LGEBRA MATRIC MA TRICIAL IAL – MÉTODOS MATRICIALES PARA SISTEMAS HIPERESTÁTICO S INGENIERÍA SÍSMICA
ALUMNO:
MEDINA VILLANUEVA, JEISON THAILOR
DOCENTE: RODRIGUEZ PLASENCIA, EDWIN
ÁLGEBRA MATRICIAL – MÉTODOS MATRICIALES PARA SISTEMAS HIPERESTÁTICOS
INTRODUCCIÓN El pr!"# $"%&r' ( $")!#$*+$-" ! r.r + l&! #'+! “Álgebra Matriial! / “M"t#$#% Matriiale% &ara Si%te'a% Hi&ere%t(ti#%!, Hi&ere%t(ti#%!, l&! 01l! !r1" ( *r+" +/0(+ p+r+ !&l0$&"+r pr&2l'+! rl+$&"+(&! +l A"1l$!$! E!#r0#0r+l, / !&" ( 2+! p+r+ 0r!&! '1! +)+"3+(&!, &'& I"*"$r4+ S4!'$+5 El &26#$)& pr$"$p+l ! #"r &"&$'$"#& !&2r l "#"($'$"#& !&2r !&2r '+#r '+#r$ $! ! ( ($% ($%rr"# "#!! -r( -r(" "!, !, &"& &"& rr !0! !0! #$p& #$p&!! / l+! l+! &pr &pr+ +$& $&" "!! 70 70 &" &" ll+ ll+!! ! r+l r+l$3 $3+" +"55 A!4 #+'2 #+'2$8 $8" " +pr +pr"( "(r r l&! l&! '8#&(&! '+#r$$+l! 70 "&! +/0(+" " l+ !&l0$-" + pr&2l'+! ( !$!#'+! 9$pr!#1#$&!, &'& !&" l M8#&(& ( l;$2$l$(+(! / l M8#&(& ( l+ R$*$(35 L+ pr&2l'1#$+ +"# !#&! #'+!, ! (2$(& 70 "& ! 0"#+ &" l&! &"&$'$"#&! pr)$&! / "!+r$&! p+r+ p&(r (!+rr&ll+r pr&2l'+! &'pl6&! (&"( ! )+ "!+r$& #"r &"&$'$"#& !&2r '+#r$! & !&2r !&l0$-" ( !$!#'+! 9$pr!#1#$&!< "& ! p0( ll*+r + (+rl (+rl!! !&l0 !&l0$$-" " (2$ (2$(& (& +l p&& p&& &"& &"&$' $'$ $"# "#& & & +pr +pr"($ "($3+ 3+6 6 70 70 #"'&! !&2r !#&! #'+!< p&r l& 70 !# $"%&r' 20!+ '&!#r+r ( '+"r+ !"$ll+ / pr$!+ l (!+rr&ll& ( +(+ #'+ p+r+ #"r 0" '6&r "#"($'$"#&5 E" l C+p4#0l& C+p4#0l& I ! '0!#r+ l& rl+$&"+( rl+$&"+(& & +l Ál*2r+ M+#r$$+l, M+#r$$+l, (&"( (&"( ! ;p&" l&! #$p&! ( '+#r$!, l+! &pr+$&"! 70 ! p0(+" (+r &" 8!#+! / !0! pr&p$(+(!5 E" l C+p4#0l& II ! (+ + &"&r !&2r l&! '8#&(&! p+r+ !&l0$&"+r !$!#'+! 9$pr!#1#$&!, ;p&"$"(& l M8#&(& ( l;$2$l$(+( / l M8#&(& ( l+ R$*$(35 E" l C+p4#0l& III ! '0!#r+ 6'pl&! !"$ll&! / ( %1$l &'pr"!$-" p+r+ %+)&rr l '6&r "#"($'$"#& ( +(+ #'+5
=>P1*$"+
ÁLGEBRA MATRICIAL – MÉTODOS MATRICIALES PARA SISTEMAS HIPERESTÁTICOS
OB)ETI*OS OB)ETI*O GENERAL+ ,
I")!#$*+r l& rl+$&"+(& +l Ál*2r+ M+#r$$+l / !&2r l&! M8#&(&! M+#r$$+l! p+r+ S$!#'+! H$pr!#1#$&!5
OB)ETI*OS ESPEC-.ICOS+ , D."$r +(+ &"p#& rl+$&"+(& +l Ál*2r+ M+#r$$+l, (."$"(& ,
'+#r$!, #$p&! / &pr+$&"! rl+$&"+(&! + 8!#+!5 E;pl$+r l&! M8#&(&! ( R$*$(3 / ( l;$2$l$(+(, l&! 01l! "&! +/0(+r1" " l+ !&l0$-" ( S$!#'+! H$pr!#1#$&!5
?>P1*$"+
ÁLGEBRA MATRICIAL – MÉTODOS MATRICIALES PARA SISTEMAS HIPERESTÁTICOS
CAP-TULO I ÁLGEBRA MATRICIAL /0 MATRI1 /0/0 De23ii43 U"+ '+#r$3 ! 0"+ &r("+$-" ( l'"#&! ( %&r'+ r#+"*0l+r5 P&r l& 0+l ! +.r'+ 70 0"+ '+#r$3 ( &r(" @m;n” , ! 0"+ &r("+$-" ( l'"#&! " @ m” .l+! / “n” &l0'"+!, ( l+ !$*0$"# %&r'+: •
D&"(: P+r+ "&'2r+r 0"+ '+#r$3 ! 0!+ 0"+ l#r+
'+/!0l+5 U" l'"#& *"8r$& ( l+ '+#r$3 A ! (!$*"+ '($+"# aij , (&"( l&! !024"($! $"($$+" l l0*+r (&"( ! 02$+ l l'"#& ("#r& ( l+ '+#r$3: l pr$'r !024"($ i ! r.r + l+ .l+ / l !*0"(& !024"($ &l0'"+5
j
! r.r + l+
/050 Matri6 Re3gl43 # *et#r .ila E! 0"+ '+#r$3 ( 0"+ !&l+ .l+ / ( “n” &l0'"+!5 [ A ] xn= [ a 1
a12 a13 a14
11
[ A ] x =[ 4
E65:
1
6
9
a1 n ]
…
71
5
8
]
/070 Matri6 C#l8'3a # *et#r C#l8'3a E! 0"+ '+#r$3 ( 0"+ !&l+ &l0'"+ / ( “m” .l+!5
[] a 11
[ B ]mx
1=
a21 a31 ⋮
am 1
E65:
>P1*$"+
ÁLGEBRA MATRICIAL – MÉTODOS MATRICIALES PARA SISTEMAS HIPERESTÁTICOS
[] 2 7
[ B ] x = 5
1
8 3 9
/090 Matri6 Tra3%&8e%ta L+ '+#r$3 #r+"!p0!#+ ( r+ '+#r$3 ! &2#$" '($+"# l $"#r+'2$& .l+! / &l0'"+!, ! ($r< 0+"(& l+! .l+! ! &")$r#" " &l0'"+!, / l+! &l0'"+! " .l+!5 E65:
[ ] 1
4
8
[ A ] x = 2
6
5
7
3
9
3
[ A ]
3
T
3 x 3 =
[ ] 1
2
7
4
6
3
8
5
9
50 TIPOS DE MATRICES 50/0 Matri6 C8a$ra$a E! 0+"(& l "'r& ( .l+! ! $*0+l +l "'r& ( &l0'"+!5 E65:
[ ]
[ A ] x = 2 2
2
6
4 1
5050 Matri6 Diag#3al E! 0+"(& l&! ('1! l'"#&! 70 !#1 %0r+ ( l+ ($+*&"+l pr$"$p+l, !&" "0l&! & r&!5
[ E ] mxn=
[ ] a11
0
0 0
0
0
a22
0 0
0
0
0
0
0
0 ⋱
0
0
0
0 0
am =n
a33
0
0
E65:
>P1*$"+
ÁLGEBRA MATRICIAL – MÉTODOS MATRICIALES PARA SISTEMAS HIPERESTÁTICOS
[ ] 3
0
0
[ E ] x = 0
6
0
0
0
2
3
3
5070 Matri6 I$e3ti$a$ # U3itaria E! 0+"(& l&! l'"#&! ( l+ ($+*&"+l pr$"$p+l ( l+ '+#r$3 !#1 &"%&r'+(& p&r "'r&! 0"& =, / l&! ('1! !&" "0l&! & r&!5 [ I ] =
[ ] 1
0
0
0
1
0
0
0
1
5090 Matri6 E%alar E! 0+"(& #&(&! l&! l'"#&! ( l+ ($+*&"+l pr$"$p+l !&" $(8"#$&! & $*0+l!5 E65: [ D ] x 3
[ ]
3=
3
0
0
0
3
0
0
0
3
50:0 Matri6 Si'"tria C0+"(& l+ '+#r$3 &r$*$"+l ! $*0+l + !0 '+#r$3 #r+"!p0!#+5 E65: [ C ] x = 3
3
[ C ] x T
3
[ ] 3
7
8
7
4
2
8
2
6
3=
[ ] 3
7
8
7
4
2
8
2
6
T D&"(: [ C ] =[ C ]
50;0 Matri6 Tria3g8lar S8&eri#r E! 0+"(& #&(&! l&! l'"#&! p&r (2+6& ( l+ ($+*&"+l pr$"$p+l ( l+ '+#r$3, !&" r&!5 E65: F>P1*$"+
ÁLGEBRA MATRICIAL – MÉTODOS MATRICIALES PARA SISTEMAS HIPERESTÁTICOS
[ F ] x = 3
3
[ ] 3
7
8
0
4
2
0
0
6
50<0 Matri6 Tria3g8lar I3=eri#r E! 0+"(& #&(&! l&! l'"#&! p&r "$'+ ( l+ ($+*&"+l pr$"$p+l ( l+ '+#r$3, !&" r&!5 E65: [ F ] x 3
3=
[ ] 3
0
0
7
4
0
8
2
6
70 OPERACIONES CON MATRICES 70/0 A$ii43 > S8%trai43 $e Matrie% L+ !0'+ / r!#+ ( '+#r$! ! (+ !$'pr / 0+"(& +'2+! '+#r$! #$"" l '$!'& &r(", ! ($r l "'r& ( .l+! / &l0'"+!5 l+ !0'+" & r!#+" l&! #8r'$"&! 70 &0p+" l&! '$!'&! l0*+r! " l+! '+#r$!5 7050 M8lti&liai43 $e Matrie% P+r+ 70 ! p0(+ r+l$3+r l+ '0l#$pl$+$-" "#r (&! '+#r$!, l "'r& ( &l0'"+! ( l+ pr$'r+ '+#r$3 (2 !r $*0+l +l "'r& ( .l+! ( l+ !*0"(+ '+#r$35 L+ '0l#$pl$+$-" ! r+l$3+ '0l#$pl$+"(& +(+ .l+ ( l+ pr$'r+ '+#r$3 p&r +(+ &l0'"+ ( l+ !*0"(+ '+#r$3< / p+r+ll+'"# ! r+l$3+ 0"+ +($$-"5 [ A ] x 2
[
2=
x 11 x 21
x 12 x 22
]
/
[ B ] x 2
3=
[
y 11 y 21
y 12 y 22
y 13 y 23
]
>P1*$"+
ÁLGEBRA MATRICIAL – MÉTODOS MATRICIALES PARA SISTEMAS HIPERESTÁTICOS
( x ∗ y + x ∗ y ) 11
11
12
21
x
(¿ ¿ 11∗ y + x ∗ y ) 12
12
22
x
(¿ ¿ 11∗ y + x ∗ y ) ¿ ¿( x ∗ y + x ∗ y ) 13
12
23
11
22
21
21
x
¿
(¿ ¿ 21∗ y + x ∗ y ) x ¿(¿ ¿ 21∗ y + x ∗ y ) [ C ] x = [ A ]∗[ B ]=¿ 12
22
22
2
13
22
23
3
7050/0 M8lti&liai43 $e Matri6 r 83 E%alar P+r+ '0l#$pl$+r 0" !+l+r k p&r 0"+ '+#r$3, !$'pl'"# ! '0l#$pl$+ l !+l+r p&r +(+ l'"#& ( l+ '+#r$35 [ A ] x 2
[
2=
x 11 x 21
x 12 x 22
]
Escalar =k
E"#&"!:
[
k ∗[ A ] 2 x 2=
x 11∗k x 21∗k
]
x 12∗k x 22∗k
7070 Deter'i3a3te% •
U"+ '+#r$3 ! ( pr$'r &r(" 0+"(& "$+'"# #$"
0"
!&l&
l'"#&
/
(."$'&!
l+
(#r'$"+"# ( A &'& •
S$ l+ '+#r$3 A ! 0"+ '+#r$3 0+(r+(+ ( !*0"(&
&r(" , !0 (#r'$"+"# ! r+l$3+ ( l+ !$*0$"# '+"r+:
>P1*$"+
ÁLGEBRA MATRICIAL – MÉTODOS MATRICIALES PARA SISTEMAS HIPERESTÁTICOS
7090 I3?er%a $e 83a Matri6 M"t#$# $e Ga8%% – )#r$a3 C&"!$!# " &l&+r 60"#& + l+ '+#r$3 ( &r$*" A, l+ '+#r$3 I("#$(+( I / 9+r &pr+$&"! p&r .l+!, 70 +%#+r+" + +'2+! '+#r$!, &" l &26#& ( #r+"!%&r'+r l+ '+#r$3 A " l+ '+#r$3 I("#$(+(5
90 PROPIEDADES DEL ÁLGEBRA MATRICIAL 90/0 Le> A%#iati?a &ara la M8lti&liai43 $e Matrie% S+ [ A ] mxn , [ B ] nxp y [ C ] pxq < "#&"! [ A ]∗( [ B ]∗[ C ] ) =( [ A ]∗[ B ] )∗[ C ] !#1 (."$(&5 9050 Le>e% Di%trib8ti?a% &ara la M8lti&liai43 $e Matrie% S$ l+ '0l#$pl$+$-" ( l+! '+#r$! ! (.", "#&"! ! p0( +.r'+r: S+ [ A ] mxn , [ B ] nxp y [ C ] pxq < "#&"! [ A ]∗( [ B ] + [ C ] )=( [ A ]∗[ B ] ) +( [ A ]∗[ C ] )
( [ A ] + [ B ] )∗[ C ]=( [ A ]∗[ C ] ) +( [ B ]∗[ C ] ) 9070 Le> $e la Matri6 I$e3ti$a$ L+ '0l#$pl$+$-" ( 0+l70$r '+#r$3 p&r l+ '+#r$3 I("#$(+(, l r!0l#+(& ! $*0+l + l+ '$!'+ '+#r$3 '0l#$pl$+(+5 [ A ]∗[ I ] =[ A ] 9090 El &r#$8t# $e 'atrie% e3 ge3eral 3# e% #3'8tati?#0
CAP-TULO II >P1*$"+
ÁLGEBRA MATRICIAL – MÉTODOS MATRICIALES PARA SISTEMAS HIPERESTÁTICOS
MÉTODOS MATRICIALES PARA SISTEMAS HIPERESTÁTICOS /0 SISTEMAS HIPERESTÁTICOS /0/0 De23ii43 E! 0+"(& l+! 0+$&"! ( l+ !#1#$+ & ( 70$l$2r$& "& !&" !0.$"#! p+r+ 9+ll+r l+! r+$&"! & %0r3+! $"#r"+! 70 p&! l !$!#'+5 E! ($r ;$!#" '1! %0r3+! +#0+"#! 70 0+$&"! ( 70$l$2r$&, p&r l+ 0+l #$" '1! ( *r+(&! ( l$2r#+(5
/050 Ti%
/050/0 Si%te'a% E@teri#r'e3te Hi&ere%t(ti#% C0+"(& l+! 0+$&"! ( 70$l$2r$& r!0l#+" $"!0.$"#! p+r+ 9+ll+r l+! r+$&"!5 •
/05050 Si%te'a% I3teri#r'e3te Hi&ere%t(ti#% •
C0+"(& l+! 0+$&"! ( 70$l$2r$& r!0l#+" $"!0.$"#! p+r+ 9+ll+r l&! !%0r3& $"#r"&!5
50 MÉTODOS MATRICIALES PARA SOLUCIÓN DE SISTEMAS HIPERESTÁTICOS 50/0 M"t#$# $e la% .le@ibili$a$e% 50/0/0 De23ii43 C&"!$!# " (%&r'+$&"! p+r+ +l0l+r %0r3+! / (!pl+3+'$"#&! " 0"+ !#r0#0r+5 A !0 )3 !0p&" l+ !0prp&!$$-" ( (!pl+3+'$"#&! " #8r'$"&! ( !#r0#0r+! !#1#$+'"# (#r'$"+(+!5 •
50/050 M"t#$# $e De%arr#ll# Al !0p&"r l&! (!pl+3+'$"#&! " !#r0#0r+! !#1#$+'"# (#r'$"+(+!, ! l+! p0( &"!$(r+r + !#+! &'& !#r0#0r+! pr$'+r$+!5 P+r+ &2#"r !#+ !#r0#0r+ pr$'+r$+ ! 9+ l+ !0pr!$-" ( +p&/&! & ! #r+"!%&r'+ l +p&/& " r& '1! !$'pl5 Pr& l+! &"($$&"! 70 (2" #"r 8!#+! (2" !r !#+2$l$(+( & $!&!#+#$$(+(5 •
K>P1*$"+
ÁLGEBRA MATRICIAL – MÉTODOS MATRICIALES PARA SISTEMAS HIPERESTÁTICOS
5050 M"t#$# $e la% Rigi$ee% 5050/0 De23ii43 E" !# '8#&(& l+! $"-*"$#+! !&" l&! (!pl+3+'$"#&! ( l&! "0(&!, ! ($r< " l&! +p&/&!, )&l+($3&! & " l&! p0"#&! ( 0"$-" ( (&! & '1! l'"#&!5 L&! (!pl+3+'$"#&! ( l&! "0(&! rpr!"#+" l&! *r+(&! ( l$2r#+( ( l+ !#r0#0r+5 E!# '8#&(& 9+ 0!& ( l+! %-r'0l+! ( 'pr+'$"#&, #+l! &'&: •
•
•
505050 505050 505050 505050 505050 505050 505050 505050 505050 505050 505050 505050 505050 505050
M"t#$#
$e De%arr#ll# El pr$'r p+!& ! r!#r$"*$r l&! (!pl+3+'$"#&! ( l&! "&(&! (!&"&$(&!, ! ($r< rpr!"#+rl&! " 0"+ $(+l$3+$-" ( 'pr+'$"#&5 E" !# '8#&(& ! 0!+" %0r3+! & '&'"#&! pr&(0$(&! p&r l&! (!pl+3+'$"#&! 0"$#+r$&!5 E!#+! %0r3+! & '&'"#&! pr&(0$(&! ! ll+'+" •
•
rigideces.
= > P 1 * $ " +
ÁLGEBRA MATRICIAL – MÉTODOS MATRICIALES PARA SISTEMAS HIPERESTÁTICOS
CAP-TULO III APLICACIONES /0 OPERACIONES CON MATRICES0 /0/0 ADICIÓN SUSTRACCIÓN DE MATRICES Sea la% 'atrie%+ [ A ] x 3
3=
[ ] 3
1
8
0
2
4
7
3
6
/ [ B ] x 3
[
3=
2
6
0
5
4
3
−1
0
8
]
<
Hallar A B > A , B SOLUCIÓN •
AB [ A ] + [ B ]=
[ A ] + [ B ]=
•
[ ][
[
3
1
8
0
2
4
7
3
6
5
7
8
5
6
7
6
3
14
2
6
0
5
4
3
−1
0
8
+
]
]
AB
[ ][ 3
1
8
[ A ] −[ B ] = 0
2
4
7
3
6
[
1
[ A ] −[ B ] = −5 8
2
6
0
5
4
3
−1
0
8
−
−5 −2
8
3
−2
1
]
]
== > P 1 * $ " +
ÁLGEBRA MATRICIAL – MÉTODOS MATRICIALES PARA SISTEMAS HIPERESTÁTICOS
/050 MULTIPLICACIÓN DE MATRICES Sea la% 'atrie%+
[ ]
[ A ] x = 2
2
1 3
2
[ B ] x =
/
4
2
3
[
5
6
7
0
8
9
]
Hallar C A B SOLUCIÓN
[
( 1∗5 +2∗0 ) ( 1∗6 +2∗8) ( 1∗7 + 2∗9 ) [ C ] x =[ A ]∗ [ B ] = ( 3∗5 + 4∗0 ) ( 3∗6 + 4∗8 ) ( 3∗7 + 4∗9) 2
3
[ C ] x = 2
3
[
5
22
25
15
50
57
]
]
/050/0 MULTIPLICACIÓN DE UN ESCALAR POR UNA MATRI1 Sea la 'atri6+
[ ]
[ A ] x = 1 2
2
3
2 4
Escalar =3
Hallar 7A SOLUCIÓN E"#&"!:
[
∗ [ A ] x = 1∗3 3∗ 3
3
2
2
∗ 4∗3 2 3
] 3
[
[ A ] =
3
6
9
12
]
=? > P 1 * $ " +
ÁLGEBRA MATRICIAL – MÉTODOS MATRICIALES PARA SISTEMAS HIPERESTÁTICOS
/070 DETERMINANTE DE UNA MATRI1 Sea la 'atri6+ [ A ] x 2
[ ]
2=
5
2
3
4
Hallar la Deter'i3a3te $e [ A ] SOLUCIÓN Det . [ A ]= (5∗ 4 )− ( 3∗2 ) =14
Sea la 'atri6+
[
[ B ] x = 3
3
3
2
1
0
2
−5
−2
1
4
]
Hallar la Deter'i3a3te $e [ B ] SOLUCIÓN
Det . [ B ] =3
[
3
2
0
2
−2
1
1
][
−5 −2 4
3
2
0
2
−2
1
1
][
−5 + 1 4
3
2
1
0
2
−5
−2
1
4
]
E"#&"! &2#"'&!: Det . [ B ] =3
[ ] [− ] [− ] 2 1
−5 −2 4
0
2
−5 + 1 4
0
2
2
1
= > P 1 * $ " +
ÁLGEBRA MATRICIAL – MÉTODOS MATRICIALES PARA SISTEMAS HIPERESTÁTICOS Det . [ B ] =3∗( 8 + 5 ) −2∗( 0 −10 ) + 1∗(1 + 4 )=63
50 MÉTODOS MATRICIALES PARA SISTEMAS HIPERESTÁTICAS ?5=5 MÉTODO DE LA RIGIDE1 •
H+ll+r l+ M+#r$3 ( R$*$(3 [ K ] ( l+ !$*0$"# !#r0#0r+5
SOLUCIÓN GRADOS DE LIBERTAD DE LA ESTRUCTURA
= > P 1 * $ " +
ÁLGEBRA MATRICIAL – MÉTODOS MATRICIALES PARA SISTEMAS HIPERESTÁTICOS
a) Primer Grado de Libertad
K 11=
K 21=
K 31=
12 EI
l
3
+
12 EI
l
3
=
24 EI
l
3
−6 EI l
2
−6 EI l
2
2 S*0"(& Gr+(& ( L$2r#+(
=F > P 1 * $ " +
ÁLGEBRA MATRICIAL – MÉTODOS MATRICIALES PARA SISTEMAS HIPERESTÁTICOS
K 12=
K 22=
−6 EI l
2
4 EI
l
+
K 32=
4 EI
l
=
8 EI
l
2 EI
l
Trr Gr+(& ( L$2r#+(
K 13=
K 23=
K 33=
−6 EI l
2
2 EI
l 8 EI
l
Ensamblando la matriz de rigidez
[ k ]
= > P 1 * $ " +
ÁLGEBRA MATRICIAL – MÉTODOS MATRICIALES PARA SISTEMAS HIPERESTÁTICOS
[ k ] =
[
24 EI
l
3
−6 EI l
2
−6 EI l
2
−6 EI −6 EI l 8 EI l
2
l 2 EI l
2
2 EI
8 EI
l
l
] CONCLUSIONES
•
S l&*r- ;pl$+r #&(& l& rl+$&"+(& +l 1l*2r+ M+#r$$+l, $"l0/"(& l&! #$p&! ( '+#r$!, l+! &pr+$&"! 70 ! p0(" 9+r &" ll+!5 S ;pl$- l&! '8#&(&! p+r+ !$!#'+! 9$pr!#1#$&!, l&! 01l! !&" M8#&(& ( l;$2$l$(+(! / M8#&(& ( R$*$(35
•
S '&!#r+r&" +l*0"&! 6r$$&! ( +pl$+$-" p+r+ %+$l$#+r 0"+ '6&r &'pr"!$-" ( l&! #'+! ;p0!#&!5
= > P 1 * $ " +
ÁLGEBRA MATRICIAL – MÉTODOS MATRICIALES PARA SISTEMAS HIPERESTÁTICOS
BIBLIOGRA.-A •
J&!8 L0$! C+'2+, Ap0"#! ( A"1l$!$! E!#r0#0r+l I, Pr$'r+
•
E($$-", =K?5 J+$' Br+)& 2r!, M+#r$! / D#r'$"+"#!, Pr$'r+ E($$-"5 E370$l Ur$l, El'"#&! ( Ál*2r+ M+#r$$+l5
•
LINOGRA.-A ÁLGEBRA MATRICIAL Ftt&+0$it8t#r0#'$eter'i3a3te%$eter'i3a3t e0Ft'l Ftt&+re8r%#%ti0e$8ai#30e%$e%arte%eb'ate riale%$i$ati#%'atrie%'atrie%#&erai#3e%I0F t' Ftt&+eb8r%#080lae%%#3te3tattaF'e3tea e5:Ja,/,5/,5J/5MaterialK5J$el K5JC8r%#7$=;:,=9 P 1 * $ " +
ÁLGEBRA MATRICIAL – MÉTODOS MATRICIALES PARA SISTEMAS HIPERESTÁTICOS
K5JINTRODUCCIONK5JALK5JALGEBRA K5JMATRICIAL0&$= MÉTODOS MATRICIALES Ftt&+$a$83083a?0e$8bit%trea'/J//J;9/Met #$#K5J$eK5Jrigi$e60&$= Ftt&+i3g0833e0e$80ar&8be7a&90&$= Ftt&+08gr0e%gr8%$#e3iaaei$#3l#a$'atr iialalar#30&$=
=K > P 1 * $ " +