Departament d’Enginyeri a Electrònica CAMPUS DE TERRASSA
TRABAJO DE INTERFERENCIAS Y COMPATIBILIDAD ELECTROMAGNÉTICA
Requisitos y Certificación para accionamientos de velocidad variable.
Daniel Zurita Millán 22 / 0 6/ 20 12
Índice de la práctica 1. Introducción....... Introducción.......................................... ...................................................................... ....................................................................... ............................................. ......... 4 1.2 Términos Términos utilizados utilizados en el documento documento.. .................................................................... ............................................................................. ......... 5 2. Información Información para el ensayo ensayo de PDS .................................................................. ....................................................................................... .....................7 2.1 Medición Medición de EMC en Conducción Conducción ...................................................................... .................................................................................... ..............7 2.1.1 Estabilizador Estabilizador de Red o LISN ......................................... ............................................................................. ............................................. ......... 7 2.1.2 Analizador Analizador de espectros espectros.................................................................. ............................................................................................ .......................... 8 2.2 Medición Medición de la radiación radiación ....................................................................... ................................................................................................. ..........................9 3. Requisitos Requisitos de inmunidad inmunidad de un PDS. ...................................................................... ................................................................................... ............. 10 3.1 Inmunidad a Perturbaciones de baja frecuencia ............................................................ 12 3.1.1 Armónicos y distorsión distorsión de la tensión................................... tensión...................................................................... ..................................... 12 12 3.1.2 Entallas Entallas de conmutació conmutación n ....................................................................................... ......................................................................................... .. 12 3.1.3 Fluctuacione Fluctuacioness de tensión tensión ..................................................................... ........................................................................................ ................... 13 13 3.1.4 Huecos Huecos e interrupcion interrupciones es breves breves ............................................................................. ............................................................................... 13 3.1.5 Desequilibr Desequilibrio io de tensión. tensión. ........................................................................................ ........................................................................................13 3.1.6 Variaciones Variaciones de frecuencia. frecuencia. ......................................................................... ...................................................................................... ............. 13 3.1.7 Modo común a la frecuencia frecuencia de la red .................................................................... ....................................................................14 3.2 Inmunidad a perturbaciones de alta frecuencia ............................................................. 14 3.3 Inmunidad Inmunidad contra contra campos campos electromagné electromagnéticos ticos ............................................................... ...............................................................15 4. Requisitos Requisitos de emisión emisión en PDS ...................................................................... .............................................................................................. ........................16 4.1 Entallas Entallas de conmutación. conmutación....................................................................... .............................................................................................. ........................16 4.2 Armónicos presentes en las corrientes del PDS. ............................................................. 16 4.3 Fluctuacion Fluctuaciones es de tensión tensión ............................................................................................. ............................................................................................... .. 17 4.4 Emisión Emisión de armónicos armónicos en modo común ......................................................................... ......................................................................... 17 4.5 Limites básicos de emisión en alta frecuencia ................................................................ 17
5. Ejemplo de un PDS comercial .............................................................................................. 19 6. Conclusiones.......................................................................................................................21
Índice de figuras Figura 1 Ejemplo de Estabilizador de red que cumple con CISPR 16-1 de la marca AFJ. .............. 8 Figura 2 N9020A MXA Analizador de espectro de Agilent compatible con CISPR 16 .................. 9 Figura 3 Esquema para la medición de emisiones radiadas ...................................................... 10 Figura 4 Propagación de perturbaciones ................................................................................. 18 Figura 5 Familia de Variadores de Frecuencia ACSM1 de ABB .................................................. 19 Figura 6 Conexión del transformador de alimentación con apantallamiento ........................... 20
1. Introducción Este trabajo se centra en la explicación de que requisitos se deben cumplir referentes a la compatibilidad electromagnética (CEM) para poder certificar variadores de frecuencia (PDS) para accionamientos de motores. Cabe indicar que todo este conjunto de requisitos y especificaciones se encuentra recogido en la norma UNE-EN 61800-3 referente a los Accionamientos eléctricos de potencia de velocidad variable. Dentro de esta norma, todo el apartado de certificación se encuentra recogido en la parte 3 de la norma. Es decir para que un variador de frecuencia este autorizado para funcionar ya sea en una red pública o privada deba cumplir los requisitos impuestos por la norma UNE-EN 61800-3 (En lo que a compatibilidad electromagnética se refiere). Los PDS recogidos por esta norma deben cumplir las siguientes características:
Se trata de accionamientos de velocidad variable para motores de corriente alterna o corriente continua. Valido para todos los PDS que estén conectados a la red de corriente alterna con una tensión nominal de hasta 1000 V c.a. (valor eficaz).
Solo quedan cubiertos aquellos equipos instalados en entornos industriales y residenciales, con excepción de las aplicaciones de tracción y los vehículos eléctricos.
Un variador de frecuencia (PDS) se compone de un motor y de un módulo de accionamiento completo (CDM). Si el equipo incorporara alguna clase de transformador, este se incluye como parte integrante del CDM. No incluye el equipo que es accionado por el motor, obviamente podemos conectar cualquier tipo de motor o carga al variador de frecuencia. El CDM consta de un módulo de accionamiento básico (BDM) y sus posibles ampliaciones. El BDM contiene el convertidor, el equipo de control y las funciones de autoprotección. Existen diferentes categorías para aplicar la normativa de un PDS. Estas categorías se conocen como C2, C3 y C4.
Convertidor de categoría C2: Sistema de accionamiento de potencia con tensión
nominal inferior a 1.000 V que no sea ni un dispositivo enchufable ni móvil, destinado a ser instalado y puesto a punto técnicamente por un profesional cuando se utiliza en el primer entorno.
Convertidor de categoría C3 : Sistema de accionamiento de potencia con tensión
nominal inferior a 1.000 V, destinado a ser utilizado en el segundo entorno y no en el primero.
Convertidor de categoría C4: Sistema de accionamiento de potencia con tensión
nominal igual o superior a 1.000 V o intensidad nominal igual o superior a 400 A o destinado a ser utilizado en sistemas complejos en el segundo entorno. Cabe indicar que en este trabajo se repasaran algunos de los requisitos fundamentales en los accionamientos. No se entrara en detalle para cada requisito especificado en la norma. Además se realiza una definición de los principales equipos de medida que se utilizan para poder comprobar los niveles de perturbaciones conducidas y radiadas que genera el equipo a analizar. Una vez explicados los diferentes conceptos y requisitos que se miden, se pone un ejemplo de un variador de frecuencia comercial y se indica toda la información referente a compatibilidad electromagnética que incluye el fabricante. Por último se intenta buscar un presupuesto de cuanto costaría certificar un variador de frecuencia, o en su defecto que empresas tienen la potestad para poder certificarnos un PDS en cuanto a CEM se refiere.
1.2 Términos utilizados en el documento. Abreviaciones:
CEM: Compatibilidad Electromagnética.
PDS: Sistemas de accionamiento de potencia.
CDM: Motor y de un módulo de accionamiento completo.
BDM: Módulo de accionamiento básico.
Terminología referente a la norma:
Primer entorno: incluye instalaciones domésticas. También incluye establecimientos
conectados directamente y sin transformadores intermedios a una red de baja tensión que alimenta a edificios empleados con fines domésticos.
Segundo entorno: incluye establecimientos distintos de los conectados directamente a
una red de baja tensión que alimenta a edificios empleados con fines domésticos.
In situ: Lugar donde se encuentra instalado el equipo a ensayar para su uso normal por
parte de el usuario final. El equipo se puede ensayar allí.
Motor (del PDS): A los efectos de esta norma, el motor incluye todos los sensores que
estén montados en él y que sean los previstos para soportar el modo de funcionamiento y que interactúen con un módulo de accionamiento completo (CDM).
PCC, PCI, PC: Estas definiciones figuran en la CEI 61000-2-4. o
-PCC es el punto de acoplamiento común en una red pública.
o
-IPC es el punto de acoplamiento en la planta.
o
-PC es el punto de acoplamiento (para cualquiera de estos casos).
2. Información para el ensayo de PDS A continuación se detallarán los principales puntos a tener en cuanta a la hora de realizar ensayos de variadores de frecuencia. Para el cableado del componente en el ensayo, se utilizara el cableado recomendado por el fabricante. Los ensayos se podrán realizar in situ o en un local debidamente preparado para ello. El lugar no importa mientras se pueda reproducir correctamente el ensayo especificado por la norma EN 61800-3:1996. Cabe indicar que únicamente es necesario realizar los ensayos especificados en esta norma para certificar correctamente el accionamiento en cuestión. Para realizar el ensayo, se conectará el PDS a analizar junto a un motor estándar con unas características técnicas adecuadas al variador que se desee ensayar. El equipo se debe de conectar a tierra de la forma especificada por el fabricante. Cabe indicar que para las pruebas de emisión en alta frecuencia, la capacitancia parasita entre la carga y la tierra no se puede normalizar, aunque este valor oscila entre 1nF y 20 nF.
2.1 Medición de EMC en Conducción Uno de los puntos problemáticos en un PDS en lo referente a alta frecuencia son las conmutaciones que efectúan los convertidores que lleva incorporado. Estas conmutaciones presentan dv/dt muy elevados y son las principales fuentes de perturbación. Para poder analizar correctamente estas conmutaciones, se deben efectuar ensayos con carga reducida. . El método de ensayo será conforme a 7.2 a 7.4 y al capítulo 8 de CISPR 11, prestando especial atención a las conexiones a tierra.
2.1.1 Estabilizador de Red o LISN Para evaluar las emisiones de un PDS a nivel de conducidas, tenemos diferentes posibilidades. La primera es la de crear una red ficticia (utilizando una LISN) de 50 Ohmios o 50 µH según marca la norma CISPR 16-1. También se puede utilizar una sonda de tensión según la norma CISPR 16-1 donde no se pueda aplicar una red ficticia. La Figura 1 muestra dos LISN de la casa AFJ que cumplen exactamente con la especificación de la norma EN 61800-3:1996. Para las mediciones in situ de la tensión perturbadora de la red, se deberá utilizar una sonda de tensión sin red ficticia (CISPR 11). Lo mismo es aplicable si el PDS tiene una corriente de entrada superior a 100 A, o si la tensión de entrada es superior o igual a 500 V, o si el PDS contiene un convertidor conmutado por red.
Figura 1 Ejemplo de Estabilizador de red que cumple con CISPR 16- 1 de la marca AFJ.
Cabe indicar que existen casos en los que nos e puede utilizar una LISN. A bajas frecuencias las inductancias internas de la LISN pueden añadir hasta 300µH. Esta impedancia puede hacer empeorar el comportamiento del PDS y en estos casos no se puede utilizar. Las LISN son aptas para uso con PDS hasta 100 A, por lo que no se pueden emplear para PDS .con un calibre superior. Para un PDS de gran potencia, la impedancia de la red será más baja que la impedancia de la red ficticia. En este caso el uso de una red ficticia daría unas lecturas excesivamente elevadas.
2.1.2 Analizador de espectros La medida de emisiones conducidas es una de las medidas más comunes en compatibilidad electromagnética. El sistema de medida no es muy complicado y puede emplearse instrumentación de uso general como un analizador de espectros para efectuar la medida una vez conectada la LISN. Todos los analizadores de espectros conformes con al CISPR 16-1, no producen ningún problema y son totalmente compatibles con la medidas de EMI tanto en alta como en baja frecuencia para el análisis de CEM en los variadores de frecuencia. Si el analizador de espectros no tiene el ancho de banda necesario o la selectividad de entrada suficientemente elevadas, se pueden producir errores por intermodulación. Además el CISPR indica que los analizadores de espectros empleen receptores especiales conocidos como receptores de cuasi-cresta y de valor medio, tenemos que asegurarnos que el analizador de espectros que seleccionemos lo lleve.
Para medir las perturbaciones en los terminales de red (conducidas) en un PDS, el analizador de espectros debe cubrir un rango de frecuencias que va desde los 150 kHz hasta los 30 MHz. Para poder usar este analizador, debe contar con detectores de valor medio y de cuasi cresta, a demás debe contar con una Resolution Band With de 9kHz. En algunos receptores también está disponible la gama de frecuencias de 9 kHz a 150 kHz. En esta gama de frecuencias debe haber disponible un detector cuasi-cresta y la anchura de banda debe ser de 200 Hz. Si el analizador de espectros se utiliza para medir las perturbaciones originadas por radiaciones electromagnéticas, debe ser capaz de cubrir un ancho de banda de 30MHz a 1 GHz y tener un detector de cuasi-cresta y un RBW de 120 kHZ. La Figura 2 muestra un analizador de espectros de Agilent N9020A MXA acorde con CISPR 16 apto para la lectura de CEM en variadores de frecuencia. c
Figura 2 N9020A MXA Analizador de espectro de Agilent compatible con CISPR 16
2.2 Medición de la radiación Las emisiones radiadas no intencionadas generadas el PDS han de ser medidas para corroborar que no puedan alcanzar un nivel que interfiera con el funcionamiento de otros equipos a su alrededor. Este nivel depende del equipo y se recoge en la norma de aplicación recogida en el CISPR 11. La configuración típica de ensayo comprende los elementos mostrados en el siguiente esquema:
Figura 3 Esquema para la medición de emisiones radiadas
De acuerdo con el capítulo 10 de CISPR 11, las mediciones de radiación in situ se efectúan con la distancia medida "desde el muro exterior fuera del edificio en el cual esté situado el PDS". La distancia donde se situará la antena depende de en que emplazamiento se conectará el equipo. Para equipos conectados a la red pública, se podrán medir in situ o en centros de ensayo. La distancia de la antena será de 10 metros. Si la corriente del equipo fuera demasiado elevada, las pruebas no se harían in situ y pasarían a hacerse en campo abierto o bajo condiciones controladas, siempre y cuando permita su completa repetitividad. Para equipos en redes industriales, se podrán medir también in situ o en lugares específicos. La distancia de la antena será de 30m o 10m. En caso de ser de 10m, los límites relativos a la distancia de 30m se deben incrementar en 1 0 dB. Cuando los equipos se miden in situ la disposición del cableado y de conexión a tierra debe de ser idéntica a la que tendrá una vez funcionando. Cuando el equipo se mide en un lugar para ensayos y no se conoce la disposición final del cableado, se elegirá para el cable del motor una longitud que sea representativa de una aplicación normal prevista, y por lo menos de 5 m.
3. Requisitos de inmunidad de un PDS. El ensayo de inmunidad, a grandes rasgos, consiste en someter el PDS a perturbaciones de origen electromagnético generadas por terceros y ver en que medida afecta esta perturbación al correcto funcionamiento del sistema. Los ensayos de inmunidad a los campos electromagnéticos radiados pueden efectuarse en la gama de frecuencias de26 MHz a 1 GHz. En función de las características de funcionamiento de un PDS, podemos dividir los diferentes subsistemas a ensayar en tres grupos de prestaciones intrínsecas:
Funcionamiento de la electrónica de potencia y de los circuitos de excitación.
Funciones de tratamiento y adquisición de información.
Funcionamiento de la pantalla y cuadros de mando.
Por lo tanto, se dirá que un equipo cumple los requisitos de inmunidad cuando supere exitosamente las pruebas realizadas en los tres gr upos de funcionalidades diferentes. Se puede hacer un ensayo como generador de par, pero solo si lo solicita el cliente ya que es una propiedad específica. Por lo tanto, el comportamiento como generador de par quedara excluido de este trabajo. El ensayo de las funciones de tratamiento y adquisición de información, incluyendo los accesorios opcionales si los hay, se llevará a cabo únicamente en aquellos casos en que los accesos o interfaces correspondientes estén disponibles en el PDS.
Criterios de aceptación / Prestaciones Punto A
Prestaciones especificas Generalidades de la calificación en cuestión.
B
C
Ninguna variaci6n perceptible en las características de funcionamiento
Cambios perceptibles (ópticos 0 acústicos) en las características de funcionamiento
Parada, cambios en las características de funcionamiento. Disparo de dispositivos de protecci6n
FUNCIONA TAL COMO ESTA PREVISTO
AUTORRECUPERA BLE
Prestaciones intrínsecas. Funcionamiento de la electrónica de potencia y de sus circuitos excitadores
No hay avería de un semiconductor de potencia
NO AUTORRECUPERABL E Parada, disparo de dispositivos de protecci6n
Avería temporal que no puede ser causa de una parada no intencionada NO del accionamiento AUTORRECUPERABL E
Errores de comunicación, Comunicación perdida de datos e Prestaciones intrínsecas No hay perturbación en la temporalmente información comunicación e intercambio perturbada, pero sin Funciones de adquisición y de datos con dispositivos ningún mensaje de error tratamiento de la NO exteriores de Ios dispositivos información AUTORRECUPERABL internos o externos que Parada, perdida No hay cambios en la permanente de información visual Prestaciones intrínsecas Cambios de información información 0 regimen presentada, solo ligera temporales visibles, Funcionamiento de de fluctuación en la intensidad iluminación no deseada pantallas y cuadros de funcionamiento luminosa de Ios LED o de Ios LED prohibido, mando ligero movimiento de Ios presentación de caracteres
Tabla 1 Criterios de aceptación de un PDS frente a perturbaciones electromagnéticas
La Tabla 1 muestra un resumen de los efectos de una determinada perturbación en tres criterios de aceptación/prestaciones A, B y C, cada uno de los cuales define un nivel respuesta a la perturbación electromagnética diferente, donde A es que el sistema no resulta
prácticamente afectado y la C que el PDS resulta muy afectado por la perturbación. Esta tabla se aplicará para cada requisito deseado. En cada requisito se indicará que calificación mínima debe obtener el PDS para que este supere el requisito establecido por la norma. Referente a las pruebas y ensayos de inmunidad, estos se suelen efectuar aplicando una carga ligera al motor conectado al PDS. Cabe indicar que las condiciones de carga no afectan prácticamente a las pruebas de inmunidad de un PDS. Los fallos de circuitos de potencia y de control se deben generalmente a niveles dañinos de tensión y no de intensidad. Por otra parte, los ensayos realizados con una carga reducida no detectan las pequeñas variaciones de ajuste del circuito de protección, es decir de sobre intensidad y sobretensión. Si estos niveles son críticos para el funcionamiento adecuado de un PDS, el ensayo debe comprobar la inmunidad en estos puntos de funcionamiento. Si se cumplen las condiciones anteriores, y el DPS no es sensible a los ajustes de las protecciones del circuito se puede emplear un ensayo de vacío, con el motor girando en vacío sin carga para comprobar las características de CEM. Para ensayar las prestaciones de la función de adquisición o tratamiento de la información se deberá disponer de un equipo adecuado que permita simular la comunicación de datos o la evaluación de datos. Este equipo deberá tener suficiente inmunidad para poder funcionar correctamente durante el ensayo.
3.1 Inmunidad a Perturbaciones de baja frecuencia A continuación se definirán los diferentes requisitos que debe cumplir un PDS para cumplir la norma EN 61800-3 en lo referente a inmunidad a perturbaciones de baja frecuencia.
3.1.1 Armónicos y distorsión de la tensión. Este punto aborda la máxima distorsión armónica que puede soportar el PDS. Los armónicos presentes en la tensión del PDS pueden tener un THD máximo del 10% para redes públicas, y un 8% para las industriales en condiciones de régimen permanente. Para certificar si un equipo es valido o no, se utilizará el criterio de aceptación A. Para régimen transitorio se mantendrán los porcentajes anteriores pero multiplicados por un factor de 1,5. El criterio de aceptación en este momento será el B.
3.1.2 Entallas de conmutación Muchos convertidores alojados en el variador producen entallas de conmutación. Las entallas se definen por su profundidad (d, en % de U LWM) y por su superficie (en % x grados). Estas
entallas se ven mejor reflejadas en un análisis temporal. Se debe comprobar que el PDS como mínimo presente una inmunidad, según el CEI 600146-1-1, de clase B. Es decir, el equipo debe de ser inmune a una entalla de un 40% de profundidad y una superficie de 250 % x grados. Respecto de los resultados, se utilizara el criterio de aceptación A.
3.1.3 Fluctuaciones de tensión El sistema tiene que ser inmune a fluctuaciones de tensión del orden de ± 10% de la amplitud nominal. Estas fluctuaciones pueden tener como máximo una duración de 1 minuto. El criterio de aceptación será el A. Cabe indicar que al ensayar este requisito, se puede ver modificadas las variables de velocidad y par a la salida del motor.
3.1.4 Huecos e interrupciones breves Los huecos e interrupciones breves son reducciones de la tensión de alimentación que quedan fuera de la gama de fluctuaciones. Se definen como perdidas de entre el 10 % y el 100% de la tensión nominal con una duración inferior a u minuto. Es difícil poder prevenir el comportamiento del PDS delante de un hueco de tensión. Por ese motivo para obtener este requisito, se debe de efectuar el ensayo y usar un criterio de aceptación como mínimo de C. Cabe indicar que se debe de proporcionar información a los usuarios de que comportamiento tiene el PDS delante de un corte momentáneo de alimentación o un hueco de tensión. Para ensayar esta característica, bastaría con retirar momentáneamente el cable de alimentación del equipo y observar su comportamiento.
3.1.5 Desequilibrio de tensión. Estos desequilibrios son causados por cargas monofásicas individual es en sistemas trifásicos. El nivel de inmunidad requerido para pasar la norma debe de ser como mínimo igual al mismo valor que el nivel de compatibilidad en el punto de acoplamiento considerado. Este nivel de compatibilidad varía del 3% al 2% en función de el punto de acoplamiento considerado (PC).
3.1.6 Variaciones de frecuencia. Las variaciones de frecuencia se encuentran reguladas por el sistema de control del variador de frecuencia. El único punto crítico puede ser la rapidez con la que cambian las variaciones de frecuencia. La inmunidad frente a las perturbaciones debidas a las diferentes velocidades de cambio vienen definidas en la CEI 61000-2-4 y son entre el ±2% o ±4 % en función de la clase y al tipo de red de alimentación a la que se quiera conectar el PDS.
3.1.7 Modo común a la frecuencia de la red Debe tenerse en cuenta la transmisión de que la transmisión de señales en modo común es susceptible de sufrir interferencias en entornos perturbados y en líneas de transmisión de datos de más de 2 metros. Debe de indicarse que puertos transmiten de forma diferencial y cuales no ya que pueden aparecer perturbaciones de modo común si uno de los terminales de un canal diferencial se conecta a tierra.
3.2 Inmunidad a perturbaciones de alta frecuencia Para comprobar si un accionamiento cumple los requisitos establecidos para perturbaciones de alta frecuencia, se tiene que conocer primero a que entorno irá destinado. Existen dos entornos, un primero que indica que el PDS va a ser conectado a una red pública de baja tensión o un segundo entorno que indica que el PDS se conectará a una red puramente industrial.
Tabla 2 Requisitos mínimos de inmunidad en PDS previstos para uso en entorno público
La Tabla 2 muestra Requisitos mínimos de inmunidad en PDS previstos para uso en entorno público mientras que la Tabla 3 muestra los requisitos mínimos de inmunidad para ser utilizado en un entorno industrial. Los criterios de aceptación son los mostrados en el apartado 3 y contenidos en la Tabla 1.
Tabla 3 Requisitos mínimos de inmunidad en PDS previstos para uso en entorno Industrial
1) Si el CDM es una unidad de bastidor o chasis abierto o tiene clasificaci6n IP00, noes posible efectuar ensayos, y están prohibidos por razones de seguridad. 2) Accesos de potencia para intensidad nominal < 100 A: acoplamiento directo, utilizando la red de acoplamiento y de desacoplamiento. Accesos de potencia con corriente nominal<': I 00 A: acoplamiento directo o pinza capacitiva sin red de desacoplo. Si se utiliza la pinza capacitiva, el nivel de ensayo debería ser de 2 kV/5 kHz. 3) Aplicable únicamente a accesos de entrada de potencia de c.a y únicamente si se dispone normalmente de un equipo de ensayo adecuado. No se debería rebasar la tensión de impulsos nominal del aislamiento básico (según se indica en la CEI 60664-1) 4) Acoplamiento de fase a fase. 5) Acoplamiento de fase a tierra. 6) Aplicable únicamente a accesos o interfaces con cables cuya longitud total pueda ser superior a 2 m de acuerdo con la especificación funcional del fabricante.
3.3 Inmunidad contra campos electromagnéticos Los ensayos referidos en este apartado se utilizaran para comprobar la inmunidad del variador de frecuencia con respecto a otros sistemas que trabajan en elevadas frecuencias ( ICM). Se efectuará un ensayo que cubra el rango de frecuencias comprendido entre los 26MHz y los 1000MHz. La amplitud de la perturbación será de 10 V/m para los equipos en entornos industriales y de 3V/m para los conectados a la red doméstica. No se esperan perturbaciones por debajo de los 26 MHz, por lo tanto no se deben efectuar ensayos de inmunidad pro debajo de esta frecuencia. Referente a los campos EM de bajo nivel, siempre y cuando se realice una disponibilidad operacional intrínseca, los campos radiados de otros PDS y otros equipos comerciales no deberían de causar ningún problema en el PDS bajo
análisis de inmunidad. Los ensayos de acuerdo con CEI 61000-4-3 con 3 V/m pueden presentar problemas de inmunidad únicamente para campos EM de bajo nivel . En lo referente a los campos EM de alto nivel, se tiene que tener especial cuidado con los transmisores que trabajen a menos de un metro del equipo a ensayar. Los equipos de comunicación son los elementos que principalmente afectan a l os PDS.
4. Requisitos de emisión en PDS En este punto se especifica en al norma EN 61800-3:1996 las máximas emisiones de perturbaciones de tipo EMI que nuestro equipo PDS puede producir. Algunas veces resultan muy costosos estos análisis y basta con una simple simulación o los cálculos teóricos si así lo pactan el fabricante y el cliente. Cabe indicar que dentro de un PDS la principal causa de perturbación EMI son las conmutaciones producidas en los convertidores o inversores que controlan el motor. Por lo tanto puede emitir perturbaciones de alta o baja frecuencia. Las perturbaciones con frecuencias fundamentales inferiores a 9 kHz son las producidas por el PSD al suministrar energía al motor. Las de mayores frecuencias se pueden producir por el ondulador o el reloj del microprocesador. A continuación se detallan algunos de los requisitos necesarios para cumplir la norma.
4.1 Entallas de conmutación. La profundidad máxima de las entallas emitidas al conmutar varía en función de si el dispositivo se conectará a una red pública o a una industrial. Para la red pública basta con que el equipo no supere las emisiones máximas establecidas por el distribuidor local. Para las industriales funciona de la misma forma, pero si el equipo rebasa una profundidad de entalla del 40% deberá pactarlo con el usuario.
4.2 Armónicos presentes en las corrientes del PDS. Se deberán documentar los armónicos en condiciones nominales de carga, el porcentaje de al corriente fundamental que suponen. Los valores de referencia de estos armónicos se calcularan hasta un orden mínimo de 25. El THD de la corriente se calculará cogiendo hasta el armónico de orden 40 y su PHD de alta frecuencia del orden 14 al 40. Para calcular estos armónicos se supondrá que el sistema esta conectado a una red con una impedancia óhmica pura.
4.3 Fluctuaciones de tensión Las fluctuaciones de tensión son originadas por la red donde se instala el PDS y no por el sistema en sí, así que la emisión de fluctuaciones es problema del instalador y de la red y no se debe tener ninguna consideración de este tipo de emisiones por parte del PDS.
4.4 Emisión de armónicos en modo común (Tensión de baja frecuencia en modo común). La frecuencia de conmutación del convertidor del PDS se encuentra a menudo dentro de la gama de frecuencias audibles, y en especial en la gama de frecuencias utilizada corrientemente por los sistemas telefónicos (300 Hz -3 400 Hz). Esto se debe tener en cuenta al instalar el PDS. Por lo tanto para evitar el riesgo de diafonía con cables sensibles de señales de teléfonos, sistemas de intercomunicación y similares, el cable del interfaz de potencia se debe separar de los cables de señales sensibles. Además se recomienda que los cables de comunicación se encuentren debidamente apantallados para evitar en mayor medida la influencia de las emisiones de los cables de potencia
4.5 Limites básicos de emisión en alta frecuencia Para el primer entorno o ámbito domestico, o equipos conectados a la red publica, se deben de cumplir las normas especificadas en la. Para poder reproducir los valores de la tabla, se entiende que el sistema esta conectado a una alimentación nominal entre fases igual a 500V y que uno de los puntos de la instalación se encuentra conectado a tierra. Los límites de la perturbación en los terminales de red se muestran en la Tabla 4. En cambio, los valores para perturbación de radiación electromagnética se muestran en la Tabla 5 se muestran los límites para las perturbaciones radiadas.
Tabla 4 Valores límite de la tensión de perturbación en los terminales de la red. F=[150kHz a 30 MHz].
Tabla 5 Valores de los límites para la perturbaciones electromagnética radiada en a banda de frecuencia de 30 MHz a 1000 MHz según CISPR 11
Para los PDS instalados en el segundo entorno, el usuario deberá asegurarse no se induzcan excesivas perturbaciones en las redes de baja tensión del vecindario, incluso si la propagación es a través de la red de media tensión. Si existen problemas o discrepancias entre el usuario de un PDS y una victima de perturbación radiada, se efectuara una medición in situ de la tensión perturbadora propagada en el secundario de baja tensión en el transformador de medida situado donde esta la victima. Según muestra la Figura 4.
Figura 4 Propagación de perturbaciones
5. Ejemplo de un PDS comercial A continuación se ejemplificara un modelo concreto de PDS comercial y se verá que información respecto a CEM indica el fabricante y como efectivamente la norma que cumple es la EN 61800-3. El modelo seleccionado es el Controlador para motores ABB modelo ACSM1. Estos convertidores industriales de ABB pueden controlar motores de 0,75 hasta 160 kW. Ofrecen control de velocidad, par y movimiento para cualquier tipo de aplicación. Pueden controlar servos de inducción, síncronos y asíncronos, así como motores de par elevado mediante diversos dispositivos de realimentación. Incorpora interfície de comunicación como data logger y monitorización de variables directamente del motor.
Figura 5 Familia de Variadores de Frecuencia ACSM1 de ABB
Si nos fijamos en el apartado de compatibilidad electromagnética de este dispositivo, podemos ver como cumple las normas de EN 61800-3(2004) y las cumple en las categorías C2, C3 y C4. Esta normativa se corresponde con la directiva EMC (directiva 73/23/CEE, modificada por 93/68/CEE y directiva 89/336/CEE, modificada por 2004/68/CEE). En el manual del convertidor se detalla para cada categoría como se cumple la norma EN 61800-3.
Cumplimiento de la norma EN 61800-3 (2004), categoría C2 y C3
1. El convertidor está equipado con un filtro de red opcional JFI -xx. 2. Los cables de control y motor se seleccionan según se especifica en el capítulo Planificación de la instalación eléctrica. 3. El convertidor de frecuencia se instala según las instrucciones de este manual. 4. La longitud de los cables a motor no superan los 50 metros (164 pies). Cumplimiento de la norma EN 61800-3 (2004), categoría C4
1. Se garantiza que no se propaga una emisión excesiva a las redes de baja tensión situadas en los alrededores. En algunos casos basta con la supresión natural causada por los transformadores y los cables. En caso de duda puede utilizarse un transformador de alimentación con apantallamiento estático entre el arroll amiento primario y el secundario.
Figura 6 Conexión del transformador de alimentación con apantallamiento
2. Se elabora un plan EMC para la prevención de perturbaciones en la instalación. El representante de ABB local dispone de una plantilla. 3. Los cables de control y motor se seleccionan según se especifica en el capítulo Planificación de la instalación eléctrica. 4. El convertidor de frecuencia se instala según las instrucciones de este manual. Cabe indicar que ABB dispone además de un manual para la correcta conexión de sus sistemas y la reducción de los problemas de CEM para poder superar los ensayos in situ. Hemos podido demostrar como efectivamente la norma que rige el diseño de los PDS en referente a la compatibilidad electromagnética, y como un producto comercial de PDS la cumple.
6. Conclusiones A lo largo de este trabajo se han podido comprobar que requisitos se deben de cumplir para que los variadores de frecuencia o PDS se puedan certificar correctamente. Cabe indicar que esta norma es la UNE EN 61800-3. A grandes rasgos existen dos grupos de requisitos que debe cumplir un PDS. El primero tiene que ver con la inmunidad del equipo a la recepción de perturbaciones electromagnéticas del exterior. La segunda con los niveles de emisión de perturbaciones hacia el exterior. Se ha podido observar como se establecen los requisitos de inmunidad separando los resultados en tres niveles de aceptación en función de si resulta el equipo afectado o no. Para las diferentes pruebas de inmunidad se establecen los niveles mínimos que debe presentar el dispositivo. En cuanto al ensayo y medición de los resultados se utiliza básicamente una red estabilizadora o LISN y un analizador de espectros compatible con la normativa CISPR 16. Cabe indicar que algunos de los análisis de emisiones son algo complejos de realiza. Estos se suelen hacer de forma teórica o bajo simulación y los resultados se pactan con el usuario final del PSD. En este trabajo también se pidió dar un precio orientativo a una certificación, pero esto no ha sido posible dado que dependen en gran medida de las características del inversor. En cambio, se dará un listado completo de las diferentes empresas asociadas a ENAC (Entidad Nacional de Acreditación) con potestad para poder realizar los ensayos en el campo de la compatibilidad electromagnética en el ámbito de Cataluña. Existen
dos
empresas
TECHNOLOGICAL
acreditadas,
CENTER,
S.A.
con
la la
primera
pertenece
acreditación
de
al
grupo
9/LE900
-
Applus,
LGAI
Compatibilidad
electromagnética. Este centro está situado en el campus universitario de la universidad autónoma de Bellaterra.
El segundo centro IDNEO Technologies, S.L. se encuentra de
Viladecaballs y tiene el certificado 827/LE1882 - Compatibilidad electromagnética.