A!!ele"ation #a!to" d$e to Wind 5oing condition) [Item No. : V-45001] 1. Wind load : Fw (ASCE 7-05 1) Design data Wind velocity m!ortant "actor
Vo =
94.63 Mile/Hr =
=
1
#$!os%re &ate"ories
D
#$!os%re "actor
'( =
.9*
+%st e""ective "actor
+" =
.,*
-a!e "actor
&" =
.,
Hill #scar!ment
'(t =
1
0%tside diameter
Do =
4.*4 m
H =
2*.66* m
ti =
.1 m
#m!ty eigt
We =
,6 g
0!erating eigt
Wo =
434933 g
est eigt
Wt =
4932,, g
#""ective lengt icness o" ins%lation
2) &alc%lation a) Velocity Velocity 5Wind) 5Wind) !ress%r !ress%re e 7o = .2*6 8 '( 8 '(t 8 Vo 8 =
21.::9 l;/"t² =
16.34 g/m²
;) #""ective #""ective diameter diameter De = 1.2 8 5Do < 2 8 ti) = 1.2 8 54.*4 < 2 8 .1) =
*.6,, m
c) #""ect #""ective ive area area "l = > 8 De / 4 = > 8 *.6,, *.6,, / 4 = "t = De 8 H = *.6,, *.6,, 8 2*.66* 2*.66* =
4.46, m 14*.9,3 m
e) Wind Wind "or "orce ce ?l = 7o 8 +" 8 &" 8 "l = 16.34 8 .,* 8 ., 8 4.46, = ?t = 7o 8 +" 8 &" 8 "t = 16.34 8 .,* 8 ., 8 14*.9,3 = 3) Wind "orce "actor a) &ross cceleration a$ = ?t / Wo
.2* g
;) @ongit%dinal cceleration ay = ?l / Wo
.1 g
323.9 g 1**6.21 g
42.3 m/s
SA/E F&) S/IIN% SIE
(owin !ondition
5Ae"er to B-tresses in @arge &ylindrical Cress%re Vessels on o -addle -%!!ortsB ;y @.C. ic) [Item No. : V-45001] %E&'E)* IN+, :. ℃
Design Cress%re 5internal)
DCi =
.3* MCa MCa Desig Design n em!er em!ert%r t%re e
Di =
Design Cress%re 5e$ternal)
DCe =
.1 MCa MCa Desig Design n em!er em!ert%r t%re e
De =
1*. ℃
-ell material
-E*16 :
Weigt o" o!erating condition
Wo =
434933. g
-addle material
-E*16 :
Weigt o" em!ty condition
We =
,6. g
-addle constr%ction is
&enter We;
Distance .@ to "i$ed saddle
1 =
3*. mm
-ell lloa;le stress at D.
-as =
13,. MCa itan!e ./ to Slidin addle
A 2
496*. mm
-addle lloa;le stress at MF.
-sd =
1,3.4 MCa De D e!t o" eads
H=
112*. mm
-addle yield stress
-sy =
262. MCa Wear !late ticness
t! =
2. mm
Distance to &o+ "rom dat%m
+=
114,*.6 mm Wear Wear !lat !late e id idt t
W =
**. mm
angent to angent lengt
@=
2*66*. mm Wear Wear !lat !late e cont contact act angle angle
7 =
1,. deg
1:2. mm We; !late ticness
t =
2,. mm
#=
4:6. mm
19. mm Fase !late idt
?=
3*. mm
226.* mm m m Fase !late ticness
t; =
3,. mm
-addle se!aration
@s =
Vessel o%tside diameter diameter
Do =
Vessel 0DED 5corroded condition) condition) tss =
Vessel o%tside mean mean radi%s
Am =
4*4. mm Fase !late lengt
Distance to &o+ "rom "i$ed saddle @s1 =
:996.6 mm G%m;er o" ri;s
n=
itan!e to Co% #"om lidin addle / 2
923.4 mm Ai; ticness
tr =
-addle eigt o" &.0.+ "or staced condition
-addle eigt
= c =
E mm ncor ncor5or 5or -ett -etting ing)) ;olt ;olt si(e si(e 2**. mm ncor ncor5or 5or -ett -etting ing)) ;olt mate materia riall
6. 2,. mm M42
E
-E32* 1
E
-addle contact angle
7=
16,. deg ncor5or -etting) ;olt alloa;le tensile -at =
3,9.2 MCa
-addle idt
F=
3*. mm ncor5or -etting) ;olt alloa;le sear -as =
3,9.2 MCa
nstallation o" -ti""ener ring
yes
-ti""ener ring si(e
1 ncor5or -etting) -etting) ;olts !er saddle
E3*$3*$t3/3
Fase coe""icient o" "riction 5-teel to -teel)
n =
1.
E
m=
.4
E
!!lica;le load load 5as !er B @0D &0MFG0GB &0MFG0G B seet acceleration d%e to ind calc%lation) &ross acceleration
a$ = $ < a$ = .39
<
.2*
=
0.415
g
@ong. acceleration
ay = y < ay = .1
<
.1
=
0.101
g
Vertical acceleration
a( =
=
0.330
g
β=
1.6:6
rad.
Δ =
3.142
rad.
α =
1.*92
rad.
-addle "actor
.33
E
Gote. Wen te vessel is sti""ened ;y ead 5 A 5 A /Am I .*) .*) or ring ring sti""enerJ sti""enerJ K is taen taen as > 53.141*9) 53.141*9)
CA/C,/AI&N 1. -addle reactions $e to dead load (oe"atin weit : Wo 1) t "i$ed side A" = Wo $ @s2 / @s =
434933 $ 923.4 / 1:2
=
232:24.*6
g
=
22,224,.31
G
434933 $ :996.6 / 1:2
=
222,.4*
g
=
19,29,:.*
G
2) t sliding side As = Wo $ @s1 / @s =
$e to !om6ination load on lidin ide (WIN WAVE '&I&N 3) &om;ination loadJ V& = a$ $ As =
.41* $ 19,29,:.*
=
,22939.,2 G
V@ = ay $ As =
.11 $ 19,29,:.*
=
22,1.:4 G
Vv = a( $ As =
.33 $ 19,29,:.*
=
6*43,*.,, G
=
6,4J:,., G
WereJ V@ &ross sear acting on sliding saddle V& @ongit%dinal sear acting on sliding saddleL&ross section Vv Vertical "orce acting on sliding saddle 4) -addle reactions d%e to eigt < com;ination load E &om;ination longit%dinal reactionJ 1 1 = V@ $ c / @s < Vv =
22,1.:4 $ 2** / 1:2 < 6*43,*.,,
E &om;ination transverse reactionJ t t = V& $ c / 5Am $ sin57/2)) < Vv =
,22939.,2 $ 2** / 5 226.* $ sin 5 16, / 2 )) < 6*43,*.,, =
1J*,:J,32.3 G
=
3J*:J,19., G
= Weigt on saddle < larger o" t or 1 = 19,29,:.*G < larger o" 1*,:,32.31G or 6,4:,.,2G 2. Moment and sear "orce 1) Ma$im%m ;ending moment M1J at mids!an M1 = $ @ / 4 $ 5551<2 $ 55Am 2 < H2) / @2)) / 51<554 $ H) / 53 $ @)))) E 554 $ 2) / @)) = 3*:,19.,1$2*66*/4$5551<2$55226.*<112*)/2*66*))/51<54$5112*)/53$2*66*))))E554$496*)/2*66*)) =
433661*29., GEmm
2) Ma$im%m ;ending moment in te !lane o" te saddle M2J M2 = $ 2 $ 51 E 5551 E 52 / @) < 55Am 2 E H2) / 52 $ 2 $ @))) / 51 < 554 $ H) / 53 $ @)))) = 3*:,19.,1$496*$51E5551E5496*/2*66*)<55226.*E112*)/52$496*$2*66*)))/51<554$112*)/53$2*66*)))) = 3966693444.26 GEmm 3) -ear "orce V = $ 5@ E 2 $ 2 E H) / 5@ < H) = 3*:,19.,1 $ 52*66* E 2 $ 496* E 112*) / 52*66* < 112*) =
194:3*6.39 G
3. -ection mod%l%s 1) Feteen saddle 1 = > $ Am2 $ tss = > $ 226.* $ 19
=
3*,,,9.3 mm³
2) t saddle 2 2 = π $ Am2 $ tss $ 55 Δ < sinK $ cosK E 52 $ 5sin K)/K)) / 5π $ 5sinK / K) E cosK))
= >$226.*$19$553.142$5sin3.142/3.142)Ecos3.142)) =
3*12:**,.,9 mm³
4. -tress at sell 1) @ongit%dinal ;ending stress ;eteen saddle -1 = M1 / 1 =
433661*29., / 3*,,,9.3 =
-2 = E -1 =
=
14.22
G/mm²
=
E14.22
G/mm²
=
13.1
G/mm²
=
E13.1
G/mm²
2) @ongit%dinal ;ending stress at saddle -3 = M2 / 2 =
3966693444.26 / 3*12:**,.,9 =
-4 = E -3 = 3) &irc%m"erential stress at orn o" saddle 5Wit sti""ener ring) G%m;er o" ringJ
n=
rea o" ringJ
1 ea
r = 26,12.6:1 mm²
-ection mod%l%s o" ringJ ield strengt o" ringJ 5-ame sell material)
s =
2,234: mm³
" =
3*329:: mm³
-yr =
?actorJ '6 =
.2243 5according to a;le 4.1*.1 o" -M# -#& V D2.)
?actorJ ', =
.3:633 5according to a;le 4.1*.1 o" -M# -#& V D2.)
262 G/mm²
3E1) -tress in sell -* = E55', $ ) / 5n $ r))<55'6 $ $ Am) / 5n $ s)) = E55.3:633 $ 3*:,19.,1) / 51 $ 26,12.6:13334)) < 55.2243 $ 3*:,19.,1 $ 226.*) / 51 $ 2,2346.*1*31,4)) =
14.1 G/mm²
3E2) -tress in ring -6 = E55', $ ) / 5n $ r))E55'6 $ $ Am) / 5n $ ")) = E55.3:633 $ 3*:,19.,1) / 51 $ 26,12.6:13334)) E 55.2243 $ 3*:,19.,1 $ 226.*) / 51 $ 3*329::.22314:9)) =
E11.3: G/mm²
4) angential sear stress ?actorJ '4 = 1 / π =
.319
-ts = 5'4 $ V) / 5Am $ tss) = 5.319 $ 194:3*6.39) / 5226.* $ 19)
=
14.4:
G/mm²
*) Aing com!ression in sell over te saddle ?actorJ '9 = 51 < cos5α)) / 5π E α < sin5α) $ cos5α)) = 51 < &0-51.*92)) / 55> E 1.*92 < -G51.*92) 8 &0-51.*92))
=
.6*
=
1,1.44
G/mm²
=
2.:4
G/mm²
=
E*.93
G/mm²
=
41.4,
G/mm²
=
E11.,6
G/mm²
=
34.96
G/mm²
=
E2.1*
G/mm²
=
**.49
G/mm²
=
E11.,6
G/mm²
=
E11.3:
G/mm²
-: = 5'9 $ ) / 5tss $ 5F < 1.*6 $ s7r5Am $ tss))) = 5.6* $ 3*:,19.,1) / 519 $ 53* < 1.*6 $ s7r5226.* $ 19))) 6) @ongit%dinal tension stess d%e to !ress%re -, = 5DCi $ 5Do E 2 $ tss)) / 54 $ tss) = 5.3* $ 54*4 E 2 $ 19)) / 54 $ 19) :) @ongit%dinal com!ression stress d%e to !ress%re -9 = 5EDCe $ 5Do E 2 $ tss)) / 54 $ tss) = 5E.1 $ 54*4 E 2 $ 19)) / 54 $ 19) ,) &irc%m"erential tension stress d%e to !ress%re -1 = 2 $ -1 = 2 $ 2.:4 9) &irc%m"erential com!ression stress d%e to !ress%re -11 = 2 $ -11 = 2 $ E*.93 *. &om;ination o" stress 1) @ongit%dinal tension stress -@ = -, < @arger o" -1 or -3 2) @ongit%dinal com!ression stress -@& = -9 < smaller o" -2 or -4 3) &irc%m"erential tension stress -& = -1 < i" -* is !ositive 4) &irc%m"erential com!ression stress -&& = -11 < i" -* is negative *) -ear stress -- = -6 8. )e$lt -@
=
34.96 G/mm²
9
# $ -as
=
11:.3 G/mm²
→ A!!et
-@&
=
E2.1* G/mm²
9
-ac
=
93., G/mm²
→ A!!et
-&
=
**.49 G/mm²
9
1.2 $ -as
=
16*.6 G/mm²
→ A!!et
-&&
=
E11.,6 G/mm²
9
# $ -as
=
11:.3 G/mm²
→ A!!et
--
=
E11.3: G/mm²
9
., $ -as
=
11.4 G/mm²
→ A!!et
WereJ #N Ooint e""iciency o" sell
=
.,*
:. -tress in saddle 1) -tress d%e to eigt ?actorJ '1 =
.29424
--1 = 5'1 $ ) / 55Am $ t) / 3) = 5.29424 $ 3*:,19.,1) / 55226.* $ 2,) / 3)
=
49.,
G/mm²
2) -tress at saddle d%e to ori(ontal "orce 2E1) @ongit%dinal direction "orce @ =
346:6*3 mm³
M@ = V@ $ c = 22,1.:4 $ 2**
=
--2 = M@ / @ = *1:1,43: / 346:6*2.91
*1:1,43: =
14:.29
GEmm G/mm²
2E2) &irc%m"erentia direction "orce & =
1132196 mm³
M& = V& $ c = ,22939.,2 $ 2**
=
--3 = M& / 52 $ &) = 29,496*41 / 52 $ 1132196.14)
29,496*41
GEmm
=
1,.*4
G/mm²
=
2.*1
G/mm²
3) -tress at ;ase !late --4 / 5# $ ?) = 3*:,19.,1 / 54:6 $ 3*) 4) Ae7%ired ;ase !late ticness t;r= s7r553 $ $ F) / 54 $ -sd $ #)) = s7r553 $ 3*:,19.,1 $ 3*) / 54 $ 1,3.4 $ 4:6)) =
3*.42 mm
9
t;
=
→ A!!et
3, mm
5 )e$lt --1
=
49., G/mm²
9
2/3 -sd
=
122.2666: G/mm²
→ A!!et
--2
=
14:.29 G/mm²
9
-sd
=
1,3.4 G/mm²
→ A!!et
--3
=
1,.*4 G/mm²
9
-sd
=
1,3.4 G/mm²
→ A!!et
--4
=
2.*1 G/mm²
9
-; = -sd
=
1,3.4 G/mm²
→ A!!et
,. We; !late ;%cling cec 5#scoe !g 2*1) lloa;le com!ressive stress -c is te lesser o" 1,3.4 MCa or 31:.64 MCa -c = 'i $ !i² $ # / 512 $ 51 E .3 ²) $ 5di / t) ²) = 1.2, $ !i $ 522.2, $ 1P) / 512 $ 51 E .3) $ 5:6 / 2,)
=
31:.64 MCa
lloa;le com!ressive load on te saddle ;e = di $ t / 5di $ t < 2 $ tr $ 5F E 2*.4)) $ 2*.4 = :6 $ 2, / 5:6 $ 2, < 2 $ 2, $ 53* E 2*.4 )) $ 2*.4
=
13.:
?; = n $ 55t $ F) < 2 $ ;e $ t) $ -c = 6 $ 552, $ 3*) < 2 $ 13.: $ 2,) $ 1,3.4
=
1162,14: G
-addle loading o" 6*43,*.,, G is I ?; Q -atis"actory
I
ereJ 'i Clate ;%cling coe""icient # Mod%li o" #lasticity
=
di @argest sti""ener ri; s!acing = -addle loading Vv
22.2, $ 1³ MCa :6. mm =
6*43,*.,, G
SA/E F&) FI;E SIE
(owin !ondition
5Ae"er to B-tresses in @arge &ylindrical Cress%re Vessels on o -addle -%!!ortsB ;y @.C. ic) [Item No. : V-45001] %E&'E)* IN+, :. ℃
Design Cress%re 5internal)
DCi =
.3* MCa Design em!ert%re
Di =
Design Cress%re 5e$ternal)
DCe =
.1 MCa Design em!ert%re
De =
1*. ℃
-ell material
-E*16 :
Weigt o" o!erating condition
Wo =
434933. g
-addle material
-E*16 :
Weigt o" em!ty condition
We =
,6. g
-addle constr%ction is
&enter We;
itan!e ./ to #ied addle
A1 2
3*. mm
-ell lloa;le stress at D.
-as =
13,. MCa Distance .@ to -liding saddle
2 =
496*. mm
-addle lloa;le stress at MF.
-sd =
1,3.4 MCa De!t o" eads
H=
112*. mm
-addle yield stress
-sy =
262. MCa Wear !late ticness
t! =
2. mm
Distance to &o+ "rom dat%m
+=
114,*.6 mm Wear !late idt
W =
**. mm
angent to angent lengt
@=
2*66*. mm Wear !late contact angle
7 =
1,. deg
1:2. mm We; !late ticness
t =
2,. mm
#=
4:6. mm
19. mm Fase !late idt
?=
3*. mm
226.* mm Fase !late ticness
t; =
3,. mm
-addle se!aration
@s =
Vessel o%tside diameter
Do =
4*4. mm Fase !late lengt
Vessel ticness 5&orroded condition) tss =
Vessel o%tside mean radi%s
Am =
itan!e to Co% #"om #ied addle /1 2
:996.6 mm G%m;er o" ri;s
n=
Distance to &o+ "rom sliding saddle @s2 =
923.4 mm Ai; ticness
tr =
-addle eigt o" &.0.+ "or staced condition
-addle eigt
= c =
E mm ncor5or -etting) ;olt si(e 2**.
mm ncor5or -etting) ;olt material
6. 2,. mm M42
E
-E32* 1
E
-addle contact angle
7=
16,. deg ncor5or -etting) ;olt alloa;le tensile -at =
3,9.2 MCa
-addle idt
F=
3*. mm ncor5or -etting) ;olt alloa;le sear -as =
3,9.2 MCa
nstallation o" -ti""ener ring
yes
-ti""ener ring si(e
1 ncor5or -etting) ;olts !er saddle n =
E3*$3*$t3/3
Fase coe""icient o" "riction 5-teel to -teel)
m=
!!lica;le load 5as !er B@0D &0MFG0GB seet acceleration d%e to ind calc%lation) &ross acceleration
a$ = $ < a$ =
.39
<
.2*
=
0.415
g
@ong. acceleration
ay = y < ay =
.1
<
.1
=
0.101
g
Vertical acceleration
a( =
.33
=
0.330
g
β=
1.6:6
rad.
Δ =
3.142
rad.
α =
1.*92
rad.
-addle "actor
Gote. Wen te vessel is sti""ened ;y ead 5 A1 /Am I .*) or ring sti""enerJ K is taen as > 53.141*9)
E
1.
E
.4
E
CA/C,/AI&N 1. -addle reactions $e to dead load (oe"atin weit : Wo 1) t "i$ed side A" = Wo $ @s2 / @s =
434933 $ 923.4 / 1:2
=
232:24.*6
g
=
22,224,.31
G
434933 $ :996.6 / 1:2
=
222,.4*
g
=
19,29,:.*
G
2) t sliding side As = Wo $ @s1 / @s =
$e to !om6ination load on #ied ide (WIN WAVE '&I&N 3) &om;ination loadJ V& = a$ $ A" =
.41* $ 22,224,.31
=
94:133.* G
V@ = ay $ A" =
.11 $ 22,224,.31
=
23*:., G
Vv = a( $ A" =
.33 $ 22,224,.31
=
:*3141.9* G
=
:,:J316. G
WereJ V@ &ross sear acting on sliding saddle V& @ongit%dinal sear acting on sliding saddleL&ross section Vv Vertical "orce acting on sliding saddle 4) -addle reactions d%e to eigt < com;ination load E &om;ination longit%dinal reactionJ 1 1 = V@ $ c / @s < Vv =
23*:., $ 2** / 1:2 < :*3141.9*
E &om;ination transverse reactionJ t t = V& $ c / 5Am $ sin57/2)) < Vv =
94:133.* $ 2** / 5 226.* $ sin 5 16, / 2 )) < :*3141.9* =
1J,2:J4*,.6 G
=
3J,1J446.1 G
= Weigt on saddle < larger o" t or 1 = 19,29,:.*G < larger o" 1,2:4*,.62G or :,:31*.9:G 2. Moment and sear "orce 1) Ma$im%m ;ending moment M1J at mids!an M1 = $ @ / 4 $ 5551<2 $ 55Am 2 < H2) / @2)) / 51<554 $ H) / 53 $ @)))) E 554 $ 1) / @)) = 3,1446.12$2*66*/4$5551<2$55226.*<112*)/2*66*))/51<54$5112*)/53$2*66*))))E554$3*)/2*66*)) = 129344332., GEmm 2) Ma$im%m ;ending moment in te !lane o" te saddle M2J M2 = $ 1 $ 51 E 5551 E 51 / @) < 55Am 2 E H2) / 52 $ 1 $ @))) / 51 < 554 $ H) / 53 $ @)))) = 3,1446.12$3*$51E5551E53*/2*66*)<55226.*E112*)/52$3*$2*66*)))/51<554$112*)/53$2*66*)))) = 21,*11619*.61 GEmm 3) -ear "orce V = $ 5@ E 2 $ 1 E H) / 5@ < H) = 3,1446.12 $ 52*66* E 2 $ 3* E 112*) / 52*66* < 112*) =
2494:,2.*: G
3. -ection mod%l%s 1) Feteen saddle 1 = > $ Am2 $ tss = > $ 226.* $ 19
=
3*,,,9.3 mm³
2) t saddle 2 = π $ Am2 $ tss $ 55 Δ < sinK $ cosK E 52 $ 5sin 2 K)/K)) / 5π $ 5sinK / K) E cosK)) = >$226.*$19$553.142$5sin3.142/3.142)Ecos3.142)) =
3*12:**,.,9 mm³
4. -tress at sell 1) @ongit%dinal ;ending stress ;eteen saddle -1 = M1 / 1 =
129344332.:*/3*,,,9.3 =
-2 = E -1 =
=
33.4,
G/mm²
=
E33.4,
G/mm²
=
:.1:
G/mm²
=
E:.1:
G/mm²
2) @ongit%dinal ;ending stress at saddle -3 = M2 / 2 =
21,*11619*.61 / 3*12:**,.,9 =
-4 = E -3 = 3) &irc%m"erential stress at orn o" saddle 5Wit sti""ener ring) G%m;er o" ringJ
n=
rea o" ringJ
1 ea
r = 26,12.6:1 mm²
-ection mod%l%s o" ringJ ield strengt o" ringJ 5-ame sell material)
s =
2,234: mm³
" =
3*329:: mm³
-yr =
?actorJ '6 =
.2243 5according to a;le 4.1*.1 o" -M# -#& V D2.)
?actorJ ', =
.3:633 5according to a;le 4.1*.1 o" -M# -#& V D2.)
262 G/mm²
3E1) -tress in sell -* = E55', $ ) / 5n $ r))<55'6 $ $ Am) / 5n $ s)) = E55.3:633 $ 3,1446.12) / 51 $ 26,12.6:13334)) < 55.2243 $ 3,1446.12 $ 226.*) / 51 $ 2,2346.*1*31,4)) =
14.9* G/mm²
3E2) -tress in ring -6 = E55', $ ) / 5n $ r))E55'6 $ $ Am) / 5n $ ")) = E55.3:633 $ 3,1446.12) / 51 $ 26,12.6:13334)) E 55.2243 $ 3,1446.12 $ 226.*) / 51 $ 3*329::.22314:9)) =
E1,.1: G/mm²
4) angential sear stress ?actorJ '4 = 1 / π =
.319
-ts = 5'4 $ V) / 5Am $ tss) = 5.319 $ 2494:,2.*:) / 5226.* $ 19)
=
1,.*3
G/mm²
*) Aing com!ression in sell over te saddle ?actorJ '9 = 51 < cos5α)) / 5π E α < sin5α) $ cos5α)) = 51 < &0-51.*92)) / 55> E 1.*92 < -G51.*92) 8 &0-51.*92))
=
.6*
=
193.62
G/mm²
=
2.:4
G/mm²
=
E*.93
G/mm²
=
41.4,
G/mm²
=
E11.,6
G/mm²
=
*4.22
G/mm²
=
E39.41
G/mm²
=
*6.43
G/mm²
=
E11.,6
G/mm²
=
E1,.1:
G/mm²
-: = 5'9 $ ) / 5tss $ 5F < 1.*6 $ s7r5Am $ tss))) = 5.6* $ 3,1446.12) / 519 $ 53* < 1.*6 $ s7r5226.* $ 19))) 6) @ongit%dinal tension stess d%e to !ress%re -, = 5DCi $ 5Do E 2 $ tss)) / 54 $ tss) = 5.3* $ 54*4 E 2 $ 19)) / 54 $ 19) :) @ongit%dinal com!ression stress d%e to !ress%re -9 = 5EDCe $ 5Do E 2 $ tss)) / 54 $ tss) = 5E.1 $ 54*4 E 2 $ 19)) / 54 $ 19) ,) &irc%m"erential tension stress d%e to !ress%re -1 = 2 $ -1 = 2 $ 2.:4 9) &irc%m"erential com!ression stress d%e to !ress%re -11 = 2 $ -11 = 2 $ E*.93 *. &om;ination o" stress 1) @ongit%dinal tension stress -@ = -, < @arger o" -1 or -3 2) @ongit%dinal com!ression stress -@& = -9 < smaller o" -2 or -4 3) &irc%m"erential tension stress -& = -1 < i" -* is !ositive 4) &irc%m"erential com!ression stress -&& = -11 < i" -* is negative *) -ear stress -- = -6 8. )e$lt -@
=
*4.22 G/mm²
9
# $ -as
=
11:.3 G/mm²
→ A!!et
-@&
=
E39.41 G/mm²
9
-ac
=
93., G/mm²
→ A!!et
-&
=
*6.43 G/mm²
9
1.2 $ -as
=
16*.6 G/mm²
→ A!!et
-&&
=
E11.,6 G/mm²
9
# $ -as
=
11:.3 G/mm²
→ A!!et
--
=
E1,.1: G/mm²
9
., $ -as
=
11.4 G/mm²
→ A!!et
WereJ #N Ooint e""iciency o" sell =
.,*
:. -tress in saddle 1) -tress d%e to eigt ?actorJ '1 =
.29424
--1 = 5'1 $ ) / 55Am $ t) / 3) = 5.29424 $ 3,1446.12) / 55226.* $ 2,) / 3)
=
*3.1*
G/mm²
2) -tress at saddle d%e to ori(ontal "orce 2E1) @ongit%dinal direction "orce @ =
346:6*3 mm³
M@ = V@ $ c = 23*:., $ 2**
=
--2 = M@ / @ = *,::93*4 / 346:6*2.91
*,::93*4 =
169.*1
GEmm G/mm²
2E2) &irc%m"erentia direction "orce & =
1132196 mm³
M& = V& $ c = 94:133.* $ 2**
=
--3 = M& / 52 $ &) = 241*1,92::.* / 52 $ 1132196.14)
241*1,92::.*
GEmm
=
21.34
G/mm²
=
2.6,
G/mm²
3) -tress at ;ase !late --4 / 5# $ ?) = 3,1446.12 / 54:6 $ 3*) 4) Ae7%ired ;ase !late ticness t;r= s7r553 $ $ F) / 54 $ -sd $ #)) = s7r553 $ 3,1446.12 $ 3*) / 54 $ 1,3.4 $ 4:6)) =
36.*, mm
9
t;
=
→ A!!et
3, mm
5 )e$lt --1
=
*3.1* G/mm²
9
2/3 -sd
=
122.2666: G/mm²
→ A!!et
--2
=
169.*1 G/mm²
9
-sd
=
1,3.4 G/mm²
→ A!!et
--3
=
21.34 G/mm²
9
-sd
=
1,3.4 G/mm²
→ A!!et
--4
=
2.6, G/mm²
9
-; = -sd
=
1,3.4 G/mm²
→ A!!et
,. We; !late ;%cling cec 5#scoe !g 2*1) lloa;le com!ressive stress -c is te lesser o" 1,3.4 MCa or 31:.64 MCa -c = 'i $ !i ² $ # / 512 $ 51 E .3 ²) $ 5di / t) ²) = 1.2, $ !i $ 522.2, $ 1P) / 512 $ 51 E .3) $ 5:6 / 2,)
=
31:.64 MCa
lloa;le com!ressive load on te saddle ;e = di $ t / 5di $ t < 2 $ tr $ 5F E 2*.4)) $ 2*.4 = :6 $ 2, / 5:6 $ 2, < 2 $ 2, $ 53* E 2*.4 )) $ 2*.4
=
13.:
?; = n $ 55t $ F) < 2 $ ;e $ t) $ -c = 6 $ 552, $ 3*) < 2 $ 13.: $ 2,) $ 1,3.4
=
1162,14: G
-addle loading o" :*3141.9* G is I ?; Q -atis"actory
I
ereJ 'i Clate ;%cling coe""icient # Mod%li o" #lasticity
=
di @argest sti""ener ri; s!acing = -addle loading Vv
22.2, $ 1³ MCa :6. mm =
:*3141.9* G
,. -tress o" ancor5or setting) ;olt in sliding saddle 5-;1 and -;2) G%m;er o" ;olt in sliding saddle
G=
ncor ;olt area 5Folt si(e)
; =
1 ea 1,2.*, mm² 5 M M42)
1) -tress o" ancor ;olt d %e to ma$. ;ase sear -;1 = 5V / 2 ) / 5; $ G) = 52494:,2.*: / 2) / 51,2.*, $ 1) =
11*.23
G/mm²
9
-as
=
3,9.2 G/mm²
→ A!!et
2) -tress o" ancor ;olt d %e to termal e$!ansion -;2 = 5Vv $ m ) / 5; $ G) = 5:*3141.9* $ .4) / 51,2.*, $ 1) =
2:.,3
G/mm²
9
-as
=
3,9.2 G/mm²
→ A!!et
DOC. NO.: PROGRAM NAME : STIFFENER VERSION
REV. NO.:
: 0.1
PAGE NO.:
/
** SECTION MODULUS CALCULATION OF RIB PLATE AND WEB PLATE ** SADDLE TYPE :
TYPE 1
tr
hl L1 tb
C
y2
y1 BCD L2 (unit ; In) L2 =
3770.00 tb =
28 y1 =
14.00
28 hl =
322 y2 =
189
tr = !
C=
73.29
NR=
6
(unit ; In)
"#R$
##
%
##y
h
h&2
##h&2
I'=bh&312
1
1060.0
14
1477840
9.29
316 371137892
689686.7
2
4096
189
10224144
11.71
13388 72421831
467407472.0
1.09,-09
47430408.7
*+"
1966.0
11701984
%!% "#R$ 1
##
h
h&2
1060
0
2!1
9016
2!2
##h&2 0
12026143666.7
1871
300641 3.16,-10
8904.3
0
1871
300641
0
0.0
2!3
0
1123
1260231
0
0.0
2!4
0
374
140026
0
0.0
2!
0
374
140026
0
0.0
2!6
9016
1123
1260231 1.136,-10
8904.3
0
1871
300641
0
0.0
9016
1871
300641 3.16,-10
0.0
7.449,-10
1202732177.3
*+"
0
I'=bh&312
132608 L1
RDIN#/,
tb hl
748.40 tr
*+R/ L+ / /, N,+/R#L #I* C = Σ( ## % ) Σ ## = Cy = B 2
=
6 73.29
""
188
""
"",N/ 5 IN,R/I#
B
4 3
2
4
I = *+". I' - *+".(## hl ) =
1.7,-09 ""
Iyy = *+". I' - *+".(## h1 2) =
2.00,-11 ""4
2 C
L = IC = C = IyyCy =
214168 ""3 3
1084204 ""
1
** SECTION MODULUS CALCULATION OF RIB PLATE AND WEB PLATE ** *#DDL, /%,
/%, 2
tr
hl
y1
tb
L1 y2 BCD B (unit ; IN)
B=
3770 tb =
28 y1 =
0
L1 =
30
tr =
28 hl =
161 y2 =
94.
NR=
6
!
(unit ; IN)
"#R$
#r
h
h&2
1
1060
0
2
4096
9
*+"
#h&2 0
I'=bh&312 0
689686.7
8930 483090804
11681868.0
483090804
12374844.7
1966.0
%!% "#R$ 1
##
h
h&2
1060
0
2!1
408
2!2
##h&2 0
12026143666.7
1871
300641 3.16,-10
8904.3
408
1123
1260231 1.136,-10
8904.3
2!3
408
374
140026 1.262,-09
8904.3
2!4
408
374
140026 1.262,-09
8904.3
2!
408
1123
1260231 1.136,-10
8904.3
2!6
408
1871
300641 3.16,-10
8904.3
8.837,-10
12029677938.7
*+"
0
I'=bh&312
132608 L1
RDIN#/,
tb hl
748.40 tr
*+R/ L+ / /, N,+/R#L #I*
6
C = ((2hl)-tb)2 =
Cy = B 2
=
17.00
""
188.00
""
"",N/ 5 IN,R/I#
B
4 3
I = *+". I' - *+".(## hl 2) =
60683929 ""4
Iyy = *+". I' - *+".(## h1 2) =
2.13,-11 ""4
2
Cy L = IC = C = IyyCy =
3
346763 ""
113210960 ""3
1
(40=1:RIB!*"00!*/#C$(#B)
1871
8 1871.0 7
1122.60
1122.6 6 374.2
374.20 374.20 374.2 4 1122.60
1122.6 3 1871.0 2
1871
1871 1122.60 374.20 374.20 1122.60 1871
(40=1:RIB!*"00!*/#C$(#B)
DOC. NO.: PROGRAM NAME : STIFFENER VERSION
REV. NO.:
: 0.1
PAGE NO.:
/
** SECTION MODULUS CALCULATION OF RIB PLATE AND WEB PLATE ** SADDLE TYPE :
TYPE 1
tr
hl L1 tb
C
y2
y1 BCD L2 (unit ; In) L2 =
3770.00 tb =
28 y1 =
14.00
28 hl =
322 y2 =
189
tr = !
C=
73.29
NR=
6
(unit ; In)
"#R$
##
%
##y
h
h&2
##h&2
I'=bh&312
1
1060.0
14
1477840
9.29
316 371137892
689686.7
2
4096
189
10224144
11.71
13388 72421831
467407472.0
1.09,-09
47430408.7
*+"
1966.0
11701984
%!% "#R$ 1
##
h
h&2
1060
0
2!1
9016
2!2
##h&2 0
12026143666.7
1871
300641 3.16,-10
8904.3
0
1871
300641
0
0.0
2!3
0
1123
1260231
0
0.0
2!4
0
374
140026
0
0.0
2!
0
374
140026
0
0.0
2!6
9016
1123
1260231 1.136,-10
8904.3
0
1871
300641
0
0.0
9016
1871
300641 3.16,-10
0.0
7.449,-10
1202732177.3
*+"
0
I'=bh&312
132608 L1
RDIN#/,
tb hl
748.40 tr
*+R/ L+ / /, N,+/R#L #I* C = Σ( ## % ) Σ ## = Cy = B 2
=
6 73.29
""
188
""
"",N/ 5 IN,R/I#
B
4 3
2
4
I = *+". I' - *+".(## hl ) =
1.7,-09 ""
Iyy = *+". I' - *+".(## h1 2) =
2.00,-11 ""4
2 C
L = IC = C = IyyCy =
214168 ""3 3
1084204 ""
1
** SECTION MODULUS CALCULATION OF RIB PLATE AND WEB PLATE ** *#DDL, /%,
/%, 2
tr
hl
y1
tb
L1 y2 BCD B (unit ; IN)
B=
3770 tb =
28 y1 =
0
L1 =
30
tr =
28 hl =
161 y2 =
94.
NR=
6
!
(unit ; IN)
"#R$
#r
h
h&2
1
1060
0
2
4096
9
*+"
#h&2 0
I'=bh&312 0
689686.7
8930 483090804
11681868.0
483090804
12374844.7
1966.0
%!% "#R$ 1
##
h
h&2
1060
0
2!1
408
2!2
##h&2 0
12026143666.7
1871
300641 3.16,-10
8904.3
408
1123
1260231 1.136,-10
8904.3
2!3
408
374
140026 1.262,-09
8904.3
2!4
408
374
140026 1.262,-09
8904.3
2!
408
1123
1260231 1.136,-10
8904.3
2!6
408
1871
300641 3.16,-10
8904.3
8.837,-10
12029677938.7
*+"
0
I'=bh&312
132608 L1
RDIN#/,
tb hl
748.40 tr
*+R/ L+ / /, N,+/R#L #I*
6
C = ((2hl)-tb)2 =
Cy = B 2
=
17.00
""
188.00
""
"",N/ 5 IN,R/I#
B
4 3
I = *+". I' - *+".(## hl 2) =
60683929 ""4
Iyy = *+". I' - *+".(## h1 2) =
2.13,-11 ""4
2
Cy L = IC = C = IyyCy =
3
346763 ""
113210960 ""3
1
(40=1:RIB!*"00!*/#C$(#B)
1871
8 1871.0 7
1122.60
1122.6 6 374.2
374.20 374.20 374.2 4 1122.60
1122.6 3 1871.0 2
1871
1871 1122.60 374.20 374.20 1122.60 1871
(40=1:RIB!*"00!*/#C$(#B)
CALCULATION OF STIFFENER RING
D,*IN D#/# CNDI/IN +/*ID, 5 *,LL
CRRD,D CNDI/IN D = 4540.00 >>
*,LL /$(CRRD,D)
t =
19.000
>>
L = 0.78*?R.(R> t1)
L = =
161.65 19.00
>> >>
24 t4
4 G
t3 *#DDL, #D
4
t2
!
t1
1
! 2
1
2!
L
C
L
21 (+NI/ >>) b1 =
!.
t1 =
19
y1 =
9.
b2 =
0.0
t2 =
0
y2 =
19
b3 =
!0
t3 =
!"0
y3 =
19
b4 =
!50
t4 =
!0
y4 =
309 (+NI/ >>)
2
2
h
y
y
h
1
6142.7
9.
83.4
139
1944
1194439.2
184792.0
2 3
0 600
19 19
0 890400
130 10
16886 101
0.0 6604.2
0.0 3686666.7
4
000
309
14000
160
2617
128086271.3
166666.7
*+"
16742.7
248097864.7
3693812.4
24937.4
h
I' = bh312
"#R$
*,LL / /, N,+/R#L #I* C = Σ( @ % ) = !C
Σ
= =
148.946 170.04
>> >>
"",N/ 5 IN,R/I# I #
I( )
+ , -!
$% # I / C # 1916"5.6
#
!"505990.1 4 $& # I / G #
16'6150."
PROGRAM NAME : STIFFENER
DOC. NO.: REV. NO.:
VERSION
PAGE NO.:
: 0.1
D3!00015!010 /
CALCULATION OF STIFFENER RING
* DESIGN DATA CNDI/IN
(CRRD,D CNDI/IN)
+/*ID, 5 *,LL *,LL /$(CRRD,D)
D = t =
4540 19
"" ""
L = 0.78*?R.(R> t1)
L
=
161.6
""
=
69
""
2
G
!
! ! 1
C
1 1
2! L
L 21
(unit "") 9.
b1 =
33.3
t1 =
19
y1 =
b2 =
0
t2 =
!0
y2 =
179
b3 =
50
t3 =
0
y3 =
34
"#R$
y
1
6712.7
2
9600
3 *+"
1000 26812.7
34
2
2
y
h
h
h
9.
63770.4
196
3828
2681187.3
201939.
179
1718400
26
681
63789.3
81920000
3717000 499170.4
149
22172
23281032.4 49619817.0
78700.0 82909439.
*,LL / /, N,+/R#L #I* C =
Σ(
@%)
Σ
= !C
=
20
""
=
164
""
#
5'9069!5'
MM4
*** MOMENT OF INERTIA *** I #
I( )
+ , -!
$% # I / C #
$& # I / G !"!406.5
(unit "") I'=bh312
MM
#
5!9''.!
MM
DOC. NO.: PROGRAM NAME : STIFFENER VERSION
D3!00015!010
REV. NO.:
: 0.1
PAGE NO.:
/
CALCULATION OF STIFFENER RING * DESIGN DATA CNDI/IN +/*ID, 5 *,LL *,LL /$(CRRD,D) L = 0.78*?R.(R> t1)
D t L
(CRRD,D CNDI/IN) ''4 "" 14 "" 56.9 "" 64.0 ""
= = = =
t2
2 y2 C
t1
1 y1 L
b1 = b2 =
b2 b1
126.8 1
L
t1 = t2 =
14 50
y1 = y2 =
(unit "") 7 39 (unit "")
"#R$ 1 2 *+"
177.0 60 242.0
y 7 39
y 12424.8 230 37774.8
h 9 23
h2 74 49
= =
16 48
"" ""
#
65159'.'
MM4
h2 13088.4 36601.4 487189.8
*,LL / /, N,+/R#L #I* C = Σ( @ % ) Σ = !C *** MOMENT OF INERTIA *** I #
I( )
+ , -!
$% # I / C #
$& # I / G 41"!9.6
MM
#
1456.5
MM
I' = bh312 28991.2 13416.7 164407.9