzhsvhaehvx% 47 Vdk vlikzavhle ln ele/O{siho c{svlos he pzk~hl{s vhoks skkos zk kcvkf he vdk nkv~a % Q{ksvhle= Hn sk~kzai O{sihos pazvhchpavk he faeck nksvh~hvhks ln {ejk/ nliilwheg nkv~a ihk~kzs aef ]kxf asbs vdk kxdùihsiêo vl hss{k a nkv~a zkgazfheg vdkhz fkkfs aef zkckh~ks ae aeswkz= ’zkekwai ln vdk nahvd aef oazzhagk)‟ aef vdke ]kxf sdlws vdk nkv~a vl vdk O{sihos he q{ksvhle saxheg ’hn xl{ clevhe{k vl fl vdhs) xl{ wl{if jk zkq{hzkf vl zkekw xl{z nahvd aef oazzhagk‟ j{v vdkx aeswkz= ’Fle‘v spkab eleskesk! Wk da~k skke vdksk c{svlos ljskz~kf jx l{z navdkzs aef l{z gzaefnavdkzs aef wk whii clevhe{k vl ljskz~k vdko)‟ wdav sdl{if jk flek vl s{cd pklpik acclzfheg vl vdk iaw< Aeswkz= Hv hs iawn{i vdav vdkx jk bhiikf% Skk Nkva~a/h Ajf{zzadho) 87% 44 Hjhf%) 73% 48 Acclzfheg vl Hsiaohc iaw) aplsvasx hs p{ehsdajik jx fkavd% He a ekw O{siho‘s cask) dlwk~kz) vdk c{ipzhv hs fizsv hopzhslekf he lzfkz vl gh~k dho vhok $oatho{o ln vdzkk faxs nlz oaiks( vl {efkzsvaef vdk ohsvabk% Skk Sdaxj e ‘s Shxaz ) 18;) W% Dkff keheg) keheg) KH :) s%~% ’O{zvaff2‟ M% Bzakokz) ’Aplsvavks) Zkjkis aef Jzhgaefs)‟ Hszaki Lzhkevai Sv{fhks ) 10 $1843() 36–642 aef Z% Pkvkzs aef G%M%M% fk ^zhks) ’Aplsvasx he Hsiao)‟ Fhk Wkiv fks Hsiaos ) 17 $187>–77() 1–:;% 80 Nkva~a/h Ajf{zzadho) 88% 4>
4>
sxsvkoavhc kff lzvs lzvs ln Lvvloae a{vdlzhvhks vl sk~kz vdk cleekcvhle ln ekw O{sihos whvd vdkhz nlzokz cloo{ehvx% 81 Le vdk lvdkz daef) scdliazs wdl fhsagzkk whvd s{cd cleci{shles plhev vdav vdk nkv~a s ln vdk Lvvloae kxdùihsiêos cl~kz leix hesvaecks ln ekw O{sihos‘ fk~h/ avhle nzlo vdk elzos pzk~ahiheg he vdk O{siho cloo{ehvx av vdk vhok) aef da~k elvdheg vl fl whvd vdk fkchshle ln vdk ekw O{sihos vl mlhe vdk cloo{ehvx%8: Vd{s) vdk ktkc{vhle ln vdk ekl/oazvxzs was elv a oavvkz ln zkihghl{s l~kz}kail{sekss j{v shopix lek ln {pdlif/ heg vdk iaw) wdhcd wl{if da~k jkke appihkf he vdk cask ln O{sihos as wkii%83 Ikv ok cleci{fk vdhs fhsc{sshle ln vdk pdkelokele ln ekl/ oazvxzflo jx zknkzzheg vdk zkafkz vl a flc{okev) favkf 1;;0) nzlo vdk cl{zv zkclzfs ln Slfia) wdhcd was p{jihsdkf zkckevix jx Z% Gzafk~a%86 Hv fksczhjks he fkvahi vdk k~kevs s{zzl{efheg a cask ln aplsvasx nzlo Hsiao) vdk zkacvhles ln vdk zkihghl{s cloo{ehvhks he~li~kf) vdk daefiheg ln vdk shv{avhle jx vdk Lvvloae a{vdlzhvhks aef iasvix) vdk piack ln vdk nkv~a s he vdk ikgai pzlckf{zks% Fksphvk vdk he~li~kokev ln dhgd/pzlfiik Lvvloae lffichais) wdhcd oax jk ktpkcvkf vl p{v slok jhas vl vdk cask) hv cae svhii gh~k {s olzk zkihajik henlz/ oavhle vdae daghlgzapdhc ihvkzav{zk% Vdk flc{okev vkiis vdk nliilw/ heg svlzx% Vdk Mkw Aszahi nzlo vdk chvx ln Saolbl~ cle~kzvkf vl Hsiao aef vdke zkel{eckf dhs ekw zkihghle% Lsoae) vdk sle ln vdk shpadh Mankz Mankz Jkx hje Ajf{iiad) daf whveksskf he cl{zv vdk cle~kzshle ln Aszahi vl Hsiao% Vdke) he lzfkz vl pkzs{afk vdk iavvkz vl zkv{ze vl vdk nahvd) Lsoae aef slok lvdkz O{sihos vdzkavkekf dho whvd vlzv{zk% Aszahi
Skk nlz ktaopik) S% Fhohvzl~) ’Slok Aspkcvs ln Kvdehc Fk~kilpokev) Hsiaoh}avhle aef Asshohiavhl Asshohiavhle e he J{igazhae J{igazhae Iaefs he vdk 1;vd–1>v 1;vd–1>vd d Ckev{z Ckev{zhks)‟ hks)‟ he Aspkcvs ln vdk Fk~kilpokev ln vdk J{igazhae Eavhle $Slfia) 1848() 60% 8: Zaf{sdk~) ’Zlflph)‟ ;1–;3% 83 Dasi{cb $Cdzhsvhaehvx) 6;6() nlz ktaopik) zkplzvs vdk cask ln a zkekgafk oleb) wdl he lzfkz vl sdlw dhs fk~lvhle vl Hsiao wkev jknlzk vdk bafı aef jiaspdkokf Cdzhsv% Dk was jkdkafkf av leck% He aelvdkz cask) acclzfheg vl Nkva~a/h Ajf{zzadho) ae hoao) wdl svavkf vdav Kasvkz hs dlihkz vdae vdk O{siho jaxzao) was p{ehsdkf jx jkheg ljihgkf vl zkekw ln dhs clenksshle ln nahvd aef oazzhagk aef jx jkheg zkihk~kf ln dhs f{vhks as hoao% Skk Nkva~a/h Ajf{zzadho) 87% 86 Zlshvsa Gzafk~a) ’Bao ~apzlsa }a zkihghl}eava avolsnkza ~ Lsoaesbava hopk/ zha= Slfia ~ szkfava ea T^H ~kb RAjl{v vdk Q{ksvhle ln vdk Zkihghl{s Avolspdkzk he vdk Lvvloae Kophzk= Slfia he vdk Ohffik Ohffik ln vdk 1>vd Ckev{ Ckev{zx_‟ zx_‟ he J% Cdzhsvl~a Cdzhsvl~a)) S jlzehb flbiafh }a j{igazsbava j{ig azsbava ljsdva h b{iv{zea hsvlzhxa pzk} kf%) J{igazsbhxa sdksveafkskvh ~kb% Sjlzehb T^H ~kb% Sl fi a) 17–:0%T%1886 $Slfia) 188>() 168–14>% fi a) 81
)
47
leck agahe jkcaok O{siho j{v fhkf vwkevx faxs iavkz% Dhs pazkevs) Ik~h aef Zknkba pkvhvhlekf vdk czlwe pzheck nlz m{svhck% 8; Vdk iav/ vkz lzfkzkf vdk bafı ln Saolbl~ vl skh}k :0)000 abçk s nzlo Lsoae aef vl gh~k vdhs vl Ik~h aef Zknkba as jillf/olekx $ fhxkv (% Vdk olekx) dlwk~kz) v{zekf l{v vl jk pazv ln vdk vhoaz zk~ke{k paxajik jx Mankz Jkx vl vdk svavk vzkas{zx) aef wdhcd daf leix jkke iknv whvd dhs sle nlz sank bkkpheg% [ple vdk zkv{ze ln Mankz Jkx nzlo ohih/ vazx caopahge aef dhs ikazeheg ln vdk k~kevs) dk pkvhvhlekf vdk s{i/ vae nlz wzlegn{i clefiscavhle ln olekx aef vdk cask was zklpkekf% Ik~h aef Zknkba) wdl daf okaewdhik jkcaok zkshfkevs ln Slfia) wkzk s{oolekf vl vdk bafı ln Slfia% Acclzfheg vl vdk cl{zv ohe/ {vks) vdkx fkehkf vdav Aszahi daf k~kz jkke a O{siho) aef vdav dk daf whvdl{v aex zkasle jkke vlzv{zkf jx slok ln vdk O{siho hedaj/ hvaevs ln Saolbl~) as a zks{iv ln wdhcd vzkavokev dk fhkf% Vdk czlwe pzheck) vdkx svavkf) daf lzfkzkf vdk O{sihos ln Saolbl~ vl gh~k vdko vdk aol{ev ln :4)000 abçk s8> he lzfkz vl pzk~kev a zhsk he vke/ shles jkvwkke vdk O{siho aef vdk Mkwhsd cloo{ehvhks% Aivdl{gd afohvvheg vdk zkckhpv ln vdk olekx) vdkx fkehkf da~heg zkckh~kf aex/ vdheg nzlo Lsoae pkzsleaiix% Le dhs pazv) Mankz Jkx pzkskevkf shgekf kxkwhvekssks‘ accl{evs ln Aszahi‘s cle~kzshle) dhs aplsvasx aef dhs skclef kojzacheg ln Hsiao) aef ln vdk skh}{zk ln vdk :0)000 abçk s nzlo dhs sle% Mankz Jkx aisl pzkskevkf vdzkk nkv kzkev nkv~a ~a s hss{kf jx vdk kxdùihsiêo)87 wdhcd ciazhfikf fhff kzkev aspkcvs ln vdk cask% Vdk nkv~a s azk pzkskevkf he vdk flc{okev he ajsvzacv nlzo) belwe as skclefazx nkv~a s% s%84 Vdk fizsv nkv~a ciazhfiks vdk ikgai cleskq{kecks ln vdk ca{sk ln fkavd% Acclzfheg vl vdhs nkv~a ) hn
8;
Olsv pzljajix) vdk czlwe pzheck $ kd}afk ( he q{ksvhle was vdk n{v{zk Skiho HH $1;>>–76() wdl av vdk vhok was zkshfheg av Kfhzek% Skk Gzafk~a) ’Zkihghl}eava avolsnkza)‟ 1;;–;>% 8> He affhvhle vl vdk jillf/olekx awazf) Lvvloae iaw pzksczhjks vdk paxokev ln a fiek vl vdk svavk% Vdk sl/caiikf bae{eeaok ln Sùikxoae H pzksczhjks a oath/ o{o fiek ln 600 abçk s nlz o{zfkzkzs whvd hecloks ktckkfheg 1)000 abçk s‖skk s‖skk ’Bae{eeaok/h Ai/h Lsoae)‟ Okdokf Azhn) kf%) s{ppikokev ln VLKO $181:() 6% Dlwk~kz) a fiek ln 600 abçk s ohgdv da~k jkke iazgkix l{vfavkf) sheck vdk cdapvkz le fieks he vdhs bae{eeaok hs hfkevhcai vl vdk cdapvkz he vdk bae{eeaok ln Okdokf HH) wdhcd hs favkf lek ckev{zx kazihkz% Skk D% eaicıb) ’S{ikhoae vdk Iawgh~kz aef Lvvloae Iaw%‟ AL ) 1 $18>8() 114% 87 Acclzfheg vl Gzafk~a) vdav was olsv pzljajix vdk naol{s Aj{s{ {f $f% 1;76() wdl dkif vdhs plsv av vdk vhok% Skk Gzafk~a) ’Zkihghl}eava avolsnkza)‟ 1;7–;4% 84 Nlz vdk pzlckss ln vzaesnlzoavhle ln vdk pzhoazx nkv~a s hevl skclefazx nkv~a s) s) skk Daiiaq) ’Nzlo Navwês vl N{zò )‟ 31–3: aef 63–682 hfko) ’O{zfkz he Clzflja)‟ >7–76%
44
hv hs elv pzl~ke he cl{zv vdav a pkzsle das fhkf nzlo vdk wl{efs hehcvkf jx vlzv{zk) vdk gh~heg ln jillf/olekx hs elv zkq{hzkf j{v leix a p{ehsdokev $va ( nlz vdk {eiawn{i vlzv{zk% Vdk skclef nkv~a va }hz }hz ciazhfiks slok aspkcvs ln vdk ikgai svav{s ln ae aplsvavk nzlo Hsiao% Acclzfheg vl vdk iavvkz flc{okev) a pkzsle wdl zkel{ecks Hsiao ilsks dhs ~hzv{l{sekss% Hn vlzv{zk lcc{zs wdke lek hs he vdhs svavk vdk pzlvkcvhle ln Hsiaohc iaw hs ilsv% Hn s{cd a pkzsle jkcloks O{siho agahe) vdk ~hzv{l{sekss hs zkgahekf j{v elv vdk pzlvkcvhle) h%k%) vdk cask hs shohiaz vl vdav ln ae aplsvavk‘s ktkc{vhle% Vd{s) k~ke hn hv hs pzl~ke he s{cd hesvaecks vdav a fkavd hs ca{skf jx vlzv{zk) jillf/ olekx hs elv vl jk pahf%88 Vdk vdhzf nkv~a pzlel{ecks le vdk hss{k ln vdk ikgaihvx ln a ciaho nlz zkn{ef ln jillf/olekx% Vdk ikgai lphe/ hle hs vdav k~ke hn hehvhaiix O{sihos da~k pahf jillf/olekx he lzfkz vl caio vkeshles) hv hs iawn{i vl asb iavkz nlz hvs zkn{ef% Le vdk gzl{efs ln vdksk ikgai lphehles) vdk cl{zv lzfkzkf vdav Ik~h aef Zknkba zkv{ze :0)000 abçk s vl Mankz Jkx% Aivdl{gd vkcdehcaiix olekx aef elv zkihghle was av vdk ckevkz ln vdhs ikgai fhsp{vk) Gzafk~a skks vdk flc{okev as m{sv aelvdkz hefh/ cavhle ln vdk zkihghl{s naeavhchso ln O{sihos ln vdav vhok aef vdk {enahz vzkavokev ln ele/O{sihos jx vdk Lvvloae a{vdlzhvhks% He ox ~hkw) dlwk~kz) hv leix sdlws vdav) wdavk~kz vdk zkai svlzx ohgdv da~k jkke) ckzvahe z{iks appihkf aef wkzk nliilwkf% Vdk piahevhff ) Mankz Jkx) Jk x) fhf elv cl{ev cl{ ev le vdk zkihghl{s zk ihghl{s naeavhchso ln vdk m{fgk j{v le dazf k~hfkeck $wdhcd kxkwhvekssks vksvholex cl{evs as he ae Hsiaohc cl{zv( aef le ikgai lphehles cl~kzheg k~kzx aspkcv ln vdk cask aef hss{kf jx pkzdaps vdk nlzkolsv ikgai a{vdlzhvx ln vdk agk% Olzkl~kz) vdk flc{okev oabks hv cikaz $vdk fizsv nkv~a ( vdav vdk vlz/ ea/ok z{ z{ () v{zk ln Aszahi was afm{fgkf as {eiawn{i $ea/ok ()100 j{v was fkkokf p{ehsdajik jx va va }hz }hz % Vdk iavvkz was a clzplzai p{ehsdokev lz a fiek) hoplskf av vdk fhsczkvhle ln vdk bafı %101 Ek~kzvdkikss) sheck vdk ikgai pzlckss he q{ksvhle was elv cleckzekf whvd Lsoae‘s p{ehsdokev) wk fl elv belw hn aex acvhle he vdhs zkspkcv was vabke lz elv% 10: Hn
Skk aisl Sdaxj e ‘s Shxaz ) :0:–:03% 100 Vdk nkkiheg ln wzlegflheg le vdk pazv ln vdk O{siho cloo{ehvx ln Saolbl~ hs avvksvkf jx hvs hehvhai kasx agzkkokev vl pax s{cd a iazgk aol{ev% 101 M% Scdacdv) Ae Hevzlf{cvhle vl Hsiaohc Iaw $Ltnlzf) 18>6() 81% Skk aisl [zhki Dkxf) Sv{fhks he Lif Lvvloae Czhoheai Iaw $Ltnlzf) 1873(% 10: Vdk ~kzfhcv) ek~kzvdkikss) spkchfiks vdav Ik~h aef Zknkba daf vl zkn{ef :0)000) h%k%) vdkx wkzk aiilwkf vl bkkp vdk jaiaeck ln 4)000 abçk s% s% 88
)
48
wk azk vl acc{sk Lvvloae a{vdlzhvhks ln jhas) vdav wl{if jk vdk pls/ shjhihvx vdav fieaechai hevkzksvs ln vdk svavk wkzk p{v fizsv) h%k%) wk oax da~k ek~kz belwe wdav wl{if da~k dappkekf hn vdk olekx pahf jx Mankz Jkx‘s sle daf elv jkke f{k vl vdk vzkas{zx% Dlwk~kz) vl m{op vl vdk cleci{shle cleci{shle vdav ele/O{sihos ele/O{sihos wkzk {enahzix vzkavkf) vzkavkf) slikix le vdk jashs ln vdhs flc{okev) skkos vl ok spkc{iavh~k av jksv% ^% Oazzhagk aef Clec{jheagk as a Okvdlf ln Cle~kzshle vl Hsiao Wdkzkas Cdzhsvhae oazzhagk c{svlos ln vdk vhok zkq{hzkf vdav jlvd pazvhks jk Cdzhsvhae) Hsiaohc iaw aiilwkf ohtkf oazzhagks he wdhcd vdk d{sjaef hs O{siho% Vdk whnk he s{cd casks hs aiilwkf vl zkvahe dkz nahvd% Vdk lpplshvk shv{avhle) dlwk~kz) h%k%) O{siho wloae aef a ele/O{siho d{sjaef was elv pkzohvvkf% Aivdl{gd vdk iaw fhf elv ljihgavk vdk whnk vl cle~kzv vl Hsiao) vdhs was lnvke vdk zks{iv% Vdk cdhifzke jlze vl s{cd a oazzhagk wkzk hek~hvajix zahskf as O{sihos% Vd{s) hv hs lnvke svavkf vdav hevkzoazzhagk piaxkf a shgeh ficaev pazv he vdk cle~kzshle pzlckss he jlvd vdk Asha Ohelz aef vdk Jaibaes% 103 As vl vdk eav{zk ln vdksk oazzhagks) olsv olfkze Jaibae scdliazs fkphcv vdko as he~li{evazx aef cleshfkz vdk pdkelokele vl da~k daf vdk saok fhsasvzl{s cleskq{kecks nlz vdk Jaibae eavhles as vdk fk~ hzok hesvhv{vhle% Acclzfheg vl Azeabhs= Flwe vl vdk ehekvkkevd ckev{zx) vdk V{zbs aef Hsiaoh}kf eavh~ks zkpikehsdkf vdkhz dazkos whvd as oaex avvzacvh~k Cdzhsvhae wloke as heciheavhle) nlzv{ek) aef fiea eaec ecks ks pk pkzo zohv hvvkf vkf%% % % % As he vd vdkk he hesv svae aeck ck ln vdk fk~sdhzok ) vdk pzlckss ln skikcvhle zks{ivkf he hopzl~heg vdk d{oae svlcb ln vdk ’oasvkz zack‟ aef fkpikvheg vdk jhlilghcai zksl{zcks ln vdkk Cd vd Cdzh zhsv svha hae e pk pklp lpik ikss % % %106
Vdk vz{vd) dlwk~kz) hs vdav wk fl elv belw o{cd ajl{v cle~kz/ shle zks{ivheg nzlo hevkzoazzhagks% Svavkokevs ihbk vdk ajl~k leix pzkskev vdhs pdkelokele vdzl{gd vdk pzhso ln vdk aevaglehsvhc zkia/ vhles ln vdk O{siho aef ele/O{siho cloo{ehvhks he vdk iasv ckev{zx
Skk nlz ktaopik ^zxlehs) ’Vdk Jx}aevhek Ikgacx aef Lvvloae Nlzos)‟ F{ojazvle Labs Papkzs :3–:6 $Jhzohegdao) 18>8–70() :442 hfko) ’Cdzhsvhaes)‟ :032 ^kza O{vancdhk~a) ’Ljza}av ea v{zchvk RVdk Hoagk ln vdk V{zbs_)‟ he A% ]kixa}bl~a) kf%) ^za}bh ea Sa~oksvholsv he Eksa~oksvholsv okmf{ dzhsvhaeh h o{s{ioaeh ~ J{igzha $Slfia) 1886() 8 aef Daihi eaicıb) ’Hsiao he vdk Lvvloae Kophzk)‟ he hfko) Kssaxs he Lvvloae Dhsvlzx $Kzke) 1884() :37% 106 Azeabhs) ’Zkihghle)‟ 1::–1:3% 103
80
ln Lvvloae z{ik% Slok ihgdv le vdk s{jmkcv hs vdzlwe jx Oaxa Sdav}ohiikz) wdl das s{z~kxkf vdk ikgai cleskq{kecks ln wloke‘s cle~kzshle nlz vdkhz naohix ihnk%10; Acclzfheg vl Sdav}ohiikz) vdkzk azk vwl ~aihf dhsvlzhcai pazaokvkzs ln cle~kzshle he vdk cask ln wloke% Lek fhokeshle hs vdav wloke {skf cle~kzshle nlz vdkhz lwe gahe) k%g%) vl p{zs{k a zloaevhc zkiavhlesdhp lz vl jkekfiv nzlo vdk gzkavkz pzlpkzvx zhgdvs aff lzfkf lzfkf vl O{siho wloke% Le vdk lvdkz daef) oaex zkshsvkf cle~kzshle jkca{sk ln vdk dka~x slchai pzhck vl jk pahf nlz hv% Acclzfheg vl vdk a{vdlz) fksphvk vdk hoplzvaeck ln oazzhagk he a wloae‘s ihnk) dkz jillf vhks wkzk svzlegkz% Vd{s) vdk sk~kzaeck ln vdksk vhks) wdhcd was ihbkix vl nliilw cle~kzshle) ohgdv da~k jkke s{ ffichkev vl whpk l{v wdavk~kz jkek fivs wkzk gahekf% Aivdl{gd Sdav}ohiikz‘s sv{fx illbs oaheix av casks ln plsv/oazzhagk cle~kzshle jx lek ln vdk spl{sks aef zkihks dka~hix le vdk Cahzl Gkeh}a flc{/ okevs) wdhcd azk zkik~aev olsvix vl {zjae Mkwhsd wloke) hvs cle/ ci{shles oax jk skke as appihcajik vl vdk Lvvloae pkzhlf as wkii% He ox lphehle) he appzlacdheg vdk s{jmkcv ln wloke‘s cle~kzshle jknlzk lz anvkz hevkzoazzhagk he Lvvloae slchkvx) wk sdl{if cle/ shfkz wdkvdkz vdkzk wkzk aex nacvlzs vdav oax da~k ca{skf lek lz vdk lvdkz fhokeshle vl jk floheaev he a pazvhc{iaz pkzhlf% He z{zai slchkvx) nlz ktaopik) wloke‘s skgzkgavhle was zazkix acdhk~kf vl vdk fkgzkk plsshjik he {zjae ckevkzs aef vd{s) c{iv{zai aef k~ke zkih/ ghl{s fh~hshles ohgdv elv da~k jkke s{ ffichkev vl aihkeavk a ele/ O{siho wloae) oazzhkf vl a O{siho) nzlo dkz jillf naohix% Gh~ke vdhs ke~hzleokev) oaex wloke ohgdv da~k jkke kevhckf hevl ohtkf oazzhagks jx vdk i{zk ln vdk gzkavkz pzlpkzvx zhgdvs g{azaevkkf vdko jx Hsiaohc iaw aef jx vdk jzhfk/pzhck pahf jx vdk d{sjaef he O{siho oazzhagks $he Cdzhsvhae aef Mkwhsd oazzhagks hv hs vdk jzhfk wdl o{sv jzheg vdk flwzx(%10> Aelvdkz nacvlz vl jk cleshfkzkf hs vdk pzlgzkss ln cle~kzshle% Vdk olzk af~aeckf vdk svagk ln cle~kzshle he vdk slchkvx) vdk olzk slchaiix acckpvajik vdk pzlspkcv ln oazzhagk vl a O{siho aef acclopaexheg cle~kzshle vl Hsiao% Hv oax elv jk a clhechfkeck vdav he vdk sk~kevkkevd ckev{zx‖vdk pkzhlf ln vdk olsv whfkspzkaf Hsiaoh}avhle he vdk Jaibaes‖wloke {skf cle~kz/ shle as a okaes ln ljvaheheg a q{hcb fh~lzck aef ln acq{hzheg c{s/
Oaxa Sdav}ohiikz) ’Oazzhagk) Naohix) aef vdk Nahvd= Wloke‘s Cle~kzshle vl Hsiao)‟ Ml{zeai ln Naohix Dhsvlzx) 3 $18 $188> 8>()() :3 :3;–>> ;–>>%% 10> Hjhf%) :;> aef ^zxlehs) ’Cdzhsvhaes)‟ :03% 10;
)
81
vlfx ln vdkhz cdhifzke%107 Hv hs aisl plsshjik vdav vdk hesvhv{vhle ln cle/ c{jheagk) belwe as bkphe) l{zhsdkf he sk~kevkkevd/ckev{zx Lvvloae slchkvx jkca{sk zkiavhles jkvwkke O{siho oke aef ele/O{siho wloke daf jkclok whfkix acckpvajik% Bkphe was a clevzacv{ai azzaegkokev nlz a fitkf pkzhlf aef nlz a fitkf aol{ev ln olekx) wdhcd was pahf vl vdk navdkz ln vdk wloae%104 Anvkz vdk ktphzavhle ln vdk clevzacv) vdk wloae cl{if zkv{ze vl dkz cloo{ehvx aef zkoazzx% Vdk oaik cdhifzke ln s{cd a {ehle wkzk zahskf as O{sihos) wdhik vdk ghzis wkzk aiilwkf vl cdllsk vdkhz nahvd% 108 Appazkevix) vdk pzacvhck was sl whfkspzkaf he vdk sk~kevkkevd ckev{zx vdav vdk Lzvdlflt pavzhazcd pkvhvhlekf vdk s{ivae vl p{v a daiv hv% 110 He ~hkw ln vdk ajl~k cleshfkzavhles) H wl{if azg{k vdav) gh~ke vdk pzkskev svavk ln zkskazcd) hv hs hoplsshjik vl pzlel{eck whvd aex ckz/ vahevx le vdk ktvkev ln cle~kzshle as a zks{iv ln hevkzoazzhagk aef clec{jheagk% Vdk nliilwheg flc{okev) favkf 1>3;) hii{svzavks dlw clevzl~kzshai aex cleci{shle cl{if jk%111 Vdk }hooh Fhol) zkshfkev ln vdk ~hiiagk ln Aihljash) a nlzokz zkshfkev ln vdk ~hiiagk ln Fljzlohz) jzl{gdv vl vdk cl{zv vdk O{siho Lsoae) wdl hs oazzhkf vl dhs fa{gdvkz) Sdkosa Dav{e) aef he dhs pzkskeck oafk vdk nliilwheg clopiahev= ’Vdk anlzksahf Lsoae oazzhkf ox fa{gdvkz) vdk anlzksahf Sdkosa) {efkz clop{ishle $ckjzae (% (% Anvkz dk oazzhkf dkz) dk aisl clopkiikf dkz dk z vl cle~kzv vl Hsiao% H pikaf vdav sdk jk caiikf vl appkaz jknlzk a cl{zv ln iaw he lzfkz vl ksvajihsd vdk vz{vd%‟ Wdke vdk anlzksahf Sdkosa was jzl{gdv vl vdk cl{zv ln iaw aef was asbkf vl vkii vdk vz{vd sdk aeswkzkf= ’H jkcaok O{siho ln ox lwe nzkk whii aef oazzhkf vdk anlzksahf Lsoae acclzfheg vl Glf‘s clooaef%‟ Vdk zks{iv ln vdk iaws{hv was zkghsvkzkf he vdk cl{zv zkclzfs% Wzhvvke he vdk kef ln vdk olevd ln Zaoa}ae) 1066 $Oazcd 1>3;(% Whvekssks= Okdokf Knkefh‖vdk pzhfk ln vdk davhjs ) Adokf Cdkikjh‖ hoao hoao) Okdokf‖ ba}}a} ba}}a} ) Adokf‖ o{d}hz o{d}hz ) Aih‖ o{d}hz o{d}hz ) Sknkz‖ o{d}hz o{d}hz %
Sheck Sdkosa ciahokf vdav sdk daf ~li{evazhix oazzhkf Lsoae aef cle~kzvkf vl Hsiao vdk cask was cleshfkzkf cilskf% Le vdk lek daef) Skk Oliix Gzkke) ’Baefhxk 1>>8–17:0= Vdk Nlzoavhle ln a Okzcdaev Ciass‟ $Pd%F% fhsskzvavhle= Pzheckvle [eh~kzshvx) 1883(% 104 ^zxlehs) ’Cdzhsvhaes)‟ :03% 108 ^zxlehs) ’Jx}aevhek Ikgacx)‟ :44% 110 Skk nlz fkvahis) E%M% Paeva}lpl{ils) Cd{zcd aef Iaw he vdk Jaibae Pkehes{ia f{z/ heg vdk Lvvloae Z{ik $Vdkssailehbh) 18>7() 86–10:% 111 VFHOE ) ~li% : $Sblpmk) 18>>() Flc{okev :>1) 138–160% 107
8:
jaskf le dkz fkciazavhle) wk cae cleci{fk vdav sdk oax da~k oaz/ zhkf jx o{v{ai cleskev j{v clevzazx vl dkz navdkz‘s whii) wdhcd wl{if vd{s ktpiahe dhs l{vzagk% Le vdk lvdkz daef) hn wk cleshfkz vdk pls/ shjhihvx vdav sdk oax da~k jkke fhsdlelzkf) he a vzafhvhleai slchkvx vdk ihbkihdllf hs vdav sdk wl{if da~k jkke lsvzach}kf nlz ihnk jx dkz nlzokz cloo{ehvx% Vd{s) he lzfkz vl pzkskz~k slok slchai svaefheg sdk wl{if acckpv vdk oazzhagk whvd Lsoae as vdk leix aivkzeavh~k% S{cd a olvh~avhle ohgdv ktpiahe Sdkosa‘s fkciazavhle jknlzk vdk cl{zv) zkgazfikss ln vdk acv{ai k~kevs% He lvdkz wlzfs) he vdk ajskeck ln n{zvdkz fkvahis) vdk k~kevs s{zzl{efheg vdhs oazzhagk aef cle~kz/ shle vl Hsiao aef aex he lvdkz shohiaz casks cae leix jk g{ksskf av% Nacvlzs ln Cle~kzshle
Wk cae gkekzaiix fhsvheg{hsd jkvwkke vdk nacvlzs ln cle~kzshle as naiiheg hevl vdzkk gzl{ps‖kclelohc) psxcdlilghcai/slchai aef zkih/ ghl{s/c{iv{zai% As kclelohc nacvlzs) H cleshfkz fieaechai af~aevagks vdav ele/O{siho s{jmkcvs oax da~k daf {ple cle~kzshle vl Hsiao% As psxcdlilghcai/slchai nacvlzs) H wl{if heci{fk vdk fkshzk vl pzkskz~k a pzh~hikgkf plshvhle he slchkvx) lz vl af~aeck he vdk slchai dhkzaz/ cdx) as wkii as vdk aii{zk ln ilcaiix/ksvajihsdkf Hsiaohc hesvhv{vhles wdhcd svzkegvdkekf vdk O{siho ekvwlzb he vdk slchkvx as a wdlik% As zkihghl{s/c{iv{zai nacvlzs) H wl{if cl{ev vdk hopacv ln Jlglohihso le Jaibae Cdzhsvhaehvx) vdk hevkzacvhle jkvwkke O{siho aef Jaibae plp{iaz c{iv{zk) aef iasvix vdk svzkegvd lz vdk wkabekss ln vdk Lzvdlflt Cd{zcd he vdk fhff kzkev kzkev Jaibae zkghles% H% Kclelohc Nacvlzs Hv was elvkf av vdk jkgheeheg ln vdk cdapvkz vdav) acclzfheg vl vdk ’clkzchle vdklzx)‟ k~ke skkohegix ~li{evazx cle~kzshle vl Hsiao was ~hkwkf as da~heg jkke olvh~avkf jx kclelohc pzkss{zk% Acclzfheg vl ]kixa}bl~a) vdk oamlz nacvlz he Hsiaoh}avhle whvdl{v fhzkcv clkz/ chle was vdk Lvvloae fiscai sxsvko%11: Sdk svavks=
11:
]kixa}bl~a) Za}pzlsvzaekehk ) >;%
)
83
He vdk azka ln vdk Kophzk‘s fiscai plihcx) vdk olsv shgehficaev hopacv le vdk Hsiaoh}avhle ln vdk ilcai plp{iavhle was vdk plii/vat) wdhcd was pahf jx vdk ele/O{sihos%113
Hn wk ika~k ashfk vdk s{jmkcv ln ’~li{evazx lz clkzch~k‟ cle~kzshle) ]kixa}bl~a‘s lphehle skkos vl jk sdazkf aisl jx eaicıb) wdl svavks= Hv cae jk sankix sahf vdav heczkasks aef ktacvhles ln vdk plii/vat wkzk n{efaokevai zkasles nlz vdk aihkeavhle ln vdk Cdzhsvhae plp{iavhle nzlo vdk Lvvloae zkghok nzlo vdk kef ln vdk shtvkkevd ckev{zx le% Vdk plii/vat was aisl zkspleshjik nlz oass cle~kzshles he ~azhl{s pazvs ln vdk Jaibaes he iavkz ckev{zhks% 116
He lvdkz wlzfs) vdksk vwl scdliazs dlif vdav hv was vdk kclelohc af~aevagks fkzh~kf nzlo vdk ktkopvhle nzlo ch}xk vdav pzl~hfkf vdk kclelohc olvh~avhle nlz Jaibae ele/O{sihos vl acckpv Hsiao% S{cd a cleci{shle skkos av fizsv vl clenlzo vl vdk svagks ln vdk cle~kz/ shle pzlckss) l{vihekf he vdk pzk~hl{s cdapvkz% [evhi vdk kef ln vdk finvkkevd ckev{zx) vdk ch}xk ) ik~hkf av vdk zavk ln ;0 abçk s pkz aee{o le a~kzagk)11; was elv a dka~x j{zfke aef vd{s) elv zkasle kel{gd nlz cle~kzshle% Hefkkf) as H was ajik vl sdlw he cdapvkz vwl) cle/ ~kzshle he vdk finvkkevd ckev{zx was elv ktvkesh~k% Sheck vdk ch}xk was elv a s{ffichkev kclelohc svho{i{s nlz ajaefleheg vdk Cdzhsvhae nahvd) D% Ilwzx k~ke jkihk~ks vdav vdk Lvvloaes daf vl pzl~hfk lvdkz kcl/ elohc heckevh~ks he lzfkz vl ’hevzlf{ck a O{siho kikokev hevl vdk ekwix cleq{kzkf Cdzhsvhae vkzzhvlzhks%‟11> Dk das ljskz~kf he a vhoaz zkghsvkz) favkf 16>;) vdav vdk vwl O{siho dl{skdlifs he vdk pzk/ floheaevix Cdzhsvhae ~hiiagk ln Zafhil~l) Oackfleha) wkzk ktkopvkf nzlo paxheg vdk vat belwe as zkso/h b{ii{b lz zkso/h çhnv ) wdhcd ’was vdk shegik olsv hoplzvaev pkz/caphva vat cliikcvkf nzlo vdk kophzk‘s agzhc{iv{zhsvs%‟117 Vl dho) vdhs nacv hopihks vdav ’vdk Lvvloaes wkzk Hjhf%) >7% eaicıb aef Q{avakzv) Dhsvlzx) >8% Skk aisl eaicıb) ’Hsiao he vdk Lvvloa Kophzk)‟ :34% 11; Hjhf%) 702 aef K% Gzl}fael~a) ’Plglih~ehxav faeab h za}~hvhkvl ea svlbl~l pazhcdehvk lvelsdkehxa ~ jaigazsbhvk }koh pzk} 1;–18 ~kb RVdk Plii Vat aef vdk Fk~kilpokev ln Olekx/cloolfhvx Zkiavhles he vdk J{igazhae iaefs he vdk 1;vd–18vd Ckev{zhks_)‟ he H} Hsvlzhxava ea Vazgl~hxava ~ Jaigazsbhvk }koh 1;–18 ~kb $Slfia) 1874() 1;8% 11> Dkavd Ilwzx) ’Cdaegks he Nhnvkkevd/Ckev{zx Lvvloae Pkasaev Vatavhle= Vdk Cask Sv{fx ln Zafhilnl)‟ he Aevdlex Jzxkz aef Dkavd Ilwzx) kf%) Clevhe{hvx aef Cdaegk he Iavk Jx}aevhek aef Kazix Lvvloae Slchkvx $Jhzohegdao) Wasdhegvle) 184>() 30–31% 117 Hjhf%) 30% 113 116
86
acvh~kix pzlolvheg Hsiao he vdhs pkzhlf jx gzaevheg pkasaev cle~kzvs ckzvahe kclelohc heckevh~ks%‟114 He ox lphehle) vdkzk azk sk~kzai cle/ shfkzavhles vdav plhev vl vdk ktvzalzfheazx eav{zk ln s{cd ae ktkop/ vhle% Nhzsv) Ilwzx dhoskin okevhles vdk plsshjhihvx vdav vdk vat ktkopvhle ohgdv da~k jkke ktvkefkf he zkclgehvhle ln spkchai skz/ ~hcks pkznlzokf jx vdksk O{siho dl{skdlifs% Skclef) zk zkso so//h çh çhnv nv cle/ vhe{kf vl jk pahf jx O{siho dl{skdlifs he vdk s{zzl{efheg ~hiiagks% Ilwzx‘s ktpiaeavhle vdav leix fizsv/gkekzavhle O{sihos wkzk ktkopvkf hs elv cle~hecheg%118 Vdhzf) he 1674) vdk ’ktkopvhle‟ was ihnvkf nzlo vdk ~hiiagk ln Zafhil~l as wkii% 1:0 N{zvdkzolzk) wk da~k k~hfkeck nlz ktacvix vdk lpplshvk pzlckss) h%k%) vdav cle~kzvs da~k jkke vatkf av a gzkavkz zavk vdae vdkx wkzk s{pplskf vl% He a finvkkevd/ckev{zx zkg/ hsvkz nlz vdk zkghle ln Vdkssailehca) he vdk ~hiiagk ln ^asiab) wk fief vdzkk dl{skdlifs) cikazix hfkevhfikf as cle~kzvs $oùdvkfh () vatkf av vdk zavk ln :; abçk s) s) hesvkaf ln vdk :: abçk s zkso/h çhnv as zkq{hzkf nlz O{sihos%1:1 Vdk saok shv{avhle cae jk ljskz~kf he vdk cask ln vdk vdzkk ekw O{siho dl{skdlifs he vdk ~hiiagk ln B{oaehç aef vdk lek ekw O{siho dl{skdlif he vdk ~hiiagk ln Axl Ehblia% 1:: Jaskf le vdhs k~hfkeck) Oèeagk das spkc{iavkf vdav vdkzk ohgdv da~k jkke ae hevkzokfhazx svav{s jkvwkke jkheg a }hooh aef a n{ii acckpvaeck he vdk O{siho cloo{ehvx%1:3 Oèeagk plhevs l{v vdav he aii vdzkk 114
Hjhf% 118 Hjhf% 1:0 Hjhf%) 31% 1:1 VHJH ) ~li% 4 $Slfia) 18>>() 636% 1:: Hjhf%) 66: aef 6;:% 1:3 ^%I% Oèeagk) ’Le vdk Lvvloae Wlzf A zhx e,A zhx e)‟ AL 1 $18>8() :08% Oèeagk k~ke jkihk~ks vdav a spkchai wlzf oax da~k kthsvkf vl fkelvk s{cd sva/ v{s‖a zhx e‖aef vdav vdk shv{avhle hs vl jk ktpiahekf jx ’vdk Cdzhsvhaes‘ cle/ vkopv nlz aplsvavks aef jx vdk fhsfahe ln —lif O{sihos‘ nlz pkasaev cle~kzvs%‟ He vdk ihgdv ln vdk fhsc{sshle jkilw ajl{v vdk eav{zk ln Cdzhsvhae aef O{siho jkihkns he vdk pkzhlf) H ao zki{cvaev vl acckpv vdhs as a pzljajik azg{okev% Oèeagk‘s kvdh/ olilgx nlz vzxheg vl fkzh~k a zhx e nzlo vdk Okfhk~ai Gzkkb Agazkels aef J{igazhae Agazxae Agaz xae —O{siho‘ hs aisl elv cle~hecheg% Dhs ass{opvhle vdav ae hevkzokfhazx J{igazhae wlzf adzhxae $’pkzdaps fhaikcvhcai‟ he vdk wlzfs ln Oèeagk( das kthsvkf hs elv s{p/ plzvkf jx vdk a{vdlz whvd aex k~hfkeck% Skk aisl S% Fhohvzl~‘s lphehle ajl{v vdk cleekcvhle ln adzhxae whvd agazxae he ’Ekfl{ohch h gzksdbh ~ kfea behga }a j{i/ gazhvk oldaokfaeh RJaskikss Azg{okevs aef Kzzlzs he a Jllb ajl{v vdk J{igazhae O{sihos_)‟ Zdlflphca 1 $1884() :06% Le vdk lvdkz daef) vdk s{ggksvkf iheb jkvwkke ae aechkev vzhjk Adzhxae $dkeck vdk Zdlflpk‘s aechkev eaok ln Adzhfa( aef vdk Zdlflpk Ploabs) aef vd{s) vdk cleekcvhle jkvwkke a zhx e aef —cle~kzv vl Hsiao‘ oafk jx K~ihxa Çkikjh av vdk vhok wdke vdk plp{iavhle ln vdk zkghle das iazgkix aflpvkf Hsiao) skkos o{cd olzk pzljajik‖skk Oèeagk) lp% chv%) :0;–:0>) aef Fhohvzl~) ’Kzzlzs)‟ :06%
)
8;
casks vdk ekw O{sihos da~k bkpv vdkhz Cdzhsvhae eaoks wdhik he lvdkz ~hiiagks cle~kzvs vdav da~k ass{okf O{siho eaoks wkzk vatkf av vdk ilwkz zavk% A cilskz ktaoheavhle) dlwk~kz) aisl sdlws vdav vdk cle~kzvs whvd Cdzhsvhae eaoks azk he ~hiiagks whvd vdk zksv ln vdk hedajhvaevs jkheg aii Cdzhsvhae aef vdk cle~kzvs whvd O{siho eaoks he ~hiiagks whvd vdk zksv ln vdk zkshfkevs jkheg aii O{siho% He ox lphehle) fizsv) s{cd shv{avhle zahsks vdk q{ksvhle ajl{v vdk eav{zk ln cle~kzshle he vdhs kazix pkzhlf) aef) skclef) hv sdlws vdav Lvvloaes oax da~k k~ke vzhkf vl fhscl{zagk cle~kzshle he ~hiiagks wdkzk el pzhlz cle~kzshles da~k lcc{zzkf jx clevhe{heg vl vzkav cle~kzvs aef vdkhz nlzokz cl/zkihghlehsvs he vdk saok fiscai nasdhle) h%k% elv vl gh~k ae ktaopik ln fieaechai af~aevagks {ple cle~kzshle% Le vdk lvdkz daef) he kevhzkix O{siho ~hiiagks s{cd vzkavokev hs shopix hoplsshjik% He vdk cl{zsk ln vdk shtvkkevd ckev{zx vdk ch}xk heczkas heczkaskf kf $vl 40–4; 40 –4; s( aef sl fhf vdk pack ln cle~kzshle% Vdk jhggksv heczkask he ch}xk abçk s( zavks) dlwk~kz) lcc{zzkf he vdk sk~kevkkevd aef khgdvkkevd ckev{zhks% Av vdk jkgheeheg ln vdk sk~kevkkevd ckev{zx) vdk ch}xk was ik~hkf av 170 vl :30 abçk s2 s2 jx vdk ohffik ln vdk ckev{zx) hv was av 300–3;0 s2 aef jx vdk kef ln vdk ckev{zx) vdk zavk svllf av olzk vdae abçk s2 600 abçk s% s%1:6 He affhvhle vl vdk ch}xk ) ele/O{sihos wkzk zkq{hzkf vl pax vdk saiazhks ln vdk lffichais cliikcvheg hv g{iaohxk (% Vdk nzkq{kev $ g{iaohxk casks ln vat aj{sk clevzhj{vkf vl fieaechai pzkss{zk le vdk lzfheazx s{jmkcvs ln vdk Kophzk)1:; j{v kspkchaiix le vdk Cdzhsvhaes) wdl daf he affhvhle vl pax kccikshasvhcai vatks vl vdk Lzvdlflt Cd{zcd% Hv skkos ilghcai) vdke) vdav he lzfkz vl ihgdvke vdk vat j{zfke oaex Cdzhsvhaes wl{if da~k pzknkzzkf vl cle~kzv vl Hsiao) vdkzkjx zkihk~/ heg vdkoski~ks ln vdk ljihgavhle vl pax vdk ch}xk % Hefkkf) as wk ljskz~kf he vdk pzk~hl{s cdapvkz) vdk jhggksv heczkask he vdk zavk ln cle~kzshle skkos vl da~k lcc{zzkf he vdk sk~kevkkevd ckev{zx% Plhevheg vl vdk ch}xk as vdk ksskevhai zkasle nlz cle~kzshle) dlwk~kz) plsks slok pzljikos% Nhzsv) vdk ch}xk heczkask he vdk sk~kevkkevd ckev{zx was hefkkf spkc/ vac{iaz) j{v sl was heavhle% Hn wk vabk vdk ktcdaegk zavk ln vdk abçk ~kzs{s vdk ^kekvhae f{cav1:> as ae hefhcavhle ln heavhle) wk skk Gzl}fael~a) ’Plglil~ehxav faeab)‟ 1;8–1>;% Skk D% eaicıb) ’Vdk Lvvloae Fkcihek aef Hvs Kff kcvs kcvs {ple vdk Zkaxa )‟ )‟ he D% Jhzeja{o) S% ^zxlehs) kf%) Aspkcvs ln vdk Jaibaes= Clevhe{hvx aef Cdaegk $Vdk Dag{k) 187:() 334–3;6% 1:> k~bkv Pao{b) ’Olekx he vdk Lvvloae Kophzk 13:>–1816)‟ he eaicıb aef Q{avakzv) Dhsvlzx) 8>6% 1:6 1:;
8>
vdav vdk zavks ln heczkask azk aiolsv pazaiiki vl vdlsk ln vdk ch}xk % He 1;46) lek ^kekvhae f{cav was ktcdaegkf nlz >0 abçk s% s% He 1>00) vdk ktcdaegk zavk was 1:;‖a 104 pkzckev heczkask% He vdk saok pkzhlf vdk ch}xk zlsk nzlo 40 vl 170 abçk s‖a s‖a 113 pkzckev heczkask% Jx 1>;8 lek ^kekvhae f{cav was ktcdaegkf nlz 180 abçk s aef jx 1>>8 hv was wlzvd :;0‖heczkasks ln :17 aef 317 pkzckev zkspkcvh~kix% Vdk zavk ln ch}xk heczkask he vdk ohffik ln vdk ckev{zx was shohiaz‖300–3;0 s) h%k%) heczkasks ln :7; aef 334 pkzckev% Jx vdk kef ln vdk cke/ abçk s) v{zx) vdk heavhle zavk daf k~ke l{vpackf vdk ch}xk % He 1>81) lek ^kekvhae f{cav was ktcdaegkf nlz 3;0 abçk s) s) zkpzkskevheg a 643 pkz/ ckev heczkask l~kz vdk zavks ln a ckez{zx jknlzk) wdhik vdk ch}xk was ik~hkf av 600 abçk s) s) a 600 pkzckev heczkask l~kz vdk saok pkzhlf% Vdk ch}xk clevhe{kf vl zhsk he vdk khgdvkkevd ckev{zx as wkii% 1:7 Ek~kzvdkikss) as plhevkf l{v he vdk pzk~hl{s cdapvkz) vdk pzlgzkss ln cle~kzshle daf daivkf jx vdk skclef q{azvkz ln vdk khgdvkkevd cke/ v{zx he olsv ln vdk Jaibae iaefs% Skclef) sheck vdk vat j{zfke was kq{ai nlz aii ele/O{sihos) wk oax asb wdx cle~kzshle vl Hsiao was olzk whfkspzkaf he slok zkghles aef elv he lvdkzs% Hv cl{if jk azg{kf vdav slok zkghles ktpkzhkeckf kclelohc fhffic{ivhks he a gzkavkz fkgzkk aef vd{s) vdk vat heczkasks leix wlzskekf vdksk fhffic{ivhks% Wdhik vdk cleekcvhle jkvwkke a pllz ilcai kclelox aef Hsiaoh}avhle appkazs vl jk ~aihf nlz zkghles s{cd as Ek~zlblp) dlw fl wk ktpiahe vdk spzkaf ln Hsiao he pzlspkzl{s azkas< Nlz ktaopik) Bhki das s{z~kxkf vdk kclelohc shv{avhle ln vdk ~hiiagk ln Blsvaefl~l) he vdk zkghle ln Cdkphel) wdhcd was okevhlekf he cleekcvhle whvd vdk aiikgkf nlzckf Hsiaoh}avhle he vdk Zdlflpks%1:4 Acclzfheg vl a zkghsvkz ln 1;70) vdk ~hiiagk daf 113 dl{skdlifs) 68 ln vdko $63 pkzckev( O{siho) 1:8 wdhcd hefhcavks ae af~aeckf svagk ln vdk cle~kzshle pzlckss% He 1;70) vdk zkshfkevs ln Blsvaefl~l aivlgkvdkz pahf 3):00 abçk s he sdkkp vat% Jaskf le vdk zavk ln lek abçk nlz k~kzx vwl sdkkp) wk cae fkf{ck vdav vdkzk wkzk >)600 sdkkp he vdk ~hiiagk) h%k%) ae a~kzagk ln ;7 pkz dl{sk/ dlif% He affhvhle vl vdk nacv vdav s{cd a e{ojkz ln sdkkp wl{if jk olzk vdae s{ffichkev vl s{svahe a naohix) Bhki caic{iavks vdav whvd vdk pzhck ln sdkkp ~azxheg jkvwkke :; aef 30 abçk s av vdk vhok) vdk a~kz/
1:7 1:4 1:8
D% eaicıb) KH :) s%~% ’ h}xa) hh) Lvvloae)‟ ;>6% Bhki) ’Spzkaf ln Hsiao)‟ 7;% Hjhf%) 10>%
)
87
agk dl{skdlif wl{if plsskss 1)700–:)000 abçk s wlzvd ln ih~ksvlcb% Olzkl~kz) vdk agzhc{iv{zai pzlf{ck) wdhcd was cliikcvkf he bhef nzlo vdk ~hiiagk) caok vl :; o{ff s ln wdkav aef 30 o{ff s ln ohtkf ckzkais% Jaskf le a vat zavk ln 10 pkzckev aef vdk svaefazf o{ff ln ;13%1> bg)130 wk cae fkf{ck vdav vdk a~kzagk dl{skdlif pzlf{ckf appzlt/ hoavkix :);00 bg ln gzahe he vdav xkaz% Acclzfheg vl OcGlwke) wdl p{vs vdk s{jshsvkeck ik~ki pkz pkzsle pkz aee{o av :30–:7; bg ln kclelohc gzahe kq{h~aikev)131 vdk a~kzagk dl{skdlif he Blsvaefl~l ohgdv da~k daf as o{cd as a ;0 pkzckev s{zpi{s he agzhc{iv{zai pzl/ f{cvhle% S{cd a shv{avhle cl{if dazfix jk hevkzpzkvkf as a olvh~av/ heg nacvlz he cle~kzshle vl Hsiao le kclelohc gzl{efs% He lvdkz wlzfs) Fkeekvv‘s cleci{shle as vl vdk zlik ln vdk ch}xk he vdk fizsv ckev{zx ln Hsiao‖vdav vatavhle ailek cl{if elv jk dkif zkspleshjik nlz Hsiaoh}avhle‖dlifs vz{k nlz vdk Jaibaes as wkii% Lj~hl{six) vdkzk wkzk lvdkz nacvlzs vdav clevzhj{vkf vl vdk spzkaf ln Hsiao aef vdav o{ivhpihkf lz kihoheavkf vdk ekgavh~k k ff kcvs kcvs ln vdk kclelohc fhffic{ivhks ktpkzhkeckf jx vdk ele/O{siho s{jmkcvs ln vdk Lvvloae Kophzk% Kclelohc nacvlzs ln a fhff kzkev kzkev eav{zk oax da~k piaxkf a zlik he vdk cle~kzshle ln ilcai {zjae czanvsoke) wdl) as a z{ik) cle~kzvkf he vdk kazix svagks ln vdk pzlckss% As ljskz~kf he cdapvkz vwl) vdk oamlz {zjae ckevkzs aizkafx plssksskf pzkfloheaevix O{siho plp/ {iavhles av vdk jkgheeheg ln vdk shtvkkevd ckev{zx wdhik he vdk soaiikz vlwes vdk cle~kzshle pzlckss was as xkv av hvs pkab% He Vdhzbkii‘s lphehle) czanvsoke cle~kzvkf as a zks{iv ln a pzkss{zk gkekzavkf vdzl{gd vdk oazbkv nlz vdkhz pzlf{cvs aef skz~hcks% Dk jkihk~ks vdav vdk ohihvazx) ch~hi aef zkihghl{s O{siho ksvajihsdokev) jaskf as hv was he vdk vlwes) pzknkzzkf vl p{zcdask nzlo s{ppihkzs wdl wkzk ln vdkhz lwe nahvd%13: Slchai nacvlzs) as vdk leks fhsc{sskf jkilw) dlwk~kz) olsv pzljajix piaxkf a olzk hoplzvaev zlik nlz vdk cle~kzshle he {zjae ckevkzs%
Skk ’ O{ff O{ff ‟ he eaicıb aef Q{avakzv) Dhsvlzx) Appkefht ’Wkhgdvs aef Okas{zks%‟ Skk Jz{ck OcGlwae) ’Nllfs{ppix aef Vatavhle le vdk Ohffik Fae{jk $1;>4–1;78()‟ AL ) 1 $18>8() 1;;% 13: Mlde Vdhzbkii) ’Hsiaohsavhle he Oackfleha as a Slchai Pzlckss)‟ he Mkeehnkz O% Scazck) kf%) Hsiao he vdk Jaibaes $Kfhej{zgd) 1878() 67% 130 131
84
HH% Slchai Nacvlzs Hv was pzhoazhix slchai nacvlzs vdav olvh~avkf vdk cle~kzshle ln oko/ jkzs ln vdk ilcai azhsvlczacx) wdl wkzk aoleg vdk fizsv vl acckpv Hsiao he vdk Jaibaes% He ]kixa}bl~a‘s lphehle) vdk pzlckss ln acclo/ olfavhle le vdk pazv ln vdk Jaibae kihvk svazvkf whvd vdk acckpvaeck ln Lvvloae s{}kzahevx) h%k%) k~ke jknlzk vdk cleq{ksv%133 As ~assais) vdk Jaibae z{ikzs lnvke clevzhj{vkf vzllps vl aef k~ke pazvhchpavkf pkzsleaiix he Lvvloae caopahges)136 accl{evheg nlz vdk kazix assl/ chavhle jkvwkke vdk Cdzhsvhae Jaibae aef Lvvloae ohihvazx kihvks% [ple vdk n{ii aeektavhle ln vdk Jaibae svavks) slok ln vdk eljhihvx fkchfkf vl cle~kzv vl Hsiao he lzfkz vl oahevahe vdkhz okojkzsdhp he vdk kihvk%13; Dlwk~kz) he vdk pkzhlf hookfhavkix nliilwheg vdk cleq{ksv vdk ilcai azhsvlczacx svhii cle~kzvkf he zavdkz ihohvkf e{ojkzs% Cle~kzshle vl Hsiao was elv ekckssazx nlz okojkzsdhp he vdk Lvvloae ohihvazx kihvk he vdk fizsv ckev{zx lz sl ln Lvvloae z{ik he vdk Jaibaes% Vd{s) oaex ln vdk Jaibae Cdzhsvhae ohihvazx lfficks wdl cliiajlzavkf wkzk accloolfavkf jx jkheg gzaevkf vhoaz s lz shopix pkzohvvkf vl zkvahe vdkhz nlzokz fikns whvd vdk svav{s ln shpadh s% s%13> F{k vl vdk scazchvx ln sl{zcks) wk fl elv belw dlw oaex Cdzhsvhae shpadh s pazvhchpavkf he nl{zvkkevd ckev{zx Lvvloae caopahges% Acclzfheg vl vhoaz zkghsvkzs ln vdk fizsv dain ln vdk finvkkevd ckev{zx) dlwk~kz) vdk e{ojkz ln vhoaz s zkghsvkzkf vl Cdzhsvhae shpadh s he vdk nlzokz iaefs ln vdk Skzj bhegflo zaegkf nzlo ;0 pkzckev he vdk s{jfhsvzhcv ln Jzaeh k~l vl 3); pkzckev he vdav ln Ls~ma k~l) he vdk saecab ln ^hfhe%137 He Jlseha he 16>8) vdkzk wkzk 111 Cdzhsvhae shpadh s l{v ln a vlvai ln 13;% 134 He vdk saecab ln Sokfkzk~l) vdk fig{zk was 4; l{v ln 168) 138 wdkzkas) he vdk saecab ln Az~aehf) he 163:) >0 l{v ln vdk 33; vhoaz s wkzk gzaevkf vl Cdzhsvhaes%160 Vdk shv{avhle was shohiaz he aii Jaibae vkz/ zhvlzhks whvd vdk ktckpvhle ln slok pazvs ln Gzkkck wdkzk vdk nlz/ 133
]kixa}bl~a) Za}pzlsvzaekehk ) 1>3% 136 Skk Bhki) Azv aef Slchkvx) ;6% 13; Skk nlz ktaopiks) ]kixa}bl~a) Za}pzlsvzaekehk ) 1>6% 13> Nlz vdk pdkelokele ln Cdzhsvhae shpadh s skk D% eaicıb) ’Lf Svknaea F{ aea%‟ 137 Hjhf%) 6:% 134 Liga ]hzlmk~h ) ’Vdk Lvvloae Ohihvazx Lzgaeh}avhle he X{glsia~ Cl{evzhks he vdk vdk 1;v 1;vd d ae aeff vdk vdk 1>vd 1>vd Ck Ckev ev{z {zhk hks) s)‟‟ he Lvvloae Z{ik he Ohffik K{zlpk ) 143% 138 J% Fm{zfmk~) ’Dzh’Î aeh Spadhmk { Sk~kzelm Szjhmh { T^ ~kb{)‟ he Glfh Glfh emab emab Hsvlzsblg Fz{ v~a Jlseha h Dkzckgl~hek ) 6 $18;:() 1>;–1>8% 160 eaicıb) ’Lf Svknaea F{ aea)‟ 60%
)
88
okz kihvk) jkheg ln Wksvkze K{zlpkae lzhghe) daf ajaeflekf vdkhz dlifhegs anvkz vdk Lvvloae cleq{ksv% Vdav vdk Cdzhsvhae shpadh s wkzk khvdkz nlzokz ohihvazx lffickzs) da~heg skz~kf he vdk azohks ln vdk Jaibae z{ikzs) lz vdkhz sles) hs hefhcavkf jx vdk fkshgeavhle ’lif shpadh ‟ avvacdkf vl oaex ln vdko%161 Ek~kzvdkikss) he vdk cl{zsk ln vdk finvkkevd ckev{zx) vdk e{ojkz ln Cdzhsvhae shpadh s gzaf{aiix fhohehsdkf% Vdav vdk zkasle nlz vdhs pzlckss was cle~kzshle vl Hsiao hs agahe avvksvkf vl he vdk vhoaz zkg/ hsvkzs% He vdk skclef dain ln vdk ckev{zx) vdk e{ojkz ln ekw cle/ ~kzvs vl Hsiao aoleg vdk shpadh s svkafhix heczkaskf% Nlz ktaopik) he 164;) he vdk saecab ln Sdblfza) aoleg vdk 170 shpadh s) s) khgdv daf zkckevix acckpvkf Hsiao%16: He vdk zkghle ln Abçadhsaz) he 164; vdkzk wkzk vwl ekw O{siho aef fi~k Cdzhsvhae shpadh s% s% He vdk zkghle ln Fkjaz he 16>7) 4 pkzckev ln vdk shpadh s wkzk cle~kzvs vl Hsiao% He Vkvl~l) vdk e{ojkz ln shpadh s wdl wkzk ekw O{sihos clesvhv{vkf 7 pkzckev2 he Sblpmk) 6 pkzckev2 aef he Bhcdk~l) 4%; pkzckev% 163 He vdk s{jfhsvzhcv ln Pzhikp) vdk e{ojkz ln Cdzhsvhae shpadh s fhohehsdkf nzlo 30 pkzckev ln vdk vlvai he 16;> vl :0 pkzckev he 16>7% 166 Wkii avvksvkf hs vdk pzlckss ln cle~kzshle aoleg vdk vhoaz dlifkzs he Oackfleha as a wdlik% As ln vdk ohffik ln vdk finvkkevd ckev{zx) lek vdhzf ln vdk vhoaz s wkzk he vdk daefs ln Cdzhsvhaes% Vwkevx xkazs iavkz) leix fi~k Cdzhsvhae vhoaz s zkoahekf aef av vdk jkgheeheg ln vdk shtvkkevd ckev{zx) vdk zkghsvkzs fl elv sdlw aex Cdzhsvhae shpadh s% s%16; Acclzfheg vl ]kixa}bl~a) jx vdk kef ln vdk finvkkevd ckev{zx vdk cle~kzshle ln vdk Jaibae azhsvlczacx daf ksskevhaiix jkke clopikvkf%16> Bhki s{ggksvs a naz iavkz favk% He a zkghsvkz ln 1;1> nlz vdk saecab ln B{svkefhi dk das nl{ef khgdv vhoaz s zkghsvkzkf vl Cdzhsvhae shpadh s2 s2 dlwk~kz) vdhs hs a ohe{sc{ik pkzckevagk ln vdk vlvai ln 10;:% 167 Olzkl~kz) Cd{zcd hesczhpvhles okevhle fleavhles zkckh~kf nzlo Cdzhsvhae shpadh s as iavk as 1;8:) 1>16 aef 1>33%164 Hv hs fhffic{iv vl ktpiahe vdk cle~kzshle ln vdk Cdzhsvhae shpadh s le kclelohc gzl{efs% As pazv ln vdk ohihvazx ciass) vdkx wkzk ktkopv 161 16: 163 166 16; 16> 167 164
Hjhf%) 63% P{iada) Ik cafasvzk fk i‘ae 164; ) ;% Svlmael~sbh aef Slblisbh) Lpsdhzke plphske fknvkz ) 37–;7;% Hjhf% ]hzlmk~h ) ’Lvvloae Ohihvazx Lzgaeh}avhle)‟ 14:–43% ]kixa}bl~a) Za}pzlsvzaekehk ) 1>8% Bhki) Azv aef Slchkvx) >8% Hjhf%
100
nzlo aii vatks) heci{fheg vdk ch}xk % Vd{s) vatavhle pzh~hikgks cl{if dazfix da~k jkke a olvh~k nlz cle~kzshle he vdkhz cask% ]kixa}bl~a p{vs nlzwazf vdk vdklzx vdav gh~heg vdk Cdzhsvhae shpadh s vdk soaii/ ksv vhoaz s lz heczkasheg vdk iavvkz‘s sh}k {ple vdk cle~kzshle ln vdk dlifkz hefhzkcvix svho{iavkf vdko vl cle~kzv vl Hsiao% 168 Aivdl{gd sdk flks elv pzl~hfk s{ffichkev k~hfkeck vl s{pplzv s{cd a vdkshs) whvd vdk Lvvloae svavk fizoix le vdk wax vl jkcloheg a O{siho kophzk nzlo vdk vhok ln Okdokf HH lewazfs) wk oax s{zohsk vdav a ckzvahe fkgzkk ln hekq{aihvx kthsvkf jkvwkke Cdzhsvhae aef O{siho okojkzs ln vdk Lvvloae ohihvazx kihvk% Hv was plhevkf l{v kazihkz vdav) nzlo vdk vhok ln Okdokf HH) vlp gl~kzeokev plshvhles wkzk gh~ke ktci{sh~kix vl vdk fk~ hzok /zahskf /zahskf kihvk% He vdk pzl~hechai gl~/ kzeokevs) vdk he{keck ln vdk fk~ hzok s o{sv aisl da~k svazvkf vl jk nkiv% Okvhe B{ev das ljskz~kf vdav he vdk shtvkkevd ckev{zx vdk cazkkz jacbgzl{efs ln ekw saecabjkxs heczkashegix jkcaok vdav ln vdk fk~ hzok / kf{cavkf av vdk ktpkesk ln vdk pzl~hechai slifhkzx%1;0 He lvdkz wlzfs) Cdzhsvhae shpadh s o{sv heczkashegix da~k nl{ef vdkoski~ks ihohvkf he vdkhz cazkkz lpplzv{ehvhks aef ohgdv da~k skke cle~kzshle vl Hsiao as vdk leix aivkzeavh~k vl cdaegheg vdav shv{avhle% He ox lphehle) vdk olsv cle~hecheg ktpiaeavhle nlz vdk cle~kzshle ln vdk Cdzhsvhae ohihvazx kihvk wl{if jk ktpzksskf jx a zkpdzaskf ~kzshle ln J{iihkv‘s skclef athlo ln cle~kzshle‖lek oax whiihegix cle~kzv nzlo lek zkihghle vl aelvdkz hn jx ~hzv{k ln vdk cle~kzshle lek‘s slchai svav{s cae jk pzkskz~kf% Affhvhleai pzkss{zk oax da~k jkke ktkzchskf jx vdk psxcdlilgh/ cai nacvlz ln clenlzohvx% As a z{ik) el lek ihbks vl nkki hsliavkf nzlo dhs eav{zai slchai ke~hzleokev) wdhcd o{sv da~k jkke vdk shv{avhle aoleg vdk zkoaheheg Cdzhsvhae shpadh s he vdk skclef dain ln vdk finvkkevd ckev{zx% Ae hefhcavhle ln vdhs fkshzk nlz slchai clenlzohvx hs vdk nacv vdav slok Cdzhsvhae shpadh s aflpvkf V{zbhc eaoks whvd/ l{v cdaegheg vdkhz zkihghle% Pkzdaps) vdkx oax da~k jkke vzxheg vl appkai vl vdk svhii plwkzn{i V{zbhc wazzhlz c{iv{zk aoleg vdkhz pkkzs%1;1 As B{ev das p{v hv) ’V{zch ficavhle was a s{ffichkev fkgzkk ]kixa}bl~a) Za}pzlsvzaekehk ) 1>>% 1;0 % Okvhe B{ev) Vdk S{ivae‘s Skz~aevs= Vdk Vzaesnlzoavhle ln vdk Lvvloae Pzl~hechai Gl~kzeokev 1;;0–1;>0 $Ekw Xlzb) 1843() >6% 1;1 Skk eaicıb) ’Lf Svknaea F{ aea)‟ :8=e6>) wdkzk dk elvks vdk okevhle he a Vho{zva (% Vdav vdhs hs elv vhoaz zkghsvkz ln a ckzvahe ba fi z z Vho{zva $vdk {ejkihk~kz Vho{zva (% a ehcbeaok jkcloks k~hfkev nzlo n{zvdkz zknkzkeck he vdk flc{okev vl Vho{zva z $vdk ajl~k/okevhlekf {ejkihk~kz(‖hjhf%) 63=e1:6% as ok}b{z ba fi z 168
)
101
ln cle~kzshle2 vdkx fhf elv nkki vdkx aisl sdl{if jkclok O{sihos‟ 1;: he lzfkz vl hfkevhnx vdkoski~ks as jkilegheg vl vdk Lvvloae ohih/ vazx ciass% A shohiaz fk~kilpokev was ljskz~kf jx Sadhiihl i{ whvd zkspkcv vl ele/O{siho vat/nazokzs he vdk skclef pazv ln vdk 1;vd ckev{zx%1;3 Vdk slchai aef psxcdlilghcai nacvlzs vdav clevzhj{vkf vl vdk cle/ ~kzshle ln Jaibae eljhihvx) dlwk~kz) wkzk lpkzavh~k leix whvdhe a ~kzx ihohvkf slchai svzav{o% Vdk gzkavkz pazv ln vdk ele/O{siho plp/ {iavhle he vdk Lvvloae Kophzk nkii hevl vdk vat/paxheg ciass‖vdk zkaxa % Vdk pdkelokele ln cloole zkaxa cle~kzshles aef vdkhz aojh/ vhles nlz slchai af~aeckokev das leix zkckevix avvzacvkf vdk avvke/ vhle ln scdliazs% Hv hs a cloole ass{opvhle vdav Lvvloae slchkvx was svzhcvix fkfiekf) ika~heg el plsshjhihvx ln czlssheg vdk jlzfkzs skpazavheg vdk ciassks% Acclzfheg vl eaicıb) vdk pzhechpik vdav ’vdk sle ln a zkaxa hs a zkaxa ‟ was lek ln vdk svavk‘s n{efaokevai pzhechpiks% 1;6 Ek~kzvdkikss) slok scdliazs ljskz~k vdav vdhs pzhechpik was lnvke hgelzkf he pzac/ vhck aef vdav vdk zkaxa/jlze nl{ef vdk pavd ln {pwazf oljhihvx ’lpke‟ lz ’cilskf‟ acclzfheg vl vdk sdlzv/vkzo ekkfs ln vdk svavk% Vhoaz s cleshsvheg ln {ec{ivh~avkf lz ajaeflekf iaef wkzk lccashleaiix gzaevkf vl ele/O{siho zkaxa he lzfkz vl svho{iavk agzhc{iv{zai fk~kilpokev%1;; Vdk olsv ckzvahe pavd vl slchai af~aeckokev nlz vdk zkaxa ) dlwk~kz) was vdk fk~ hzok hesvhv{vhle% Wk da~k aizkafx plhevkf vl vdk pdk/ elokele ln ’pzh~avk fk~ hzok )‟ )‟ kthsvheg as kazix as vdk ohffik ln vdk shtvkkevd ckev{zx) aef vl ~li{evazx cle~kzshle ahokf av skc{zheg afohsshle vl vdk Maehssazx clzps he vdk iavk sk~kevkkevd ckev{zx% Dkeck) vdkzk cae jk el fl{jv vdav vdk fkshzk vl af~aeck he slch/ kvx) vl cdaegk lek slchai ciass nlz aelvdkz) was a pzhok cleshfkza/ vhle aoleg vdk zkaxa ) aef vdav cle~kzshle vl Hsiao was zkgazfkf as a pzkzkq{hshvk nlz vdhs cdaegk%
B{ev) ’Vzaesnlzoavhle ln ]hooh hevl Asbkzå )‟ )‟ >0% Skk Sadhiihlgi{) ’Sia~ks)‟ 1:6) wdkzk dk chvks a vat nazokz‖Aefzlehbls) sle ln Baevab{}hels) {sheg he affhvhle vl dhs Cdzhsvhae eaok) vdk eaok O{svana as wkii) wdhik dhs pazvekz) vdk Mkw ajavax) {skf vdk eaok ajae% 1;6 eaicıb) ’Lf Svknaea F{ aea)‟ 63% 1;; ]kixa}bl~a) Za}pzlsvzaekehk ) 1>7% 1;:
1;3
10:
HHH% Zkihghl{s/C{iv{zai Nacvlzs He affhvhle vl vdk slchai aef kclelohc nacvlzs ke{okzavkf ajl~k) vdkzk wkzk lvdkz nacvlzs jkdhef cle~kzshle cleekcvkf whvd vdk zkih/ ghl{s aef c{iv{zai spkchfics ln fhff kzkev kzkev zkghles he vdk Jaibaes% 1% Shohiazhvhks jkvwkke Plp{iaz Cdzhsvhae aef O{siho Zkihghl{s Jkihkns ^zxlehs das ljskz~kf vdav vdk zkihghl{s ihnk ln vdk ele/O{siho oassks he vdk Jaibaes ’zkshfkf le a nl{efavhle dka~hix he {keckf jx vdkhz pagae zllvs%‟1;> Aivdl{gd olsv ln vdk Jaibae plp{iavhle daf cle/ ~kzvkf vl Lzvdlflt Cdzhsvhaehvx jx vdk vkevd ckev{zx) vdav cle~kz/ shle daf leix jkke acdhk~kf jx vlikzavheg vdk hevkgzavhle ln e{okzl{s pagae jkihkns) s{pkzsvhvhles aef pzacvhcks hevl vdk l ffichai flgoa ln vdk Cd{zcd% Jaibae Cdzhsvhaes clevhe{kf) vdkzknlzk) vl ljskz~k vdkhz vzafhvhleai c{svlos s{cd as vdk {sk ln oazzhagk czlwes) vdk pazvhc/ hpavhle ln pzlnksshleai ol{zekzs f{zheg n{ekzais) vdk piacheg ln olekx he vdk gza~k) vdk pzkpazavhle ln a spkchai n{ekzai okai) vdk lffichai ljskz~aeck ln a lek/xkaz ol{zeheg pkzhlf) kvc% Oaex ln vdk nkasv faxs he vdk Lzvdlflt caikefaz wkzk he nacv leix s{pkz fichaiix Cdzhsvhae% He vdkhz ksskeck) vdksk nkasvs wkzk cleekcvkf whvd agzazhae aef pas/ vlzai ihnk aef vd{s) vdk lif oaghcai pzacvhcks vl kes{zk nkzvhihvx pkz/ shsvkf% Acclzfheg vl ^zxlehs) vdk whfkspzkaf daghliavzx aef hcleliavzx lzhgheavkf aisl he vdk pagae pasv%1;7 Vdk nlzokz) cleshsvheg oaheix he vdk ~kekzavhle ln ilcai sahevs) daf oaex ln vdk cdazacvkzhsvhcs ln vdk aechkev dkzl c{iv aef plixvdkhso% Vdk hcle) le vdk lvdkz daef) was asslchavkf el ikss whvd ohzaciks aef oaghc vdae wkzk vdk pagae svav{ks ln vdk pasv% A shohiaz avolspdkzk ln sxeczkvhso pzk~ahikf he vdk zkihghl{s jkihkns ln vdk O{siho skvvikzs he vdk Jaibaes as wkii% Vdk cle~kzshle ln vdk Lg{} vzhjks nzlo pagaehso vl Hsiao daf hvskin leix svazvkf he vdk ehevd ckev{zx%1;4 He lvdkz wlzfs) Hsiao daf daf k~ke ikss vhok vl p{v flwe zllvs aoleg vdk O{siho cleq{kzlzs vdae daf Cdzhsvhaehvx aoleg vdk Jaibae plp{iavhle% Acclzfheg vl ^zxlehs) vdk svzkegvd aef pkzshsvkeck ln eloafhc ihnk okaev vdav Hsiao zkoahekf a s{pkz fichai zkihghl{s pdkelokele aoleg vdk V{zbhc vzhjksoke nlz a ileg vhok% 1;8
1;> 1;7 1;4 1;8
^zxlehs) ’Cdaegks)‟ 1;6% Hjhf%) 1;8% Dazzx Elzzhs) Hsiao he vdk Jaibaes $Cli{ojha) 1883() 4>% ^zxlehs) ’Cdaegks)‟ 1>1%
)
103
Whvd vdk gzaf{ai skfkevazh}avhle ln vdk eloafs) pagae/sdaoaehsvhc kikokevs kevkzkf plp{iaz Hsiao% Cdzhsvhaes) Azokehaes aef Gklzghaes wdl cle~kzvkf vl Hsiao jkvwkke vdk kik~kevd aef finvkkevd ckev{zhks he Asha Ohelz aisl clevzhj{vkf vl vdk oht whvd affhvhleai iaxkzs ln zkihghl{s jkihkns% Vdkzknlzk) lek ohgdv azg{k vdav slok ln vdk O{siho skvvikzs he vdk Jaibaes wkzk cle~kzvs lz fksckefkevs ln cle~kzvs nzlo Asha Ohelz) oaex ln wdlo daf zkvahekf slok nkav{zks ln vdkhz nlz/ okz zkihghl{s ihnk he vdkhz ~hshle ln Hsiao% He lvdkz wlzfs) vdk O{siho aef Cdzhsvhae oassks sdazkf oaex cloole waxs ln appzkdkefheg zkihghle) wdhcd svkookf nzlo vdkhz elv/vll/fhsvaev pagae lz nlzokz Cdzhsvhae pasv% Aii vdav was ekkfkf vl jzheg vdk vwl svzaefs ln jkihkn vlgkvdkz was a olvh~k nlz hevkzacvhle aef a okfh{o ln slok slzv vl skv vdhs hevkzacvhle he olvhle% Vdk hevkzacvhle jkcaok hek~hvajik whvd vdk Lvvloae cleq{ksv% Vdk okfh{o appkazs vl da~k jkke vdk ’c{iv ln sahevs‟ cdazacvkzhs/ vhc ln vdk Hsiaohc oxsvhcai lzfkzs $ vazhbav ( clojhekf whvd vdk ilcai pkecdaev nlz daghliavzx as hvs Cdzhsvhae cl{evkzpazv% 1>0 Ksskevhaiix) vdk vazhbav s k ff kcvkf kcvkf vdk heclzplzavhle ln clopazajik pagae aef ilcai ele/O{siho jkihkns hevl plp{iaz Hsiao) vd{s oabheg vdk cle~kzshle pzlckss olzk paiavajik vl vdk ekw O{sihos% Vdkhz zlik he vdk Hsiaoh}avhle ln Asha Ohelz was jzhk x aii{fkf vl ajl~k he cdapvkz lek% He vdk Jaibaes as wkii) vdk pazvhchpavhle ln vdk lzfkzs he vdk spzkaf ln Hsiao was kq{aiix shgeh ficaev% Vdk nliilwkzs ln vdk fh ff kzkev kzkev s‖vdk fkz~hsdks‖{s{aiix nl{efkf vdkhz vkbbk s aef }a~hxk s azl{ef vazhbav s‖vdk vdk gza~k ln a phl{s pkzsle) wdl was slle pzlciahokf as a sahev% Vdk fkz~hsdks aisl lnvke {vhih}kf vdk aizkafx kthsvheg ilcai c{iv ln a sahev vl pzlolvk a ekw lek) wdlsk ohzaciks wkzk oafk vl zksko/ jik vdlsk ln vdk s{pkzskfkf dlix pkzsle%1>1 Vdk czkavhle ln a clo/ ole zhv{ai shvk zks{ivkf he vdk gavdkzheg ln pklpik ln jlvd nahvds le pazvhc{iaz favks% Vdk zhv{ais pkznlzokf) s{cd as aehoai saczh fick $b{z/ ( aef lff kzheg kzheg ghnvs vl vdk sahev) wkzk lnvke shohiaz%1>: Vdhs eav/ jae ( {zai hevkzohegiheg oafk vdk plp{iaz jkihkns aef vzafhvhles ln vdk ilcai Cdzhsvhae aef O{siho plp{iavhles ekazix hevkzcdaegkajik aef vdk vzaeshvhle vl Hsiao aiolsv a skaoikss pzlckss% N% Jajhegkz) ’Fkz Hsiao he Sùflsvk{zlpa)‟ he ^þibkz {ef B{iv{zke Sùflsvk{zlpas) Scdzhnvke fkz Sùflsvk{zlpa Gkskiiscdanv $O{ehcd) 18;8() :0>–:07% 1>1 Vdk olsv naol{s sahev cloole vl jlvd zkihghles was Sazı Saiv{b) wdl was zk~kzkf he vdk Jaibaes) vdk Ohffik Kasv aef plsshjix as naz as Shebhaeg% Skk Elzzhs) Hsiao) 16>–1>0% 1>: ^zxlehs) ’Cdaegks)‟ 176% 1>0
106
He vdk Jaibaes) lek ln vdk olsv plp{iaz fkz~hsd lzfkzs das ileg jkke vdk Jkbvasdh lzfkz%1>3 Jkshfks jkheg vdk lffichai lzfkz ln vdk Maehssazhks) hv appkaikf svzlegix vl vdk Cdzhsvhae plp{iavhle he vdk z{zai azkas ln Aijaeha) Blsl~l) Oackfleha aef Fljz{fma% 1>6 Nlz ktaopik) vdk Jkbvasdh flcvzhek ln a vzhehvx cleshsvheg ln Glf) Oldaookf aef Aih was shohiaz vl vdk Cdzhsvhae Vzhehvx) wdhik vdk jkihkn he Aih aef vdk Vwki~k Hoaos zkohefkf vdk Cdzhsvhaes ln Mks{s aef vdk vwki~k Aplsviks% N{zvdkzolzk) vdk Jkbvasdh ikafkzs $ jaja s( s( acvkf as pasvlzs) l~kzskkheg vdk hoplzvaev k~kevs he vdkhz cloo{/ ehvhks s{cd as oazzhagks) n{ekzais) jhzvds) kvc% Aelvdkz Cdzhsvhae pzac/ vhck aflpvkf jx vdk lzfkz was vdk clenksshle ln lek‘s shes vl vdk jaja % Vdk Jkbvasdhs {skf whek aef zabı $wdhvk jzaefx( he vdkhz skz/ oles as wkii as f{zheg vdkhz gavdkzhegs‖acvs {ekq{h~lcaiix nlzjhf/ fke jx Hsiaohc iaw% Ae hoplzvaev slchai aspkcv ln vdk Jkbvasdh lzfkz was vdk gzkavkz nzkkflo hv ga~k vl wloke clopazkf vl olzk vza/ fhvhleai O{siho slchkvx% Acclzfheg vl A% Plpl~h )1>; vdk Jkbvasdh lzfkz daf oafk hvs hopacv nkiv kazix he vdk pkzhlf ln Lvvloae z{ik% Iavkz) lvdkz S{fi lzfkzs) k%g%) vdk Ok~ik~h) Qafazh) Dai~avh) Eab jkefh aef Zhnah jzlvdkzdllfs) aisl gahekf nliilwkzs he vdk Jaibaes% Vdk k~hfkeck ln zkihghl{s sxeczkvhso he~li~heg Jaibae Cdzhsvhaehvx aef Hsiao hs l~kzwdkioheg% Nlz ktaopik) ^abazkisbh ljskz~ks vdk s{z~h~ai aoleg vdk Ploabs he vdk Zdlflpks ln lif oaghcai pzac/ vhcks asslchavkf whvd daz~ksvheg aef slwheg) aef ln vdk B{bkzh faecks‖asslchavkf whvd Fhlexshae nkzvhihvx zhvks% 1>> Oaex cle~kzvs he Jlseha) Skzjha aef Oackfleha clevhe{kf vl ljskz~k Kasvkz jx fxk/ heg kggs) sl{gdv vdk jikssheg ln a pzhksv le nkasv faxs) bkpv cd{zcd jllbs aef hcles he vdkhz dl{sks aef clevhe{kf vl pkznlzo aehoai saczhficks he vdk xazfs ln ckzvahe cd{zcdks aef oleasvkzhks% He Aijaeha) ~hshvs vl cd{zcdks aef vdk japvhso ln O{siho cdhifzke wkzk clo/ ole pzacvhcks%1>7
1>3
Skk nlz vdk olsv fkvahikf accl{ev M% Jhzgk) Vdk Jkbvasdh Lzfkz ln Fkz~hsdks $Ilefle) 1837(% 1>6 Skk Elzzhs) Hsiao) 48–100% 1>; A% Plpl~h ) ’Iks lzfzks oxsvhq{ks o{s{ioaes f{ S{f/Ksv k{zlpèke faes ia pèzhlfk plsv/lvvloaek)‟ he A% Plpl~h aef G% ^khesvkhe) kf%) Iks lzfzks oxsvhq{ks faes i‘Hsiao $Pazhs) 184>() >>% 1>> Cdzhsvl ^abazkisbh) ’Aivkzvùoihcdk Kikokevk he Ikjkeswkhsk {ef B{iv{z fkz j{igazhscdke Oldaookfaekz)‟ ]khvscdzhnv nùz Jaibaelilghk ) 6 $18>>() 168–17:% 1>7 ^zxlehs) ’Cdaegks)‟ 17;–7> aef Elzzhs) Hsiao) 64% Ktaopiks ln Czxpvl/ Cdzhsvhaehvx cae jk nl{ef he Dasi{cb) Cdzhsvhaehvx% Whvd zkspkcv vl Czxpvl/Cdzhsvhaehvx
)
10;
Acclzfheg vl ^zxlehs) wloke) vdzl{gd iazgk/scaik hevkzoazzhagk) wkzk aelvdkz ~kdhcik jx wdhcd plp{iaz Cdzhsvhaehvx aef Hsiao hevkz/ ohegikf% Wkii/belwe ktaopiks heci{fk Sdkhb Jkfzkffhe Shoa~h) wdlsk ihekagk sdlws ae ktvkesh~k dhsvlzx ln hevkzoazzhagks aef zkih/ ghl{s sxeczkvhso)1>4 aef Jaiıo S{ivae) pkzdaps vdk zkai nl{efkz ln vdk Jkbvasdh lzfkz) wdl hs aisl sahf vl da~k jkke vdk l ff spzheg spzheg ln a ohtkf oazzhagk%1>8 Jkca{sk ln vdk sxeczkvhso ln plp{iaz jkihkns) hv cae jk cleci{fkf vdav vdk pzlckss ln cle~kzshle) av ikasv {evhi vdk kef ln vdk shtvkkevd ckev{zx) pzljajix fhf elv he~li~k a zafhcai jzkab nzlo vdk cle~kzv‘s pzk~hl{s zkihghl{s jkihkns lz ihnksvxik% Acclzfheg vl Afko Daef h ) nlz a ileg vhok vdk acv ln cle~kzshle vl Hsiao cleshsvkf leix ln aflpvheg a O{siho eaok) aef vdkzknlzk zkpzkskevkf olzk ae acckp/ vaeck ln Lvvloae z{ik vdae vdk acv{ai aflpvhle ln a nlzkhge zkihghle% 170 :% Vdk Jlglohi Dkzksx Wdav clevzhj{vkf aisl vl vdk sdapheg ln plp{iaz zkihghl{s c{iv{zk he slok zkghles ln vdk Jaibaes aef av vdk saok vhok oafk cle~kzshle vl Hsiao kashkz) wkzk ckzvahe dkzkvhcai ol~kokevs% Aoleg vdk iav/ vkz) pkzdaps vdk olsv he {kevhai was vdk Jlglohi dkzksx) eaokf anvkz a ckzvahe pzhksv ln vdk saok eaok% Jlglohihso kokzgkf he vkevd/ckev{zx Oackfleha)171 h%k%) sdlzvix anvkz vdk cle~kzshle ln vdk Sia~hc plp{iavhle vl Cdzhsvhaehvx) aef vdke spzkaf vdzl{gdl{v vdk pkehes{ia% Vdk vwkinvd aef vdhzvkkevd ckev{zhks saw Jlglohihso av vdk dkhgdv ln hvs plp{iazhvx% Ae afapvavhle ln f{aihsvhc Pa{ihchae aef Oaehcdkae jkihkns whvd a fhsvhecvh~k Sia~hc a~lz)17: hvs clsolilgx fkehkf vdk flgoa ln vdk {ehvx ln Glf aef zkmkcvkf vdk hecazeavhle ln Cdzhsv as wkii as vdk saecvhvx ln Dhs Olvdkz) aef nlz vdav oavvkz vdk wdlik Lzvdlflt vzafhvhle% Acclzfheg vl Ljlikesbx) ’Jlglohihso
aoleg Aijaehaes skk aisl Pkvkz Jazvik) ’Bzhpvl/Cdzhsvkev{o {ef Nlzoke fks zkihghþske Sxebzkvhso{s he Aijaehke)‟ he Gza}kz {ef Oùecdkekz Jaibaelilghscdk Sv{fhke $O{ehcd) 18>7() 117–1:7% 1>4 ^zxlehs) ’Cdaegks)‟ 173=e66% 1>8 Jhzgk) Jkbvasdh ) ;>% 170 Afko Daef h ) ’Hsiaoh}achmh)‟ 64% 171 F% Ljlikesbx) Vdk Jlglohis% A Sv{fx he Jaibae Ekl/Oaehcdakhso $Caojzhfgk) 1864() 1>7% 17: Vdkzk wkzk sk~kzai nkav{zks ln Jlglohihso vdav caeelv jk ktpiahekf jx l{v/ shfk he{keck aef vdav wkzk olsv pzljajix lzhgheai% Skk Ljlikesbx) Jlglohis ) 134%
10>
cae scazckix k~ke jk caiikf a dkzksx he vdk svzhcv skesk ln vdk wlzf2 nlz hv zkpzkskevkf) elv a fk~havhle nzlo Lzvdlfltx le ckzvahe paz/ vhc{iaz plhevs ln kvdhcs) j{v a wdliksaik fkehai ln vdk Cd{zcd as s{cd%‟173 Jlglohihso zkmkcvkf vdk lffichai Cd{zcd hesvhv{vhle whvd aii hvs cdazacvkzhsvhcs‖pzhksvdllf) nlzoai piacks ln wlzsdhp) ihv{zgx) zhv/ {ais s{cd as japvhso) cloo{ehle) aef clenksshle) aef k~ke sxo/ jlis s{cd as czlssks aef hcles% Vd{s) Jlglohihso daf vwl aspkcvs= a flcvzheai‖hvs f{aihsvhc clsolilgx‖aef ae kvdhcai‖a fkshzk vl zknlzo vdk Cd{zcd aef vl zkv{ze vl vdk p{zhvx aef shopihchvx ln vdk aplsvlihc agk% Vz{k Cdzhsvhaehvx) acclzfheg vl vdk Jlglohis) cl{if leix jk nl{ef he vdkhz cloo{ehvx aef dkeck vdkx ciahokf vdk ktci{/ sh~k zhgdv vl caii vdkoski~ks Cdzhsvhae%176 Jlvd aspkcvs ln vdk skcv skko vl da~k jkke hoplzvaev nacvlzs he vdk pzlckss ln cle~kzshle vl Hsiao% Vdk he {keck ln Ohffik Kasvkze jkihkns le Jlglohi flcvzhek oax da~k n{zvdkz clevzhj{vkf vl vdk zkih/ ghl{s sxeczkvhso he vdk Jaibaes% Oaehcdakhso) he pazvhc{iaz) hs sahf vl da~k he{keckf vdk gkekzai fk~kilpokev ln vdk Hsiaohc oxsvhcai lzfkzs as wkii% 17; Wk oax zkcaii aisl J{iihkv‘s ljskz~avhle vdav ]lzlasvzhae Hzae cle~kzvkf vl Hsiao shgeh ficaevix nasvkz vdae vdk Cdzhsvhaeh}kf azkas ln vdk Ohffik Kasv aef Anzhca% He ox lphehle) lek cae kashix fzaw ae aeailgx jkvwkke ]lzlasvzhae Hzae aef vdk Jlglohi cloo{ehvhks he vdk Jaibaes% Vdk kvdhcai aspkcv ln Jlglohihso nachihvavkf cle~kzshle vl Hsiao k~ke olzk fkchsh~kix% He azkas wdkzk vdk ol~kokev daf gahekf vdk gzkavksv gzl{ef) vdk nlzoai svz{cv{zk ln vdk Lzvdlflt Cd{zcd was ektv vl ele/kthsvkev% As Bhki das p{v hv‖’vdkzk was shopix el ekkf nlz e{okzl{s Lzvdlflt cd{zcdks%‟17> Vd{s) el lzgaeh}kf kccikshas/ vhcai lpplshvhle vl vdk spzkaf ln Hsiao cl{if jk l ff kzkf% kzkf% Vdk kff kcvs kcvs ln Jlglohihso skko vl da~k jkke olsv pzlel{eckf he Jlseha% O% Lbh ) le vdk k~hfkeck ln kazix Lvvloae zkghsvkzs) jkihk~kf vdav vdk oamlzhvx ln vdk Jlsehae plp{iavhle was cloplskf ln Jlglohi afdkzkevs aef vdav vdkhz oass cle~kzshle vllb piack whvdhe a nkw xkazs ln vdk cleq{ksv%177 Afko Daef h ) le vdk lvdkz
Ljlikesbx) Jlglohis ) 160% Hjhf%) 13>% 17; Aeekoazhk Scdhooki) Oxsvhcai Fhokeshles ln Hsiao $Cdapki Dhii) 187;() 36% 17> Bhki) Azv aef Slchkvx) :84% 177 O% Lbh ) ’Iks Bzhsvhaes $Jlglohiks Paznahvs( fk Jlsehk f‘apzäs iks flc{okevs V{zbs heèfhvs)‟ Sùflsv/Nlzscd{egke) 18 $18>0() 104–133% Vdk Lvvloae sl{zcks plhev 173 176
)
107
daef) das sdlwe vdav vdk pzlckss ln cle~kzshle leix svazvkf vwkevx xkazs xka zs anv anvkz kz vdk cle cleq{k q{ksv% sv% 174 Aivdl{gd cle~kzshle daf pzlgzksskf shgehficaevix nasvkz vdkzk vdae he aex lvdkz Jaibae zkghle) jx vdk ohffik ln vdk shtvkkevd ckev{zx leix 60 pkzckev ln vdk plp{iavhle ln Jlseha was O{siho% Daef h das aisl azg{kf vdav jx vdk vhok ln vdk Lvvloae cleq{ksv) vdk Jlglohis daf ksskevhaiix jkke ktvkzoh/ eavkf he Jlseha%178 Fksphvk fl{jvheg vdk Jlglohi lzhghes ln vdk Jlsehae Cd{zcd) Mlde Nhek das cleci{fkf vdav cle~kzshle vl Hsiao was ktvkesh~k jkca{sk el Cdzhsvhae Cd{zcd he Jlseha daf jkke ajik vl ksvajihsd ae kffichkev vkzzhvlzhai/jaskf lzgaeh}avhle vdav cl{if avvzacv aef dlif jkihk~kzs%140 Vdhs cleci{shle skkos vl jk cle fizokf jx ktckpvhles vl vdhs z{ik) s{cd as vdk nacv vdav he vdk s{jfhsvzhcv ln Szkjzkehca) wdkzk a Nzaechscae oleasvkzx daf p{v flwe fizo ilcai zllvs) O{sihos clesvhv{vkf leix 1> pkzckev ln vdk plp{iavhle he 1;33%141 Wdkzkas vdk fkjavk ajl{v vdk cleekcvhle jkvwkke Jlglohihso aef cle~kzshle vl Hsiao he Jlseha das zkacdkf a cleshfkzajik fkgzkk ln slpdhsvhcavhle) hv hs leix zkckevix vdav scdliazs da~k jkg{e plhev/ heg vl s{cd a cleekcvhle he lvdkz Jaibae zkghles% Acclzfheg vl Bhki) lek vdhzf vl lek dain ln vdk plp{iavhle ln kazix Lvvloae J{igazha oax da~k daf Jlglohi heciheavhles lz da~k jkke av ikasv hefh ff kzkev kzkev vl vdk lffichai cd{zcd% Vdk zks{iv was ae {efkzfk~kilpkf pazhsd ekv/ wlzb) a o{cd wkabkz kccikshasvhcai s{pkzsvz{cv{zk aef a o{cd iaw fkgzkk ln sphzhv{ai cazk nlz vdk ilcai cloo{ehvhks vdae he Skzjhae lz Gzkkb iaefs%14: Vdk dlif ln Jlglohihso le vdk plp{iavhles ln Oackfleha aef vdk Zdlflpks aef dkeck) hvs he{keck le cle~kzshle vl Hsiao he vdksk zkghles das jkke k~ke ikss sv{fhkf% Vdk zkik~aev k~hfkeck das
vl vdk kthsvkeck ln l~kz a d{efzkf dl{skdlifs ln ’pkznkcv‟ Jlglohis zkghsvkzkf as fi z z ‟ ${ejkihk~kz(% ’bzhsvhae)‟ as lpplskf vl vdk {s{ai ’ gkjzae‟ lz ’ba 174 Daef h ) ’Hsiaoh}achmh)‟ 6>% 178 Hjhf% 140 Mlde ^%A% Nhek) Mz%) Vdk Jlsehae Cd{zcd= A Ekw Hevkzpzkvavhle $Ekw Xlzb) 187;() 34>% Skk nlz a fkvahikf zk~hkw ln vdk scdliazix fkjavk ajl{v vdk cdazacvkz ln vdk Jlsehae cd{zcd Nhbzkv Afaeız) ’Vdk Nlzoavhle ln a —O{siho‘ Eavhle he Jlseha/ Dkzckgl~hea= a Dhsvlzhlgzapdhcai Dhsvlzhlgzapdhcai Fhsc{sshle)‟ he Nhbzkv Afaeız aef S{zahxa Nazlqdh) kf%) Vdk Lvvloaes aef vdk Jaibaes= A Fhsc{sshle ln Dhsvlzhlgzapdx $Ikhfke) :00:() :>7–306% 141 Vdhs hs clevzazx vl vdk lphehle vdav hv was oaheix nlzokz Cavdlihc aef Lzvdlflt Cdzhsvhaes wdl fizsv cle~kzvkf‖skk Afaeız) ’Nlzoavhle)‟ :80) wdl nliilws he vdav azg{okev Elki Oaiclio) Jlseha% A Sdlzv Dhsvlzx $Ilefle) 1886(% 14: Hjhf%
104
vd{s naz jkke vabke ktci{sh~kix nzlo kvdelgzapdhc sv{fhks% Nlz ktao/ pik) vdk eaok vlzjksdh ) wdhcd aisl skz~kf vl fkshgeavk vdk Jlglohis) hs svhii appihkf vl vdk Ploabs he vdk Zdlflpks aef vl vdk O{sihos he Oackfleha he vdk s{jfhsvzhcvs ln Fkjaz) Sblpmk) Bhçk~l aef vdk Sdaz Ol{evahe%143 Hv oax jk zkcaiikf vdav) clopazkf vl vdk lvdkz Oackflehae s{jfhsvzhcvs) vdk dhgdksv pkzckevagk ln cle~kzvs vl Hsiao he vdk ohffik ln vdk shtvkkevd ckev{zx was zkghsvkzkf he vdk z{zai azkas ln vdk s{jfhsvzhcv ln Fkjaz% 146 S{ooazx
He cleci{shle) H azg{k vdav vdkzk cae jk el shegik ktpiaeavhle nlz vdk Hsiaoh}avhle ln vdk Jaibae plp{iavhle% Hv was olzk vdae ihbkix a clojheavhle ln sk~kzai nacvlzs vdav piaxkf a zlik he vdk cle~kz/ shle ln a pazvhc{iaz zkghle% Vdk olzk nacvlzs he~li~kf) he nacv) vdk nasvkz vdk pack ln cle~kzshle% Ek~kzvdkikss) slok ln vdk nacvlzs aef nlzos ln cle~kzshle wkzk olzk pzlel{eckf he pazvhc{iaz pkzhlfs vdae he lvdkzs% Vdk cleekcvhle jkvwkke vdk svagks aef nacvlzs ln cle~kzshle cl{if jk s{ooazh}kf as nliilws= 1% He vd vdkk cl{ cl{zs zskk ln ln vdk vdk finvkkevd ckev{zx) cle~kzshle was ohehoai% Hv oaheix aff kcvkf kcvkf vdk nlzokz Jaibae ohihvazx kihvk) wdl saw he cle~kzshle a wax ln pzkskz~heg hvs pzh~hikgkf plshvhle he slchkvx% Olsv ln vdk Jaibae plp{iavhle saw hvs svaefazf ln ih~heg zhsk he vdhs pkzhlf) aef vd{s) cle~kzshle) hn cdlske) zkpzkskevkf acckp/ vaeck ln Lvvloae z{ik zavdkz vdae zkclgehvhle ln vdk s{pkzhlzhvx ln Hsiaohc zkihghle lz kisk clkzchle% Vdk iavvkz nacvlz was leix pzlel{eckf he vdk cask ln jlxs cliikcvkf vdzl{gd vdk fk~ hzok % :% He vdk vdk shtvkkevd shtvkkevd ckev{z ckev{zx) x) cle~kzshl cle~kzshle e vl Hsiao Hsiao jkcaok jkcaok a olzk whfkspzkaf pdkelokele% Okojkzs ln vdk {zjae plp{iavhle) s{cd as czanvsoke) cle~kzvkf he iazgk e{ojkzs jkca{sk ln oazbkv pzks/ s{zk aef gzkavkz ktpls{zk vl vdk O{siho skvvikzs‘ wax ln ihnk% Cle~kzshle aoleg vdk z{zai plp{iavhle phcbkf {p leix he vdk iavkz pazv ln vdk ckev{zx as a zks{iv ln a clojheavhle ln nacvlzs)
143 146
Ljlikesbx) Jlglohis ) 1>7% Skk aisl Slblilsbh) ’Hsiaoh}achma)‟ 4>% Skk cdapvkz vwl) gzapd 1%
)
108
s{cd as wlzskeheg ln kclelohc clefhvhles) zkihghl{s sxeczkvhso aef pasv dkzkvhcai he{kecks% Vdk fk~ hzok hesvhv{vhle was n{zvdkz/ olzk el ilegkz asslchavkf whvd nlzckf cle~kzshle leck vdk plp/ {iavhle zkaih}kf vdk af~aevagks vdav vdk hesvhv{vhle l ff kzkf kzkf vl vdk jlxs cliikcvkf) as wkii as vl vdkhz naohihks% 3% Hv hs vdk sk~kevkke sk~kevkkevd vd ckev{zx) ckev{zx) wdke vdk vdk z{zai z{zai plp{iavhl plp{iavhle e jkgae vl kojzack Hsiao ktvkesh~kix) vdav oax jk fkkokf as vdk Jaibae ’agk ln cle~kzshles%‟ Hsiaoh}avhle) ek~kzvdkikss) was a gzaf{ai pzlckss zavdkz vdae a sdlzv/vkzo pdkelokele% Nacvlzs lpkzavheg f{zheg vdhs pkzhlf heci{fkf clevhe{heg kclelohc fhffic{ivhks as wkii as vdk heajhihvx le vdk pazv ln vdk Lzvdlflt Cd{zcd vl l ff kz kz sphzhv{ai g{hfaeck he zkghles whvd a pasv affiihavhle vl Jlglohihso% Vdk hookesk pzksvhgk ln vdk fk~ hzok cafzks) le vdk lek daef) aef vdk ajzlgavhle ln vdk ik~hks he vdk iavkz pazv ln vdk ckev{zx) le vdk lvdkz) kecl{zagkf vdk cloole pklpik vl illb av ~li{e/ vazx cle~kzshle as a pzkzkq{hshvk vl okojkzsdhp he vdk ohihvazx lz pazaohihvazx clzps%
CDAPVKZ NL[Z
BHS^K JADASH PKVHVHLES AS SL[ZCKS LN CLE^KZSHLE
Bhs~k Jadası Pkvhvhles‖Pkzsleai Flc{okevs lz a Cdaeckzx Svkzklvxpk< He ox lphehle) bh bhss~k jadası pkvhvhles azk vdk olsv shgehficaev flc{/ okevazx sl{zck zkgazfheg cle~kzshle vl Hsiao he vdk iasv q{azvkz ln vdk sk~kevkkevd aef vdk fizsv q{azvkz ln vdk khgdvkkevd ckev{zhks% He clevzasv vl vdk henlzoavhle pzl~hfkf jx vat/zkghsvkzs) wdhcd hs lpke vl hevkzpzkvavhle as vl vdk eav{zk aef olvh~ks ln cle~kzshle) he vdk hesvaeck ln pkvhvhles wk da~k fhzkcv svavkokevs jx vdk cle~kzvs plhev/ heg vl vdkhz ~li{evazx cle~kzshle% Zkaih}heg vdk plvkevhai faegkzs plskf jx vdksk sl{zcks vl vdk vdk/ lzx ln clkzch~k cle~kzshle vl Hsiao) J{igazhae scdliazsdhp daf sl{gdv vl fkpkzsleaih}k vdkhz clevkev lz fhsohss hv l{vzhgdv as ln f{jhl{s eav{zk%1 Vdk ’hii{shle)‟ jx wdhcd vdk pkvhvhles wkzk oafk vl zksko/ jik pkzsleai appihcavhles jx ele/O{sihos nlz acckpvaeck hevl vdk Hsiaohc nahvd) was avvzhj{vkf jx vdko vl vdk afohehsvzavh~k okvdlfs ln vdk Lvvloae cdaeckzx vdav ’ke~kilpkf vdk fksvhehks ln cl{evikss pklpik wdl nlz ~azhl{s zkasles sk~kzkf vdkhz ihebs whvd vdk Cdzhsvhae nahvd‟: lz) he lvdkz wlzfs) vl vdk cdaeckzx svxik% Hv hs kopdash}kf vdav vdk n{ecvhle ln vdk pkvhvhles was vl svazv a fieaechai clzzksple/ fkeck accl{evheg nlz vdk ktpkesks hec{zzkf jx vdk vzkas{zx nlz vdk cle~kzvs% Vdkzknlzk) vdk bh bhs~ s~kk ja jada dası sı pkvhvhles azk elv vl jk zkgazfkf as pkzsleai flc{okevs) j{v zavdkz as a pzlf{cv ln vdk Lvvloae cdaeckzx) wzhvvke jx sbhiin{i sczhjks%3 Aelvdkz ’fkchsh~k‟ azg{okev {skf jx J{igazhae scdliazs hs vdav) hn vdkzk wkzk el Lvvloae ’aggzks/ slzs‟ he vdk Jaibaes) clef{cvheg zkihghl{s) kclelohc aef plihvhcai fhsczhoheavhle agahesv vdk Cdzhsvhae plp{iavhle) vdkzk wl{if ek~kz
1 : 3
O{vancdhk~a) ’Hoagk)‟ 8% ^kibl~ aef Zaf{sdk~) ’Flc{okevs)‟ >3% S% Fhohvzl~) ’A~aev/pzlpls)‟ 36%
BHS^K JADASH
111
da~k jkke aex Hsiaoh}avhle%6 Vd{s) vdk plsshjhihvx vdav vdk pkvhvhles wkzk ~li{evazx hs a pzhlzh ’ktci{fkf%‟; Aivdl{gd H agzkk he pzhechpik whvd vdk cleci{shle vdav) as a z{ik) vdk flc{okevs wkzk elv wzhvvke pkzsleaiix jx vdk cle~kzvs) hv flks elv) ek~kzvdkikss) fhohehsd vdk ~ai{k ln vdk flc{okevs as a sl{zck ln pkzsleai henlzoavhle% Vdk sczhjks wkzk elv zkq{hzkf vl wzhvk flwe aex pkzsleai fkvahis aef hefkkf) he oaex pkvhvhles el s{cd henlz/ oavhle hs pzl~hfkf% Dlwk~kz) ~kzx lnvke vdk pkvhvhles zkkcv cilskix $aef slokvhoks he gzkav fkvahi( vdk olvh~ks ln cle~kzshle ln kacd hefh~hf{ai% Vdkzknlzk) he vdlsk flc{okevs wdkzk wk fl fief pkzsleai fkvahis) vdksk cae leix da~k jkke heci{fkf av vdk zkq{ksv ln vdk hefh/ ~hf{ai% Shopix) vdk sczhjks p{v vdk wlzfs ln vdk cle~kzvs he a nlz/ oai iaeg{agk% He ox lphehle) a fkvahikf fhpiloavhc aeaixshs ln vdk pkvhvhles‘ nlzo{iazx aef svz{cv{zk wl{if gh~k {s a jkvvkz {efkz/ svaefheg ln vdk eav{zk ln vdksk sl{zcks aef ln vdk vxpks ln fava zki/ k~aev vl vdk pzlckss ln cle~kzshle% Fhpiloavhc aef Svz{cv{zai Cdazacvkzhsvhcs ln Bhs~k Jadası Pkvhvhles
He vkzos ln vdkhz fhpiloavhc aef paiklgzapdhc cdazacvkzhsvhcs) vdk bhs~k jadası pkvhvhles jkileg vl vdk Lvvloae cdaeckzx gkezk ln az}/h dai ) aisl belwe as z{b z{b a a lz hsvhfa hsvhfa a a %> Hv hs gkekzaiix agzkkf vdav vdksk vkzos fkshgeavkf wzhvvke clopiahevs lz pkvhvhles ln hefh~hf{ais% 7 Dlwk~kz) jkca{sk vdk cdaeckzx pzacvhcks ln vdk agk lnvke ohtkf {p eaoks ln shohiaz flc{okevs $az}) azh}a aef az}/h dai he vdhs cask() hv hs elv kasx vl fkvkzohek wdav bhef ln pkvhvhle vdk az}/h dai acv{aiix clesvhv{vks= a pkvhvhle jx ilwkz zaeb lffickdlifkzs leix) a pkvhvhle jx zkaxa leix lz a pkvhvhle s{johvvkf jx a ~azhkvx ln hefh~hf{ais% ^kibl~ fk fieks ^kibl~ aef Zaf{sdk~) ’Flc{okevs)‟ >3% Hjhf% > A% ^kibl~) ^hfl~k Lsoaelv{zsbh Flb{okevh= Pzhels bao Lsoaelv{zsbava Fhpiloavhba RVxpks ln Lvvloae/V{zbhsd Flc{okevs= A Clevzhj{vhle vl Lvvloae/V{zbhsd Fhpiloavhcs_ $Slfia) 184>() 18% 7 Skk S% Nazlqdh) ’Fhk ^lziagke $vkidåsk( fks GzlÜwkshzs Sheêe Pa a ae S{ivae O{zêf)‟ $Fhss% }{z Kziaeg{eg fkz Flbvlzwùzfk fkz Pdhilslpdhscdke Nab{ivæv fkz [eh~kzshvæv Daoj{zg) 18>7() :0) D% eaicıb) ’Shbêxkv dabbı= az}/h dai ~k az}/h oad}az iaz)‟ LA) 7–4 $1844() P% Nlflz) ’Vdk Gzaef ^h}hkzai Vkidhs= a Sv{fx he vdk Lvvloae Ckevzai Afohehsvzavhle 1;>>–1>;>)‟ AL ) 1; $1887 $1887()() 161 161 aef aef ^kibl~ ^kibl~)) ^hfl~k ) 18% 6 ;
11:
vdk az} as a zkplzv oafk jx ilwkz/zaebheg j{zka{czavs lz fkpazv/ okevs le ae lffichai oavvkz aef vdk az}/h dai as a pkvhvhle le vdk pazv ln ae hefh~hf{ai vl sloklek lcc{pxheg lek ln vdk svavk l fficks le a pzh~avk oavvkz%4 eaicıb jkihk~ks vdav aivdl{gd aii pklpik cae s{johv az}/h dai ) vdlsk nzlo vdk asbkzh ciass pzknkzzkf vl {sk vdk vkzo az} %8 He pkvhvhles ln ekw O{sihos) H da~k ljskz~kf vdk pkvhvhlekzs vl jk nzlo jlvd vdk zkaxa aef asbkzh ciassks) whvd vdk nlzokz clesvhv{v/ heg vdk oamlzhvx%10 Vdkzknlzk) H s{pplzv P% Nlflz‘s plshvhle 11 vdav az}/h dai was vdk gkekzai vkzo {skf olsv lnvke nlz pkvhvhles nzlo aii svzava ln slchkvx% Aivdl{gd a iazgk e{ojkz ln az}/h dai s da~k jkke pzkskz~kf {evhi vlfax he azcdh~ks) vdkx da~k elv jkke o{cd ktpilhvkf jx scdliazs as sl{zcks ln Lvvloae dhsvlzx)1: elz da~k vdkhz nlzo aef svz{cv{zk jkke pzlpkzix aeaix}kf%13 Vdk nliilwheg zk~hkw ln bh bhss~k jadası pkvh/ vhles ahos vl pzl~hfk a slihf kophzhcai jashs) j{v hv oax aisl jk zkaf as ae avvkopv av fk fieheg vdk spkchfic fhp fhpilo iloavhc avhc nkav nkav{zks {zks ln az}/h dai s he gkekzai%16 Acclzfheg vl Lvvloae fhpiloavhcs) aii flc{okevs sdazk vdk nli/ ilwheg jashc svz{cv{zk= hevzlf{cvlzx pzlvlcli2 clevkev2 aef fieai lz cilsheg pzlvlcli%1; N{zvdkzolzk) kacd ln vdksk fh~hshles hs s{jfh~hfkf hevl a e{ojkz ln s{jskcvhles wdlsk lzfkz was zhghfix afdkzkf vl=
^kibl~) ^hfl~k ) 1;% eaicıb) ’Shbêxkv)‟ 3;% 10 Slok ln vdk pkvhvhles ln ekw O{sihos wkzk wzhvvke plsv nacv{o) h%k%) anvkz vdk pkvhvhlekzs daf jkke cle~kzvkf aef afohvvkf hevl vdk ohihvazx clzps2 vd{s) vdkx el ilegkz jkilegkf vl vdk zkaxa av vdk vdk vhok ln ln vdk pkvhv pkvhvhle hle‘s ‘s wzhvhe wzhvheg% g% Kta Ktaopi opiks ks ln az}/h dai s wzhvvke jx dhgd zaebheg okojkzs ln vdk ohihvazx azk chvkf aisl jx Pai Nlflz) ’Vkidhs)‟ 161=e:0% 11 P% Nlflz) ’Vkidhs)‟ 161% 1: A elvajik ktckpvhle hs vdk p{jihcavhle ln az}/h dais cliikcvkf he vdk ’Lvvloae jllbs ln clopiahevs‟ jx D%G% Oamkz $D%G% Oamkz) Fas Lsoaehscdk ’Zkghsvkzj{cd fkz Jkscdwkzfke‟ $ hbêxêv fknvkzh( ~lo Madzk 1>7; ) ~li% 1% $^hkeea) 1846(% Skk Daho Gkzjkz) Svavk) Slchkvx aef Iaw he Hsiao= Lvvloae Iaw he Clopazavh~k Pkzspkcvh~k $Aijaex) 1886() 1;6–173 nlz svavhsvhcai {vhih}avhle {vhih}avhle ln vdk az}/h dai s clevahekf he vdk nlzokz p{jihcavhle% 13 Aivdl{gd vdk vhvik ln eaicıb‘s azvhcik ’Shbêxkv dabbı= az}/h dai ~k az}/h oad}az iaz‟ s{ggksvs vdav slok avvkevhle hs gh~ke vl vdk az}/h dai s vdkzk) hv hs vdk az}/h oad}aziaz $cliikcvh~k pkvhvhles( vdav vdk a{vdlz nlc{sks le% 16 Slok jashc nkav{zks ln vdk az}/h dai azk l{vihekf he Ekfbl~) Lsoaelv{zsba Fhpiloavhba Fhpiloa vhba h Paiklgza Paiklgza fi a a RLvvloae/V{zbhsd Fhpiloavhcs aef Paiklgzapdx_) ~li% 1 $Sl fia) 18>>() 16>–1;0) he vdk skcvhle fhsc{ssheg vdk azh}a aef he Nlflz) ’Vkidhs)‟ 161–166) vdk iavvkz s{z~kxheg vdk vkidhs % 1; Fhpiloavh loavhba ba ) 1:72 M% Zkxcdoae) A% ]amac}bl~sbh) Daefjllb ln Skk= Ekfbl~) Fhpi Lvvloae/V{zbhsd Fhpiloavhcs $Ltnlzf) 18>4() 160% 4 8
BHS^K JADASH
113
1% Hevz Hevzlf{ lf{cv cvlzx lzx Pzl Pzlvl vlcl clii a%(( He a% He~l ~lca cavh vhle le $fa~kv ( j%(( Ho j% Hopk pkzh zhai ai ch chpd pdkz kz $v{ za ( c%(( He c% Hevh vhv{ v{ia iavh vhle le ${e~ae ( ( f%(( Sa f% Sai{ i{va vavvhl hle e $kibaj ( ( k%(( Jk k% Jkek ekfh fhcv cvhl hle e $f{ a ( :% Clevkev Clevkev ln flc flc{ok {okev ev $kt $ktpls plshvh hvhle( le( a%( Eaz Eazza zavh vhle le aef aef Fhsp Fhsplsh lshvh vhle le $eabi ( j%( Sae Saecvh cvhle le aef Clzz Clzzljl ljlzav zavhle hle $vkdfhv ( 3% Nhea Nheaii Pzl Pzlvl vlcl clii a%( Favk $vazhd ( ( j%(( Pi j% Piac ackk ln ln wzh wzhvh vheg eg $okbae ( ( c%(( Sh c% Shge geav av{z {zkk $ho}a ( lz Skai $oùdùz ( Hv sdl{if jk plhevkf l{v vdav) he bkkpheg whvd vdk dhkzazcdhcai eav{zk ln Lvvloae flc{okevs) hv hs leix he vdk flc{okevs hss{kf jx vdk s{ivae‘s cdaeckzx vdav aii vdksk kikokevs cae jk nl{ef% He flc{okevs wzhvvke jx hefh~hf{ais ln iksskz hoplzvaeck) as he vdk cask ln ekw O{sihos) vdk svz{cv{zk hs nl{ef vl jk o{cd olzk jashc aef vdk nlz/ o{ias sdlzvkz aef shopikz% Vdk ’Favajask Oaeagkokev Sxsvko‟ Okvdlf ln Aeaixshs
Aeaix}heg vdk pkvhvhles agahesv vdk ajl~k/l{vihekf pavvkze) dlwk~kz) hoplsks ckzvahe ihohvavhles {ple vdk sv{fx aef) cleskq{kevix) {ple vdk {efkzsvaefheg ln vdk flc{okevs% Vdk oahe fhsaf~aevagk ln appix/ heg vdhs vzafhvhleai scdkoa vl aex gkezk ln Lvvloae flc{okevs hs vdk nacv vdav hv kopdash}ks vdk elzoavh~k kikokevs ln vdk cloplsh/ vhle) h%k%) vdlsk heci{fkf he vdk pzlvlcli) wdhik aiolsv hgelzheg vdk ktplshvhle as slokvdheg {eaeaix}ajik jkca{sk ln hvs ~azhajik cdaz/ acvkz%1> Vd{s) vdk henlzoavhle av vdk dkazv ln kacd flc{okev hs iknv vl dhsvlzhlgzapdhcai aeaixshs) wdhcd he hvs v{ze vabks ihvvik) hn aex) Skk nlz ktaopik vdk aeaixshs ln s{ivaehc flc{okevs he Zkxcdoae aef ]amac}bl~sbh) 16>)) wdkzk wdkzk ikss vdae vdae dain dain a pagk pagk hs hs fk~lvkf fk~lvkf vl vl vdk ktp ktplsh lshvhl vhle e wdhik wdhik hvs Daefjllb ) 16> clevkev hs s{ooazh}kf jx vdk pdzask ’henlzoavhle ktpiaheheg vdk zkasles nlz vdk hss{aeck ln vdk flc{okev%‟ 1>
116
elvhck ln vdk fhpiloavhc nkav{zks ln a flc{okev% He lvdkz wlzfs) wdke hv cloks vl vdk ktplshvhle) Lvvloae fhpiloavhcs vzkavs vdk nlzo ln vdhs skcvhle ln vdk flc{okev he hsliavhle nzlo hvs clevkevs) k~ke vl vdk ktvkev ln hgelzheg vdk iavvkz aivlgkvdkz% S{cd ae appzlacd oax jk s{ffichkev nlz gkekzai sv{fhks ln Lvvloae fhpiloavhcs) wdkzk vdk flc{okev‘s clevkevs azk hooavkzhai) j{v hv hs elv appzlpzhavk nlz zkskazcd he wdhcd vdk ktplshvhle‘s ~azhajhihvx hs wdav oavvkzs olsv% Vdhs jkheg vdk cask) dlw fl wk oabk vdk ktplshvhle‘s ~azhajik cle/ vkev pazv ln vdk svz{cv{zai aeaixshs ln flc{okevs< Hn) he vdk clevktv ln Lvvloae cdaeckzx pzacvhck) a flc{okev hs fh~hshjik hevl pzlvlcli aef ktplshvhle) aef hn hv hs vdk nlzokz vdav q{aihfiks vdk flc{okev as pazv ln vdhs pzacvhck) vdke hv hs vdk iavvkz vdav fkvkzoheks vdk gkezk ln vdk flc{okev% Dkeck) he lzfkz vl aea/ ix}k vdk ktplshvhle ln a flc{okev) wk da~k vl cleshfkz hv he vdk ihgdv ln lvdkzs jkilegheg vl vdk saok gkezk leix) h%k%) vl plli aii a~ahiajik ktplshvhles he a favajask% N{zvdkzolzk) aivdl{gd kacd ktpl/ shvhle hs {ehq{k) cleshfkzkf as a gzl{p whvdhe vdk gkezk vdkx whii sdlw a skv ln shohiazhvhks he cloplshvhle aef clevkev) aef vd{s azk s{sckpvhjik vl gkekzaih}avhle% A okcdaehcai fksczhpvhle ln vdkhz clo/ ole nkav{zks) dlwk~kz) wl{if svhii elv jk o{cd fhff kzkev kzkev nzlo vdk vzafhvhleai fhpiloavhcs appzlacd% H wl{if pzknkz hesvkaf vl {sk a okvdlf vdav aiilws ok vl aeaix}k vdk ktplshvhle ln vdk pkvhvhles as a sxevdkshs ln nlzo aef s{jsvaeck) h%k%) vl clojhek svz{cv{zai aef dhsvlzhlgzapdhcai aeaixshs% He vdhs zkspkcv) wk cae jkek fiv nzlo a okvdlflilgx fk~kilpkf he aelvdkz fhschpihek vdav fkais whvd vdk elvhles ’favajask‟ aef ’svz{cv{zai shohiazhvhks)‟ eaokix) clop{vkz schkeck) wdkzk a ~kzx kiajlzavk vdklzx nlz czkavheg favajask oaeagk/ okev sxsvkos kthsvs% A favajask oaeagkokev sxsvko he clop{vkz schkeck zknkzs vl vdk clo/ jheavhle ln svlzkf fava aef a skv ln pzlgzaos vdav aiilws {skzs vl acckss aef olfhnx vdk fava%17 Wdav hs hoplzvaev vl vdk pzkskev vasb hs vdk jashc cleckpv vdav fava hs pzlcksskf vdzl{gd vdk okfh{o ln a s{pkzsvz{cv{zk) wdhcd zkpzkskevs vdk l~kzaii ilghcai svz{cv{zk ln vdk favajask% S{jskq{kevix) kacd heq{hzx hevl vdk favajask hs fhzkcvkf aef gzkavix nachihvavkf jx vdk s{pkzsvz{cv{zk% He lvdkz wlzfs) czkav/ heg a ilghcai s{pkzsvz{cv{zk ln ktplshvhles fkshgekf vl nachihvavk dhs/
17
Skk Ajzadao Shijkzscdav}) Dkezx N% Blzvd aef S% S{fazsdad) Favajask Sxsvko Cleckpvs ) 3zf 3zf kf% kf% $Jlsvle) $Jlsvle) 188 1888() 8() 6%
BHS^K JADASH
11;
vlzhlgzapdhcai heq{hzx whii aiilw ok vl acdhk~k ox glai ln hevkgzav/ heg fhpiloavhc aef dhsvlzhcai aeaixshs% Vl fkfiek vdk pzlpkz s{pkzsvz{cv{zk ln vdk favajask ln ktplshvhles H whii jlzzlw aelvdkz cleckpv {skf he favajask sxsvkos vdklzx) eaokix) vdk kevhvx/zkiavhlesdhp fava olfki% Vdhs olfki hs jaskf le vdk pkzckpvhle ln a zkai wlzif vdav cleshsvs ln a cliikcvhle ln kevhvhks ) aef ln zkia/ vhlesdhps aoleg vdksk kevhvhks %14 Ae kevhvx hs a ’vdheg‟ lz ’ljmkcv‟ vdav hs fhsvheg{hsdajik nzlo lvdkz vdhegs) aef fkfieajik jx a skv ln avvzhj/ {vks% A zkiavhlesdhp hs ae asslchavhle vdav ihebs vlgkvdkz sk~kzai kevh/ vhks% Vdk kevhvx/zkiavhlesdhp fava olfki hs a skoaevhc fava olfki) h%k%) hv avvkopvs vl zkpzkskev vdk okaeheg ln vdk fava aef vdke vl oap hv he a cleckpv{ai scdkoa%18 Sheck) he l{z cask) wk azk fkaiheg whvd vktvs) vdk cliikcvhle ln kevhvhks caeelv jk lvdkz vdae a cliikcvhle ln skoaevhc kevhvhks% Hefkkf) vdkzk azk skcvhles he vdk ktplshvhles ln ekw O{sihos‘ pkvhvhles vdav nkav{zk shohiaz skoaevhc clevkev% Olzkl~kz) vdksk skoaevhc kevhvhks azk azzaegkf he a spkchfic lzfkz he vdk vktv% Vd{s) vdkx nlzo zkia/ vhlesdhps ktpzksskf jx ilghcai aef gzaooavhcai ihebs% He lvdkz wlzfs) wk da~k aii vdk ekckssazx kikokevs vl appix vdk kevhvx/zkiavhlesdhp olfki vl vdk aeaixshs ln vdk ktplshvhles ln ekw O{sihos‘ pkvhvhles aef vl fkshge a favajask scdkoa nliilwheg vdav olfki% He pzacvhcai vkzos) vdk clesvz{cvhle ln a favajask sxsvkos olfki whii jk acclopihsdkf he vwl svagks) kacd zkpzkskevheg a fhff kzkev kzkev ik~ki ln ajsvzacvhle% Av vdk fizsv ik~ki ln ajsvzacvhle) vdk pdxshcai ik~ki ) clo/ pikt) ilw/ik~ki fava svz{cv{zks $skoaevhc skgokevs aef vdk wlzfs) pdzasks) aef nlzo{ias ln wdhcd vdkx azk clesvhv{vkf( azk hfkevh fikf aef fksczhjkf he fkvahi% Vdhs hs vdk ik~ki ln vdk vzafhvhleai fhpiloavhc aeaixshs ln flc{okevs% Jx hfkevhnxheg vdksk svz{cv{zks he l{z pkvhvhles aef sv{fxheg vdkhz hevkzzkiavhle wk azk acv{aiix cdaeekiheg ~azhajik vktv hevl pavvkzes ln ktpzksshle) a pzlckss wdhcd av vdk ektv aef dhgdkz ik~ki ln ajsvzacvhle) vdk ilghcai ik~ki) pzl~hfks nlz vdk scdkoavhc zkpzkskevavhle ln vdk ilw ik~ki fava/svz{cv{zk% Dkzk) vdk kevhzk fava/ jask hs fksczhjkf he vkzos ln a soaii e{ojkz ln kevhvx/sxojlis aef zkiavhlesdhp/sxojlis % Jkca{sk ln vdk zkiavh~k shopihchvx ln vdk cloplsh/ vhle av vdhs ik~ki) vdk l~kzaii ilghcai svz{cv{zk ln vdk favajask cae jk ktpzksskf gzapdhcaiix jx ae kevhvx/zkiavhlesdhp fhagzao% Vdhs fhagzao
14 18
Hjhf%) :3% Hjhf%
11>
hs vdk ajsvzacv ~hkw ln vdk favajask aef zkpzkskevs vdk s{pkzsvz{c/ v{zk ln vdk cdaeckzx gkezk ln ’ekw O{sihos‘ pkvhvhles%‟ :0 Vdk s{pkz/ svz{cv{zk hs he a skesk hefkpkefkev ln vdk favajask ln ktplshvhles jkca{sk hv hs hoo{vajik% Kacd ktplshvhle hs ae hefh~hf{ai hesvaeck ln vdhs s{pkzsvz{cv{zk% Vd{s) vdk kthsvkeck ln aelvdkz hesvaeck flks elv cdaegk vdk s{pkzsvz{cv{zk2 hv leix ~aihfavks hv% He ox okvdlf ln aeaixshs) vdk s{pkzsvz{cv{zk clzzksplefs vl vdk zlik ln a clop{vkz pzlgzao‘s hevkznack he acckssheg henlzoavhle nzlo a favajask% Vdk hevkznack hs vdk ~hs{ai okfh{o vdzl{gd wdhcd a {skz hevkzacvs whvd vdk favajask% Hv pzl~hfks vdk {skz whvd fh ff kzkev kzkev ~hkws ln vdk favajask) aef keajiks dho,dkz vl zkvzhk~k fava skikcvh~kix aef kffichkevix% A shohiaz n{ecvhle hs acdhk~kf he vdk vzafhvhleai okvdlf ln aeaix/ shs wdkzkjx flc{okevs azk ciasshfikf hevl gzl{ps acclzfheg vl a clo/ ole nkav{zk% Vdk fhsaf~aevagk ln ciasshficavhle) dlwk~kz) hs vdav hv okaes pdxshcaiix fh~hfheg vdk favajask% Vdhs oax pzl~hfk slok skvs ln fava j{v wdke ae hefh~hf{ai phkck ln fava clenlzos vl vwl lz olzk czhvkzha ln skikcvhle) hv hs fh ffic{iv vl fkchfk dlw vl ciasshnx hv% K~ke hn wk fkchfk vl p{v vdk fava hevl a ckzvahe ciass) vdhs a{vl/ oavhcaiix oabks hv {ea~ahiajik vl vdk lvdkz ciassks he wdhcd vdk fava q{aihfiks nlz heci{shle% Olzkl~kz) hn wk fkchfk vl heci{fk vdk fava he aii ciassks vdav hv q{aih fiks nlz) wk czkavk) he nacv) l{v ln lek) sk~kzai favajasks% Vdk af~aevagk ln vdk favajask okvdlf ln aeaixshs hs vdav heq{hzhks hevl vdk fava azk clevzliikf jx vdk fk~hskf s{pkzsvz{cv{zk) whvd kacd kevhvx/sxojli lz zkiavhlesdhp/sxojli clooaefheg a ciass ln fava wdhik av vdk saok vhok oabheg vdhs fava a~ahiajik vl aelvdkz kevhvx/sxojli lz zkiavhlesdhp/sxojli jx wax ln vdk ihebs he vdk s{pkz/ svz{cv{zk% Aivdl{gd vdk svz{cv{zai aeaixshs hs clopikvkf jx vdk czk/ avhle ln a favajask s{pkzsvz{cv{zk) vdkzk hs aelvdkz ik~ki ln ajsvzacvhle ln fava vdav nliilws he ox okvdlf) vdk ~hkw ik~ki% Vdhs hs vdk plhev wdkzk vdk sxevdkshs jkvwkke nlzo aef s{jsvaeck lcc{zs% Av vdhs ik~ki leix pazv ln vdk favajask hs fksczhjkf) {sheg vdk s{pkzsvz{cv{zk as a vlli nlz fhzkcvheg heq{hzhks% He lvdkz wlzfs) vdk ~hkw ik~ki hs ksske/ vhai nlz dhsvlzhlgzapdhcai aeaixshs jkca{sk vdk fava hs elw skikcvkf aef aeaix}kf acclzfheg vl hvs zkiavhle vl vdk lvdkz skvs ln fava%
S{cd ae appzlacd cl{if jk {vhih}kf nlz lvdkz bhefs ln Lvvloae flc{okevs as wkii% Skk A% Ohebl~) ’Vdk Pkasaevs‘ Fkkf $Vap{ ( ( he vdk Lvvloae Kophzk‟ $OA Vdkshs= Slfia [eh~kzshvx) 1881(% :0
BHS^K JADASH
117
A% Pdxshcai Ik~ki Da~heg fksczhjkf vdk p{zplsk aef nkav{zks ln ox okvdlf) H whii pzlckkf whvd vdk aeaixshs hvskin) svazvheg whvd vdk pdxshcai ik~ki ln fksczhpvhle% Vl pzl~hfk a clopzkdkesh~k ~hkw ln vdk flc{okevs‘ cloplshvhle) vdk fksczhpvhle whii aisl nlc{s le vdk elzoavh~k kikokevs ln vdk hevzlf{cvlzx pzlvlcli) acclzfheg vl vdk vzafhvhleai okvdlf ln Lvvloae fhpiloavhcs% H% Hevzlf{cvlzx Pzlvlcli 1% He~lcavhle Vdk hevzlf{cvlzx pzlvlcli ln bh bhs~ s~kk jad adas ası ı pkvhvhles vzafhvhleaiix jkghes whvd vdk he~lcavhle ’dù~k ‟ $Az% d{wa ) ’Dk‟() hopixheg ’Glf)‟ wdhcd hs piackf av vdk ~kzx vlp ln vdk flc{okev% Hv zkpzkskevs vdk jashc nlzo ln vdk o{cd ilegkz ~azhavhles nl{ef he lvdkz bhefs ln Lvvloae flc{okevs%:1 Jkca{sk ln hvs nzkq{kev {sk) he olsv casks vdk ’ dù~k ‟ appkazs as ihvvik olzk vdae a gzapdhc sxojli% Hvs ajskeck) dlwk~kz) cae jk elvkf he a soaii e{ojkz ln pkvhvhles%:: Vdk fizsv vdzkk kikokevs vxphcaiix nl{ef he flc{okevs hss{kf jx dhgdkz afohehsvzavh~k lfficks‖s{ivae‘s v{ za ) hevhv{iavhle) aef hesczhp/ vhle‖azk elv nkav{zks ln vdk pkvhvhles% Vdk jlfx ln vdk vktv jkghes nzlo ajl{v vdk ohffik ln vdk flc{okev) as a shgeh ficaev plzvhle ln vdk {ppkz dain $whvd ’ dù~k ‟ av vdk vlp( aef vdk zhgdv oazghe was elzoaiix iknv jiaeb% :% Sai{vavhle Vdk acv{ai vktv ln vdk pkvhvhles jkghes whvd a sai{vavhle affzksskf vl vdk s{ivae% Vdk sai{vavhle was hevkefkf vl oaehnksv zkspkcv vl vdk s{ivae) aef vl acbelwikfgk dhs gzaefk{z aef kohekeck% Vdk {s{ai sai{vavhle nlzo{ias kecl{evkzkf azk= Fk~ikviù ~k saafkviù s{ivaeıo da}zkvikzh % % % $Xl{z Oamksvx) ox Hii{svzhl{s aef Pzlspkzl{s S{ivae() lz Fk~ikviù ~k okzdaokviù s{ivaeıo da}zkvikzh % % % $Xl{z Oamksvx) ox Hii{svzhl{s aef Okzchn{i S{ivae(%
Jlzhs Ekfbl~) Fhpiloavhba ) 1:7 1:7–1: –1:82 82 Zkxcdo Zkxcdoae ae aef aef ]amac}bl ]amac}bl~sbh ~sbh)) Daefjllb ) 160–161% :: Skk nlz ktaopik 1Y3;>;2 1Y104:02 1Y108:3) n% 12 1Y110;>2 1AY;7:80) n% 12 EPVA TT 1Y:4) n% :2 LAB 7>Y;:) n% 38% :1
114
Hv sdl{if jk elvkf vdav ’ s{ivaeıo‟ cae jk {skf as a oazb ln zkspkcv) k~ke hn vdk pkzsle jkheg affzksskf hs elv vdk s{ivae%:3 He casks) dlw/ k~kz) wdkzk pafh pafh ad ad, pafh pafh adıo adıo azk {skf hesvkaf) vdk nacv vdav vdk pkvh/ vhle hs affzksskf vl vdk s{ivae hs {eaojhghl{s= k~bkviù) oadajkviù) heaxkviù pafh ad pafh ad)) }hii }hii/h /h aii aiiad ad)) da}z da}zkvi kvikz kzhe hehe he % % % $Xl{z Oamksvx) Eljik) Oagehfickev Pafhsdad) Sdaflw ln Glf Rle Kazvd_(%:6
Hv was k~ke c{svloazx nlz vdk wlzfs ’ s{ivae‟ aef ’ pafhsdad‟ vl jk wzhvvke ajl~k vdk ihek he vdk sai{vavhle sl vdav vdkx wl{if svaef l{v he vdk vktv% :%1% Jkekfhcvhle% As a z{ik) z{ik) vdk sai{v sai{vavh avhle le kefs kefs whvd whvd a jkekfhcv jkekfhcvhle hle nlz/ nlz/ o{ia% Vdk iavvkz cleshsvs olsv lnvke ln vdk pdzask sa lis{e $jk dkaivdx(% Dlwk~kz) lccashleaiix) wk fief olzk kiajlzavk ~kzshles) k%g%= % % % dabb s{jda s{jdaek ek ~k vaaia o{jazk o{jazkbb ~{c{f/h ~{c{f/h d{oaxùe d{oaxùeiazıe) iazıe) davai davaiazfae azfae oas{e ~k oadn{} kfùp saxıek okzdaokvikzhe jkeh afao ù}kzikzhefk fùzù }ahi kxikokxk% Aohe% $Oax Glf) wdlsk ia{fs H zkchvk aef Wdl hs vl jk ktvliikf) g{azf aef sa~k Xl{z Jiksskf Hopkzhai Jlfx nzlo kzzlzs aef ek~kz p{v ae kef vl vdk zkhge ln Xl{z Eljik Okzcx l~kz oaebhef% Aoke%() :; lz % % % da dabbb/ b/ıı s{ s{jjda daeek ~k va vaai aiaa da} a}zk zkvi vikz kzh) h) ~{ ~{c{ c{ff/h d{ d{oa oaxù xùei eiaazı zıee da dava vası sı}} kx kxiikx kxùp ùp skz kzhz hz/h /h s{ivaeıefa phz/h baohi kxikxk kohe/h ja zajj ki/aiaohe $Oax Glf) wdlsk ia{fs H zkchvk aef Wdl hs vl jk ktvliikf) pzkskz~ks nzlo kzzlz xl{z Hopkzhai Zkhge% Oax xl{ jk vdk pkznkcv sphzhv{ai ikafkz le vdk Hopkzhai vdzlek) vdk vz{svkk Rle Kazvd_ ln vdk Ilzf ln vdk Wlzifs(% :>
3% Gkez ezkk sp spkc kchhficavhle He oaex bh bhs~ s~kk ja jada dası sı pkvhvhles) as he pkvhvhles he gkekzai) :7 wk fief a skevkeck jkvwkke vdk hevzlf{cvlzx pzlvlcli aef ktplshvhle) wdhcd spkchfiks vdk gkezk ln vdk flc{okev) k%g%= Az}/h dai/ı jkefkikzh j{f{z bh $Vdk pkvhvhle ln xl{z skz~aev hs as nliilws(%:4
Olzk lnvke) dlwk~kz) vdk ktplshvhle nliilws vdk hevzlf{cvlzx kik/ okevs wdhik vdk flc{okev‘s gkezk hs spkchfikf he vdk ohffik ln vdk
:3 :6 :; :> :7 :4
Skk jkilw) nlz 1AY;7:>;% Hjhf% 1Y11107% Skk Ekfbl~) Fhpiloavhba ) 164% 1Y1110>2 1AY;7:>;2 1AY;7:80%
BHS^K JADASH
118
ktplshvhle) hookfhavkix jknlzk vdk pkvhvhlekz‘s zkq{ksv $skk HH) 6%1 jkilw(% HH% Ktplshvhle 1% Hfkevhficavhle ln vdk pkvhvhlekz Vdk ktplshvhle {s{aiix jkghes whvd vdk hfkevh ficavhle ln vdk pkvhvhlekz% Vdhs kikokev aisl skz~ks as vdk gzaooavhcai s{jmkcv ln vdk ktplshvhle% 1%1% Nlzo{ia ln s{johsshle vl vdk s{ivae% Hesvkaf ln zknkzzheg vl dhoskin jx eaok) vdk pkvhvhlekz wl{if {s{aiix hfkevhnx dhoskin jx ae hopkz/ sleai vkzo s{cd as j{ b{iiazı $vdhs d{ojik sia~k,skz~aev ln xl{zs() lz he vdk cask ln a wloae) j{ cazhxkikzh$eh}( % Lccashleaiix) vdk wlzf ’ nabh %‟ Vdksk nlzo{ias wkzk oaefa/ nabhz z ‟ $pllz) heshgehficaev( zkpiacks ’b{i %‟ vlzx he Lvvloae flc{okevs affzkssheg vdk s{ivae) zkgazfikss ln vdk slchai svaefheg lz zkihghle ln vdk pkzsle hehvhavheg hv% 1%:% Gkefkz% Vdk gkefkz ln vdk pkvhvhlekz hs aiwaxs oafk cikaz jkca{sk ln vdk fhff kzkeck kzkeck he vdk nlzo{ias ln s{johsshle {skf nlz oaiks aef nkoaiks% 1%3% Agk% Fhsvhecvhle he vdk agk ln vdk pkvhvhlekz hs oafk leix jkvwkke af{ivs aef afliksckevs jx vdk {sk ln vdk wlzf ’ sa sa ız ız ‟ $soaii) ihvvik( he casks wdkzk vdk pkvhvhle hs oafk he vdk eaok ln a jlx lz ghzi% Lccashleaiix) vdk pkvhvhlekz hs hfkevhfikf as a xl{eg jlx whvd vdk wlzfs ’l {i ‟ lz ’l iae‟ $jlx) iaf(%:8 ihavhle% Ln ffi ihavhle 1%6% Zkihghl{s a Lnvk vke) e) vd vdkk hfk hfkev evhhficavhle ln vdk pkvhvhlekz kopda/ sh}ks vdav vdk iavvkz hs ele/O{siho jx spkchnxheg dhs,dkz zkihghle= J{ xad{fh b{iiazı % % % $Xl{z skz~aev hs a Mkw()30 lz J{ easzaehxxk % % % cazhxkikzh % % % $Xl{z skz~aev hs a Cdzhsvhae wloae(%31
Olzk nzkq{kevix) vdk zkihghle hs elv spkch fikf% Hesvkaf) vdk pkvhvhlekz‘s }hooh svav{s hs hefhcavkf=
:8 30 31
LAB 7>Y;:) n% 18 aef 762 16;Y1042 1AY;7:80% EPVA 1Y:4) n% :>% 1Y1110>%
1:0
J{ }hooh b{iiazı % % % $Xl{z skz~aev hs a ele/O{siho s{jmkcv(% 3:
lz) he vdk cask ln a wloae) J{ }hooh cazhxkeh} % % % $Xl{z skz~aev hs a ele/O{siho wloae(% 33
Zazkix) dk,sdk hs ktpihchvix hfkevhfikf as ae {ejkihk~kz= $Xl{zz skz skz~a ~aev ev hs hs % % % ae ae {ejk {ejkihihk~ k~kz kz)) sle sle J{ b{iiazı % % % bên bênhz hz l i{ bênhzho% $Xl{ ln ae {ejkihk~kz(%36
Le leix lek lccashle aolegsv vdk flc{okevs s{z~kxkf flks vdk pkvhvhlekz zknkz vl dhoskin as a cle~kzv vl Hsiao= J{ o{dvkfh b{iiazı % % % $Xl{z skz~aev hs a cle~kzv vl Hsiao(% 3;
1%;% Piack ln zkshfkeck aef kvdehc lzhghe% He affhvhle vl zkihghl{s affiihavhle) wk aisl fief spkchfikf khvdkz vdk piack ln zkshfkeck) lz vdk kvdehc lzh/ ghe $wdhcd cae aisl jk ae hefhcavhle ln ele/O{siho lzhghe( ln vdk pkvhvhlekz) lz jlvd) k%g%= Vkbn{zfa ıe Vkbn{zfa ıefa faee Kz Kzok okeeh li li{j {j % % % $H ao ae Azokehae nzlo Vkbn{zfag(% 3> J{ nabhzk/h easzaehxxk/h cazhxkeh} Bafıbþx sabheikzhefke Z{oh vahnkshefke li{p % % % $Xl{z skz~aev hs a Cdzhsvhae ghzi,wloae nzlo vdk hedajhvaevs ln Bafıbþx) nzlo vdk Gzkkb pklpik(%37 J{ b{iiazı Gþiùbkszk Gþiùbkszk fke fke Z{o l i{ li{p % % % $Xl{z skz~aev hs a Gzkkb nzlo Gþiùbkszk(%34 Shihsvzk fke) Shihsvzk fke) J{igaz l i{ li{p % % % $H ao a J{igazhae nzlo Shihsvzk(% 38
Hn hv hs elv okevhlekf he vdk ’hfkevh ficavhle‟ kikokev) lek lnvke fiefs vdk piack ln zkshfkeck hefhcavkf jkilw vdk vktv) as pazv ln vdk shg/ eav{zk ln vdk pkvhvhlekz%60 Slokvhoks vdk zkghle61 lz k~ke vdk cl{evzx6: ln lzhghe hs spkchfikf hesvkaf ln vdk ~hiiagk ln zkshfkeck% Aivdl{gd 3: 33 36 3;
n% 1% 3> 37 34 38 60 61 6:
1Y1041:) 1AY;70:8) 1AY;7184% 1Y10747) 1Y1043>% LAB 7>Y;:) n% 6;% Ihvkzaiix‖vdk lek wdl fhscl~kzs aef nliilws vdk zhgdv fhzkcvhle% Skk SI >Y14) 1Y104>>% 1Y11011% LAB 7>Y;:) n% 30% LAB 7>Y;:) n% >7% 1Y111072 1AY;7318) n% 6:2 LAB 7>Y;:) n% ;% 1AY;70>62 CG 36Y:) n% 62 11:Y>7>4% 1Y11111 $^kehck(%
BHS^K JADASH
1:1
gklgzapdhcai piack/eaoks azk okevhlekf leix splzafhcaiix he vdk bhs~k jadası pkvhvhles) vdk ~hiiagks aef vdk zkghles kecl{evkzkf azk olsvix nzlo vdk Jaibaes aef Aeavliha% Leix lccashleaiix fl wk fief pkvh/ vhlekzs nzlo lvdkz Lvvloae vkzzhvlzhks%63 1%>% Lvdkz henlzoavhle% He affhvhle vl vdk ajl~k olsv cloole fksczhp/ vhles) vdk pkvhvhlekz oax jk cdazacvkzh}kf jx slok lvdkz pkzsleai henlzoavhle fkkokf hoplzvaev vl vdk s{cckss ln vdk pkvhvhle‖pzlnks/ shle) pdxshcai fhsajhihvhks) oazhvai svav{s) slchai svav{s) kvc% Nlz ktaopik= J{ b{iiazı phz/h hdvhxaz ~k êoê li{p % % % $Xl{z skz~aev hs lif aef jihef(% 66 J{ b{iiaz b{iiazıı dass dass az$a(j az$a(ja$<( a$<( jazg jazghzh hzh da$x( da$x(~aeg ~aegaz az vajias vajiasıea ıea hbh hbh skekfù skekfùzz dh}okv dh}okv kfkzh kfkzho o%%% $Xl{z s{jmkcv das jkke a skz~aev av vdk vajik ln vdk Hopkzhai svajik/ gzllos nlz vwl xkazs elw(%6; Fazjdaek/h aohzk hçhefk bùçù bùçù ùef ùefke ke jkzù jkzù bai baicıiı cıiıbb saeaa saeaavıe vıefa fa pkz~k pkz~kzfk zfk li{ li{pp % % % $Sheck a xl{eg agk H da~k jkke vzahekf he vdk czanv ln okvai p{zhnx/ heg he vdk Svavk ohev(%6> J{ b{iiazı kdih oaazhnkvvke dabho li{p % % % $Xl{z skz~aev hs aoleg vdk kf{/ cavkf pklpik(%67
:% Zk Zkas asles les nl nlzz cle cle~k ~kzs zshle hle Aivdl{gd bh bhs~ s~kk jad adaası pkvhvhles azk {s{aiix sdlzv aef svzahgdvnlzwazf) wk lnvke fief he vdk skcvhle nliilwheg vdk ’hfkevhficavhle)‟ a s{o/ oazx ln vdk pkvhvhlekz‘s ihnk svlzx aef dhs,dkz zkasles nlz cle~kz/ shle% Vdhs hs {s{aiix vdk ilegksv pazv ln vdk ktplshvhle aef vdk ikasv pzlek vl sxsvkoavh}avhle% Ek~kzvdkikss) hv hs plsshjik vl fhsvheg{hsd jkvwkke sk~kzai vxpks ln zkasles nlz cle~kzshle% Vdhs vasb) dlwk~kz) whii jk iknv vl vdk iasv cdapvkz ln vdk sv{fx) wdkzk H whii illb olzk cazkn{iix av vdk zkasles chvkf nlz vabheg s{cd a svkp% 3% Fkc Fkciaz iazavh avhle le ln acc acckpv kpvheg heg Hsi Hsiao ao Vdk ektv kikokev he vdk ktplshvhle‘s svz{cv{zk hs vdk fkciazavhle vdav vdk pkvhvhlekz das fkchfkf vl kojzack Hsiao as dhs,dkz zkihghle lz das lffichaiix aizkafx flek sl%
63 66 6; 6> 67
LAB 7>Y 7>Y;: ;: n% ; $Jagd $Jagdfaf faf(%(% EPVA TT 1Y:4) n% :% LAB 7>Y;:) n% 6;% EPVA 1Y:4) n% :>% 1AY>404%
1::
3%1% Keihgdvkeokev% As a fizsv svkp he vdk zkihghl{s ktpkzhkeck ikafheg vl vdk fkchshle vl kojzack Hsiao) vdk pkvhvhlekz plhevs vl dhs avvahe/ okev ln zkihghl{s keihgdvkeokev% Vdk nlzo{ia {skf he olsv casks hs= Dhfaxkv/h zajjaeh kzh ù kzh ù p % % % $H zkacdkf vdk fh~hek vz{vd(%64
^azhavhles le vdhs nlzo{ia heci{fk vdk {sk ln vdk wlzf ’ dabb ‟ $fh~hek lzfheaeck( hesvkaf ln ’zajjaeh ‟ $pkz $pkzva vaheh heheg eg vl vl Glf) Glf) fh~ fh~he hek( k(%%68 Lvdkz ~azhavhles azk f{k vl vdk {sk ln olzk slpdhsvhcavkf iaeg{agk) a zk/ pkvhvhlekz‘ss okojkzsdhp he he a dhgdkz slchai svzav{o) svzav{o) k%g%= kcvhle ln vdk pkvhvhlekz‘ Dhfaxkv/h s{jdaeh ~k heaxkv/h saokfaeh xkvh ù xkvh ù p % % % $H da~k elw jkke hii{oheavkf jx vdk vz{k nahvd aef H da~k zkacdkf vdk fh~hek vz{vd();0 lz B{nz/h }kiaikvhefk li{p xabheke }kiaikvhefk lif{ {o o{sadkfk % % % $H was ilsv he Rvdk fazbekss_ ln hefifkihvx% RDlwk~kz_) H {eq{ksvhleajix zkaih}kf ox kzzlz aef ktpkzhkeckf Glf he dhs Gilzx(% ;1
Vl fhsvheg{hsd vdk ajl~k svavkokevs nzlo vdk pzkckfheg pazvs ln vdk ktplshvhle vdav vl{cd le dhs pzk~hl{s ihnk) vdk pkvhvhlekz oax jkghe vdk fkciazavhle ln keihgdvkeokev whvd vdk Azajhc wlzf ’daia ‟ $elw) c{zzkevix( lz hvs V{zbhsd sxelexos ’ hofh )‟ )‟ ’j{ fkna ‟ $elw) vdhs vhok(% Pdzasks ihbk jh/heaxkv/h Aiiad vaaia ;: $jx vdk gzack ln Glf) vdk ktaivkf() ki/daof{iiad vaaia ;3 $Oax pzahsk jk vl Glf( cae aisl jk affkf av vdhs svagk% 3%:% Zke{echavhle ln nlzokz nahvd aef 3%3% Kojzacheg ln Hsiao as lek‘s ekw zkihghle% Anvkz vdk fkciazavhle ln da~heg fhscl~kzkf vdk ekw pavd) vdk pkvhvhlekz he~azhajix fkciazks vdk zke{echavhle ln dhs,dkz lif zkihghle aef vdk fkchshle vl kojzack Hsiao= Javhifke çıbıp dabb/ı fhe baj{i kfùp % % % $H da~k iknv vdk naisk aef acckpvkf vdk vz{k zkihghle(;6 lz Javhi fheh vkzb ~k zùc{‘ zùc{‘ kfùp dabb/ı fhe fhe liae fhe/h siaoh ba baj{i % % % $H zkel{eckf vdk naisk zkihghle aef v{zekf vl vdk vz{k zkihghle‖vdk zkihghle ln Hsiao(%;; 64 68 ;0 ;1 ;: ;3 ;6 ;;
Skk 1Y1110>% Skk 1Y11011% Skk EPVA 1Y:4) n% :> $Appkefht H) Flc{okev >(% 1Y11111% LAB 7>Y;:) n% 30% EPVA TT 1Y:4) n% :>% 1AY;7:>;% 1Y1110>%
BHS^K JADASH
1:3
Lnvke) vdk pkvhvhlekz pzlnkssks dhs ekkf nlz sphzhv{ai g{hfaeck he lzfkz vl oabk vdk fhffic{iv fkchshle ln zkel{echeg dhs,dkz zkihghle= Javhi fhefke daias ~k fhe/h O{daookfh vkibhe % % % $H waev vl jk sa~kf nzlo vdk naisk zkihghle aef va{gdv vdk azvhciks ln nahvd ln vdk zkihghle ln Oldaookf(%;>
3%3% Fkciazavhle ln jkheg dlelzkf whvd Hsiao% Vdk ektv kikokev he vdk ktplshvhle ln vdk pkvhvhles hs a fkciazavhle vdav vdk pkvhvhlekz daf jkke) lz wl{if ihbk vl jk) dlelzkf whvd ’Dlix Hsiao%‟ Vdk {s{ai nlzo{ia was= kzkn/h siao hik où k où kzzkn li{p % % % $H was dlelzkf whvd Dlix Hsiao(
Vdk okaeheg ln vdhs nlzo{ia zkoahes ljsc{zk {evhi wk ljskz~k hv jkheg {skf he slok ln hvs ktvkefkf ~kzshles) k%g%= D{}{z/h saafkvvk kzkn/h siao hik où kz où kzzk zknn lio lioab ab hs hsvk vkzh zho o % % % $H waev vl jk dlelzkf whvd Dlix Hsiao he Xl{z Hopkzhai Pzkskeck();7 Knkefhoh} d{}{z/h êihikzhefk siao hik où k où kzzkn li{p % % % $H was dlelzkf whvd Hsiao he vdk Dhgdksv Pzkskeck ln Ox Ilzf() ;4 siao hik où kzzk où kzzknn lio lioab ab hsv hsvkzho kzho d{} d{}{z/ {z/hh êih êihikz ikzhef hefkk % % % $H waev vl jk dlelzkf whvd Hsiao he vdk pzkskeck ln Xl{z Oamksvx() ;8 Pafh adıo d{}{z/h kzhnhefk hoae ~k si Pafh adıo siao ao ba baj{ j{ii kvo kvokb kb hs hsvk vkzh zho o % % % $H waev vl acckpv vdk Rvz{k_ nahvd aef Hsiao he vdk Dlix Pzkskeck ln ox Pafhsdad(%>0
Hv was aisl plsshjik nlz vdk nlzo{ia siao hik où kzzkn où kzzkn lioab vl jk s{j/ svhv{vkf whvd vdk ~kzj vkibhe lioab $vl vkacd a el~hck vl zkpkav vdk azvhciks ln nahvd() k%g%= D{}{z/h saafkvheh}fk vkibhe fhe/h siao li{e{p % % % $H was va{gdv vdk azvhciks ln nahvd aef Rkojzackf_ vdk zkihghle ln Hsiao he xl{z Hii{svzhl{s Pzkskeck(%>1
Vdksk ktvkefkf nlzo{ias plhev vl vdk nacv vdav he spkabheg ln jkheg ’dlelzkf whvd Hsiao‟ vdk pkvhvhlekz okaev jkheg ’dlelzkf whvd Hsiao he vdk pzkskeck ln vdk s{ivae%‟ He lvdkz wlzfs) whvd vdhs kik/ okev vdk pkvhvhles hefhcavk vdav vdk ekw O{siho wl{if ihbk vl da~k ;> ;7 ;4 ;8 >0 >1
EPVA TT) 1Y:4) n% ;0% 1Y11011% 1AY>404% EPVA TT 1Y:4) n% :>% LAB 7> ;:) n% 6;% CG 36Y:) n% 6%
1:6
ae a{fhkeck whvd vdk s{ivae) lz olzk lnvke) vdav dk daf aizkafx daf lek% Vdkzk) dk wl{if jk pzkskevkf vl vdk iavvkz as a ekw O{siho $ek~ oùsiho ( aef plsshjix va{gdv vl pzlel{eck vdk adafkv >: he lzfkz vl fkolesvzavk dhs ekw zkihghl{s affiihavhle) aef fieaiix) vl zkckh~k dhs,dkz ekw O{siho eaok $skk jkilw(% Hv hs elv cikaz dlw o{cd s{cd a sckeazhl zkkcvkf zkaihvx) h%k%) dlw oaex vhoks vdk s{ivae was acv{aiix pzkskev av vdk ckzkolex% Nzlo lek pkvhvhle wk {efkzsvaef vdav olsv pzljajix a{fhkecks vllb piack f{zheg okkvhegs ln vdk Hopkzhai cl{echi= J{efae k~~ki fh~ae gùeù d{}{z/h d{oaxùe siao hik où kzzknk où kzzknk lif{o% $Le vdk pzk~hl{s okkvheg ln vdk Hopkzhai cl{echi) H was dlelzkf whvd Dlix Hsiao he Xl{z Hopkzhai Pzkskeck(%>3
Gh~ke l{z belwikfgk ln vdk he~li~kokev ln vdk Lvvloae s{ivaes he vdk aff ahzs ahzs ln vdk Hopkzhai cl{echi he vdk skclef pazv ln vdk sk~ke/ vkkevd ckev{zx) hv hs acv{aiix olzk ihbkix vdae elv vdav vdk s{ivae was elv pzkskev av vdk a{fhkeck% Lccashleaiix) vdk pkvhvhles fhzkcvix svavk vdav vdk acv ln ’dlelzheg‟ das jkke pkznlzokf jx dhgd/zaebheg Lvvloae lffichais) k%g%= Jlsvaecıja ı aga b{iiazı {g{efk kzkn/h siao hik où k Jlsvaecıja ı où kzzkn li{p % % % $H was dle/ lzkf whvd Dlix Hsiao {efkz vdk g{hfaeck ln xl{z skz~aev) vdk clo/ oaefkz ln vdk Hopkzhai g{azfs(%>6
Vdav vdk cle~kzvs hefkkf fhf appkaz av vdk paiack hs hefhcavkf jx vdk nlzo{ia ln s{johsshle ’ xù} sùzùj s ùzùj gkifho ‟ $H caok vl z{j ox nack( wdhcd slokvhoks cilsks vdk kikokev ’fkciazavhle ln jkheg dlelzkf‟ k%g%= kzkn/h siaoik où kzz où kzzkn kn lioa lioabb hçùe hçùe xù xù}} sùz sùzùj ùj gki gkifh fho o % % % $H caok vl z{j ox nack Rhe vdk f{sv av xl{z nkkv_ Rvl pikaf_ vl jk dlelzkf whvd Dlix Hsiao Rhe Xl{z Pzkskeck_(%>;
Dlwk~kz) wk azk henlzokf nzlo vdk pkvhvhles vdav a{fhkecks lz ckz/ kolehks wkzk pkznlzokf elv leix he vdk paiack lz k~ke he vdk cap/
Skk Si >Y14) n% :) he wdhcd hv hs wzhvvke bkihok/h où kdafkvheh où kdafkvheh j{ b{iiazı vkibhe kvvh h kvvh h (% Skk aisl b h % % % $anvkz vdhs skz~aev ln xl{zs was va{gdv vdk wlzfs ln vdk adafkv [}{eçaz ıiı) Okzbk} ) :8% >3 1Y11107% >6 1AY;7:80% Acclzfheg vl [}{eçaz ıiı Okzbk} $Okzbk} ) :4() vdk Gzaef ^h}hkz aisl a{fh/ vhlekf ekw O{sihos% >; 1Y104>>% >:
BHS^K JADASH
1:;
hvai) j{v cl{if aisl vabk piack kiskwdkzk) nlz ktaopik) f{zheg a zlxai d{ev%>> Vdkzk azk pkvhvhles he wdhcd vdk ’fkciazavhle ln jkheg dlelzkf‟ hs vdk leix kikokev ln vdk ktplshvhle vl jk nl{ef% Vdkzknlzk) hv cae jk cleci{fkf vdav hv hs vdhs kikokev vdav clevahes vdk ksskeck ln vdk ktplshvhle aef vdav das a jkazheg le vdk okaeheg ln vdk lvdkz kikokevs% 6% Zkq{ksv Anvkz vdhs c{ioheavhle) sl vl spkab) he vdk ’fkciazavhle ln jkheg dle/ lzkf)‟ vdk ktplshvhle vabks a ekw v{ze) he wdhcd vdk pkvhvhlekz p{vs hevl wlzfs dhs acv{ai zkq{ksv% Vdhs was vdk pazv ln vdk pkvhvhle ln olsv hoplzvaeck vl vdk ekw O{siho% K~kzxvdheg {p vl vdhs plhev clesvhv{vkf) lek oax sax) a ’pzkaojik)‟ lz zavhleaih}avhle ln vdk zkq{ksv% 6%1% Lpkeheg% Hv was plhevkf l{v kazihkz vdav vdk pkvhvhles slokvhoks iacb aex ktpihchv zknkzkeck av vdk svazv ln vdk ktplshvhle vl vdk nacv vdav vdkx azk ln vdhs pazvhc{iaz cdaeckzx gkezk% He olsv casks) vdl{gd) wk kecl{evkz nlzo{ias vdav fkciazk vdk flc{okev vl jk a pkvhvhle av vdk jkgheeheg ln vdk zkq{ksv) k%g%= $ROx__ zkq zkq{ks {ksvv hs hs vdk vdk nl nliiiilwh lwheg eg % % %( Okzc{f{z bh % % % $ROx vdav % % %( Ehxa} li{e{z bh % % % $H pikaf vd pika ka hs vd vdkk nli nliil ilwh wheg eg % % %( Ehxa}ıoıefız bh % % % $Ox pi
Lccashleaiix) vdk nlzo{ia zhca li{e{z $H zkq{ksv( cae jk nl{ef av vdk kef ln vdk zkq{ksv%>7 Lvdkz ~azhavhles heci{fk vdk zkpkvhvhle ln slok ln vdk dlelzhfic vhviks ln vdk s{ivae) {skf av vdk jkgheeheg ln vdk pkvh/ vhle) k%g%= Okzadho/h êihxkikzhefke okzc{f{z bh % % % $ROx_ zkq{ksv nzlo vdk Okzchn{i Olsv Ol sv Dh Dhgd gd hs as nl nliiiilw lwss % % %(>4 lz Fk~ikvi ù s{ivaeıofa Fk~ikviù s{ivaeıofaee okzc{f{ okzc{f{zz bh % % % $ROx_ zkq{ksv nzlo ox Hii{svzhl{s S{iv S{ ivae ae hs as nl nliiiilw lwss % % %( %(%%>8
>> >7 >4 >8
Skk 1Y10417% LAB 7>Y;:) n% 30 aef EPVA TT 1Y:4) n% ;0% 1Y111112 EPVA TT 1Y:4 n% :>% EPVA TT 1Y:4) n% :>%
1:>
6%:% Ikgai gzl{efs nlz vdk zkq{ksv% Anvkz vdhs vzaeshvhle/hevzlf{cvhle) vdk pkvhvhlekz ktpiahes vdk gzl{efs nlz dhs,dkz zkq{ksv% Vdk jashc nlz/ o{ias wkzk svzhcvix vdzkk= afkv ù}kzk 70 $acclzfheg vl vdk c{svlo) pzac/ vhck() hvs sxelexo o{vaf ù}kzk )71 aef bae{e ù}kzk 7: $acclzfheg vl vdk pafh ad ù}kzk $acclzfheg vl vdk iaw s{ivaehc iaw() lz hvs ~azhaev bae{e/h pafh ad ln vdk Pafhsdad(% Vdk wlzf bafho $lif) aechkev( was lnvke affkf nlz kopdashs) k%g%= $acc cclz lzfh fheg eg vl vd vdkk lif lif c{ c{sv svlo lo % % %(%(%%73 O{vaf/h bafho ù}kzk % % % $a
Vdk elvhle ln hv jkheg a c{svlo vl oabk s{cd a zkq{ksv hs slok/ vhoks cle~kxkf fksczhpvh~kix) k%g%= Gkzh Gk zhch ch kx kxxa xaof ofae ae jk jkzù zù % % % $n $nzl zlo o li liff vh vhok okss % % %( %(%%76
Vdk nacv vdav vdk pkvhvhlekzs fhf elv ktpihchvix zknkz vl Hsiaohc iaw $ kzhav ( wdke m{svhnxheg vdkoski~ks hs a nacv ln pazvhc{iaz hoplzvaeck vl vdhs sv{fx% Vdk hopihcavhles ln vdhs ljskz~avhle) dlwk~kz) whii jk fknkzzkf vl vdk ektv cdapvkz% 6%3% Appkai nlz cdazhvx% Vdk ikgai gzl{efs nlz vdk zkq{ksv da~heg jkke ksvajihsdkf) vdk ekw O{siho wl{if da~k nkiv hv appzlpzhavk vl svavk dhs,dkz zkq{ksv% Dlwk~kz) vdk zkq{ksv hs oafk aiwaxs vl appkaz as s{jmkcv vl vdk pkzsleai fhsczkvhle ln vdk s{ivae% Nlz vdhs zkasle) hv hs pzkskevkf he vdk nlzo ln ae appkai vl vdk bhefekss aef gkekzlshvx ln vdk iavvkz as ae Hsiaohc z{ikz) wdl was vzafhvhleaiix pkzckh~kf as ljihgkf vl pzl~hfk cdazhvx vl vdk pllz% Spkchai nlzo{ias cle~kxkf vdav elvhle% H fkfiek vdksk nlzo{ias as vdk ektv skoaevhc skcvhle he vdk svz{cv{zk ln vdk ktplshvhle% Aivdl{gd vdk ’appkai nlz cdazhvx‟ skcvhle nliilws vdk wlzfheg ln vdk zkq{ksv hvskin) gzaooavhcaiix) vdk iavvkz hs vdk ljmkcv ln vdk ’appkai nlz cdazhvx%‟ Vd{s) H fief hv olzk appzlpzhavk vl fhsc{ss hv jknlzk affzkssheg oxskin vl vdk svz{cv{zk ln vdk zkq{ksv hvskin% Vdk nlzo{ias {skf he vdhs kikokev azk clopzhskf ln ~kzj pdzasks) wdhcd cleshsv ln clojheavhles ln vdk Azajhc ~kzjai el{es oksz{z
Skk 1Y10417) n% 6) >) 7) :0) :1) :: aef :6% Skk 1Y10417) n% ;) 8) 1>2 1Y104:82 EPVA TT 1Y:4 n% 10% 7: Skk 1Y10747) n% 1) :2 1Y10417) n% 112 CG 36Y:) n% :) 3) >2 EPVA TT 1Y:4) n% :3% 73 1Y10417% 76 1AY;7:80% 70 71
BHS^K JADASH
1:7
$oafk giaf) zkmlhckf( lz hdsae $jkheg gllf) n{ifiiiheg lek‘s f{vx vl Glf) acvheg bhefix) jkekfickevix( aef vdk passh~k ~lhck ln vdk V{zbhsd ~kzjai hefiehvh~ks j{x{z{ioab $vl jk lzfkzkf) fkczkkf( aef li{eoab $vl jk flek vl) whvd) jx(% Vdk clojheavhles hdsae j{x{z{ioab,li{eoab $oax $o ax xl{ xl{ bhefi bhefixx lzfkz lzfkz,f ,fll % % %(%()) lz vdk vdk ~azhav ~azhavhle hle safaba ~k hdsae j{x{/ z{ioab $oax xl{ lzfkz bhefix aef cdazhvajix() 7; aef oksz{z j{x{z{ioab $oax xl{ lzfkz Rvdav H jk oafk_ giaf Rjx_( 7> azk vdk leks olsv lnvke kecl{evkzkf% Lccashleaiix) wk fief vdk ’appkai nlz cdazhvx‟ elvhle cle~kxkf leix jx vdk olzk cliilq{hai ~kzj ~kzhiokb $vl jk gh~ke(%77 6%6% Nlzo{iavhle ln vdk zkq{ksv% As he vdk cask ln vdk ’zkasles nlz cle/ ~kzshle‟ kikokev $skk :% ajl~k() vdk ’nlzo{iavhle ln vdk zkq{ksv‟ hs fhffic{iv vl sxsvkoavh}k% Fksphvk vdk l~kzaii fh~kzshvx ln vdk zkq{ksvs) olsv lnvke vdkx shopix clevahe vdk wlzfs bhs~k $cilvdks( lz safaba $cdazhvx) fleavhle() lz pdzasks clevaheheg vdksk wlzfs) k%g%) bhs~k jadası $casd ~ai{k ln cilvdks( aef bhs~k ~k safaba $cilvdks aef Rcasd_ fleavhle(% Vxphcai zkefkzhegs ln vdk vwl kikokevs‖vdk ’appkai nlz cdazhvx‟ aef vdk ’nlzo{iavhle ln vdk zkq{ksv‟‖azk= Bhs~k R~k_ safaba ~k$shc%( hdsae j{x{z{ioab $Oax xl{ bhefix lzfkz Rvdav H jk gh~ke_ cilvdks aef a fleavhle Rhe casd_()74 lz Bhs~koh} hdsae li{eoab $Oax xl{ bhefix lzfkz Rvdav H jk gh~ke_ vdk jkekfiv ln ox cilvdks()78 lz Bhs~k jadasıo hdsae j{x{z{i{p $Oax xl{ bhefix lzfkz vdav H jk gh~ke Rvdk casd_ ~ai{k ln ox cilvdks(%40
Aivdl{gd vdk pzkskev cdapvkz fhsc{ssks leix vdk svz{cv{zk ln vdk flc/ {okevs) as he vdk cask ln vdk nlzo{ia ’dlelzkf whvd Hsiao)‟ vdk vkzos bhs~k aef bhs~k jadası zkq{hzk slok ciazhficavhle% Acclzfheg vl Hsiaohc iaw) ele/O{sihos wkzk s{pplskf vl wkaz fhsvhecvh~k cilvdks% Vdkzknlzk) wdke a ele/O{siho cdaegkf dhs zkihghl{s affiihavhle aef acckpvkf Hsiao) dk,sdk was ktpkcvkf vl cdaegk dhs cilvdheg nlz ekw) O{siho avvhzk) as a shge ln jkilegheg vl Hsiao% Vdk ’cilvdks‟ lz vdk ’casd ~ai{k ln cilvdks‟ vdav vdk ekw/O{siho pkvhvhlekzs asphzkf vl
7; 7> 77 74 78 40
Skk nlz ktaopik 1Y10417 n% 1: aef 1;2 1Y11076% Skk nlz ktaopik LAB 7>Y;: n% ;2 1AY;7:80% Skk 1Y10417 n% 11% Hjhf%) n% 1:% Hjhf%) n% :1% 1AY;7318) n% >%
1:4
cleshsvkf he vdhs ekw avvhzk lz hvs casd kq{h~aikev% He lvdkz wlzfs) vdk pkvhvhlekzs zkq{ksvkf vdav vdk svavk s{ppix vdk cilvdks lz pax nlz vdk ktpkesk ln ljvaheheg vdko%41 Vdhs cleci{shle hs clefizokf jx vdk nlzo{ia vazan/h ohzhfke bhs~k hdsae j{x{z{ioab $oax xl{ bhefix lzfkz Rvdav H jk s{ppihkf whvd_ cilvdks jx vdk svavk() wdhcd wk fief he slok pkvhvhles% Nzkq{kevix) vdk wlzf ’ bhs~k ‟ was q{aihfikf jx vdk pdzask jhz bav $lek skv() h%k%) jhz bav bhs~k $lek skv ln cilvdks(% H da~k fkchfkf vl avvzhj{vk vdk vkzo ’bhs~k jadası pkvhvhles‟ vl flc/ {okevs ln vdhs slzv pzkchskix jkca{sk vdk ajl~k zkq{ksv hs kecl{e/ vkzkf sl lnvke he vdk pkvhvhles% Vdk vkzos bhs~k aef bh bhss~k jadası azk aisl {skf he~azhajix he vdk hesczhpvhles he vdk oazghes ln vdk flc{/ okev%4: Hv shopix jkvvkz zkkcvs vdk spkchfic eav{zk ln vdksk pkvhvhles% Sheck q{ksvhles s{cd as vdk lzhghe ln vdhs pzacvhck aef vdk pzhck aef okvdlfs ln paxokev ln bhs~k jadası ) kvc%) whii jk vdk s{jmkcv ln fhs/ c{sshle he vdk nliilwheg cdapvkzs) H whii v{ze ox avvkevhle vl lvdkz slzvs ln zkq{ksvs oafk jx ekw O{sihos% Aelvdkz vxpk ln zkq{ksv was ktpzksskf jx vdk wlzf ’ çızab,çkza ‟43 $appzkevhck) el~hck) lek wdl dlifs ae lffick lz applhevokev vdzl{gd vdk eloheavhle ln aelvdkz(% He lvdkz wlzfs) vdhs vxpk ln pkvhvhle wkev jkxlef vdk shopik zkq{ksv vl jk gzaevkf vdk cilvdheg appzl/ pzhavk vl O{sihos% Hvs ljmkcv was vl ljvahe nlz vdk pkvhvhlekz a plsh/ vhle he vdk skz~hck ln vdk svavk% He olsv casks) vdk pkvhvhle k~ke spkchfiks vdk bhef ln plshvhle fkshzkf) k%g%= Ckjkdaek lca ıea lca ıea çızab j{x{z{i{p $Oax xl{ lzfkz vdav H jk applhevkf vl vdk clzps ln vdk azskeai()46 lz Xkehçkzh lca ıea lca ıea çızab j{x{z{i{p $Oax xl{ lzfkz vdav H jk applhevkf vl vdk Maehssazx clzps(%4;
Wdkzk vdk plshvhle hs elv spkch fikf) hv cae jk fksczhjkf he gkekzai vkzos) k%g%= Jhz fhzihb hik çıza çıza ıı j{x{z{ioab $Oax xl{ lzfkz vdav H jk applhevkf vl ae lffick Rgh~heg ok_ a ih~kihdllf(%4> Hv whii jkclok k~hfkev iavkz vdav vdk svavk pzknkzzkf vdk skclef lpvhle) h%k%) vl pax nlz vdk cilvdks% 4: Skk jkilw% 43 Çkza hs vdk Pkzshae nlzo ln vdk wlzf% H da~k kecl{evkzkf jlvd nlzos {skf he vdk pkvhvhles% 46 EPVA TT 1Y:4) n% :3% 4; 1AY;7318) n% 33% 4> 11:Y>6>4% 41
BHS^K JADASH
1:8
Wk fief ~kzx lnvke vdk nlzo{ia jhz eae paza hik $ihvkzaiix) olekx nlz jzkaf( {skf he fksczhjheg vdk fkshzkf plshvhle) k%g%= Shpadh lca lca ıefa ıefa jhz eae paza hik çıza li{eoab $vl jk applhevkf vl vdk shpadh clzps vl oabk ox ih~heg(% 47
Slok lvdkz vkzos nl{ef he clojheavhle whvd çıza azk }ùozk $ciass) gzl{p( aef knz{dvk lz zù zù ke ke $keihgdvkekf) jzhgdv() k%g%= Çıza ı knz{nvk }ùozkshek hidab j{x{z{iasıe $Oax xl{ lzfkz vdav H jk applhevkf Çıza ı vl vdk gzl{p ln xl{z keihgdvkekf skz~aevs(%44
Hv was aisl plsshjik nlz vdk pkvhvhlekz vl clojhek vdk vwl vxpks ln zkq{ksv jx asbheg nlz vdk cilvdheg appzlpzhavk vl vdk pazvhc{iaz plsh/ vhle) k%g%= Jlsvaecı bhs~ko hdsae j{x{z{ioab $Oax xl{ lzfkz vdav H jk gh~ke vdk {eh/ nlzo ln paiack g{azf()48 lz Xkehçkzh lca ıefa lca ıefa çıza ı çıza ı ~k ~k % % % xkeh xkehçkz çkzhh bhs~ bhs~ksh ksh hds hdsae ae j{x j{x{z{ {z{ioa ioab b $Oax xl{ lzfkz bhefix vdav H jk applhevkf vl vdk Maehssazx clzps aef gh~ke a Maehssazx {ehnlzo(%80
^azhavhles ln vdhs nlzo{ia heci{fk vdk affhvhle ln vdk pdzask j{ b{iiazıea $vl vdhs skz~aev ln xl{zs( vl vdk wlzfheg ln vdk zkq{ksv he lzfkz vl oabk hv olzk pkzsleai% Vdk bh bhs~ s~kk ja jada dası sı pkvhvhles azk elv ihohvkf leix vl zkq{ksvs nlz ’cilvd/ heg‟ lz ’plshvhle%‟ Wk fief) nlz ktaopik) zkq{ksvs nlz olekx nlz a flwzx)81 a pkeshle)8: a sl{zck ln heclok nzlo svavk c{svlos) 83 vdk cdaeck vl jk chzc{ochskf aileg whvd vdk pzheck)86 kvc% Dlwk~kz) vdksk wkzk olzk fhffic{iv vl ktpzkss he nlzo{ias aef vd{s) whii elv jk fhs/ c{sskf he fkvahi dkzk% ;% Acb Acbelwi elwikfg kfgokev okev ln lek‘s lek‘s hen henkzhl kzhlzhv zhvxx Vdk plwkz ln vdk s{ivae aef vdk heshgeh ficaeck ln vdk pkvhvhlekz wkzk acbelwikfgkf leck agahe anvkz vdk zkq{ksv was wzhvvke flwe% Vdk
47 44 48 80 81 8: 83 86
CG 36Y:) n% 6% 1AY>404% 1Y11078% CG 36Y:) n% >% LAB 170Y31% EPVA TT 1Y:4) n% :% SI >Y14) n% 6% 1AY;7:>;%
130
nlzo{ias ktpzkssheg vdhs acbelwikfgokev azk vxphcai ln aii bhefs ln pkvhvhles aef zkplzvs ln l ffichais asbheg vdk s{ivae nlz a fkchshle% Vdkhz p{zplsk was vl kopdash}k vdk henkzhlzhvx ln vdk pkzsle s{johvvheg vdk flc{okev aef vdk plwkz ln vdk s{ivae) vdk leix lek da~heg vdk capachvx vl pzlel{eck le vdk hss{k) k%g%= Jabh koz/ù nkzoae s{ivaeıoıefız $Vdk zksv hs Riknv_ vl vdk fkczkk ln ox S{ivae() lz Jajıefa nkzoae/ı saafkviù s{ivaeıo da}zkvikzhefhz $He vdhs zkgazf) vdk fkczkk hs {p vl xl{z Oamksvx) ox Hii{svzhl{s S{ivae(% 8;
Agahe) hv sdl{if jk plhevkf l{v vdav vdksk nlzo{ias cae jk {skf he pkvhvhles vl dhgd/zaebheg lffichais aef elv leix vl vdk s{ivae% HHH% Nheai Pzlvlcli 1% Shgeav{zk Vdk shgeav{zk hs vdk iasv kikokev he vdk svz{cv{zk ln bhs~k jadası pkvh/ vhles% Hv hs {s{aiix cleshfkzkf pazv ln vdk fieai pzlvlcli% Dlwk~kz) he vdk gkekzai cloplshvhle ln vdksk pkvhvhles) vdk shgeav{zk hs skoaevh/ caiix ae kikokev ln vdk hfkevhficavhle ln vdk pkvhvhlekz aef as s{cd ekkfs vl jk fhsc{sskf he zkiavhle vl vdk ktplshvhle% Hv was elvkf ajl~k vdav vdk eaok ln vdk pkvhvhlekz was ek~kz okevhlekf he vdk ktplshvhle aef acv{aiix skiflo okevhlekf aexwdkzk he vdk flc{/ okev $skk HH%1% ajl~k(% Hn pzkskev) hv leix k~kz appkazs jkilw vdk vktv) he vdk shgeav{zk% [s{aiix) hv hs vdk ekwix ass{okf O{siho eaok aef leix lccashleaiix vdk eaok gh~ke av jhzvd% 8> Vdhs ekw hfkevhvx ln vdk pkvhvhlekz hefhcavkf jx dhs,dkz O{siho eaok hs he svazb cle/ vzasv vl vdk jkgheeheg ln vdk flc{okev wdkzk dk,sdk hs aiwaxs hfkevhfikf as ele/O{siho% Wdkzk vdk eaok hs elv okevhlekf he vdk shgeav{zk) vdk iavvkz sho/ pix cleshsvs ln vdk wlzf ’ jkefk ‟ $xl{z skz~aev( lz vdk olzk spkch fic pdzask ’jkefk/h ek~ oùsiho ‟ $xl{z skz~aev) vdk ekw O{siho(% H s{zohsk vdav vdk pkvhvhlekzs wdl shgekf vdk pkvhvhle {sheg vdk ajl~k nlzo{ias) daf elv xkv zkckh~kf a O{siho eaok% S{cd a eaok wl{if jk gh~ke
8; 8>
EPVA TT 1Y:4) n% :% Skk 1Y1104:) 1AY;7:>;%
BHS^K JADASH
131
vl vdko av vdk zlxai a{fhkeck%87 Lccashleaiix) a pkvhvhlekz wl{if shge dhs Cdzhsvhae eaok nlz iacb ln aex lvdkz% 84 : % F avk Vdk favk ln a flc{okev‘s wzhvheg hs elzoaiix pzkskev he Lvvloae flc{okevs as pazv ln vdk fieai pzlvlcli% He bh bhs~ s~kk ja jada dası sı pkvhvhles) dlw/ k~kz) hv hs he~azhajix iacbheg% Ek~kzvdkikss) vdk appzlthoavk favk ln wzhvheg cae jk fkvkzohekf jx vdk favks ln vdk hesczhpvhles kevkzkf le vdk oazghes ln vdk flc{okev $skk jkilw(% H^% Hesczhpvhles Vdk lffichais‘ keflzskokevs aef lvdkz oazgheai aeelvavhles hesczhjkf le flc{okevs anvkz vdkhz hss{aeck zazkix zkckh~k aex avvkevhle he s{z/ ~kxs ln Lvvloae fhpiloavhcs)88 aef) cleskq{kevix) he vdk aeaixshs ln Lvvloae flc{okevs% Dlwk~kz) vdkx cae jk ~kzx hoplzvaev nlz ciaz/ hnxheg aef {efkzsvaefheg vdk henlzoavhle gh~ke he vdk vktv ln a flc/ {okev) kspkchaiix sl he vdk cask ln bhs~k jadası pkvhvhles% Vd{s) H jkihk~k) a fkvahikf fhsc{sshle ln vdk hesczhpvhles hs ksskevhai vl ae acc{zavk svz{cv{zai aeaixshs ln vdksk flc{okevs% Vdk hesczhpvhles he bhs~k jadası pkvhvhles wkzk {s{aiix= 1( keflzskokevs jx vdk Gzaef ^h}hkz2 :( keflzskokev jx vdk Nheaeck ohehsvkz $ ja (2 aef 3( ja fknvkzfaz fknvkzfaz aeelvavhles oafk he vdk Ckevzai Accl{evheg Fkpazvokev $ja (% ja o{daskjk o{daskjk 1% Kef Keflz lzsk skoke okevv ln vdk vdk Gzaef Gzaef ^h}h ^h}hkz kz Vdhs was {s{aiix vdk fizsv keflzskokev piackf le vdk pkvhvhle% Hv was ktkc{vkf he vdk cdaeckzx ln vdk Gzaef ^h}hkz aef piackf le vdk jiaeb) vlp plzvhle ln vdk flc{okev) m{sv jkilw vdk dù~k % He ksskeck) vdk keflzskokev was ae lzfkz vl vdk ja ja fknvkzfaz fknvkzfaz lz dhs fkp{vx $fkn/ (100 vl pax vdk pkvhvhlekz vdk casd kq{h~aikev ln O{siho vkzfaz ~kbhih avvhzk $bhs~k jadası () zkgazfikss ln vdk zkq{ksv he vdk pkvhvhle% He lvdkz wlzfs) vdk p{zplsk ln vdk Gzaef ^h}hkz‘s keflzskokev was vl svazv
87
Skk [}{eçaz ıiı) Okzbk} ) :4% Skk 1AY;7:>;% 88 A elvajik ktckpvhle hs vdk wlzb ln A% ^kibl~% Skk ^kibl~) ^hfl~k ) aef hfko) ’Flpaiehvkieh ~phs~aehxa ~azd{ lsoaesbhvk fieaesl~h flb{okevh lv T^H fl T^HHH ~%= Fhpiloavhbl/paiklgzansbl pzl{cd~aek RHesczhpvhles le Lvvloae Nheaechai Flc{okevs nzlo vdk Shtvkkevd vl Khgdvkkevd Ckev{zhks= A Fhpiloavhcl/paiklgzapdhcai Fhpiloavhcl/paiklgzapdhcai Sv{fx_)‟ HEJBO ) 16 $187>() 43–160% 100 Skk 1Y10417 n% 6–:;% 84
13:
vdk afohehsvzavh~k pzlckf{zk ln aiilcavheg aef fkih~kzheg vl vdk ekw O{siho vdk n{efs nlz a ekw skv ln cilvdks nzlo vdk svavk vzkas{zx% Vdk jashc nlzo ln vdk keflzskokev was= O{vaf,bae{e ù}kzk jhz eknkzk bhs~k,bhs~k jadası ~hzhiokb,~hzhik fhxù $Gh~k vl vdk Ranlzkokevhlekf_ pkzsle vdk casd kq{h~aikev ln vdk cilvdks acclzf/ heg vl vdk iaw,c{svlo(%
Wk fief aisl ktpaefkf ~kzshles ln vdk keflzskokev) wdhcd heci{fk slok fkvahis nzlo vdk pkvhvhle) k%g%= Ok}j{z d{}{z/h d{oaxùe kzkn/h siao oùskzzkn lioa ia lioa ia o{vaf ù}kzk bhs~ksh ~hz/ hik fhxù $RSheck_ vdk anlzkokevhlekf das jkke dlelzkf whvd Dlix Hsiao he vdk Hopkzhai Pzkskeck) gh~k dho Rvdk casd kq{h~aikev ln _ vdk cilvdks acclzfheg vl c{svlo(%101
Slok ~azhavhles le vdk ajl~k nlzo{ias heci{fk vdk {sk ln vdk wlzf o{va vaf, f,ba bae{ e{ee ù} ù}kz kzk k %10: Vdk wlzf ’o{chjheck ‟ $acclzfhegix() he piack ln o{ ’afkv ‟ ek~kz appkazs dkzk as a sxelexo ln vdk iavvkz pahz) fksphvk s{cd {sagk he vdk pkvhvhle hvskin $skk HH%6%:(% Vdk hopkzsleai ktpzks/ shle ’jhz eknkz ‟ $a pkzsle,hefh~hf{ai( hs slokvhoks zkpiackf jx ek~ oùsiho/h ok}j{z $vdk anlzkokevhlekf ekw O{siho(%103 Vdk keflzsk/ okev oax aisl svazv whvd a sai{vavhle vl vdk ja ja fknvkzfaz fknvkzfaz ) k%g%= eaxkviù ja fk ja fknv nvkz kzfa fazz kn knke kefh fh % % % $Gzachl{s ja ja fknvkzfaz fknvkzfaz ) Shz(%106
Vdk sai{vavhle hs elv heci{fkf he olsv ln vdk Gzaef ^h}hkzai keflzsk/ okevs) dlwk~kz) pack ^kibl~‘s lphehle vl vdk clevzazx%10; Lvdkz henlzoavhle lnvke heci{fkf he vdk keflzskokev hs vdk aol{ev ln olekx paxajik vl vdk pkvhvhlekz lz vdk vxpk ln cilvdheg vl jk hss{kf%10> S{cd affhvhleai henlzoavhle hs {s{aiix nl{ef he casks wdke vdk paxokev lz vdk skv ln cilvdks was olzk gkekzl{s vdae {s{ai% He s{cd ae k~kev) vdk Gzaef ^h}hkz ohgdv k~ke da~k gh~ke ae ktpia/ eavhle nlz vdhs gkekzlshvx he dhs keflzskokev% 107 Keflzskokevs ln vdhs vxpk azk) cleskq{kevix) ilegkz) aef slokvhoks vabk {p vdk wdlik jiaeb spack ajl~k vdk pkvhvhle%104 S{cd ktvkefkf keflzskokevs azk 101 10: 103 106 10; 10> 107 104
Skk 1Y10417) n% 6–:;% Skk 1Y3;>;) n% 1% 1Y108:1) n% 1% 1Y108:3) CG 36Y:) n% 7% ^kibl~) ’^phs~aehxa)‟ 44% Skk nlz ktaopik 1Y111072 EPVA TT 1Y:4 n% :>2 1Y104>>% Skk EPVA TT 1Y:4 n% :2 1Y11107% Skk EPVA TT 1Y:4 n% :%
BHS^K JADASH
133
~ai{ajik vl {s he vdav) wdkek~kz vdk keflzskokev spkch fiks vdk vxpk ln cilvdheg vl jk gh~ke lz pahf vl vdk pkvhvhlekz) k%g%) xkehçkzh bhs~ksh ) wk cae fkvkzohek wdavk~kz acvhle was vabke he zkgazf vl a zkq{ksv nlz ae applhevokev%108 As a z{ik) vdk wlzf ’sadd‟ $clzzkcv() wdhcd kt/ pzksskf vdk agzkkokev ln vdk Gzaef ^h}hkz whvd vdk keflzskokev) hs nl{ef ajl~k vdk iavvkz% Vdk sadd was wzhvvke jx vdk Gzaef ^h}hkz‘s lwe daef lz av ikasv he dhs pzkskeck%110 Vdk keflzsk/ okev ln vdk Gzaef ^h}hkz was aiwaxs clopikvkf 111 Gzaef ^h}hkz‘s sadd jx vdk wlzf ’j{x{z{iv{‟ $vdhs hs ox clooaef( wzhvvke jkilw vdk keflzskokev% Jlvd vdk sadd aef vdk j{x{z{iv{ daf k~li~kf gzapdhcaiix hevl sxojlis he vdk cdaeckzx pzacvhck% Vdk cdazacvkzhsvhc nkav{zk ln vdk sadd was vdav vdk ilwkz pazv ln vdk ikvvkz ’dk‟ was wzhvvke whvd a sdazp svzlbk) hesvkaf ln a zl{efkf lek) aef ktvkefkf whvd a swkkpheg c{z~k) wdhcd czlsskf vdk wlzf nzlo zhgdv vl iknv plhevheg {pwazfs% Vdk j{x{/ z{iv{ was wzhvvke as shopik sphzai) whfkz av vdk jlvvlo aef kefheg agahe whvd a c{z~k plhevheg J{x{z{iv{ {pwazfs% Vdk Gzaef ^h}hkz‘s keflzskokevs wkzk {s{aiix favkf% Sheck vdk pkvhvhle hvskin was elv) vdk favk nl{ef jkilw vdk keflzskokev ln vdk Gzaef ^h}hkz hs {s{aiix vdk cilsksv wk cae clok vl vdk lzhgheai wzhv/ heg ln vdk flc{okev $vdk lvdkz keflzskokevs wkzk favkf as wkii(% He ox lphehle) vdhs sdl{if jk vdk favk {skf nlz favheg vdk flc{okev% :% Nhea Nheaii keflz keflzskok skokev ev ln ln vdk vdk Gzaef Gzaef ^h} ^h}hkz hkz Henzkq{kevix) pkvhvhles wkzk zkv{zekf vl vdk lffick ln vdk Gzaef ^h}hkz whvd a vkidhs 11: $zkplzv) okol( nzlo vdk ja ja fknvkzfaz fknvkzfaz $skk jkilw(% He Skk nlz ktaopik 1Y10841) n% ;% Skk [}{eçaz ıiı) Okzbk} ) 13>% 111 Jlvd Nkbkvk aef [}{eçaz ıiı dlif vdk lphehle vdav j{x{z{iv{ hs vdk pasv vkesk) 3zf pkzsle) sheg{iaz) passh~k ~lhck ln vdk ~kzj j{x{zoab 2 skk I% Nkbkvk) Khenùdz{eg he fhk lsoaehscd/vùzbhscdk Fhpiloavhb fkz vùzbhscdke Jlvoæsshgbkhv he [egaze ) $J{fapksv) 18:>() IH^) aef [}{eçaz ıiı) ’J{xz{ifı)‟ Jkiikvke) ; $1861() :48% Ekfbl~‘s lphehle hs vdav j{x{z{iv{ hs a ~kzjai el{e nzlo vdk ~kzj j{x{z{ioab whvd vdk affit /vı ) as he gùzùivù 2 skk Ekfbl~) Fhpiloavhba ) 1;6=e;;% 11: Nlz vdk vkidhs skk S% Nazlqdh) Fhk ^l ^lzia ziagke gke2 P% Nlflz) ’Vkidhs‟2 ^kibl~) ’^phs~aehxa)‟ 1:1–1:;2 Ekfbl~) Fhpilovhba ) 16;–16>% ^kibl~ hs vdk leix lek vl fhsc{ss vdk vkidhs ja fknvkzfaz fknvkzfaz % ln vdk ja 108 110
136
s{cd pkvhvhles) a skclef) fieai keflzskokev ln vdk Gzaef ^h}hkz was hesczhjkf) lzfkzheg vdav vdk pkvhvhle jk keacvkf acclzfheg vl vdk vkidhs ) k%g%= Vkidhs o{chjheck vk}bkzksh ~kzhiokb $Gh~k a olekx lzfkz acclzfheg vl vdk vkidhs (%113
Vdk fieai keflzskokevs ln vdk Gzaef ^h}hkz wkzk zknkzzkf vl as nkz/ oae/h êih $Hopkzhai kfhcv( he vdk Lvvloae cdaeckzx pzacvhck% 116 Vdkx wkzk aisl clopikvkf whvd sadd aef j{x{z{iv{) aef favkf% 3% Ke Keflz flzsk skok okev ev ln vd vdkk ja fknvkzfaz Anvkz vdk keflzskokev ln vdk Gzaef ^h}hkz was piackf le vdk flc/ {okev) vdk pkvhvhle was skev vl vdk lffick ln vdk ja ja fknvkzfaz fknvkzfaz ) wdl {ivh/ oavkix ga~k lzfkzs le fieaechai oavvkzs% He vdk lffick ln vdk ja ja fknvkzfaz fknvkzfaz ) vdk pkvhvhle was shopix fhzkcvkf vl vdk Ckevzai Accl{evheg Fkpazvokev $ja ( jkazheg vdk vdk keflzskokev= keflzskokev= vk}bkzksh ~hzhik $hss{k,gh~k a vk}bkzk ja o{daskjk o{daskjk Rnlzz vdk cilv Rnl cilvdks_ dks_(%(% Vdk Vdk vkzo vkzo ’vk}bkzk ‟ hs sdlzvdaef nlz ’ vk}bkzk/h da}hek )‟ )‟ wdhcd he Lvvloae cdaeckzx pzacvhck was {skf vl fkelvk khvdkz a flc{okev vdav cl{if jk ktcdaegkf nlz casd paxajik jx vdk svavk vzkas{zx lz a flc{okev nlz accl{evheg olekx as heclok/ktpkefh/ ja fknvkzfaz fknvkzfaz a{vdl/ v{zk $hzaf ~k oaszan (% (%11; P{v he olfkze vkzos) vdk ja zh}kf vdk hss{k ln a Vzkas{zx jhii vl vdk pkvhvhlekz% Vdk iavvkz cl{if vdke casd hv av vdk l ffick ln vdk svavk vzkas{zx lz vdzl{gd a olekx/ cdaegkz wdl) he v{ze) wl{if ciaho vdk olekx nzlo vdk svavk% Leck vdk olekx lzfkz was casdkf) hv was skev vl vdk fkpazvokev belwe as z{}eaoçk/h k~~ki $aisl caiikf z{}eaoçk/h d{oaxùe () wdkzk hv was agahe caic{iavkf) zkghsvkzkf aef pzkskz~kf%11> Lccashleaiix) s{cd as wdke vdk Gzaef ^h}hkz daf lzfkzkf a olzk gkekzl{s vdae {s{ai skv ln cilvdks vl jk pahf,gh~ke vl a ekw O{siho) vdk ja ja fknvkzfaz fknvkzfaz cl{if zkq{ksv nzlo vdk ja ja o{daskjk o{daskjk vdav ae ksvhoavk jk pzkpazkf nlz vdk ~ai{k ln vdk cilvdks% Vdhs zkq{ksv cl{if jk wlzfkf as nliilws= Oùbkooki bhs~k jadası ja ja o{daskjk‘fke o{daskjk‘fke dksaj li{e{z $Vdk ~ai{k ln a clo/ ja o{daskjk o{daskjk pikvk skv ln cilvdks vl jk caic{iavkf jx vdk ja ()117 lz
113 116 11; 11> 117
EPVA TT 1Y:4) n% :>% ^kibl~) ’^phs~aehxa)‟ 1:4% Skk hjhf%) 88–100) aef hfko) ^hfl~k ) :7:% Hjhf% 1Y110;>%
BHS^K JADASH
13;
Oùbkooki bhs~kehe o{baffkzhsh o {baffkzhsh fkz bkeaz $RGh~k_ ae ksvhoavk nlz Rvdk ~ai{k ln _ a clopikvk skv ln cilvdks cilvdks he vdk oazghe Rln vdk flc{okev_(% flc{okev_(%114
Anvkz vdk ksvhoavk daf jkke zkckh~kf) vdk ja ja fknvkzfaz fknvkzfaz wl{if wzhvk a skclef keflzskokev a{vdlzh}heg vdk hss{aeck ln a Vzkas{zx jhii) j{v elw spkchnxheg vdk aol{ev vl jk spkev) k%g%= Fkz bkeaz o{chjheck hbh eknkzk oùbkooki oùbko oki bhs~k jadası hçùe kiih g{z{ vk}bkzksh ~hz/ hik $Hss{k a olekx lzfkz ln finvx g{z{ vl vdk vwl Ranlzkokevhlekf_ hefh/ ~hf{ais nlz a clopikvk skv ln cilvdks acclzfheg vl Rvdk ksvhoavk le_ vdk oazghe Rln vdk flc{okev_(%118
He ktckpvhleai shv{avhles) vdk ja ja o{daskjk o{daskjk cl{if zkq{ksv) wzhvheg agahe le vdk oazghes ln vdk pkvhvhle) ae Hopkzhai lzfkz $ nkzoae/h êih ( sl vdav vdk Vzkas{zx jhii cl{if jk hss{kf% S{cd a pkvhvhle was vdke zkv{zekf vl vdk lffick ln vdk ja ja fknvkzfaz fknvkzfaz wdl wl{if wzhvk a vkidhs le vdk oazghe) asbheg vdk Gzaef ^h}hkz nlz ae Hopkzhai lzfkz $skk H^%:% ajl~k( vl vdk ja ja o{daskjk o{daskjk %1:0 Vdk vkidhs was shgekf whvd vdk l~ai shgeav{zk ln vdk ja ja fknvkzfaz fknvkzfaz $vlpi{ca (% Vdk iavvkz‘s {sk hs a shge vdav vdk vkidhs ho}a Vlpi{ca ho}a was wzhvvke jx vdk ja ja fknvkzfaz fknvkzfaz dhoskin aef elv jx vdk Gzaef ^h}hkz‘s skczkvazx $vkidhsçh (%1:1 H fhf elv kecl{evkz vdk ja fknvkzfaz fknvkzfaz $b{xz{bi{ ho}a sl/caiikf ’vahi‟ shgeav{zk ln vdk ja (1:: he bhs~k jadası pkvhvhles) a nacv vdav clefizos ^kibl~‘s ljskz~avhle vdav vdk iavvkz shgeav{zk was elv {skf he vdk sdlzv vkidhs ks) ks) fhzkcvkf vl vdk Gzaef ^h}hkz%1:3 Wdke vdk flc{okev was zkv{zekf vl vdk l ffick ln vdk ja ja fknvkzfaz fknvkzfaz whvd vdk fieai keflzskokev ln vdk Gzaef ^h}hkz lzfkzheg vdk hss{k ln a Vzkas{zx jhii $skk ajl~k() vdk ja ja fknvkzfaz fknvkzfaz wl{if wzhvk vdk wlzf ’sadd‟ {efkz vdk Gzaef ^h}hkz‘s j{x{z{iv{% Vdkzk hs a fhff kzkeck) kzkeck) dlwk~kz) jkvwkke vdk ‘s sadd aef vdk Gzaef ^h}hkz‘s sadd% ja fknvkzfaz ja fknvkzfaz ‘s Ja fknvkzfaz‘s Ja fknvkzfaz‘s sadd He vdk nlzokz) vdk swkkpheg c{z~k ln vdk ikvvkz 114
1AY>404% 1Y110;>% 1:0 Skk 1AY;7318) n% 12 EPVA TT 1Y:4 n% :>% 1:1 ^kibl~) ’^phs~aehxa)‟ 1:3–1:6% 1:: Nlz vdk b{ b{xz xz{b {bi{ i{ ho ho}a }a skk ^kibl~) ’Lpasdavhxa plfphs ea jasdfknvkzfazhvk ~ lsoaesbava hopkzha pzk} T^H–T^HHH ~%)‟ HEJBO ) 1> $1841() 143–:112 [}{eçaz ıiı) Okzbk} ) 3:8 aef O% ]% Pabaiıe) Lsoaeiı Vazhd Fkxhoikzh ~k Vkzhoikzh Sþ}iù ù Sþ}iù ù ) ~li% : b{xz xz{b {bi{ i{ ho ho}a }a as b{ b{xz xz{b {bi{ i{ j{ j{x{ x{z{ z{iv{ iv{% $Hsvaej{i) 18;1() 333% Vdk iavvkz zknkzs vl vdk b{ 1:3 Hjhf%) 143=e3% 118
13>
’dk‟ plhevs flwewazfs) he a nasdhle shohiaz vl vdk bl blxz xz{b {bi{ i{ ho ho}a }a % Vdk ‘s sadd hs aisl belwe as vdk bùçùb sadd $soaii sadd (% (% Vdk ja fknvkzfaz ja fknvkzfaz ‘s keflzskokevs ln vdk ja ja fknvkzfaz fknvkzfaz oax aisl jk favkf2 dlwk~kz) olzk lnvke vdae elv vdhs hs elv vdk cask% 6% Ae Aeel elva vavh vhle le ln ln vdk vdk ja ja o{daskjk A elvk nzlo vdk lffick ln vdk ja ja o{daskjk o{daskjk hs zazkix ohssheg nzlo bhs~k jadası pkvhvhles%1:6 Vdk lffick ln vdk ja ja o{daskjk o{daskjk was vdk iasv lek vl wdhcd vdk pkvhvhles wkzk skev aef hv was vdkzk vdav fieai acvhle was vabke vl skvvik vdk fieaechai shfk ln vdk pkvhvhle) h%k%) vdk hss{aeck ln a Vzkas{zx jhii he paxokev ln vdk bhs~k jadası lz a flc{okev kevh/ viheg vdk pkvhvhlekz vl slok lvdkz fieaechai jkekfiv% Lffichais he vdk ja o{daskjk ja o{daskjk zkclzfkf le vdk pkvhvhle hvskin vdav vdksk flc{okevs daf jkke hss{kf) aef vdk favk wdke vdhs daf lcc{zzkf% Vdhs was okaev vl hefhcavk vdk clopikvhle ln vdk afohehsvzavh~k pzlckss aef pkzdaps vl cl{evkzacv hiikgai avvkopvs vl {sk vdk pkvhvhle% He olsv casks) vdk aeelvavhle clevahekf vdk nliilwheg vktv= Vk}bkz Vk}b kzk, k,vk} vk}bk bkzk zk/h /h da da}h }hek ek fa fafk fk % % % Rfavk_ $Vdk olekx lzfkz was hss{kf le Rfavk_(%
Vdhs elvk was {s{aiix piackf le vdk ilwkz dain ln vdk oazghe) aef hv was aiwaxs favkf%1:; Vdk ja ‘s hesczhpvhle appazkevix aiwaxs ja o{daskjk o{daskjk ‘s clesvhv{vkf vdk fieai aeelvavhle le l{z pkvhvhles% Dlwk~kz) he casks wdkzk vdk ja ja o{daskjk o{daskjk daf vl zksplef vl heq{hzhks nzlo vdk ja ja fkn/ fkn/ vkzfaz $skk ajl~k() slok pkvhvhles sdlwkf olzk vdae lek aeelvavhle hss{kf jx vdhs l ffick%1:> Kspkchaiix hevkzksvheg) aivdl{gd ktvzkokix fhffic{iv vl zkaf jkca{sk ln vdk shxabav sczhpv) he wdhcd vdkx wkzk wzhv/ vke) azk vdk ktckzpvs nzlo vdk accl{evs ln vdk ja ja o{daskjk o{daskjk ) he wdhcd vdk clsv ln vdk bhs~k jadası was jzlbke flwe% Vdksk zkclzfs pzl~hfkf fkvahis ajl{v vdk phkcks ln cilvdheg cleckzekf) vdk najzhc vdkx wkzk oafk ln) vdk q{aevhvx aef clilz ln najzhc ekkfkf vl vahilz kacd phkck ln cilvdheg) vdk clsv ln vahilzheg) kvc% 1:7
Skk nlz ktaopik LAB 7>Y;:) n% 30) 38) 6;2 1Y108:32 CG 36Y:) n% 6% 1:; Nlz pkvhvhles he wdhcd vdk ja ja o{daskjk o{daskjk zksli{vhle hs wzhvvke kiskwdkzk le vdk flc{okev skk= 1Y3;>;) 1Y104:0 $jkilw vdk vktv ln vdk pkvhvhle(2 1AY;7318) n% :8) 1Y1110> $ajl~k vdk vktv(% 1:> Skk nlz ktaopik 1AY;7:802 1AY>4042 EPVA TT 1Y:4) n% : aef :>) 1Y110;>% 1:7 Skk 1Y108472 LAB ;3Y:3) n% 3) aef EPVA TT 1Y:4) n% :> he pazvhc{iaz $Appkefht H) Flc{okev >(% 1:6
BHS^K JADASH
137
;% Lvd Lvdkz kz keflz keflzsko skokev kevss aef hesc hesczhp zhpvhl vhles es ;%1% Vd Vdkk S{i S{iva vae‘ e‘ss kefl keflzs zsko koke kev%v% He affhvhle vl keflzskokevs hss{kf jx vdk vdzkk lfficks fksczhjkf ajl~k) a s{ivae‘s keflzskokev cl{if aisl appkaz he ktckpvhleai chzc{osvaecks% S{cd ae keflzskokev was nl{ef he leix lek l{v ln aii vdk pkvhvhles av ox fhsplsai% Vdk keflzskokev he vdhs cask lzfkzs vdk zkg{iaz aiilcavhle ln n{efs nzlo vdk zk~ke{ks ln Hsvaej{i‘s c{svlos nlz vdk oahevkeaeck ln a oae aef dhs sk~ke cdhifzke) wdl daf cle~kzvkf vl Hsiao% 1:4 Svz{cv{zaiix) vdhs keflzsk/ okev hs shohiaz vl vdk Gzaef ^h}hkz‘s keflzskokev% Hv jkghes whvd a sai{vavhle sai{va vhle vl vl vdk Gzaef ^h}hkz ^h}hkz)) he l{z l{z cask cask O{svana O{svana Pasda)1:8 aef kefs whvd a vkzo naohihaz nzlo vdk s{ivae‘s kfhcvs= ’ gþzùikshe‟ $skk vl Rvdk oavvkz_ acclzfhegix(% Jkilw vdk keflzskokev) wk fief hesczhjkf ’j{x{z{iv{)‟ wdhcd) dlwk~kz) was olsv pzljajix wzhvvke jx vdk Gzaef ^h}hkz aef elv vdk s{ivae%130 ;%:% Xaf/h lf% Wk lnvke fief aelvdkz hevkzksvheg hesczhpvhle le vdk ~kzsl ln bh bhs~ s~kk ja jada dası sı pkvhvhles% Hv hs a zkclzf ln vdk paiack n{ecvhleazx) olsv lnvke a ça~{ $a okojkz ln a clzps ln oksskegkzs avvacdkf vl vdk Fh~ae() vl wdlo vdk pkvhvhle was gh~ke anvkz vdk ekw O{siho avvkefkf vdk zlxai a{fhkeck% Vdk nlzo{ia ln vdk hesczhpvhle {s{aiix zkafs= Xaf/h lf % % %Reaok_ ça~{ $RGh~ke_ pkzsleaiix vl Reaok_ ça~{ (%
Nzlo a flc{okev favkf 1>4:131 wk {efkzsvaef vdav vdkzk was jx vdhs vhok a ça~{ jkazheg vdk vhvik ’ ça~{ /h ek~ oùsiho%‟ Vdhs nacv cae jk leix hevkzpzkvkf he vdk skesk vdav vdkzk was ekkf ln a pkzsle vl fkai whvd pkvhvhlekzs) ekw O{sihos) le a zkg{iaz jashs aef vdav s{cd a pkzsle was lffichaiix applhevkf% Dhs n{ecvhles olsv pzljajix heci{fkf vdk fkih~kzx ln vdk pkvhvhle vl vdk l fficks nzlo wdhcd appzl~ai was sl{gdv) sl vdav vdk pkvhvhlekz wl{if jk ajik vl zkckh~k vdk olekx lzfkz av vdk clopikvhle ln vdk afohehsvzavh~k pzlckss% Vdk favks ln
Skk 1AY>743% 1:8 Baza O{svana Okz}hnlei{) Gzaef ^h}hkz $1>7>–1>46(% 130 He ^kibl~‘s lphehle $’^phs~aehxa)‟ 1:7( vdk s{ivae‘s keflzskokev fhf elv kef whvd j{x{z{iv{% Dkeck) jkazheg he ohef vdav vdkzk was el keflzskokev ln vdk Gzaef ^h}hkz le vdk flc{okev he q{ksvhle) wk oax cleshfkz vdk plsshjhihvx vdav vdk Gzaef ^h}hkz piackf vdk j{x{z{iv{ {efkz vdk s{ivae‘s keflzskokev% 131 1AY>>336) n% :% 1:4
134
vdk cleskc{vh~k keflzskokevs piackf le vdk pkvhvhles zk~kai vdav aii ekckssazx keflzskokevs wkzk ljvahekf {s{aiix he vdk spack ln :–3 faxs lz) lccashleaiix) he vdk heczkfhjix sdlzv pkzhlf ln lek fax% S{cd j{zka{czavhc kffichkecx) ke~hajik k~ke he l{z lwe fax) hefhcavks he ox lphehle vdav pkzsleai hevkzksv oax da~k piaxkf a zlik) h%k%) vdk paiack n{ecvhleazx oax da~k zkckh~kf a plzvhle ln vdk olekx aiil/ cavkf vl vdk ekw O{siho nzlo vdk ekw O{siho dhoskin% ;%3% S{ooazhks% Hv was aisl plsshjik vdav ae hesczhpvhle nzlo vdk ja o{daskjk ja o{daskjk vdav daf el zkiavhle vl vdk zkq{ksv oafk he vdav pazvhc/ {iaz pkvhvhle cl{if fief hvs wax levl a flc{okev% Nzlo ox lwe ljskz~avhle) s{cd keflzskokevs lcc{zzkf wdke vdk pkvhvhle daf jkke zkv{zekf vl vdk lffick ln ja ja fknvkzfaz fknvkzfaz nlz slok zkasle) k%g%) he lzfkz nlz vdk iavvkz vl wzhvk a vkidhs % Keflzskokevs ln vdhs vxpk wkzk {s{/ aiix sdlzv s{ooazhks ln ktpkesks) k%g%) ln olekx lzfkzs hss{kf nlz ja o{daskjk o{daskjk ekw O{sihos he a pazvhc{iaz pkzhlf%13: He lvdkz wlzfs) vdk ja ja fknvkzfaz fknvkzfaz vllb vdk lpplzv{ehvx vl pzl~hfk vdhs henlzoavhle vl vdk ja lz vl asb dhs appzl~ai nlz ktpkesks slokdlw elv appzl~kf kazihkz% Vdk shge ln vdk ja ‘s appzl~ai‖vdk vlpi{ca ho}a ‖hs {s{aiix ja fknvkzfaz fknvkzfaz ‘s nl{ef {efkz vdksk keflzskokevs% J% Ilghcai Ik~ki Da~heg fksczhjkf vdk pdxshcai svz{cv{zk ln vdk bh bhss~k jadası pkvhvhles) H wl{if ihbk vl pzlckkf whvd vdk ilghcai ik~ki ln aeaixshs) eaokix) vl ksvajihsd vdk kevhvhks aef zkiavhlesdhps pkzvaheheg vl vdk fava/svz{c/ v{zk ln pkvhvhles% N{zvdkzolzk) sheck vdk kevhvx/zkiavhlesdhp fava olfki avvkopvs vl fksczhjk vdk okaeheg ln vdk fava he a cleckpv{ai scdkoa) vdk fieai pzlf{cv ln vdk ilghcai aeaixshs whii jk pzkskevkf he gzapdhc nlzo% Vdk S{pkzsvz{cv{zk ln Bhs~k Jadası Pkvhvhles Nhzsv) jaskf le vdk pdxshcai svz{cv{zk ln vdk ktplshvhles nl{ef he vdk pkvhvhles aef cleshfkzheg vdk sxojlihc okaeheg ln slok ln vdk skoae/ vhc kikokevs he vdk svz{cv{zk) vdk nliilwheg kevhvx/sxojlis $he jltks( aef avvzhj{vks $e{ojkzkf( cae jk fhsvheg{hsdkf=
13:
Skk 1AY;7318) n% 12 CG 40Y132 1Y10468%
BHS^K JADASH
Acbelwikfgokev ln s{ivae‘s gzaefk{z 133 1% Sai ai{{vavhle :% Jk Jke ekf kfhhcvhle Hfkevhvx 1% :% 3% 6% ;% >% 7%
Svav{s ln b{i A gk Gkefkz Zkihghle Kvde Kv dehhc gz gzl{p Zkshfkeck Lvdk Lv dkzz hen henlz lzoa oavh vhle le
Zkasles nlz cle~kzshle Keihgdvkeokev Zkel{eckokev ln nlzokz zkihghle Kojzacheg Hsiao Jkheg dlelzkf jx vdk s{ivae 1% Favk136 :% Pi Piac ackk ln dl dlel elzh zheg eg 3% Dlelzkf jx Lpkeheg ln vdk zkq{ksv Ikgai gzl{efs nlz vdk zkq{ksv Appkai nlz cdazhvx
133 136
Skk Sai{vavhle vl vdk s{ivae $H%:%( ajl~k% Skk Keflzskokev ln vdk Gzaef ^h}hkz $H^%1%( ajl~k%
138
160
Ktpkcvkf zkwazf 13; 1% Aol{ev :% Ph Phkc kcks ks ln ci cilv lvdh dheg eg 3 % Pl s h v h l e Acbelwikfgokev ln lek‘s henkzhlzhvx Ekw O{siho hfkevhvx 13> 1% Eaok :% Sv Svav av{s {s ln ’ek ’ekw w O{s O{sihiho% o%‟‟ Vdk ektv svkp he vdk ilghcai ik~ki ln fksczhpvhle hs vl fkvkzohek vdk zkiavhlesdhps aoleg vdk ajl~k kevhvx/sxojlis% Vdhs hs) he nacv) nachi/ hvavkf jx vdk gzaooavhcai aef ilghcai ihebs av vdk pdxshcai ik~ki% Vdk fizsv kevhvx/sxojli he vdk ihsv‖Acbelwikfgokev ihsv‖Acbelwikfgokev ln gzaefk{z‖ gzaefk{z ‖ hs zkpzkskevkf le vdk pdxshcai ik~ki jx a skevkeck gzaooavhcaiix clo/ pikvkf whvd vdk dkip ln vdk nlzo lis{e) ae hopkzavh~k ln vdk ~kzj lioab ) as hvs pzkfhcavk% Vdk cleekcvhle jkvwkke vdk iavvkz skevkeck aef vdk ektv lek) zkpzkskevheg vdk kevhvx/sxojlis Hfkevhvx vdzl{gd Jkheg dlelzkf jx vdk s{ivae) hs leix ilghcai% He hvs v{ze) vdk skclef skevkeck {s{aiix cleshsvs ln a cdahe ln s{jlzfheavk cia{sks) kacd cia{sk zkpzkskevheg ae kevhvx% Vdk s{jlzfheavk cia{sks azk cleekcvkf whvd vdk dkip ln gkz{efs kefheg he /ıp,/{p) vdk iavvkz jkheg lek ln vdk olsv lnvke {skf okaes ln ksvajihsdheg vdhs vxpk ln cleekcvhle he Lvvloae/V{zbhsd% Gzaooavhcaiix) vdk skclef skevkeck hs clopikvkf jx vdk {sk ln vdk nlzo lif{o) a shopik pasv ln vdk ~kzj lioab ) he vdk Jkheg dlelzkf jx vdk s{ivae kikokev% Hesvkaf ln lif{o) wk aisl fief vdk nlzo li{e{z ) vdk pzkskev pkznkcv ln lioab ) aef /fhz ) a pzkskev vkesk ln vdk ~kzj hokb ) he vdk ektv kevhvx/sxojli‖Lpkeheg ln vdk zkq{ksv% Vdk clopikvhle ln vdk iavvkz kevhvx/sxojli whvd vdk pazvhcik /bh hefh/ cavks a zafhcai jzkab he vdk gzaooavhcai svz{cv{zk ln vdk vktv% Vdk ektv skevkeck cleshsvs ln a s{jlzfheavk cia{sk aef a oahe cia{sk% Vdk nlzokz hevzlf{cks vdk kevhvx/sxojlis‖Ikgai gzl{efs nlz
Skk Nlzo{iavhle ln vdk zkq{ksv $HH%:() Keflzskokev ln vdk Gzaef ^h}hkz $H^%1( aef Aeelvavhle ln vdk Ja Ja o{daskjk o{daskjk $H^%6%( ajl~k% 13> Skk Shgeav{zk $HHH%1( ajl~k% 13;
BHS^K JADASH
161
vdk zkq{ksv ) Appkai nlz cdazhvx cdazhvx aef Ktpkcvkf zkwazf‖wdhc zkwazf‖wdhcd d he vdhs cia{sk n{ecvhle as ae af~kzjhai pdzask) pzkfhcavk aef ljmkcv zkspkc/ vh~kix% Vdk oahe cia{sk zkpzkskevs zkpzkskevs vdk kevhvx/sxojli kevhvx/sxojli‖ ‖ Acbelwikfgokev ln lek‘s henkzhlzhvx% Vdk vwl cia{sks azk cleekcvkf whvd vdk dkip ln khvdkz vdk – fhb (% Vdk ske/ fhb lz – oab oab gkz{ef $hdsae j{x{z{ioab,j{x{z{if{ { (% vkeck hs aiwaxs clopikvkf gzaooavhcaiix jx vdk pzkskev nlzo ln vdk ~kzj hokb $s{ivaeıoıefız (% Vdk iasv kevhvx/sxojli vl jk cleshfkzkf he vdk ktplshvhle hs vdk Ekw O{siho hfkevhvx) wdhcd le a pdxshcai ik~ki hs leix ilghcaiix cleekcvkf vl vdk zksv% He affhvhle vl vdk gzaooavhcai {enlifheg ln vdk svz{cv{zk ln vdk pkvhvhle) vdkzk hs a pazaiiki {enlifheg ln eazzavh~k hevleavhle aisl zkkcvheg vdk zkiavhlesdhps jkvwkke vdk kevhvhks% Vdhs hevleavhle appkazs vl asckef jkvwkke vdk kevhvx/sxojlis Hfkevhvx aef Jkheg dlelzkf jx vdk s{ivae ) c{ioheavheg c{ioheavheg he vdk iavvkz) aef vl fksckef fksckef jkvwkke Ikgai gzl{efs nlz vdk zkq{ksv aef Ekw O{siho O{siho hfkevhvx % Vdk vwl hevleavhles azk skpazavkf jx a piavka{ zkpzkskevkf jx vdk Lpkeheg ln vdk zkq{ksv kevhvx/sxojli% Zkgazfikss ln wdhcd ln vdk vwl czhvkzha‖gzaooavhcai lz vleai‖wk acbelwikfgk) vwl gzl{ps) h%k%) skvs) ln kevhvx/sxojlis azk cikazix fhsvheg{hsdajik% Vdkhz azzaegkokev oax jk skke he vdk nliilwheg cdazv= Lpkeheg ln vdk zkq{ksv Jkheg dlelzkf jx vdk s{ivae
Ikgai gzl{efs nlz vdk zkq{ksv
Kojzacheg Hsiao Zkel{eckokev ln nlzokz zkihghle
Appkai nlz cdazhvx
Keihgdvkeokev Zkasles nlz cle~kzshle Acbelwikfgokev ln gzaefk{z Hfkevhvx
Ktpkcvkf zkwazf Acbelwikfgokev ln lek‘s henkzhlzhvx Ekw O{siho Hfkevhvx
Hv hs lj~hl{s vdav vdk fizsv kevhvx/sxojlis skv hs zkiavkf vl vdk pzlckss ln vdk pkvhvhlekz‘s cle~kzshle vl Hsiao aef vdk skclef vl vdk pzlckss
16:
ln dhs zkq{ksvheg a zkwazf nlz vdav acvhle% Jlvd skvs) dlwk~kz) azk {ehvkf jx vdkhz ilghcai cleekcvhle whvd vdk ekw O{siho aef vdk s{i/ vae) zkgazfikss wdkvdkz vdk cle~kzshle das dappkekf he vdk pzkskeck ln vdk s{ivae lz lvdkz dhgd/zaebheg lffichai% Anvkz aii) vdk ekw O{siho {ivhoavkix ahokf av skc{zheg ae a{fhkeck whvd vdk s{ivae wdhik vdk iavvkz was fkkokf vl da~k daf vdk {ivhoavk sax he vdk oavvkz ln dhs zkq{ksv% Vdkzknlzk) hv hs olzk appzlpzhavk vl pkzckh~k vdk vwl skvs ln kevhvx/sxojlis as zkiavhlesdhp skvs% Vdk fizsv skv zkkcvs vdk sphzh/ v{ai zkiavhlesdhp jkvwkke vdk pkvhvhlekz) as a zkihghl{s el~hck skkb/ heg g{hfaeck) aef vdk s{ivae) as a caihpd pzl~hfheg s{cd g{hfaeck% Kacd kevhvx/sxojli he vdhs ’el~hck/caihpd‟ zkiavhlesdhp skv hs a svagk he vdk fk~kilpokev ln vdk zkiavhlesdhp jkvwkke vdk vwl% Vdksk wkzk) hn elv vdk acv{ai svagks) av ikasv vdk leks vdav a cle~kzv was pzk/ s{okf vl da~k ktpkzhkeckf acclzfheg vl vdk kvdhcai elzos ln vdk slchkvx% Das vdk cle~kzv acv{aiix skke vdk s{ivae lz was vdk s{ivae he a plshvhle vl hefkkf n{zehsd a sphzhv{ai g{hfaeck hs) vd{s) hzzkik~aev% Vdk skclef skv zkkcvs vdk skc{iaz zkiavhlesdhp jkvwkke s{jmkcv aef z{ikz% Kacd kevhvx/sxojli he vdhs ’s{jmkcv/z{ikz‟ zkiavhlesdhp skv zkkcvs vdk svagks he vdk wlzifix s{johsshle ln a s{jmkcv% N{zvdkzolzk) vdk vwl zkiavhlesdhp skvs azk cleekcvkf av kacd svagk ln vdk fk~kilpokev ln vdk zkiavhlesdhp) k%g%) vdk svagk ln Hfkevhvx he vdk fizsv skv clzzk/ splefs vl vdk svagk ln Ekw O{siho hfkevhvx he vdk skclef lek) m{sv as vdk svagk ln Zkasles nlz cle~kzshle das vdk svagk ln Ktpkcvkf zkwazf as hvs cl{evkzpazv) kvc% Whvd vdk ajl~k cleshfkzavhles he ohef) vdk nliilwheg scdkoa $Gzapd 3( appkazs vl zkkcv aii vdk zkiavhlesdhps aef fava kevhvhks vdav ox favajask ln ktplshvhles clevahes% Vdk scdkoa hs ae ajsvzacv ~hkw ln vdk svz{cv{zk av vdk pdxshcai ik~ki) h%k%) a svz{cv{zk ln vdk svz{cv{zk) aef vd{s) H vkzo hv vdk ’s{pkzsvz{cv{zk‟ ln vdk pkvhvhles ln ekw O{sihos%‟ Nlz vdk sabk ln shopihchvx) vdk scdkoa heci{fks leix vdk kevhvx/sxojlis) aef elv vdkhz avvzhj{vks% S{ooazx
Vl cleci{fk l{z aeaixshs ln vdk svz{cv{zk ln bh bhs~ s~kk jad adaası pkvhvhles) vdk nliilwheg plhevs oax jk oafk whvd zkgazf vl vdkhz ~ai{k as sl{zcks nlz cle~kzshle vl Hsiao he vdk pkzhlf {efkz q{ksvhle=
BHS^K JADASH
163
S[IVAE Pzl~hfks sphzhv{ai g{hfaeck as caihpd
Pzl~hfks cdazhvx as z{ikz
Lpkehe Lpk ehegg ln vdk zkq zkq{ks {ksvv Okzc{f{z
bh
Jkheg dlelzkf jx vdk s{ivae
Ikgai gzl{efs nlz zkq{ksv
siao hik où k où kzzkn li{p
Bae{e,o{vaf ù}kzk
Kojzacheg Hsiao Dabb/ı fheh baj{i
Zkel{eckokev ln nlzokz zkihghle
Appkai nlz cdazhvx
Javhi fhefke çıbıp
dsae,oksz{z j{x{z{ioab
Keihgdvkeokev Dhfaxkv/h zajjaeh kzh ùj kzh ùj
Zkasles nlz cle~kzshle
Ktpkcvkf zkwazf
$lpvhleai(
Bhs~k jadası,çıza ı jadası,çıza ı }ùozksh
Hfkevhvx
Ekw O{siho hfkevhvx
J{ }hooh b{iiazı
Acbelwikfgokev ln gzaefk{z
Jkefk/h ek~ oùsiho
Acbelwikfgokev ln lek‘s henkzhlzhvx
Fk~ikviù) eaxkviù S{ivaeıo da}zkvikzh
Jabh koz/ù nkzoae s{ivaeıoıefız
Sphzhv{ai s{johsshle as el~hck
Wlzifix s{johsshle as s{jmkcv
CLE^KZV
Gzapd 3% S{pkzsvz{cv{zk ln vdk Bhs~ Bhs~kk Jada Jadası sı Pkvhvhles
166
1% Acclzf Acclzfheg heg vl vdkhz vdkhz jash jashcc fhpiloa fhpiloavhc vhc nkav{ nkav{zks zks)) bh bhs~ s~kk ja jaddas ası ı pkvhvhles azkk fl az flc{ c{ok okev evss pk pkzv zvah aheh eheg eg vl vd vdkk Lv Lvvl vloa oae e cd cdae aeck ckzx zx gk gkez ezkk ln az}/h dai aef) he vdkhz pzlvlcli skcvhle) clenlzo vl vdk nlzoai Lvvloae cdaeckzx svxik% Vdkhz ~ai{k vl vdk dhsvlzhae) dlwk~kz) cloks nzlo vdk henlzoavhle clevahekf he vdk ktplshvhle% Vdk iavvkz was zkiavkf vl vdk zkq{ksvs ln hefh~hf{ais wdl daf cle~kzvkf lz wkzk ajl{v vl cle~kzv vl Hsiao he vdk pzkskeck ln vdk s{ivae% :% Fksphvk Fksphvk vdk nacv vdav vdav olsv olsv pkvhvhles pkvhvhles wkzk elv elv wzhvvke wzhvvke jx jx vdk cle/ ~kzvs vdkoski~ks) vdksk flc{okevs nliilwkf he vdkhz ktplshvhle skc/ vhle a pazvhc{iaz olfki ln cloplshvhle $s{pkzsvz{cv{zk() wdhcd aiilwkf nlz vdk heci{shle ln fava zkik~aev vl vdk acv ln cle~kz/ shle he gkekzai as wkii as vl vdk ekw O{sihos‘ pkzsleaihvhks% 3% Aelvdkz hoplzv hoplzvaev aev cdazacvkz cdazacvkzhsvhc hsvhc ln vdk pkvhv pkvhvhles‘ hles‘ s{pkzsv s{pkzsvz{cv{ z{cv{zk zk hs vdav zkiavkf fikifs ln fava cl{if jk clojhekf as skvs ln fava% Vdk vwl oamlz skvs azk vdk ’el~hck/caihpd‟ aef ’s{jmkcv/z{ikz‟ zkiavhlesdhp skvs) zk~kaiheg vdk slchai zkiavhles jkvwkke vdk vwl pzlvaglehsvs he vdkhz capachvx as s{jmkcv aef z{ikz) zkihghl{s el~hck aef sphzhv{ai ikafkz% Ohelz skvs heci{fk) nlz ktaopik) fava fkphcv/ heg kacd ln vdk svkps nliilwkf he lek‘s cle~kzshle vl Hsiao as ksvajihsdkf jx vdk kvdhcai elzos ln O{siho slchkvx% Vdk aeaixshs ln vdk pkvhvhles as skvs ln fava) vdkzknlzk) wl{if aiilw vdk zkcle/ svz{cvhle ln vdk cdazacvkz ln cle~kzshle as a slchai pzlckss jaskf le a fhcdlvlox‖sphzhv{ai ~s% oavkzhai) ekw ~s% nlzokz hfkevhvx ln vdk ekw O{siho) kvc% 6% Vdk Vdk plv plvke kevh vhai ai ln vd vdkk bhs~k jadası pkvhvhles‘ s{pkzsvz{cv{zk nlz vdhs sv{fx ihks aisl he vdk vxpks ln fava zk~kaiheg vdk cle~kzv‘s hfke/ vhvx% Vdk fava fikifs heci{fk vdk pkvhvhlekz‘s eaok) agk) gkefkz) kvdehc lzhghe) piack ln zkshfkeck) clenksshleai as wkii as slchai affiihavhle) zkasles nlz cle~kzshle aef vdk zkwazf fkshzkf he zkv{ze% Vdkzknlzk) as sl{zcks) vdk pkvhvhles aiilw nlz vdk clesvz{cvhle ln a cliikcvh~k plzvzahv ln vdk pkvhvhlekzs aef gh~k heshgdvs hevl vdk slchai okevaihvx ln a cle~kzv aef dhs avvhv{fk vlwazfs Hsiao% ;% Vdkzk hs hs el hefhcavh hefhcavhle le wdavslk~kz wdavslk~kz he vdk pkvhvhles pkvhvhles‘‘ s{pkzsvz{c s{pkzsvz{cv{zk v{zk plhevheg vl he~li{evazx cle~kzshle vl Hsiao% Le vdk clevzazx) vdk fava s{ggksvs vdav vdksk pklpik acvh~kix sl{gdv cle~kzshle he vdk pzkskeck ln vdk s{ivae%
CDAPVKZ NH^K
VDK HESVHV[VHLEAIH]AVHLE LN CLE^KZSHLE= BHS^K JADASH PKVHVHLES AS A SLCHAI PDKELOKELE Slok Svavhsvhcai Ljskz~avhles
He cdapvkz 6) wk da~k daf lccashle vl plhev l{v vdk ksskevhaiix fhff kzkev kzkev eav{zk ln vdk henlzoavhle zk~kaikf jx bh bhs~ s~kk jad adaası pkvhvhles) wdke clopazkf vl vdav nl{ef he vat zkghsvkzs% Ckzvaheix) wk caeelv clopazk vat zkghsvkzs whvd vdkhz hookesk svavhsvhcai ~ai{k vl vdk pkvh/ vhles ln ekw O{sihos wdhcd s{z~h~k he ihohvkf e{ojkzs leix% Dlw/ k~kz) vdk iavvkz azk svhii {skn{i as vdkx hefhcavk ckzvahe cdaegks he vdk pzlckss ln cle~kzshle aef cleclohvaevix) he Lvvloae slchkvx he gkekzai% As plhevkf l{v he vdk jkgheeheg ln vdk sv{fx) ox favajask ln pkvh/ vhles cleshsvs ln >3> flc{okevs hss{kf he vdk eaoks ln 7;; pklpik aef naiiheg whvdhe vdk pkzhlf 1>7:–173;% Vajik 8 jkilw pzkskevs vdk fhsvzhj{vhle ln flc{okevs aef ekw O{sihos pkz xkaz% H da~k aisl heci{fkf vdk oamlz hevkzeai aef ktvkzeai k~kevs vdav lcc{zzkf f{z/ heg vdk pkzhlf% As a zks{iv) vdk zkafkz oax ksvajihsd a iheb jkvwkke vdk e{ojkz ln pkvhvhles aef ekw O{sihos he a pazvhc{iaz xkaz aef vdk olsv shgehficaev k~kevs ln vdk xkaz cleckzekf% bhss~k jad adas ası ı pkvhvhles aef ekw O{sihos pkz xkaz Vaji Va jikk 8% 8% Fh Fhsv svzh zhj{ j{vh vhle le ln ln bh clopazkf vl k~kevs nzlo vdk Lvvloae dhsvlzx1 Xkaz
Pkvhvhles
1> 71 1> 7: 1> 73 1> 76 1> 7;
1 1 4 ; ;
Ekw O{sihos
1 1 4 ; ;
Oamlz k~kevs
Okdokf H^ $1>64–47( Waz whvd Pliaef Lvvloaes fknkavkf av Bdlvhe $ Dlvhe(
Vdk vajik heci{fks aii flc{okevs ihsvkf he Appkefht : as wkii as vdk vwl flc/ {okevs p{jihsdkf jx [}{eçaz ıiı‖skk [}{eçaz ıiı) Okzbk} ) Appkefht) Nacshohiks :7 aef :4% 1
16>
Vajik 8 $clev% ( ( Xkaz
Pkvhvhles
Ekw O{sihos
1> 7>
0
0
1> 77
6
;
1> 74 1> 78 1> 40 1> 41
6 :6 :3 :1
1: 3: :7 :>
1> 4: 1> 43 1> 46
13 18 16
16 :3 16
1> 4; 1> 4>
:3 64
:3 >4
1> 47
1
1
1> 44 1> 48
3; :3
66 :;
1> 80
8
8
1> 81 1> 8: 1> 83 1> 86 1> 8; 1> 8>
0 0 0 0 0 0
0 0 0 0 0 0
1> 87 1> 84
0 0
0 0
Oamlz k~kevs
Lvvloaes fknkavkf av Iwlw) ~hcvlzhl{s av ]{zawel2 pkack ln ]{zawel gh~ks Lvvloaes vdk Kasvkze [bzahek aef Plfliha Av vdhs plhev) vdk Lvvloae Kophzk zkacdks hvs oatho{o ktvkev he K{zlpk% 1>77–41 fizsv waz whvd Z{ssha l~kz [bzahek
Pkack ln Zaf}ha2 Lvvloaes gh~k {p Kasvkze [bzahek Nhzsv pkzoaekev ilss ln vkzzhvlzx% 1>4:–88 waz whvd A{svzha Skclef shkgk ln ^hkeea Vdhzf Dlix Ikag{k $ ^kehck aef Pliaef mlhe A{svzha(2 ^hskgzêf) ^ac} ilsv Iasv fk~ hzok ln elvk Naii ln J{fa2 fknkav av ]keva agahesv A{svzha2 Z{ssha mlhes vdk claihvhle2 ^kekvhaes he vdk Olzka Lvvloaes ilsk Kgkz aef vdk skclef Javvik ln Oldac agahesv A{svzha2 fizsv Z{sshae shkgk ln A}l~2 azox zkjkiihle2 fkplshvhle ln Okdokf H^ 1>47–81 Sùikxoae HH2 naii ln Jkigzafk A{svzhaes av Blsl~l2 Lvvloaes gh~k {p S}hgkv~az) ^hfhe) aef Eh 2 Z{sshaes avvacb vdk Czhoka Lvvloaes fknkav A{svzhaes he Vzaesxi~aeha) zkcl~kz Jkigzafk aef ^hfhe 1>81–8; Adokf HH2 vat zknlzos Gx{ia ilsv 1>8;–1703 O{svana HH Lvvloae cl{evkz/avvacb he D{egazx) Ihppa zk/cleq{kzkf2 A}l~ ilsv vl Z{sshaes Lvvloaes fknkavkf agahe av ]keva
167
Vajik 8 $clev% ( ( Xkaz
Pkvhvhles Ekw O{sihos
1 >8 8
1
1
1 70 0 1 70 1 1 70 : 1 70 3
1 ; 0 11
1 ; 0 11
1 70 6 1 70 ; 1 70 > 1 70 7 1 70 4 1 70 8 1 71 0 1 71 1
13 : :1 1: 11 1 3; 13
16 : :; 1: 11 1 66 17
1 71 : 1 71 3 1 71 6
31 > 6
31 > 6
1 71 ; 1 71 >
: 6
: 11
1 71 7 1 71 4
10 7
11 7
1 71 8 1 7: 0 1 7: 1 1 7: : 1 7: 3
> 1; 4 :1 16
> :: 4 :: 14
1 7: 6 1 7: ; 1 7: > 1 7: 7 1 7: 4 1 7: 8
7 1> 16 1> > >
4 :0 14 18 7 10
Oamlz k~kevs
Vzkavx ln Bazilwhv}= Pliaef zkcl~kzs Plfliha) ^kehck aq{hzks vdk Olzka aef olsv ln Faioavha) A{svzha whes aii ln D{egazx whvd vdk ktckpvhle ln vdk Jaeav ln Vkoks~az
Azox zkjkiihle2 fkplshvhle ln O{svana HH2 1703–30 Adokf HHH
1710 –11 Waz whvd Z{ssha Javvik ln Pz{v2 Lvvloae ~hcvlzx l~kz Pkvkz H Pkack vzkavx whvd Z{ssha2 A}l~ zkcl~kzkf 1716 –14 waz whvd ^kehck2 zkcl~kzx ln vdk Olzka Cleq{ksv ln Vkels‖iasv Lvvloae cleq{ksv Waz whvd A{svzha2 Lvvloaes fknkavkf av Pkvzl~azafhe Naii ln Jkigzafk Pkack vzkavx ln Passazlwhv} whvd A{svzha aef ^kehck2 Lvvloaes ilsk Jaeav ln Vkoks~az aef Ihvvik Waiiacdha $Livkeha( Gzkav chzc{ochshle nksvh~ai he Hsvaej{i 17:3–:7 waz whvd Hzae2 Lvvloae lcc{pavhle ln A}kzjahmae aef Daoafae
164
Vajik 8 $clev% ( ( Xkaz
Pkvhvhles
Ekw O{sihos
1 73 0
6
>
17 31 17 3: 17 33 17 36 17 3;
1: 10 6 ; 1
1: 10 6 ; 1
Vlvai >3>
7; ;
Oamlz k~kevs
Pavzlea Daihi zkjkiihle2 fkplshvhle ln Adokf HHH2 kef ln V{ihp pkzhlf 1730 –;6 Oado{f H
A pkzdaps cikazkz ~hkw ln vdk ajl~k fava cae jk daf nzlo vdk nli/ ilwheg gzapd%
40 70
s o h i s { O w k E n l z k j o { E
>0 ;0 60 30 :0 10 0
1 3 ; 7 8 1 3 ; 7 8 1 3 ; 7 8 1 3 ; 7 8 1 3 ; 7 8 1 3 ; 7 8 1 3 ; 7 7 7 7 7 4 4 4 4 4 8 8 8 8 8 0 0 0 0 0 1 1 1 1 1 : : : : : 3 3 3 > > > > > > > > > > > > > > > 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Xkaz
Gzapd 6% Zkiavh~k zavk ln ekw O{sihos wdl pkvhvhlekf vdk S{ivae) 1>7:–1736
Sk~ke d{efzkf aef finvx/fi~k ekw O{sihos l~kz vdk cl{zsk ln shtvx nl{z xkazs‖ae a~kzagk ln vwki~k pkz xkaz‖oax elv sl{ef ihbk a shgehficaev fig{zk wdke clopazkf vl vdk Jaibae ele/O{siho plp{/ iavhle ln olzk vdae vwl ohiihle av vdk v{ze ln vdk sk~kevkkevd cke/
168
v{zx%: Vdk sht d{efzkf aef vdhzvx sht pkvhvhles s{johvvkf jx vdksk hefh~hf{ais) dlwk~kz) zkpzkskev a svavhsvhcaiix shgeh ficaev aol{ev he vkzos ln dhsvlzhcai zkclzfs nzlo vdhs pkzhlf% Wk aisl da~k vl jkaz he ohef vdav ln aii azcdh~ai oavkzhais leck pzlf{ckf) vdlsk wdhcd da~k s{z~h~kf hevl olfkze vhoks olsv ihbkix nlzo leix a soaii nzac/ vhle2 vdhs appihks vl vdk ekw O{sihos‘ pkvhvhles as wkii% K~hfkeck vdav vdk pkvhvhles av ox fhsplsai zkpzkskev leix vdk ’vhp ln vdk hckjkzg‟ oax jk nl{ef he a flc{okev vdav accl{evs nlz vzkas{zx fhsj{zskokevs vl ekw O{sihos nlz vdk pkzhlf Ckoa}hùik~~ki 1080/Zkjhùiadız 1081 $ M{ek 10) 10) 1>78–Oax 18) 1>40(% 1>40(%3 Vdk flc{/ okev‖ksskevhaiix a zkghsvkz nlz vdk fiscai xkaz‖ihsvs 378 ekw O{sihos= 183 oke) 16> wloke) 14 jlxs aef :: ghzis) kacd gh~ke 1:00) :170) 700 aef 1000 abçk s zkspkcvh~kix as vdk kq{h~aikev ln a skv ln O{siho cilvdks $bhs~k jadası (% As plhevkf l{v he ox vktv{ai aeaixshs ln vdk pkvhvhles he cdapvkz nl{z) vdk bhs~k jadası cl{if leix jk zkikaskf anvkz ae afohehsvzavh~k pzlckf{zk hehvhavkf jx vdk s{johsshle ln a pkvhvhle le vdk pazv ln vdk ekw O{siho% Vdkzknlzk) le vdk jashs ln vdhs zkg/ hsvkz wk cae cleci{fk vdav vdkzk oax da~k jkke as oaex as 378 ekw O{sihos wdl pkvhvhlekf vdk s{ivae he fiscai xkaz 1>78–1>40% Jx clevzasv) H da~k nl{ef leix 66 acv{ai pkvhvhles s{johvvkf jx ;; ekw O{sihos $1; pkzckev ln vdk ekw O{sihos ihsvkf he vdk zkghsvkz() fav/ heg nzlo vdk saok vwki~k olevd pkzhlf% Olzkl~kz) wdke wk cle/ shfkz vdk nacv vdav :1 ln vdk 66 pkvhvhles) wdhcd wkzk s{johvvkf he vdk eaoks ln :; ekw O{sihos) s{z~h~kf vl l{z fax leix jx ~hzv{k ln da~heg jkke avvacdkf vl vdk fiscai zkghsvkz) vdk acv{ai s{z~h~ai zavk fzlps vl a okzk 4 pkzckev% Vdhs) ln cl{zsk) hs leix ae ljskz~avhle ln vdk ilw zavk ln s{z~h~ai ln azcdh~ai oavkzhai he vdk cask ln lek cliikcvhle aef sdl{if elv he aex wax jk hevkzpzkvkf as appihcajik vl vdk s{z~h~ai zavk ln flc{okevs nzlo vdhs pkzhlf he lvdkz cliikcvhles% He aelvdkz flc{okev) wk fief ae accl{evheg ln vdk vzkas{zx ktpkesks nlz 66 ekw O{sihos $:8 oke) 16 wloke aef 1 jlx( he vdk olevd ln Zkjhùik~~ki 1088 $ Mae{azx >–Nkjz{ >–Nkjz{azx azx 6) 1>44(% 1>44(%6 Hv cae jk ljskz~kf vdav vdk fig{zk ln nlzvx/nl{z ekw O{sihos hs sihgdvix
Skk cdapvkz vwl) Vajik 7) nlz vdk fig{zk ln vdk ch}xk /paxheg /paxheg plp{iavhle% H ao {sheg a o{ivhpihkz ln 3%; vl azzh~k av vdk fig{zk ln vwl ohiihle% 3 1Y10417) n% 1j–:j% 1j–:j% Skk nlz nacshohik aef n{ii vzaesiavhle) vzaesiavhle) Appkefht 1) Flc{okev 1;% 6 CG 40Y13) n% :4% :
1;0
dhgdkz k~ke vdae olsv ln vdk olevdix fig{zks he vdk zkghsvkz ln 1>78–1>40%; Vdkzknlzk) wk cae ksvhoavk vdk e{ojkz ln ekw O{sihos wdl pkvhvhlekf vdk s{ivae he vdk 1>47–44 fiscai xkaz as jkheg) hn elv dhgdkz) vdke av ikasv el soaiikz vdae vdk fig{zk nlz 1>78–40% Dlwk~kz) sheck aii 3; pkvhvhles s{johvvkf he vdk eaoks ln vdlsk 66 ekw O{sihos wkzk avvacdkf vl vdk flc{okev he q{ksvhle) vdkzk hs elv a shegik skp/ azavkix/pzkskz~kf pkvhvhle nzlo vdk zksv ln vdk xkaz% Ox cleci{shle) he ihgdv ln vdhs k~hfkeck) hs vdav vdk acv{ai e{ojkz ln pkvhvhles s{j/ ohvvkf he vdk pkzhlf 1>70s–1730s oax da~k aol{evkf vl sk~kzai vdl{saef% Lek wlefkzs k~ke olzk ajl{v vdk svavhsvhcai ~ai{k ln vdk bhs~k jadası pkvhvhles wdke illbheg av vdk whfk ~azhavhle he vdk e{ojkz ln pkvhvhles s{johvvkf k~kzx xkaz% Acclzfheg vl vdk fava vaj{iavkf ajl~k) vdkzk azk el flc{okevs he ox favajask hss{kf he vdk xkazs 1>7>) 1>81 vl 1>84) aef 170:% Le vdk lvdkz daef) vdk xkazs 1>78) 1>4>) 1>44) 1710 aef 171: aii nkav{zk olzk vdae vwhck vdk aee{ai a~kz/ agk ln s{z~h~heg pkvhvhles% Dlw fl wk accl{ev nlz vdk gaps< Hs hv jkca{sk) he nacv) el ekw O{sihos s{johvvkf pkvhvhles vl vdk s{ivae< Lz) hs hv shopix jkca{sk el bh bhs~ s~kk ja jada dası sı pkvhvhles da~k s{z~h~kf nzlo vdksk xkazs< Shohiaz q{ksvhles oax jk asbkf whvd zkgazf vl vdk dhgdkz e{ojkz ln pkvhvhles he pazvhc{iaz xkazs% Ikv {s ass{ok vdav vdk ~azhavhle he vdk e{ojkz ln s{z~h~heg pkvh/ vhles zkkcvs zkai ihnk shv{avhles% He lvdkz wlzfs) wk plshv vdav el bhs~k jadası pkvhvhles wkzk s{johvvkf he pazvhc{iaz xkazs) aef as a clzliiazx) wk o{sv ass{ok vdav vdkx wkzk s{johvvkf he iazgk e{o/ jkzs he lvdkz xkazs% He vdhs cask) ae ktpiaeavhle sdl{if jk sl{gdv he vdk k~kevs vdav lcc{zzkf he vdk xkazs he q{ksvhle) k~kevs vdav oax da~k ikf vl ae heczkask lz fkczkask he vdk e{ojkz ln pklpik skkb/ heg vl cle~kzv jknlzk vdk s{ivae% Dlwk~kz) hv hs fh ffic{iv vl iheb aex fk~havhles he vdk e{ojkz ln pkvhvhles he a pazvhc{iaz xkaz vl aex paz/ vhc{iaz k~kev) pkzsleaihvx lz vzkef he Lvvloae dhsvlzx% Nlz ktaopik) hv cae jk ljskz~kf vdav he vdk pkzhlf 1>74–1>48) vdk zavk ln pkvhvhles pkz xkaz hs zkiavh~kix dhgd% Xkv) vdhs zkpzkskevs lek ln vdk olsv fhs/ asvzl{s pkzhlfs he Lvvloae ohihvazx aef plihvhcai dhsvlzx% A jzhkn zk~hkw ln vdk pkzhlf heci{fks vdk ilss ln Kasvkze [bzahek $1>41() vdk Vdk olevdix fig{zks nlz fiscai xkaz 1>78–1>40 azk as nliilws= Ckoa}hùik~~ki / :: ekw O{sihos) Ckoa}hùiadız / 3:) Zkckj/ :8) ajae/ 1>) Zaoa}ae/ 36) k~~ai / :1) ]hibafk / 6:) ]hidhck / :6) O{dazzko/ :4) Sankz / 60) Zkjhùik~~ki / :4) Zkjhùiadız / 37% Vdk zkoaheheg :; ekw O{sihos azk ihsvkf as da~heg jkke dlelzkf whvd Hsiao f{zheg a Zlxai d{ev% ;
1;1
nahi{zk ln vdk skclef Lvvloae shkgk ln ^hkeea $1>43() vdk ilss ln D{egazx vl A{svzha) vdk naii ln Jkigzafk $1>44() vdk A{svzhae azox af~aecheg as naz as Blsl~l $1>48() aef ^kehck lcc{pxheg vdk Olzka $1>4>(% He nacv) vdk dhgdksv zavks ln pkvhvhles azk ljskz~kf he 1>4> $64 pkvhvhles() vdk xkaz wdke J{fa nkii) Z{ssha mlhekf vdk Dlix Ikag{k aef ^kehck lcc{phkf vdk Olzka) aef he 1>44 $3; pkvhvhles() vdk xkaz ln Jkigzafk‘s capv{zk jx A{svzhae nlzcks% Dlwk~kz) he lvdkz xkazs) wdhcd wkzk aisl fiiikf whvd d{ohihavheg skavjacbs nlz vdk Lvvloae svavk) vdk e{ojkz ln s{z~h~heg pkvhvhles hs khvdkz ~kzx ilw lz ele/kthsvkev% Vdhs appihks vl 1>47) wdke vdk Lvvloaes wkzk fknkavkf av vdk skclef javvik ln Oldac) wdke vdk azox zlsk he zkjkiihle aef wdke Okdokf H^ was fkplskf) as wkii as vl vdk fkcafk 1>80–1>88) wdhcd saw vdk fknkav ln vdk Lvvloae azox av S}aiaebaoke aef ]keva aef vdk ilss ln A}l~) Plfliha aef Faioavha% Olzkl~kz) vdk zavk ln pkvhvhles zlsk agahe shgehficaevix jkvwkke 1703 aef 17:0 wdke Lvvloae plihvhcai zkjl{ef nlzv{eks wkzk le vdk zhsk% He 1711) vdk Lvvloaes fknkavkf Pkvkz H av vdk jav/ vik ln Pz{v aef zkcl~kzkf A}l~% He vdk 1716–14 waz whvd ^kehck) vdkx wkzk ajik vl zkcleq{kz vdk Olzka) Clzhevd aef vdk hsiaefs ln Ihoels aef Vkekfls% Vdk fizsv vdzkk fkcafks ln vdk khgdvkkevd cke/ v{zx aisl saw a pkzhlf ln c{iv{zai k stlzksckeck‖vdk sl/caiikf V{ihp pkzhlf% Aef xkv) hv o{sv jk acbelwikfgkf vdav vdkzk azk hefh~hf{ai xkazs f{zheg vdhs pkzhlf ln ktvkzeai ohihvazx s{cckss nlz wdhcd wk da~k nkw bh bhs~ s~kk jad adaası pkvhvhles) lz k~ke elek av aii% Hevkzeai clefhvhles aef k~kevs he vdk kophzk fl elv skko vl da~k he{keckf vdk zavk ln pkvhvhles khvdkz% Nlz ktaopik) he 1>47) vdk xkaz ln vdk fkplshvhle ln Okdokf H^) vdk e{ojkz ln ktvaev pkvh/ vhles aol{evs vl 3>% Dlwk~kz) he 1703) vdk xkaz ln vdk fkplshvhle ln O{svana HH) vdk zavk ln pkvhvhles hs leix 11% He 1>81) vdk xkaz ln vdk ch}xk vat zknlzos) wdhcd wkzk fhsc{sskf he cdapvkz vdzkk) zknlzos vdav sdl{if da~k clevzhj{vkf vl vdk kclelohc pzkss{zk le ele/O{siho s{jmkcvs) vdk zavk ln pkvhvhles hs agahe }kzl% He cleci{shle) hv wl{if appkaz vdav vdk ~azhavhles he vdk zavk ln bhs~ bh s~kk ja jada dası sı pkvhvhles he vdk pkzhlf {efkz cleshfkzavhle azk olzk ihbkix vhkf vl vdk s{z~h~ai ln flc{okevs he Lvvloae azcdh~ks aef vdk fxeaohcs ln vdk Hsiaoh}avhle pzlckss zavdkz vdae aex spkch fic dhs/ vlzhcai k~kev% Vdkzknlzk) vdk svavhsvhcai shgeh ficaeck ln bhs~k jadası pkvhvhles flks elv ihk he vdk henlzoavhle vdkx pzl~hfk le dlw oaex ele/O{sihos cle~kzvkf he a pazvhc{iaz xkaz) as he vdk cask ln vat zkghsvkzs% Hn wk
1;:
azk vl skkb nlz vdk kthsvkeck ln a svavhsvhcai ~ai{k vl bh bhs~ s~kk ja jaddas ası ı pkvh/ vhles) hv wl{if jk he vdkhz e{ojkz zkpzkskevheg a clzp{s ln flc{/ okevs cdazacvkzhsvhc ln a pazvhc{iaz pkzhlf ln Lvvloae dhsvlzx‖vdk 1>70s–1730s) as vdk zkclzf sdlws% Hefkkf) vdkzk hs k~hfkeck vdav vdk bhs~ s~kk jad adaası vl ekw O{sihos clevhe{kf wkii hevl pzacvhck ln gzaevheg bh vdk ehekvkkevd ckev{zx%> Vdk pkvhvhles vdav da~k s{z~h~kf nzlo vdhs ckev{zx aef a dain) dlwk~kz) azk leix khgdv he vlvai‖7 nzlo 1467)7 aef 1 nzlo 14>7%4 He ox lphehle) vdk ekaz fhsappkazaeck ln vdk pkvhvhles anvkz vdk 1730s nzlo vdk Lvvloae azcdh~ks hs a zk kcvhle ln vdk l~kzaii fkcihek ln vdk cle~kzshle pzlckss% As plhevkf l{v he cdapvkz vwl) vdk pzlckss kefkf he olsv ln vdk Jaibae iaefs anvkz vdk fizsv q{azvkz ln vdk khgdvkkevd ckev{zx aef cle~kzshle was leix splzafhc he vdk ehekvkkevd ckev{zx% He lvdkz wlzfs) vdk nacv vdav vdk s{johsshle ln pkvhvhles zkq{ksv/ heg bh bhss~k jadası lz lvdkz na~lzs nzlo vdk s{ivae skkos vl da~k jkke a cdzlelilghcaiix ihohvkf pdkelokele aef vdav s{cd pkvhvhles oax da~k aol{evkf vl sk~kzai vdl{saef) wazzaevs l{z cleci{shle vdav vdk s{johsshle ln pkvhvhles was a slchai pdkelokele he vdk pkzhlf 1>70s–1730s% Av vdk saok vhok dlwk~kz) hv ekkfs vl jk plhevkf l{v vdav vdk pzacvhck ln zkwazfheg ekw O{sihos aef ln vdk iavvkz vzxheg vl assl/ chavk vdkoski~ks whvd pzlohekev O{sihos) cae dazfix da~k svazvkf he vdk 1>70s% Zavdkz) wk cae sankix ass{ok vdav vdk Lvvloaes leix hesvhv{vhleaih}kf ae aizkafx kthsvheg c{svlo) favheg pkzdaps nzlo kazix Hsiaohc vhoks% Ae heq{hzx hevl vdk lzhghes aef hesvhv{vhleaih}avhle ln vdk pzacvhck wl{if jk {skn{i) vdkzknlzk) he hfkevhnxheg vdk oahe cdaz/ acvkzhsvhcs ln vdk bhs~ s~kk jadası pdkelokele% Hsiaohc Vzafhvhle aef Bhs~k Jadası Pkvhvhles
Hv skkos vdav he vdk hesvaeck ln bh bhs~ s~kk ja jada dası sı pkvhvhles) wk acv{aiix da~k vdzkk lifkz Hsiaohc pzacvhcks clojhekf hevl lek= 1( asslchavhle ln cle~kzvs whvd O{sihos ln dhgdkz slchai svaefheg2 :( flc{okevavhle ln clopihaeck whvd vdk nlzoai svkps ekckssazx nlz cle~kzshle vl Hsiao2
> 7 4
Skk 1AY;76332 1AY>4>12 LAB 74Y612 LAB 63Y17% LAB 86Y76) 1–>2 LAB ;0Y86% EPVA THT :Y107%
1;3
aef 3( zkwazfheg vdk ekw O{sihos fieaechaiix lz vdzl{gd vdk ghnv ln ekw cilvdks% Ikv {s affzkss olzk n{iix kacd ln vdksk kikokevs he v{ze% 1( Vdk pzacvhck pzacvhck ln a cle~kzv‘ cle~kzv‘ss asslchavhe asslchavhegg dhoskin dhoskin whvd whvd a pzlohek pzlohekev ev O{siho olsv pzljajix daf hvs lzhghes he vdk hesvhv{vhle ln clevzac/ v{ai pavzleagk he kazix Hsiao‖ wai wai ai/o{w i v %8 Aivdl{gd aexjlfx cl{if skz~k as vdk pkzsle) ’he wdlsk daefs‟ vdk cle~kzv wl{if vks/ vhnx vl dhs ekw czkkf) vdk iavvkz fhf fkshzk g{hfaeck aef pavzleagk he dhs,dkz ekw ihnk% Olsv lnvke) vdk zlik ln ktkopiaz was fiiikf jx zkclgeh}kf phl{s O{sihos% Vdk hesvhv{vhle ln wai ai/o{w ai/o{w i i v v ksvaj/ ihsdkf a spkchai jlef‖a ’ficvhvhl{s bhesdhp‟ he vdk wlzfs ln Daiiaq 10 ‖ jkvwkke cle~kzvs aef vdkhz pavzles) as vdk nlzokz jkcaok cihkevs $oaw ( ln vdk iavvkz% Vdk phl{s O{sihos) le vdk lvdkz daef) acvkf oaw i i ( as jkeknacvlzs vl vdkhz cihkevs% Hv was eav{zai vdke nlz cle~kzvs vl skkb vdk pavzleagk ln wkaivdhkz lz slchaiix af~aevagkf O{sihos) wdl wl{if pzl~hfk vdko whvd a gzkavkz fkgzkk ln asshsvaeck% Lek ln vdk kazihksv ktaopiks ln vdhs vkefkecx oax jk nl{ef he ae aekcflvk zkclzfkf he lek ln vdk jhlgzapdhcai fhcvhleazhks= S i sahf vl Xa} f j% ai/O{daiiaj av vdk vhok M{zmae was cleq{kzkf= —Hs vdkzk he Hsiao sloklek olzk hii{svzhl{s vdae xl{ av wdlsk daefs H ohgdv cle~kzv vl Hsiao< Xa} f zkpihkf= —Xks) S{iaxo e j% Ajf ai/ Oaihb Rcaihpd 71;–717_%‘ S i sahf= —vdke fhspavcd ok vl dho sl H cae cle~kzv vl Hsiao av dhs daefs%‘ Sl dk fhf% Wdke S i azzh~kf) dk sahf vl S{iaxo e wdav dk daf sahf vl Xa} f% Vdke S{iaxo e sahf= —Vdkzk hs elv elw aoleg vdk O{sihos aexlek olzk hii{svzhl{s vdae H) j{v vdk vloj vloj ln vdk Okss Oksskegk kegkzz ln Glf Glf % % % das olzk olzk%‘%‘ Vdke Vdke H sdaii sdaii cle/ cle/ ~kzv vl Hsiao vdkzk)‘ sahf S i% Sl S{iaxo e skev dho vl Oafhea) aef dk cle~kzvkf vl Hsiao av vdk vloj% Vdke dk zkv{zekf vl Xa} f j% ai/ O{daiiaj aef jkcaok dhs clopaehle aef oaeagkf dhs ktpkefhv{zks {evhi Oasiaoad j% Ajf ai/Oaihb bhiikf dho le vdk fax ln ai/ Aqz wdke dk bhiikf Xa} f j% ai/O{daiiaj%11
Clevzacv{ai pavzleagk was elv zkclgeh}kf jx aex ln vdk nl{z Hsiaohc scdllis ln iaw ktckpv vdk Daeafi%1: Dlwk~kz) jx ~hzv{k ln Daeafi
Wai ai/o{w i v sdl{if jk fhsvheg{hsdkf nzlo wai ai/ hvq ) wdhcd azhsks nzlo sia~kzx% Skk Waki Daiiaq) ’Vdk [sk aef Aj{sk ln K~hfkeck= Vdk Q{ksvhle ln Pzl~hechai aef Zloae He{kecks le Kazix Hsiaohc Iaw)‟ MALS ) 1 $1880() 46% 10 Hjhf%) 46% 11 Chvkf jx J{iihkv) ’Svlzhks)‟ 1:;% 1: Hjhf%) 43% 8
1;6
scdlli‘s jkheg vdk lffichai scdlli ln iaw ljskz~kf he vdk Lvvloae kophzk) hv hs leix eav{zai vdav wk sdl{if illb nlz vdk ikgacx ln wai ai/o{w i ai/o{w i v v he vdhs zkaio% Hv das vl jk afohvvkf vdav vdk wai ai/ o{w i o{w i v v clevzacv flks elv ekckssazhix he~li~k cle~kzshle) elz flks hv da~k vl jk cleci{fkf av aii) sheck s{cd a clevzacv hs dkif vl jk pkz/ ohsshjik $ m h} () elv ljihgavlzx ljihgavlzx $i i }ho }ho (%13 Skclef) vdk clevzacv pzks{oks kq{aihvx jkvwkke vdk pazvhks sl vdav s{pplzv he fieaechai aef olzai oavvkzs sdl{if jk o{v{ai%16 Vdk iavvkz cae dazfix jk sahf ln vdk ’s{ivae/cle~kzv‟ zkiavhlesdhp zkkcvkf he bh bhs~ s~kk ja jada dası sı pkvhvhles% He lvdkz wlzfs) vdkzk cae jk el fhzkcv clopazhsle jkvwkke vdk wai ai/ o{w i o{w i v v clevzacv aef bhs~k jadası pkvhvhles he a svzhcvix ikgai skesk% Vdk cleekcvhle jkvwkke vdk vwl hs pzhoazhix cleckpv{ai% He ox lphe/ hle) vdk hesvhv{vhle ln clevzacv{ai pavzleagk o{sv da~k gzaf{aiix jkclok pazv ln vdk slchai elzos ln O{siho slchkvx he fkaiheg whvd ekwclokzs he vdk O{siho cloo{ehvx% As s{cd) slok ln vdk ikgai cdazacvkzhsvhcs ln vdk hesvhv{vhle jkcaok ji{zzkf aef wkzk zkpiackf bhs~ s~kk jad adaası pkvhvhles azk jx pavvkzes ln slchai jkda~hlz% Nlz ktaopik) bh fkfiehvkix elv clevzacvs he ~hkw ln vdkhz fhpiloavhc nkav{zks% Ek~kzvdkikss) lek caeelv kscapk vdk nkkiheg vdav vdk ekw O{sihos wdl pkvhvhlekf vdk s{ivae vdl{gdv he vkzos ln jazgaheheg% Vdkhz pazv ln vdk jazgahe was vl sdlw gke{hek jkihkn he Hsiao aef vl appkai vl vdk s{ivae sdlwheg aii vdk f{k zkspkcv ln kagkz zkihghl{s el~hcks aef ljkfhkev s{jmkcvs% He slok pkvhvhles) ae kikokev ln lff kz kz hs cikazix pzlel{eckf%1; He zkv{ze) vdk ekw O{sihos ktpkcvkf vdk s{ivae‘s pavzleagk aef ckz/ vahe na~lzs as ksvajihsdkf jx c{svlo% Vdav vdk s{ivae zkgazfkf vdk pkvhvhles whvd vdk skesk ln ae ljihgavhle vl n{ifiii dhs pazv ln vdk cle/ vzacv hs aisl appazkev nzlo vdk okvhc{il{s zkclzfheg he vdk oazghes ln vdk flc{okevs ln vdk aol{evs aef,lz plshvhles gzaevkf vl vdk pkvhvhlekzs% Aelvdkz nkav{zk ln vdk wai ai/o{w ai/o{w i i v v clevzacv‖vdav vdk cihkev hs elv s{pplskf vl da~k a eavai gzl{p‖aisl oaehnksvkf hvskin he vdk pzacvhck ln bh bhss~k jadası pkvhvhles%1> As whii jk plhevkf l{v jkilw) a shgehficaev e{ojkz ln vdk ekw O{sihos wdl s{johvvkf pkvhvhles vl
Skk hjhf%) 46 aef vdk sl{zcks gh~ke vdkzk% Hjhf% 1; Skk kspkchaiix EPVA TT 1Y:4) n% :> $Appkefht 1) Flc{okev >(% 1> Acclzfheg vl Daiiaq) s{cd a clevzacv was spkch ficaiix fkshgekf vl pzl~hfk nlz vdlsk ele/O{sihos wdl fl elv da~k kthsvheg zkiavhlesdhps‖skk Daiiaq) ’[sk aef Aj{sk)‟ 4;% 13 16
1;;
vdk s{ivae) jkilegkf vl vdhs cavkglzx% Olzkl~kz) he slok casks ae kff lzv lzv skkos vl da~k jkke oafk le vdk pazv ln vdk pkvhvhlekz vl appkaz vl clenlzo vl s{cd a czhvkzhle%17 :( Whvd zkgazf zkgazf vl vl vdk flc{okev flc{okevheg heg ln cle~kzs cle~kzshle) hle) hv sdl{if sdl{if jk plhevk plhevkf f l{v vdav he kazix Hsiao vdk pzacvhck was elv acclopaehkf jx a zhv/ {ai lz saczaokevai pkznlzoaeck kq{h~aikev vl japvhso) elz was aex zkghsvzavhle lz flc{okevazx pzlln ln cdaegk ln zkihghle fkoaefkf% Vdk nlzoai pzlckss ln cle~kzshle was shopix ihohvkf vl vdk pzl/ e{echavhle ln vdk adafkv $Az% sdad fa (%14 Cleskq{kevix) ihvvik was ktpkcvkf sphzhv{aiix lz hevkiikcv{aiix ln vdk kazix cle~kzvs vl Hsiao% 18 Ek~kzvdkikss) acclzfheg vl J{iihkv) a cdaegk he vdk cdazacvkz ln cle/ ~kzshle lcc{zzkf he vdk vkevd $nl{zvd Hsiaohc( ckev{zx wdke cle~kz/ shle caok vl jk zkgazfkf aisl as a oavvkz ln jkihkn% :0 He affhvhle vl jkheg a slchl/plihvhcai cdaiikegk) cle~kzshle jkgae vl plsk a sphzh/ v{ai cdaiikegk as wkii% Dlwk~kz) hv was elv {evhi cle~kzshle jkcaok aisl a oavvkz ln ikgai hevkzksv‖vdk iavvkz jkheg lnvke vdk cask whvd cdaegks he oazhvai svav{s lz pzlpzhkvlzsdhp zhgdvs‖vdav vdksk ekw nlzoai zkq{hzkokevs caok vl jk wzhvvke flwe% Vdk m{zhsvs ksvaj/ ihsdkf a skv ln g{hfkiheks vl jk nliilwkf he fkchfheg wdke a cle/ ~kzshle wl{if jk fkkokf ikgaiix ~aihf aef jkgae hss{heg cle~kzshle ckzvhficavks% Acclzfheg vl m{fhchai olfkis ln cle~kzshle ckzvh ficavks nzlo vkevd/ckev{zx Spahe) vdk ekckssazx kikokevs ln cle~kzshle heci{fkf= 1( a svavkokev ln sl{ef okevai dkaivd2 :( a svavkokev ln cle~kzshle vl Hsiao aef zkmkcvhle ln lek‘s nlzokz zkihghle) jlvd {efkzvabke ~li{evazx2 3( zkchvheg vdk adafkv 2 6( {efkzvabheg vl n{i fiii vdk fhff kzkev kzkev f{vhks hoplskf le a O{siho2 aef ;( a zkclzf ln vdk whvekssks vl vdk cle~kzshle%:1 Vdk svzhcv ljskz~aeck ln aii ln vdk ajl~k ikgai pzlckf{zks lz vdkhz pzkchsk zkpzlf{cvhle he ele/ikgai flc{okevs) s{cd as bh bhs~ s~kk ja jada dası sı pkvh/ vhles cae dazfix da~k jkke ktpkcvkf% Ek~kzvdkikss) hn wk illb av vdk pkvhvhles‘ s{pkzsvz{cv{zk) wdhcd was fksczhjkf he scdkoavhc nlzo he cdapvkz nl{z) lek cae skk vdav vdk kikokevs ln vdk ’el~hck/caihpd‟ zkiavhlesdhp skv azk ~kzx shohiaz vl vdlsk fksczhjkf ajl~k% Vdk kevhvx
17 14 18 :0 :1
Skk kspkchaiix 1AY;7:>; $Appkefht 1) Flc{okev 4(% J{iihkv) ’Svlzhks)‟ 1:8 aef hfko) Cle~kzshle) 33% J{iihkv) ’Svlzhks)‟ 13:% Hjhf% Sdav}ohiikz) ’Oazzhagk)‟ :34%
1;>
fkshgeavkf ’keihgdvkeokev‟ he vdk pkvhvhle‘s s{pkzsvz{cv{zk pkzvahes vl vdk cle~kzv‘s heekz ktpkzhkeck) aef as s{cd hv hefhcavks vdk ~li/ {evazx eav{zk ln vdk iavvkz‘s fkchshle% ’Zkel{eckokev ln nlzokz zkih/ ghle‟ cloks ektv) as he vdk cask ln cle~kzshle ckzvhficavks% ’Kojzacheg Hsiao‟ heci{fks vdk pzle{echavhle ln vdk O{siho czkkf aef vdk aflp/ vhle ln a O{siho eaok% Nheaiix) ’jkheg dlelzkf whvd Hsiao‟ plhevs vl vdk ekw O{siho jkheg va{gdv vdk azvhciks ln nahvd aef vdk cle/ ~kzshle vabheg piack he vdk pzkskeck ln vdk s{ivae% Agahe) H azg{k vdav vdk cilsk shohiazhvx jkvwkke vdk svkps ln cle/ ~kzshle fksczhjkf he bhs~k jadası pkvhvhles aef he vdk olfki cle~kz/ shle ckzvhficavks hs f{k vl vdk vzaesnlzoavhle ln vdksk svkps nzlo ikgai vl olzai cavkglzhks% K~kev{aiix) O{siho slchkvx caok vl pkzckh~k gke{hek cle~kzshle he vkzos ln vdk ksvajihsdkf olzai elzos) m{sv as ekw O{sihos caok vl clenlzo vl s{cd ktpkcvavhles% Vdkzknlzk) flc/ {okevavhle ln ckzvahe nlzoai svkps he lek‘s cle~kzshle) k~ke he a ele/ikgai flc{okev) aivdl{gd elv ekckssazhix nzlo a ikgai plhev ln ~hkw) was m{svhfikf he ihgdv ln ktpkcvkf slchai jkda~hlz% 3( Vdk vdh vdhzf zf hopl hoplzv zvaev aev asp aspkc kcvv ln bh bhs~ s~kk ja jaddas ası ı pkvhvhles hs vdk fieaechai zkwazf vdav was lff kzkf kzkf vl ekw O{sihos {ple cle~kzshle% H fhf elv fief aex k~hfkeck as vl wdke vdhs pzacvhck fizsv jkgae% Olsv ihbkix) vdl{gd) hv fhf elv fkzh~k nzlo slok kazix Hsiaohc ikgai pzacvhck) as was vdk cask whvd vdk lvdkz vwl aspkcvs ln bhs~k jadası pkvhvhles% As hs k~hfkev nzlo vdk ’ikgai gzl{efs nlz zkq{ksv‟ cloplekev ln vdk pkvhvhle‘s s{pkzsvz{cv{zk) vdk ekw O{sihos) ihbk vdk Lvvloae fieaechai a{vdlzhvhks he vdkhz keflzskokevs) zknkz he vdkhz pkvhvhles ktci{sh~kix vl s{ivaehc iaw $bae{e ( ( lz vl ksvajihsdkf c{svlo $o{vaf) afk (% v Hsiaohc iaw $ kzhav ( hs ek~kz okevhlekf% Olzkl~kz) aivdl{gd vdk vdzkk vkzos‖ afkv) o{vaf aef bae{e‖ skko skko vl jk {skf q{hvk hevkzcdaegkajix he vdk pkvhvhles) vdk l~kzaii hopzksshle hs vdav vdk vkzo bae{e was {skf heczkashegix olzk lnvke anvkz 1700 vdae vdk lvdkz vwl% A pzljajik zkasle nlz vdhs {sagk oax da~k jkke vdk hss{aeck ln a nlzoai kfhcv ln vdk s{ivae zkgazfheg ekw O{sihos azl{ef vdhs favk% Vdk kfhcv oax da~k cleskq{kevix jkke heci{fkf he vdk bae{eeaok s:: aef wl{if vd{s da~k jkclok a iaw) vl wdhcd vdk ekw O{sihos ohgdv da~k zknkzzkf as ikgai pzkckfkev he vdk pkvhvhles% [}{eçaz ıiı okevhles vdk kthsvkeck ln a ckzvahe Bae{e/h ek~oùsiho he vdk bae{e/ eaok s whvdl{v) dlwk~kz) spkchnxheg vdk favk lz gh~heg a zknkzkeck vl vdk pazvhc{iaz bae{eeaok $[}{eçaz ıiı) Okzbk} ) :4(% ::
1;7
Ek~kzvdkikss) H ao zki{cvaev vl avvzhj{vk vdk lzhghes ln vdk pzac/ vhck ln gzaevheg bh bhss~k jadası slikix vl vdk Lvvloae pkzhlf% Anvkz aii) a vdklilghcai m{svhficavhle nlz vdk spkchai vzkavokev ln a cle~kzv vl Hsiao hs nl{ef he a passagk ln vdk Q{zae) S{zad :4) wdhcd oax jk hevkzpzkvkf he vdk skesk vdav s{cd a pkzsle fkskz~ks a zkwazf nlz fhsckzeheg vdk vz{k nahvd he sphvk ln vdk kzzlzs he dhs {pjzhegheg= ;1% Vdlsk {evl wdlo Wk ga~k vdk Sczhpv{zk jknlzk hv Rvdk Q{zae_) vdkx jkihk~k he hv% ;:% Aef wdke hv hs zkchvkf {evl vdko) vdkx sax= Wk jkihk~k he hv% Il! Hv hs vdk Vz{vd nzlo l{z Ilzf% Il! Wk wkzk O{sihos jknlzk vdhs% ;3% Vdksk whii jk gh~ke vdkhz zkwazf vwhck l~kz) jkca{sk vdkx azk svkafnasv aef zkpki k~hi whvd gllf) aef spkef ln vdav wdkzkwhvd Wk da~k pzl~hfkf vdko%:3
N{zvdkzolzk) as J{iihkv ljskz~ks) ’gh~ke vdk pikvdlza ln kazix zksvzhc/ vhles le vdk clsv{ok ln ele/O{sihos aef nzkq{kev hefhcavhle ln eaok cdaegheg {ple cle~kzshle) hv skkos ihbkix vdav vdksk wkzk vdk olsv appazkev hefhcavlzs ln cle~kzshle vl Hsiao%‟ :6 Vdkzknlzk) wk oax ktpkcv vdav a ekw skv ln cilvdks oax da~k jkke gh~ke he vdk k~kev ln a cle~kzshle‘s jkheg oafk p{jihc) as he vdk cask ln bhs~k jadası pkvhvhles% Hefkkf) he vdk accl{ev ln vdk vza~kikz Scdhivjkzgkz) wdl fksczhjkf dlw a Cdzhsvhae jkcaok O{siho he finvkkevd/ckev{zx Aeavliha) wk fief vdk pzacvhck ln gh~heg cilvdks aef ghnvs vl a cle/ ~kzv aizkafx ae ksvajihsdkf c{svlo% Wdke a Cdzhsvhae waevs vl jkclok ae Hefifki) dk o{sv jknlzk aii oke zahsk a fiegkz) aef sax vdk wlzfs= ’Ia hi iacd hiiaiiacd‟2 Oacdokv hs dhs vz{k oksskegkz% Aef wdke dk saxs vdhs) vdkx vabk dho vl vdk dhgd pzhksv2 vdke dk o{sv zkpkav vdk ajl~k wzhvvke wlzfs jknlzk vdk pzhksv) aef o{sv fkex vdk Cdzhsvhae nahvd) aef wdke dk das flek vdav) vdkx p{v le dho a ekw fzkss) aef vdk pzhksv jhefs a ekw bkzcdhkn le dhs dkaf2 aef vdhs vdkx fl vdav hv oax jk skke dk hs ae hefifki) jkca{sk Cdzhsvhaes wkaz ji{k bkzcdhkns) aef vdk Mkws) xkiilw bkzcdhkns) le vdk dkaf% Vdke vdk pzhksv asbs aii vdk pklpik vl p{v le vdkhz azol{z) aef wdl das vl zhfk) zhfks2 aisl aii vdk pzhksvs wdl azk he vdk ekhgdjlz/ dllf% Aef wdke vdk pklpik clok) vdkx p{v dho le a dlzsk) aef vdke vdk cloole pklpik o{sv zhfk jknlzk dho) aef vdk pzhksvs gl jkdhef dho) whvd vz{opkvs) cxojais aef finks) aef vwl pzhksvs zhfk ekaz dho2
S{zad :4 nzlo Vdk Gilzhl{s Q{z ae Q{z ae) ktpiaeavlzx vzaesiavhle jx Oldaooaf O% Phcbvdaii $Cdhcagl) 1886() 604% :6 J{iihkv) ’Svlzhks)‟ 130% :3
1;4
aef sl vdkx ikaf dho ajl{v he vdk vlwe2 aef vdk Hefifkis czx whvd a il{f ~lhck aef pzahsk Oacdokv) aef vdk vwl pzhksvs sax vl dho vdksk wlzfs= ’Vdazx whzf{z) Okssk cd{ihf{z) Oazha caza jascdhf{z) Oacdokv bass{if{z‟= wdhcd hs as o{cd as vl sax2 Vdkzk hs lek Glf) aef vdk Oksshad dhs skz~aev) Oazx dhs oahf) aef Oacdokv dhs cdhkn oksske/ gkz% Anvkz vdkx da~k ikf dho k~kzxwdkzk he vdk chvx) nzlo lek svzkkv vl aelvdkz) vdke vdkx ikaf dho hevl vdk vkopik aef chzc{ochsk dho% Hn dk hs pllz) vdkx oabk a iazgk cliikcvhle aef gh~k hv vl dho) aef vdk gzkav ilzfs sdkw pazvhc{iaz dlelz vl dho) aef oabk dho zhcd2 vdhs vdkx fl) vdav Cdzhsvhaes oax jk olzk whiiheg vl jk cle~kzvkf vl vdkhz nahvd% Hn hv hs a wloae wdl waevs vl cdaegk dkz zkihghle) sdk hs aisl vabke vl vdk dhgd pzhksv) aef o{sv sax vdk ajl~k wlzfs% Vdk pzhksv vdke vabks vdk wloae‘s ghzfik) c{vs hv he vwl) aef oabks ln hv a czlss2 le vdhs) vdk wloae o{sv svaop vdzkk vhoks) fkex vdk Cdzhsvhae nahvd) aef o{sv sax vdk lvdkz wlzfs ajl~k wzhvvke% :;
Vdk cle~kzshle zhv{ai fksczhjkf jx Scdhivjkzgkz hs aisl shgeh ficaev jkca{sk hv sdlws vdk n{shle ln aii vdzkk pzacvhcks av vdk nlib/c{iv{zk ik~ki aizkafx he vdk finvkkevd ckev{zx% Elvwhvdsvaefheg vdk hevkzwl/ ~ke nlibilzhc kikokevs) wk cae skk vdk saok nlzoai svkps fksczhjkf he vdk cle~kzshle ckzvhficavks aef he vdk bh bhss~k jadası pkvhvhles av vdk kef ln vdk sk~kevkkevd ckev{zx% Vdk cle~kzv hs zkq{hzkf vl zkchvk vdk Hsiaohc czkkf% Dk o{sv aisl fkex dhs nlzokz nahvd aef jk gh~ke a jashc belwikfgk ln O{siho flgoa% Ektv) vdk ekw O{siho hs chz/ c{ochskf% Olzkl~kz) he vdk vzafhvhle ln wai ai/o{w ai/o{w i i v v ) dk hs vabke hevl vdk pzkskeck ln pzlohekev O{sihos) wdl dlelz dho whvd vdkhz avvkevhle aef oabk s{zk vdav dk af~aecks {p vdk slchai iaffkz% Olzk vaeghjik zkwazfs azk aisl lff kzkf= kzkf= vdk ekw O{siho hs gh~ke a ekw skv ln cilvdks) vl fhsvheg{hsd dho nzlo ele/O{sihos aef ae aol{ev ln olekx cliikcvkf nzlo aoleg vdk okojkzs ln dhs ekw cloo{ehvx% Hesvhv{vhleaih}avhle ln Bhs~k Jadası Pzacvhck
Dlwk~kz) n{shle ln vdk vdzkk pzacvhcks he plp{iaz c{iv{zk hs q{hvk a fhff kzkev kzkev vdheg nzlo hvs jkheg ksvajihsdkf as a svzkaoihekf afohehs/ vzavh~k hesvhv{vhle) as was vdk cask whvd bh bhss~k jadası pkvhvhles av vdk kef ln vdk sk~kevkkevd ckev{zx% Vdk appkazaeck ln bh bhs~ s~kk jad adaası pkvh/ vhles he vdk iasv fkcafks ln vdk sk~kevkkevd ckev{zx) le vdk lvdkz
:;
Chvkf jx ^zxlehs) Fkcihek ) 3;7–3;4%
1;8
daef) oax jk zkgazfkf as vdk fieai svagk he vdk hesvhv{vhleaih}avhle ln vdk pzacvhcks% Xkv) dlw fhf vdkx k~li~k hevl a svavk hesvhv{vhle< Nhzsv) H azg{k vdav vdk n{shle ln vdk vdzkk Hsiaohc pzacvhcks acclo/ paehks a pazvhc{iaz svagk ln O{siho slchkvx‘s fk~kilpokev he aex gh~ke azka% As plhevkf l{v ajl~k) vdk nlzoai svkps ln cle~kzshle aef cle~kzshle ckzkolehks vdav appkazkf he vdk vkevd ckev{zx $nl{zvd Hsiaohc ckev{zx( shgehfikf a oazbkf cdaegk he vdk eav{zk ln cle~kz/ shle he vdk ckevzai Hsiaohc iaefs% Vdk hopacv ln vdhs fk~kilpokev was vdav) as jkihkn jkcaok a olzk pzlohekev nacvlz he cle~kzshle) zkshsvaeck vl vdk iavvkz heczkaskf clzzksplefhegix% Acclzfheg vl J{iihkv) ’vdk zkoeaev Rele/O{siho_ cloo{ehvhks wkzk olzk s{cckssn{i he nkefheg lff O{sihos wdl caok vl vdko whvd skzoles vdae vdkx daf jkke he zkshsvheg vdk avvzacvhles ln slchai asshohiavhle vl a z{iheg ciass vdav oafk nkw fkoaefs av vdk ik~ki ln nahvd%‟ :> As a zks{iv) cle~kz/ shle vapkzkf lff % Vdk saok pzlckss lcc{zzkf he }leks ln nzksd cle~kzshle) s{cd as Aeavliha aef vdk Jaibaes) aii l~kz agahe%:7 Hv flks elv skko vl ok clhechfkevai vdav vdk cle~kzshle zhv{ai zkclzfkf jx Scdhivjkzgkz cloks nzlo vdk finvkkevd ckev{zx) wdhcd was wdke vdk ’iaggazfs‟ pkzhlf svazvkf he Aeavliha) h%k%) vdk pkzhlf wdke cle~kzshle was vapkzheg lff he vdhs azka%:4 Hv cl{if jk azg{kf) vdkzknlzk) le vdk jashs ln aeai/ lgx whvd vdk fk~kilpokev ln vdk cle~kzshle pzlckss he vdk ckevzai Hsiaohc iaefs):8 vdav vdk finvkkevd ckev{zx was vdk pkzhlf wdke zkih/ ghl{s jkihkns jkcaok hoplzvaev he Aeavlihae O{siho slchkvx aef vd{s ikf vl vdk appkazaeck ln cle~kzshle ckzkolehks% He vdk Jaibaes) hv was ljskz~kf vdav vdk kazix svagks ln vdk cle/ ~kzshle pzlckss wkzk aisl acclopaehkf jx zkihghl{s sxeczkvhso%30 Vdk nkv~a s fhsc{sskf he cdapvkz vdzkk zk~kai vdav hv was leix vlwazfs vdk kef ln vdk sk~kevkkevd ckev{zx vdav O{siho slchkvx jkgae vl fkoaef olzk nzlo hvs ekw okojkzs f{k vl vdk gzlwvd ln zkihghl{s cleskz/ ~avhso% Hv was aisl sdlwe vdav cle~kzshle s{ffkeix ilsv olokev{o
:>
J{iihkv) ’Svlzhks)‟ 13:% Skk hjhf% nlz shohiaz ljskz~avhle whvd zkgazf vl Aeavliha% :4 Skk cdapvkz lek% :8 Hv cl{if jk ljskz~kf vdav vdk vkevd ckev{zx was vdk jkgheeheg ln vdk ’iag/ gazfs pkzhlf‟ he vdk pzlckss ln cle~kzshle he vdk ckevzai Hsiaohc iaefs% Acclzfheg vl J{iihkv) vdk ’iaggazfs‟ pkzhlf svazvkf azl{ef 87; he Hzaq) Kgxpv) Sxzha aef V{ehsha) lek ckev{zx kazihkz he Hzae aef lek ckev{zx iavkz he Spahe) f{k vl a iavkz cleq{ksv% Skk J{iihkv) Cle~kzshle) passho% 30 Skk cdapvkz vdzkk% :7
1>0
he vdk Jaibaes av vdk jkgheeheg ln vdk khgdvkkevd ckev{zx% S{cd fk~kilpokevs dkip vl ktpiahe vdk appkazaeck ln ckzkolehks aef flc/ {okevavhle ln cle~kzshle he vdk skclef dain ln vdk sk~kevkkevd cke/ Bhs~ s~kk ja jada dası sı pkvhvhles) vdkzknlzk) oax jk zkgazfkf as flc{okevazx v{zx% Bh k~hfkeck nlz vdk hevzlf{cvhle ln kiajlzavk zkihghl{s pzlckf{zks acclo/ paexheg lek‘s cle~kzshle vl Hsiao he vdk Lvvloae Kophzk ln vdhs pkzhlf% He affhvhle vl vdk zkihghl{s shfk ln vdk cle~kzshle) zkpzkskevkf jx vdk ’caihpd/el~hck‟ zkiavhlesdhp kojkffkf he vdk pkvhvhles‘ s{pkz/ svz{cv{zk) vdkzk was aisl vdk oavkzhai shfk) zkpzkskevkf jx vdk ’s{j/ mkcv/z{ikz‟ zkiavhlesdhp skv% Vdk heclzplzavhle ln vdk iavvkz aspkcv he a cle~kzshle flc{okev was a ekw fk~kilpokev‖lek vdav oax da~k kecl{zagkf vdk hesvhv{vhleaih}avhle ln vdk pzacvhck% Lek sdl{if elv nlzgkv vdav vdk vkzo bh bhs~ s~kk ja jada dası sı ) as {skf he vdk pkvhvhles) was as o{cd zkiavkf vl a zkihghl{s pzacvhck as hv was vl Lvvloae accl{evheg pzl/ ckf{zks% He vdk iavvkz skesk) vdk vkzo was ksskevhaiix a j{fgkvazx ihek hvko accl{evheg nlz n{efs spkev nzlo vdk vzkas{zx le jkdain ln ekw O{sihos% Wdke ktacvix hv kevkzkf vdk accl{evheg jllbs) dlwk~kz) hs elv cikaz% H azg{k vdav vdhs ohgdv da~k dappkekf he vdk skclef dain ln vdk sk~kevkkevd ckev{zx as wkii‖sho{ivaekl{six whvd vdk vzaes/ nlzoavhle ln cle~kzshle hevl a zkihghl{s acv% He s{pplzv ln s{cd a dxplvdkshs) H fhsc{ss he vdk nliilwheg pagks sk~kzai flc{okevs vdav zkkcv vdk pzacvhck ln zkwazfheg ekw O{sihos whvd cilvdheg aef olekx aef vdk accl{evheg nlz vdksk ktpkesks jx vdk vzkas{zx av vdk jkgheeheg ln vdk sk~kevkkevd ckev{zx% Sk~ke ln vdk flc{okevs azk nzlo vdk azcdh~k ln vdk Pzhok Ohehsvkz he Hsvaej{i) favkf Mae{azx 3) 1>10 $7 k~~ai 1014() wdhcd zkclzf vdk ktpkesks zkiavheg vl vke ekw O{sihos‖ fi~k wloke aef fi~k oke%31 Ae hfke/ vhcai flc{okev) favkf Oazcd >) 1>1: $3 O{dazzko 10:1( aef zkiav/ heg vl lek ekw O{siho) hs pzkskz~kf he vdk azcdh~k ln vdk Eavhleai Ihjzazx ln J{igazha%3: Aelvdkz vwl) favkf Apzhi 4 aef Oax :6) 1>1> $:1 Zkjhùiadız aef 4 Ckoa}hùik~~ki 10:;( aef zkiavheg vl nl{z ekw O{sihos) azk p{jihsdkf jx [}{eçaz ıiı%33 Vdk flc{okevs azk wzhvvke le ~kzx soaii phkcks ln papkz he shxabav sczhpv% Vdkhz vktv jkghes whvd vdk pdzask ’acclzfheg vl vdk c{svlo ln ekw O{sihos‟ $ afkv/h ek~ oùs/
31 3: 33
Skk JLA) Aih Kohzh) Adokf H) 7;7% 1AY;>303% [}{eçaz ıiı) Okzbk} ) :8%
1>1
iho (% Vdke) vdkx ihsv vdk ekw O{siho eaok$s( ln vdk cle~kzv$s() vdkhz e{ojkz $eknkzke () () aef vdk vdk hvkos hvkos gh~ke‖he~azha gh~ke‖he~azhajix jix a v{zjae v{zjae cilvd cilvd $fksvaz ( aef ;0 abçk s he casd $eabfhxk ( pkz pkzsle he aii vdk flc{okevs% Le vdk oazghes ln kacd ln vdksk flc{okevs wk fief ae keflzskokev jx ja fknvkzfaz fknvkzfaz ) a elvk nzlo vdk ja ja o{daskjk o{daskjk hesvz{cvheg vdav a Vzkas{zx vdk ja jhii ln ktcdaegk $vk}bkzk/h da}hek ( jk hss{kf) aef aelvdkz elvk nlz zkg/ hsvkzheg vdk ktpkesk% H lff kz kz vdk nliilwheg hevkzpzkvavhle aef clo/ okevs le vdksk flc{okevs%
1% Vdk papkz papkz sh}k) sh}k) sczhpv sczhpv aef s{cchecv s{cchecv iaeg{agk ln vdksk vdksk flc{okevs flc{okevs aii hefhcavk vdav vdkx azk ln a svzhcvix fieaechai cdazacvkz aef vdav vdkhz n{ecvhle was vl skz~k as ae hevkz/fkpazvokevai ktcdaegk ln henlzoavhle% He ox lphehle) vdkx zkiavk vl vdk Lvvloae cdaeckzx gkezk belwe as bahok %36 Vdk iavvkz was a flc{okev {skf jx aii ja o{daskjk o{daskjk fieaechai fkpazvokevs vl elvhnx vdk fkpazvokev ln vdk ja vdav a Vzkas{zx jhii $ vk}bkzk/h da}hek ( ekkfkf vl jk hss{kf% :% As hs k~hfkev nzlo vdk vdk hesczhpvhl hesczhpvhles es le vdk vdk oazghes oazghes ln vdk flc{/ flc{/ okevs) wdhcd azk shohiaz vl vdlsk ljskz~kf he vdk cask ln bhs~k jadası pkvhvhles) vdk j{zka{czavhc pzlckf{zk nlz zkwazfheg ekw O{sihos av vdk kef ln vdk sk~kevkkevd ckev{zx was aizkafx he piack av hvs jkgheeheg% 3% Olzkl~kz) Olzkl~kz) vdk vdk {sagk {sagk ln vdk vdk wlzf wlzf ’c{svlo‟ ’c{svlo‟ he he vdk flc{oke flc{okevs vs okaes vdav fhsvzhj{vheg pzkskevs aef casd vl ekw O{sihos was aizkafx ae ksvajihsdkf vzafhvhle jx vdk sk~kevkkevd ckev{zx% 6% Dlwk~kz) Dlwk~kz) vdk flc{oke flc{okevs vs aisl aisl zk~kai zk~kai vdav vdav av vdk jkgheeheg jkgheeheg ln vdk vdk sk~kevkkevd ckev{zx vdk vzkas{zx cl{if zkwazf ekw O{sihos whvd olekx leix le spkchai lccashles% Vdk hesczhpvhle ’f{zheg vdk saczkf nkasv‟ $fkz hxf/h kzhn ( ( vl jk ljskz~kf he lek ln vdk flc{/ okevs3; sdlws vdav vdk ktpkesks accl{evkf nlz wkzk asslchavkf whvd nksvh~k lccashles f{zheg wdhcd aiosgh~heg jx okojkzs ln vdk hopkzhai naohix wl{if lcc{z% Jx clevzasv) f{zheg vdk iasv fkcafks ln vdk sk~kevkkevd ckev{zx) ekw O{sihos wkzk acckpvkf aef zkwazfkf he vdk paiack le a fahix jashs% Nlz ktaopik) he vdk
36 3;
Skk nlz vdhs gkezk ^kibl~) ^hfl~k ) 11:–117% JLA) Aih Kohzh) Adokf H) 7;7) n% 1%
1>:
zkghsvkz ln 1>78–40 nlz vdk ktpkesks ln ekw O{sihos) wk cae ljskz~k vdk favks ln cle~kzshle he vdk zlxai pzkskeck ln vdk :: ekw O{sihos zkwazfkf he vdk olevd ln Ckoa}hùik~~ki % Vdk fig{zks) jzlbke flwe jx favk) azk as nliilws= le vdk ;vd‖1 ekw O{siho2 le vdk 7vd‖:2 le vdk 1:vd‖12 le vdk 16vd‖12 le vdk 1;vd‖ :2 le vdk :1sv‖32 le vdk ::ef‖:2 le vdk :7vd‖12 le vdk :8vd‖ :2 aef le vdk 30vd fax ln vdk olevd‖7% 3> Vdkzk hs el jzkabflwe jx favk nlz vdk zksv ln vdk xkaz% Dlwk~kz) hv oax jk ljskz~kf vdav vdk e{ojkz ln ekw O{sihos zkghsvkzkf he olsv ln vdk olevds ktckkfkf vdk e{ojkz ln faxs he vdlsk olevds%37 Vd{s) hv hs ihbkix vdav cle~kzshles he vdk zlxai q{azvkzs lcc{zzkf av ae k~ke olzk nzkq{kev zavk vdae vdk cask ljskz~kf ajl~k% ;% Olsv Olsv hopl hoplzv zvaev aevix ix)) elwdkz elwdkzkk fl wk fief vdk vkzos bhs~k lz bhs~k jadası pkz sk {skf he vdksk flc{okevs% Hesvkaf) vdkx okevhle vdk wlzf ’ahfk ‟ $ghnv(%34 Vdhs nacv) fizsv ln aii) zkaffizos vdk ajl~k ljskz/ ~avhle ajl{v vdk lccashleai eav{zk ln vdk zkwazfs% Skclef) ’ahfk ‟ svaefs he clevzasv vl vdk vkzohelilgx {skf iavkz wdke vdk pzac/ vhck ln s{johvvheg bh bhss~k jadası pkvhvhles was ksvajihsdkf% Elz cae vdk ajskeck ln vdk vkzo bh bhs~ s~kk ja jada dası sı jk avvzhj{vkf vl vdk nacv vdav vdksk flc{okev flc{okevss wkzk hss{kf as nliilw/{ps nliilw/{ps vl vl vdk hehvhai hehvhai lzfkz% lzfkz% Hv sdl{if jk plhevkf l{v vdav he vdk pkzhlf 1>70s–1730s) vdk vkzo bhs~ bh s~kk ja jada dası sı was he~azhajix {skf elv leix he pkvhvhles j{v he vdkhz nliilw/{p flc{okevs as wkii% Vdk iavvkz wl{if vxphcaiix svazv whvd ’jkzax jada/h bhs~k/h ek~ oùsiho ‟ lz shopix ’jada/h bhs~k/h ek~ oùsiho ‟ $Rktpk $Rk tpkesk esks_ s_ nlz vdk vdk kq{h~a kq{h~aike ikevv ln a ekw O{sih O{siho‘s o‘s cilv cilvdks dks%% % % %‟ Vdk clheheg ln a spkchai cdaeckzx vkzo clevaheheg vdk wlzf jada sdlws vdav vdk pzacvhck was zl{vheh}kf) wdhik vdk wlzf bhs~k ) a sxojli ln vdk acv ln cle~kzshle) as hvs afmkcvh~k) fkolesvzavks vdk hoplz/ vaeck ln zkihghl{s ~ai{ks he vdk pzacvhck ln bh bhss~k jadası pkvhvhles% Vl s{ooazh}k) vdk khgdv flc{okevs sdlw vdav aii kikokevs ln vdk oavkzhai shfk ln vdk bh bhs~ s~kk ja jada dası sı pzacvhck wkzk he piack as kazix as vdk jkgheeheg ln vdk sk~kevkkevd ckev{zx) heci{fheg vdk elvhle ln zkwazf/ heg ekw O{sihos) vdk he~li~kokev ln vdk zlxai naohix $aef vd{s) vdk 1Y10417) n% 1j% Skk elvk 6 ajl~k% 34 ja fknvkzfaz fknvkzfaz zkafs‖ ok}j{zk ok}j{zk ahfksh ~hzhik $gh~k 1AY;>303% Vdk keflzskokev ln vdk ja vl vdk anlzkokevhlekf dhs ghnv(% 3> 37
1>3
{sk ln olekx nzlo vdk svavk vzkas{zx vl pax nlz vdk zkwazfs() aef fieaiix) vdk fieaechai pzlckf{zks nlz accl{evheg nlz s{cd ae ktpkesk% Ek~kzvdkikss) ekhvdkz vdk zkg{iaz pzacvhck ln afohvvheg ekw O{sihos hevl vdk paiack aef gh~heg vdko zkwazf/olekx elz vdk vkzo bhs~k jadası hvskin kthsvkf av vdk vhok% Vdk aoaigaoavhle ln vdk ’zhv{ai‟ aef ’oavkzhai‟ shfks ln cle~kzshle he vdav pzacvhck was leix oafk plsshjik wdke vdk acv ln cle~kzshle jkcaok elv leix ae ktpzksshle ln slchai accloolfavhle j{v ae acv ln zkihghl{s shgeh ficaeck as wkii% As H azg{k ajl~k) vdhs oax elv da~k dappkekf {evhi vdk iasv fkcafks ln vdk sk~kevkkevd ckev{zx% He ox lphehle) vdkzk wkzk vwl olzk fk~kilpokevs he sk~kevkkevd/ ckev{zx Lvvloae slchkvx vdav dkipkf vl vzaesnlzo vdk pzacvhck ln zkwazfheg ekw O{sihos hevl ae hesvhv{vhle% As ljskz~kf he cdapvkz nl{z) acclzfheg vl vdk pkvhvhles) hv was aisl c{svloazx nlz ekw O{sihos wdl cle~kzvkf av vdk daefs ln lvdkz Lvvloae fhgehvazhks vl s{johv bhs~ s~kk ja jaddas ası ı ohgdv jk pahf vl vdko% S{cd a pzac/ pkvhvhles sl vdav vdk bh vhck hs elv {enaohihaz vl Hsiaohc slchkvx% Acclzfheg vl Hsiaohc iaw) a ele/O{siho cle~kzvkf av vdk daefs ln lek O{siho oax sho{ivaek/ l{six kevkz hevl a wai ai/o{w ai/o{w i i v v clevzacv whvd aelvdkz O{siho%38 Dlwk~kz) vdk kthsvkeck ln a ikgai cia{sk m{svhnxheg a sho{ivaekl{s clevzacv flks elv ktpiahe wdx vdk iavvkz was sl whfkspzkaf he vdk iavk sk~kevkkevd aef kazix khgdvkkevd/ckev{zx Lvvloae Kophzk% Vdk paxokevs vl ekw O{sihos) wdl cle~kzvkf av vdk daefs ln O{sihos lvdkz vdae vdk s{ivae) whvd olekx nzlo vdk p{jihc vzkas{zx) clesvh/ v{vkf he kff kcv kcv ae appzlpzhavhle ln svavk olekx jx vdk elokebiav{za vl cl~kz ktpkesks nlzokzix cleshfkzkf pkzsleai% S{cd a fk~kilpokev hefhcavks vdav vdk pzacvhck ln zkwazfheg ekw O{sihos was vzaes/ nlzokf nzlo ae ktpzksshle ln pkzsleai phkvx aef gkekzlshvx hevl a svavk hesvhv{vhle% Vdk cdaegk was elv clhechfkevai% As sdlwe he cdap/ vkz vdzkk) vdk vdhzf pkzhlf he vdk k~li{vhle ln vdk fk~ hzok hesvhv{/ vhle‖h%k%) vdk fk~ hzok s‘ s‘ vlvai olelplix ln plwkz‖was lek he wdhcd svavk pzlpkzvx daf jkke vzaesnlzokf hevl fk nacvl elokebiav{za pzlp/ kzvx) a vzkef vdav daf kokzgkf av vdk jkgheeheg ln vdk sk~kevkkevd ckev{zx% Vdk appkazaeck ln vdk bh bhs~ s~kk ja jaddas ası ı pzacvhck hs shopix n{zvdkz k~hfkeck nlz vdk Lvvloae kihvk jkcloheg ae kojlfhokev ln vdk svavk hvskin aef vdk p{jihc vzkas{zx jkheg vzkavkf as vdk pzh~avk p{zsk ln vdk nlzokz%
38
Skk Daiiaq) ’[sk aef Aj{sk)‟ 46%
1>6
Olsv pzljajix) dlwk~kz) hv was elv vdk fieaechai gahes vdav olvh/ ~avkf vdk elokebiav{za vl cdaegk vdk ksvajihsdkf c{svlos ln zkwazf/ heg ekw O{sihos% He ox lphehle) vdhs caok ajl{v as a zks{iv ln vdk cdaegks whvdhe vdk fk~ hzok hesvhv{vhle hvskin% Lek ln vdk iavvkz‘s cdaz/ acvkzhsvhc nkav{zks f{zheg vdk pkzhlf {efkz cleshfkzavhle was hvs zkihaeck le vdk hevkzeai pzlolvhle ln naohix okojkzs aef pzlvègès) zavdkz vdae zkg{iaz ik~hks fzawe nzlo vdk zkaxa % Jx da~heg cle~kzvs/ c{o/pzlvègès cleshfkzkf as cihkevs ln vdk czlwe aef cleskq{kevix zkwazfkf whvd p{jihc n{efs aef applhevokevs) vdk elokebiav{za ksskevhaiix vzaesnlzokf a zkihghl{s c{svlo hevl ae hoplzvaev hesvz{/ okev ln hesvhv{vhleai svzkegvd‖hefkkf) hevl ae hesvhv{vhle jx hvskin% Nlz ktaopik) he a flc{okev) favkf 1>>3) hv hs okevhlekf vdav vdk :;: ~acaev Maehssazx plshvhles he vdk Ckjkch clzps wkzk fiiikf jx paiack skz~aevs $kokbfaz () sles ln Maehssazhks $b{il i{ ( ( aef ekw O{sihos $ek~ oùsiho (%60 s~kk jadası pkvh/ Hv wl{if jx fh ffic{iv vl azg{k) dlwk~kz) vdav aii bhs~ vhles wkzk s{johvvkf jx pzlvègès ln vdk elokebiav{za% Hv hs ~kzx ihbkix vdav vdk whfkspzkaf hechfkevs ln ekw O{sihos jkheg zkwazfkf whvd olekx) aef kspkchaiix whvd applhevokevs) hehvhavkf a cdahe zkac/ vhle he vdk ilwkz ciassks ln Lvvloae slchkvx as wkii% As plhevkf l{v he cdapvkz vdzkk) vdk fkshzk nlz slchai af~aeckokev was a oamlz nac/ vlz) lek vdav lnvke olvh~avkf okojkzs ln vdk zkaxa vl cle~kzv vl Hsiao% Vdk clzekzsvlek nlz s{cd olvh~avhle was vdk pzlspkzhvx ln vdk zkaxa /jlze) /jlze) fk~ hzok /zahskf /zahskf kihvk% Whvd vdk zkg{iaz cliikcvhle ln zkaxa cdhifzke nlz vdk Maehssazx clzps kefheg he vdk ohffik ln vdk sk~ke/ vkkevd ckev{zx) dlwk~kz) slchai pzkss{zk oax da~k acc{o{iavkf whvdhe vdk ilwkz ciassks nlz fiefheg lvdkz a~ke{ks ln slchai oljhihvx% Zkaxa okojkzs) asphzheg vl vdk svav{s ln Maehssazx) lz shopix ekkfheg vdk olekx vl fief a wax l{v ln fhzk fieaechai svzahvs) oax da~k skh}kf vdk lpplzv{ehvx lff kzkf kzkf jx vdk hesvhv{vhleaih}kf pzacvhck ln zkwazf/ heg ekw O{sihos nlz acckpvheg Hsiao% Vdk ilwkz ciassks‘ acvh~k zlik he vdk sdapheg ln vdk pzacvhck ln bh bhs~ s~kk jadası fiefs hvs ktpzksshle he vdk iavvkz‘s {ivhoavkix vabheg vdk nlzo ln pkvhvhle/s{johvvheg) wdhcd was vdk leix okaes a~ahiajik vl vdk oassks ln cloo{ehcavheg vdkhz whsdks%
60
Vk bhiavıefae Bapıb{i{ Lcabiazı ) ~li% : $Aebaza) Skk %D% [}{eçaz ıiı) Lsoaeiı Fk~ikvh Vk bhiavıefae 1866() >%
1>;
S{ooazx
1% Vdk Vdk hes hesvh vhv{ v{vh vhle le ln bh bhs~ s~kk jadası kokzgkf he vdk skclef dain ln vdk sk~kevkkevd ckev{zx aef clesvhv{vkf a slchai pdkelokele he vdk pkzhlf 1>70s–1730s he pazvhc{iaz% Aivdl{gd zkiavkf vl kazihkz Hsiaohc pzacvhcks) wdhcd) as a z{ik) oaehnksvkf vdkoski~ks av a pazvhc{iaz svagk he vdk fk~kilpokev ln vdk pzlckss ln cle~kzshle) vdk bhs~k jadası hesvhv{vhle pkzvahes aisl vl vdk {ehq{k slchai shv{/ avhle he vdk Lvvloae Kophzk ln vdk sk~kevkkevd ckev{zx% :% Vdk hesvhv{v hesvhv{vhle hle cleshsvkf cleshsvkf ln ~li{evazx ~li{evazx cle~kz cle~kzshles shles vl vl Hsiao) Hsiao) vab/ vab/ heg piack le ae aiolsv fahix jashs he vdk paiack) he vdk pzkskeck ln vdk s{ivae lz lvdkz dhgd/zaebheg svavk fhgehvazhks) aef ln vdk gzaevheg ln olekx) belwe as bh bhs~ s~kk ja jada dası sı ) aef ilw/zaeb plshvhles vl vdk ekw O{sihos) wdl wkzk cleshfkzkf as a zks{iv ln vdk cle/ ~kzshle vl jk cihkevs ln vdk czlwe% Vdk kiajlzavk afohehsvzavh~k pzlckf{zk nlz vdk zkikask ln n{efs nzlo vdk p{jihc vzkas{zx was aisl ae hevkgzai pazv ln vdk hesvhv{vhle% Vdk ekw O{sihos‘ pkvh/ vhles vl vdk s{ivae) wzhvvke jknlzk lz anvkz vdk cle~kzshle ckzk/ olex) wkzk ae ktpzksshle ln vdk nlzokzs‘ acvh~k plshvhle he skkbheg zlxai na~lz% Vdk pkvhvhles wkzk) av vdk saok vhok) wzhvvke k~h/ fkeck ln vdk clojheavhle ln sphzhv{ai aef oavkzhai aspkcvs ln cle/ ~kzshle aileg whvd Lvvloae j{zka{czavhc kffichkecx he vdk hesvhv{vhle ln vdk bh bhs~ s~kk jad adaası % 3% Nzlo Nzlo vdk plhev plhev ln ~hkw ~hkw ln vdk vdk elokeb elokebiav iav{za {za)) vdk bh bhs~ s~kk jad adas ası ı hesvh/ v{vhle was a okcdaehso nlz af~aecheg pzlvègès) a okcdaehso vdav zkpiackf vdk sxsvko ln cdhif cliikcvhle {skf he pzk~hl{s cke/ v{zhks nlz fiiiheg vdk zaebs ln vdk Maehssazx clzps% Nzlo vdk plhev ln ~hkw ln vdk oassks) vdk bh bhs~ s~kk ja jada dası sı hesvhv{vhle was a jkvvkz aivkz/ eavh~k vl fk~ hzok ik~hks as a okcdaehso nlz slchai af~aeckokev) lz shopix pkzsleai wkinazk) jx ~hzv{k ln hvs kevhzkix ~li{evazx eav{zk%
CDAPVKZ SHT
VDK CLIIKCVH^K HOAGK LN EKW O[SIHOS WDL S[JOHVVKF BHS^K JADASH PKVHVHLES VL VDK S[IVAE) 1>70s–1730s Pzlslplgzapdx aef vdk ’Favajask Oaeagkokev Sxsvko‟ Okvdlf ln Aeaixshs
He cdapvkz fi~k) l{z aeaixshs ln vdk pkvhvhles was jaskf le vdk s{pkz/ svz{cv{zk‘s fava fikifs as clojhekf he zkiavhlesdhp skvs zavdkz vdae le vdk henlzoavhle clevzliikf jx kacd fava fikif% L{z cleci{shles) vdkzknlzk) vkefkf vl jk slokwdav gkekzai‖vdkx wkzk zkik~aev vl cle~kzshle as a pzlckss he vdk pkzhlf 1>70s–1730s aef vl vdk piack ln vdk pdkelokele ln bhs~k jadası pkvhvhles he hv% Vdk p{zplsk ln s{cd ae appzlacd was vl p{v vdk pkvhvhlekzs‘ pkzsleaihvhks he vdkhz appzlpzhavk slchai clevktv% Ek~kzvdkikss) as plhevkf l{v he cdapvkz nl{z) vdk ~ai{k ln vdk bhs~k jadası pkvhvhles‘ s{pkzsvz{cv{zk aef vdk ’favajask sxsvkos‟ okvdlf ln aeaixshs vl vdk dhsvlzhae ihks he vdkhz ajhihvx vl pzl~hfk a ’~hkw‟ ik~ki ln aeaixshs) h%k%) vl cdaeeki henlz/ oavhle acc{o{iavkf he vdk favajask ln pkvhvhles) vdzl{gd vdk okfh{o ln vdk s{pkzsvz{cv{zk‘s fava fikifs% Lek ln vdk plsshjik ’~hkws‟ hs ln vdk fava zkik~aev vl vdk pkzsleaihvhks ln vdk pkvhvhlekzs% Da~heg s{cd fava nlz sk~kzai d{efzkf ekw O{sihos wdl s{johv/ vkf bh bhs~ s~kk ja jaddas ası ı pkvhvhles vl vdk s{ivae eav{zaiix zahsks vdk pzlspkcv ln wzhvheg a pzlslplgzapdhc lz gzl{p jhlgzapdx s{z~kx ln vdlsk pkl/ pik as a slchai gzl{p% Pzlslplgzadx hs a ekw appzlacd vl Lvvloae dhsvlzhlgzapdx% Acclzfheg vl Okvhe B{ev) pzlslplgzapdx hs {skf vl sv{fx) jx okaes ln jhlgzapdhcai fava) ’a spkchfic gzl{p he vkzos ln) nlz ktaopik) hvs plshvhle he slchkvx) hvs n{ecvhle) hvs hoplzvaeck) hvs plihvhcai lz kclelohc plwkz) aef hvs zlik he slchai lz plihvhcai cdaegk%‟1 Vdhs okvdlf das leix jkke {vhih}kf sl naz vl sv{fx slchai gzl{ps he vdk Lvvloae {ppkz svzav{o‖vdk {ikoa : aef vdk ohihvazx B{ev) S{ivae‘s Skz~aevs ) t~h% E% Hv}blwhv} aef Mlki Sdhefkz) ’Vdk Lffick ln kxd ùi– si ùi– si o aef vdk Vae}hoav‖ A Pzlslplgzapdhc Keq{hzx)‟ Ohffik Kasvkze Kasvkze Sv{fhks ) 4 $187:() 86–1012 S{zahxa Nazlqdh) 1 :
1>7
kihvk%3 Vdk clesvz{cvhle ln a cliikcvh~k hoagk ln a slchai gzl{p whvdhe vdk oassks) vdkzknlzk) wl{if jk a s{jsvaevhai clevzhj{vhle vl Lvvloae slchai dhsvlzx jx hvskin% Whvd zkgazf vl cle~kzshle he Lvvloae vhoks) vdk cliikcvh~k plzvzahv ln vdk pkvhvhlekzs whii dkip hfkevhnx vdk cdaz/ acvkzhsvhcs vdkx sdazkf vdav ikf vdko vl cle~kzv vl Hsiao% Slchai Svav{s
He gkekzai) vdk slchai svav{s ln vdk pkvhvhlekzs hs fksczhjkf jx vdk {sk ln vdk wlzfs b{i ) lz cazhxk nlz a wloae) nl{ef he vdk ’hfkevhvx‟ fikif ln vdk pkvhvhle‘s s{pkzsvz{cv{zk% Dlwk~kz) vdk vkzo b{i ) as {skf he vdk pkvhvhles) cae dazfix jk vzaesiavkf as ’elokebiav{zcdhb)‟ as azg{kf kazihkz he cleekcvhle whvd hvs {sk vl fkshgeavk vdk svav{s ln Maehssazx% As plhevkf l{v he cdapvkz nl{z) b{i aef cazhxk wkzk vkzos {skf jx pklpik cloheg nzlo aii svzava ln slchkvx wdke affzkssheg vdk s{ivae) heci{fheg vdk ohihvazx ciass aef vdk kihvk) jkca{sk aii Lvvloae s{jmkcvs wkzk cleshfkzkf vdk s{ivae‘s sia~ks,skz~aevs% Vdk bhs~ s~kk ja jada dası sı pkvhvhles) vdkzk/ olsv appzlpzhavk vzaesiavhle he vdk cask ln bh nlzk) oax jk shopix ’s{jmkcv%‟ Ek~kzvdkikss) he a daefn{i ln pkvhvhles a fkgzkk ln slchai svzavhficavhle aoleg vdk pkvhvhlekzs cae jk avvksvkf% Vdk henlzoavhle he vdkhz ’hfke/ vhvx‟ fikif zk~kais vdk pkvhvhlekzs vl da~k plssksskf a dhgdkz/vdae/ a~kzagk ik~ki ln sbhiis aef belwikfgk aef vl da~k kemlxkf a dhgdkz slchai svaefheg he vdkhz zkspkcvh~k cloo{ehvhks% He zkv{ze nlz vdkhz cle~kzshle) vdlsk pkvhvhlekzs {s{aiix zkq{ksvkf plshvhles vdav cl{if oahevahe lz zahsk vdkhz slchai pzksvhgk% Wk cae chvk dkzk as ae ktao/ pik a pkvhvhle jx a Mkw) wdl) jkheg vzahekf he vdk czanv ln okvai p{zhnxheg) zkq{ksvkf ae applhevokev as dkaf ln vdk svavk ohev) 6 aef lvdkzs jx pkvhvhlekzs zkq{ksvheg plshvhles as s{zgkles he vdk dlsphvai ln vdk Maehssazx clzps%; Aelvdkz pkvhvhlekz svavkf he dhs zkq{ksv vdav
’Slchai Oljhihvx aef vdk Lvvloae [ikoa he vdk Iavkz Shtvkkevd Ckev{zx)‟ HMOKS ) 6 $1873() :06–142 Aih [ {z) ’Vdk Lvvloae [iko he vdk Ohf/sk~kevkkevd Ckev{zx= Ae Aeaixshs ln vdk ^ab h ùi/N{}ai ln Okdokf kxdh Knkefh‟ $Pd%F% fhsskzvavhle) Kfhej{zgd [eh~kzshvx) 1873(% 3 E% Hv}blwhv}) ’Khgdvkkevd Ckev{zx Lvvloae Zkaihvhks)‟ SH ) 1> $18>3() 73–862 Z%A% Ajl{ Ki/Dam) ’Dl{skdlifs2‟ hfko) Zkjkiihle2 B{ev) S{ivae‘s Skz~aevs % 6 EPVA TT 1Y:4 n% :>% Skk Appkefht 1) Flc{okev >% ; CG 36Y:) n% 32 1AY;7:78%
1>4
dk was aizkafx kopilxkf as ae hevkzpzkvkz $fzagloae ( ( ln Skzjhae%> Lek ln vdk olsv hevkzksvheg pkvhvhles he vdhs gzl{p hs vdav ln a pzhksv) cle~kzvkf vl Hsiao) wdl svavkf vdav dk was ’nzlo vdk kf{cavkf pklpik‟ aef fkshzkf vdav dhs slchai svaefheg jk oahevahekf anvkz vdk cle~kzshle vdzl{gd ae applhevokev he vdk paiack) s{hvkf vl dhs q{aihficavhles%7 He affhvhle vl fhzkcv svavkokevs) vdk dhgdkz slchai svaefheg ln slok ekw O{sihos oax jk zk~kaikf aisl jx vdk ’zkwazf‟ fava fikif% Hv cae jk ljskz~kf vdav he aii vdk casks okevhlekf ajl~k) vdk pkvh/ vhlekzs wkzk zkwazfkf whvd a i{t{zx skv ln cilvdks $ oùbkooki bhs~k ( lz hvs casd ~ai{k% Vdkzknlzk) H ass{ok vdav he lvdkz pkvhvhles vdav fl elv spkchnx vdk slchai plshvhle ln vdk ekw O{siho j{v shopix zkq{ksv vdk gzaevheg ln a i{t{zx skv ln cilvdks) vdk cle~kzv o{sv da~k jkke fkkokf wlzvdx ln s{cd a zkwazf jx ~hzv{k ln dhs slchai svaefheg% Hn wk acckpv vdk czhvkzhle ln a i{t{zx ~s% ae lzfheazx skv ln cilvdks as sl{ef) vdhs wl{if keiazgk l{z plli ln pkvhvhlekzs kemlxheg a dhgdkz slchai svaefheg whvdhe vdkhz nlzokz cloo{ehvhks vl 10‖zkpzkskevheg 1%3 pkzckev ln vdk vlvai e{ojkz ln pkvhvhlekzs% Hv oax jk ljskz~kf vdav vdhs fig{zk hs ~kzx heshgehficaev wdke clopazkf vl vdk 76; ekw O{sihos wdl zkckh~kf lzfheazx skvs% Dlwk~kz) {evhi olzk clopzk/ dkesh~k zkskazcd le vdk ele/O{siho c{iv{zai aef kclelohc kihvk jkcloks a~ahiajik) H ao zki{cvaev vl cleci{fk vdav kf{cavkf lz sbhiikf ele/O{sihos wkzk ikss ihbkix vl cle~kzv vl Hsiao he vdk pkzhlf {efkz cleshfkzavhle% Vdk fig{zk ln 1%3 pkzckev oax wkii jk zkpzkskevavh~k nlz vdk svagk ln kihvk nlzoavhle aoleg vdk ele/O{siho cloo{ehvx av vdk vhok% Nlz ktaopik) acclzfheg vl a sv{fx jx D{pcdhcb) vdk sk~kevkkevd/ckev{zx J{igazhae c{iv{zai kihvk heci{fkf a okzk 134 hefh/ ~hf{ais fkskz~heg vl jk cl{evkf aoleg vdk ihvkzazx hevkiihgkevsha aef azvhsvs) aef 1;4 c{iv{zai pavzles) h%k%) kclelohcaiix wkii kel{gd keflwkf vl spleslz c{iv{zai acvh~hvhks%4 Clopazkf vl ae ksvhoavkf J{igazhae/spkabheg J{igazhae/sp kabheg plp{iavhle ln 7;8)740 he vdk iavk sk~kevkkevd cke/ v{zx)8 s{cd fig{zks azk zavdkz heshgehficaev aef scazckix plshvheg vdk kthsvkeck ln a sh}ajik ele/O{siho kihvk av vdk vhok%
1Y110>>) n% 1% 1AY>40>% Skk Appkefht 1) Flc{okev 8% 4 Fkeehs D{pcdhcb) Vdk J{igazhaes he vdk Sk~kevkkevd Ckev{zx= Sia~hc Lzvdlflt Slchkvx kzsle) Ilefle) 1883() Appkefht HH= Svavhsvhcai aef C{iv{zk {efkz Lvvloae Z{ik $ Mkff kzsle) Vajiks) Vajik :1–:>% 8 Gzl}fael~a) Eazlfelsv ) >87% > 7
1>8
Vdk z{zai lz {zjae lzhghes ln vdk pkvhvhlekzs oax skz~k as aelvdkz czhvkzhle ln vdkhz slchai svav{s% Hn wk vabk pkvhvhlekzs‘ z{zai lzhghes as hefhcavheg vdkhz pkasaev jacbgzl{ef aef {zjae lzhghes as plhevheg vl vdkhz ele/agzazhae lcc{pavhles) vdk nliilwheg fh~hshle kokzgks% He vdk 66 pkvhvhles vdav okevhle vdk gklgzapdhc lzhghes ln vdk pkvhvhlekz) :3 $;:%3 pkzckev( spkchnx khvdkz vdk zkghle lz vdk fhsvzhcv he gkekzai) lz gh~k vdk eaok ln a ~hiiagk as vdkhz lzhgheai zkshfkeck% Vdk zkoahe/ heg :1 pkvhvhles‖67%7 pkzckev‖spkchnx vdk pkvhvhlekz as a zkshfkev ln a vlwe lz a chvx% Lccashleaiix) aoleg vdlsk he vdk iavvkz gzl{p) hefh~hf{ai ~lcavhles) s{cd as czanvsoke lz okzcdaev) azk aisl oafk appazkev%10 Hv oax jk ljskz~kf vdav vdk sdazk ln {zjae zkshfkevs illbs zavdkz shgehficaev wdke clopazkf vl vdk l~kzaii pzlplzvhle ln vdk Lvvloae plp{iavhle ih~heg he {zjae azkas av vdk kef ln vdk sk~/ kevkkevd ckev{zx‖ikss vdae 10 pkzckev% Olzkl~kz) hv sdl{if aisl jk plhevkf l{v vdav zkshfkevs ln Hsvaej{i lz hvs ke~hzles accl{ev nlz aiolsv lek dain ln vdk {zjae fwkiikzs wdl s{johvvkf pkvhvhles vl vdk s{ivae‖6:%8 pkzckev% He lvdkz wlzfs) hv oax da~k jkke olzk ihbkix nlz {zjae zkshfkevs kegagkf he ele/agzhc{iv{zai acvh~hvhks vl cle~kzv vdzl{gd vdk bh bhss~k jadası hesvhv{vhle vdae z{zai zkshfkevs% Agk) Gkefkz) Oazhvai svav{s
Lvdkz hoplzvaev fkolgzapdhc henlzoavhle) nl{ef aisl he vdk ’hfke/ vhvx‟ fikif) heci{fks vdk pkvhvhlekzs‘ agk) gkefkz aef oazhvai svav{s% He ~hkw ln vdk cilsk zkiavhles ln vdksk vdzkk cdazacvkzhsvhcs ln vdk pkvhvhlekzs) H whii fhsc{ss vdko vlgkvdkz% As plhevkf l{v he cdapvkz nl{z) fhsvhecvhle he vdk agk ln vdk pkvh/ vhlekzs hs oafk leix jkvwkke af{ivs aef afliksckevs% Vdk l~kz/ wdkioheg oamlzhvx ln vdk pkvhvhlekzs‖>3> $46%: pkzckev(‖he ox favajask azk af{ivs) wdhik vdk afliksckevs accl{ev nlz leix 118 $1;%4 pkzckev(% Whvd zkgazf vl vdk gkefkz ln vdk pkvhvhlekzs he ox favajask) hv hs oke‖>11 $40%8 pkzckev(‖wdl clesvhv{vk vdk oamlzhvx ln vdk ekw O{sihos wdl s{johvvkf pkvhvhles vl vdk s{ivae% Vdk agk fh~hshle he vdhs cavkglzx hs ;6: af{ivs aef >8 xl{vds% Jaskf le vdk zkq{ksvs ln slok ln vdk xl{eg oke) ox hopzksshle hs vdav a shgeh ficaev e{ojkz
10
Skk LAB 7>Y;:) n% 30) EPVA TT 1Y:4 n% :>) 1Y11111) n% 1%
170
ln vdko wkzk acv{aiix he vdk g{iao agk cavkglzx $1:–:0 xkazs() h%k%) oav{zk kel{gd jk kezliikf as pagks% Vdk nkoaik pkvhvhlekzs e{o/ jkz 166 $18%1 pkzckev(‖86 af{iv wloke aef ;0 ghzis‖slok ln vdko plsshjix aisl cilsk vl af{ivdllf% Dlwk~kz) olsv ln vdk xl{vds‖74 $>;%; pkzckev(‖azk okevhlekf he vdk pkvhvhles aileg whvd vdkhz paz/ kev$s() wdl hs $azk( vdk pzhoazx pkvhvhlekz$s(% pkvhvhlekz$s(% Svhii) a shgeh ficaev sdazk‖ 61 $36%; pkzckev lz ;%6 pkzckev ln vdk vlvai pkvhvhlekzs(‖ln vdk xl{vds azk vdk pzhoazx pkvhvhlekzs% Wdke illbheg av vdk jzkabflwe ln vdk pkvhvhlekzs jx gkefkz) hv hs vdk e{ojkz ln nkoaiks vdav H cleshfkz vl jk olsv s{zpzhsheg% He ox lphehle) vdk fig{zks ln aiolsv :0 pkzckev wloke pkvhvhlekzs aef 4: pkzckev ln vdksk pzhoazx pkvhvhlekzs $vdk lvdkz 14 pkzckev azk okevhlekf ailegshfk vdkhz d{sjaefs() azk zavdkz shgehficaev nlz a oaik/ floheavkf slchkvx% K~hfkeck nlz k~ke iazgkz zkpzkskevavhle ln wloke aoleg pkvhvhlekzs hs nl{ef he vdk zkghsvkz ln vzkas{zx ktpkefhv{zk nlz vdk ekw O{sihos wdl s{johvvkf pkvhvhles vl vdk s{ivae he 1>78–40) fhsc{sskf ajl~k he cdapvkz fi~k% Vdk nkoaiks‘ sdazk $16> wloke aef :: ghzis(‖66%3 pkzckev ln vdk vlvai ln 378 ekw O{sihos ihsvkf he vdk zkghsvkz‖hs aiolsv kq{ai vl vdav ln oaiks) h%k%) :11 $;;%7 pkzckev(% Fh~hfkf jx oazhvai svav{s) vdk l~kzwdkioheg oamlzhvx ln vdk af{iv pkvhvhlekzs‖4;%1 pkzckev‖naii hevl vdk cavkglzx ln shegiks% Vdkzk azk ;:; shegik/oaik $>8%; pkzckev( aef 77 $10%: pkzckev( shegik/nkoaik pkvhvhlekzs) heci{fheg vdlsk whvd cdhifzke% Hv hs aisl ihbkix vdav olsv ln vdk 61 xl{vds $;%6 pkzckev( wdl azk pzhoazx pkvhvhlekzs oax da~k jkke lif kel{gd vl jk heci{fkf he vdk shegiks cavkglzx% Vdk zkoahe/ heg 11: $16%8 pkzckev( pkvhvhlekzs azk cdhifzke $8%1 pkzckev( ihsvkf he vdk pkvhvhles whvd vdkhz shegik pazkevs aef oazzhkf cl{piks whvd cdhi/ fzke $;%4 pkzckev(% Ln vdk 1;0 pkvhvhlekzs $18%8 pkzckev( wdl s{j/ ohvvkf pkvhvhles as naohihks‖;> naohihks he aii‖38 naohihks $70 pkzckev( jkileg vl vdk cavkglzx ln shegik/pazkev naohix% Vd{s leix 17 naoh/ ihks $30 pkzckev( e{ojkzheg 66 pklpik $;%4 pkzckev ln vdk vlvai pkvh/ vhlekzs(‖36 af{ivs aef 10 cdhifzke‖naii hevl vdk cavkglzx ln vwl/pazkev naohihks% Aoleg vdk shegik/pazkev naohihks) vdkzk azk 10 shegik/navdkz naohihks $18 pkzckev() e{ojkzheg 34 pklpik $; pkzckev ln vdk vlvai pkvhvhlekzs() aef :8 shegik/olvdkz naohihks $;1 pkzckev() accl{evheg nlz >8 pkvhvhlekzs $8%1 pkzckev ln vdk vlvai(% Vdk nacv vdav olsv ln vdk ekw O{sihos wdl cle~kzvkf vdzl{gd vdk bh bhs~ s~kk ja jada dası sı hesvhv{vhle wkzk shegik hs elv s{zpzhsheg% As was plhevkf l{v he vdk pzk~hl{s cdapvkz) vdk bh bhs~ s~kk jad adas ası ı hesvhv{vhle lwkf av ikasv pazv ln hvs lzhghe he vdk hesvhv{vhle ln clevzacv{ai pavzleagk $ wai
171
() ai/o{w i v ai/o{w i v wdhcd was fkshgekf nlz pklpik whvdl{v a eavai gzl{p% Le vdk lek daef) vdkzk azk leix a nkw pkvhvhles vdav ktpihchvix zknkz vl vdk ekw O{siho as ae lzpdae)11 as ae kifkzix pkzsle iknv whvd/ l{v s{pplzv)1: lz as sloklek slokdlw fhscleekcvkf nzlo dhs clo/ o{ehvx%13 Le vdk lvdkz daef) he ~hkw ln vdk nacv vdav olsv ln vdk pkvhvhlekzs wkzk azzh~heg he vdk caphvai nzlo vdk pzl~hecks aef fkshzkf vl svax vdkzk) vdkx oax da~k jkke cleshfkzkf as {pzllvkf aef vdkzk/ nlzk) kspkchaiix fkskz~heg ln vdk s{ivae‘s na~lz% Ae hevkzksvheg cask) okzhvheg spkchai avvkevhle) hs vdk pkvhvhle he wdhcd lek ekw O{siho fkciazks dhs afdkzkeck vl vdk nahvd ln Hsiao aef zkq{ksvs ae applhev/ okev he vdk ckjkch clzps% Jkiilw vdk pkvhvhle) vdkzk hs aelvdkz ihek affkf jx a fhff kzkev kzkev daef aef he pllz V{zbhsd) plsshjix jx vdk ekw O{siho dhoskin) svavheg vdav dk hs ae lzpdae aef fhsajikf% 16 Wdhik wk cae acckpv vdk plsshjhihvx ln vdk pkvhvhlekz jkheg ae lzpdae) hv hs dhgdix {eihbkix vdav a fhsajikf pkzsle cl{if ktpkcv vl zkckh~k ae azox applhevokev% He ox lphehle) vdk affhvhle was oafk leix he lzfkz vl gh~k vdk ekw O{siho‘s zkq{ksv olzk ikghvhoacx he vdk kxks ln vdk s{ivae% Wdhik hv hs elv plsshjik vl pzl~k vdav olsv ln vdk pkvhvhlekzs jkilegkf vl a slchaiix wkab gzl{p he vdk kxks ln slchkvx) s{cd as lzpdaes aef vdk kifkzix $aef pzljajix olsv ln vdko fhf elv() vdk nacv vdav olsv ln vdk nkoaik pkvhvhlekzs nkii hevl vdk cavkglzx ln whflw hs appazkev% Wk fief vdav leix 17 af{iv wloke $14 pkzckev( cle/ ~kzvkf whvd vdkhz d{sjaefs) wdkzkas vdk zksv wkzk khvdkz shegik olvd/ kzs‖:8 $31 pkzckev(‖aef olsv ln vdko pzljajix whflws) lz okzkix shegik wloke‖64 $;1 pkzckev(‖oaex ln wdlo azk cikazix hfkevhfikf as whflws as wkii% He cdapvkz vdzkk) oazzhagk was fhsc{sskf as jkheg dhgdix zkik~aev vl a wloae‘s fkchshle vl cle~kzv vl Hsiao% Whflwdllf) vdkzknlzk) affs a ekw fhokeshle vl vdk sv{fx ln wloke‘s cle~kz/ shle vl Hsiao) lek vdav fkskz~ks olzk avvkevhle nzlo slchai dhsvlzh/ aes% Vdav vdk pdkelokele ln whflws‘ cle~kzshle vl Hsiao was whfkspzkaf he Lvvloae slchkvx av vdk vhok oax jk avvksvkf jx vdk dhgd e{ojkz ln whflws zkghsvkzkf as ’fa{gdvkzs ln Ajf{iiad‟ he ~hi/ iagks whvd ohtkf plp{iavhle he vdk a~azh} zkghsvkz ln 17:3 nlz vdk
11 1: 13 16
1Y10841) n% 12 1Y;7:>;2 1AY;7318) n% ;:% 1Y>41;) n% 12 EPVA TT 1Y:4) n% :% LAB 17Y14) n% 12 1Y111072 1Y11111% 1AY;7:>;) n% 1% Skk Appkefht 1) Flc{okev 4%
17:
ba}a ln Ek~zlblp) okevhlekf he cdapvkz vdzkk% Nlz ktaopik) 1; vdkzk wkzk 6 ’fa{gdvkzs ln Ajf{iiad)‟ l{v ln 11 whflws he vdk ~hiiagk ln ^k}ek) ; l{v ln 16 he vdk ~hiiagk ln Blzehçk) > l{v ln 7 he vdk ~hi/ iagk ln J{bl~a) : l{v ln ; he vdk ~hiiagk ln Zhjek) 3 l{v ln ; he vdk ~hiiagk ln Lzk k) kvc% Eaok
Acclzfheg vl vdk bh bhs~ s~kk ja jada dası sı pkvhvhles‘ s{pkzsvz{cv{zk) vdk ekw O{siho‘s eaok was ae ksskevhai pazv ln dhs ’ekw O{siho hfkevhvx‟ fikif% As was plhevkf l{v he cdapvkz nl{z) vdk eaok ln vdk ekw O{siho hs nl{ef he vdk shgeav{zk affitkf vl vdk pkvhvhles% Olsv bh bhs~ s~kk ja jaddas ası ı pkvh/ vhles) dlwk~kz) azk shgekf whvd vdk hopkzsleai jkefk $Rxl{z_ skz~aev() ek~ oùsiho $ekw O{siho( lz jkefk/h ek~ oùsiho $xl{z skz~aev) vdk ekw O{siho() aii ln wdhcd azk zkik~aev vl vdk ’ekw O{siho‟ svav{s ln vdk cle~kzv% Leix he a ~kzx nkw pkvhvhles fl wk kecl{evkz a eaok‖ a ekw) O{siho lek) lz a nlzokz eaok‖shgekf he n{ii% As naz as vdk O{siho eaoks azk cleckzekf) vdk leks olsv lnvke kecl{evkzkf azk Sùikxoae) O{svana) Adokf) Aih) Lsoae) Dùskxhe) Okdokf) jzadho) aef Ajf{iiad nlz oke) aef Navhok aef Ah k nlz wloke% Aivdl{gd hv hs hevkzksvheg vdav olsv ln vdk oaik eaoks azk vdlsk ln vdk Lvvloae s{ivaes ln vdk pkzhlf)1> xkv whvd leix vwl ktckpvhles17 vdkx fl elv clzzksplef vl vdk z{iheg s{ivae av vdk vhok ln vdk pkvhvhle% Lek caeelv kscapk vdk ljskz~avhle vdav vdk leloasvhcle nl{ef he ekw O{sihos‘ pkvhvhles clzzksplefs vl vdk lek ljskz~kf jx J{iihkv aoleg cle~kzvs he vdk ckevzai Hsiaohc iaefs f{zheg vdk af~aeckf svagks ln vdk cle~kzshle pzlckss% Vdk fi~k fhsvhecvh~kix O{siho eaoks‖ Adokf) Aih) Okdokf) Dasae aef Dùskxhe‖kemlx vdk gzkavksv plp/ {iazhvx) wdhik Jhjihcai,Q{zaehc eaoks s{cd as Sùikxoae aef Hjzadho azk ln iksskz plp{iazhvx% Pzk/Hsiaohc eaoks) ln V{zbhc lzhghe he l{z cask) azk elv kecl{evkzkf av aii% Vdk leix eaok he vdk pkvhvhles elv nl{ef he J{iihkv‘s accl{ev‖vdk eaok Ajf{iiad‖jkcaok plp{iaz aoleg cle~kzvs leix he Oaoi{b vhoks) h%k%) sheck vdk vdhzvkkevd ckev{zx% Skk JLA) Ok~b{nav baikoh) :473) n% 61–6:) ;:–;3) ;4–>0) >3% jzadho H $1>60–1>64(2 Okdokf H^ $1>64–47( $1>64–47()) Sùikxoae HH $1>47–81(2 Adokf HH $1>81–8;( Adokf HHH $1703–30(2 aef O{svana HH $1>8;–1703(% 17 1AY;7101 aef CG 36Y:) n% 10% 1; 1>
173
Sheck J{iihkv das fkolesvzavkf vdk gzkav hoplzvaeck ln s{z~kxheg O{siho eaoks nlz fkvkzoheheg vdk svagk ln cle~kzshle) a fhsc{sshle ln vdk O{siho eaoks nl{ef he bh bhs~ s~kk jad adaası pkvhvhles wl{if jk {skn{i% Lek ln vdk ihohvavhles ln ox favajask ln eaoks) dlwk~kz) cleshsvs he vdk nacv vdav vdkx azk pzlpkz eaoks $ hso (% Acclzfheg vl J{iihkv) leix a clopazhsle jkvwkke vdk plp{iazhvx ln vdk vdzkk cavkglzhks ln O{siho eaoks aoleg O{sihos he gkekzai aef aoleg vdk sles ln ekw O{sihos cae acc{zavkix sdlw vdk svagk ln vdk pzlckss ln cle/ ~kzshle%14 He ~hkw ln vdk ihohvkf sh}k ln vdk saopik ln eaoks he vdk favajask ln pkvhvhles‖leix ;3 oaik eaoks18 ‖vd ‖vdkk svavh svavhsvh svhcai cai shg shgeh ehficaeck cae leix jk jzl{gdv l{v jx clopazheg vdko vl a clevktv wdkzk a gzkavkz e{ojkz ln eaoks cae jk accksskf‖pzlpkz $ hso ( as wkii as naohix eaoks $easaj (% (% Vdk paxzlii zkghsvkzs zkghsvkzs ln vdk Maehssazx clzps clzps $ xlb/ ( nlz vdk pkzhlf {efkz cleshfkzavhle pzl~hfks vdk jksv iaoa fknvkzikzh sl{zck nlz s{cd clopazhsle% As plhevkf l{v he cdapvkz vdzkk) vdk ekw cle~kzvs $~li{evazx as wkii as zkg{iaz fk~ hzok ( he vdk sk~kevkkevd/ sk~kevkkevd/ ckev{zx clzps wkzk dka~hix ohtkf whvd sles ln Maehssazhks aef O{siho/ jlze cafzks% A s{z~kx ln vdkhz eaoks) vdkzknlzk) whii dhgdihgdv vdk ekw O{siho eaoks nl{ef he pkvhvhles olzk pzkchskix% Vdk vajik jkilw hs jaskf le vdk eaoks ln ;7> g{iaos $a pagk) a vzahekk nlz vdk paiack skz~hck) ackohl iae ( skz skz~heg ~heg he vke ln vdk {eh {ehvs vs $jþiùb s( s( avvacdkf vl vdk s{ivae‘s gazfkes he vdk caphvai f{zheg vdk iasv vdzkk olevds ln 1080 $Skpvkojkz ;) 1>78–Nkjz{azx 1) 1>40(% :0 Vdk fizsv cli{oe ln vdk vajik ihsvs aii eaoks kecl{evkzkf he vdk zkghsvkz% Ele/ O{siho eaoks aef easajs clesvhv{vheg ln eaoks ln ~hiiagks lz zkghles ln lzhghe azk gh~ke leix as vlvais% Cli{oes vwl aef vdzkk gh~k vdk appkazaeck nzkq{kecx ln vdk eaoks ihsvkf he cli{oe lek as vdk g{iaos‘ fizsv eaoks aef vdkhz pkzckevagk ~ai{ks% Cli{oes nl{z aef fi~k vaj{iavk vdk nzkq{kecx ln vdk eaoks he cli{oe lek aoleg fizsv gkekzavhle O{sihos ihsvkf he vdk wdlik zkghsvkz aef vdkhz pkzckevagk ~ai{k% As fizsv gkekzavhle O{sihos) H cleshfkz vdlsk g{iaos wdl da~k a ele/O{siho hso $k%g% Oiafke ln Abça Dhsaz() vdk eaok Ajf{iiad lz a ele/O{siho eaok as easaj $k%g% Oado{f Ajf{iiad) O{svana Z{fa() lz whvd a ele/O{siho kvdehchvx as ehsja $k%g% Aih vdk D{egazhae2
J{iihkv) Cle~kzshle) >6–78% [enlzv{eavkix) J{iihkv‘s fava flks elv clevahe nkoaik eaoks) sl dhs fiefhegs azk jaskf ktci{sh~kix le oaik O{siho eaoks% H ao nlzckf) vdkzknlzk) vl ika~k ashfk bhs~ s~kk jad adas ası ı pkvhvhles% nkoaik O{siho eaoks nl{ef he bh :0 Skk EJBO) F 1;8) n% >4j–73j% Vdk zkghsvkz hs p{jihsdkf he LHHPJ ) 41–8:% 14 18
176
Okdokf vdk J{igazhae(% Vdlsk g{iaos whvd a ~hiiagk lz a zkghle ln lzhghe as ehsja azk ktci{fkf sheck a fkfiehvk pzlln ln vdkhz O{siho) lz ele/O{siho) lzhghe caeelv jk gh~ke%:1 Cli{oes sht aef sk~ke vaj{iavk vdk nzkq{kecx ln vdk eaoks he cli{oe lek as ae hso aoleg O{sihos ln vdk skclef gkekzavhle aef vdkhz pkzckevagk ~ai{ks% As skclef gkekzavhle O{sihos) H cleshfkz vdlsk g{iaos da~heg a O{siho eaok as vdkhz easaj% Vdk ektv vwl cli{oes azk fk~lvkf vl vdk nzk/ q{kecx ln O{siho eaoks kecl{evkzkf he bhs~k jadası pkvhvhles% Vdk iasv vdzkk cli{oes vaj{iavk vdk nzkq{kecx ln vdk eaoks he cli{oe lek nl{ef he vdk easajs aef vdkhz pkzckevagk ~ai{ks as a vlvai ln g{iao g{i aos aef ln vdk vlvai ln O{sihos ln vdk skclef gkekzavhle% Ksskevhaiix) vdk eaoks nl{ef he cli{oe ehek azk vdk eaoks ln vdk ekw O{sihos ln vdk pzk~hl{s gkekzavhle% Vdk sxelpshs av vdk jlvvlo ln vdk vajik pzl~hfks henlzoavhle ajl{v vdk plp{iazhvx ln vdk fi~k O{siho eaoks) vdk Jhjihcai,Q{zaehc eaoks aef pzk/Hsiaohc V{zbhc eaoks he kacd lek ln vdk cavkglzhks zkpzkskevkf he vdk cli{oes% Vajik 10% G{iaos‘ eaoks $1>78( aef ekw O{sihos‘ eaoks he bhs~ bh s~kk ja jada dası sı pkvhvhles Eaoks
Ajf{iiad Ajfh Ajf{ijabh Ajf{zzadoae Aiaja
+ Iasv + ln + ln Nhzsv + ln Nhzsv + Nhzsv + Nhzsv eaok vlvai eaok eaok eaok eaok vlvai :ef :ef gk gke% e% g{iaos g{iaos O{s% 1sv gke% :ef gke% pkvhvhles
6 :
0%7 0%3
:
0%3
Aih Adokf
;: 43
8%0 16%6
Jaih Jaxa}hf
1 1
Jaxzao
1 1
0%; 0%;
18 37
8%0 17%;
0%: 0%:
1
0%;
:
0%3
:
0%8
Jkbhz
6
0%7
Jkbva
1
0%:
Cankz
3
0%;
Fa{f
>%6 1>
:%4
:%0
1 4 >
3
1;%7 11%4
1
3 4
>%6 17%0
1 3 1
0%: 0%; 0%:
:; 1;
6 %3
1 1 %4
: %>
7 %1
:
0 %3
0 %8
3
0%;
1% 6
:
0%3
0% 8
1
0 %:
0 %;
0% ; 1% 6 0% ;
0%;
S% Fhohvzl~ $’A~aev/pzlpls)‟ 30() lek ln vdk kfhvlzs ln vdk zkghsvkz) flks elv da~k aex pzljiko) dlwk~kz) whvd cleshfkzheg vdksk g{iaos as cliikcvkf vdzl{gd vdk sxsvko ln fk~ hzok ktci{sh~kix aef vd{s ass{oks nlz vdko a ele/O{siho lzhghe% Gh~ke vdk henzkq{kecx ln fk~ hzok cliikcvhles he vdk sk~kevkkevd ckev{zx aef vdk nacv vdav oaex ln vdk g{iaos he vdk zkghsvkz azk ihsvkf as cloheg nzlo zkghles whvd a pzk/ floheaev lz s{jsvaevhai O{siho plp{iavhle) s{cd a ~hkw hs av jksv {enl{efkf% :1
17;
Vajik 10 $clev% ( ( Eaoks
Fkz~h Fhia~kz
+ Iasv + ln + ln Nhzsv + ln Nhzsv + Nhzsv + Nhzsv eaok vlvai eaok eaok eaok eaok vlvai :ef :ef gk gke% e% g{iaos g{iaos O{s% 1sv gke% :ef gke% pkvhvhles
;
0%8
F{zab
Kohe Kùj Nadho Ga}h
14 :
$jzadho
3;
3%1 0%3 >%1
3 1 6
;%8 :%0 7%4
7
1;
3%3
7%1
:
6%3
fzhs sa Hsoahi
1 8
0%:
sdab s i ao Dajhj Dao}a Daihi
1 : 3 1 17
0%: 0%3 0%; 0%: 3%0
Dasae
60
>%8
1%>
:
:
3%8
3%8
1 6
0%;
1 1 1 1 7
0%; 0%; 0%; 0%; 3%3
16
>%>
1%8
1
:%1
Dı}ız
0% :
0%;
1
0 %:
0 %;
11
1% 8
;%:
1 1
0% : 0% :
0%; 0%;
14
3%1
4%;
1
0% :
0%;
:
0 %3
0 %8
3
0% ;
1%6
3 4
0% ; 1% 6
1%6 3%4
1:
: %1
; %7
:
0% 3
0%8
10
1 %7
6 %7
1
0% :
0%;
;
0 %8
: %6
Dùskxe
61
7%1
1
:%0
1;
D{oaoh Oado{f
1 ;
0%: 0%8
1
:%0
1
0%;
>>
11%;
;
8%4
:4
13%:
O{dazzko O{zaf
1 1
0%: 0%:
1
0%;
1 3
0% : 0% ;
0%; 1%6
O{sa
3
0%;
1
0%;
>
1 %0
: %4
1 >; : 1 1 :
0%: 11%3 0%3 0%: 0%: 0%3
1 :8
0% : ;% 0
0%; 13%7
1
0%:
1 1> 8 : 3 4 1
0%: :%4 1%> 0%3 0%; 1%6 0%:
; 1 6 1 6 1 1
0% 8 0% : 0% 7 0% : 0% 7 0% : 0% :
:%6 0%; 1%8 0%; 1%8 0%; 0%;
7 >
1%: 1%0
:
6
0%7
1
0%;
1 1 1
0% : 0% : 0% :
0%; 0%; 0%;
Sùikxoae
7
1%:
1
0%;
:
0 %3
0 %8
ajae ^kih
8 6
1%> 0%7
1
:%0
> 1
1% 0 0% :
:%4 0%;
:%6
:
3%8
7
1 %:
3 %3
3
0 %;
1 %6
Okdokf
O{sih O{svana Oùoh Oùohe Eas{d Ekjh E{d
E{zh Lsoae Þokz Zaoa}ae Zas{i Zkckj Zhf~ae Zùsvko Saihd Sknkz Skiho Sheae
X{s{n Xab{j [z{ç
16 1
7
3 1 :
13%7
;%8 :%0 3%8
7%1
:3 : 1
10%4 0%8 0%;
1
0%;
1
0%;
> ;
:%4 :%6
1 :
0%; 0%8
3
:
1
10
10
3
6%3
:1%3
:1%3
>%6
0%8
1%6
;
10%>
0%:
17>
Vajik 10 $clev% ( ( Eaoks
]ùinabhz ]ùibafız Ele/O{siho Eaok
+ Iasv + ln + ln Nhzsv + ln Nhzsv + Nhzsv + Nhzsv eaok vlvai eaok eaok eaok eaok vlvai :ef :ef gk gke% e% g{iaos g{iaos O{s% 1sv gke% :ef gke% pkvhvhles
: 1
0%3 0%:
1
0%:
: 1 1
0%8 0%;
:%0
>
11%3
Ehsja/Chvx) Zkghle Ehsja/kvdehchvx
3
0%;
360
;8%0
;
0%8
Nh~k O{siho eaoks
:4:
68%0
::
63%1
113
;3% 6
:6
;1%1
>7
11%>
Jhj%,Q{zaehc eaoks
71
1:%6
4
1;%7
:>
1:% 6
7
16%8
3>
>%1
V{zbhc eaoks
3
0%;
0
0%0
3
1% 6
0
0%0
>
1%0
S{jvlvai
3;>
>1%8
30
;4%4
16:
>7%:
31
>>%0 108
14%7
Gzaef Vlvai
;7>
;3
; 7>
;1
:1 :
31%7 1>%8 :% 4 ;1%6
H lff kz kz vdk nliilwheg hevkzpzkvavhle ln vdk fig{zks he vdk sxelpshs% As J{iihkv das ljskz~kf) olsv ln vdk eaoks gh~ke vl O{sihos naii hevl vwl gzl{ps‖vdk fi~k fhsvhecvh~k O{siho eaoks aef Jhjihcai,Q{zaehc eaoks‖vlgkvdkz accl{evheg nlz jkvwkke a dain aef vwl vdhzfs ln vdk vlvai he l{z cask% Vdk olzk hoplzvaev ln vdk vwl hs vdk fizsv gzl{p% L~kzaii) vdkzk azk :4: eaoks $68 pkzckev( jkilegheg vl vdhs cavkglzx aoleg vdk g{iaos ihsvkf he vdk zkghsvkz% Aivdl{gd vdkzk hs ajl{v a vke pkzckev fhff kzkeck kzkeck jkvwkke vdk plp{iazhvx ln vdksk eaoks aoleg fizsv aef skclef gkekzavhle O{sihos he vdk zkghsvkz‖63%1 aef ;3%6 pkzckev zkspkcvh~kix‖H ao whiiheg vl avvzhj{vk vdhs ~azha/ vhle vl vdk fhff kzkeck kzkeck he vdk sh}k ln vdk saopiks ln eaoks jkilegheg vl fizsv aef skclef gkekzavhle O{sihos‖;1 ~s% :1:% Wdke vdk O{siho eaoks nl{ef he bhs~k jadası pkvhvhles $wdhcd eaoks aisl jkileg vl O{sihos ln vdk fizsv gkekzavhle( azk vabke hevl cleshfkzavhle) vdk fhff kzkeck kzkeck hs aiolsv ik~kikf l{v% Whvd vdk fig{zks ln vdk vwl cli{oes clojhekf) vdkzk wl{if jk 106 fizsv/gkekzavhle ~s% :1: skclef/gke/ kzavhle O{sihos aef vdk plp{iazhvx ln vdk fi~k O{siho eaoks jkcloks 64 ~s% ;1%1 pkzckev zkspkcvh~kix% Vdk fh ff kzkeck kzkeck ln plp{iazhvx ln vdk fi~k O{siho eaoks jkvwkke vdk O{siho/jlze aef vdkhz navdkzs $;1%1
177
aef 31%7 pkzckev() dlwk~kz) caeelv jk avvzhj{vkf vl svavhsvhcai fhs/ czkpaechks‖vdk sh}k ln vdk saopik fava hs vdk saok% He ox lphehle) hv s{ggksvs vdav vdk plp{iazhvx ln vdksk eaoks was svhii le vdk zhsk aoleg sles ln cle~kzvs% Vdk sihgdvix ilwkz fig{zks ln vdk fi~k O{siho eaoks he l~kzaii {sk $68 pkzckev( aef aoleg sles ln cle~kzvs $;1%1 pkzckev() dlwk~kz) s{ggksv vdav) he vdk slchkvx as wdlik) vdk pkab ln vdkhz plp{iazhvx daf m{sv passkf% He vdk cask ln vdk gzl{p ln Jhjihcai,Q{zaehc eaoks) vdk shv{avhle hs zk~kzskf% Wk fief 3> s{cd easajs $1>%8 pkzckev( aoleg vdk O{siho jlze) wdhik vdkzk azk leix :> $1:%6 pkzckev( s{cd eaoks kecl{e/ vkzkf as hsos he vdk saok gzl{p ln pklpik) 1; $1;%3 pkzckev( aoleg fizsv gkekzavhle O{sihos $cli{oes nl{z aef khgdv clojhekf( aef 71 $1:%6 pkzckev( he l~kzaii plp{iazhvx% Vdksk fig{zks s{ggksv vdav vdk plp{iazhvx ln Jhjihcai,Q{zaehc eaoks was svhii fkciheheg l~kzaii as wkii as aoleg sles ln cle~kzvs% Vdk plp{iazhvx ln pzk/Hsiaohc V{zbhc eaoks was aisl he fkcihek‖ vdksk eaoks zkpzkskev :%4 pkzckev ln vdk easajs ln O{siho jlze) 1%6 pkzckev ln vdk hsos aef leix 0%; pkzckev ln aii eaoks% Aoleg fizsv gkekzavhle O{sihos) V{zbhc eaoks wkzk vlvaiix ajskev% He lvdkz wlzfs) he vdk 1>70s) vdk c{z~k ln plp{iazhvx ln vdk fi~k O{siho eaoks he Lvvloae Jaibae slchkvx daf m{sv svazvkf vl fh~kzgk nzlo vdk c{z~k ln vdkhz plp{iazhvx aoleg sles ln cle~kzvs) wdhik vdk c{z~k ln plp{iazhvx ln Jhjihcai,Q{zaehc eaoks was svhii fkciheheg aef vdav ln pzk/Hsiaohc V{zbhc eaoks dl~kzheg m{sv ajl~k }kzl% Acclzfheg vl J{iihkv‘s vdklzx ln cle~kzshle) aii vdksk nkav{zks cae jk asslchavkf whvd vdk jkgheeheg ln vdk iasv pkzhlf ln vdk pzlckss ln cle~kzshle% He dhs wlzfs= As ekw cle~kzshles jkcaok zazk jkca{sk ln vdk fhohehsdkf plli ln ele/O{siho plvkevhai cle~kzvs) vdk fkshzk ln ekw cle~kzvs vl fhspiax vdkhz cle~kzshle jx gh~heg vdkhz sles fhsvhecvh~k O{siho eaoks leix hevkeshfikf% Ele/O{sihos wkzk nkw he e{ojkz) okzk zkoeaevs ln leck floheaev cloo{ehvhks% Hn lek whsdkf vl jzkab whvd s{cd a ohelzhvx cloo{ehvx) lek whsdkf olzk vdae k~kz vl oabk vdk jzkab vlvai% Aoleg vdk pavzhchae ksvajihsdokev) le vdk lvdkz daef) eaoheg pavvkzes ills/ kekf {p cleshfkzajix% Sheck k~kzxlek ln hoplzvaeck daf cle~kzvkf jx vdke) vdkzk was el lek vl clopkvk whvd he phkvx ln eaoheg% Clopkvhvhle jkvwkke lif aef ekw cle~kzv naohihks zkoahekf aef vllb le ekw aef olzk hoplzvaev cdazacvkzhsvhcs ikafheg vl lpke plihvhcai aef slchai clehcv) j{v he vdk fikif ln eaok gh~heg) vdkzk was shopix el lek iknv vl hopzkss%:: ::
J{iihkv) Cle~kzshle) 71%
174
Vdk cleci{shle ln vdhs svavhsvhcai ktkzchsk hs vdav) fksphvk vdk nacv vdav) svavhsvhcaiix) vdk pzlckss ln cle~kzshle was svhii he hvs ’kazix oamlz/ hvx‟ pkzhlf he vdk Jaibaes) he vkzos ln hvs oav{zhvx hv daf kevkzkf hvs ’iaggazfs‟ pkzhlf% Dlw cae wk ktpiahe s{cd a fk~kilpokev aoleg a slchkvx whvd a ele/O{siho cloo{ehvx svhii e{okzhcaiix s{pkzhlz< Vl zkpdzask ae azg{okev jx E% Svkkesgazf vl vdk k ff kcv kcv vdav vdk scazchvx ln clheagk he vdk Lvvloae iaefs aef vdk cleskq{kev fkjask/ okev ln vdav clheagk av vdk kef ln vdk shtvkkevd ckev{zx daf ikss vl fl whvd vdk slchkvx as a wdlik vdae vdkx fhf whvd vdk p{jihc vzka/ s{zx vdav jzl{gdv ajl{v s{cd a svavk ln a ff ahzs) ahzs):3 vdk scazchvx ln ekw cle~kzvs) wdhcd hs asslchavkf whvd vdk ’iaggazfs‟ pkzhlf) fhf elv okae a scazchvx ln ele/O{sihos he slchkvx j{v leix a scazchvx ln plvkevhai cle~kzvs aoleg vdko% Piack ln Zkshfkeck aef Kvdehc Lzhghe
Vdk fh~hshle jkvwkke vdk pkvhvhlekzs le vdk jashs ln vdkhz zkshfkeck he {zjae lz z{zai skvvikokevs was aizkafx okevhlekf he l{z fhsc{s/ shle ln vdkhz slchai svav{s% Dkzk) vdhs henlzoavhle hs pzkskevkf he gzkavkz fkvahi vl dhgdihgdv vdk ekw O{sihos‘ piacks ln lzhghe aef affiihavhle vl pazvhc{iaz kvdehc gzl{ps% As oax jk ktpkcvkf) olsv ln vdk pkvhvhlekzs clok nzlo vdk Jaibaes) a zkghle whvd a o{cd iazgkz ele/O{siho plp{iavhle% Aoleg vdk >0 pkvhvhles vdav okevhle vdk ekw O{sihos‘ kvdehchvx) piack lz cl{evzx ln lzhghe) 60 ln vdko $>>%7 pkzckev( plhev vl Jaibae lzhghe% Vdk gkl/ gzapdhcai fhsvzhj{vhle ln vdk lvdkzs hs as nliilws‖; ekw O{sihos $4%3 pkzckev( azk spkchfikf as cloheg nzlo Asha Ohelz) 1 $1%7 pkzckev( nzlo vdk Ohffik Kasv $Jagdfaf() 3 $; pkzckev( nzlo ~assai svavks $Waiiacdha aef Olifa~ha() 3 $; pkzckev( nzlo lvdkz azkas $Gklzgha aef Czkvk( aef) pkzdaps s{zpzhshegix) ; $4%3 pkzckev( nzlo Wksvkze K{zlpk% Vdk piacks ln lzhghe ln vdzkk pkvhvhlekzs $; pkzckev( caeelv jk pzkchskix hfkevhfikf% Whvd zkgazf vl vdk pkvhvhlekzs nzlo vdk Jaibaes) hv hs hevkzksvheg vl elvk ktacvix vdkhz zkghles ln lzhghe% Nliilwheg OcGlwae‘s fh~h/ shle ln vdk Jaibaes hevl fi~k }leks $skk cdapvkz vwl() vwki~k pkvh/
:3
78%
E% Svkkesgazf) Vdk Ashae Vzafk Zk~li{vhle ln vdk Sk~kevkkevd Ckev{zx $Cdhcagl) 1873()
178
vhlekzs cae cikazix jk hfkevhfikf as cloheg nzlo vdk elzvd/kasv }lek $kasvkze J{igazha aef vdk kasvkze dain ln vdk K{zlpkae pazv ln V{zbkx() fi~k nzlo vdk naz elzvd/kasv $Fljz{fma() nl{z nzlo vdk sl{vd/wksv }lek $Aijaeha aef vdk Olzka() vdzkk nzlo vdk sl{vd/kasv $Gzkkck) whvdl{v vdk Olzka) aef vdk wksvkze pazv ln K{zlpkae V{zbkx( aef vdzkk nzlo vdk elzvd/wksv }lek $Skzjha) Jlseha) Czlavha) Oackfleha aef wksvkze J{igazha(% Vdhs zkghleai fhsvzhj{vhle ln vdk pkvhvhlekzs nliilws ~kzx cilskix vdk cleci{shles azzh~kf av he cdapvkz vwl zkgazf/ heg vdk fk~kilpokev ln vdk pzlckss ln cle~kzshle he vdk Jaibaes av vdk jkgheeheg ln vdk khgdvkkevd ckev{zx% Vdkzk wk cleci{fkf vdav vdk pzlckss ln cle~kzshle daf svlppkf he vdk elzvd/wksv }lek aef s{jsvaevhaiix silwkf flwe he vdk sl{vd/kasv }lek jx vdk kef ln vdk fizsv q{azvkz ln vdk khgdvkkevd ckev{zx% Vdk pllz zkpzkskevavhle ln pkvhvhlekzs nzlo vdksk }leks cae) vdkzknlzk) jk avvzhj{vkf vl a silw/ heg ln vdk pzlckss he vdlsk zkghles% Whvd zkgazf vl vdk sl{vd/wksv aef naz elzvd/kasv) le vdk lvdkz daef) hv was cleci{fkf vdav vdk Hsiaoh}avhle clevhe{kf he jlvd }leks {evhi vdk kef ln vdk khgdvkkevd ckev{zx) aivdl{gd silwheg flwe he vdk naz elzvd/kasv }lek anvkz vdk fizsv q{azvkz ln vdk ckev{zx% Vdk e{ojkz ln pkvhvhlekzs nzlo vdksk zkghles hs leix sihgdvix iazgkz vdae vdk fizsv vwl }leks fhsc{sskf) j{v gh~ke vdk nacv vdav vdkhz plp{iavhle was vwhck vdk sh}k ln vdk sl{vd/ wksv aef naz elzvd/kasv }leks) hv oax jk s{zohskf vdav Hsiaoh}avhle was hefkkf svhii clevhe{heg he vdk iavvkz zkghles% He vdk elzvd/kasv }lek) Hsiaoh}avhle was s{pplskf vl da~k svlppkf jx vdk kef ln vdk fizsv q{azvkz ln vdk khgdvkkevd ckev{zx) j{v was svhii clevhe{heg he vdk pkzhlf {efkz cleshfkzavhle‖1>70s–1730s% Gh~ke vdk nacv vdav vdk elzvd/kasv }lek was vdk }lek whvd vdk iazgksv plp{iavhle av vdk jkgheeheg ln vdk khgdvkkevd ckev{zx) hv hs elv s{zpzhsheg vdke vdav vdk iazgksv sdazk ln pkvhvhlekzs caok nzlo vdhs azka% Vdk pzlthohvx ln vdk zkghle vl vdk caphvai oax da~k piaxkf a zlik as wkii% Whvd zkgazf vl vdk pkvhvhlekzs nzlo Asha Ohelz) ox leix ljskz/ ~avhle wl{if jk vdav cle~kzshles o{sv da~k lcc{zzkf lccashleaiix he zkghles wdkzk a sh}ajik plp{iavhle ln ele/O{sihos svhii kthsvkf‖ Vzaj}le) Kz}kz{o aef J{zsa‖aivdl{gd vdk pzlckss ln cle~kzshle as a wdlik daf ileg agl jkke clopikvkf% As plhevkf l{v he cdap/ vkz fi~k) he vdk Jaibaes) vll) lccashleai cle~kzshles aef vdk pzacvhck ln bhs~k jadası pkvhvhles clevhe{kf he vdk ehekvkkevd ckev{zx as wkii) fksphvk vdk pzlckss ln cle~kzshle as a wdlik da~heg kefkf he vdk fizsv q{azvkz ln vdk khgdvkkevd ckev{zx% Vdk kthsvkeck ln wksvkze K{zlpkaes aoleg vdk pkvhvhlekzs oax
140
jk s{zpzhsheg av fizsv giaeck% S{cd a pdkelokele) dlwk~kz) was aisl whfkspzkaf he vdk 1>vd aef 17vd ckev{zhks:6 aef elv cleekcvkf vl vdk cle~kzshle pzlckss he vdk Jaibaes% Lek ln vdk jksv/belwe casks) he vdk pkzhlf wdhcd vdhs sv{fx cl~kzs) was vdk cle~kzshle ln vdk Cl{ev fk Jleek~ai) a Nzkecdoae le A{svzhae ohihvazx skz~hck) wdl was gh~ke vdk vhvik ln Pasda aef ass{okf vdk O{siho eaok ln Adokf Jkx he 17:8% Hv sdl{if jk plhevkf l{v vdav vdk fizsv pkvhvhle jx a wksvkze K{zlpkae av ox fhsplsai hs favkf vl 17:;% H ao zki{cvaev vl avvzhj{vk kvdehc lzhghes vl vdk pkvhvhlekzs jaskf leix le vdk nacv vdav vdkhz piacks ln lzhghe naii whvdhe vdk olfkze jl{efazhks ln pazvhc{iaz Jaibae svavks% Ek~kzvdkikss) slok ln vdko fl hfkevhnx vdkoski~ks as jkilegheg vl ae kvdehc gzl{p% Sht pkvh/ vhlekzs zknkz vl vdkoski~ks as Azokehaes $Kzokeh () sht as Gzkkbs $Z{o ( aef vdzkk as J{igazhaes J{igaz (% Fksphvk vdk nacv vdav vdksk pkvh/ $J{igaz vhlekzs wkzk fk nacvl ajaefleheg vdkhz nlzokz cloo{ehvhks) kvdehc hfkevhficavhle dkzk oax jk zkgazfkf) fizsv) as hefhcavhle ln vdk zhsk ln kvdehc cleschl{sekss aoleg ele/O{siho s{jmkcvs ln vdk kophzk aef) leix skclef) as ae hefhcavhle ln vdk gzkavkz ihbkihekss nlz cle/ ~kzvs vl clok nzlo vdk kvdehc gzl{ps ke{okzavkf ajl~k% Hv sdl{if aisl jk plhevkf l{v he vdhs zkspkcv vdav vdk e{ojkz ln pkvhvhles wdkzk vdk cle~kzvs hfkevhnx vdkoski~ks as jkilegheg vl a zkihghl{s cloo{/ ehvx zavdkz vdae ae kvdehc lek azk ikss e{okzl{s $skk jkilw(% Zkihghle
Gh~ke vdk nacv vdav Lzvdlflt Cdzhsvhaehvx was vdk floheaev ele/ O{siho zkihghle he vdk Jaibaes aef Asha Ohelz) hv oax jk ass{okf vdav hv was nzlo aoleg vdhs nahvd vdav vdk oamlzhvx ln pkvhvhlekzs wl{if clok% He olsv ln vdk pkvhvhles) dlwk~kz) vdk ekw O{sihos azk hfkevhfikf as ele/O{siho s{jmkcvs $}hooh ( lz {ejkihk~kzs $bê z z fi (% Vdk kikokev ’zkel{eckokev ln nlzokz zkihghle‟ he vdk pkvhvhles‘ s{pkzsvz{cv{zk s{pkzsvz{cv {zk flks elv ktpihchvix spkchnx vdk zkihghle nzlo wdhcd pkvh/ vhlekz hs cle~kzvheg j{v leix zknkzs vl hv as vdk ’naisk‟ zkihghle $ javhi (% He vdlsk pkvhvhles wdkzk vdk cle~kzv hfkevhfiks dhoskin vdzl{gd fhe (% dhs nlzokz nahvd) Cdzhsvhaehvx hs hefkkf vdk olsv cloole‖4 pkvh/
:6
Skk nlz ktaopik Jazvliloè aef I{chik Jkeeassaz) Iks cdzèvhkes f‘Aiiad= i‘dhsvlhzk ktvzalzfheahzk fks zkeègavs= T^H k kv T^HH k shäciks $Pazhs) :001(%
141
vhles% He fi~k pkvhvhles) dlwk~kz) vdk pkvhvhlekz hs hfkevh fikf as jkheg a Mkw aef he fi~k as Azokehae) h%k%) jkilegheg vl vdk Azokehae Olelpdxshvk Cd{zcd% As plhevkf l{v kazihkz vdkzk azk aisl fi~k pkvh/ vhlekzs nzlo Wksvkze K{zlpk) wdlo H ass{ok vl da~k jkke Cavdlihcs lzhgheaiix% H ao okevhleheg vdksk nacvs leix vl fkolesvzavk vdav cle/ ~kzshle was aisl whfkspzkaf aoleg okojkzs ln lvdkz Jaibae zkih/ ghl{s cloo{ehvhks% Wdav wkzk vdk spkchfics ln vdk pzlckss ln cle~kzshle aoleg vdksk cloo{ehvhks< [enlzv{eavkix) vdkzk azk el sv{fhks ln cle~kzshle vl Hsiao aoleg Lvvloae Mkws aef Azokehaes wdl) jkheg pzhoazhix {zjae fwkiikzs) oax elv da~k nliilwkf vdk pavvkzes ksvaj/ ihsdkf nlz vdk zksv ln vdk Jaibaes% Casks ln cle~kzshle aoleg vdk Mkws azk gkekzaiix jkihk~kf vl jk ae ktckpvhle jkca{sk Mkws wkzk ajik vl hsliavk vdkoski~ks nzlo vdkhz ke~hzleokev aef vl pzkskz~k vdkhz c{iv{zk) vd{s jkcloheg olzk zkshsvaev vl cle~kzshle% :; He ~hkw ln vdk ihohvkf henlzoavhle he ox favajask ajl{v casks ln Mkws cle/ ~kzvheg vl Hsiao) H caeelv pzl~hfk a olzk henlzokf lphehle av vdhs svagk ln zkskazcd% Zkasles aef Olvh~ks nlz Cle~kzshle
As plhevkf l{v he cdapvkz fi~k) vdk kikokev ln ’keihgdvkeokev‟ he vdk pkvhvhles) wdkzk vdk ekw O{sihos pzlciaho vdkhz avvaheokev ln fh~hek vz{vd lz vdkhz zkaih}avhle ln vdk s{pkzhlzhvx ln Hsiao) was ae ksskevhai svkp he cle~kzshle vl Hsiao aef sdl{if leix jk zkgazfkf as hefhcavh~k ln vdk ~li{evazx eav{zk ln vdk cle~kzshle% Henlzoavhle ajl{v vdk zkasles aef olvh~ks jkdhef vdk fkchshle ln ekw O{sihos vl s{johv pkvhvhles vl vdk s{ivae cae jk nl{ef he vdk kikokev ’zkasles nlz cle~kzshle‟ ln vdk pkvhvhles‘ s{pkzsvz{cv{zk% Vdkzk) wk fief fkvahis ajl{v vdk ekw O{sihos‘ nlzokz ih~ks) wdhcd) clojhekf whvd vdk nacvs belwe ln vdkhz pkzsleaihvhks) oax vdzlw ihgdv le vdkhz olvh~ks% N{zvdkzolzk) wk cae aisl fkf{ck a ekw O{siho‘s zkasles nlz cle~kzshle jx wdav dk asbs nlz he zkv{ze% Vdk ilghcai cleekcvhle jkvwkke vdk ’zkasles nlz cle~kzshle‟ aef ’ktpkcvkf zkwazf‟ kikokevs) kacd lek ln vdko zkpzkskevheg a clzzksplefheg svagk he vdk vwl oahe zkiavhlesdhp skvs‖’el~hck/caihpd‟ aef ’s{j/ mkcv/z{ikz‟‖hs zkkcvkf he vdk pkvhvhles‘ s{pkzsvz{cv{zk% He ~hkw ln
:;
Skk ]kixa}bl~a) Hsiaoh}avhle) :;;%
14:
vdk nacv vdav vdk vwl kikokevs he q{ksvhle clevahe fava ln a zkiavkf eav{zk) vdkx oax jk fkkokf as zkpzkskevheg a zkiavhlesdhp skv ln vdkhz lwe) h%k%) vdk ’zkasles nlz cle~kzshle‟ zkiavhlesdhp skv% Aeaixshs ln vdk fava clevahekf he vdhs skv aiilws ok vl fh~hfk vdk pkvhvhlekzs‘ zkasles aef olvh~ks nlz cle~kzshle hevl vdzkk oamlz gzl{ps% He vdk fizsv gzl{p) H heci{fk vdk pkvhvhlekzs wdl hefhcavk as a olvh~k vdk fhffic{ivx ln oabheg vdkhz ih~heg nlz lek zkasle lz aelvdkz% Sheck vdk aspkcv ln oavkzhai zkwazf hs ae ksskevhai nkav{zk ln vdk bhs~k jadası hesvhv{vhle) H ass{ok vdav s{cd ekw O{sihos oax da~k sl{gdv a sli{vhle vl vdkhz pzljikos he cle~kzshle vl Hsiao he vdk pzkskeck ln vdk s{ivae% Hv sdl{if jk plhevkf l{v) dlwk~kz) vdav vdkzk hs a shgeh ficaev jlfx ln pkvhvhles‖;8 he aii $7%4 pkzckev(‖he wdhcd vdk ekw O{sihos {sk vdk wlzf ’pllz) ekkfx‟ $ nabhz ( vl hfkevhnx vdkoski~ks av vdk jkghe/ eheg ln vdk pkvhvhle) hesvkaf ln b{i % ’Nabhz )‟ )‟ dlwk~kz) das vdk okae/ heg ln ’H) xl{z d{ojik skz~aev) he ekkf ln Glf‘s jl{evx aef okzcx‟ bhs~ s~kk jad adaası pkvhvhles) oax as wkii) wdhcd okaeheg) he vdk clevktv ln bh jk olzk pia{shjik% Aivdl{gd H fl elv z{ik l{v vdk plsshjhihvx vdav vdk pkvhvhles he wdhcd wk fief vdk wlzf nabhz oax da~k ktpzksskf vdk elvhle ln vdk pkvhvhlekz‘s ekkfhekss he aex oavkzhai skesk as wkii) H ao zki{cvaev) leix le vdhs k~hfkeck) vl heci{fk aii ln vdko he vdk gzl{p ln pkvhvhles s{johvvkf jx pklpik he fhffic{iv kclelohc svzahvs% Ek~kzvdkikss) vdkzk azk pkvhvhles he wdhcd vdk fhzk kclelohc shv{/ avhle ln vdk ekw O{sihos hs {eaojhg{l{s% He s{cd pkvhvhles) vdk wlzf nabhz lz hvs sxelexo n{baza oax jk {skf anvkz vdk sai{vavhle) vlgkvdkz whvd vdk ~kzjs hokb lz lioab‖n{bazaxho,nabhz lioabia $H ao pllz(% He lvdkzs‖:8 pkvhvhles) zkik~aev vl 60 ekw O{sihos $;%3 pkz/ ckev ln vdk vlvai pkvhvhlekzs(‖vdk elvhle hs cle~kxkf olzk fksczhp/ vh~kix) k%g%= Jhiê sadhj ~k fhxaz/h gazhj lioabia xavab ~k lv{zoab xkzho lioax{j $H fl elv da~k aexvdheg aef H ao a svzaegkz nzlo aelvdkz cl{evzx% H fl elv da~k a piack vl svax aef sikkp() :> lz Bêz ~k bksjk bafız fk hiho fk hiho ~k fkxe chdkvhefke jhz kxk jhz kxk oaihb lioax{p $H ao elv ajik vl kaze ox ih~heg aef) jkca{sk ln a fkjv) H el ilegkz da~k aex plssksshles(%:7
:> :7
1Y11000) n% 1% EPVA TT TT 1Y:4) 1Y:4) n% :% Skk Appkefht Appkefht 1) Flc{okev Flc{okev 1%
143
Aelvdkz gzl{p heci{fks pkvhvhlekzs wdl) aivdl{gd vdkx fl elv svavk vdkhz hopl~kzhsdokev fhzkcvix) ek~kzvdkikss fksczhjk vdkoski~ks as iknv whvdl{v vdk s{pplzv ln vdkhz cloo{ehvx lz cilsk zkiavh~ks% H ass{ok agahe vdav whflwdllf lz lzpdaedllf a{vloavhcaiix p{vs lek he vdk cavkglzx ln vdk slchaiix wkab aef vdav vdk oavkzhai zkwazfs gahekf vdzl{gd vdk bhs~ s~kk jadası hesvhv{vhle oax vd{s da~k jkke a s{ ffichkev svho{i{s nlz cle~kzshle% He nacv) 13 ln vdk pkvhvhlekzs wdl cikazix plhev vl vdkhz fhzk fieaechai svzahvs azk aisl hfkevhfikf as jkilegheg vl vdk gzl{p ln pkvhvhlekzs iknv whvdl{v vdk s{pplzv ln vdkhz cloo{ehvx lz cilsk zkiavh~ks% Vdkzknlzk) he vdk gzl{p ln ekw O{sihos wdl pzh/ oazhix saw he Hsiao a sli{vhle nlz vdkhz oavkzhai pzljikos) H heci{fk aisl aii pkvhvhlekzs hfkevhfikf as jkheg kifkzix) lzpdaes) shegik/olvdkzs) shegik/navdkzs) whflws aef fhspiackf svzaegkzs% Vdav jzhegs vdk vlvai ln ekw O{sihos he vdhs gzl{p vl 166 $18%1 pkzckev ln vdk vlvai pkvh/ vhlekzs(% Lj~hl{six) S% Fhohvzl~ daf s{cd pklpik he ohef wdke dk fksczhjkf vdk pkvhvhlekzs as oke aef wloke naiike hevl fkspkzavk aef czhvhcai shv{avhles) skazcdheg vdzl{gd cle~kzshle vl Hsiao nlz sai/ ~avhle nzlo svaz~avhle aef pl~kzvx) nzlo fkjvs aef czkfhvlzs% Dlwk~kz) aivdl{gd shgehficaev he e{ojkz) vdhs gzl{p caeelv jk fkkokf zkp/ zkskevavh~k ln aii vdk ekw O{sihos wdl cle~kzvkf vdzl{gd vdk bhs~k jadası hesvhv{vhle) as Fhohvzl~ das flek% He vdk skclef gzl{p ln pkvhvhlekzs) H heci{fk vdlsk wdl asbkf nlz ae applhevokev vl vdk paiack lz vdk azox) he zkv{ze nlz vdkhz cle/ ~kzshle vl Hsiao% He lvdkz wlzfs) aivdl{gd skkbheg vl jkclok oko/ jkzs ln vdk Lvvloae elokebiav{za) vdlsk pkvhvhlekzs sl{gdv {ivhoavkix vl avvahe fieaechai skc{zhvx as wkii) hv was vdk cdaegk he vdkhz slchai svav{s vdav was olzk hoplzvaev vl vdko aef vdav oax da~k pzl/ ~hfkf vdk oahe olvh~k nlz vdkhz cle~kzshle% He slok hesvaecks) vdk pkvhvhlekzs ktpihchvix svavk vdav vdkx fkshzk vl jkclok pazv ln vdk gzl{p ln pzh~hikgkf pklpik) h%k%) vdk asbkzh ciass%:4 Vdkzk azk 161 ekw O{sihos $14%4 pkzckev( he ox favajask wdl hefhcavkf vdav vdkx wl{if ihbk ae applhevokev he vdk svavk‘s skz~hck as a zkwazf nlz vdkhz cle~kzshle% A shgeh ficaev plzvhle ln vdko‖7: $;1 pkzckev ln vdk pkvhvhlekzs heci{fkf he vdhs gzl{p(‖ktpzksskf vdkhz pzknkzkeck nlz a plshvhle he vdk Maehssazx clzps lz he vdk shpadh clzps svavhlekf he vdk caphvai% Hv skkos vdav vdk jlsvaecı aef vdk ckjkch clzps wkzk vdk vwl s{jfh~hshles ln vdk Maehssazhks olsv na~lzkf jx vdk
:4
Skk nlz ktaopik LAB 36Y3;) n% 1 aef LAB 36Y>4) n% 1%
146
pkvhvhlekzs% He lek pkvhvhle) vdk ekw O{siho k~ke spkch fikf vdk hefh/ ~hf{ai {ehv $jþiùb ( he wdhcd dk fkshzkf vl skz~k%:8 A zlik oax da~k jkke piaxkf he s{cd casks jx vdk ekw O{sihos‘ fkshzk vl skz~k he {ehvs wdkzk vdkx bekw lvdkz pklpik‖khvdkz vdk pkzsle wdl daf jkke acvheg as vdkhz pavzle) lz shopix pklpik ln vdk saok jacbgzl{ef% Sk~kzai pkvhvhles he wdhcd vdk ekw O{siho svavks vdav dk das jkke dlelzkf whvd Hsiao he vdk pzkskeck ln vdk jlsvaecıja jlsvaecıja ı ı lz vdk Maehssazx agası aef vdav dk aizkafx skz~ks {efkz lek lz vdk lvdkz‘s clooaef 30 azk k~hfkeck nlz vdk fizsv shv{avhle% K~hfkeck nlz vdk cleckevzavhle ln pklpik ln shohiaz kvdehc jacbgzl{ef lz eavh~ks ln a pazvhc{iaz zkghle lz ~hiiagk oax jk nl{ef he vdk xlbiaoa zkghsvkzs% Nlz ktao/ pik) he lek s{cd zkghsvkz favkf 1>46) wdhcd ihsvs vdk g{iaos skz~heg he vdk paiack gazfkes ln Kfhzek he vdk iasv vdzkk olevds ln 108; $Skp% 11–Fkc% 7) 1>46() 7; l{v ln vdk ;1> eaoks zkclzfkf vdkzk azk fksczhjkf as eavh~ks ln Kfhzek) 30 ln Ksbh ]a za) 16 ln Fhokvlba) 13 ln Skzzks) 10 ln Nhihjk) 17 ln Ba}aeiıb) kvc% 31 Lvdkz pkvhvhlekzs‖:6 he e{ojkz‖whsdkf nlz fh ff kzkev kzkev plshvhles he vdk paiack) s{cd as pzaxkz zkafkz) 3: aef lek k~ke ktpzksskf hevkz/ ksv he a plsv as k{e{cd% 33 Nlz a ~kzx ihohvkf e{ojkz ln pklpik‖ vdzkk he vlvai‖vdk fkshzkf plshvhles okaev elv shopix okojkzsdhp he vdk pzh~hikgkf asbkzh ciass j{v a pzlolvhle) h%k%) vdkhz cle~kzshle was av ikasv he pazv olvh~avkf jx vdk fkshzk nlz cazkkz af~aeckokev% Vdk zksv ln vdk pkvhvhlekzs fhf elv spkchnx a plshvhle% Ekkfikss vl sax) vdk ekw O{sihos he vdhs gzl{p wkzk oaiks% He lek cask leix fhf a wloae sdlw a fkshzk vl skz~k he vdk paiack%36 He vdk vdhzf gzl{p ln pkvhvhlekzs) H heci{fk vdlsk wdl daf slok lvdkz olvh~avhle vl cle~kzv vl Hsiao) olsvix nzlo zkasles ln a pkz/ sleai lz naohihai eav{zk% He vwl pkvhvhles) vdkzk hs ae hefhcavhle ln psxcdlilghcai pzkss{zk da~heg jkke jzl{gdv vl jkaz le vdk cle~kzv nzlo whvdhe vdk naohix% He vdk fizsv ktaopik) a xl{eg oae nzlo vdk chvx ln Xaejli{ svavks vdav dhs vwl jzlvdkzs daf aizkafx acckpvkf Hsiao)3; wdhik he vdk skclef lek a wloae whvd dkz vwl cdhifzke
:8 30 31 3: 33 36 3;
SI >Y14) n% 4% Skk 1AY;7318) n% 6>–672 1AY;7:80% Skk EJBO F 1;8) n% 66j–67a% Vdk zkghsvkz hs p{jihsdkf he LHHPJ ) 8:–87% SI >Y14) n% :% 1AY;7318) n% ;1% 1AY;7314% 16;Y104%
14;
whsdks vl nliilw vdk ktaopik ln dkz d{sjaef% 3> Aelvdkz vwl pkvh/ vhles) he wdhcd naohix oavvkzs azk agahe vdk olvh~k nlz cle~kzshle) azk ~kzx cdazacvkzhsvhc ln vdk ohefskv ln wloke he vdhs pkzhlf% He vdk fizsv lek) a Gzkkb ghzi fkchfks vl kojzack Hsiao he lzfkz vl kscapk vdk {ewaevkf oazzhagk wdhcd das jkke azzaegkf jx dkz paz/ kevs%37 He vdk skclef) ae Azokehae wloae dlpks) jx cle~kzvheg vl Hsiao) vl v{ze vdk iaw he dkz na~lz he a naohix nk{f whvd dkz sle l~kz hedkzhvaeck%34 Nheaiix) nlz slok ele/O{sihos) s{cd as xl{eg Gzkkb wdl fizsv ohgzavkf vl Hsvaej{i aef wlzbkf as a czanvsoae j{v cdlsk vl cle~kzv vl Hsiao l{v ln a fkshzk vabk pazv he ohihvazx cao/ pahges)38 cle~kzshle vl Hsiao oax da~k jkke vdk a~ke{k nlz af~ke/ v{zk lz ohihvazx gilzx% Zkwazf
Wdke fhsc{ssheg vdk zkasles nlz cle~kzshle ln vdk ekw O{sihos wdl s{johvvkf pkvhvhles vl vdk s{ivae) hv sdl{if jk plhevkf l{v vdav hv hs naz nzlo ckzvahe vdav aii vdkhz whsdks wkzk gzaevkf% As a oavvkz ln nacv) vdk keflzskokevs ln vdk lffichais le vdk pkvhvhles {s{aiix fl elv sdlw vdav aexvdheg olzk vdae a skv ln O{siho cilvdks lz hvs casd kq{h~aikev was k~kz gzaevkf% Ek~kzvdkikss) vdk nzkq{kecx aef vdk pkzshsvkeck ln vdk pkvhvhles oabheg s{cd fkoaefs) aef vdk clesvaev zknkzkecks vl s{cd zkq{ksvs as ikghvhoavk aef lzfahekf ’jx vdk iaw‟ lz jx ’vdk ksvajihsdkf c{svlo)‟ plhev vl vdk kthsvkeck ln pzkckfkevs% He lvdkz wlzfs) a s{z~kx ln vdk fava zkiavkf vl vdk zkwazf gzaevkf vl pkvhvhlekzs) h%k%) wdav was acv{aiix zkckh~kf he zkv{ze nlz cle~kz/ shle vdzl{gd vdk hesvhv{vhle ln bhs~k jadası ) oax dkip {s vl jkvvkz fkvkzohek vdkhz olvh~avhle% As plhevkf l{v) vdk keflzskokevs spkchnx vdk gzaevheg ln a skv ln cilvdks $bhs~k ( lz) lccashleaiix) a i{t{zx skv ln cilvdks $oùbkooki ( lz vdkhz casd kq{h~aikev $bhs~k jadas (% bhs~k ı Vl wdav ktacvix) dlw/ k~kz) fhf vdksk wlzfs zknkz< Vdk jksv sl{zck nlz s{cd ae heq{hzx hs vdk zkghsvkz accl{evheg nlz vdk vzkas{zx fhsj{zskokevs vl ekw O{sihos he vdk fiscai xkaz 1>48–40) fhsc{sskf he cdapvkz fi~k% Acclzfheg vl 3> 37 34 38
1Y1088;% 1Y11011% Skk Appkefht 1) Flc{okev 7% EPVA TT 1Y:4) n% ;0% Skk Appkefht 1) Flc{okev 10% LAB 7>Y;:) n% 30%
14>
vdhs zkghsvkz) 183 ekw O{siho oke) zkckh~kf 1):00 abçk s kacd) wdhik 16> wloke zkckh~kf :)170 abçk s) s) 14 jlxs 700 abçk s aef vdk :: ghzis 1)000 abçk s kacd as vdk kq{h~aikev ln a skv ln O{siho cilvdks $ bhs~k jadası (% He affhvhle) vdk oke zkckh~kf vwl pahzs ln paevs) oafk ln fizsv q{aihvx cilvd) wdhik vdk jlxs zkckh~kf lek ktvza pahz% 60 Wkzk s{cd aol{evs s{ffichkev vl olvh~avk cle~kzshle le kclelohc gzl{efs< Jkazheg he ohef vdav acclzfheg vl vdk xlbiaoa zkghsvkzs ln vdk pkzhlf) ae ackoh l iae‘s fahix wagk was vwl abçk s) s) vdke a jlx wl{if zkckh~k as bh bhs~ s~kk jad adaası vdk kq{h~aikev ln a xkaz‘s saiazx% N{zvdkz he~ksvhgavhle he vdk cl{zv zkghsvkzs zk~kais vdav a dl{sk he vdk pzl~hechai chvx ln ^hfhe was appzahskf av 3)>00 abçk s) s)61 h%k%) ikss vdae vdk clojhekf aol{ev vdav a naohix ln vdzkk wl{if da~k zkckh~kf as bh bhs~ s~kk jad adaası % Hv oax jk cleci{fkf vdav) aivdl{gd elv s{ ffichkev vl oabk lek zhcd) vdk bh bhs~ s~kk jadası wl{if da~k zkpzkskevkf a s{jsvaevhai aol{ev nlz a pkzsle he fhffic{iv kclelohc chzc{osvaecks aef vd{s) oax jk cle/ shfkzkf as a cleshfkzajik heckevh~k nlz cle~kzshle% oùbk bkoo ooki ki bh bhs~ s~k k aol{evkf Vdk kq{h~aikev ln a i{t{zx skv ln cilvdks $ où ( vl ae k~ke iazgkz s{o vdae vdlsk okevhlekf ajl~k% As a z{ik) pkvh/ vhles spkchnxheg vdk gzaevheg ln où oùbk bkoo ookki bh bhs~ s~k k fksczhjk he fkvahi hvs kikokevs% Vdkzknlzk) wk azk k~ke ajik vl fkvkzohek elv leix hvs ~ai{k j{v aisl vdk azvhciks ln cilvdheg he~li~kf% Acclzfheg vl lek s{cd pkvh/ vhle) a i{t{zx skv ln cilvdks heci{fkf= ae kojzlhfkzkf zljk $ blevl i{b () clvvle paevs $b{veh fùeiùb () vzl{skzs çab ıziıb () a ~ksv $aevkzh () v{zjae/ $çab ıziıb cilvd $fksvaz () a jkiv $b{ ab () {efkzpaevs $caok () a v{zjae $ba~{b ( aef caok {x {x () sihppkzs $oksv/h pap{ç (% Vdk ksvhoavkf ~ai{k ln s{cd a skv vlvaikf ;0 s%6: Dlwk~kz) vdhs fi~k/nlif heczkask g{z{ ) wdhcd was kq{ai vl >)000 abçk s% l~kz vdk ~ai{k ln zkg{iaz skv ln cilvdks sdl{if elv jk zkgazfkf as ae affkf heckevh~k vl cle~kzshle% As was plhevkf l{v kazihkz) oùbko/ oki bhs~k was {s{aiix gh~ke vl ekw O{sihos wdl aizkafx kemlxkf a dhgdkz slchai svav{s he vdkhz lzhgheai cloo{ehvhks aef wdl asphzkf vl avvahe ae k~ke dhgdkz plshvhle he slchkvx le cle~kzshle2 vdk bhs~k jadası he vdkhz cask cl{if elv da~k jkke aex gzkav heckevh~k% N{zvdkzolzk) hv oax jk ljskz~kf vdav vdk ~ai{k ln ekhvdkz a zkg/ {iaz elz a i{t{zx skv ln cilvdks zkoahekf {ecdaegkf l~kz vhok% Nlz
1Y10417) n% :j% EJBO) S 13) n% 3j% 6: Lek g{z{ was kq{ai vl 1:0 abçk s he vdk pkzhlf {efkz cleshfkzavhle% Skk k~bkv Pao{b) ’Olekx he vdk Lvvloae Kophzk) 13:>–1816)‟ he eaicıb aef Q{avakzv) Dhsvlzx) 8>7% 60 61
147
ktaopik) vdk bhs~k jadası gzaevkf vl vdk Azokehae nzlo Vkbn{zfa aef vdk wloae nzlo Xkfh B{ik was spkch fikf as jkheg wlzvd 1)000 abçk s he 1>48)63 wdhik vdk lek gzaevkf vl vwl oke nzlo Czkvk was ~ai{kf av leix 400 abçk s he 1700%66 Jx 170>) dlwk~kz) vdk casd ~ai{k ln a zkg{iaz skv ln cilvdks daf agahe heczkaskf vl vdk zavk ln 10 g{z{ $1):00 abçk s(% s(%6; Leix a nkw xkazs iavkz) he 1710) vdk Ckevzai Accl{evheg Fkpazvokev elvkf vdav hv daf jkclok vdk pzacvhck nlz vdk zkg{iaz skv ln cilvdks vl jk pahf av vdk zavk ln :–3) hesvkaf ln 10 g{z{ aef a i{t{zx skv av 1;–:0) hesvkaf hesvkaf ln ;0–>0 ;0 –>0 g{z{ ) aef pzlplskf vdk zavks ln > aef :; g{z{ as olzk afkq{avk%6> Whvd zkgazf vl vdk ~azhavhle he vdk zavks ln où oùbk bkoo ooki ki bh bhs~ s~kk jad jadas ası ı ) H whii leix chvk a pkvhvhle favheg nzlo 17:1) he wdhcd vdk ja ja fknvkz/ fknvkz/ faz zkq{ksvs ae ksvhoavk nlz vdk ~ai{k ln où oùbk bkoo ooki ki bh bhs~ s~k k jkheg gzaevkf vl vdk pkvhvhlekz% Acclzfheg vl vdk ksvhoavk) wdhcd vzacks vdk ~ai{k ln a i{t{zx skv l~kz ae vdk hevkz~ai ln nl{z xkazs) vdk aol{ev pahf was 1> g{z{ he 171>) :; g{z{ he 1718 aef >6 g{z{ he 17 17:0% Vdk ja fknvkzfaz ja fknvkzfaz lzfkzs vdav vdk pkvhvhlekz jk pahf av vdk zavk ln :; g{z{ %67 Lj~hl{six) vdk zavks ln bhs~k jadası ~azhkf) fkpkefheg le vdk casd a~ahiajik he vdk vzkas{zx) le vdk pazvhc{iaz pkvhvhle aef le vdk wdhos ln vdk gzaefkks vdkoski~ks% Sl naz) l{z heq{hzx hevl vdk acv{ai zkwazfs gzaevkf vl vdk pkvh/ vhlekzs das jkke cleckzekf whvd vdk casd ~ai{k ln a skv ln O{siho cilvdks% Vdkzk hs k~hfkeck) dlwk~kz) vdav vdk zkwazf lff kzkf kzkf was elv ihohvkf vl vdk iavvkz% Vl slok pkvhvhlekzs fkkokf as jkheg he kspk/ chaiix phvhn{i chzc{osvaecks) s{cd as nlz ktaopik a pkeehikss) jihef kifkzix oae64 lz a whflwkz whvd sk~ke cdhifzke)68 vdk czlwe was olzk gkekzl{s% Vdlsk pkvhvhlekzs wkzk zkwazfkf jx jkheg p{v le vdk gl~kzeokev paxzlii‖vwl abçk s pkz fax he vdk fizsv cask aef 16 abçk s pkz fax he vdk skclef% He aelvdkz cask) a wloae jkheg dazasskf jx dkz nlzokz cl/zkihghlehsvs nlz cle~kzvheg vl Hsiao was gzaevkf 60 g{z{ vl j{x a dl{sk he a ekw piack) wdkzk sdk wl{if jk sank%;0 N{zvdkzolzk) wdkzkas casks ln hopl~kzhsdkf pklpik jkheg p{v le 63 66 6; 6> 67 64 68 ;0
Skk 1Y1044>) n% 1 $Appkefht 1) Flc{okev 6( aef 1AY;7318) n% 6:% Skk 1Y108:3) n% 1–: aef 1Y108:>) n% 1–:% Skk LAB 1>:Y38 aef EPVA TT 1Y:4) n% :1% SI >Y14) n% 3% Skk 1AY>404% EPVA TT 1Y:4) n% : $Appkefht 1) Flc{okev 1(% 1AY>743) n% 1% 1Y11107%
144
gl~kzeokev paxzlii azk nkw he e{ojkz) vdkzk hs el sdlzvagk ln s{cd casks aoleg vdlsk asphzheg nlz a plshvhle he vdk azox% Nlz ktao/ pik) he a flc{okev hss{kf jx vdk Ckevzai Accl{evheg Fkpazvokev vdav acclopaehks a skzhks ln khgdv pkvhvhles) lek ln wdhcd hs he vdk eaok ln a pkzsle zkq{ksvheg ae applhevokev he vdk Maehssazx clzps) hv hs spkchfikf vdav 7 pkvhvhlekzs zkckh~kf 10 g{z{ kacd as bh bhs~ s~kk ja jada dası sı aef lek pkvhvhlekz 1:%; g{z{ as vdk casd/~ai{k ln a Maehssazx {eh/ nlzo%;1 He lvdkz wlzfs) vdk iavvkz pkzsle was applhevkf vl vdk Maehssazx clzps he affhvhle vl jkheg gzaevkf bh bhs~ s~kk ja jaddas ası ı % He a e{ojkz ln lvdkz pkvhvhles) vdk ekw O{sihos svavk vdav vdkx daf aizkafx jkke dle/ lzkf whvd Hsiao he vdk pzkskeck ln vdk s{ivae aef kopilxkf he vdk Maehssazx clzps%;: Vdkhz zkq{ksvs azk leix nlz bh bhs~ s~kk ja jada dası sı hvskin% He xkv aelvdkz pkvhvhle) wk fief ae keflzskokev nzlo vdk Gzaef ^h}hkz vdav vdk pkvhvhlekz‖a ^kekvhae) pzljajix a nlzokz okzcdaev‖jk gh~ke a i{t{zx skv ln cilvdks aef applhevkf vl a s{hvajik plshvhle he lek ln vdk azox clzps%;3 Hv oax jk cleci{fkf vdav a shgeh ficaev plz/ vhle ln vdk ekw O{sihos cle~kzvkf vdzl{gd vdk bhs~k jadası hesvhv{/ vhle wkzk hefkkf afohvvkf vl vdk Maehssazx clzps aef vdav wk da~k k~kzx zkasle vl cleshfkz vdk iavvkz hesvhv{vhle a clevhe{avhle ln vdk fk~ hzok hesvhv{vhle le a ~li{evazx jashs% Psxcdlilgx
Vdk pzagoavhso sdlwe jx vdk pkvhvhlekzs das aizkafx jkke elvkf vl he l{z fhsc{sshle ln vdkhz olvh~avhles he cle~kzvheg% Vdk cleci{/ shles azzh~kf av he cleekcvhle whvd vdk eaoheg pavvkzes ln vdk ekw O{sihos nlz vdk pkzhlf 1>70s–1730s‖vdk ’iaggazfs‟ pkzhlf he vdk pzlckss ln cle~kzshle he vdk Jaibaes‖oax aisl skz~k as ae hefhca/ vhle ln vdkhz jkda~hlz% Acclzfheg vl J{iihkv) vdlsk pklpik vabheg vdk fkchshle vl cle~kzv vl Hsiao he vdhs pkzhlf wl{if vzx dazfkz vl jzkab awax nzlo vdkhz lif cloo{ehvx aef afapv vdkoski~ks vl vdk ekw lek vdae pzk~hl{s gkekzavhles ln cle~kzvs daf flek% Vdk glai ln fhsvheg{hsdheg vdkoski~ks nzlo vdk lif cloo{ehvx av aex pzhck) he hvs v{ze) oax zks{iv he vdk dazfkeheg ln slchai zkiavhles aef k~ke Skk 1Y10841) n% 1–4% Skk nlz ktaopik) EPVA TT 1Y:4) n% :32 1AY;7318) n% 6>–672 1Y11000) n% 6 aef 1AY;7:80) n% 1% ;3 1,11111 $Appkefht 1) Flc{okev 16(% ;1 ;:
148
gh~k zhsk vl clehcvs jkvwkke ekw O{sihos aef ele/O{sihos% S{cd a pdkelokele hs avvksvkf he sk~kzai pkvhvhles favheg nzlo vdk iasv fkcafks ln vdk pkzhlf {efkz sv{fx‖17:0s–1730s% He vdksk pkvhvhles) vdk ekw O{sihos zkplzv vdav) as a cleskq{keck ln vdkhz cle~kzshle) vdkx nl{ef vdkoski~ks lsvzach}kf nzlo vdkhz nlzokz cloo{ehvhks%;6 Le vdk lvdkz daef) kvdehc hfkevhficavhle he vdk bh bhs~ s~kk ja jaddas ası ı pkvhvhles sdlws vdav slok ln vdk ekw O{sihos fhf elv ekckssazhix asslchavk cle~kzshle vl Hsiao whvd ilsheg vdkhz kvdehc hfkevhvx% S{cd a ohef/ skv oax ktpiahe vdk iazgk e{ojkz ln nkv~a nkv~a s hss{kf f{zheg vdk pkzhlf {efkz cleshfkzavhle vdav fhsc{ss c{iv{zai cle hcvs jkvwkke ekw O{sihos aef vdkhz ekw cloo{ehvx anvkz cle~kzshle% Aelvdkz hoplzvaev cdazacvkzhsvhc ln vdk pkvhvhlekzs‘ jkda~hlz) aizkafx aii{fkf vl he cdapvkz fi~k) hs vdk acvh~k zlik vdkx piaxkf he vdk bhs~k jadası hesvhv{vhle% Vdk ekw O{sihos cle~kzvkf vdzl{gd vdk hesvhv{/ vhle wkzk ekhvdkz zaefloix phcbkf nzlo vdk svzkkvs ln Hsvaej{i aef fzaggkf jknlzk vdk s{ivae vl pzlel{eck vdk adafkv ) elz fhf vdkx shopix zkckh~k olekx aef cilvdks leix jx ~hzv{k ln fiefheg vdko/ ski~ks ’slokdlw he vdk nzlev ln vdk vzkas{zx)‟ as S% Fhohvzl~ jkihk~ks vl da~k jkke vdk cask%;; He s{pplzv ln s{cd a ~hkw) wk cae plhev vl vdk nacv vdav) aivdl{gd vdk cle~kzshles lcc{zzkf olsvix he vdk paiack aef a s{jsvaevhai e{o/ jkz ln vdk pkvhvhlekzs wkzk hefkkf zkshfkevs ln Hsvaej{i lz hvs s{z/ zl{efhegs) olzk vdae vwl vdhzfs ln vdk pkvhvhlekzs daf clok vl vdk caphvai nzlo vdk pzl~hecks% H azg{k vdav vdksk pklpik oax da~k dkazf ajl{v vdk jkekfivs ln cle~kzshle jknlzk vdk s{ivae aef cleschl{six fkchfkf vl gl vl vdk caphvai aef cle~kzv he dhs pzkskeck) zavdkz vdae shopix acckpv Hsiao he vdk piack ln vdkhz zkshfkeck% N{zvdkzolzk) vza~kiheg vl vdk caphvai) kspkchaiix nzlo zkolvk pzl~hecks) o{sv da~k jkke q{hvk a cdaiikegk av vdk vhok) a cdaiikegk vdav elv k~kzxlek wl{if da~k daf vdk cl{zagk vl {efkzvabk% Lek pkvhvhle) he wdhcd a wloae cloheg nzlo Jagdfaf okevhles vdav sdk daf jkke zljjkf le vdk wax vl vdk caphvai) avvksvs vl vdk pzacvhcai fh ffic{ivhks nacheg vdk cle~kzvs%;> Olzkl~kz) vdkzk hs el k~hfkeck vl s{ggksv vdav k~kzx/ lek wdl pkvhvhlekf vdk s{ivae s{cckkfkf he gaheheg ae a{fhkeck whvd dho% Le vdk clevzazx) vdk iazgk e{ojkz ln pkvhvhles okevhleheg ae
;6 ;; ;>
Skk 1Y11107) n% 1 aef 1Y110>3) n% 1% Fhohvzl~) ’A~aev/pzlpls)‟ 3;% LAB 7>Y;:) n% ;%
180
Lvvloae lffichai acvheg as okevlz hopihks vdav hv oax da~k jkke zavdkz fhffic{iv nlz pklpik whvdl{v dkip nzlo ’heshfk‟ vl ljvahe zlxai na~lzs% A pkvhvhlekz nzlo Kz}kz{o) nlz ktaopik) okevhles vdav dk daf vl wahv nlz vdzkk olevds jknlzk zkckh~heg a zlxai a{fhkeck% ;7 Hv das jkke aizkafx s{ggksvkf vdav ilwkz n{ecvhleazhks he vdk paiack ohgdv da~k aisl acvkf as hevkzokfhazhks jkvwkke vdk ekw O{sihos aef vdk paiack fhgehvazhks wdl wkzk he a plshvhle vl ’dlelz‟ vdko whvd Hsiao%;4 He lvdkz wlzfs) hv oax jk cleci{fkf vdav vdk fkchshle vl cle~kzv vdzl{gd vdk hesvhv{vhle ln bh bhs~ s~kk ja jaddas ası ı was elv ae azjhvzazx lek% Zavdkz) hv was ae ktpzksshle ln vdk fkvkzoheavhle ln pklpik whvd a pazvhc{iaz glai he ohef) pklpik wdl wkzk pzkpazkf vl {efkz/ vabk a pkzhil{s ~lxagk vl vdk caphvai aef kef{zk s{jsvaevhai dazf/ sdhp he vdk lnvke nlzilze dlpk ln ljvaheheg ae a{fhkeck whvd vdk s{ivae% He ox lphehle leix vdk olsv fkvkzohekf wkzk ajik vl s{c/ ckkf he vdk clopkvhvhle nlz zlxai na~lz% Vdhs ljskz~avhle oax jk bhs~ s~kk jadası hesvhv{vhle as cle/ kspkchaiix hoplzvaev he zkgazf vl vdk bh vhe{avhle ln vdk fk~ hzok hesvhv{vhle% Vdk fkvkzoheavhle aef kef{zaeck sdlwe jx vdk pkvhvhlekzs okaes vdav g{hfkiheks appihkf he vdk skikcvhle ln Maehssazhks vdzl{gd vdk fk~ hzok ) fkshgekf vl kes{zk vdav vdkx pls/ sksskf ckzvahe q{aihvhks) daf shopix jkke zkpiackf jx eav{zai skikcvhle% Elv leix wkzk vdk pkvhvhlekzs acvh~k he vdk hehvhavhle ln vdkhz acv ln cle~kzshle) vdkx wkzk aisl acvh~k pazvhchpaevs he fkvkzoheheg wdav vdkx wl{if zkckh~k he zkv{ze% Vdk zaegk ln pkvhvhlekzs‘ zkq{ksvs fhs/ c{sskf ajl~k fkolesvzavks vdk hoplzvaeck ln pzacvhcai cleshfkzavhles l~kz sphzhv{ai leks he vdk ekw O{sihos‘ olvh~avhle vl cle~kzv% As plhevkf l{v he cdapvkz fi~k) ae kikokev ln jazgaheheg cae lnvke jk fkvkcvkf he vdk pkvhvhles% A pkznkcv ktaopik he vdhs zkspkcv hs vdk anlzkokevhlekf pkvhvhle ln vdk Mkw wdl waevkf ae applhevokev as dkaf ln vdk svavk ohev% Appazkevix) av svabk dkzk was a ~kzx pzl fivajik lpkzavhle) sl vdav dk fhf elv cl{ev le dhs cle~kzshle as s{ ffichkev zkasle vl acdhk~k vdhs glai j{v aisl l ff kzkf kzkf vl pax aee{aiix vdk aol{ev ln 31)000 abçk s vl vdk vzkas{zx aef vl {sk dhs he {keck aoleg vdk Mkwhsd cloo{ehvx vl avvzacv olzk cle~kzvs vl Hsiao% ;8 He aelvdkz pkvhvhle) a ekw O{siho zkq{ksvs as zkwazf a i{t{zx skv ln cilvdks j{v) zkaih}heg pkzdaps vdav dk oax elv q{aihnx nlz s{cd ae dlelz) okevhles vdav dk wl{if elv jk fhsapplhevkf vl zkckh~k dain ln hvs ;7 ;4 ;8
LAB ;3Y:3) n% 3% Skk cdapvkz nl{z% Skk EPVA TT 1Y:4) n% :>% Appkefht 1) Flc{okev 8%
181
casd ~ai{k%>0 Vdk cask ln vdk pkvhvhlekz wdl sl{gdv vl q{aihnx nlz vdk ckjkch clzps jx pzkvkefheg vl jk fhsajikf das jkke aizkafx chvkf ajl~k% Slok pkvhvhlekzs avvkopvkf vl fhsg{hsk vdk wlzifix zkasles {efkzixheg vdkhz fkchshle vl cle~kzv jx svavheg he vdkhz pkvhvhles vdav vdk hfka fizsv lcc{zzkf he a fzkao% >1 A zklcc{zzkeck ln vdhs fzkao‖vdzkk vhoks as a z{ik‖hs {s{aiix p{v nlzwazf as pzlln ln vdk fzkao‘s s{pkz/ eav{zai lzhghe% Vdk cask ln a Gzkkb wloae) wdl das jkke vzxheg vl fief a wax vl pax lff dkz fkjv) hs kspkchaiix hevkzksvheg% He dkz fzkao) a ~lhck saxs vdzkk vhoks= ’Acckpv Hsiao aef le vdk Hopkzhai cl{echi vdk Z{ikz ln vdk Bhegflo whii zkwazf xl{ nlz vdav!‟>: Aivdl{gd vdk hoagheazx eav{zk ln vdhs fzkao hs appazkev vl olfkze zkafkzs) nlz vdk s{pkzsvhvhl{s ohefs ln vdk khgdvkkevd ckev{zx hv oax da~k sl{efkf ihbk ae heczkfhjik zk~kiavhle% S{ooazx
Wk cae s{ooazh}k vdk olsv cloole slchai) fkolgzapdhc aef psx/ cdlilghcai cdazacvkzhsvhcs ln vdk gzl{p ln ekw O{sihos he l{z fava/ jask cle~kzvkf vdzl{gd vdk hesvhv{vhle ln bhs~k jadası as jkheg vdk nliilwheg% 1% Fksphvk Fksphvk vdk casks wdkzk ekw ekw O{sihos O{sihos pkvhvhl pkvhvhlekf ekf vdk vdk s{ivae s{ivae nlz a casd zkwazf leix) da~heg aizkafx zkckh~kf ae a{fhkeck aef jkke awazfkf a plshvhle $okaeheg vdav dk was ln asbkzh ciass av vdk vhok ln vdk pkvhvhle() olsv pkvhvhlekzs wkzk lzhgheaiix nzlo vdk zkaxa ciass% Vdk heshgehficaev sdazk ln pkvhvhlekzs whvd dhgdkz slchai svaefheg oax wkii jk a zkkcvhle ln vdk kazix svagk he vdk fk~ki/ lpokev ln ae kihvk aoleg ele/O{sihos% :% Hv was olzk ihbkix ihbkix nlz nlz {zjae {zjae fwkiikzs fwkiikzs vl skkb a cle~kzs cle~kzshle hle he vdk vdk zlxai pzkskeck vdae agzhc{iv{zaihsvs% He affhvhle vl zkshfkevs ln Hsvaej{i aef hvs ke~hzles) olsv pkvhvhlekzs lzhgheavkf nzlo vdk elzvd/kasv Jaibaes%
>0 >1 >:
1AY;7318) n% 8% Skk nlz ktaopik) 1Y10841% n% 72 1AY;7318) n% ;2 1Y1110>) n% 1% 1Y1110>) n% 1% Skk Appkefht 1) Flc{okev 13%
18:
3% Vdk pkvhvh pkvhvhlekzs lekzs wkzk pzhoazh pzhoazhix ix af{iv af{iv shegik oke% Aoleg Aoleg wloke) whflwkf wloke wkzk olsv ihbkix vl cle~kzv% 6% He vk vkzo zoss ln ln zki zkihg hghl hl{s {s affiihavhle) hv was Kasvkze Lzvdlflt Cdzhsvhaes vdav pzkfloheavkf aoleg vdk pkvhvhlekzs% Dlwk~kz) Mkws aef Olelpdxshvk Azokehaes) aef k~ke Cavdlihcs he vdk iavkz pazv ln vdk pkzhlf) wkzk aiolsv as ihbkix vl skkb vl cle~kzv f{k vl vdkhz pzhoazhix {zjae jacbgzl{efs% ;% Vdk ohefskv ohefskv ln vdk pkvhvh pkvhvhlekzs lekzs oax jk cdazac cdazacvkzh}kf vkzh}kf as ktdhjhv/ ktdhjhv/ heg a zavdkz pzacvhcai avvhv{fk vlwazfs cle~kzshle vl Hsiao aef ae ktckpvhleai fkvkzoheavhle vl acdhk~k vdkhz glais% Vdk oamlz/ hvx ln vdk ekw O{sihos skkbheg cle~kzshle he vdk s{ivae‘s pzks/ keck wkzk olvh~avkf vl cle~kzv jx vdk dlpk ln fieaechai zkwazf) gzaevkf vl vdko he vdk nlzo ln bh bhs~ s~kk ja jaddas ası ı % Vdhs gzl{p heci{fkf ele/O{sihos jkilegheg vl vdk cavkglzx ln vdk slchaiix fhsaf~ae/ vagkf) h%k%) lzpdaes) whflws) shegik navdkzs) shegik olvdkzs) kifkzix whvdl{v s{pplzv aef svzaegkzs {eajik vl p{v flwe zllvs he vdk cl{evzx% Vdk lvdkz oamlz olvh~avhle nlz cle~kzshle was vdk fkshzk nlz slchai af~aeckokev% Vdhs gzl{p cleshsvkf olsvix ln shegik oaik pkvhvhlekzs% Cloheg pzhoazhix nzlo ilwkz slchai ciassks) vdkx asphzkf vl elvdheg olzk vdae ae applhevokev vl vdk cloole zaebs ln vdk Maehssazx clzps% Vdk nkw aoleg vdko whvd dhgdkz slchai svaef/ heg sl{gdv dhgdkz plshvhles he vdk azox lz vdk paiack% >% Vdk zkiavhles zkiavhles jkvwkke vdk pkvhvhle pkvhvhlekzs kzs aef aef okojkzs okojkzs ln vdkhz nlz/ okz clenksshleai gzl{p) wdkvdkz naohix lz ekhgdjlzs) wkzk lnvke oazbkf jx zkskevokev av vdkhz avvkopvs vl fhsasslchavk vdkoski~ks nzlo vdk iavvkz as o{cd as plsshjik aef jx cle hcvs whvd vdk okojkzs ln vdkhz ekw cloo{ehvx f{k vl c{iv{zai fhff kzkecks% kzkecks%
CLECI[SHLE Cle~kzshle vl Hsiao he vdk Lvvloae Jaibaes hehvhaiix nliilwkf a pav/ vkze shohiaz vl vdk lek ksvajihsdkf jx J{iihkv nlz vdk zkghles heclz/ plzavkf he vdk ckevzai Hsiaohc zkaio f{zheg vdk sk~kevd aef khgdvd ckev{zhks% Hsiaoh}avhle was a gzaf{ai pzlckss) wdhcd svazvkf he vdk finvkkevd ckev{zx whvd vdk cle~kzshle ln vdk nlzokz Jaibae ohihvazx kihvk% Hv fk~kilpkf as a whfkspzkaf pdkelokele he vdk shtvkkevd aef kspkchaiix he vdk sk~kevkkevd ckev{zx) wdke iazgkz skgokevs ln vdk z{zai plp{iavhle svazvkf vl kojzack Hsiao% Vdk sk~kevkkevd ckev{zx oax jk fkshgeavkf as vdk Jaibaes‘ ’agk ln cle~kzshles%‟ Jx vdk jkgheeheg ln vdk khgdvkkevd ckev{zx) vdk vdhzf pkzhlf ln vdk cle/ ~kzshle pzlckss‖’kazix oamlzhvx‟‖daf jkke clopikvkf% Av vdhs vhok) cilsk vl nlzvx pkzckev ln vdk Jaibae plp{iavhle was O{siho% He vkzos ln vdk nacvlzs jkdhef cle~kzshle) vdk Jaibaes aisl clenlzokf vl kaz/ ihkz pavvkzes% Whvd vdk ktckpvhle ln vdk jlxs cliikcvkf vdzl{gd vdk fk~ hzok hesvhv{vhle) cle~kzshle was pzhoazhix a ~li{evazx pzlckss) fzh~ke jx a clojheavhle ln slchai aef kclelohc nacvlzs s{cd as oaz/ bkv pzkss{zks) fkshzk nlz slchai af~aeckokev) zkihghl{s sxeczkvhso aef pasv dkzkvhcai he{kecks% Dlwk~kz) hesvkaf ln clevhe{heg hevl vdk pkzhlf ln ’iavk oamlzhvx‟ acclzfheg vl J{iihkv‘s scdkoa) vdk Hsiaoh}avhle pzlckss caok vl a s{ffke daiv he olsv ln vdk Jaibae iaefs he vdk skclef q{azvkz ln vdk khgdvkkevd ckev{zx% S{cd a jzkab whvd vdk {s{ai pavvkze ln Hsiaoh}avhle oax zhgdvix jk cleshfkzkf a s{zpzhsk% H da~k vzhkf vl fief ae aeswkz vl vdhs p{}}iheg shv{avhle he bhs~k jadası pkvhvhles) s{johvvkf pzhoazhix f{zheg vdk pkzhlf 1>70s–1730s) aef vd{s zkkcv vdk {ehq{k slchai clefhvhles pzk~ahiheg he vdk Lvvloae Kophzk f{zheg vdk iasv fkcafks ln vdk cle~kzshle pzlckss% H da~k clok vl vdk cleci{shle vdav vdk pkvhvhles plhev vl vdk kthsvkeck ln ae kiajlzavk hesvhv{vhle nlz zkihghl{s cle~kzshle he vdk pkzhlf {efkz cleshfkzavhle% He ox lphehle) vdk hevzlf{cvhle ln ckzkolehks aef flc{okevavhle ln cle~kzshle) oaehnksvkf he vdk bh pzac acvh vhck ck)) hs bhs~ s~kk ja jada dası sı pz k~hfkeck nlz a cdaegk he vdk eav{zk ln cle~kzshle jzl{gdv ajl{v jx vdk zhsk ln n{efaokevaihso he Lvvloae slchkvx% He lvdkz wlzfs) vdksk iasv fkcafks ln vdk Hsiaoh}avhle pzlckss he vdk Jaibaes clhechfkf whvd
186
vdk cdaegk nzlo a slchai ohihk{ na~lzheg zkihghl{s sxeczkvhso vl a olzk n{efaokevaihsv/ohefkf lek%1 Hn wk nliilw J{iihkv‘s vdklzx) wdhcd svavks vdav vdk cdaegk he vdk eav{zk ln cle~kzshle hs vdk wavkzsdkf jkvwkke vdk pkzhlf ln hevke/ sh~k cle~kzshle $’kazix‟ aef ’iavk oamlzhvx‟() le lek daef) aef vdk iasv pkzhlf he vdk cle~kzshle pzlckss $’iaggazfs‟() le vdk lvdkz) wk whii cleci{fk vdav vdk hesvhv{vhleaih}avhle ln vdk bhs~k jadası pzacvhck oazbs vdk jkgheeheg ln vdk iavvkz pkzhlf% Vdkzknlzk) hv cae jk s{z/ ohskf vdav he vdk Jaibaes) vdk ’iaggazfs‟ pkzhlf azzh~kf he vdk pkzhlf 1>70s–1730s) av a vhok wdke acv{aiix vdk ’iavk oamlzhvx‟ was s{p/ plskf vl svazv% S{cd a cleci{shle hs s{pplzvkf jx vdk aeaixshs ln vdk eaoheg pav/ vkzes ln vdk pkvhvhlekzs as wkii as vdk svavk ln hevkznahvd zkiavhles fkphcvkf he vdk pkvhvhles aef vdk nkv~a cliikcvhle ln vdk pkzhlf% Vdk eaoheg pavvkzes) nlz ktaopik) zk~kai ae leloasvhcle pzhoazhix iho/ hvkf vl vdk fi~k olsv fhsvhecvh~k O{siho eaoks av vdk vhok wdke) he vdk slchkvx as wdlik) vdkhz plp{iazhvx daf svazvkf vl fkcihek‖a shv/ {avhle ihebkf vl vdk ’iaggazfs‟ pkzhlf% Le a pkzsleai ik~ki) vdk pkvh/ vhles avvksv vl aelvdkz cdazacvkzhsvhc ln vdk ’iaggazfs‟ pkzhlf‖vdk fhffic{ivhks vdav ekw O{sihos nackf he oahevaheheg aohcajik zkiavhles whvd vdkhz nlzokz cloo{ehvhks f{k vl vdk pzkss{zk vl gahe acckp/ vaeck whvdhe vdkhz ekw cloo{ehvx% Vdk dkhgdvkekf vkeshles jkvwkke O{sihos aef ele/O{sihos) jlze nzlo vdk eav{zai vkefkecx nlz vdk iavvkz vl zkgazf vdk jkda~hlz ln vdk cle~kzvs vlwazfs vdkoski~ks as koaeavheg nzlo vdk O{siho cloo{ehvx as a wdlik) wdhik nlz vdk nlzokz vl zkgazf aex shge ln fhsappzl~ai ln s{cd jkda~hlz le vdk pazv ln vdk ele/O{siho cloo{ehvx as ae hes{iv vl vdkoski~ks) n{zvdkz silwkf flwe vdk cle~kzshle pzlckss% Vdk zkiavhles ln cle~kzvs whvd vdkhz ekw cloo{ehvx wkzk aisl elv kasx% Ekw O{sihos wkzk lnvke {eajik vl afapv vl vdk olzk fkoaefheg sphzhv{ai aef c{iv{zai cdai/ ikegks ln vdk vhok aef nl{ef vdkoski~ks lsvzach}kf aef k~ke p{e/ Hsiaohc n{efaokevaihso daf silwix jkke gaheheg olokev{o vdzl{gdl{v vdk sk~kevkkevd ckev{zx he zksplesk vl wdav was pkzckh~kf vl jk a ji{zzheg he vdk jl{efs ln Hsiao av vdk vhok% Mlde L% ^lii zkgazfs zkihghl{s n{efaokevaihso as a okcdaehso okcda ehso ln slchai slchai afm{svokev= afm{svokev= ’Vdk n{efaoke n{efaokevaihsv vaihsv svxik svxik skz~ks as a clzzkcvh~k clzzkcvh~k afm{svokev okcdaehso% He vdk clevktv ln cdaegk aef afapvavhle) n{efaokevaihsvs wlzb vl bkkp vdk jashc Hsiaohc okssagk he n{ii ~hkw ln vdk cloo{ehvx% Wdke afm{sv/ okev vl ilcai clefhvhles lz vdk aflpvhle ln ekw hfkas aef vkcdehq{ks vdzkavke vl ljihvkzavk vdk {ehq{k aef a{vdkevhcaiix Hsiaohc kikokevs) n{efaokevaihsv pzkss{zk jkghes vl j{hif%‟ Skk Mlde L% ^lii) Hsiao% Clevhe{hvx aef Cdaegk he vdk Olfkze Wlzif ) :ef kf% $Ekw Xlzb) 1886() ::–:3% 1
18;
hsdkf jx vdkhz ekw cloo{ehvx% S{cd casks n{zvdkz fhohehsdkf vdk plli ln plvkevhai cle~kzvs aoleg vdk ele/O{siho cloo{ehvx% Shopix) vdk gzkavkz fkoaefs piackf {ple plvkevhai cle~kzvs k~kev{aiix zks{ivkf he zkshsvaeck vl cle~kzshle aef he hvs vapkzheg l ff % N{zvdkzolzk) aelvdkz cdazacvkzhsvhc ln vdk ’iaggazfs‟ pkzhlf‖vdk hfklilghcai svzhnk jkvwkke fksckefaevs ln cle~kzvs nzlo vdk kazihkz aef iavkz pkzhlfs ln cle~kzshle‖cae jk skke he vdk svz{ggik ln cle~kzvs s{cd as Hjzadho Oùvknkzzhba) wdl acvh~kix pzlolvkf cdaegk aef dkipkf jzheg ajl{v vdk c{iv{zai lzksckeck ln vdk V{ihp pkzhlf $Iêik fk~zh() agahesv vdk n{efaokevaihsv nlzcks vdav p{v ae kef vl hv% Vdhs jkheg vdk cask) vdk kef ln vdk V{ihp pkzhlf aef vdk vzh{opd ln vdk n{efaokevaihsv plwkzs he Lvvloae slchkvx he 1730 zkpzkskev vdk l{vclok ln vdk hfklilghcai svzhnk jkvwkke fksckefkevs ln ’kazix‟ aef ’iavk‟ cle~kzvs% He lvdkz wlzfs) vdk kef ln vdk V{ihp pkzhlf oax da~k jkke sxojlihc ln vdk clopikvhle ln vdk cle~kzshle pzlckss he olsv ln vdk Jaibae iaefs% Ek~kzvdkikss) vdk cleci{shle nlz ae kazix azzh~ai ln vdk ’iaggazfs‟ pkzhlf shii flks elv aeswkz vdk q{ksvhle as vl wdx hv das dappkekf he vdk fizsv piack% H azg{k vdav vdk {ehq{kekss ln vdk Hsiaoh}avhle he vdk Jaibaes oax jk ihebkf vl kclelohc aef slchai cdaegks whvdhe Lvvloae slchkvx as wkii as fk~kilpokevs le vdk hevkzeavhleai sckek) cdaegks vl wdhcd H wl{if ihbk vl aii{fk leix jzhk x he cilsheg% Vdhs sv{fx das ljskz~kf vdav vdk vzaesnlzoavhle ln gzaevheg bhs~k jadası nzlo a pzacvhck hevl ae hesvhv{vhle ln cle~kzshle hs cleekcvkf whvd aelvdkz pkc{ihaz nkav{zk ln sk~kevkkevd/ckev{zx Lvvloae slch/ kvx‖vdk vzaesnlzoavhle ln vdk Lvvloae kihvk nzlo a pzhoazhix zkaxa / jlze) okzhv/jaskf ciass hevl a pzlvègè/jaskf) skin/pkzpkv{avheg pzh~hikgkf slchai svzav{o% Vdk bh bhs~ s~kk ja jada dası sı hesvhv{vhle) vdkzknlzk) he aiilwheg vdk afohsshle ln a ihohvkf e{ojkz ln ilwkz/ciass okojkzs hevl vdk elokebiav{za) jkcaok vdk eav{zai clevhe{avhle le a ~li{evazx jashs ln vdk fk~ hzok hesvhv{vhle% As cle~kzshle vl Hsiao heczkashegix jkcaok a pzkzkq{hshvk nlz okojkzsdhp he vdk elokebiav{za jx vdk ohffik ln vdk sk~kevkkevd ckev{zx) vdk bhs~k jadası hesvhv{vhle cae aisl jk zkgazfkf as a {ehq{k hesvz{okev nlz slchai af~aeckokev ln vdk ilwkz ciassks% Hv skkos) dlwk~kz) vdav jx vdk kef ln vdk sk~kevkkevd ckev{zx vdk plihvhcai plwkz ln vdk ’elokebiav{za dl{skdlifs‟ das s{zpasskf vdk plwkz ln vdk ’hopkzhai dl{skdlif%‟: He lvdkz wlzfs) he vdk kxks ln
:
Skk nlz ktaopik Ajl{ Ki/Dam) ’Dl{skdlifs)‟ wdkzk dk s{z~kxs vdk jacbgzl{efs
18>
vdk zkaxa ) vdk pzksvhgk ln vdk Maehssazx clzps o{sv da~k jkke svkafhix fhohehsdheg sheck vdk jkgheeheg ln vdk khgdvkkevd ckev{zx% Vdk pzlckss ln gzaf{ai vzaesnlzoavhle ln vdk clzps nzlo a sl{zck ln svzkegvd nlz vdk ohihvazx aef vdk ckevzai gl~kzeokev vl a iawikss ohihvha av vdk vhok ln vdkhz fksvz{cvhle aef fhsjaefokev he 14:> hs wkii belwe% Jx ~hzv{k ln vdk pasv asslchavhle ln cle~kzvs whvd vdk clzps) 3 vdk fhs/ vz{sv ln vdk plihvhcai ksvajihsdokev vlwazfs Maehssazhks oax da~k cle/ vzhj{vkf vl hesvaiiheg fhsvz{sv vlwazfs ekw O{sihos he gkekzai% Vdk cdaegkf avvhv{fk vlwazfs cle~kzvs av vdk jkgheeheg ln vdk khgdvkkevd ckev{zx hs {eaojhg{l{s av vdk vhok ln S{ivae Oado{f HH% 6 N{zvdkzolzk) jx 17>4) hv was vdk ilcaiix lzgaeh}kf ohihvha) belwe as ik~kef s) s) fzawe aisl nzlo vdk Jaibae zkaxa ) wdl nlzokf vdk j{ib ln vdk a~ahiajik ohihvazx oaeplwkz%; Vdk ik~kef s shgekf ~li{evazx nlz ohihvazx caopahges j{v vdlsk wdl wkzk Cdzhsvhae wkzk elv zkq{hzkf vl cle~kzv vl Hsiao% He lvdkz wlzfs) vdk iavvkz oax jk fkkokf as skz~heg vdk zlik ln ’vkoplzazx‟ O{sihos% S{cd lpplzv{ehvhks oax da~k kihoheavkf vdk ekkf nlz vdk hesvhv{vhle ln bhs~k jadası aef) pkz/ daps) nlz cle~kzshle as ae hesvz{okev ln slchai af~aeckokev% Wk cae ktpiahe vdk whvdfzawai ln plvkevhai cle~kzvs nzlo {sheg vdk hesvhv{vhle ln bhs~k jadası vl kevkz vdk Maehssazx clzps) j{v wdav cae jk sahf ajl{v vdk zki{cvaeck le vdk pazv ln vdk lvdkz shgehficaev gzl{p ln ele/O{sihos avvzacvkf jx vdk hesvhv{vhle‖vdk slchaiix fhs/ af~aevagkf‖nlz wdlo vdk bh bhs~ s~kk ja jada dası sı hesvhv{vhle skz~kf vdk zlik ln a slchai wkinazk pzlgzao< Acclzfheg vl J{iihkv) zkihghl{s cle~kzshle nliilws vdk saok psx/ cdlilgx vdav {efkzihks heel~avhle fhff {shle {shle he d{oae slchkvx) whvd
ln lffichais he vdk ckevzai aef pzl~hechai gl~kzeokevs nlz vdk pkzhlf 1>43–1703% Ajl{ Ki/Dam‘s zkskazcd sdlws vdav leix :>%3+ ln vdk l ffichais he vdk ckevzai gl~/ kzeokev aef 34%;+ he vdk pzl~hechai gl~kzeokev cae jk lzhgheaiix asslchavkf whvd vdk paiack f{zheg vdk pkzhlf {efkz cleshfkzavhle% 3 Nlz ljskz~avhles vdav s{cd cleekcvhle was oafk k~ke he vdk ehekvkkevd cke/ v{zx skk Dabae Kzfke) ’Zkcz{hvokev nlz vdk —^hcvlzhl{s Slifhkzs ln O{daooaf‘ he vdk Azaj Pzl~hecks) 14:>–14:4)‟ he Hszaki Gkzsdleh) Dabae Kzfko aef [zs{ia Wlbþcb) kf%) Dhsvlzhks ln vdk Ohffik Kasv= Ekw Fhzkcvhles $Ilefle) :00:() 186% 6 Oado{f HH hs belwe nlz dhs lzfkz vdav cle~kevs sdl{if elv jk clesczhjkf hevl dhs azox% Le aelvdkz lccashle dk lpkeix ktpzkssks fhsvz{sv vlwazfs a Gzkkb elvajik cle~kzvheg vl Hsiao= ’Wk caeelv vz{sv vdkhz kojzacheg ln Hsiao av s{cd vhoks $j{e/ (‟‖Kzfke) lp% chv%) 186% iazıe j{ azaiıb Baj{i/ù Hsiao kvokikzhek hvhoaf li{eoa} ; He 1>43) vdkzk wkzk ajl{v 10)000 ik~kef s av ^hkeea) :0)000 av Pz{vd he 1711 aef 4;–80)000 f{zheg vdk Lvvloae/Z{sshae waz ln 17>4–1776‖skk ^hzgheha Absae) ’Ilcavheg vdk Lvvloaes Aoleg Kazix Olfkze Kophzks)‟ Ml{zeai ln Kazix Olfkze Dhsvlzx 3) : $1888() 1::%
187
vdk fhff kzkeck kzkeck vdav hn vdk s{pkzhlzhvx ln lek zkihghle l~kz aelvdkz caeelv jk cikazix fkolesvzavkf) vdk saok zks{iv cae jk acdhk~kf jx okaes ln fhzkcv lz hefhzkcv fieaechai zkwazfs) pkzskc{vhle) kvc% Vdkzknlzk) vdk whfkspzkaf cle~kzshle vl Hsiao he vdk Jaibaes he vdk shtvkkevd aef sk~kevkkevd ckev{zhks okaev vdav ele/O{sihos cle/ shfkzkf hv af~aevagkl{s vl cle~kzv vl Hsiao nlz fh ff kzkev kzkev zkasles% Hefkkf) cle~kzshle vl Hsiao nlz vdk ekw O{sihos afohvvkf vdzl{gd vdk bhs~k jadası hesvhv{vhle was sdlwe vl jk pzhoazhix a pzagoavhc zavdkz vdae a sphzhv{ai aff ahz% ahz% Vdk daiv ln Hsiaoh}avhle) vdkzknlzk) okaev vdav av a ckzvahe plhev vdk af~aevagks gahekf vdzl{gd cle/ ~kzshle wkzk pkzckh~kf as l{vwkhgdkf jx hvs fhsaf~aevagks% Nliilwheg vdhs ihek ln ilghc) hv oax jk cleci{fkf vdav heczkashegix ele/O{sihos fhf elv fief hv kclelohcaiix lz slchaiix af~aevagkl{s vl cle~kzv vl Hsiao nzlo vdk skclef q{azvkz ln vdk khgdvkkevd ckev{zx lewazf% Wdav cl{if da~k he{keckf s{cd cdaegk he pkzckpvhle< Fk~kilpokevs s{cd as gza~hvavhle vlwazfs zkihghl{s lzvdlfltx elv leix he Lvvloae j{v he Dajsj{zg aef Z{sshae vkzzhvlzhks as wkii) sdl{if {efl{jvkfix aisl jk vabke hevl cleshfkzavhle wdke k~ai{av/ heg hevkznahvd zkiavhles he vdk Jaibaes% Ek~kzvdkikss) hv hs elv ~kzx ihbkix vdav Z{sshae Lzvdlfltx ktkzvkf o{cd he {keck he Jaibae iaefs he vdk fizsv dain ln vdk khgdvkkevd ckev{zx wdke vdk cz{chai jzabk he vdk ohefs ln vdk ele/O{siho plp{iavhle o{sv da~k dap/ pkekf) elz hv hs ihbkix vdav Cdzhsvhae Lzvdlfltx k~kz capv{zkf vdk ohefs ln vdk Jaibae plp{iavhle%> Hn wk acckpv vdk elvhle vdav cle/ ~kzshle okaev acckpvaeck ln Lvvloae z{ik vdae aexvdheg kisk $wdhcd was vdk cask he vdk pzkckfheg ckev{zhks() hv oax ikaf {s vl vdk cle/ ci{shle vdav vdk daiv ln Hsiaoh}avhle hefhcavks fhshii{shleokev whvd Lvvloae Lvv loae z{i z{ik) k) lz % % % clen clen{shl {shle e as as vl vl wdl wdl hs he a{v a{vdlzh dlzhvx) vx) vdk iav iavvkz vkz jkheg vdk cask he vdk khgdvkkevd ckev{zx) wdke vdk ilcai elvajiks $axaes( svazvkf vl floheavk ilcai plihvhcs% Slokvdheg kisk vdav zkafhix cloks vl ohef hs vdk hevkgzavhle ln vdk Lvvloae Kophzk hevl vdk wlzif kclelox he vdk ohffik ln vdk khgdvkkevd ckev{zx7 aef vdk zhsk ln vdk çhnvihb olfk ln pzlf{cvhle%4 J{igazhaes) nlz ktaopik) zkoahekf q{hvk skc{iaz aef pzagoavhc wkii he vdk 18vd ckev{zx aef vd{s vdk pzhoazhix skc{iaz eav{zk ln vdkhz eavhleaihso‖skk H~ahil Gzl{k~) ’Zk~hshvheg vdk J{igazhae Eavhleaihso= Eavhleaihso= vdk Cask ln vdk V{zbhsd Ohelzhvx‟ $[eh~kzshvx $ [eh~kzshvx ln Lvvawa= Pd%F% fhsskzvavhle he pzlgzkss(% 7 Skk H% Waiikzsvkhe) Vdk Olfkze Wlzif Sxsvko ) ~li% 3 $Ekw Xlzb) 1876() 1:8–130% 4 Nlz vdk zhsk ln çhnvihb s) s) skk D% eaicıb) ’Vdk Kokzgkeck ln Jhg Nazos) Çhnvihb s= s= Svavk) Iaefilzfs aef Vkeaevs)‟ he Clevzhj{vhles à i‘dhsvlhzk èclelohq{k kv slchaik fk i‘Kophzk >
184
Jlvd fk~kilpokevs wkzk cleekcvkf whvd vdk zhsk ln a pzlspkzl{s ciass ln ele/O{sihos he vdk Jaibaes‖okzcdaevs) olekxikefkzs) vat cliikcvlzs aef iaeflwekzs) wdlsk ihnksvxik fhf elv fh ff kz kz s{jsvaevhaiix nzlo vdav ln vdk O{siho kihvk% 8 Wdkek~kz O{siho pzlvkcvhle was ekkfkf) hv was shopix p{zcdaskf% He lvdkz wlzfs) ele/O{sihos oax da~k jkclok heczkashegix cle~heckf vdav hv was olzk kclelohcaiix aef slchaiix af~aevagkl{s nlz vdko vl svax a pazv ln vdkhz cloo{/ ehvx vdae vl cle~kzv%
118 –:62 Zaf{sdk~) Lvvloae) kf% M% Jacq{è/Gzaoolev aef Pa{i F{olev $Pazhs) 1843() 118–:62 Agzazehvk Agzaze hvk hesvhv{vshh hesvhv{vshh ) 13;–1702 aef J% OcGlwae) ’Oke aef Iaef= Sl{vd/kasvkze K{zlpk f{zheg vdk Sk~kevkkevd aef Khgdvkkevd ckev{zhks)‟ he hfko) Kclelohc Ihnk he Lvvloae K{zlpk ) 6;–78% 8 J% OcGlwae) ’Vdk Agk ln vdk Axaes) 1>88–141:)‟ he eaicıb aef Q{avakzv) Dhsvlzx) >>8%
APPKEFHCKS
Vdhs pagk hevkevhleaiix iknv jiaeb
APPKEFHT 1
BHS^K JADASH PKVHVHLES= NACSHOHIKS AEF VZAESIAVHLES
Flc{ Flc{ok okev ev 1% EPVA EPVA TT 1Y:4 1Y:4)) n%n% :) :) :0% :0%;;×16%; co) fh~aeh $1>71(
:0:
Flc{okev 1 Xl{z Oamksvx) ox Hii{svzhl{s aef Pzlspkzl{s S{ivae) oax xl{ jk dkaivdx! Xl{z d{ojik sia~k hs lif aef jihef% Elw H was dlelzkf whvd vdk Dlix Hsiao j{v H ao elv ajik vl kaze ox ih~heg aef jkca{sk ln a fkjv) H el ilegkz da~k aex plssksshles% H ao vdzlwheg oxskin av xl{z nkkv aef H ao pikafheg whvd xl{) ox Okzchn{i S{ivae) vdav xl{ bhefix lzfkz a pkeshle ln sk~kzai abçk s aiilvvkf nzlo vdk c{svlos ln Kfhzek vl jk jksvlwkf le xl{z pllz sia~k% Vdk zksv hs iknv vl vdk fkczkk ln xl{z Oamksvx) ox Hii{svzhl{s S{ivae% Xl{z skz~aev) Sùikxoae) ekw O{siho RKeflzskokev ln vdk Gzaef ^h}hkz_= Clzzkcv! Vl jk zkghsvkzkf jx vdk appzlpzhavk fkpazvokev vdav jkca{sk dk hs jihef aef was dle/ lzkf whvd vdk Dlix Hsiao he vdk Hopkzhai pzkskeck) dk hs gh~ke ae heclok ln vwl abçk s a fax% Vdhs hs ox clooaef! RFavk_= Apzhi 1) 1>71 RKeflzskokev ln vdk ja _= Clz Clzzkcv! zkcv! Accl Accl{evk {evkf! f! Pzk Pzkpazk pazk a ja fknvkzfaz fknvkzfaz Vzkas{zx jhii! RElvk nzlo vdk ja _= Zkghsvkzkf% Zkghsvkzkf% Vdk Vdk Vzkas{zx Vzkas{zx jhii was was hss{kf% hss{kf% ja o{daskjk o{daskjk
BHS^K JADASH =
Flc{ Fl c{ok okev ev :% LA LAB B 7>Y 7>Y;: ;:)) n%n% 6;) 6;) :1 :1×13%3 co) fh~aeh $1>4>(
:03
:06
Flc{okev : Ox Pzlspkzl{s Pafhsdad) oax xl{ jk dkaivdx! Xl{z d{ojik sia~k das jkke a skz~aev av vdk vajik ln vdk svajik/ gzllos ln vdk Hopkzhai dlzsks nlz vwl xkazs elw aef H ao ae {ejk/ ihk~kz) sle ln ae {ejkihk~kz% H waev vl acckpv vdk Rvz{k_ nahvd aef Hsiao he vdk dliix pzkskeck ln ox Pafhsdad% Vdk zksv hs iknv vl vdk fkczkk ln ox Pafhsdad% RKeflzskokev ln vdk Gzaef ^h}hkz_= Clzzkcv! Gh~k vl Rvdhs_ lek pkz/ sle vdk Rcasd ~ai{k ln ekw_ cilvdks acclzfheg vl vdk c{svlo! Vdhs hs ox clooaef! Oazcd 4) 1>4>
BHS^K JADASH =
Flc{ok Flc {okev ev 3% 3% LAB 7>Y; 7>Y;:) :) n%n% 30) 30) :1%6 :1%6×1;%: co) fh~aeh $1>4>(
:0;
:0>
Flc{okev 3 Xl{z Oamksvx) ox Pzlspkzl{s aef Gkekzl{s S{ivae) oax xl{ jk dkaivdx! Xl{z d{ojik sia~k hs a Gzkkb jlx nzlo Gþiùbkszk wdl wlzbkf as a czanvsoae he Hsvaej{i% He xl{z pzkskeck) jx vdk gzack ln Glf) vdk ktaivkf) H was dlelzkf whvd vdk Dlix Hsiao aef whsdkf vl gl le a Dlix waz% H whsd) he Rzkv{ze_ nlz ox fkshzk vl gl le a Dlix waz aef nlz vdk Rcasd ~ai{k ln ekw_ cilvdks) vdav xl{ dkip ok gkv a ilw zaeb plshvhle he xl{z eljik skz~hck% Vdk zksv hs iknv vl vdk fkczkk ln ox S{ivae% Xl{z Skz~aev RKeflzskokev ln vdk Gzaef ^h}hkz_= Clzzkcv! Gh~k Rekw_ cilvdks nlz ktacvix lek pkzsle acclzfheg vl vdk c{svlo% Vdhs hs ox clooaef! RFavk_= Apzhi 16) 1>4>
BHS^K JADASH =
Flc{ Fl c{ok okev ev 6% 1Y 1Y10 104> 4>>) >) :0 :0%7 %7×16%1 co) jiacb heb) fh~aeh $1>48(
:07
:04
Flc{okev 6 Xl{z Oamksvx) ox Hii{svzhl{s aef Gkekzl{s S{ivae) oax xl{ jk dkaivdx! H ao ae Azokehae nzlo Vkbn{zfag% H caok vl z{j ox nack Rhe vdk f{sv av xl{z nkkv_ Rvl pikaf_ vl jk dlelzkf whvd vdk Dlix Hsiao Rhe xl{z pzkskeck_ aef vl jk gzavhkf bhefix whvd Rekw_ cilvdks% Vdk zksv hs iknv vl vdk fkczkk ln ox S{ivae% Xl{z skz~aev RKeflzskokev ln vdk Gzaef ^h}hkz_= Clzzkcv! Le vdk pazv ln vdk svavk) gh~k vdk ajl~kokevhlekf ktacvix 1)000 abçk s acclzfheg vl vdk iaw! Vdhs hs ox clooaef! RKeflzskokev ln vdk ja _= Hss{k Vzkas{zx jhii! ja fknvkzfaz fknvkzfaz RElvk nzlo vdk ja _= Vzkas{zx jhii was hss{kf le Oax 3) ja o{daskjk o{daskjk 1>48 RHesczhpvhle le ~kzsl _= _= RGh~ke_ pkzsleaiix vl Okdokf Ça~{
BHS^K JADASH =
Flc{okev Flc{ okev ;% CG CG 36Y:) 36Y:) n% 6) 1>%; 1>%;×:: co) jiacb heb) fh~aeh $1706(
:08
:10
Flc{okev ; Xl{z Oamksvx) ox Hii{svzhl{s aef Gkekzl{s S{ivae) oax xl{ jk dkaivdx! Xl{z d{ojik sia~k cloks nzlo vdk fhsvzhcv ln Z{svcd{b% H zkacdkf vdk fh~hek vz{vd aef whsdkf vl clok aef ciazhnx ox zkihghle% H was va{gdv vdk azvhciks ln nahvd aef Rkojzackf_ vdk zkihghle ln Hsiao he xl{z pzkskeck% H pikaf vdav xl{ applhev ok el~hck he vdk shpadh clzps vl oabk ox ih~heg% Vdk zksv hs iknv vl vdk fkczkk ln ox S{ivae% Xl{z skz~aev RKeflzskokev ln vdk Gzaef ^h}hkz_= Clzzkcv! Gh~k Rekw_ cilvdks vl Rvdhs_ lek pkzsle acclzfheg vl vdk iaw! Vdhs hs ox clooaef! El~ko/ jkz 10) 1706 RKeflzskokev ln vdk ja _= Clzzkcv! ja fknvkzfaz fknvkzfaz
BHS^K JADASH =
:11
Flc{ Fl c{ok okev ev >% EP EPVA VA TT 1Y 1Y:4 :4)) n%n% :>) :>) 3>×:1%; co) jiacb heb) fh~aeh aef shxabav $1707(
:1:
Flc{okev > Xl{z Oamksvx) ox Pzlspkzl{s aef Okzchn{i S{ivae) oax xl{ jk dkaivdx! Xl{z d{ojik sia~k hs a Mkw% Nzlo xl{eg agk) H da~k jkke vzahekf he vdk czanv ln okvai p{zhnxheg he vdk Svavk ohev% Oax pzahsk jk vl Glf) aef oax Dk jk ktvliikf) H da~k elw jkke hii{oheavkf jx vdk vz{k nahvd aef H da~k zkacdkf vdk fh~hek vz{vd% Anvkz pkvhvhleheg vl jk dlelzkf whvd Hsiao he vdk pzkskeck ln Xl{z Oamksvx) H wl{if ihbk vl zkq{ksv nzlo Xl{z Okzchn{i) Olsv Dhgd vdk nliilwheg= Vdav H) xl{z d{ojik sia~k) jk zkcblekf jx ox Gllf Hii{svzhl{s Ilzf aoleg dhs skz~aevs whvd ae Ktaivkf Lzfkz piacheg ok he cdazgk) nlz vdk f{zavhle ln ox ihnkvhok) ln vdk g{hif ln okvai p{zh kzs av vdk Svavk Ohev% He zkv{ze) H whii jk accl{evajik vl vdk svavk jx fkplshv/ heg kacd xkaz he vdk Svavk Vzkas{zx vdk aol{ev ln 31)000 abçk s% s% He lzfkz vl spzkaf vdk O{siho }kai aoleg vdk acc{zskf Mkws) fkhge vl aiilw xl{z d{ojik sia~k vl avvahe dhs glai% He vdhs zkspkcv) vdk zksv hs iknv vl vdk na~lz aef gzack gh~heg fkczkk ln Xl{z Oamksvx) ox Hii{svzhl{s S{ivae% Xl{z skz~aev RKeflzskokev ln vdk Gzaef ^h}hkz_= Vl jk gh~ke a i{t{zx skv ln cilvdks) acclzfhegix! Vdhs hs ox clooaef! 0>%1:%1707 ja o{daskjk o{daskjk RKtvzacv nzlo vdk accl{evs ln vdk ja _= Ktpkesks nlz i{t{zx skv ln cilvdks nlz a ekw O{siho dlelzkf whvd vdk Dlix Hsiao aef gh~ke cilvdks jaskf le Rdhs_ pkvhvhle aef vdk Hopkzhai fkczkk= Pzkoh{o gzafk jzlafcilv lvd d Q{aevhvx 1 Nlz kojzlhfkzkf zljk= }hzaa 6 R }hzaa _ Pzhck ln lek }hzaa 3 R g{z{ _ g{z{ 1:
Clvv vvlle paevs Q{aevhvx 1
g{z{ 4
Pzkoh{o gzafk jzla laffcil ilvvd Q{aevhvx 1 Nlz vzl{skzs= }hzaa : R }hzaa _ Pzhck ln lek }hzaa 3 R g{z{ _ g{z{ >
:13
BHS^K JADASH =
Ktpkesks nlz vahilz 1 %; R Vlvai_ 13%; ^ksv Q{aevhvx 1 g{z{ 3% ;
Sdhzv 1 g{z{ ;
Ktpkesks nlz vahilz : R Vlvai_ 10 Ji{k jkiv Q{aevhvx 1 g{z{ ;
Ktpkesks nlz vahilz 1 R Vlvai_ 7
[efkzpaevs V{zjae Pahz Q{aevhvx 1 1 g{z{ g{z{ 6 1
Sihppkzs Pahz 1 g{z{ 1
Vlvai g{z{ pahf= ;0
Acclzfheg vl vdk Hopkzhai fkczkk) a i{t{zx skv ln cilvdks was jl{gdv nlz lek) ekw O{siho dlelzkf whvd vdk Dlix Hsiao% Vl bhefix lzfkz Rvdk hss{k ln _ a Vzkas{zx jhii) skk vdk Rajl~k_ zkclzfs ln vdk Ckevzai Accl{evheg Fkpazvokev% He vdhs zkgazf) k~kzxvdheg hs iknv vl vdk fkczkk ln Dhs Oamksvx ox Pzlspkzl{s S{ivae% RZaplzv $vkidhs ( ln vdk ja ja fknvkzfaz fknvkzfaz vl vdk Gzaef ^h}hkz_= Vdk zkplzv ln xl{z skz~aev hs as nliilws= Ktacvix ;0 g{z{ wkzk spkev nlz vdk p{zcdask) fzkssheg aef vabheg ln ek okas{zks nlz a i{t{zx skv ln cilvdks nlz lek pkzsle acclzf/ heg vl vdk Hopkzhai fkczkk nlz vdhs d{ojik s{jmkcv) a ekw O{siho dlelzkf whvd vdk Dlix Hsiao% Wdke vdhs jkcloks belwe vl Xl{z Ktckiikecx) hv hs ekckssazx vdav xl{ bhefix lzfkz vdk hss{k ln a Vzkas{zx jhii nzlo vdk Ckevzai Accl{evheg Fkpazvokev% RDlwk~kz_) k~ke hn a fkczkk ln Xl{z Ktckiikecx hs hss{kf he vdhs zkgazf) Rvdk eai fkch/ shle_ hs iknv vl vdk fkczkk ln Dhs Oamksvx) ox Pzlspkzl{s S{ivae% RL~ai shgeav{zk ln vdk ja _ ja fknvkzfaz fknvkzfaz RNheai keflzskokev ln vdk Gzaef ^h}hkz_= Clzzkcv! Vl jk hss{kf a Vzkas{zx jhii acclzfheg vl vdk zkplzv! Vdhs hs ox clooaef! RFavk_= Fkckojkz :1) 1707 RNheai keflzskokev ln vdk ja _= Clzzkcv! ja fknvkzfaz fknvkzfaz ja o{daskjk o{daskjk RElvk nzlo vdk ja _= Vzkas{zx jhii was hss{kf le Fkckojkz ::) 1707%
:16
Flc{ Fl c{ok okev ev 7% 1Y110 1Y11011) 11) ::%6 ::%6×16%6 co) jiacb heb) fh~aeh $171:(
BHS^K JADASH =
:1;
Flc{okev 7 Xl{z Oamksvx) ox Hii{svzhl{s aef Pzlspkzl{s S{ivae) oax xl{ jk dkaivdx! Xl{z heshgehcaev) d{ojik skz~aev hs a Cdzhsvhae ghzi nzlo aoleg vdk hedajhvaevs ln Bafıbþx) nzlo vdk Gzkkb pklpik% H avvahekf vl vdk fh~hek vz{vd aef whsd vl jk dlelzkf whvd vdk Dlix Hsiao Rjkca{sk_ ox pazkevs waev vl oazzx ok vl ae {ejkihk~kz% H waev vl jk dle/ lzkf whvd vdk Dlix Hsiao he Xl{z Hopkzhai pzkskeck% Ox zkq{ksv hs vdk nliilwheg= H pikaf vdav) Rsheck_ H acckpvkf vdk Hsiaohc nahvd) H jk bhefix gzaevkf Rvdk casd ~ai{k_ ln ox Rekw_ cilvdks% Vdk zksv hs iknv vl vdk fkczkk ln ox Hii{svzhl{s S{ivae% RKeflzskokev ln vdk Gzaef ^h}hkz_= Clzzkcv! Gh~k Rdkz_ vdk casd ~ai{k ln Rekw_ cilvdks nlz lek wloae! Vdhs hs ox clooaef! RFavk_= Lcvljkz :;) 171: RKeflzskokev ln vdk ja _= Hss{k a Vzkas{zx jhii% ja fknvkzfaz fknvkzfaz RElvk nzlo vdk ja _= Vzkas{zx jhii was hss{kf le Lcvljkz ja o{daskjk o{daskjk :3) 171:$<(
:1>
Flc{ Fl c{ok okev ev 4% 1AY; 1AY;7:> 7:>;) ;) 31×:1%; co) jiacb heb) fh~aeh $17:0(
BHS^K JADASH =
:17
Flc{okev 4 Xl{z Oamksvx) Eljik) Oagehckev Pafhsdad) vdk sdaflw ln Glf Rle Kazvd_) oax Glf) Wdlsk pzahsks H zkchvk aef Wdl hs vl jk ktvliikf) g{azf aef sa~k xl{z jiksskf Hopkzhai jlfx nzlo kzzlzs aef ek~kz p{v ae kef vl vdk zkhge ln xl{z eljik okzcx l~kz oaebhef% Aoke% Vdk i{cbx pkvhvhle ln xl{z d{ojik sia~k Rhs vdk nliilwheg_= H da~k m{sv iknv vdk naisk aef acckpvkf vdk vz{k zkihghle) aef dle/ lzkf whvd Hsiao Rhe xl{z pzkskeck_% RH pikaf vdav_ xl{ lzfkz) H) a pllz/oae‘s sle) vl jk chzc{ochskf Rvlgkvdkz_ whvd Dhs Oamksvx vdk Zlxai pzheck aef lvdkzs ln xl{z phl{s cdhifzke% He affhvhle) Rpikask_ oabk ok) xl{z ljkfhkev sia~k) dappx jx afohvvheg ok aoleg vdk gzl{p ln Hopkzhai skz~aevs aef jx Rapplhevheg ok_ vl vdk clzps ln vdk azskeai) Rvd{s_ gh~heg ok a sl{zck ln heclok% He vdhs zkspkcv Rk~kzxvdheg_ hs he vdk daefs ln xl{z Oamksvx) vdk Aii/plwkzn{i aef Okzchn{i) ox Pafhsdad% H fle‘v da~k aexjlfx) Rvdkx azk aii_ fkaf aef ox pllz ikgs azk fhsajikf% Xl{z skz~aev Dzhsvl RKeflzskokev ln vdk Gzaef ^h}hkz_= Clzzkcv! Gh~k Rdho_ vdk casd ~ai{k ln Rekw_ cilvdks nlz lek pkzsle) acclzfheg vl vdk iaw! Vdhs hs ox clooaef! RFavk_= A{g{sv 30) 17:0 ja fknvkzfaz fknvkzfaz RKeflzskokev ln vdk ja _= Hss{k a Vzkas{zx jhii!
RElvk ln vdk ja _= Vzkas{zx jhii was hss{kf le Skpvkojkz :) ja o{daskjk o{daskjk 17:0
:14
Flc lc{o {oke kevv 8% 1A 1AY> Y>40 404) 4) 30 30%4 %4×:1 co) jiacb heb) fh~aeh aef shxabav $17:1(
BHS^K JADASH =
:18
Flc{okev 8 Xl{z Oamksvx) ox Hii{svzhl{s aef Okzchn{i Ilzf) ox S{ivae) oax xl{ jk dkaivdx! Xl{z d{ojik skz~aev hs lek ln vdk kf{cavkf pklpik% H was dlelzkf whvd vdk Dlix Hsiao he vdk Dhgdksv Pzkskeck ln Ox Ilzf% H pikaf vl ox Olsv Dhgd Okzchn{i Okzchn{i Ilzf vdav) sheck sheck Rvdk gh~heg ln _ ox Rekw_ cilvdks aef ox chzc{ochshle azk svhii vl clok aef H fle‘v da~k a piack Rfkshgeavkf nlz vdk iavvkz_ xl{ lzfkz vdav a piack nlz pkznlz/ oaeck ln ox chzc{ochshle jk fkshgeavkf% H aisl pikaf vl jk applhevkf aoleg vdk gzl{p ln Rxl{z_ keihgdvkekf skz~aevs% Vdk zksv hs iknv vl vdk fkczkk ln vdk Hii{svzhl{s aef Gzachl{s ox S{ivae% Xl{z skz~aev) vdk ekw O{siho) a Rnlzokz_ pzhksv RKeflzskokev ln vdk Gzaef ^h}hkz_= Clzzkcv! Gh~k Rdho_ acclzfhegix vdk casd ~ai{k ln a i{t{zx skv ln Rekw_ cilvdks nlz lek pkzsle! Vdhs hs ox clooaef! Skpvkojkz ::) 17:1 RKeflzskokev ln vdk ja _= Hss{k a Vzkas{zx jhii! ja fknvkzfaz fknvkzfaz RSkclef keflzskokev ln vdk ja _= RGh~k_ ae ksvhoavk nlz lek ja fknvkzfaz fknvkzfaz i{t{zx skv ln cilvdks he vdk oazghe Rln vdk flc{okev_! RKtckzpvs nzlo vdk accl{evs ln vdk ja _= ja o{daskjk o{daskjk Casd ~ai{k ln i{t{zx skv ln cilvdks Racclzfheg_ vl p{zcdask lzfkz nzlo 07,0;,17:1 g{z{ >6
Casd ~ai{k ln i{t{zx skv ln cilvdks Racclzfheg_ vl p{zcdask lzfkz nzlo 14,0;,17:0 g{z{ :;
Casd ~ai{k ln i{t{zx skv ln cilvdks Rle_ 10,11,1717 g{z{ 1>
RNheai keflzskokev ln vdk ja ja fknvkzfaz fknvkzfaz le vlp ln ktckzpv :_= Hss{k a Vzkas{zx jhii acclzfheg Rvl vdhs ktckzpv_% R Elvk ln vdk vdk ja _= A Vzkas{zx jhii was hss{kf hss{kf le 07,10,17:1% ja o{daskjk o{daskjk RHesczhpvhle le ~kzsl _= _= RGh~ke_ pkzsleaiix vl Dasae Ça~{
::0
Flc{ Fl c{ok okev ev 10 10%% EP EPVA VA TT TT)) 1Y 1Y:4 :4)) n% ;0 ;0)) 3;×:: co) jiacb heb) fh~aeh $17::(
BHS^K JADASH =
::1
Flc{okev 10 Xl{z Oamksvx) ox Hii{svzhl{s) Pzlspkzl{s aef Okzchn{i Ilzf) ox S{ivae) oax xl{ jk dkaivdx! H) a pllz Rwloae_) da~k a sk~kevkke/xkaz/lif sle nzlo ox ileg agl fkckaskf d{sjaef) vdk }hooh Bazajkv% Vdk anlzkokevhlekf fkckaskf lek jkq{kavdkf ok) vdk pllz lek) aef ox sle) vdk }hooh Da}azls) a nzkkdlif dl{sk he Hsvaej{i) he vdk q{azvkz ln Bazaokv% Dlwk~kz) sheck vdk anlzkokevhlekf dl{sk was {ehedajhvajik) H) vdk pllz lek) jlzzlwkf olzk vdae :00 g{z{ nzlo lvdkz pklpik aef clopikvkix zkel~avkf vdk dl{sk okevhlekf ajl~k% Anvkz vdav) jkca{sk ln ox fkjv) H Rslif_ vdk vhvik ln vdk dl{sk vl aelvdkz ~abın nlz 100 g{z{ he af~aeck aef vdke ikaskf hv Rjacb_ nlz 1%; abçk s a fax% Vdke) wdke vdk ~abın ga~k R{s_ flc{okev ln lwekzsdhp aef plssksshle zhgdvs nlz vdk Relw_ ~abın dl{sk okevhlekf ajl~k) sheck vdkzk azk vwl Rikgai_ dai~ks Rln vdk dl{sk_) wk wkzk Rcl_/lwekzs whvd ox sle% Iavkz le) ox sle) ln dhs lwe nzkk whii) vzaesnkzzkf vl ok) vdk pllz lek) vdk dain he dhs plssksshle aef vd{s) vdk wdlik dl{sk ln vdk anlzkoke/ vhlekf ~abın caok he ox plssksshle% H was clopikvkix fkjv aef ihke nzkk nzlo ox sle% Dlwk~kz) ox sle‘s {ecik) vdk Azokehae Vkijhs Baoj{z) slok/ dlw hechvkf ox sle% RVdk iavvkz_ das fkoaefkf vdk dl{sk nzlo ok aef ikf a s{hv% Aivdl{gd H fhf elv da~k aex fkjv Rvl ox sle_) pzh/ oazhix as a zks{iv ln ox gzkav nkaz ln vdk anlzkokevhlekf sle ln vdk pllz lek aef Rdhs {ecik_) aef vdkhz k~hi Reav{zk_) H fkciazkf= ’wdke H skii vdk dl{sk vl slokjlfx kisk aef pax l ox lvdkz fkjvs H whii gh~k xl{ 1;0 g{z{ %‟ RVabheg af~aevagk_ ln ox nkaz) vdkx oafk ok shge a swlze fkciazavhle Rvl vdav k kcv_ kcv_ aef vl zkghsvkz hv av vdk cl{zv% Fksphvk Rvdk nacv_ vdav vdk dl{sk ln vdk ~abın hs svhii elv slif aef Rnacv vdav_ H fl elv da~k aex lvdkz fkjvs) Rox sle_) whvdl{v appzkchavheg vdk ~ai{k ln ox dl{sk) waevs vl skii hv kevhzkix nlz Raex_ pzhck% Olzkl~kz) dk das sahf= ’H whii p{v xl{ he pzhsle)‟ aef slok/ dlw ljvahekf a wazzaev Rnlz vdav_% Vdk iavvkz hs elw he vdk daefs ln xl{z ljkfhkev skz~aev) vdk plihck l ckz) wdl he vdksk jiksskf faxs vllb phvx Rle ok_ aef fhf elv p{v ok he pzhsle% Jkca{sk ln ox chzc{osvaecks) Xl{z Oamksvx) ox Gzachl{s Ilzf) H da~k caok d{ojix vl Xl{z Hii{svzhl{s Pzkskeck vl z{j ox nack he vdk f{sv Rav xl{z nkkv_% Elw) Rwdke_ ox sle) aivdl{gd H fl elv da~k aex fkjvs) waevs vl p{v ok he pzhsle nlz nahiheg vl n{i ii ox
:::
ljihgavhle Rvl dho_) he vdk eaok ln Aiohgdvx Glf) vabk phvx le ox ohskzajik shv{avhle% Anvkz vdk flc{okev ln vzaesnkz Rln vdk dl{sk_) wdhcd H da~k) aef vdk cl{zv fkchshle ljvahekf jx vdk ajl~k oke/ vhlekf Rsle ln ohek_) azk skke jx xl{z sdazp Hopkzhai ga}k) hv whii jkclok belwe vl Xl{z Oamksvx vdav H fl elv da~k aex fkjvs Rhe zkaihvx_ j{v da~k vabke le s{cd ln ox lwe nzkk whii% H pikaf vdav xl{ lzfkz ox fkih~kzaeck nzlo vdk daefs ln vdk anlzk/ okevhlekf sle ln ohek% Olzkl~kz) H) vdk pllz lek) zkaih}k vdav aii vdav vhok H da~k jkke ilsv he hefkihvx% RDlwk~kz_) elw Rvdav_ vdk fh~hek g{hfaeck das zkacdkf ok) H waev vl jk sa~kf nzlo vdk naisk zkihghle aef va{gdv vdk azvhciks ln nahvd ln vdk zkihghle ln Oldaookf% H aisl waev vl jk dlelzkf whvd Hsiao Rhe xl{z pzkskeck_ aef giafix jkclok xl{z kagkz skz~aev% H pikaf vdav xl{ gzachl{six hss{k ae lzfkz vl vdhs k kcv% kcv% Xl{z Skz~aev RKeflzskokev ln vdk Gzaef ^h}hkz_= Clzzkcv! Gh~k Rdkz_ vdk casd ~ai{k ln Rekw_ cilvdks! Vdhs hs ox clooaef! RKeflzskokev ln vdk ja _= Hss{k a Vzkas{zx jhii! ja fknvkzfaz fknvkzfaz RElvk nzlo vdk ja _= A Vzkas{zx jhii was hss{kf le M{ek :1) ja o{daskjk o{daskjk 17::
BHS^K JADASH =
::3
Flc{ Fl c{ok okev ev 11 11%% EJ EJBO BO)) 1AY; 1AY;7: 7:80 80)) :1%4 :1%4×1;%1 co) jiacb heb) fh~aeh $17::(
::6
Flc{okev 11 Xl{z Oamksvx) ox Hii{svzhl{s aef Okzchn{i S{ivae oax xl{ jk dkaivdx! Vdk pkvhvhle ln xl{z skz~aev hs as nliilws= H was dlelzkf whvd vdk Dlix Hsiao he vdk pzkskeck ln vdk clo/ oaefkz ln vdk Hopkzhai g{azfs) oax pzahsk jk vl Glf) aef H ao Relw_ vlvaiix fk~lvkf vl vdk zkihghle ln Hsiao% C{zzkevix H zkshfk he vdk q{azvkzs ln vdk Hopkzhai g{azfs% Ox zkq{ksv nzlo ox Hii{svzhl{s Ilzf hs vdav xl{ bhefix lzfkz vdav vdk casd ~ai{k ln Rekw_ cilvdks gh~ke Rvl ekw O{sihos_ sheck kazix vhoks jk gh~ke vl ok) xl{z d{o/ jik skz~aev) as wkii% Vdk zksv hs iknv vl vdk fkczkk ln Xl{z Oamksvx) Hii{svzhl{s aef Pzlspkzl{s ox S{ivae% Xl{z skz~aev) vdk ekw O{siho O{svana RKeflzskokev ln vdk Gzaef ^h}hkz_= Clzzkcv! Hn elv aizkafx gh~ke) gh~k Rdho_ vdk casd ~ai{k ln Rekw_ cilvdks nlz lek pkzsle acclzf/ heg vl vdk iaw! Vdhs hs ox clooaef! RFavk_= Fkckojkz 11) 17:: RKeflzskokev ln vdk ja _= Vdk oavvkz vl jk ~kzhkf jx vdk ja fknvkzfaz fknvkzfaz ja o{daskjk ja o{daskjk ! R Elvk nzlo nzlo ja _= Wk da~k gh~ke oaex) oaex vhoks Rvdk casd ja o{daskjk o{daskjk ~ai{k ln ekw_ cilvdks vl ekw O{sihos) Rj{v leix_ wdke vdkhz eaoks azk belwe% A gzaev ln Rvdk casd ~ai{k ln ekw_ cilvdks le vdk jashs Ja o{daskjk o{daskjk % Vdk ln vdk Rajl~k_ pkvhvhle hs elv zkghsvkzkf jx vdk Ja R eai_ lzfkz hs vl Dhs Oamksvx) ox S{ivae% RFavk_= Fkckojkz 1:) 17:: RSkclef keflzskokev ln vdk ja _= Hss{k a Vzkas{zx jhii! ja fknvkzfaz fknvkzfaz RElvk nzlo ja _= A Vzkas{zx jhii was hss{kf le Fkckojkz ja o{daskjk o{daskjk 13) 17::
BHS^K JADASH =
::;
Flc{ Fl c{ok okev ev 1: 1:%% EJ EJBO BO)) 1Y 1Y11 1110 107) 7) 36×:0 co) jiacb heb) ekshd aef fh~aeh $1731(
::>
Flc{okev 1: Xl{z Gzkavksv Oamksvx) ox Gilzhl{s) Hii{svzhl{s aef Oamksvhc Pafhsdad Rwdl hs_ Pafhsdad ln vdk Wlzifs) oax Glf) wdlsk ia{fs H zkchvk aef wdl jk ktvliikf) pzkskz~k xl{z Hopkzhai zkhge nzlo kzzlzs! Oax xl{ jk vdk pkznkcv sphzhv{ai ikafkz le vdk Hopkzhai vdzlek) vdk vz{svkk Rle kazvd_ ln vdk Ilzf ln vdk Wlzifs! He vdk eaok ln Xl{z Oamksvx) ox Gilzhl{s aef Hii{svzhl{s Pafhsdad) le vdk pzk~hl{s okkvheg ln vdk Hopkzhai cl{echi H was dlelzkf whvd vdk Dlix Hsiao he Xl{z Hopkzhai pzkskeck) oax pzahsk jk vl Glf) vdk Olsv Dhgd% Ox whsd hs Rvl zkckh~k_ vdk casd/~ai{k ln vdk vzl{sska{) zkq{hzkf jx vdk zkihghle ln Hsiao lz vdk casd/~ai{k ln a dl{sk Rjkca{sk_ sheck H was dlelzkf whvd Hsiao H fle‘v da~k a piack vl svax Raex/ olzk_% Aisl) jkca{sk H ao fhsfahen{i ln vdk {ejkihk~kzs) vdkx Relw_ pilv k~hi vdhegs nlz ok% Ox zkq{ksv hs vdk nliilwheg= H zkspkcvn{iix pikaf vdav xl{ lzfkz vdav H jk gzavh kf whvd vdk gza/ chl{s cdazhvx ln ox Pafhsdad gh~ke vl wloke dlelzkf whvd Hsiao he xl{z Hopkzhai pzkskeck% Vdk R eai_ fkczkk hs iknv vl Xl{z Oamksvx) vdk Gilzhl{s aef Hii{svzhl{s ox Pafhsdad ln vdk Wlzifs% Xl{z skz~aev) ekw O{siho) Ahsdk) vdk pllz RKeflzskokev ln vdk Gzaef ^h}hkz_= Clzzkcv! Jx okzcx ln vdk shv{/ avhle ln vdk ajl~k/okevhlekf Rwloae_) gh~k Rdkz_ ktacvix 60 g{z{ as vdk casd ~ai{k ln Rekw_ cilvdks! Vdhs hv ox clooaef! RFavk_= El~kojkz >) 1731 ja fknvkzfaz fknvkzfaz RKeflzskokev ln vdk ja _= Hss{k a Vzkas{zx jhii!
RElvk nzlo vdk ja _= Vzkas{zx jhii was hss{kf le El~kojkz ja o{daskjk o{daskjk 8) 1731
BHS^K JADASH =
::7
Flc{ Fl c{ok okev ev 13 13%% EJ EJBO BO 1Y 1Y11 1110 10>) >) 31 31%7 %7×:: co) jiacb heb) fh~aeh $1731(
::4
Flc{okev 13 Xl{z Oamksvx) ox Hii{svzhl{s aef Okzchn{i S{ivae) oax xl{ jk dkaivdx! Xl{z d{ojik skz~aev hs a Cdzhsvhae wloae nzlo vdk Gzkkb Rpkl/ pik_% H fle‘v da~k a d{sjaef aef nlz vke xkazs) H wlzbkf ~kzx dazf% R Nheaii Nheaiix_ x_ H sahf Rvl oxskin oxskin _= ’Gl vl aelvdkz aelvdkz piack vl ef Rxl{z_ nlz/ v{ek‟ aef H vllb a ilae ln nvx g{z{ % Wdhik H was vzxheg vl ef a wax vl pax hv l ) Ra ~lhck_ sahf cikazix he ox fzkao= ’Acckpv Hsiao!‟ Vdzkk vhoks hv was cikazix sahf he ox fzkao= ’Acckpv Hsiao aef le vdk Hopkzhai cl{echi vdk Z{ikz ln vdk Bhegflo whii zkwazf xl{ nlz vdav!‟ RVd{s_) H avvahekf vdk fh~hek vz{vd) zkel{eckf vdk naisk zkih/ ghle aef v{zekf vl vdk vz{k zkihghle‖vdk zkihghle ln Hsiao% RVdke_ H was dlelzkf whvd vdk vz{k zkihghle ln Hsiao aef va{gdv vdk azvh/ ciks ln nahvd ln vdk zkihghle ln Hsiao% RJkca{sk_ H ao a wloae) R pikask_ lzfkz lzfkz Rvdav_ H jk gzavhkf acclzfheg vl vdk vzafhvhle% He vdhs zkgazf) vdk fkczkk hs iknv vl Xl{z Oamksvx) ox Hii{svzhl{s aef Okzchn{i S{ivae% Xl{z skz~aev) vdk ekw O{siho RKeflzskokev ln vdk Gzaef ^h}hkz_= Clzzkcv! Gh~k Rdkz vdk casd ~ai{k ln ekw_ cilvdks acclzfheg vl vdk c{svlo! Vdhs hs ox clooaef! Lcvljkz :4) 1731 RKeflzskokev ln vdk ja _= Hss{k a Vzkas{zx jhii! ja fknvkzfaz fknvkzfaz ja o{daskjk o{daskjk RElvk nzlo vdk ja _= Vzkas{zx jhii was hss{kf le Lcvljkz :4) 1731
BHS^K JADASH =
Flc{ Fl c{ok okev ev 16 16%% 1Y 1Y11 1111 111) 1) :1 :1%; %;×16%4) vaihb) fh~aeh aef shxabav $173:(
::8
:30
Flc{okev 16 Xl{z Oamksvx) Hii{svzhl{s) ^hzv{l{s) Rvdk lek_ wdl illbs anvkz vdk pklpik) ox Okzchn{i Ilzf) ox S{ivae) oax xl{ jk dkaivdx aef oax vdk zksv Rln xl{z ihnk_ jk pzlilegkf! H) xl{z d{ojik sia~k) ao nzlo vdk cl{evzx ln ^kehck aef H was ilsv he Rvdk fazbekss_ ln hefkihvx% RDlwk~kz_) H {eq{ksvhleajix zkaih}kf ox kzzlz aef ktpkzhkeckf Glf he dhs Gilzx% Jx vdk whsd aef appzl~ai ln Glf) vdk Olsv Dhgd) H sk~kzkf aii cleekcvhles whvd ox zkiavh~ks aef ox cl{evzx% Sheck H was hii{oheavkf kevhzkix jx vdk Dlihekss ln Hsiao aef vdk s{e hs sdheheg elw Rnlz ok_) H v{ze vlwazf Glf nlz sphzhv{ai g{hfaeck aef nzlo dkazv aef ohef H ileg nlz vdk zkihghle ln Oldaookf% Jkca{sk H ao elw fk~lvkf vl Glf aef H ao v{ze/ heg awax nzlo kzzlz aef {ejkihkn) H ao pkvhvhleheg Xl{z Hopkzhai Jlfx) jlwheg flwe) vdav xl{ lzfkz vdav H jk dlelzkf whvd Hsiao aef va{gdv vdk azvhciks ln nahvd he xl{z pzkskeck aef jk applhevkf as Rxl{z_ skz~aev vl oabk ox ih~heg% Ox pika vl xl{z Hopkzhai Okzcx hs) he vdk eaok ln Glf) fle‘v fkpzh~k xl{z ljkfhkev sia~k ln xl{z gzavh cavhle) Rsheck vdk iavvkz_ hs Glf‘s whsd% Vdk zksv hs iknv vl vdk fkczkk ln ox Ilzf) ox S{ivae% Xl{z skz~aev) vdk ekw O{siho RKeflzskokev ln vdk Gzaef ^h}hkz_= Clzzkcv! Gh~k Rdho_ vdk casd ~ai{k ln i{t{zx skv ln Rekw_ cilvdks sheck dk hs nzlo vdk pzh~hikgkf pklpik! Vdhs hs ox clooaef! M{ix 17) 173: RKeflzskokev ln vdk ja _= Hss{k a Vzkas{zx jhii! ja fknvkzfaz fknvkzfaz RKtckzpv nzlo vdk zkghsvkz ln vdk ja _= Casd ~ai{k ln a i{t/ ja o{daskjk o{daskjk {zx skv ln Rekw_ cilvdks nlz a ekw O{siho nzlo vdk cl{evzx ln vdk Nzaebs dlelzkf whvd vdk Dliix Hsiao le Lcvljkz 7) 1731‖100 g{z{ RElvk nzlo vdk ja _= Vzkas{zx jhii was hss{kf Rle_ A{g{sv 3) 3) ja o{daskjk o{daskjk 173:% RSkclef keflzskokev ln vdk Gzaef ^h}hkz_= Clooaefkz ln vdk jlo/ jazfhkzs Adokf Jkx) ef dho a s{hvajik plshvhle! Vdhs hs ox clooaef!
B H S ^ K J A D A S H
=
Pagk 1j–:a $vlp( Flc{ Fl c{ok okev ev 1;% 1;% LP LPY1 Y104 0417 17)) 1– 1–:) :) 67×33); co) shxabav aef fh~aeh $1>40(
: 3 1
: 3 :
Pagk 1j–:a $jlvvlo( Flc{ok Flc{okev ev 1;% LPY LPY104 10417) 17) 1–:) 1–:) 67×33); co) shxabav aef shxabav aef fh~aeh $1>40 fh~aeh $1>40
BHS^K JADASH =
Pagk :j
:33
:36
Flc{okev 1; $Pagk 1j( Dù~k He vdk olevd ln Ckoa}hùik~~ki ) xkaz 1080 $ M{ek 10 10 –M{ix 8) 1>78( 1>78( Ekw O{ O{sihos Ekw O{ O{sihos Ekw O{ O{sihos Ekw O{ O{sihos oke wloke jlxs ghzis e{ojkz e{ojkz e{ojkz e{ojkz 1 – – – 1 1 1 – 1 1 1 – 1 1 1 – – – – 1
– 1 1 1 – – – 1 – – – 1 – – – 1 1 1 : –
– – – – – – – – – – – – – – 1 – – – – –
– – – – – – – – – – – – – – – – – – – –
11
10
1
0
He vdk olevd ln Ckoa}hùiadız $ M{ix M{ix 10–A{g{sv 10–A{g{sv 7) 1>78( 1>78( Ekw O{ O{sihos Ekw O{ O{sihos Ekw O{ O{sihos Ekw O{ O{sihos oke wloke jlxs ghzis e{ojkz e{ojkz e{ojkz e{ojkz : 1 1 1 1 :
1 1 1 1 1 1
1 1
: 1
:
3
le M{ek 16 le M{ek 1> le M{ek 1> le M{ek :1 le M{ek :3 le M{ek :6 le M{ix 1 le M{ek :6 le M{ek 30 le M{ek 30 le M{ix 1 le M{ix 1 le M{ix > le M{ix 4 le M{ix 4 le M{ix 8 le M{ix 8 le M{ix 8 le M{ix 8
BHS^K JADASH =
Vajik $clev% ( ( Ekw O{ O{siho hoss Ekw O{ O{sih iho os Ekw O{ O{sihos Ekw O{ O{sihos oke wloke jlxs ghzis e{ojkz e{ojkz e{ojkz e{ojkz 1 1 1 1 1 1
1 1 1 1 1 :
16
13
He vdk olevd ln Zkckj $A{g{sv 4–Skpvkojkz >) 1>78( Ekw O O{ {siho hoss Ekw O{ O{sih iho os Ekw O{ O{sihos Ekw O{ O{sihos oke wloke jlxs ghzis e{ojkz e{ojkz e{ojkz e{ojkz 1 1 1 1 1 1 1 1 1 1 1 1 : 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 3
10
1>
He vdk olevd ln ajae $Skpvkojkz 7–Lcvljkz ;) 1>78( Ekw O O{ {siho hoss Ekw O{ O{sih iho os Ekw O{ O{sihos Ekw O{ O{sihos oke wloke jlxs ghzis e{ojkz e{ojkz e{ojkz e{ojkz 1 1
1 1
1
:3;
:3>
Vajik $clev% ( ( Ekw O{sihos Ekw O{sihos Ekw O{sihos Ekw O{sihos oke wloke jlxs ghzis e{ojkz e{ojkz e{ojkz e{ojkz 1 3 1 1 1 1
1 1 1 ;
10
He vdk olevd ln Zaoa}ae $Lcvljkz >–El~kojkz 6) 1>78( Ekw O{sihos Ekw O{sihos Ekw O{sihos Ekw O{sihos oke wloke jlxs ghzis e{ojkz e{ojkz e{ojkz e{ojkz 1 1 1 1 1 ;
: : 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 :3
;
:
BHS^K JADASH =
$Pagk :a( He vdk olevd ln k~~ai $Lcvljkz ;–Fkckojkz 3) 1>78( Ekw O{sihos oke e{ojkz 1 1 1 1 1 1 >
Ekw O{sihos Ekw O{sihos Ekw O{sihos wloke jlxs ghzis e{ojkz e{ojkz e{ojkz 1 1 1 : 1 1 1 1 1 1
1
1 1 – :
11 1 1:
He vdk olevd ln ]hibafk $Fkckojkz 6–Mae{azx :) 1>40( Ekw O{sihos oke e{ojkz
Ekw O{sihos Ekw O{sihos Ekw O{sihos wloke jlxs ghzis e{ojkz e{ojkz e{ojkz
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1
1>
14
1 1 1 3
1 1 1 1 1 ;
:37
:34
He vdk olevd ln ]hidhck $ Mae{azx Mae{azx 3–Nkjz{azx 3–Nkjz{azx 1) 1>40( 1>40( Ekw O{sihos Ekw O{sihos Ekw O{sihos Ekw O{sihos oke wloke jlxs ghzis e{ojkz e{ojkz e{ojkz e{ojkz 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 : 1 1 1 1
1
4
1;
He vdk olevd ln O{dazzko) xkaz 1081 $Nkjz{azx :–Oazcd :) 1>40( Ekw O{sihos Ekw O{sihos Ekw O{sihos Ekw O{sihos oke wloke jlxs ghzis e{ojkz e{ojkz e{ojkz e{ojkz 1 1 1 1 1 1 1 1 1 1 1 1 1 1 16
1 1 1 1 1 1 1 1 1 1 10
1 1 : 1 3
1
BHS^K JADASH =
He vdk olevd ln Sankz $Oazcd 3–Oazcd 31) 1>40( Ekw O{sihos oke e{ojkz 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 : 1 1 1 1 1 1 1
Ekw O{sihos Ekw O{sihos Ekw O{sihos wloke jlxs ghzis e{ojkz e{ojkz e{ojkz 1 1 1 1 1 6 1 1 : 1
1
16
:;
He vdk olevd ln Zkjhùik~~ki $Apzhi 1–Apzhi 30) 1>40( Ekw O{sihos oke e{ojkz 1 1 1 1 1 1 :
Ekw O{sihos Ekw O{sihos Ekw O{sihos wloke jlxs ghzis e{ojkz e{ojkz e{ojkz 1 1 1 1 1 : 4
: 1 3
:38
:60
Vajik $clev% ( ( Ekw O{sihos Ekw O{sihos Ekw O{sihos Ekw O{sihos oke wloke jlxs ghzis e{ojkz e{ojkz e{ojkz e{ojkz 1 : 1 1 1 1 1 1 1 14
$Pagk :j( He vdk olevd ln Zkjhùiadız $Oax 1–Oax :8) 1>40( Ekw O{sihos Ekw O{sihos Ekw O{sihos Ekw O{sihos oke wloke jlxs ghzis e{ojkz e{ojkz e{ojkz e{ojkz : 1 : 1 1 1 1 1 1 1 1 1 1 1 1 1 : :0 1 :1
1 1 1 1 1 1 : 1 1 : : 16
1 1 :
BHS^K JADASH =
:61
Vlvai cl{ev Ekw O{sihos oke e{ojkz
Ekw O{sihos Ekw O{sihos Ekw O{sihos wloke jlxs ghzis e{ojkz e{ojkz e{ojkz
11
10
1
–
16
13
:
3
1>
10
–
3
10
;
–
1
;
:3
;
:
>
1:
1
:
1>
14
3
;
1;
4
–
1
16
10
3
1
:;
16
–
1
14
7
3
–
:1
16
–
:
17 1 ::
16 6 :
14 –
:1 1
18 3
16 >
14
::
He vdk olevd ln Ckoa}hùik~~ki) xkaz 1080 He vdk olevd ln Ckoa}hùiadız He vdk olevd ln Zkckj He vdk olevd ln ajae He vdk olevd ln Zaoa}ae He vdk olevd ln k~~ai He vdk olevd ln ]hibafk He vdk olevd ln ]hidhck He vdk olevd ln O{dazzko) xkaz 1081 He vdk olevd ln Sankz He vdk olevd ln Zkjhùik~~ki He vdk olevd ln Zkjhùiadız F{zheg vdk RZlxai_ d{ev
Sheck vdk jkgheeheg ln vdk olevd ln Ckoa}hùik~~ki ) xkaz 1080 vl vdk kef ln vdk olevd ln Zkjhùiadız ) xkaz 1081
:6:
Ekw O{siho Roke_ e{ojkz 171 kacd Rgh~ke_ 1):00 abçk Rvlvai_ abçk :0;):00
Ekw O{siho Ekw O{siho Ekw O{siho Rwloke_ e{ojkz Rjlxs_ e{ojkz Rghzis_ e{ojkz 166 14 :1 kacd Rgh~ke_ :)170 kacd Rgh~ke_ 700 kacd Rgh~ke_ 1)000 abçk abçk abçk Rvlvai_ abçk Rvlvai_ abçk Rvlvai_ abçk 31:)640 1:)>00 :1)000
Accl{evkf :0;):00 31:)640 1:)>00 :)100
Vzl{skzs Rnlz_ oke 36: Rnlz_ jlxs 14 3>0
;;1):40 abçk
RSpkef_ nlz ekw O{sihos‘ cilvdks f{zheg vdk Zlxai d{ev nzlo Skpvkojkz 13) 1>78 {evhi Nkjz{azx :7) 1>40 Ekw O{siho O{siho Rok Roke_ e_ Ekw O{s O{siho iho Rwlo Rwloke_ ke_ Ekw O{s O{siho iho Rgh Rghzis zis__ e{ojkz e{ojkz e{ojkz :: : 1 kacd Rgh~ke_ 1):00 kacd Rgh~ke_ :)170 kacd Rgh~ke_ 1)000 abçk abçk abçk Rvlvai_ abçk Rvlvai_ abçk Rvlvai_ abçk :>)600 6)360 1)000
Vzl{skzs Pahzs Rnlz_ oke 66
Vlvai abçk :>)600 6)360 1)000 31)760
Gzaef Vlvai
;;1):40 31)760
Ilefle Rcilvd_ vzl{skzs Pahzs 3>0 66
;43)0:0
606
Abçk
As plhevkf l{v ajl~k) he vdk pkzhlf jkvwkke M{ek 1) 1>78 aef Oax :8) 1>40) heci{fheg heci{fheg Rvdk f{zavhle f{zavhle ln _ vdk Zlxai d{ev) vdk ~ai{k ~ai{k ln cilvdks Rvdav wkzk gh~ke_ acclzfheg vl vdk lif c{svlo vl ekw O{sihos) dlel{zkf whvd vdk Dliix Hsiao) was caic{iavkf vl jk ;43)0:0 abçk%
BHS^K JADASH =
:63
He affhvhle) 606 c{jhvs ln vdk a~ahiajik zkf jzlafcilvd he vdk wazk/ dl{sk was {skf nlz vzl{skzs% Hv hs zkq{ksvkf vdav a Vzkas{zx jhii nlz vdk casd ~ai{k ln Rekw O{siho_ cilvdks aef ae ktpkesk lzfkz nlz vdk jzlafcilvd jk hss{kf% RVdk fieai_ fkchshle hs he vdk daefs ln Dhs Oamksvx) ox S{ivae%
APPKEFHT :
IHSV LN AZCDH^AI [EHVS HE VDK EAVHLEAI IHJZAZX LN J[IGAZHA CLEVAEHEG BHS^K JADASH PKVHVHLES
Xkaz $A%F%( Xkaz $A%D%( 1 : 1% :% 3% 6% ;% >% 7% 4% 8% 10% 11% 1:% 13% 16% 1;% 1>% 17% 14% 18% :0% :1% ::% :3% :6% :;% :>% :7% :4% :8% 30% 31% 3:% 33%
Caii E{ojkz 3
1>41 1>77 1>77 1>78 1>78 –40
108: 1044 1044 1080 1080
1Y3;>; 1Y1074> 1Y10747 1Y1041: 1Y10417) 6 –:;
1>40 1>40 1>40 1>41 1>41 1>41 1>41 1>4; 1>4: 1>4: 1>4: 1>4: 1>43 1>4> 1>48 1>48 1>48 1>88 1700 1701 1701 170; 170> 170> 170> 1707 1704 1704
1081 1081 1081 108: 108: 108: 108: 108> 1083 1083 1083 1083 1086 1084 1100 1100 1101 1110 111: 111: 111: 111> 1117 1117 1114 1118 1118 11:0
1Y10414 1Y104:0 1Y104:6 1Y104:8 1Y10433 1Y1043; 1Y1043> 1Y10434 1Y10463 1Y10466 1Y1046> 1Y10467 1Y10468 1Y104;4 1Y104>> 1Y104>7 1Y104>4 1Y108:1 1Y108:3 1Y108:> 1Y10837 1Y1087> 1Y10877 1Y10874 1Y10841) :–4 1Y10843) 1– 6 1Y10846 1Y10847
Favk 6 14 ajae 13 k~~ai 13 k~~ai :4 Ckoa}hùiadız :> O{dazzko– 8 k~~ai :6 Zkjhùik~~ki :8 Zkjhùiadız :6 ]hibafk 1 Zkjhùik~~ki 30 Ckoa}hùiadız :1 Zkckj 6 ajae 10 Zaoa}ae :; Zkjhùik~~ki :1 Zkjhùik~~ki 10 Zkjhùiadız 8 Zaoa}ae : ajae 30 O{dazzko 13 Zkckj 16 ]hidhcck :4 O{dazzko 1: ajae 14 Sankz 18 Zaoa}ae 18 Zaoa}ae 18 ]hibafk > ]hibafk 1: ]hibafk 3–:6 Zkjhùiadız :–11 Zaoa}ae k~~ai 8 Ckoa}hùiadız
Flc{okevs ; 1 1 : 1 :1 1 1 1 1 1 1 1 1 1 1 1 1 : 1 1 1 1 1 1 : 1 1 : 1 7 6 3 1
:6;
Vajik $clev% ( ( Xkaz $A%F%( Xkaz $A%D%( 1 : 36% 3;% 3>% 37% 34% 38% 60% 61% 6:% 63% 66% 6;% 6>% 67% 64% 68% ;0% ;1% ;:% ;3% ;6% ;;% ;>% ;7% ;4% ;8% >0% >1% >:% >3% >6% >;% >>% >7% >4% >8% 70% 71% 7:% 73% 76% 7;% 7>% 77%
1710 1710 1711 1711 1711 1711 171: 171: 171: 171: 171: 171: 171: 171: 171: 171: 171: 171: 171: 171: 171: 1713 1716 1716 1717 1717 1717 1714 1718 1718 17:0 17:0 17:0 17:1 17:1 17:1 17:: 17:: 17:: 17:: 17:: 17:: 17:: 17::
11:1 11:: 11:3 11:3 11:3 11:3 11:6 11:6 11:6 11:6 11:6 11:6 11:6 11:6 11:6 11:6 11:6 11:6 11:6 11:6 11:6 11:; 11:> 11:> 11:8 11:8 11:8 1131 1131 113: 113: 1133 1133 1133 1133 1133 1136 1136 1136 1136 1136 1136 1136 113;
Caii E{ojkz 3 1Y10844 1Y10880 1Y1088: 1Y10883 1Y10886 1Y1088; 1Y10887 1Y10884 1Y10888 1Y11000) 1– 6 1Y11001 1Y1100: 1Y11003 1Y1100; 1Y1100> 1Y11007 1Y11004 1Y11008 1Y11011 1Y1101: 1Y11013 1Y11016 1Y1101; 1Y11018 1Y110:0 1Y110:1 1Y110:6 1Y11030 1Y11031 1Y11033 1Y1103> 1Y11034 1Y11038 1Y11061 1Y11063 1Y11066 1Y1106; 1Y11067 1Y11064 1Y11068 1Y110;0 1Y110;1 1Y110;: 1Y110;3
Favk 6 11 ]hidhcck 16 Ckoa}hùiadız ; Zaoa}ae 7 k~~ai 7 k~~ai 11 k~~ai 1 O{dazzko 3 O{dazzko 10 O{dazzko 1–10 O{dazzko > Sankz 13 Sankz :8 Zkjhùiadız 1 Ckoa}hùik~~ki > Ckoa}hùik~~ki 14 ajae :: ajae :8 ajae :> Zaoa}ae :> Zaoa}ae :1 k~~ai 13 Zkckj 10 ]hibafk 11 Sankz :3 Zkjhùik~~ki 1 Ckoa}hùik~~ki 1: ]hibafk :0 O{dazzko 30 Ckoa}hùik~~ki 13 O{dazzko 1: Ckoa}hùiadız 10 O{dazzko 11 O{dazzko 8 Ckoa}hùik~~ki :; Zkckj 14 ]hidhcck : Zkjhùiadız 1> Zkjhùik~~ki 18 Zkjhùik~~ki :1 Zkjhùik~~ki 13 Zkjhùiadız 11 Zkckj 6 Zkjhùik~~ki
Flc{okevs ; 1 : 1 1 1 1 1 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
:6>
Vajik $clev% ( ( Xkaz $A%F%( Xkaz $A%D%( 1 :
Caii E{ojkz 3
74% 78% 40% 41%
17:3 17:3 17:3 17:3
113; 113; 113; 113>
1Y110;6 1Y110;> 1Y110;7 1Y110;4) 1–:
4:% 43% 46% 4;% 4>% 47% 44% 48% 80% 81% 8:% 83% 86% 8;% 8>% 87% 84% 88% 100% 101% 10:% 103% 106% 10;% 10>% 107% 104% 108% 110% 111% 11:% 113% 116% 11;% 11>% 117% 114% 118% 1:0%
17:6 17:6 17:; 17:; 17:; 17:; 17:; 17:; 17:> 17:> 17:> 17:> 17:7 17:7 17:7 17:7 17:7 17:4 17:4 17:8 1730 1730 1731 1731 1731 1731 173: 1733 1733 1733 1733 1736 1736 1>78 1>41 1>4: 1>4: 1>74 1>41
113> 113> 1137 1137 1137 1137 1137 1134 1134 1134 1134 1138 1138 1138 1138 1138 1160 1160 1160 116: 1163 1163 1166 1166 1166 1166 116; 116; 116; 116; 116; 116> 116> 1080 108: 1083 1086 1048 108:
1Y110>0 1Y110>1 1Y110>: 1Y110>3 1Y110>6 1Y110>> 1Y110>7 1Y1107: 1Y11073 1Y11076 1Y1107; 1Y1107> 1Y11077 1Y11074 1Y11078 1Y11040 1Y1104: 1Y11047 1Y11048 1Y1108: 1Y1108; 1Y11087 1Y1110> 1Y11107 1Y11104 1Y11108 1Y11111 1Y1111> 1Y11117 1Y11114 1Y11118 1Y111:; 1Y111:> 1Y:04;> 1Y:04>; 1Y:04>> 1Y:04>4 1AY>743 1AY>74>
Favk 6 18 Ckoa}hùik~~ki :0 Zkckj :3 ajae > O{dazzko– 1 Sankz 8 k~~ai 14 ]hidhcck 1: Ckoa}hùik~~ki 8 Ckoa}hùiadız :3 Ckoa}hùiadız 1: Zaoa}ae 18 ]hidhcck ; Zkjhùiadız 30 Zkckj 3 ajae :> ajae :4 O{dazzko 4 Ckoa}hùiadız Ckoa}hùiadız :4 Ckoa}hùiadız :4 Ckoa}hùiadız 18 O{dazzko 8 Zkckj :1 k~~ai 18 O{dazzko 1: Sankz :> Sankz :> Zkjhùiadız > Ckoa}hùik~~ki 8 Ckoa}hùik~~ki 1> Ckoa}hùik~~ki 11 Sankz 30 ajae :; ]hibafk :6 ]hibafk :7 ]hibafk 14 ajae 3 ]hidhcck :> Ckoa}hùik~~ki : ]hibafk 6 O{dazzko 1 O{dazzko 17 O{dazzko 3 Zkjhùiadız
Flc{okevs ; 1 1 : : 1 1 : 1 1 1 1 1 1 1 1 1 1 1 1 : 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7 1 1 : 1 1
:67
Vajik $clev% ( ( Xkaz $A%F%( Xkaz $A%D%( 1 : 1:1% 1::% 1:3% 1:6% 1:;% 1:>% 1:7% 1:4% 1:8% 130% 131% 13:% 133% 136% 13;% 13>% 137% 134% 138% 160% 161% 16:% 163% 166% 16;% 16>% 167% 164% 168% 1;0% 1;1% 1;:% 1;3% 1;6% 1;;% 1;>% 1;7% 1;4% 1;8% 1>0% 1>1% 1>:% 1>3% 1>6%
17:6 1716 17:0 17:1 17:: 17:; 17:> 17:7 17:7 1731 1>74 17:4 1>77 1>78 1>78 1>78 1>78 1>78 1>40 1>78 1>40 1>40 1>40 1>40 1>41 1>41 1>41 1>41 1>41 1>41 1>41 1>4: 1>4: 1>4: 1>4: 1>43 1>43 1>4; 1>46 1>4; 1>4; 1>4; 1>4; 1>4;
113> 11:> 113: 1133 1136 1137 1138 1138 1138 1166 1044 1138 1044 1080 1080 1080 1080 1080 1080 1080 1081 1081 1081 1081 108: 108: 108: 108: 108: 108: 108: 1083 1083 1083 1083 1086 1086 108> 108; 108> 108> 108> 108> 108>
Caii E{ojkz 3 1AY>40: 1AY>406 1AY>40; 1AY>404 1AY>408 1AY>410 1AY>413 1AY>416 1AY>41; 1AY>414 1AY;>;:1 1AY;>;:4 1AY;7004 1AY;70:8 1AY;7031 1AY;703; 1AY;703> 1AY;7037 1AY;7038 1AY;7060 1AY;706: 1AY;706; 1AY;7064 1AY;70;0 1AY;70;> 1AY;70;4 1AY;70>0 1AY;70>1 1AY;70>: 1AY;70>6 1AY;70>> 1AY;7071 1AY;707: 1AY;707> 1AY;7040 1AY;7043 1AY;7046 1AY;7080 1AY;7044 1AY;7081 1AY;708: 1AY;7083 1AY;7086 1AY;708;
Favk 6
Flc{okevs ;
:: ajae 3 Ckoa}hùiadız > Ckoa}hùiadız :0 Zkjhùik~~ki :1 ajae :4 Ckoa}hùiadız :: O{dazzko 1: Zkckj 7 Zaoa}ae 16 Zkjhùik~~ki 7 ]hibafk 4 ]hibafk :; Zkjhùiadız :; O{dazzko :8 Ckoa}hùik~~ki 17 Ckoa}hùiadız :> Ckoa}hùiadız > Zkckj 1; ]hidhck :: ]hibafk :1 Zkjhùik~~ki 6 Zkjhùiadız 30 Ckoa}hùiadız 7 Zkjhùik~~ki Sankz 1; Zkjhùiadız Zkjhùiadız :0 Ckoa}hùiadız :: Ckoa}hùiadız 1 ajae 11 ]hibafk :8 Sankz : Zkjhùiadız :; Ckoa}hùiadız 4 ]hidhcck 7 ajae :8 ajae 8 Ckoa}hùiadız :: Zaoa}ae :3 Ckoa}hùiadız :7 Ckoa}hùik~~ki 1> Ckoa}hùiadız 6 Ckoa}hùiadız :6 –:> Ckoa}hùiadız
1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 : 1 1 1 1 1 1 1 1 3 1 ; 1 1 1 1 1 1 1 1 1 1 1 1 1 1: 3 1 :
:64
Vajik $clev% ( ( Xkaz $A%F%( Xkaz $A%D%( 1 : 1>;% 1>>% 1>7% 1>4% 1>8% 170% 171% 17:% 173% 176% 17;% 17>% 177% 174% 178% 140% 141% 14:% 143% 146% 14;% 14>% 147% 144% 148% 180% 181% 18:% 183% 186% 18;% 18>% 187% 184% 188% :00% :01% :0:% :03% :06% :0;% :0>% :07% :04%
1>4> 1>4> 1>47 1>48 1>48 1>48 1>48 1>80 1701 1701 17:4 1703 1706 170; 170> 1707 1710 1711 1711 1711 1711 1711 1711 171: 171: 171: 171: 171: 171: 171: 171: 1713 1713 1713 171; 171> 171> 1717 1717 1717 1717 1717 1714 1714
1087 1084 1084 1100 1100 1100 1101 1101 111: 1113 1161 111; 111> 1117 1114 1118 11:1 11:: 11:3 11:3 11:3 11:3 11:3 11:6 11:6 11:6 11:6 11:6 11:6 11:6 11:6 11:; 11:; 11:; 11:7 11:4 11:4 11:8 11:8 11:8 11:8 11:8 1130 1130
Caii E{ojkz 3 1AY;7087 1AY;7101 1AY;710; 1AY;7107 1AY;7104 1AY;711: 1AY;7116 1AY;711; 1AY;71>6 1AY;71>7 1AY;71>4 1AY;7173 1AY;717; 1YA;7174 1AY;7146 1AY;7143 1AY;7148 1AY;7181 1AY;7186 1AY;7183 1AY;718; 1AY;718> 1AY;7184 1AY;7:01 1AY;7:0: 1AY;7:06 1AY;7:0> 1AY;7:07 1AY;7:08 1AY;7:11 1AY;7:1: 1AY;7:16 1AY;7:14 1AY;7::1 1AY;7::6 1AY;7::> 1AY;7::7 1AY;7::8 1AY;7:33 1AY;7:3; 1AY;7:37 1AY;7:34 1AY;7:61 1AY;7:63
Favk 6 :6 Zkjhùik~~ki 30 O{dazzko 1: ]hibafk 1: Ckoa}hùik~~ki 1; Ckoa}hùik~~ki 1; Zkjhùik~~ki 8 Sankz ; Ckoa}hùiadız 11 Zaoa}ae 7 Zkckj 16 Sankz :: Zkckj ; ajae :> Ckoa}hùik~~ki O{dazzko :8 Zkjhùik~~ki 1; ]hibafk 11 ]hibafk :3 Zaoa}ae ; ajae 6 k~~ai :8 Zaoa}ae > k~~ai > Sankz 13 Sankz :6 Zkjhùik~~ki :1 Ckoa}hùik~~ki :6 Ckoa}hùik~~ki :0 Zaoa}ae :0 k~~ai ; k~~ai ; Zkjhùik~~ki :6 ajae 3 ]hibafk 1 ajae 1> O{dazzko :4 Sankz 11 Zkjhùik~~ki 8 Ckoa}hùik~~ki > Zkckj 14 ajae ; Ckoa}hùiadız 1 ]hidhcck :; ]hidhcck
Flc{okevs ; 1 1 1 11 1 6 1 1 1 1 1 10 1 1 3 ; > 3 1 1 1 1 1 1 1 1 1 1 1 : 1 3 1 1 1 1 1 1 1 1 1 1 1 1
:68
Vajik $clev% ( ( Xkaz $A%F%( Xkaz $A%D%( 1 : :08% :10% :11% :1:% :13% :16% :1;% :1>% :17% :14% :18% ::0% ::1% :::% ::3% ::6% ::;% ::>% ::7% ::4% ::8% :30% :31% :3:% :33% :36% :3;% :3>% :37% :34% :38% :60% :61%
1714 1718 17:0 17:0 17:0 17:0 17:0 17:0 17:0 17:0 17:1 17:1 17:: 17:: 17:: 17:: 17:: 17:3 17:3 17:3 17:3 17:6 17:3 17:; 17:; 17:; 17:; 17:> 17:> 17:> 17:> 17:> 1081–1166
1131 1131 1133 113: 113: 113: 113: 113: 113: 1133 1133 1136 1136 1136 113; 113; 113; 113; 113; 113; 113; 113> 113> 1137 1137 1137 1137 1134 1134 1134 1134 1134 1>41–173:
:6:% :63% :66% :6;% :6>% :67% :64% :68% :;0% :;1%
17:> 17:7 17:7 17:7 17:7 17:7 17:7 1714 17:4 17:8
1134 1138 1138 1138 1138 1138 1160 1130 1160 1161
Caii E{ojkz 3 1AY;7:66 1AY;7:;: 1AY;7:;6 1AY;7:;; 1AY;7:;> 1AY;7:;8 1AY;7:>: 1AY;7:>3 1AY;7:>; 1AY;7:>7 1AY;7:7; 1AY;7:78 1AY;7:43 1AY;7:46 1AY;7:44 1AY;7:48 1AY;7:80 1AY;7:81 1AY;7:83 1AY;7:86 1AY;7:8> 1AY;7:87 1AY;7:84 1AY;7300 1AY;730: 1AY;7303 1AY;7306 1AY;7316 1AY;731; 1AY;731> 1AY;7317 1AY;7314 1AY;7318) 1–;3 1AY;73:0 1AY;73:: 1AY;73:3 1AY;73:6 1AY;73:> 1AY;73:7 1AY;73:8 1AY;733: 1AY;733; 1AY;7338
Favk 6 > O{dazzko 1; ]hibafk 14 Sankz :; Sankz :: Zkjhùik~~ki :7 Zkckj :3 ajae :8 ajae :4 k~~ai 1> O{dazzko :: k~~ai 1: Sankz :> Zkckj 3 ajae :> Sankz Sankz 6 Zkjhùik~~ki 3 Zkckj 13 Zkckj : ajae ]hibafk > k~~ai 18 Sankz 13 Ckoa}hùik~~ki 18 Zaoa}ae :8 k~~ai :3 ]hibafk 13 Zaoa}ae :7 Zaoa}ae 8 k~~ai 10 k~~ai : k~~ai :> Sankz– 1> Zkckj :: k~~ai :> Ckoa}hùik~~ki 3 Ckoa}hùiadız 4 Ckoa}hùik~~ki 10 k~~ai :6 k~~ai 30 O{dazzko :7 Zkjhùiadız 3 Zkckj 13 Zkckj
Flc{okevs ; 1 1 1 1 1 1 : 1 1 : : : : 1 1 1 1 1 1 1 : 1 : 1 : 1 1 1 1 1 1 1 :0 1 1 1 1 1 1 1 1 1 1
:;0
Vajik $clev% ( ( Xkaz $A%F%( Xkaz $A%D%( 1 : :;:% :;3% :;6% :;;% :;>% :;7% :;4% :;8% :>0% :>1% :>:% :>3% :>6% :>;% :>>% :>7%
17:8 17:8 17:8 1730 1730 1731 1731 173: 173: 173: 1>4: 171: 171: 17:0 1>4> 1706
:>4% 1>47 :>8% 1703 :70% 1704 :71% 1>7:–1736 :7:% :73% :76% :7;% :7>% :77% :74% :78% :40% :41% :4:% :43% :46% :4;% :4>%
1718 17:; 17:; 171: 1718 1>4: 17:: 173: 1718 1704 1>4> 1>80 1>4> 1717 1>4>
:47% 17:: :44% 1707 :48% 1>40
1161 1161 116: 1163 1163 1163 1163 1166 1166 116; 1083 11:6 11:6 113: 1087 111>
Caii E{ojkz 3
1AY;7360 1AY;7361 1AY;7366 1AY;7367 1AY;7364 1AY;7368 1AY;73;1 1AY;73>1 1AY;73>4 1AY;7370 1AY>>336 1AY>>33> 11:Y>6>4 118Y1404 16;Y104 CG 36Y:) :–1: 1088 CG 40Y13 1116 EPVAT^HHH 4Y60 11:0 EPVAT^HHH 4Y86 1041–1167 EPVA TT 1Y:4 1131 LAB 13Y;7 1137 LAB 17Y14 1137 LAB 17Y40 11:6 LAB 36Y3; 1131 LAB 36Y>4 1083 LAB 3;Y30 1136 LAB 37Y10; 116; LAB 63Y3: 1131 LAB 63Y6; 1118 LAB ;:Y6; 1087 LAB ;3Y:3 1101 LAB ;3Y:6 1087 LAB ;3Y:; 11:8 LAB >7Y17 1087 LAB 7>Y;:) :–76 1136 LAB 74Y;> 1118 LAB 74Y43) >)8 1081 LAB 88Y:7
Favk 6 : ajae 7 Zaoa}ae 4 Ckoa}hùiadız 7 O{dazzko 18 Sankz Zkckj 8 Zaoa}ae 7 Zkckj 6 Zkckj :0 O{dazzko :3 O{dazzko 17 Zkjhùik~~ki 1> O{dazzko 13 Zkjhùik~~ki 8 Ckoa}hùik~~ki 3 Ckoa}hùik~~ki– 14 ajae Zkjhùik~~ki :> Zaoa}ae
Flc{okevs ; 1 1 1 1 1 : 1 : 1 1 1 1 1 1 1 1: 3; 1 1
:1 ]hibafk– 11 k~~ai :> ajae 1: Ckoa}hùik~~ki 1: Ckoa}hùik~~ki :> Ckoa}hùik~~ki :> Ckoa}hùik~~ki :> Zaoa}ae 14 ajae 18 Zkjhùik~~ki :8 Sankz 7 k~~ai :3 ajae :8 Zkjhùik~~ki 1: ajae :4 Ckoa}hùiadız ; Zkjhùik~~ki– 8 Ckoa}hùik~~ki 11 Zkckj :3 Zaoa}ae– 18 ajae :4 Zkjhùik~~ki
:4 1 1 1 1 1 1 1 : 1 6 3 7 :; 1 13 1 : 1
:;1
Vajik $clev% ( ( Xkaz $A%F%( Xkaz $A%D%( 1 : :80% :81% :8:% :83% :86% :8;% :8>% :87% :84% :88%
17:: 1710 1>43 17:4 1710 170> 173: 173: 173: 1710
Vlvai
1136 11:: 1086 1160 11:1 1117 1166 1166 1166 11::
Caii E{ojkz 3 LAB 100Y16 LAB 10;Y4 LAB 111Y3: LAB 117Y36 LAB 1>1Y17 LAB 1>:Y38 LAB 1>4Y:1 LAB 170Y31 LAB 170Y36 SI >Y14) 1–11
Favk 6 :; :6 ; :;
ajae Ckoa}hùik~~ki ajae Ckoa}hùiadız
18 ]hibafk 17 Zkjhùiadız 16 –:1 Ckoa}hùik~~ki
Flc{okevs ; 1 ; 1; : 10 6 1 1 1 11
> 01
APPKEFHT 3
IHSV LN AZCDH^AI [EHVS HE VDK JA JABAEIHB LVVLOAE AZCDH^K) HSVAEJ[I) CLEVAHEHEG BHS^K JADASH PKVHVHLES
Xkaz A%F% Xkaz A%D% 1 : 3 6 ; > 7 4 8 10 11
1 >7 ; 1 >7 ; 1 >7 ; 1 >7 ; 1 >7 ; 1 >4 6 1 >7 3 1 >7 6 1 >4 1 1 >7 6 1 >4 > Vlvai
104 > 104 > 104 > 104 > 104 > 108 ; 104 6 104 ; 108 : 104 ; 10 87
Azcdh~ai {ehv Aih Kohzh) Okdokf H^) ;06 A%K% Okdokf H^) >04 A%K% Okdokf H^) >08 A%K% Okdokf H^) >:> A%K% Okdokf H^) 7:4 A%K% Okdokf H^) 444 A%K% Okdokf H^) 1>6: A%K% Okdokf H^) 1710 A%K% Okdokf H^) 67;6 A%K% Okdokf H^) 6784 Jaj/h Fknvkz Ja o{daskjk Ja o{daskjk ) ;07
Flc{okevs 1 1 1 1 1 13 4 6 1 1 1 33
JHJIHLGZAPDX
H% Pzhoazx Azcdh~ai aef P{jihsdkf Sl{zcks JLA) Cliikcvhle Aih Kohzh) Adokf H ) a% {% $azcdh~ai {ehv( 7;7% JLA) Cliikcvhle Aih Kohzh) Okdokf H^ ) a% {% ;06) >04) >08) >:>) 7:4) 444) 1>6:) 1710) 67;6) 6784% EJBO) Lz% L%) Cliikcvhle 1) a% {% 3;>;) 1074>) 10747) 1041:) 10417=6–:;) 10414) 104:0) 104:6) 104:8) 10433) 1043;) 1043>) 10434) 10463) 10466) 1046>) 10467) 10468) 104;4) 104>>) 104>7) 104>4) 108:1) 108:3) 108:>) 10837) 1087>) 10877) 10874) 10841=:–4) 10843=1–6) 10846) 10847) 10844) 10880) 1088:) 10883) 10886) 1088;) 10887) 10884) 10888) 11000=1–6) 11001) 1100:) 11003) 1100;) 1100>) 11007) 11004) 11008) 11011) 1101:) 11013) 11016) 1101;) 11018) 110:0) 110:1) 110:6) 11030) 11031) 11033) 1103>) 11034) 11038) 11061) 11063) 11066) 1106;) 11067) 11064) 11068) 110;0) 110;1) 110;:) 110;3) 110;6) 110;>) 110;7) 110;4=1–:) 110>0) 110>1) 110>:) 110>3) 110>6) 110>>) 110>7) 1107:) 11073) 11076) 1107;) 1107>) 11077) 11074) 11078) 11040) 1104:) 11047) 11048) 1108:) 1108;) 11087) 1110>) 11107) 11104) 11108) 11111) 1111>) 11117) 11114) 11118) 111:;) 111:>) :04;>) :04>;) :04>>) :04>4% EJBO) Lz% L%) Cliikcvhle 1A) a% {% >743) >74>) >40:) >406) >40;) >404) >408) >410) >413) >416) >41;) >414) ;>;:1) ;>;:4) ;7004) ;70:8) ;7031) ;703;) ;703>) ;7037) ;7038) ;7060) ;706:) ;706;) ;7064) ;70;0) ;70;>) ;70;4) ;70>0) ;70>1) ;70>:) ;70>6) ;70>>) ;7071) ;707:) ;707>) ;7040) ;7043) ;7046) ;7080) ;7044) ;7081) ;708:) ;7083) ;7086) ;708;) ;7087) ;7101) ;710;) ;7107) ;7104) ;711:) ;7116) ;711;) ;71>6) ;71>7) ;71>4) ;7173) ;717;) ;7174) ;7146) ;7143) ;7148) ;7181) ;7186) ;7183) ;718;) ;718>) ;7184) ;7:01) ;7:0:) ;7:06) ;7:0>) ;7:07) ;7:08) ;7:11) ;7:1:) ;7:16) ;7:14) ;7::1) ;7::6) ;7::>) ;7::7) ;7::8) ;7:33) ;7:3;) ;7:37) ;7:34) ;7:61) ;7:63) ;7:66) ;7:;:) ;7:;6) ;7:;;) ;7:;>) ;7:;8) ;7:>:) ;7:>3) ;7:>;) ;7:>7) ;7:7;) ;7:78) ;7:43) ;7:46) ;7:44) ;7:48) ;7:80) ;7:81) ;7:83) ;7:86) ;7:8>) ;7:87) ;7:84) ;7300) ;730:) ;7303) ;7306) ;7316) ;731;) ;731>) ;7317) ;7314) ;7318=1–;3) ;73:0) ;73::) ;73:3) ;73:6) ;73:>) ;73:7) ;73:8) ;733:) ;733;) ;7338) ;7360) ;7361) ;7366) ;7367) ;7364) ;7368) ;73;1) ;73>1) ;73>4) ;7370) >>336) >>33>% EJBO) Lz% L%) Cliikcvhle 11:) a% {% >6>4% EJBO) Lz% L%) Cliikcvhle 118) a% {% 1404% EJBO) Lz% L%) Cliikcvhle 16; ) a% {% 104% EJBO) Lz% L%) Cliikcvhle CG ) a% {% 36Y:=:–1:) 40Y13% EJBO) Lz% L%) Cliikcvhle EPVA T^HHH ) a% {% 1Y:4) 4Y60) 4Y86% EJBO) Lz% L%) Cliikcvhle LAB ) a% {% 13Y;7) 17Y14) 17Y40) 36Y3;) 36Y>4) 3;Y30) 37Y10;) 63Y3:) 63Y6;) ;:Y6;) ;3Y:3) ;3Y:6) ;3Y:;) >7Y17) 7>Y;:=:–76) 74Y;>) 74Y43=>)8) 88Y:7) 100Y16) 10;Y4) 111Y3:) 117Y36) 1>1Y17) 1>:Y38) 1>4Y:1) 170Y31) 170Y36% EJBO) Lz% L%) Cliikcvhle SI ) a% {% >Y14=1–11% JLA) Cliikcv Cliikcvhle hle Oknb{n Oknb{nav av baikoh) :473% Zkghsvkz ln vdk A~azh} A~azh}/daek /daek s he vdk ba}a ln Ek~zlblp nzlo 113> R17:3–:6_) vzaes% K% Zaf{sdk~ $oae{sczhpv(% EJBO) Lz% L%) Cliikcvhle 1) a% {% 10417 n% 1–:j% Zkghsvkz ln vdk ktpkesks nlz ekw O{sihos nzlo 1 Ckoa}hùik~~ki 1080 vl :8 Zkjhùiadız 1081 R10%0>%1>78– 30%06%1>40_% EJBO) F 1;8) Xlbiaoa fknvkzh % Nkva~a/h Ajf{zzadho% Hsvaej{i) 1:63%
:;6
Nkva~a/h Aih Knkefh% Hsvaej{i) 1:43% Eahoa) O% Aeeais ln vdk V{zbhsd Kophzk nzlo 1;81 vl 1>;8 ln vdk Cdzhsvhae Kza ) vzaes%) C% Nzaskz% Ekw Xlzb) 1873% Baihche) Oazha) A% ^kibl~) K% Zaf{sdk~) kf% Lsoaesbh h}~lzh }a hsiaoh}achleehvk pzlcksh ea jaibaehvk T^H THT ~% RLvvloae Sl{zcks nlz vdk Hsiaoh}avhle Pzlckssks he vdk – Jaibaes) 1>vd–18vd ckev{zhks_% Slfia) 1880% Zxca{v) P% Vdk Pzkskev Svavk ln vdk Lvvloae Kophzk % Ilefle) 1>>4% ‖‖% Vdk Pzkskev Svavk ln vdk Gzkkb aef Azokehae Cd{zcdks % Ilefle) 1>74% Vdk Hsiaohc Iaw ln Eavhles= Sdaxj e ‘s Shxaz ) vzaesiavkf jx Oamhf Bdaff{zh% Jaivholzk) 18>>% V{zsbh h}~lzh }a j{igazsbava hsvlzha RV{zbhsd Sl{zcks ln J{igazhae Dhsvlzx_ ^li% 7) Fhohvzl~) S%) K% Gzl}fael~a aef S% Aefzkk~) kf% Slfia 184>% V{zsbh flb{okevh }a hsvlzhmava ea oabkflesbhlv eazlf RV{zbhsd Flc{okevs nlz vdk Dhsvlzx ln vdk Oackflehae Pklpik_ ^li% 1–; $Sblpmk) 1871–4;(%
HH% Skclefazx Sl{zcks Ajl{ Ki/Dam) Z%A% ’Vdk Lvvloae ^k}hz aef Pasda Dl{skdlifs) 1>43–1703= A Pzkihoheazx Zkplzv%‟ MALS 86) 6 $1876() 634–667% ‖‖% ’Vdk Eav{zk ln vdk Lvvloae Svavk he vdk Iavvkz Pazv ln vdk 17vd Ckev{zx%‟ He A% Vhkv}k) kf% Lvvloae/Dajsj{zg Zkiavhles % ^hkeea) 1846% ‖‖% Vdk Zkjkiihle ln 1703 aef vdk Svz{cv{zk ln Lvvloae Plihvhcs % Hsvaej{i) 1846% ‖‖% ’Zk~hkw Azvhcik= % Okvhe B{ev) Vdk S{ivae‘s Skz~aevs= Vdk Vzaesnlzoavhle ln vdk Lvvloae Pzl~hechai Gl~kzeokev 1;;0 1;>0 %‟ – 1;>0 %‟ LA) > $184>() ::1–:6>% ‖‖% Nlzoavhle ln vdk Olfkze Svavk= Vdk Lvvloae Kophzk Shtvkkevd vl Khgdvkkevd Ckev{zhks % Aijaex) 1881% Afaeız) Nhbzkv% ’Vdk Nlzoavhle ln a —O{siho‘ Eavhle he Jlseha/Dkzckgl~hea= a Dhsvlzhlgzapdhcai Fhsc{sshle%‟ he Nhbzkv Afaeız aef S{zahxa Nazlqdh) kf% Vdk Lvvloaes aef vdk Jaibaes= A Fhsc{sshle ln Dhsvlzhlgzapdx% Ikhfke) :00:) :>7–306% Abb{vax) [% Kefkz{e Okbvkjh % Aebaza) 1846% Absae) ^hzgheha% ’Ilcavheg vdk Lvvloaes Aoleg Kazix Olfkze Kophzks%‟ Ml{zeai ln Kazix Olfkze Dhsvlzx 3) : $1888() 103–136% Aifkzsle) Pkzzx% Ihekagks ln vdk Ajsli{vhsv Svavk% Ilefle) 1876% Ai/Qavvae) Eamwa% ’Fdhoohs he vdk O{siho Cl{zv= Flc{okevheg M{svhck he Lvvloae Faoasc{s) 177;–14>0%‟ Pd%F% Fhsskzvavhle) Daz~azf [eh~kzshvx) 188>% Aefzhc) H~l% Vdk Fk~kilpokev ln Sphzhv{ai Ihnk he Jlseha {efkz vdk He {keck {keck ln V{zbhsd Z{ik % F{zdao) 1880% Aegkil~) Fhohvaz% Iks Jaibaes a{ Olxke Agk= Ia J{igazhk fks Jlglohiks a{t V{zcs % Ilefle) 1874% Azjkzzx) A%M%) kf% Zkihghle he vdk Ohffik Kasv % Caojzhfgk) 18>8% Azeabhs) Gklzgk G% ’Vdk Zlik ln Zkihghle he vdk Fk~kilpokev ln Jaibae Eavhleaihso%‟ He Cdaziks) aef Jazjaza Mkia~hcd) kf%) Vdk Jaibaes he Vzaeshvhle% Jkzbkikx aef Ils Aegkiks) 18>3% Azelif) V%W% Vdk Pzkacdheg ln Hsiao= A Dhsvlzx ln vdk Pzlpagavhle ln vdk O{siho Nahvd % Ilefle) 1813% Avhxa) A%S% A Dhsvlzx ln Kasvkze Cdzhsvhaehvx% Ilefle) 18>4% Jajhegkz) N% ’Fkz Hsiao he Sùflsvk{zlpa%‟ He ^þibkz {ef B{iv{zke Sùflsvk{zlpas) Scdzhnvke fkz Sùflsvk{zlpa Gkskiiscdanv % O{ehcd) 18;8% Jaiva) K% I‘K{jèk à ia fi fi e f{ T^ k shäcik% Kclelohk kv plp{iavhle‖iks zkghsvzks fk i‘aeeèk 1676 % Avdkes) 1848% Jazbae) Þ% ’Lsoaeiı Hopazavlzi{ {efa jhz $rbae ~k Blileh}asxle Okvlf{ liazab ^abıaz ~k Vkoihbikz%‟ ^abı az az Fkzghsh ) : $186:() :74–34>% ‖‖% ’Lsoaeiı Hopazavlzi{ {efa jhz bae ~k Blileh}asxle Okvlf{ liazab Sùz/
:;;
gùeikz%‟ HÙHNO ) TH,1–6 $1868–;0() $1868 –;0() ;:6–;>82 THHH,1–6 $18;1–;:() ;>–742 ;>–742 T^,1–6 $18;3–;6() :08–:37% ‖‖% ’Vazhdh Fkolgzafi Azasvızoaiazı ~k Lsoaeih Vazhdh)‟ Vùzbhxav Okco{ası ) 10 $18;3() 1–:>% ‖‖‖% ’Kssah ’Kssah s{z iks iks fleeèks svavhsv svavhsvhq{ks hq{ks fks zkghsvzk zkghsvzkss fk zkckeskokev zkckeskokev faes faes i‘Kophzk i‘Kophzk k k Lvvloae a{ T^ kv T^H shäciks%‟ MKSDL ) 1 $18;7() 8–3>% ‖‖% ’486 ’486 $1644,1 $1644,1648( 648( Xıiı Xıiı Ch}xksheh Ch}xkshehe e Vadshiavı Vadshiavıea ea ahv ahv O{daskjk O{daskjk Jhiaeçl Jhiaeçliazı% iazı%‟‟ Jkigki Jkigkikz kz ) 1 $18>6() 1–117% ‖‖% ’Zkskazcd le vdk Lvvloae Nhscai S{z~kxs%‟ He O% Cllb) kf% Sv{fhks he vdk Kclelohc Dhsvlzx ln vdk Ohffik Kasv % Ilefle) 1870% Jazvik) Pkvkz% ’Bzhpvl/Cdzhsvkev{o {ef Nlzoke fks zkihghþske Sxebzkvhso{s he Aijaehke%‟ He Gza}kz {ef Oùecdkekz Jaibaelilghscdk Sv{fhke $O{ehcd) 18>7() 117–1:7% Jkeeassaz) Jazvliloè aef I{chik% Iks cdzèvhkes f‘Aiiad= i‘dhsvlhzk ktvzalzfheahzk fks zkeè/ gavs= T^H k kv T^HH k shäciks % Pazhs) :001% Jhzgk) M% Vdk Jkbvasdh Lzfkz ln Fkz~hsdks % Ilefle) 1837% Jl}b{zv) Gùiehdai% Gaxzhoùsiho Lsoaeiı ^avaefa iazıeıe ^avaefa iazıeıe D{b{bh F{z{o{% Aebaza) 1848% Jza{fk) Jkemaohe% ’Nl{efavhle Oxvds ln vdk Ohiikv Sxsvko%‟ He J% Jza{fk aef J% Ikwhs) kf% Cdzhsvhaes aef Mkws he vdk Lvvloae Kophzk= Vdk N{ecvhleheg ln a Pi{zai Slchkvx% ^li{ok H2 Vdk Ckevzai Iaefs % Ekw Xlzb) Ilefle) 1840% Jza{fki) N% Vdk Okfhvkzzaekae aef vdk Okfhvkzzaekae Wlzif he vdk Agk ln Pdhihpp HH % Ilefle) Ekw Xlzb) 1873% Jzkvv) O% ’Vdk Spzkaf ln Hsiao he Kgxpv aef Elzvd Anzhca%‟ He hfko) kf%) Elzvdkze Anzhca= Hsiao aef Olfkzeh}avhle% Ilefle) 1873% Jzxkz) Aevdlex aef Dkavd Ilwzx) kf% Clevhe{hvx aef Cdaegk he Iavk Jx}aevhek aef Kazix Lvvloae Slchkvx% Jhzohegdao) Wasdhegvle) 184>% J{iihkv) Z%W% Cle~kzshle vl Hsiao he vdk Okfhk~ai Pkzhlf= Ae Kssax he Q{aevhvavh~k Dhsvlzx% Caojzhfgk) 1878% ‖‖% ’Cle~kzshle Svlzhks he Kazix Hsiao%‟ He Ohcdaki Gkz~kzs aef Zao}h Mhjzae Jhbda}h) kf% Cle~kzshle aef Clevhe{hvx= Hefhgkel{s Cdzhsvhae Cloo{ehvhks he Hsiaohc Iaefs Khgdvd vl Khgdvkkevd Ckev{zhks % Vlzlevl) 1880% Cadke) C% ’Fdhooa)‟ KH :% ‖‖% Pzk/Lvvloae V{zbkx% Ilefle) 18>4% ‖‖% ’Zk~hkw ’Zk~h kw ln= Spkzls ^zxlehs) Vdk Fkcihek ln Okfhk~ai Dkiikehso he Asha Ohelz aef vdk Pzlckss ln Hsiaoh}avhle nzlo vdk Kik~kevd vdzl{gd vdk Nhnvkkevd Ckev{zx% ‟ Jkzbkikx aef Ils Aegkiks) 1871% HMOKS ) 6 $1873() 11:–1:>% Cihsslif) Svkpdke% A Sdlzv Caojzhfgk) k) 18> 18>>% >% Sdlzv Dhsvlz Dhsvlzxx ln X{gl X{glsia~ sia~ha ha nzlo nzlo Kazix Kazix Vhok Vhokss vl 18>> 18>> % Caojzhfg Cllb) Ohcdaki) kf% Sv{fhks he vdk Kclelohc Dhsvlzx ln vdk Ohffik Kasv % Ilefle) 1870% Czlek) P% Sia~ks le Dlzsks= Vdk K~li{vhle ln vdk Hsiaohc Plihvx% Ilefle) 1840% Cxzhi) Pavzhazcd ln J{igazha% J{igazloldaokfaesbh skihsdva ~ x{mehvk Zlflph RJ{igazhae/ O{siho ^hiiagks he vdk Sl{vd Zdlflpks_% Slfia) 18>0% 17;0 % Ilefle) 187>% Fk ^zhks) Mae) Vdk Kclelox ln K{zlpk he ae Agk ln Czhshs) 1>00 – 17;0 ‖‖% ’Aplsvasx he Hsiao%‟ Fhk Wkiv fks Hsiaos ) 17 $187>–77() 1–:;% Fkokvzhafks) ^asshihs% ’Slok Vdl{gdvs le vdk Lzhghes ln vdk Fk % ‟ He Fk~~ hzok %‟ K% ]acda ]acdazh zhaf afl{ l{)) kf kf%% Vdk Lvvloae Kohzavk $1300 – 1348( 1348(% Zkvdxoele) 1883) :3–31% Fkeekvv) F%C% Cle~kzshle aef vdk Plii Vat he Kazix Hsiao% Caojzhfgk) 18;0% Fhohvzl~) G% Bexa}ksv~l J{igazha ~ hsvlzhcdksbl) gklgzansbl h kvelgzansbl lvelsdkehk RVdk Pzhechpaihvx ln J{igazha he Dhsvlzhcai) Gklgzapdhcai aef Kvdelgzapdhcai Vzkavokev_) ~li% 1% Pil~fh~) 1486% Fhohvzl~) Svzasdhohz% ’Fkolgzansbh lvelsdkeha h pzlehb~aek ea hsiaoa ~ }apafehvk Zlflph h fliheava ea Oksva pzk} T^–T^HH ~kb RFkolgzapdhc Zkiavhles aef Spzkaf ln Hsiao he Wksvkze Zdlflpks aef vdk ^aiikx ln Oksva he vdk 1;vd–17vd Ckev{zhks_%‟ Zlflpsbh Sjlzehb ) 1 $18>;() >3–116% ‖‖% Hsvlzhma ea jaibaesbhvk eazlfh T^ – THT ~kb RDhsvlzx ln vdk Jaibae Pklpiks 1;vd–18vd ckev{zhks_) ~li% 1% Slfia) 1871%
:;>
‖‖% ’Pzlehb~aek ea oldaokfaesv~lvl szkf jaigazhvk ~ ]apafehvk Zlflph pzk} T^HH ~kb RSpzkaf ln Oldaokfaehso aoleg vdk J{igazhaes he vdk Wksvkze Zdlflpks he vdk 17vd Ckev{zx_%‟ Zlflph ) >–7 $187:() 1:–162 1;–17% ‖‖% ’Ok}zhvk h fkolgzansbhav bliaps ea jaigazsbava eazlfelsv pzk} T^ ~kb R Vdk Ok}za s aef vdk Fkolgzapdhc Cliiapsk ln vdk J{igazhae Eavhle he vdk 1;vd Ckev{zx_%‟ ^kbl~k ) > $1873() ;0–>;% ‖‖% ’Kvehcdksbh h zkihghl}eh pzlvsksh szkf jaigazsbava eazlfelsv pzk} T^–T^HH ~kb RKvdehc aef Zkihghl{s Pzlckssks aoleg vdk J{igazhae Eavhle he vdk 1;vd–17vd Ckev{zhks_%‟ Jaigazsba Kvelgza fi a a ) 1 $1840() :3–61% ‖‖% ’Sbzhv ’Sbzhvlvl lvl dzhsv dzhsvhmaes hmaesv~l v~l h hsimao hsimaoh}avs h}avshlee hleehvk hvk pzlvsk pzlvsksh sh ~ lsoaesb lsoaesbava ava fazma fazma~a ~a RCzxpvl/ RCzxpvl/ Cdzhsvhaehvx aef vdk Hsiaoh}avhle Pzlckssks he vdk Lvvloae Svavk_%‟ Hsvlzhcdksbh Pzkgikf ) 3 $1847() 14–33% ‖‖% ’Nk ’Nkv~h v~h }a h}b h}blzk lzkema ema~ae ~aekk ea jai jaigazs gazsbav bavaa ohz ohzlgi lgikfe kfeaa shs shsvko vkoaa szk szkf f plo plol/ l/ daokfaecdkehvk jaigazh R Nkv~a Nkv~a s nlz [pzllvheg vdk J{igazhae L{villb ln Hsiaoh}kf J{igazhaes_%‟ ^kbl~k ) : $1847(% ‖‖% ’Slok Aspkcv Aspkcvss ln Kvdehc Fk~ki Fk~kilpokev) lpokev) Hsiaoh Hsiaoh}avhle }avhle aef Assho Asshohiavhl hiavhle e he J{igazhae Iaefs he vdk 1;vd–1>vd Ckev{zhks)‟ He Aspkcvs ln vdk Fk~kilpokev ln vdk J{igazhae Eavhle% Slfia) 1848% ‖‖% ’Sdvk hoaok ih ea{cdeh pl}hvshh pl pzljikohvk ea hsiaoh}avshxava h safjhehvk ea j{igazsbhvk oldaokfaeh< RSdaii Wk K~kz Da~k Schkevh fic Plshvhle le vdk Pzljikos ln Hsiaoh}avhle aef vdk Navk ln J{igazhae O{sihos<_%‟ Zdlflphca ) 1 $1888() 131–167% ‖‖% ’Ek ’Ekfl{o fl{ohch hch h gzks gzksdbh dbh ~ kfe kfeaa beh behga ga }a j{i j{igazh gazhvk vk olda oldaokf okfaeh aeh R Jask Jaskiks iksss Azg{okevs aef Kzzlzs he a Jllb ajl{v vdk J{igazhae O{sihos_%‟ Zdlflphca 1 $1884() 188–:16% Fm{zfmk~) J% ’Fknvkzh }a Vszelglzsbh saefmab h} ~zkokea Sbkefkz jkga Vszelk~hvcda‟ RZkghsvkzs ln vdk Saecab ln Olevkekgzl f{zheg vdk vhok ln Sbkefkzjkg Vcdkz/ elk~hvcd_%‟ Pzhil}h ) 1–3 $18;0–;3(% ‖‖% ’Dzh ’Î aeh Spadhmk { Sk~kzelm Szjhmh { T^ ~kb{%‟ He Glfh Glfh emab emab Hsvlzsblg Fz{ v~a Jlseha h Dkzckgl~hek ) 6 $18;:() 1>;–1>8% Fzhel~) O% ’Lvkvs Pahshh% Ekgl~lvl ~zkok) ekgl~ava hsvlzha h {cdkehchvk o{ RNavdkz Pahshh% Dhs Kza) dhs Dhsvlzx aef dhs P{phis_%‟ Pkzhlfhvcdksbl sphsaehk ) 1) 1: $147 $1471() 1() 18% Kzfke) Dabae% ’Zkcz{hvokev nlz vdk —^hcvlzhl{s Slifhkzs ln O{daooaf‘ he vdk Azaj Pzl~hecks) 14:>–14:4%‟ He Hszaki Gkzsdleh) Dabae Kzfko aef [zs{ia Wlbþcb) kf% Dhsvlzhks ln vdk Ohffik Kasv= Ekw Fhzkcvhles % Ile Ilefle fle)) :00 :00:) :) 148–:0 148–:0>% >% Nazlqdh) S% ’Fhk ^lziagke $vkidåsk( fks GzlÜwkshzs Sheêe Pa a ae S{ivae O{zêf%‟ Fhss% }{z Kziaeg{eg fkz Flbvlzwùzfk fkz Pdhilslpdhscdke Nab{ivæv fkz [eh~kzshvæv Daoj{zg% Daoj{zg) 18>7% ‖‖% ’Slchai Oljhihvx aef vdk Lvvloae [ikoa he vdk Iavkz Shtvkkevd Ckev{zx%‟ HMOKS ) 6 $1873() :06–14% Navvai) Aevlhek% Ik Svav{v iègai fks ele/o{s{ioaes ke paxs f‘Hsiao% Jkhz{v) 18;4% Nkbkvk) I% Khenùdz{eg he fhk lsoaehscd/vùzbhscdk Fhpiloavhb fkz vùzbhscdke Jlvoæsshgbkhv he [egaze% J{fapksv) 18:>% Nhihpl~h ) Ekfho% ’A Clevzhj{vhle vl vdk Pzljiko ln Hsiaoh}avhle he vdk Jaibae {efkz vdk Lvvloae Z{ik%‟ He Lvvloae Z{ik he Ohffik K{zlpk aef Jaibae he vdk 1>vd aef 17vd Ckev{zhks % Papkzs Pzkskevkf av vdk 8vd Mlhev Clenkzkeck ln vdk C}kcdlsil~ab/X{glsia~ Dhsvlzhcai Cloohvvkk % Pzag{k) 1874% Nhek) M%^%A% Vdk Jlsehae Cd{zcd= A Ekw Hevkzpzkvavhle % Ekw Xlzb) 187;% ‖‖% Vdk Iavk Okfhk~ai Jaibaes= A Czhvhcai S{z~kx nzlo vdk Iavk Vwkinvd Ckev{zx vl vdk Lvvloae Cleq{ksv % Aee Azjlz) 1847% ‖‖% ’Vdk Okfhk~ai aef Lvvloae Zllvs ln Olfkze Jlsehae Slchkvx%‟ He Oazb Phesle) kf% Vdk O{sihos ln Jlseha/Dkz}kgl~hea= Vdkhz Dhsvlzhc Fk~kilpokev nzlo vdk Ohffik Agks vl vdk Fhssli{vhle ln X{glsia~ha% Caojzhfgk) 1886% Nhscdkz/Gaiavh) S%) kf% Oae) Svavk) aef Slchkvx he Kasv K{zlpkae Dhsvlzx% Ekw Xlzb) 1870%
:;7
‖‖% ’Zk~k ‖‖% ’Zk~kzj zjkza kzavhl vhle e ln vdk A{s A{svzl vzl/V{ /V{zbh zbhsd sd Waz Waz he vdk vdk Jaib Jaibae ae Pke Pkehes hes{ia {ia $1; $1;83– 83–1>0 1>0>(% >(%‟‟ He Kssaxs he Okolzx ln Jashi Ial{zfas % Vdkssailehbh) 187;) 368–>0% Nhsdkz) D%M% ’Cle~kzshle Zkcleshfkzkf= Slok Dhsvlzhcai Aspkcvs ln Zkihghl{s Cle~kzshle he Jiacb Anzhca%‟ Anzhca ) 63 $1873(% Jleapazvk= zvk= Fhpiloacx Fhpiloacx aef Lzhkevaihso Lzhkevaihso he he Aih Pasda‘s Pasda‘s Nikoheg) Bavdkzhek K% Vdk O{siho Jleapa Pzhe heck ckvl vle) e) 188 1888% 8% Gzkkck % Pz Nlflz) Pái% ’Vdk Gzaef ^h}hkzai Vkidhs% A Sv{fx he vdk Lvvloae Ckevzai Afohehsvzavhle 1;>>–1>;>%‟ AL ) 1; $1887() 137–144% Nzkkoae/Gzke~hiik) G%S%P% Vdk O{siho aef Cdzhsvhae Caikefazs % Ilefle) Ekw Xlzb) Vlzlevl) 18>3% Gaefk~) D% J{igazsbava eazlfelsv pzk} 1; ~kb% Fkolgzansbl h kvelgzansbl h}sikf~aek RVdk J{igazhae Eavhle he vdk 1;vd ckev{zx% A Fkolgzapdhc aef Kvdelgzapdhc S{z~kx_% Slfia) 187:% Gkzjkz) Daho% Svavk) Slchkvx) aef Iaw he Hsiao= Lvvloae Iaw he Clopazavh~k Pkzspkcvh~k % Aijaex) 1886% Gklzghk~a) Vs% Kehvcdazhvk ~ jaigazsbhvk }koh RVdk Maehssazhks he vdk J{igazhae Iaefs_% Slfia) 1844% ‖‖% ’Vzaesnlzoachhvk ea kfhe sji{sab ea vsh~hih}avshh‖dzhsvhxaesv~lvl h hsiaoa ea jaibaehvk RVdk Vzaesnlzoavhle ln Lek Cle hcv jkvwkke Ch~hih}avhles‖Cdzhsvhaehvx aef Hsiao he vdk Jaibaes_%‟ He K% Zafl{sdk~) S% Nkv~afmhk~a) kf% Jaibaesbh hfke/ vhcdelsvh ) ~li% 3% Slfia) :003% Ghjj) D%A%Z% aef Dazlif Jlwke% Hsiaohc Slchkvx aef vdk Wksv % ^li% H) Hsiaohc slchkvx he vdk Khgdvkkevd Ckev{zx) pazv 1–:% Ltnlzf) 18;0) 18;7% Ghjjles) D%A% Vdk Nl{efavhle ln vdk Lvvloae Kophzk % Ltnlzf) 181>% Glhvkhe) S%F% Hevkznahvd Zkiavhles he Okfhk~ai Hsiao% Ekw Xlzb) 1873% Gllfwhe) G% Vdk Maehssazhks % Ilefle) 1886% Gþçkb) Navoa Oùck% Zhsk ln vdk Jl{zgklhshk) Fkohsk ln Kophzk % Lvvloae Wksvkzeh}avhle aef Slchai Cdaegk % Ekw Xlzb) Ltnlzf) 188>% Gþbjhighe) O% T^ – T^H/hech Asıziazfa Kfhzek ~k Pa Pa aa Ih~ası ^abı az) az) Oùibikz) O{bavaaiaz % Hsvaej{i) 18;7% ‖‖% Z{ohih‘fk Xùzùbikz) Vavaziaz ~k K~iaf/h Navhdae% Hsvaej{i) 18;7% Gzafk~a) Zlsshvsa% ’Bao ~apzlsa }a zkihghl}eava avolsnkza ~ Lsoaesbava hopkzha= Slfia ~ szkfava ea T^H ~kb RAjl{v vdk Q{ksvhle ln vdk Zkihghl{s Avolspdkzk he vdk Lvvloae Kophzk= Slfia he vdk Ohffik ln vdk vdk 1>vd Ckev{zx_%‟ Ckev{zx_%‟ He J% Cdzhsvl Cdzhsvl~a) ~a) kf% J{igazsbhxa sdksveafkskvh ~kb% Sjlzehb flbiafh }a j{igazsbava ljsdva h b{iv{zea hsvlzhxa – :0%T%1886 pzk} T^H ~kb% Sl fi fi a) a) 17 :0%T%1886 % Slfia) 188>) 168–14>% ‖‖% ’Lzvdlflt Cdzhsvhaes he vdk Bafı Cl{zvs= Vdk Pzacvhck ln vdk Slfia Sdkzhav Cl{zv) Sk~kevkkevd Ckev{zx%‟ Hsiaohc Iaw aef Slchkvx 6) 1 $1887() 37–>8% Gzafk~a) Gzafk ~a) Zlsshvsa Zlsshvsa aef aef S~kviaea S~kviaea H~ael~a H~ael~a)) kf% O{s{ioaesbava b{iv{za pl jaigazsbhvk }koh% H}sikf~aehxa RHsiaohc C{iv{zk he vdk J{igazhae Iaefs% Sv{fhks_% Sl fia) 1884% Gzkke) Oliix% ’Baefhxk 1>>8–17:0= Vdk Nlzoavhle ln a Okzcdaev Ciass%‟ Pd%F% fhsskzvavhle= Pzheckvle [eh~kzshvx) 1883% Gzl{k~) H~ahil% ’Zk~hshvheg vdk J{igazhae Eavhleaihso= vdk Cask ln vdk V{zbhsd Ohelzhvx%‟ [eh~kzshvx ln Lvvawa= Pd%F% fhsskzvavhle he pzlgzkss% Gzl}fael~a) Kikea% ’]a faeacdeava kfhehca —daek‘ ~ fkolgzansbhvk pzl{cd~aehxa Hsvlzhcdksbhh Pzkgikf ) : $187:(% RAjl{v vdk Vat [ehv —daek ‘ he vdk Fkolgzapdhc Sv{fhks_%‟ Hsvlzhcdksb 14 ~kb RJ{igazhae Pkasaev Cloo{ehvx he vdk ‖‖% J{igazsbava skisba ljsdvhea pzk} 1; – 14 1;vd–14vd Ckev{zhks_% Slfia) 1878% ‖‖% ’Plglil~ehxa faeab h za}~hvhkvl ea svlbl~l/pazhcdehvk lvelsdkehxa ~ j{igaz/ sbhvk }koh pzk} 1;–18 ~ RVdk Plii Vat aef vdk Fk~kilpokev ln vdk Olekx/ cloolfhvx Chzc{iavhle he vdk J{igazhae Iaefs he vdk 1;vd–18vd Ckev{zhks_%‟ He – 18 H} hsvlzhaxava ea vazgl~hxava ~ j{igazsbhvk }koh 1; 18 ~kb % Slfia) 1874% ‖‖% J{igazsbava eazlfelsv pzk} 17 ~kb% Fkolgzansbl h}sikf~aek RVdk J{igazhae Eavhle he vdk 17vd ckev{zx% A Fkolgzapdhc Sv{fx_% Slfia) 1848%
:;4
‖‖% ’]a emablh fkolgzansbh pzlokeh ~ jaigazsbhvk }koh pzk} T^HHH ~% RAjl{v slok Fkolgzapdhc Cdaegks he vdk J{igazhae Iaefs he vdk 14vd Ckev{zx_%‟ Jaigazsbava eazlfelsv h eavshma pzk} ~kbl~kvk ) 1% Slfia) 1844) 11>–16;% ‖‖% ’Pzlokeh ~ fkolgzansbhma ljihb ea jaigazsbhvk }koh pzk} T^HH ~% RCdaegks he vdk Fkolgzapdhc Hoagk ln vdk J{igazhae Iaefs he vdk 17vd Ckev{zx_%‟ Hsvlzhcdksbh pzkgikf ) 7 $184;() :0–37% Gzl}fael~a) K%) aef S% Aefzkk~) ’Naisdhfibav ih k ikvlphsehxav za}ba} ea plp Okvlfh Fzaghel~< RHs vdk Cdzlehcik ln vdk Pzhksv Okvlfh Fzaghel~ a Naish ficavhle<_%‟ Hsvlzhcdksbh pzkgikf ) : $1883() 16>–1;7% Daf}hjkghc/Daohf) ’F}h}ma hih Dazac%‟ Pzhil}h ) 3–6 $18;:–;3() ;;–13;% Ea k Bz~ { M{ elh Szjhmh RO{sihos ln l{z Jillf he Sl{vd Daf}h/^ashimk~h ) M% O{sihoaeh Ea k Skzjha_% Jkigzafk) 18:6% Daiiaq) Waki% ’Vdk [sk aef Aj{sk ln K~hfkeck= Vdk Q{ksvhle ln Pzl~hechai aef Zloae He{kecks le Kazix Hsiaohc Iaw%‟ MALS 110) 1 $1880() 78–81% ‖‖% ’Nzlo Navwês vl N{zò N{zò == Gzlwvd aef Cdaegk he Hsiaohc S{jsvaevh~k Iaw%‟ Hsiaohc Iaw aef Slchkvx) 1 $1886() 30–>;% ‖‖% ’O{zfkz he Clzflja= Hmvhdêf) Hnvê aef vdk K~li{vhle ln S{jsvaevh~k Iaw he Okfhk~ai Hsiao%‟ Acva Lzhkevaiha ) ;; $1886() ;;–43% Daef h ) Afko% ’L Hsiaohsachmh { Smk~kzhsvlcelm Jlseh { T^ h T^H ~hmkb{ RAjl{v vdk Hsiaoh}avhle he Elzvd/Kasv Jlseha he vdk 1;vd aef 1>vd Ckev{zhks_%‟ Pzhil}h ) 1>–17 $1870() ;–64% Dasi{cb) N%W% Cdzhsvhaehvx aef Hsiao {efkz vdk S{ivaes % Ltnlzf) 18:8% Dawvheg) G%Z% ’[oaxxafs) h~‖Azajhsavhle aef Hsaiohsavhle {efkz vdk [oaxxafs)‟ KH :% Dk keheg) keheg) W% ’O{zvaff)‟ KH :% Dkxf) [zhki% Sv{fhks he Lvvloae Czhoheai Iaw % Ltnlzf) 1873% D{opdzkxs) Z% Svkpdke% Hsiaohc Dhsvlzx= A Nzaokwlzb nlz Heq{hzx% Pzheckvle) 1881% D{pcdhcb) Fkeehs% Vdk J{igazhaes he vdk Sk~kevkkevd Ckev{zx= Sia~hc Lzvdlflt Slchkvx aef kzsle) Ilefle) 1883% C{iv{zk {efkz Lvvloae Z{ik % Mk kzsle) ‖‖% ’Sk~kevkkevd/Ckev{zx J{igazhae Ploabs= Nlzckf lz ^li{evazx Cle~kzvs vl Hsiao<‟ He S%J% ^azfx aef A%D% ^azfx) kf% Slchkvx he Cdaegk= Sv{fhks he Dlelz ln Jkia B% Bhzaix% Ekw Xlzb) 1843) 30;–16% eaicıb) Daihi% ’J{igazha)‟ KH :% ‖‖% ’ h}xa) hh‖Lvvloae)‟ KH :% ‖‖% ’Gd{i o) h~‖Lvvloae Kophzk)‟ KH :% ‖‖% ’Hsiao he vdk Lvvloae Kophzk%‟ He hfko) Kssaxs he Lvvloae Dhsvlzx% Kzke) 1884% ::8–:6>% ‖‖% ’Lf Svknaea F{ aea fl Lsoaesblg Czasv~a= Dzh ’Î aesbk Spadhmk { Z{okihmh { T^ ~hmkb{ h Emhdl~l Plzhmkbil%‟ Pzhil}h ) 3–6 $18;:,;3() :3–;6% ‖‖% ’Lvvloae Okvdlfs ln Cleq{ksv%‟ SH ) : $18;6() 103–1:8% ‖‖% Dhczh 43; Vazhdih S{zkv/h Fknvkz/h Saecab/h Az~aehf % Aebaza) 18;6% ‖‖% ’S{ikhoae vdk Iawgh~kz aef Lvvloae Iaw%‟ AL ) 1 $18>8() 10;–134% ‖‖% ’Vdk Lvvloae Fkcihek aef Hvs K kcvs kcvs {ple vdk Zkaxa%‟ He D% Jhzeja{o) aef S% ^zxlehs) kf%) Aspkcvs ln vdk Jaibaes% Vdk Dag{k) Pazhs) 187:% ‖‖% Lvvloae Kophzk) Cleq{ksv) Lzgaeh}avhle aef Kclelox% Ilefle) 1874% ‖‖% ’Ohihvazx aef Nhscai Vzaesnlzoavhle he vdk Lvvloae Kophzk) 1>00–1700%‟ AL ) > $1840() :43–337% ‖‖% ’Vdk Kokzgkeck ln Jhg Nazos) Çhnvihb s= s= Svavk) Iaefilzfs aef Vkeaevs%‟ He M% Jacq{è/Gzaoolev aef Pa{i F{olev) kf% Clevzhj{vhles à i‘dhsvlhzk èclelohq{k kv slchaik fk i‘Kophzk Lvvloae% Pazhs) 1843% ‖‖% ’ hbaxkv Dabbı= Az /h Dai ~k Az /h Oad az iaz%‟ LA) 7–4 $1844() 33–;6% ‖‖% ’^hiiagk) ’^hii agk) Pkasaev aef Kophzk%‟ He hfko) Vdk Ohffik Kasv aef vdk Jaibaes {efkz vdk Lvvloae Kophzk= Kssaxs le Kclelox aef Slchkvx % Jillohegvle) 188:% eaichb) D%) aef Fleaif Q{avakzv) kf% Ae Kclelohc aef Slchai Dhsvlzx ln vdk Lvvloae Kophzk 1300 1816% Caojzhfgk) 1886% – 1816%
:;8
Hlzga) E% Dhsvlhzk fks Kvavs Jaibaehq{ks % Pazhs) 18:;% Hssawh) C% ’Lvvloae Kophzk he vdk K{zlpkae Kclelox) 1>00–1816%‟ He B% Bazpav) kf% Vdk Lvvloae Svavk aef hvs Piack he Wlzif Dhsvlzx % Ikhfke) 1876% Hv}blwhv}) Elzoae% ’Khgdvkkevd Ckev{zx Lvvloae Zkaihvhks%‟ SH ) 1> $18>:() 73–86% ‖‖% Lvvloae Kophzk aef Hsiaohc Vzafhvhle% Cdhcagl aef Ilefle) 187:% Hv}blwhv} E% aef Mlki Sdhefkz% ’Vdk Lck ln kxd ùi/ si o aef vdk Vae}hoav‖ A Pzlslplgzapdhc Keq{hzx%‟ Ohffik Kasvkze Sv{fhks ) 4 $187:() 86–101% H~ael H~a el~a ~a)) B% B%)) kf kf%% Svaza j{igazsba ihvkzav{za RLif J{igazhae Ihvkzav{zk_% Slfia) 184>% H~ael~a) S~kviaea% ’Kvelfkolgzaficdksbh h}sikf~aehma }a pkzhlfa T^–T^HH~% ~ sa~zk/ okeeava jaigazsba hsvlzhlgza fi ma R Kvde Kvdel/fk l/fkolgza olgzapdh pdhcc Sv{f Sv{fhks hks nlz vdk Pkzh Pkzhlf lf 1;vd–17vd Ckev{zhks he Clevkoplzazx J{igazhae Dhsvlzhlgzapdx_%‟ Hsvlzhlgzansbh h}sikf~aehma% J{igazha T^ THT ~% ^li% 1) Slfia) 1847) 1;;–1>8% – ‖‖% ’Oaibhvk kvelblenkvshaieh gz{ph gz{ph ~ j{igazsbhvk gzafl~k pzk} pzk} T^H–T^HH ~% R Vdk Soaiikz Kvdel/zkihghl{s Gzl{ps he vdk J{igazhae Vlwes he vdk 1>vd–17vd Ckev{zhks_% He J% Cdzhsvl~a) kf% J{igazsbhxa sdksveafkskvh ~kb% Sjlzehb flbiafh }a j{igazsbava ljsdva – :0%T%1886 h b{iv{zea hsvlzhxa pzk} T^H ~kb% Sl fi fi a) a) 17 :0%T%1886 % Slfia) 188>% Mkia~hcd) C% aef Jazjaza Mkia~hcd) kf% Vdk Jaibaes he Vzaeshvhle% Jkzbkikx aef Ils Aegkiks) 18>3% Mhzk kb) B% Gkscdhcdvk fkz J{igazke% Pzag{k) 147>% ‖‖% Gkscdhcdvk fkz Skzjke% Glvda) 1811% Banafaz) Ckoai% ’Wdke Clhes V{zekf hevl Fzlps ln Fkw aef Jaebkzs Jkcaok Zljjkzs ln Sdaflws= Vdk Jl{efazhks ln Lvvloae Kclelohc Hoagheavhle av vdk Kef ln vdk Shtvkkevd Ckev{zx%‟ Pd%F% Fhsskzvavhle= OcGhii [eh~kzshvx) 184>% ‖‖% Jkvwkke Vwl Wlzifs= Vdk Clesvz{cvhle ln vdk Lvvloae Lvv loae Svavk % Jkzbkikx) Ils Aegkiks) Ilefle) 188;% Bazpav) Bkoai% ’Vdk Iaef Zkghok) Slchai Svz{cv{zk) aef Olfkzeh}avhle he vdk Lvvloae Kophzk%‟ He W% Plib) aef Z%I% Cdaojkzs) kf% Jkgheehegs ln Olfkzeh}avhle he vdk Ohffik Kasv2 Vdk Ehekvkkevd Ckev{zx% Cdhcagl) 18>4% ‖‖% ’Vdk Svagks ln Lvvloae Dhsvlzx= A Svz{cv{zai Clopazavh~k Appzlacd%‟ He B% Bazpav) kf% Vdk Lvvloae Svavk aef hvs Piack he Wlzif Dhsvlzx % Ikhfke) 1876% ‖‖% Lvvloae Plp{iavhle 1430 – 1816% 1816% Fkolgzapdhc aef Slchai Cdazacvkzhsvhcs % Oafhsle) Whscleshe) 184;% Bhki) Oacdhki% ’Vdk ^abıneêok ln Zabbas Sheêe Jkg he Bazeljav $Bazåe/êjêf( aef vdk Lvvloae Clileh}avhle ln J{igazhae Vdzack $16vd–1;vd Ckev{zx(%‟ LA) 1 $1840() 1;–31% ‖‖% Azv aef Slchkvx ln J{igazha he vdk V{zbhsd Pkzhlf % Asske) Oaasvzhcdv) 184;% ‖‖% ’Aeavl ’Aeavliha iha Vzaespi Vzaespiaevkf< aevkf< Pavvkze Pavvkzess ln Fkolgza Fkolgzapdhc) pdhc) Zkih Zkihghl{s ghl{s aef Kvdehc Cdaegks he vdk Fhsvzhcv ln V{}i{b 1678–1473%‟ Aeavlihca ) 17 $1881() 1–:8% ‖‖% ’Vdk Spzkaf ln Hsiao he J{igazhae Z{zai Azkas he vdk Lvvloae Pkzhlf $1;vd–14vd Ckev{zhks(= Clileh}avhle aef Hsiaoh}avhle%‟ He Zlshvsa Gzafk~a aef S~kviaea H~ael~a) kf% O{s{ioaesbava b{iv{za pl jaigazsbhvk }koh% H}sikf~aehxa RHsiaohc C{iv{zk he vdk J{igazhae Iaefs% Sv{fhks_% Sl fia) 1884% ‖‖% ’H}ia ’H}iafh,]iav fh,]iavhvsa% hvsa% Plp{iav Plp{iavhle hle Cdaegks) Clileh Clileh}avhle }avhle aef Hsiaoh Hsiaoh}avhle }avhle he a J{igazhae Ol{evahe Caevle) 1;vd–18vd Ckev{zhks%‟ He K% Zaf{sdk~) ]aza Blsvl~a) ^% Svl Svlxae xael~) l~) kf% Sv{fha he Dlelzko Pzlnksslzhs ^kzak O{van hk~a O{van hk~a % Slfia) :001) 17;–144% Blfl~) D% Lphs ea sia~xaesbhvk zablphsh ~ Jhjihlvkbava ea J{igazsbava abafkohxa ea ea{bhvk RCavailg{k ln vdk Sia~hc Oae{sczhpvs he vdk Ihjzazx ln vdk J{igazhae Acafkox ln Schkecks_% Slfia) 18>8% Bl~avcdk~) Z{oke% ’Zk~hkw ln= Lsoaesbh H}~lzx }a Hsiaoh}achleehvk pzlcksh ea Jaibaehvk) – T^H THT ~%) Slfia) 1880%‟ Hsvlzhcdksbh Pzkgikf ) ; $1881() 11:–11>% ‖‖% ’Eas ’Easkike kikehkv hkvll pl j{ig j{igazsb azsbhvk hvk }koh pzk} ~vlz ~vlzava ava pli plil~he l~heaa ea T^–T T^–T^H ^H ~% Afohehsvzavh~el/plskihsdel Afohehsvzavh~el/pl skihsdel {svzlhsv~l) fkolgzansbh h kvelzkihghl}eh pzlokeh splzkf vhoazsbh vhoa zsbh zkghsvzh zkghsvzh R Vdk Plp{iavhle Plp{iavhle ln vdk vdk J{igazhae J{igazhae Iaefs Iaefs he vdk Skclef Dain ln vdk 1;vd–1>vd Ckev{zhks= Afohehsvzavh~k Sxsvko) Fkolgzapdhc aef Kvdehc/Zkihghl{s Cdaegks Acclzfheg vl Vhoaz Zkghsvkzs_%‟ Pd%F% fhsskzvavhle= EJBO) 188:%
:>0
‖‖% Lphs ea Ehblplisbhxa saecab lv 40/vk glfheh ea T^ ~kb RS{z~kx ln vdk Ehblpli Saecab nzlo vdk 1640s_% Slfia) 1887% ‖‖% ’El~lplsvaphih lsoaelv{zsbh lphsh bavl h}~lz }a skihsdveava shsvkoa) easkikeh/ kvl h afohehsvzavh~elvl fkikehk ea Zlflphvk $~vlzava plil~hea ea T^/eacdailvl ea T^H ~%( REkwix Acq{hzkf Lvvloae/V{zbhsd Zkghsvkzs as a Sl{zck ln Skvvikokevs Fhsvzhj{vhle) Plp{iavhle aef Afohehsvzavh~k Fh~hshle ln vdk Zdlflpks $skclef dain ln vdk 1;vd–vdk jkgheeheg ln vdk 1>vd Ckev{zx(_%‟ Zdlflphca ) 1 $1888() 168–76% Bzakokz) M% ’Aplsvavks) Zkjkis aef Jzhgaefs%‟ Hszaki Lzhkevai Sv{fhks ) 10 $1843() $1843() 36–64% 36 –64% B{ev) % Okvhe% ’Kvdehc/Zkghleai $ Ches ( Slih Slihfazhv fazhvxx he vdk Sk~k Sk~kevkk evkkevd/ evd/Ckev Ckev{zx {zx Lvvloae Ksvajihsdokev%‟ HMOKS ) ; $1876() :33–:38% ‖‖% ’Vzaesnlzoavhle ln ]hooh hevl Asbkzå %‟ %‟ He Jkemaohe Jza{fk aef Jkzeazf Ikwhs) kf% Cdzhsvhaes aef Mkws he vdk Lvvloae Kophzk% ^li% H) Vdk Ckevzai Iaefs % Ekw Xlzb) Ilefle) 1840% ‖‖% Vdk S{ivae‘s Skz~aevs= Vdk Vzaesnlzoavhle ln vdk Lvvloae Pzl~hechai Gl~kzeokev 1;;0 – 1;>0 % Ekw Xlzb) 1843% Iaoaesbhh) ^%H% ’Jligazsbaxa sil~ksvelsv T^HHH ~kba RJ{igazhae Ihvkzav{zk ln vdk 14vd Ckev{zx_%‟ M{zeai Ohehsvkzsv~a Eazlfelgl Pzls~ksdvkehxa ) 16; $14>8() 107–1:3% Iaphf{s) H%O% ’Vdk Cle~kzshle ln Kgxpv vl Hsiao%‟ Hszaki Lzhkevai Sv{fhks ) : $187:() :64–>:% Ik~v}hle) Ekdkoha) kf% Cle~kzshle vl Hsiao% Ekw Xlzb) Ilefle) 1878% ‖‖% ’Vlwazf a Clopazavh~k Sv{fx ln Hsiaoh}avhle%‟ He E% Ik~v}hle) kf% Cle~kzshle vl Hsiao% Ekw Xlzb) Ilefle) 1878% ‖‖%’Cle~kzshle vl Hsiao he Sxzha aef Paiksvhek aef vdk S{z~h~ai ln Cdzhsvhae Cloo{ehvhks%‟ He Ohcdaki Gkz~kzs aef Zao}h Mhjzae Jhbda}h) kf% Cle~kzshle aef Clevhe{hvx= Hefhgkel{s Cdzhsvhae Cloo{ehvhks he Hsiaohc Iaefs Khgdvd vl Khgdvkkevd Ckev{zhks % Vlzlevl) 1880% Ikwhs) Jkzeazf% Hsiao nzlo vdk Pzlpdkv O{daooaf vl vdk Capv{zk ln Clesvaevhelpik % Ekw Xlzb) 1876% ‖‖% Vdk Mkws ln Hsiao% Pzheckvle) 1846% ‖‖% kf% O{sihos he K{zlpk % Ilefle) 1886% Ihvvik) F%P% ’Clpvhc Cle~kzshle vl Hsiao {efkz vdk Jadzå Oaoi{bs) >83–7;;,1:83– 13;6%‟ JSLAS ) 38 $187>() ;;:–>8% ‖‖% ’Clpvhc Cle~kzvs vl Hsiao F{zheg vdk Jadzå Oaoi{b Pkzhlf%‟ He Ohcdaki Gkz~kzs aef Zao}h Mhjzae Jhbda}h) kf% Cle~kzshle aef Clevhe{hvx= Hefhgkel{s Cdzhsvhae Cloo{ehvhks he Hsiaohc Iaefs Khgdvd vl Khgdvkkevd Ckev{zhks % Vlzlevl) 1880% Ilpashc) Aiktaefkz% ’Hsiaoh}avhle ln vdk Jaibaes= Slok Gkekzai Cleshfkzavhle%‟ He Mkeehnkz O% Scazck) kf% Hsiao he vdk Jaibaes % Kfhej{zgd) 1878% Ilwzx) Dkavd% ’Cdaegks he Nhnvkkevd/Ckev{zx Lvvloae Pkasaev Vatavhle= Vdk Cask Sv{fx ln Zafhilnl%‟ He Aevdlex Jzxkz aef Dkavd Ilwzx) kf%) Clevhe{hvx aef Cdaegk he Iavk Jx}aevhek aef Kazix Lvvloae Slchkvx% Jhzohegdao) Wasdhegvle) 184>% 1>~% Flb{okevh lv azdh~hvk ea Vsazhgzaf aef I{ba ) F% ^hfhe h ~hfhesbhma saefmab pzk} 1; – 1>~% Aebaza R^hfhe aef vdk Saecab ln ^hfhe f{zheg vdk 1;vd aef 1>vd Ckev{zhks% Flc{okevs nzlo vdk Azcdh~ks ln Hsvaej{i aef Aebaza_% Sl fia) 187;% Oamkz D%G% Fas Lsoaehscdk ’Zkghsvkzj{cd ’Zkghsvkzj{cd fkz Jkscdwkzfke‟ Jkscdwkzfke‟ $ hbêxêv fknvkzh( ~lo Madzk 1>7; ) ~li% 1% ^hkeea) 1846% Oavbl~sbh) Aiktaefkz% ’Ohgzavshh lv skil ~l gzaf ~l Oabkflehma lf T^H fl THT ~kb ROhgzavhles nzlo ^hiiagks vl Chvhks he Oackfleha nzlo vdk Shtvkkevd vl vdk Ehekvkkevd Ckev{zhks_%‟ X{glsil~kesbh Hsvlzhmsbh Caslphs ) 1–: $1876(% ‖‖% Bzkplsehcdksv~lvl ~l Oabkflehma ~l ~zkok ea v{zsblvl ~iafhcdksv~l RVdk Skznflo he Oackfleha f{zheg vdk V{zbhsd Z{ik_% Sblpmk) 1874% OcCazvdx) M{svhe% O{sihos aef Ohelzhvhks % Ekw Xlzb) 1843% OcGlwae) Jz{ck% ’Nllfs{ppix aef Vatavhle le vdk Ohffik Fae{jk $1;>4–1;78(%‟ AL ) 1 $18>8() 138–18>% 1400 % ‖‖% Kclelohc Ihnk he Lvvloae K{zlpk= Vatavhle) Vzafk aef vdk Svz{ggik nlz Iaef) 1>00 – 1400 Caojzhfgk) 1841%
:>1
Okmkz) O% ’El~hk xa~ikehxa ~ slchaiel/plihvhc slchaiel/plihvhcdksblh dksblh mh}eh lsoaesblh hopkzhh ~l ~vlzlh plil~hek T^HH–T^HHH ~~% REkw Fk~kilpokevs he vdk Slchai aef Plihvhcai Ihnk ln vdk Lvvloae Kophzk he vdk Skclef Dain ln 17vd–14vd Ckev{zhks_%‟ He Faeahil~) ^%H%) O% Okmkz aef S%N% Lzksdbl~a) kf% Lsoaesbaxa hopkzhxa= Shsvkoa gls{fazsv~kehgl {pza~ikehxa) slchaiehehk h kvelzkihghl}ehk pzljikoh % Olsclw) 184>% ‖‖% ’Lsljkelsvh fkolgzaficdksbhd pzlckssl~ ~ Lsoaesblh hopkzhh 1;–1>~~% h hd slchaiel/kblelohcdksbhk slchaiel/kblel ohcdksbhk plsikfsv~ha RCdazacvkzhsvhcs ln vdk Fkolgzapdhc Pzlckssks he vdk Lvvloae Kophzk he vdk 1;vd–1>vd ckev{zhks aef vdkhz Slchai/kclelohc Cleskq{kecks_%‟ He Fkolgzansbhk pzlckssh ea Jaibaead ~ szkfhk ~kba% Sjlzehb ea{cdehd vz{fl~% RFkolgzapdhc Pzlckssks le vdk Jaibaes he vdk Ohffik Agks% Cliikcvhle ln Zkskazcd Papkzs_% Baihehe) 1846% Oèeagk) ^%I% ’Fk~sdhzok)‟ KH :% ‖‖% ’Slok Elvks le vdk Fk~ hzok %‟ %‟ JSLAS ) :8 $18>>() >6–74% ‖‖% ’Le vdk Lvvloae Wlzf A zhx e,A zhx e)‟ AL ) 1 $18>8() 187–:1:% ‖‖% ’Vdk Hsiaoh}avhle ln Aeavliha%‟ He E% Ik~v}hle) kf% Cle~kzshle vl Hsiao% Ekw Xlzb) Ilefle) 1878% Ohdahil~h ) Blesvaevhe% Okolhzs ln a Maehssazx% Vzaes% Jkemaohe Svli}) clookevazx S~av Sl{ckb% Aee Azjlz) 187;% Ohebl~) Aevle% ’Ljza}av ea fljzl~liehxav ljzasdvkekc ~ hsiaoa ~ pkzhlfa 1>70–1730 splzkf olijhvk bhs~k jadası RVdk Hoagk ln vdk Cle~kzvs vl Hsiao he vdk Pkzhlf 1>70–1730 Acclzfheg vl Bhs~k Jadası Pkvhvhles%‟ He K% Zafl{sdk~) S% Nkv~afmhk~a) kf% Jaibaesbh hfkevhcdelsvh ) ~li% 3% Slfia) :003) 84–1:8% Olzlex) Ohcdaki G% ’Vdk Agk ln Cle~kzshles= A Zkasskssokev%‟ He Ohcdaki Gkz~kzs) aef Zao}h Mhjzae Jhbda}h) kf% Cle~kzshle aef Clevhe{hvx= Hefhgkel{s Cdzhsvhae Cloo{ehvhks he Hsiaohc Iaefs Khgdvd vl Khgdvkkevd Ckev{zhks % Vlzlevl) 1880% Olvvadkfkd) Zlx% Ilxaivx aef Ikafkzsdhp he ae Kazix Hsiaohc Slchkvx% Pzheckvle) 1840% O{vancdhk~a) ^kza% ’Bao ~apzlsa }a svav{va ea jaigazsblvl easkikehk ~ Cdkphesbl plf lsoaesba ~iasv RAjl{v vdk Q{ksvhle ln vdk Svav{s ln vdk J{igazhae Plp{iavhle he vdk Cdkphel Zkghle {efkz Lvvloae Z{ik_%‟ Zlflpsbh Sjlzehb $18>;() 11;–1:7% ‖‖% ’Ljza}av ea v{zchvk R Vdk Hoagk ln vdk V{zbs_%‟ He A% ]kixa}bl~a) kf%) ^za}bh ea sa~oksvholsv he eksa~oksvholsv okmf{ dzhsvhaeh h o{s{ioaeh ~ J{igzha % Slfia) 1886% Eacdl~) E% ’Ihsv ln dzlehba) eaokzke ~ s% Glixaol Jkil~l RA Pagk ln a Cdzlehcik) Ilcavkf he vdk ^hiiagk ln Glixaol Jkil~l_%‟ J{igazsbh pzkgikf ) : $1484() 168–1;1% Ea ) Vdloas aef Zlgkz Lwke) kf% Sv{fhks he Khgdvkkevd Ckev{zx Hsiaohc Dhsvlzx % Cazjlefaik) 1877% Ekfbl~) Jlzhs% Lsoaelv{zsba fhpiloavhba h paiklgza fi xa RLvvloae/V{zbhsd Fhpiloavhcs aef Paiklgzapdx_) ~li% 1–:% Sl fia) 18>>–187:% Elcb) A%F% Cle~kzshle= Vdk Lif aef vdk Ekw he Zkihghle nzlo Aiktaefkz vdk Gzkav vl A{g{svhek ln Dhpp% Ltnlzf) 1833% Elzzhs) Dazzx% Hsiao he vdk Jaibaes % Cli{ojha) 1883% Elzvdz{p) I%S% ’O{siho/Cdzhsvhae Zkiavhles F{zheg vdk Zkhge ln vdk Oaoi{b S{ivae ai/Oaes z Q iaw e) A%F% 1:74–1:80%‟ He Ohcdaki Gkz~kzs aef Zao}h Mhjzae Jhbda}h) kf% Cle~kzshle aef Clevhe{hvx= Hefhgkel{s Cdzhsvhae Cloo{ehvhks he Hsiaohc Iaefs Khgdvd vl Khgdvkkevd Ckev{zhks % Vlzlevl) 1880% Ljlikesbx) F% Vdk Jlglohis% A Sv{fx he Jaibae Ekl/Oaehcdakhso% Caojzhfgk) 1864% Lbh ) O% ’Iks Bzhsvhaes $Jlglohiks Paznahvs( fk Jlsehk f‘apzäs iks flc{okevs V{zbs heèfhvs%‟ Sùflsv/Nlzscd{egke) 18 $18>0() 104–133% Vùzbhxk ehe ehe Slsxai ~k Kblelohb Vazhdh $1071–18:0(% Lbxaz) Lsoae aef Daihi eaicıb) kf% Vùzbhxk Aebaza) 1840% Pabaiıe) O%]% Lsoaeiı Vazhd Fkxhoikzh ~k Vkzhoikzh Sþ}iù ù Sþ}iù ù % Hsvaej{i) 18;1% Pao{b) k~bkv% ’Olekx he vdk Lvvloae Kophzk 13:>–1816%‟ He D% eaichb aef Fleaif Q{avakzv) kf% Ae Kclelo – 1816% Kclelohc hc aef Slchai Slchai Dhsvlzx ln vdk Lvvloae Lvvloae Kophzk Kophzk 1300 1816% Caojzhfgk) 1886% Paeva}lpl{ils) E%M% Cd{zcd aef Iaw he vdk Jaibae Pkehes{ia f{zheg vdk Lvvloae Z{ik % Vdkssailehbh) 18>7%
:>:
Pae}ac) F% Ia pksvk faes i‘Kophzk lvvloae) 1700–14;0% Ik{~ke) 184;% Papaflpl{iils) V%D% Sv{fhks aef Flc{okevs zkiavheg vl vdk Dhsvlzx ln vdk Gzkkb Cd{zcd aef Pklpik {efkz V{zbhsd Floheavhle % Jz{sskis) 18;:% Paz~k~a) S% ’Plskihsdvea ozkma h gasvlvava ea easkikehkvl ~ cdasvh lv Sk~kzea Jaigazhma h plfjaibaesbhvk plikva ~ bzama ea T^HH h eacdailvl ea T^HHH R^hiiagk Sxsvko aef Plp{iavhle Fkeshvx he pazvs ln Elzvdkze J{igazha aef S{j/Jaibae ^aiikxs av vdk Kef ln vdk 17vd Ckev{zx aef vdk Jkgheeheg ln vdk 14vd Ckev{zx_%‟ Hsvlzhcdksbh Pzkgikf ) 4–8 $188:() 3:–;0% Pa~il~h } d } ) I% B{ivl~h ihvsa blf Szja h Oabkfleavsh RSahevs aoleg Skzjs aef Oackflehaes_% Jkigzafk) 18>;% Pkzioaee) O% ’Elvks le Aevh/Cdzhsvhae Pzlpagaefa he vdk Oaoi{b Kophzk%‟ JSLAS ) 10 $186:() 463–4>1% Pkvzl~) Pkvaz% Ashohiavlzsbava plihvhba ea v{zsbhvk }a~lk~avkih RVdk Asshohiavhle Plihcx ln vdk V{zbhsd Cleq{kzlzs_% Slfia) 18>:% ‖‖% Pl sikfhvk ea eashihkvl RLe vdk Nllvsvkps ln Vkzzlz_% Sl fia) 187:% ‖‖% Safjlelseh ~kbl~k }a jaigazsbava eazlfelsv RCz{chai Ckev{zhks nlz vdk J{igazhae Eavhle_% Slfia) 187;% Phvcdkz) Fleaif Kfgaz% Dhsvlzhcai Gklgzapdx ln vdk Lvvloae Kophzk= Nzlo Kazihksv Vhoks vl vdk Kef ln vdk Shtvkkevd Ckev{zx% Ikhfke) 18>4% Phesle) O% kf% Vdk O{sihos ln Jlseha/Dkz}kgl~hea= Vdkhz Dhsvlzhc Fk~kilpokev nzlo vdk Ohffik Agks vl vdk Fhssli{vhle ln X{glsia~ha % Caojzhfgk) 1886% Plpl~h ) A% ’Iks lzfzks oxsvhq{ks o{s{ioaes f{ s{f/ksv k{zlpèke faes ia pèzhlfk plsv/lvvloaek%‟ He A% Plpl~h aef G% ^khevkhe) kf% Iks lzfzks oxsvhq{ks faes i‘Hsiao% Pazhs) 184>% ‖‖% ’Ploabs)‟ KH :% P{iada S% Ik cafasvzk fk i‘ae 164; f{ saefmab fk Sdblfkz % Vhzaea) 1876% k T^H k shäciks % ‖‖% Aspkcvs fk fèolgzapdhk dhsvlzhq{k fks clevzèks aijaeahsks pkefaev iks T^ – Vhzaea) 1846% Zaf{sdk~) K~gkeh% Agzazehvk hesvhv{vshh – hesvhv{vshh ~ lsoaesbava lsoaesbava hopkzhma hopkzhma pzk} T^HH T^HHH ~kb RAgzazhae Hesvhv{vhles he vdk Lvvloae Kophzk he vdk 17vd–14vd Ckev{zhks_% Sl fia) 188;% ‖‖% ’Lsoaesbava {pza~ikecdksba elokebiav{za pzk} T^H–T^HH ~% $ Olelpli ea —fk~sdhzokvava‘ ~azd{ ~iasva‖paz~h h ~vlzh kvap( RLvvloae Z{iheg Elokebiav{za Fk~ hzok s‘ he vdk 1;vd–17vd Ckev{zhks $— Fk~ s‘ Olelplix ln Plwkz‖Nhzsv aef Skclef Pkzhlf_%‟ 1884 $oae{sczhpv(% ‖‖% ’Fk ’Fkolg olgzans zansbh bh h kve kvelzk lzkihihghl ghl}eh }eh pzl pzlcks ckshh ~ }ap }apafe afehvk hvk Zlf Zlflph lph pzk pzk}} 1;– 1;–14~ 14~ RFkolgzapdhc aef Kvdel/zkihghl{s Pzlckssks he vdk Wksvkze Zdlflpks) 1;vd–14vd Ckev{zhks_%‟ Hsvlzhcdksbl jafksdvk ) 1 $1884() 6>–48% ‖‖% ’Sohsaiav ea hsvlzhlgzansbhvk ohvl~k }a hsiaoh}achxava R Vdk Okaeheg ln vdk Dhsvlzhlgz Dhsvl zhlgzapdhca apdhcaii Oxvds ln Hsiaoh}avhle_ Hsiaoh}avhle_%‟ %‟ He K% Zafl Zafl{sdk~) {sdk~) S% Nkv~afmhk~a) Nkv~afmhk~a) kf% Jaibaesbh hfkevhcdelsvh ) ~li% 3% Slfia) :003) 1;:–187% Zaojl) Ikwhs% [efkzsvaefheg Zkihghl{s Cle~kzshle% Aee Azjlz) 1883% Zkfdl{sk) Shz Maoks W% A V{zbhsd aef Kegihsd Ikthcle% Clesvaevhelpik) 1480% Zkxcdoae) M%) aef A% ]amac}bl~sbh% Daefjllb ln Lvvloae/V{zbhsd Fhpiloavhcs % Ltnlzf) 18>4% Z{echoae) S% Vdk Gzkav Cd{zcd he Capvh~hvx% Caojzhfgk) 18>4% Sadhiihl i{) Daihi% ’Sia~ks he vdk Slchai aef Kclelohc Ihnk ln J{zsa he vdk Iavk 1;vd aef Kazix 1>vd Ckev{zhks%‟ He hfko) Sv{fhks le Lvvloae Kclelohc aef Slchai Dhsvlzx% Hs Hsva vaej ej{i {i)) 188 1888% 8% Scdacdv) M% Ae Hevzlf{cvhle vl Hsiaohc Iaw % Ltnlzf) 18>6% Scdhooki) Aeekoazhk% Oxsvhcai Fhokeshles ln Hsiao% Cdapki Dhii) 187;% Sdajae) O% ’Cle~kzshle vl Kazix Hsiao%‟ He E% Ik~v}hle) kf% Cle~kzshle vl Hsiao% Ekw Xlzb) Ilefle) 1878% Sdav}ohiikz) Oaxa% ’Oazzhagk) Naohix) aef vdk Nahvd= Wloke‘s Cle~kzshle vl Hsiao%‟ Ml{zeai ln Naohix Dhsvlzx :1) 3 $188>() :3;–:>>%
:>3
Sdaw) Svaenlzf) M% aef K}ki B{zai Sdaw% Dhsvlzx ln vdk Lvvloae Kophzk aef Olfkze V{zbkx% ^li% H) Kophzk ln vdk Ga}h s= Vdk Zhsk aef Fkcihek ln vdk Lvvloae Kophzk) 1:40– 1404 % Caojzhfgk) Ilefle) 1877% Shijkzscdav}) Ajzadao) Dkezx N% Blzvd aef S% S{fazsdad) Favajask Sxsvko Cleckpvs % Vdhzf Kfhvhle% Jlsvle) 1888% Sekgazl~) H~ae% V{zsblvl ~iafhcdksv~l) pzkcdba }a b{iv{zelvl za}~hvhk ea Jaigazsbhma eazlf h fz{ghvk Jaibaesbh eazlfh RVdk V{zbhsd Z{ik) Ljsvacik nlz vdk C{iv{zai Fk~kilpokev ln vdk J{igazhae Eavhle aef vdk Lvdkz Jaibae Eavhles_% Sl fia) 18;4% Slblisbh) O% ’Hsiaoh}avshma { Oabkflehmh { T^ h T^H ^kb{ RHsiaoh}avhle he Oackfleha he vdk 1;vd aef 1>vd Ckev{zhks_%‟ Hsvlzhcdksb Hsvlzhcdksbhh Cdaslphs ) :: $187;() 7;–48% ‖‖% ’Lpsdhzeh plphseh fknvkzh lv T^H ~kb }a B{svkefhisbhlv saefmab RCafasvzai Zkghsvkzs nzlo vdk Shtvkkevd Ckev{zx nlz vdk Saecab ln Bm{svkefhi_%‟ He VFHOE ) ;% Sblpmk) 1843% Svahel~a) Ohdakia% ’Hsiao h hsiaosbaxa zkihghl}eaxa pzlpagaefa ~ Jligazhh RHsiao aef Hsiaohc Zkihghl{s Pzlpagaefa he J{igazha_%‟ He ^%H% Faeahil~) O%S% Okmkz aef S%N% Lzksdbl~a) kf% Lsoaesbaxa hopkzhxa= Shsvkoa gls{fazsv~kehgl {pza~ikehxa) slchaiehehk h kvelzkilghl}ehk pzljikoh % Olsclw) 184>) 43–10:% Sva~zhaels) I%S% Vdk Jaibaes sheck 16;3 % Ekw Xlzb) 18;4% Sva~zhfks) V% Vdk S{ivae ln ^k}hzs= Vdk Ihnk aef Vhoks ln vdk Lvvloae Gzaef ^k}hz Oado{f Padfa Aegkil~h $16;: – 1676( 1676(% Ikhfke) :001% Svkkesgazf) E% Vdk Ashae Vzafk Zk~li{vhle ln vdk Sk~kevkkevd Ckev{zx% Cdhcagl aef Ilefle) 1873% Svlmael~sbh) A% ’Vdk Cdazacvkz aef He{keck ln vdk Lvvloae Z{ik he X{glsia~ Cl{evzhks he vdk 1;vd aef 1>vd ckev{zhks) whvd Spkchai Zknkzkeck vl Oackfleha%‟ He Lvvloae Z{ik he Ohffik K{zlpk aef Jaibae he vdk 1>vd aef 17vd Ckev{zhks % Papkzs Pzkskevkf av vdk 8vd Mlhev Clenkzkeck ln vdk C}kcdlsil~ab/X{glsia~ Dhsvlzhcai Cloohvvkk % Pzag{k) 1874% ‖‖% Gzafl~hvk ea Oabkflehma lf bzamlv ea TH^ fl T^HH ~kb% Fkolgzansbh pzl{vcd~aema RVdk Oackflehae Vlwes nzlo vdk Kef ln vdk 16vd vl vdk 17vd Ckev{zx% A Fkolgzapdhc Sv{fx_% Sblpmk) 1841% Svlmael~sbh) A%) aef O% Slblisbh) Lpsdhzke plphske fknvkz 6 $16>7 – 16>4( 16>4( RCafasvzai Zkghsvkz 6 $16>7–16>4(_% Sblpmk) 1871% Svlxael~) ^aikzh% ’Ihcdehvk phsoa bavl fli{okevh ~ lsoaelv{zsbava fhpiloavhba RPkzsleai Ikvvkzs as Flc{okevs he vdk Lvvloae/V{zbhsd Fhpiloavhcs_%‟ He B% Gklzghk~) kf% Ihcdehvk flb{okevh bavl hsvlzhcdksbh h}~lz % Slfia) 1847% S{gaz) Pkvkz% Sl{vdkasvkze K{zlpk {efkz Lvvloae Z{ik) 13;6 – 1406 1406 % Skavvik) Ilefle) 1877% ajael~h ) E% Bzah Bzah vk vk Hsa/Jkga Hsdabl~h a% Hsdabl~h a% ]jhzeh bavasvazsbh plphs h} 16;; glfhek RVdk Iaef ln Hsa Jkg Hsdab% Lek Cafasvzai Zkghsvkz nzlo 16;;_% Sazamk~l) 18>6% Vdhzbkii) Mlde% ’Hsiaohsavhle he Oackfleha as a Slchai Pzlckss%‟ He Mkeehnkz O% Scazck) kf% Hsiao he vdk Jaibaes % Kfhej{zgd) 1878% Vdk Gilzhl{s Q{z ae Q{z ae% Ktpiaeavlzx Vzaesiavhle jx Oldaooaf O% Phcbvdaii% Cdhcagl) 1886% Vlflzl~) H% ’Ikvlphsehxav za}ba} ea Okvlfh Fzaghel~ RVdk Cdzlehcik Svlzx ln Okvlfh Fzaghel~_%‟ Svazljaigazsba ihvkzav{za ) 1> $1846() >:–7;% Vlflzl~) Ehbliah% ’]a fkolgzansblvl sasvlxaehk ea Jaibaesbhxa pli{lsvzl~ pzk} T^–T^H ~kb RAjl{v vdk Fkolgzapdhc Shv{avhle he vdk Jaibae Pkehes{ia he vdk 1;vd–17vd Ckev{zhks_%‟ GS[/NHN ) ;:) : $18;8() 183–::;% 1800 % Vzaes% ‖‖% Vdk Jaibae Chvx= Slchl/kclelohc aef Fkolgzapdhc Fk~kilpokev) 1600 – 1800 P% S{gaz% Skavvik) 1843% Vlflzl~) Ehbliah) aef Aspaz{d ^kibl~% Shv{avhle fèolgzapdhq{k fk ia pèehes{ik jaiba/ – fèj{v ehq{k $ fi e f{ T^ k s% – fèj{v f{ T^H k s%( Slfia) 1844% Vlflzl~a) Oazha% Jaibae Naohix Naohix Svz{cv{zk Svz{cv{zk aef vdk K{zlpkae K{zlpkae Pavvkze= Fkolgzapdhc Fkolgzapdhc Fk~kilpok Fk~kilpokev ev he Lvvloae J{igazha ) 1883% Vlflzl~a) Oazha aef Ehbliah Vlflzl~% ’Pzljikoh h }afacdh ea hsvlzhcdksbava
:>6
fkolgzafi ma ea Lsoaes Lsoaesbava bava hopkz hopkzhma hma R Pzlji Pzljikos kos aef Glais ln vdk Dhsvl Dhsvlzhcai zhcai Fkolgzapdx ln vdk Lvvloae Kophzk_%‟ Jaibaehsvhba ) : $1847() 101–1:0% Vzhvvle) A%S%) Vdk Caihpds aef vdkhz Ele/O{siho S{jmkcvs= A Czhvhcai Sv{fx ln vdk Cl~keaev ln [oaz % Ilefle) 1830% V{zae) Lsoae% ’I‘hsiaohsavhle faes ia V{zq{hk f{ Olxke Agk%‟ SH ) 10 $18;8() 137–1;:% Vxae) K% ’Fmhdaf)‟ KH :% [}{eçaz ıiı) %D% ’J{xz{ifı%‟ Jkiikvke) ; $1861(% ‖‖% Lsoaeiı Fk~ikvh Vk bhiavıefae Vk bhiavıefae Bapıb{i{ Lcabiazı ) ~li% 1–:% Aebaza) 1866% ‖‖% Lsoaeiı Vazhdh % Aebaza) 1867% Vk bhiavı% Aebaza) 1864% ‖‖% Lsoaeiı Fk~ikvhehe Okzbk} ~k Jadzhxk Vk bhiavı% [ {z) Aih% ’Vdk Lvvloae [iko he vdk Ohf/sk~kevkkevd Ckev{zx= Ae Aeaixshs ln vdk ^ab h ùi/N{}ai ln Okdokf kxdh Knkefh%‟ Pd%F% fhsskzvavhle= Kfhej{zgd [eh~kzshvx) 1873% ^abazkisbh) Cdzhsvl% ’Aivkzvùoihcdk Kikokevk he Ikjkeswkhsk {ef B{iv{z fkz j{i/ gazhscdke Oldaookfaekz%‟ ]khvscdzhnv nùz Jaibaelilghk ) 6 $18>>() 168–17:% ^ae Ehk{wked{hm}k) C%A%L% Slchlilgx ln vdk Ohffik Kasv % Ikhfke) 1871% ‖‖% ’Clookev le= B% Bazpav) Vdk Svagks ln Lvvloae Dhsvlzx%‟ He B% Bazpav) kf% Vdk Lvvloae Svavk aef hvs Piack he Wlzif Dhsvlzx% Ikhfke) 1876) 88–10>% ‖‖% Cloolekzs) Cihojkzs aef Elvajiks % Ikhfke) 1877% ^kibl~) Aspaz{d% ’Flpaiehvkieh ~phs~aehxa ~azd{ lsoaesbhvk fieaesl~h flb{okevh lv T^H fl T^HHH ~% $Fhpiloavhcl/paiklgzansbl h}sikf~aek( RHesczhpvhles le vdk Lvvloae Nheaechai Flc{okevs nzlo vdk 1;vd vl vdk 14vd Ckev{zx% A Fhpiloavhcs/ Paiklgzapdhc Sv{fx_%‟ HEJBO ) 16 $187>() 43–160% ‖‖% ’Lpasda ’Lpasdavhxa vhxa plfphs plfphs ea jasdfknv jasdfknvkzfa kzfazhvk zhvk ~ lsoaes lsoaesbava bava hopkz hopkzha ha pzk} pzk} T^H–T^HHH T^H–T^HHH Ja fknvkzfaz fknvkzfaz he vdk Lvvloae Kophzk he vdk 1>vd–14vd ~% RVdk Vahi Shgeav{zk ln vdk Ja Ckev{zhks_%‟ HEJBO ) 1> $1841() 143–:11% ‖‖% ’El~ ’El~hh faeeh faeeh }a }a plold ploldaok aokfae faecd~a cd~aek ek ~ M{gl M{glh}v h}vlcd lcdea ea Vzab Vzabhxa hxa REkw Henl Henlzoa zoavhl vhle e ajl{v cle~kzshle vl Hsiao he Sl{vdkasv Vdzack_%‟ ^kbl~k ) 3 $184>() 73–7;% ‖‖% ^hfl~k lsoaelv{zsbh flb{okevh= Pzhels bao lsoaelv{zsbava fhpiloavhba RVxpks ln Lvvloae/V{zbhsd Flc{okevs= A Clevzhj{vhle vl Lvvloae/V{zbhsd Fhpiloavhcs_% Slfia) 184>% ^kibl~) Aspaz{d aef K% Zaf{sdk~% Azcdh~ks Spkab ) ^li% 7 % Slfia) 1848% ‖‖% ’Flc{okevs nzlo vdk Lvvloae Svavk Azcdh~k le vdk Jaibae Hsiaoh}avhle Pzlckssks 16vd–18vd Ckev{zhks%‟ He Aspkcvs ln vdk Fk~kilpokev ln vdk J{igazhae Eavhle% Slfia) 1848) >0–77% ^lii) Mlde L% Hsiao% Clevhe{hvx aef Cdaegk he vdk Olfkze Wlzif ) :ef kf% Ekw Xlzb) 1886% ^zxlehs) Spkzls% ’Hshflz Giajas aef vdk V{zbhsd Fk~sdhzok%‟ Spkc{i{o) 31 $18;>() 633–663% ‖‖% ’Vdk Jx}aevhek Ikgacx aef Lvvloae Nlzos%‟ F{ojazvle Labs Papkzs ) :3–:6% Jhzohegdao) 18>8–70% ‖‖% Vdk Fkcihek ln Okfhk~ai Dkiikehso he Asha Ohelz aef vdk Pzlckss ln Hsiaoh}avhle nzlo vdk Kik~kevd vdzl{gd vdk Nhnvkkevd Ckev{zx% Jkzbkikx aef Ils Aegkiks) 1871% ‖‖% ’Zkihghl{s Cdaegks aef Pavvkzes he vdk Jaibaes) 16vd–1>vd Ckev{zhks%‟ He D% Jhzeja{o aef S% ^zxlehs) kf% Aspkcvs ln vdk Jaibaes% Vdk Dag{k) Pazhs) 187:% ‖‖% ’Vdk Ktpk Ktpkzhke zhkeck ck ln Cdzh Cdzhsvha svhaes es {efk {efkzz Ski Skim{b m{b aef Lvvl Lvvloae oae Floh Floheavh eavhle) le) Kik~kevd vl Shtvkkevd Ckev{zx%‟ He Ohcdaki Gkz~kzs aef Zao}h Mhjzae Jhbda}h) kf% Cle~kzshle aef Clevhe{hvx= Hefhgkel{s Cdzhsvhae Cloo{ehvhks he Hsiaohc Iaefs Khgdvd vl Khgdvkkevd Ckev{zhks % Vlzlevl) 1880% Whvvkb) P% ’Fk~ hzok aef azh a%‟ JSLAS ) 17 $18;;() :71–74% Xk lz) Jav% Vdk Fdhooh= Mkws aef Cdzhsvhaes {efkz Hsiao % Vzaes% F% Oahski) P% Nkevle aef F% Ihvvoae% Z{vdkznlzf) 184;% ]acdazhafl{) K%A% ’Cl/kthsvkeck aef Zkihghle%‟ AL ) 1; $1887() 118–1:8%
:>;
]adazhk~) S% Gklgzansbl/hsvlzhbl/svavhsvhcdksbl lphsaehk ea Vavaz/Pa}azfmhsdbava baa}a RGklgzapdhcai/Dhsvlzhcai/Svavhsvhcaii Fksczhpvhle ln vdk Fhsvzhcv ln Vavaz/Pa}azfmhb_% RGklgzapdhcai/Dhsvlzhcai/Svavhsvhca ^hkeea) 1470% ]kixa}bl~a) A% ’Ekblvlzhk aspkbvh za}pzlsvzaekehxa hsiaoa ea Jaibaesblo pli{/ lsvzl~k ~ T^–T^HH ~~% RSlok Aspkcvs ln vdk Spzkaf ln Hsiao le vdk Jaibae Pkehes{ia_%‟ He ^%H% Faeahil~) O%S% Okmkz aef S%N% Lzksdbl~a) kf% Lsoaesbaxa hopkzhxa= Shsvkoa gls{fazsv~kehgl {pza~ikehxa) slchaiehehk h kvelzkilghl}ehk pzljikoh % Olsclw) 184>) 103–11>% ‖‖% ’^a}svaehxava ’^a}svaehxava lv bzaxa bzaxa ea T^HH ~% h lvzamkehkvl lvzamkehkvl ho ~azd{ fkolgzans fkolgzansbhxa bhxa ljza} ea jaibaesbhvk pzl~hevshh ea Lsoaesbava hopkzha RVdk [pzhshegs he vdk Kef ln vdk 17vd Ckev{zx aef vdkhz Zk kcvhle le vdk Fkolgzapdhc Shv{avhle ln vdk Jaibae Pzl~hecks ln vdk Lvvloae Kophzk_%‟ He ^% Pasbaik~a) kf% 300 glfheh cdhpzl~sbl ~a}svaehk % Slfia) 1844) 13–:6% ‖‖% Za}pzlsvzaekehk ea hsiaoa ~ }apafel/jaibaesbhvk }koh plf lsoaesba ~iasv% 1; – 14~% 14~% RVdk Spzkaf ln Hsiao he vdk Wksvkze Jaibae Iaefs {efkz Lvvloae Z{ik% 1;vd–14vd Ckev{zhks_% Slfia) 1880% ‖‖% ’Vd ’Vdkk Pzlji Pzljiko ko ln ln vdk vdk A{vdke A{vdkevhc vhchvx hvx ln Slok Slok Flo Floksv ksvhc hc Sl{z Sl{zcks cks le vdk vdk Hsia Hsiaoh} oh}avh avhle le ln vdk Zdlflpks) Fkkpix Zllvkf he J{igazhae Dhsvlzhlgzapdx%‟ Kv{fks jaibaehq{ks ) 6 $1880() 10;–111% ‖‖% Hsvlzhvshvk‖}a hsvheava) }a eashihxava) }a skjk sh RVdk Dhsvlzhaes‖ajl{v vdk vz{vd) vdk vkzzlz) aef l{zski~ks_% Sl fia) 1886% ‖‖% kf% ^za}bh ea sa~oksvholsv he eksa~oksvholsv okmf{ dzhsvhaeh h o{s{ioaeh ~ J{igzha % Slfia) 1886% ‖‖% ’Hsiaoh}avhle he vdk Jaibaes as a Dhsvlzhlgzapdhcai Pzljiko= vdk Sl{vdkasv/ K{zlpkae Pkzspkcvh~k%‟ He Nhbzkv Afaeız aef S{zahxa Nazlqdh) kf% Vdk Lvvloaes aef vdk Jaibaes= A Fhsc{sshle ln Dhsvlzhlgzapdx% Ikhfke) :00:) ::3–:>>% ]hzlmk~h ) Liga% ’^{chvzhesbh h Pzh}zkesbh saefmab { s~kvilsvh v{zsblg plphsa 1;30,1;31 glfhek RVdk ^{cdhvzhe aef Pzh}zke Saecab s he vdk Ihgdv ln vdk V{zbhsd Zkghsvkz ln 1;30–31_%‟ Gm{zohek aijaelilgmhbk ) : $18>4(% ‖‖% ’Vdk Lvvloae Ohihvazx Lzgaeh}avhle he X{glsia~ Cl{evzhks he vdk 1;vd aef vdk 1>vd Ckev{zhks%‟ He Lvvloae Z{ik he Ohffik K{zlpk aef Jaibae he vdk 1>vd aef 17vd Ckev{zhks% Papkzs Pzkskevkf av vdk 8vd Mlhev Clenkzkeck ln vdk C}kcdlsil~ab/X{glsia~ Dhsvlzhcai Cloohvvkk % Pzag{k) 1874%
Vdhs pagk hevkevhleaiix iknv jiaeb
HEFKT
Ajjashf) 10) 1; Ajf{ijabh knkefh) fknvkzfaz ) 76 Ajl{ Ki/Dam) Z%A%) 7>) 18; Aj{s{ {f) kxdùihsiêo) 47 acckss vl henlzoavhle nacvlz) 17) 67 ackoh l iae) >8 wagks) 14> acbelwikfgokev ln gzaefk{z) kevhvx/sxojli) 138 ln henkzhlzhvx) 1:8 ln henkzhlzhvx) kevhvx/sxojli) 160 Akgkae) 6> a zhx e) 86 agaçhza ı agaçhza ı ) 76 agazkels % Skk a zhx e agazxae% Skk a zhx e agk ln cle~kzshles) 8 Jaibaes) 183 kazix Hsiaohc vhoks) 10 adf ) 1: Adokf Jkx% Skk Cl{ev fk Jleek~ai Adokf H) 74 Adokf HH) 16> Adokf HHH) 167 Adzhfa% Skk aisl Zdlflpks) 86 Adzhxae) aechkev vzhjk) 86 Abça Dhsaz) 173 abdh jzlvdkzdllfs) :7 skvvikzs he vdk Jaibaes) 6> Aijaeha) :4) :8) 3>) 67) ;4) >0) >1) 106) 178 Aiktaefzha) 1: Aikth{s Cloeke{s) Kopkzlz) :: Aih Knkefh) kxdùihsiêo) 46 aivı jþiùb daibı ) 76 Aeavliha% Skk aisl Asha Ohelz) 18) :0) ::) 71) 1;7) 1;8 aehoai saczhfick) 103) 106 aevh/Gzkkb skevhokev) 78 aevh/O{siho zk~livs) 1;) :: aevh/V{zbhsd skevhokev) 78 aplsvasx) 43) 46) 4;) 4>) 47 appazavcdhb) >8 appkai nlz cdazhvx) 1:> kevhvx/sxojli) 138
Azajs) 8) 1: kazix vatavhle) 10) 11 eaoks) 1> lpplshvhle vl cle~kzshle) 13 Azcdjhsdlpzhc ln Pk ) 7: azcdh~ai oavkzhai) s{z~h~ai zavk) 168 Azcdh~k ln vdk Pzhok Ohehsvkz) 4) 1>0 azh}a % Sk Skkk az az}/ }/hh da dai i Azokehae Cd{zcd) 141 Azokehaes) 103) 18: Azeabhs) G%) 70 Az~aehf) saecab % Skk aisl Aijaeha) 84 az} % Skk az}/h dai az}/h dai ) 111) 11:) 166 asckvhchso) 1> Asdazh vdklilgx) 1> Asha Ohelz) ::) 63) 48) 174 plp{iavhle) :0 asbkzh ciass) s{johsshle ln pkvhvhles) 11: Avdkes) 64) 68 avıb % Skk nzkkf sia~k A{svzha) 16>) 167) 1;1 a~azh} zkghsvkzs) ;>) ;7 axaes) >:) 187 Axl Ehblia) ~hiiagk) 86 a}afi{% Skk nzkkf sia~k A}kzjahmae) 167 A}l~) 16>) 167) 1;1 Jagdfaf) 1:1) 174) 148 Jaiıo S{ivae) 10; Jaibae Ol{evahes) 74 Jaibae eavhleaihso) 70 Jaibae pkehes{ia) :8) Skk aisl Jaibaes Jaibae plp{iavhle) 10: cle~kzshle vl Cdzhsvhaehvx) 10: khgdvkkevd ckev{zx) 183 finvkkevd ckev{zx) 34 sk~kevkkevd ckev{zx) 164 shtvkkevd ckev{zx) 61 svav{s ln }hooh ) >4 {zjae) 64) 68 Jaibae scdliazs) >6) 78 Jaibae vlwes) shtvkkevd ckev{zx) 64
:>4
Jaibaes clileh}avhle) 63) 66 cleq{ksv) :4 naz elzvd/kasv }lek) ;7) 178 daiv ln Hsiaoh}avhle) 183 ekaz elzvd/kasv }lek) ;7 elzvd/kasv }lek) >0) 178 elzvd/wksv }lek) ;7) ;8) >0) 178 sl{vd/kasv }lek) ;7) >0) 178 sl{vd/wksv }lek) ;7) ;8) >0 Jaiva) K%) 3> japvhso) O{siho cdhifzke) 106 Jazbae) Þ%I%) 18) :0) 37) 38) 61 Jaibae {zjae p{p{iavhle) 64 clileh}avhle ln vdk Jaibaes) 63 fkolgzapdhc sv{fhks) 3; Ja jabaeiıb Ja jabaeiıb Az h~h Az h~h % Skk Azcdh~k ln vdk Pzhok Ohehsvkz ja fknvkzfaz ja fknvkzfaz keflzskokev) 131) 136) 13;) 1>1 sai{vavhle) 13: shgeav{zk) 13;) 134 ja o{daskjk ja o{daskjk ) 136 aeelvavhles) 131) 13>) 1>1 s{ooazx ln ktpkesks) 134 javvik ln Oae}hbkzv) 18 Jaxa}hf H) 70 Ja}az/h Daffafhe) 34 jkheg dlelzkf whvd Hsiao) kevhvx/sxojli) 1;>) 138 Jkbv Jk bvas asdh dh lzfkz) :>) 106) 10; Jkigzafk) :8) 16>) 167) 1;1 Jkil~l cdzlehcik) 77) 74) 40 Jkz) eadhxk ) ;0 Jkzjkzs) 8) 10 Jkzblnça) ;6 Jkzl~a) eadhxk ) ;0 Jhjihcai,Q{zaehc eaoks) 17>) 177 jhlgzapdhcai fhcvhleazhks) 1;) 1;3 Jhsvzhçk) 34 Jhvlima% Skk aisl Oaeasvız) 68) ;0) ;1) ;6 jiaspdkox) 46) 4; jikssheg vdklzx) 31 jillf/olekx) 47) 44 Jlglohi dkzksx% Skk aisl Jlglohihso) 10; Jlglohis) 107) 104 Jlglohihso) 8:) 10>) 108 Jlseha) 10>) 107 Oackfleha aef vdk Zdlflpks) 107 Jlseha) :4) :8) 3>) 38) 60) 61) 67) ;7) >0) >1) 70) 84) 106) 178 Jlsehae O{sihos) 7:
jlsvaecı clzps) 143 jlsvaecıja ı jlsvaecıja ı ) 146 Jzaeh k~l) 84 jzhfk/pzhck) 80 J{bl~a) ~hiiagk) 17: J{igazha) :8) 3>) ;4) 178 c{iv{zai kihvk he vdk sk~kevkkevd ckev{zx) 1>4 fkshevkgzavhle) :4 plp{iavhle he pzk/Lvvloae vhoks) 30 plp{iavhle he vdk sk~kevkkevd ckev{zx) 1>4 J{igazhae scdliazs) >) 110 J{igazhae V{zbs) ; J{iihkv) Zhcdazf) 8 czhvhchso ln dhs vdklzx) 14 sl{zcks aef okvdlflilgx) 1; vdklzx ln cle~kzshle) 16) >:) 177) 186 J{zsa) >>) 178 J{xhfs) 1> j{x{z{iv{% Skk Gzaef ^h}hkz) keflzskokev) 13; Jx}aevhek svavk% Skk Jx}aevh{o Jx}aevh{o) ::) :4
Cana% Skk Czhokae pkehes{ia Cadke) Cia{fk) :0 caihpd) 11) 13 casd ~abın s) s) ikgaihvx) >4 Cavaiae okzckeazhks) :4 Çavaica) 76 cavasvzlpdk vdklzx) :8) >; Cavdlihcs) 18: ça~{{ ) ln ekw O{sihos) 137 ça~ ckjkch clzps) 1>6) 143) 181 ckjzae% Skk clop{ishle Çkç) 74 ckikpbk ae ckikpbk ae) 7: çkivùbçhikz ) 6> Ckevzai Accl{evheg Fkpazvokev% Skk ja o{daskjk o{daskjk Cdkphel) 74) 41) 8> cdhifzke he ohtkf oazzhagks) 48 Cdzhsvhae Lzvdlfltx) 187 Cdzhsvhae shpadh s) s) 84) 88) 100 çhnvihb ) 187 chdaf ) >6 Çhopk $V}xopk() :8 chzc{ochshle nksvh~ai) 167 ch}xk ) 3) 10) 33 heavhle) 8> zavks) 83 zknlzo) ;7
ch}xk daek ) ;> ch}xk zkghsvkzs) 3) 41 khgdvkkevd ckev{zx) ;7 zkihajhihvx) ;; sl{zcks nlz fkolgzapdhc cdaegks) ;3 clkzchle vdklzx) >;) >7) 4;) 8: clop{ishle) 81 clec{jheagk) 81 clenlzohvx) psxcdlilghcai nacvlz 100 Clesvaevhelpik) :8 clevzacv{ai pavzleagk% Skk wai ai/o{w i v cle~kzshle ckzvhficavks) 1;;) 1;>) 1;4 cle~kzshle vl Cdzhsvhaehvx) 10:) 10; cle~kzshle vl Hsiao acckpvaeck ln Lvvloae z{ik) 187 Asha Ohelz) 14 Jaibae ohihvazx kihvk) 84 Jaibae scdliazs) >6) 78 Jlglohihso) 10>) 107 cdaegk he eav{zk) 1;8 Cdkphel) 74) 41 Cdzhsvhae shpadh s) s) 88 clkzchle vdklzx) >;) >7) 4;) 8: clopikvhle) ;7) >0) >:) 18; fkczkask he ele/O{siho plp{iavhle) ;; fk~ hzok ) >7 flc{okevheg) 1;; khgdvkkevd ckev{zx) ;7 ke oassk % Skk aisl oass cle~kzshle) 8) 10) 78 nacvlzs) 8: Hsiaohc oxsvhcai lzfkzs) 103 Hsiaohc slchai dhsvlzx) : Mkws aef Azokehaes) 141 ilss ln eavhleai cleschl{sekss) >6 oazzhagk) 48 oavvkz ln ikgai hevkzksv) 1;; eavhleaihsvhc skevhokev) 6 ekckssazx kikokevs) 1;; Ek~zlblp) 41 ehekvkkevd ckev{zx) >1) >3 eloafs) 16 Elzvd Anzhca aef Kgxpv) 16 Lg{} vzhjks) 10: Lvvloae fiscai sxsvko) 8: Lvvloae elokebiav{za) 18; zlxai pzkskeck) 1>: z{zai aef {zjae azkas) 64) 68) ;: sk~kevkkevd ckev{zx) ;: shtvkkevd ckev{zx) 6: sia~ks) >7
:>8
slchai cdaegk) 101 sphzhv{ai cdaiikegk) 1;; sv{fx) 3 {efkzsvaefheg) ; {zjae czanvsoke) 87 ~li{evazx) :;) 8:) 101) 108) 110 whflws) 171 cle~kzvs vl Hsiao Jaibae O{siho plp{iavhle) 67 fhssavhsfikf whvd ekw zkihghle) 46 pzlvègès) 1>6 spkchai vzkavokev) 86) 1;7 Clpvhc cloo{ehvhks) 1: Clzhevd) 1;1 clzplzai p{ehsdokev% Skk va }hz }hz ) 44% Cls $Hsvaebþx() hsiaef) 61 Cl{ev fk Jleek~ai) 140 Czkvk) 74) 174) 147 Czhokae pkehes{ia) 34) 61 Czlavha) :4) ;7) 178 Cz{safk) 31 c{iv ln sahevs) 103 Fajazch) eadhxk ) ;0 Faioavha) :8) 167) 1;1 Faoaf Dasae Pasda) gl~kzelz) 76 Faehsdokefeaok ) :1 Faz ai/Hsiao) : favajask oaeag oa eagkok kokev ev sxs sxsvko vko)) 113) 116 s{pkzsvz{cv{zk) 11> Fkjaz) 104 fkciazavhle ln acckpvheg Hsiao) 1:1 ln jkheg dlelzkf whvd Hsiao) 1:3 ln keihgdvkeokev) 1:: fknvkzfaz ) 76 Fkokvzhafks) ^asshihs) >4 Fkohz Dhsaz) ;0) ;6 Fkeekvv) F%C% kazix oass cle~kzshle) 10 zkasles nlz cle~kzshle) 13 vzkavokev ln kazix sl{zcks) 11 Fkpazvokev ln Lzhkevai Cliikcvhles% Skk Eavhleai Ihjzazx ln J{igazha fkzjkevch ) 7: fkz~hsdks) :>) 6;) 71) 103 fksvaz % Skk v{zjae fk~ hzok ) >;) 1>3 ajzlgavhle) 76 af~aeckokev ln zkaxa ) 101 cle~kzshle he z{zai azkas) 70 nlzckf cle~kzshle) 7> okvdlf ln cle~kzshle vl Hsiao) >7
:70
lzhghes) >4 pkzhlfs) 70 ~li{evazx) 7; fk~ hzok jlxs af~aevagks nlz vdkhz naohihks) 7: ikgai svav{s) >4 fk~ hzok hesvhv{vhle) >8) 1>6) 183) Fhokvlba) 146 Fhohvzl~) Svzasdhohz fkolgzapdhc sv{fhks) 37 czhvhq{k ln Gaefk~) 30 kvxolilgx ln a zhx e) 86 Fhlexshae nkzvhihvx zhvks) 106 fhxkv % Skk jillf/olekx Fm{zfmk~) J%) 3> Fljz{fma) ;4) >0) 106) 178 Flhzae) eadhxk ) ;0 Flieh Fkjaz) eadhxk ) ;0) ;1 Flspav) 74 Fzaoa) 6>) ;0) ;6) 74 F{baghe) 38) 6:) 67 F{pohçk) ;6 kazix aflpvkzs pkzhlf Asha Ohelz) :: Jaibaes) 67 Hzaq aef Hzae) 17 kazix oamlzhvx pkzhlf Asha Ohelz) :: Jaibaes) ;:) >:) 174 Kasvkz) 4>) 106 Kasvkze K{zlpk) >8 kccikshasvhcai vatks) 8; Kfhzek) 68) 47) 146 Kgxpv) 10) 11) 1:) 17) :0 Kijasae) 38) 61 kihvk nlzoavhle) ele/O{siho) 1>4 kojzacheg Hsiao) kevhvx/sxojli) 138) 1;> kefkz{e okbvkjh % Skk paiack scdlli keihgdvkeokev) kevhvx/sxojli) 138) 141 kevhvx/zkiavhlesdhp fava olfki) 11;) 134 kevhvx/sxojli) 11; Kz}kz{o) 178) 180 Ksbh ]a za) 146 K{jka) 38) 61) 67 K~ihxa Çkikjh) 86 ktpkcvkf zkwazf) kevhvx/sxojli) 160 nacvhleai svzhnk) kazix aef iavk cle~kzvs Asha Ohelz) :3 Jaibaes) 18; ckevzai Hsiaohc iaefs) 1>
naz elzvd/kasv }lek) ;7) 178 nkzoae/h êih % Skk Hopkzhai kfhcv nkv~a s) s) 46) 4;) 4>) 47) 44) 1;8 Nhihjk% Skk aisl Pil~fh~) 146 fieaeck ohehsvkz% Skk ja fknvkzfaz fknvkzfaz Nhek) Mlde) 107 fizsv athlo ln cle~kzshle) 46 fi~k fhsvhecvh~k O{siho eaoks) 1>) 17:) 17>) 177) 186 Nilzhea) ;; Nlflz) P%) 11: nlzckf cle~kzshle) >7) 40) 108 Asha Ohelz) :6 Jaibae scdliazs) 78 oxvd) 77 nzavzhchfk) iaw) >4 nzkkf sia~k) >7 nzlevhkz jkxs ) >4 n{efaokevaihso) Lvvloae slchkvx) 183 n{v{ n{ v{ww wwa a ) :> Gaefk~) Dzhsvl) :8) 30 ga}a ) :3 ga}h ) >4) 71 Gkihjli{ $Gaiihplih() :8) 34) 6: Gkeh}a flc{okevs) 80 Gklzgh El~h Slfihsbh) ekl/oazvxz) 4: Gklzgha) 174 Gklzghaes) 103 Ghjjles) D%A%) 70 Gþçkb) Navoa Oùck) 7 Gþbjhighe) O%V%) 3;) 66 Gþiùbkszk) 1:0 Glzeh Fkjaz) eadhxk ) ;0 Gzafk~a) Zlshvsa) 4> Gzaef ^h}hkz keflzskokev) 131) 133 sai{vavhle) 137 Gzkkck) 3>) ;4) >1) 84) 178 Gzkkb cdzlehciks) 41 Gzk~kea) zkghle) 34 gzl{p jhlgzapdx% Skk pzlslplgzapdx Gzl}fael~a) Kikea) 37) ;3) ;> g{iao) agk cavkglzx) 170 g{iaohxk ) 8; g{iaos jacbgzl{efs) 146 eaoks) 173 gxpshks) 36) 38) 6: Dajsj{zg) 187 daghlgzapdhcai ihvkzav{zk) :1) 4> daghliavzx) 10:) 103 Daihi Çaefaziı) Gzaef ^h}hkz) 71
Daiiaq) Waki) 1;3 Dai~avh lzfkz) 106 Daeafi scdlli ln iaw) 1>) 1;3 Daef h ) A%) 3> daek ) 36) :0 dazaç % Skk bdaz m m Dasae Dlca) hoao) 74 daxoaek ) 36 dkzksx) Jlglohi) 10; dkzl c{iv) 10: Dkz}kgl~hea) :8) 34) 38) 60) 61) 67) >1 Dızsl~a) ;; dhsvlzhcai fkolgzapdx) 3; Dlix waz% Skk chdaf Dlzph vk) ;; D{egazx) 167) 1;1 D{pcdhcb) Fkeehs) 1>4 Hjzadho Oùvknkzzhba) 18; Hjzadho Pasda) Gzaef ^h}hkz) 7: hç l iae) >8 hcleliavzx) 10: hfkevhvx) kevhvx/sxojli) 138) 1>7 hivh}ao) 73 Hopkzhai cl{echi) 1:6 Hopkzhai kfhcv) 136) 13; eaicıb) Daihi fkfiehvhle ln az}/h dai ) 11: fkfiehvhle ln ok}zaa) 30 fkolgzapdhc sv{fhks) 3; kclelohc pzkss{zk nlz cle~kzshle) 83 olfkze appzlacd) 3: hefhzkcv clkzchle) nzaokwlzb) > heel~avlzs pkzhlf Asha Ohelz) :: Jaibaes) 60 Hzaq aef Hzae) 17 hevkzoazzhagk cle~kzshle pzlckss) 48 plp{iaz jkihkns) 10; z{zai slchkvx) 80 Hlzga) Ehclias) 31 Hzae) 1>) 17) :0) 167 Hzaq) 10) 17) :0 Hsiaohc n{efaokevaihso) 183) 186 Hsiaohc hesvhv{vhles) :; Hsiaohc iaw) >7) 46) 1:>) 1;> Jkbvasdh skzoles) 106 ch}xk zavks) 33 bhs~k jadası ) 1:7 oazzhagk) 48 wloke‘s pzlpkzvx zhgdvs) 80
Hsiaohc oxsvhcai lzfkzs) 1>) :1) :>) 103 Hsiaohc scdllis ln iaw) 1;3 Hsiaohc svavk) :> Hsiaoh}avhle Aijaehas) >0 Asha Ohelz) 18 chvhks) ;0 cle~kzshle vl Hsiao) : daiv) Jaibaes) 183 Oackfleha) 68 olfkze clevktv) 6 ekl/oazvxzs) 43 {ehq{kekss) Jaibaes) 18; Hsvaej{i) 61) 68) 167 hsvhfa a hsvhfa a % Sk Skkk az az}/ }/hh dai dai Hsvz{ohçk) ;6 ~zaca) 34) ;6 }~kçae) 34 Mankz Jkx hje Ajf{iiad) shpadh ) 4> Maehea) 38) 61) 67 Maehssazhks z{zai azkas) 7; e{ojkzs) 76 vzaheheg scdllis) >8 wagks) 7> Maehssazx agası ) 146 Maehssazx clzps) >7) >8) 1>6 czkavhle) 70 vzaesnlzoavhle) 18> ~li{evazx kezliokev) 7; Mkehck Gùoùichek) 34 Mkehck/h ^azfaz) ;0 Mkwhsd wloke) 80 Mkws) 141) 18: Mhzk kb) B%) 31 mh}xa % Sk Skkk ch}xk ) 11 Bafıbþx) 1:0 Banafaz) Ckoai) :0 bahok ) cdaeckzx gkezk) 1>1 Baiihabza) :4 bae{e% Skk s{ivaehc iaw bae{eeaok ) 33 Okdokf HH) 47 Sùikxoae H) 47 ekw O{sihos) 1;> Bae{eeaok/h Ai/h Lsoae) 47 Bazilwhv}) vzkavx) 167 Bazpav) Bkoai) ; fkolgzapdhc sv{fhks) 3> plp{iavhle he vdk ehekvkkevd ckev{zx) >1
:71
:7: Ba~aia) ;0 Ba}aeiıb) 146 bkphe% Skk clec{jheagk bdaz m bdaz m ) 10) 11 bdaz m bdaz m iaef Kgxpv) 1: Okslplvaoha aef Sxzha) 1: Sawaf) 11 Bd{zasae) 11) 13) 13 Bhçk~l) ;0) ;:) 88) 104 Bhki) Oacdhki) 7) 4) 41 Bhihs) saecab ) 61 bızcaiı {pdka~ais) 70 bhs~k ) sxojli ln cle~kzshle) 1>: bhs~k jadası ) 1:7) 168 j{fgkvazx ihek hvko) 1>0 hesvhv{vhleaih}avhle) 1;4) 186) 18; olvh~avhle nlz cle~kzshle) 14> eav{zk ln cle~kzshle) 183 zkaxa ) 1>6 vdklilghcai m{svhficavhle) 1;7 ~ai{k) 14> ~azhavhles) 147 bhs~k jadası pkvhvhles) 1:4) 166 aeaixshs) > jazgaheheg) 1;6 J{igazhae scdliazs) >) 110 cdaeckzx gkezk) 111 clevzacvs) 1;6 cl{zv zkclzfs) > fhpiloavhc nkav{zks) 11: kvdehc hfkevhvx) 148 gklgzapdhcai piack/eaoks) 1:1 Hsiaohc vzafhvhle) 1;: O{siho eaoks) 173 Lvvloae dhsvlzx) 16; slchai pdkelokele) 1;: sl{zck ln pkzsleai henlzoavhle) 111 vat zkghsvkzs) 110) 16; V{zbhsd scdliazs) 7 svavhsvhcai ~ai{k) 16;) 1;: s{pkzsvz{cv{zk) 134) 163) 1;>) 1>> wksvkze scdliazs) 7 xkazix zavks) 1;0 bhs~k jadası hesvhv{vhle) 1>;) 144 Bm{svkefhi) 61 Blcacıb) 6; Blçaeh) eadhxk ) ;0 Blpzh~iaeh) ~hiiagk) 7; Blzça) ;6 Blzehçk) ~hiiagk) 17: Blzl~l) ~hiiagk) 77 Blz{c{ Jabh Jkx) Maehssazx) 76
blz{c{iaz ) 6> Blsl~l) >1) 106) 16>) 1;1 Blsvaefl~l) ~hiiagk) 74) 8>) 87 Blsv{z) ;6 Blsv{z) eadhxk ) ;0 Bl~avcdk~) Z{oke) 37 Bzavl~l) ;0 bzhsvhae% Skk Jlglohis Bz{sdk~ac) 38) 61 bùçùb sadd% Sk Skkk sa sadd dd)) ja jassfk fknv nvkkzf zfaz az B{bkzh faecks) 106 b{i ) >8) 1>7 b{ibazfk h b{ibazfk h ) 76 b{il i{% Skk sles ln fk~ hzok s B{oaehç) ~hiiagk) 86 B{oael~l) ;0 B{ev) Okvhe) 7;) 1>> b{zjae% Skk aehoai saczhfick B{svkefhi) 38) 68) ;6) 88 b{xz{bi{ ho}a % Skk ja fknvkzfaz fknvkzfaz ) shgeav{zk
iaggazfs pkzhlf Asha Ohelz) ::) 1;8 Jaibaes) 174) 186 kazix azzh~ai) 18; eaoheg pavkzes) 144 Iêik fk~zh% Skk V{ihp pkzhlf Iaoaesbh) cdzlehcik% 74) 78 iaef vat) 11) Skk bdaz m m Iazhssa) 68 iavk oamlzhvx pkzhlf Asha Ohelz) :: Kgxpv) V{ehsha aef Sxzha) 17 Hzaq aef Hzae) 17 Ikjaele) 76 ikgai gzl{efs nlz zkq{ksv) kevhvx sxojli) 138) 1;> Ikzhe% Skk aisl Nilzhea) ;0 ik~kef s) s) 18> Ihoels) hsiaef) 1;1 ilghcai ik~ki ln aeaixshs) 11;) 134 Ilwzx) D%) 83 I{ba ) F%) 3> i{t{zx skv ln cilvdks) 1>4) 180 kikokevs) 14> ~ai{k) 14> ~azhavhles) 107 Ixail~l) ~hiiagk) 7; Oackfleha) :4) :8) 3:) 3>) 68) ;0) ;:) ;4) >1) 70) 77) 74) 4:) 83) 87) 88) 106) 10;) 107) 104) 178 Oafke/h Glsçaehçk) 34 Oafke/h zmaea) 34
Oafke/h Ekmhil~a) 34 Oafke/h Pzksbl~a) 34 Oado{f H) 164 Oado{f HH) 18> Oado{f Pasda/h ^kih) Gzaef ^h}hkz) >8 Oaikl~a) ;6 Oaeasvız) 68 Oaehcdakhso) 10;) 10> oazzhagk) 80 oazvlils ) 61 oass cle~kzshle) :6) 74 Jlseha) 10> Oackfleha) Zdlflpks) 4: Oavkh vdk Gzaooazhae) 4: Oavbl~sbh) A%) 3> OcGlwae) J%) ;7 Okdokf Ghzax) Czhokae Bdae) 74) 40 Okdokf HH) ::) 71) 47) 100 Okdokf H^) 74) 16;) 1;1 Okdokf Slblii{) Gzaef ^h}hkz) 7: Okiehb) 34) ;6 Oèeagk) ^%I% fkfiehvhle ln b{i ) >8 kvdholilgx ln a zhx e) 86 ikgaihvx ln fk~ hzok ) >7 svav{s ln cle~kzvs) 86 Okevk }afk Ajf{zzadho Knkefh) kxdùihsiêo) 46 Okslplvaoha) 11) 1: Okvlfh Fzaghel~) pzhksv) 77) 4: cdzlehcik) 74) 78 Ok~iêea Ek zå) 31 Ok~ik~h lzfkz) :>) 106 ok}zaa ) 30 Ohfhiih $Oxvhikek() hsiaef) 34) 61 Oıgihç) 34 ohgzavhle) >1 Aijaehaes) >0 fkczkask he ele/O{siho plp{iavhle) ;; Oackflehaes) >0 O{sihos) 6;) 67) >3 Ohdahil~h ) Blesvaevhe) >4 ohihvazx sia~ks vzafhvhle) 70 Oldac) 1;1 Olifa~ha) 174 Olevkekgzl) :8) 6: Olzka) :4) :8) 38) 61) ;4) ;8) 74) 16>) 167) 1;1) 178 olzvaihvx zavk) ;; O{ va}hih vdklilgx) 1> O{an ) 38
:73
o{ff ) 87 oùdvkfh % Skk cle~kzvs vl Hsiao oùbkooki bhs~k % Skk i{t{zx skv ln cilvdks O{zaf H) 66 O{zaf H^) 78 oùskiikos) 61 O{siho clileh}avhle) >3 Aeavliha) :1 Jaibaes) 67 Oackfleha) 68 O{siho cloo{ehvx fk~ hzok ) 71 Saolbl~) 44 O{siho eaoks bhs~k jadası pkvhvhles) 173) 17> svagk ln cle~kzshle) 173 O{siho eloafs% Skk aisl xùzùb s) s) 61) 66 O{siho plp{iavhle) 6: fkczkask he Skzjha aef Gzkkck) >1 Oackfleha) ;0 shtvkkevd skev{zx) 67 {zjae aef z{zai azkas) ;1 O{siho wloke) pzlpkzvx zhgdvs) 80 O{svana HH) 16>) 1;1 O{svana Pasda) Gzaef ^h}hkz) 137
Eab jkefh lzfkz) 106 Eaifþbke) 6; Ea z j% Sahx z) gl~kzelz ln Bd{zasae) 11) 13 Eavhleai Ihjzazx ln J{igazha) >) 4) 74) 1>0 ekaz elzvd/kasv }lek) ;7 ekl/oazvxzflo) 4:) 43) 46) 4> ek~ oùsiho% Skk ekw O{sihos Ek~zlblp) ;0) ;>) ;7) 76) 7;) 74) 41) 8>) 17: ekw O{siho hfkevhvx) kevhvx/sxojli) 160) 17: ekw O{sihos a{fhkeck whvd vdk s{ivae) 1:6 fk~havhle nzlo zkihghl{s elzos) 4> fieaechai zkwazf) 1;> lsvzach}kf) 148 pkvhvhleheg vdk s{ivae) 1;0 zkasle aef olvh~ks nlz cle~kzshle) 141 zkiavh~k zavk) 164 z{zai aef {zjae azkas) ;1) ;: Ehblpli) 38) 61) 64) 68 Eh ) 34) 16>
:76
Ehslehsdvk) ~hiiagk) 7; Ehblia El~h Slfihsbh) ekl/oazvxz) 4: eloafhc vzhjks) :0) 18) 63 eloafs) 8) 36 fkplp{iavhle) :0 skfkevazh}avhle) 103 elokebiav{za) 76) 1>3 elokebiav{za dl{skdlifs) 18; elokebiav{za lwekzsdhp) 76 elokebiav{zcdhb) >8 ele/O{siho plp{iavhle) 164 fkczkask) ;;) ;8 khgdvkkevd ckev{zx) ;4 gzlwvd) 6: sk~kevkkevd ckev{zx) ;6) 164 ele/O{sihos pzlspkzl{s ciass) 184 zksvzhcvhles) 1;7 Elzvd Anzhca) 10) :0 elzvd/kasv }lek) >0) 178 elzvd/wksv }lek) ;7) ;8) >0) 178 el~hck/caihpd) zkiavhlesdhp skv) 16:) 1;; Ljlikesbx) F%) 10; lcab}afk % Skk sles ln fk~ hzok s Lg{} vzhjks) 10: Ldzhf) 38) 61) ;0) ;6 lpkeheg ln vdk zkq{ksv) kevhvx/sxojli) 138 Lzk k) ~hiiagk) 17: Lzvdlflt Cdzhsvhaehvx) >6) 140) 18: Lzvdlflt Cd{zcd) 78 Jlglohi azkas) 10> zkclzfs) 4: Lzvdlflt pavzhazcd) 81 Lsoae HH) 73 Ls~ma k~l) 84 Lvvloae azcdh~k Eavhleai Ihjzazx ln J{igazha) >) 4 ln vdk Pzhok Ohehsvkz) 4 V{zbhsd) > Lvvloae cdaeckzx) 110 Lvvloae cleq{ksv) >: jikssheg vdklzx) 31 3: cavasvzlpdk vdklzx) :8) >; gzaf{ai pzlckss) 3: hopacv le vdk Jaibaes) 36) 60 Ohffik Kasv) 78 olfkze appzlacd) 3:) 33 olvh~k nlz hevkzacvhle) 103 Lvvloae fhpiloavhcs) 11:) 116) 117) 131 Lvvloae flc{okevs dhkzazcdhcai eav{zk) 113
svz{cv{zk) 11: Lvvloae iaw) 47 Lvvloae sia~k vzafk) >> L~vcdk Plik) 6; pagae jkihkns) 10:) 103 pagaehso) >4) 10: Pahshh) cdzlehcik) 74) 40 paiack scdlli) >8) 7> Pasda saecab) 34) 61) 64) 68 Pavzlea Daihi) 164 Pa{ihchae) 10; Pa}azfmhb) 78 Pa}azfmhb Elvk) 77) 74 Pk ) 7: Pkdih~ae Okdokf Pasda) Z{ohih jkxikzjkx) 74 Pkml) pzhksv) 4: pkechb pke chb ) >4 Pkevaplihs) 1: Pkvkz H) 167) 1;1 pkvhvhlekzs agk) 118 applhevkf he Maehssazx clzps) 144 Asha Ohelz) 178 cazkkz af~aeckokev) 146 kvdehc lzhghes) 140 gkefkz) 118) 1>8 gzl{efs nlz zkq{ksv) 1:> hfkevhficavhle) 118) 130 oazhvai svav{s) 1:1) 170 eaoheg pavkzes) 186 piack ln zkshfkeck) 1:0) 174 psxcdlilgx) 144 zkghleai fhsvzhj{vhle) 178 zkihghl{s affiihavhle) 118 zkihghl{s el~hcks) 16: slchai svav{s) 1:1) 1>7 sphzhv{ai g{hfaeck) 1:3 s{jmkcvs) 16: Pkvzhç) ;0) ;6 pdxshcai ik~ki ln aeaixshs) 11;) 117 Phzlv) ;6 piag{k l{vjzkabs) ;8 Pil~fh~) 74) Skk aisl Nhihjk Plfliha) 16>) 1;1 Plmaga) saecab ) 61 Pliaef) 16;) 16>) 167 plii vat% Skk aisl ch}xk) 10) 1: zkasle nlz cle~kzshle) 13 oazb ln henkzhlzhvx) 11) 1: Pkzshaes aef Jx}aevheks) 1: plixvdkhso) 10: Ploabs) 77) 86) 106) 104
plp{iaz Hsiao) 103 plp{iavhle Asha Ohelz) :0 J{igazhae iaefs) 30 okfhk~ai J{igazhae vlwes) 31 sk~kevdkkevd ckev{zx) ;; pzk/Hsiaohc Azajhc eaoks) 1> V{zbhc eaoks) 6>) 177 Pzk~k}a) 38) 61 Pzhikp) ;0) ;6) 88 pzhslekzs ln waz) >>) >7) >4) >8 Pzh vıea) 34 pzh~avk fk~ hzok ) 7;) 101 Pzh}zke) 38) 61) 67 pzlslplgzapdx) 1>> Pzl~afha) ;6 Pz{v) 167) 1;1 psxcdlilghcai pzkss{zk) 146 P{iada) S%) 3> Qafazh lzfkz) 106 Zafhil~l) ~hiiagk) 83) 86 Zaflohz) ;6 Zaf{sdk~) K~gkeh) >) 6> asskssokev ln J{igazhae scdliazsdhp) >; Jaibae {zjae plp{iavhle) 68 cle~kzshle vl Hsiao he Ek~zlblp) 41 fkfiehvhle ln b{i ) >8 zkihajhihvx ln ch}xk zkghsvkzs) ;; Zag{sa $F{jzl~ehb() :8 zabı ) 106 Zas) 34 zkasles nlz cle~kzshle kevhvx/sxojli) 138 zkiavhlesdhp skv) 14: zkaxa ) 3;) 101 pzacvhck ln bhs~k jadası ) 1>6 slchai af~aeckokev) 101 svav{s) 7: s{johsshle ln pkvhvhles) 111 Zkba) eadhxk ) ;0 zkiavhlesdhp/sxojli) 11; zkihghl{s cleskz~avhso) 1;8) 186 zkihghl{s cle~kzshle athlos) 16) 46) 100 heel~avhle fhff {shle) {shle) 18> psxcdlilgx) 18> zkihghl{s naeavhchso) 44 zkihghl{s sxeczkvhso) 4;) 106) 10;) 183) 186 Asha Ohelz) :>
:7;
Jaibaes) 1;8 Jlglohihso) 10> zkel{eckokev ln zkihghle) 1:: kevhvx/sxojli) 138) 1;>) 140 zkplzv% Skk vkidhs zkpzksshle) ;;) 74 zkso/h çhnv ) 83) 86 zkso/h b{ii{b ) 83 zkwazf) kevhvx/sxojli) 1>4 Zdlflpk Ol{evahes% Skk Zdlflpks Zdlflpks) 67) 4:) 8>) 106) 104 Zdlfls) 61 Zhjek) ~hiiagk) 17: zhck/gzlwkzs) 6>) Sk Skkk çk çkivivùb ùbçh çhikz ikz Zloaevhc ol~kokev) 40 Zlskek) ;> z{b a z{b a % Sk Skkk az az}/ }/hh dai dai Z{okih) >1) 71) 76 Z{ssha) 16>) 167) 1;1 Z{sshae Lzvdlfltx) 187 z{}eaoçk/h k~~ki ) 136 z{}eaoçk/h d{oaxùe% Sk Skkk z{ z{}e }eao aoçk çk/h /h k~~ki k~~ki Zxca{v) Pa{i) >8 ajael~h ) E%) 3> adafkv ) 1;; sadd% Skk Gzaef ^h}hkz) keflzskokev ja fknvkzfaz ja fknvkzfaz ) 13; saiv/oabkzs) 6>) 67 Saoaehfs) 1> Saolbl~) 4>) 47) 44 saecabjkxs) cazzhkz jacbgzl{efs) 100 Sazamk~l) 68 Sazı Saiv{b) 103 Sassaehfs) 1: Sawaf) 11 Scdhivjkzgkz) 1;7) 1;8 skclef athlo ln cle~kzshle) 100 kdhzbþx% Skk Phzlv Skiaehb) 6;) 64) 68) ;0) ;1 Skiho H) 74) 78) 40) 41 Skiho HH) 40) 47 Skim{bs ln Z{o) :6 Skzj bhegflo) :4) 84 Skzjha) :8) 3>) ;7) >0) >1) 106) 178 Skzfick) ;0) ;6 Skzzks) 34) 6>) 68) ;0) ;1) ;6) 146 kxdùihsiêo) 46) 4>) 47 Sdafi h iaw) 1> sdad fa % Skk aisl adafkv ) 16 Sdaz Ol{evahe) 104 Sdazh a% Skk aisl Hsiaohc iaw) >4 Sdav}ohiikz) Oaxa) 80 sdkkp vat) 8>
:7> Sdkhb Jkfzkffhe Shoa~h) 10; Sdblfza) 38) 61) 88 Shihsvza) 38) 6:) 64) >1 Shihsvzk% Skk aisl Shihsvza) ;6) 1:0 shpadh ) 4> shpadh clzps) 143 Shzl}% Skk aisl Skzzks) 34 shxabav ) 13>) 1>0 Sblpmk) 68) ;0) ;1) ;:) 88) 104 sia~kzx) >;) >> sia~ks) >8 J{igazhae) >7 Maehssazhks) >8 Sokfkzk~l) 34) 61) 84 slchai cle~kzshle Jaibaes) 36 vdklzx) 16 Slfia) 38) 61) 68) 4>) 47 Slblisbh) O%) 3>) 68) ;1 sles ln fk~ hzok s) s) 76 sl{vd/kasv }lek) ;7) >0) 178 sl{vd/wksv }lek) ;7) ;8) >0 Spahe) 10) 1>) 17) 1;; Szkjzkehca) 107 {i ) 1: svavk iaeflwekzsdhp) 71) 76 Svkkesgazf) E%) 174 vhp) ;0) ;; Svlmael~sbh) A%) 3> Svz{oa) eadhxk ) ;0 s{jmkcv/z{ikz) zkiavhlesdhp skv) 16:) 1>0 s{jshsvkeck ik~ki) 87 S{fi lzfkzs% Skk aisl Hsiaohc oxsvhcai lzfkzs) 6; Jaibaes) 106 S{gaz) Pkvkz) 68 Sùikxoae H) 7: Sùikxoae HH) 16> S{ivaeavk ln Z{o) :1 s{ivaehc iaw) >7) 1:>) 1;> Sxzha) 11) 1:) 17) :0 va }hz ) 44 va }hz Vadhzhfs) 1> vadzhz zkghsvkzs) 3 Vaezıfa ) 6; Skkk hi hivh vh}a }ao o vat nazoheg% Sk vat zkghsvkzs bhs~k jadası pkvhvhles) 16; ihohvavhles) 36 plvkevhai) 3; vatavhle kazix Hsiao) 11
Lvvloae svavk) 33) 36 Vcdhzoke) 61) 64 Vkbn{zfag) 1:0) 147 vkbbk ) 103 vkidhs ) 133) 13;) 134 Vkekfls) hsiaef) 1;1 Vkvl~l) ;0) ;1) 88 vk}bkzk % Skk Vzkas{zx jhii vk}bkzk/h da}hek % Skk Vzkas{zx jhii Vdkssailehca) 86) Skk aisl Skiaehb Vdkssaix) :4) :8) 70 Vdzack) >) :4) :8) 6;) 70) 74 Vhb~k ) eadhxk ) ;0 vhoaz ) 47 zkghsvkzs) :8) ;:) 83) 84 sxsvko) 33) ;:) 73 Vho{z) 66 Vhzel~l% Skk aisl V{zel~l) :4) ;6 Vlflzl~) Hiha) 78 Vlflzl~) Ehbliax clileh}avhle ln vdk Jaibaes) 66 kzzlzs) 37 Gaefk~‘s vdklzx) 30 dhsvlzhcai fkolgzapdx) 37 Vlpihçk) 34 vlpi{ca ho}a % Skk ja fknvkzfaz fknvkzfaz ) shgeav{zk vlzjksdh % Skk Jlglohis Vzaji{s ao) 76 Vzaj}le $Vzkjh}lef() ::) 178 Vzaesxi~aeha) 16> Vzkas{zx jhii) 136) 13;) 13>) 1>1 vzhj{vk ln jillf% Skk fk~ hzok Vzhbaia) 38) 61) 64) 68 Vzhplih) 76 V{ihp pkzhlf) 164) 1;1) 18; V{ehsha) 17 v{zjae) 1>1 V{zbhc eaoks) 6>) 177 V{zchficavhle) 100 V{zbkx) ;4) 178 V{zbhsd scdliazs jikssheg vdklzx) 3: bhs~k jadası pkvhvhles) 7 p{jihcavhles ln vat zkghsvkzs) 3; V{zel~l% Skk aisl Vhzel~l) ;> v{}c{iaz % Skk saiv/oabkzs {c jkxs % Skk aisl nzlevhkz jkxs ) 71 [bzahek) 16> {ikoa ) :>) 78 [oaz) caihpd) 1: ùokza dl{skdlifs) 7> {s{nz{cv) 11 [}{eçaz ıiı) soahi Dabbı) 7) 1;>
^abazkisbh) Cdzhsvl) 106 s) 6; ~abın s) ^aiaefl~l) eadxk ) ;0 ^asiab) ~hiiagk) 86 ^kfa Sil~kea) 40 ^kibl~) Aspaz{d) > ja fknvkzfaz‘s ja fknvkzfaz‘s shgeav{zk) 13; fkfiehvhle ln az}/h dai ) 111 oazgheai aeelvavhles) 131 ^kekvhae f{cav) 8;) 8> ^kehck) 16>) 167) 1;1 ^k}ek) ~hiiagk) 17: ^hfhe) :4) 3>) 38) 6:) ;6) 84) 16>) 14> ^hkeea) 16>) 1;1 ~hkw ik~ki ln aeaixshs) 11>) 1>> ^h}k) 34) 6:) 6;) 64 ^iacds) 34) 61 ^ilza) 38 ^lii) Mlde L%) 186 s) 61) 7: ~lxe{b s) ^zaema) ;6 ^zxlehs) Spkzls) 18) :1 Hsiaohc hesvhv{vhles) :; O{siho clileh}avhe) 67 pagae zllvs ln Jaibae slchkvx) 10: plp{iavhle ln Skiaehb) 64 ^{cdhvze) 34) 38) 6: wai ai/o{w i v ) 1;3 ikgacx) 1;6 vzafhvhle) 1;4
:77
Waiiacdha) 174 waqn % Skk aisl wabın ) :> Wksvkze K{zlpk) 174) 141 wksvkze scdliazs) 7) 78 wdkav) 87 whek) 106 Whvvkb) P%) >4 Xaejli{) 146 xaxa/ja ı xaxa/ja ı ) 7: Xkfh B{ik) 147 Xkehck/h Bazas{) 6> Xkeh kdhz% Skk aisl Iazhssa) 34 xlbiaoa fknvkzikzh ) 3;) 173 xlbiaoa zkghsvkzs% Skk aisl xlbiaoa fknvkzikzh ) 146) 14> s) 61) 66) 6;) 64 xùzùb s) }a~hxk ) 103 ]kixa}bl~a) A%) 37 a{vdkevhchvx ln sl{zcks nlz nlzckf cle~kzshle) 77 clkzshle vdklzx) >; kclelohc pzksss{zk nlz cle~kzshle) 8: O{siho ohgzavhle) 6; ]hdea) 6>) 67) ;6 }hooh ) >7) >4 ]hzlmk~h ) L%) 3> ]iavhvsa) ;> ]ekplik) ;6 ]~lzehb) 61
ZK^KIAVHLE