2222
22
22
RENCANA PELAKSANAAN PEMBELAJARAN
Sekolah : SMK Negeri 1 Bukittinggi
Program Keahlian : Teknik Bangunan
Kompetensi : Menerapkan Ilmu Statika dan Tegangan
Waktu : 7 x 2 x 40 Menit
Kelas/semester : X / 2
Pertemuan : 7 pertemuan (8 sampai 14)
STANDAR KOMPETENSI
Menerapkan Ilmu Statika dan Tegangan
KOMPETENSI DASAR
Membuat diagram gaya normal, gaya lintang, momen, dan kopel pada konstruksi bangunan.
INDIKATOR PENCAPAIAN
Reaksi Tumpuan dapat dimengerti dengan benar
Diagram gaya normal, di hitung dengan benar
Diagram gaya normal, di gambar dengan benar
Diagram gaya lintang, dihitung dengan benar
Diagram gaya lintang, di gambar dengan benar
Diagram gaya momen dihitung dengan benar.
Diagram gaya momen, di gambar dengan benar
5. TUJUAN PEMBELAJARAN
Setelah mengikuti kegiatan ini belajar diharapkan siswa mampu :
Menghitung reaksi tumpuan dengan benar
Menghitung diagram gaya normal, dengan benar
Melukis diagram gaya normal, dengan benar
Menghitung diagram gaya lintang, dengan benar
Melukis diagram gaya lintang, dengan benar
Menghitung diagram gaya momen dengan benar.
Melukisdiagram gaya momen dengan benar
MATERI PEMBELAJARAN
Pertemuan 1
Pembebanan titik pada balok yang ditumpu pada kedua ujungnya
Balok dengan posisi mendatar yang menerima berbagai macam pembebanan akan berada dalam kesetimbangan jika balok itu ditumpu. Tumpuan ini akan memberikan gaya reaksi yang merupakan akibat dari aksi (pembebanan). Apabila aksi = reaksi maka itulah yang dinamakan kesetimbangan.
Akan tetapi jika balok itu hanya ditumpu pada satu titik, maka titik tersebut harusharus berada pada garis kerja gaya atau resultan dari gaya tersebut agar setimbang. Jika tidak demikian akan terjadi kopel untuk memutar balok itu. Agar balok berada dalam kesetimbangan, secara sederhana tumpuan yang diberikan harus pada dua titik tumpu atau lebih.
Dalam suatu konstruksi dengan dua buah tumpuan biasanya salah satunya menggunakan sendi dan lainnya menggunakan rol.
Tumpuan sendi dimaksudkan agar :
mampu menerima gaya dalam berbagai arah,
menahan pelengkungan dan
mencegah bergesernya balok pada tempatnya
Tumpuan rol digunakan :
agar balok dapat bergerak bebas dalam arah memanjang dari balok.
dapat dinetralisir perubahan memanjang akibat pelengkungan balok dan perubahan panjang akibat temperatur (karena tidak memberikan perlawanan terhadap gerakan balok)
Apabila keduanya adalah tumpuan sendi maka akan terjadi tegangan yang sangat tinggi pada balok.
Sebaliknya apabila kedua tumpuan rol maka dapat terjadi balok akan terlepas dari tumpuannya.
Dalam kenyataannya, suatu konstruksi tidak selalu ditumpu dengan tumpuan sendi dan rol dengan pertimbangan khusus, misalnya bentangan baloknya pendek atau pembebanannya yang sangat aman. Akan tetapi dalam setiap perhitungan, reaksi tumpuannya diandaikan menggunakan tumpuan sendni dan rol. Demikian pula geseran yang terjadi pada tumpuan diabaikan.
Menghitung Reaksi Tumpuan
Kesetimbangan akan terjadi jika aksi = reaksi
Jumlah gaya yang mendatar (horizontal) harus sama dengan nol H = 0
Jumlah gaya yang vertikal harus sama dengan nol V = 0
Jumlah momen harus sama dengan nol M = 0
Apabila keseluruhannya dalam keadaan setimbang maka berlaku juga syarat kesetimbangan bahwa momen pada salah satu titik = 0
Reaksi tumpuan di titik A yaitu RA
Reaksi tumpuan di titik B yaitu RB
Keduanya dicari dengan mengambil momen di masing-masing tumpuan = 0
Momen di titik A = 0
MA = 0
-RB. L + F.a = 0
-Rb=-F.aL RB=F.aL
Momen di titik B = 0
MB = 0
RA . L - F.b = 0 RA=F.bL
Dengan syarat kesetimbangan, jumlah gaya vertikal = 0 V = 0
V = 0
F +(-RA)+(-RB)=0
RA dan RB negatif (-) karena arahnya berlawanan dengan arah gaya.
Jadi F - RA - RB = 0
F = RA + RB
Jika RA=F.bL dan RB=F.aL
Maka RA + RB = F.bL+ F.aL
RA + RB = F (b+a)L padahal a + b = L
Sehingga RA + RB = F LL RA + RB = F RA + RB - F = 0
Dengan syarat kesetimbangan, jumlah gaya horizontal =0 H = 0
Karena gaya horizontal memang tidak ada (jumlahnya juga = 0)
Contoh soal :
Sebuah konstruksi balok panjang 5 meter ditumpu diujungnya dengan tumpuan sendi di A dan rol di B. Muatan terpusat F = 10 N di C sejauh 2 meter dari A. Hitunglah momen di A dan di M serta koreksinya !
L = 5 ma=2 mb = 3 mRARBL = 5 ma=2 mb = 3 mRARB
L = 5 m
a=2 m
b = 3 m
RA
RB
L = 5 m
a=2 m
b = 3 m
RA
RB
Diketahui : L = 5 m
F = 10 N
a = 2 m
F1= 10 NF1= 10 N tumpuan A sendi
F1= 10 N
F1= 10 N
tumpuan B rol
Ditanyakan : RA , RB dan koreksi.
Penyelesaian :
Reaksi Perletakan
MB = 0
RA=F.bL= 10 N . 3 m5 m=6 N
MA = 0
RB=F.aL= 10 N . 2 m5 m=4 N
Koreksi :
RA + RB - F = 0
6 N + 4 N - 10 N = 0 ... (memenuhi)
ALOKASI WAKTU
Beban Belajar
Waktu
Bentuk
Tatap Muka
7 x 40 Menit
Sesuai dengan langkah pembelajaran dalam RPP
Penugasan Terstruktur
7 x 40 Menit
Latihan pada modul
Kegiatan Mandiri Tidak Terstruktur
7 x 30 menit
PR pada modul
STRATEGI PEMBELAJARAN
Strategi : Ekspositori
Metode : Ceramah Interaktif dan Penugasan
LANGKAH-LANGKAH PEMBELAJARAN
Pertemuan 1.
NO
KEGIATAN
WAKTU
1
Pendahuluan
5 menit
Salam (Religius)
Berdoa (Religius)
Mengambil absen peserta didik (Disiplin)
Apresepsi
Menjelaskan tujuan pembelajaran (Rasa ingin tahu)
Menjelaskan penjelasan tentang materi yang akan dipelajari (rasa ingin tahu)
2
Kegiatan inti
Ekplorasi :
Menjelaskan pengertian pembebanan titik pada balok yang ditumpu pada kedua ujungnya
Menjelaskankan defenisi dan kegunaan dari tumpuan sendi
Menjelaskankan defenisi dan kegunaan dari dari tumpuan rol
Menjelaskan cara menghitung reaksi tumpuan
Menjelaskan cara melakukan perhitungan koreksi.
Memberi contoh soal reaksi tumpuan dengan 1 muatan terpusat.
30 menit
Elaborasi :
40 menit
Peserta didik mendengarkan pendidik menerangkan (rasa ingin tahu)
Peserta didik mengerjakan contoh soal secara bersama dibimbing oleh guru (kreatif)
Peserta didik mengerjakan latihan yang ada pada modul. (kreatif, mandiri)
Peserta didik dapat bertanya langsung terhadap materi /bagian yang belum dimengerti
Konfirmasi :
Pendidik menilai latihan peserta didik (menghargai prestasi)
Pendidik memberi konfirmasi terhadap jawaban yang kurang tepat (Komunikatif)
Pendidik memberi motivasi kepada peserta didik yang kurang atau belum berpartisipasi aktif (komunikatif)
3
Penutup
5 menit
Pendidik bersama peserta didik membuat rangkuman dari materi hari ini (rasa ingin tahu)
Menyampaikan rencana pembelajaran pada pertemuan berikutnya. (rasa ingin tahu)
PENILAIAN HASIL BELAJAR
a
Prosedur Penilaian
Dilakukan pada saat proses pembelajaran dan akhir pembelajaran
b
Bentuk Penilaian
Tertulis
c
Alat Penilaian
Soal dan Kunci Jawaban
Soal Latihan
Pertemuan 1
No
Soal
Skor
Keterangan
1
a = 6 mb = 9 mF1 = 30 NL = 15 mRARBa = 6 mb = 9 mF1 = 30 NL = 15 mRARB
a = 6 m
b = 9 m
F1 = 30 N
L = 15 m
RA
RB
a = 6 m
b = 9 m
F1 = 30 N
L = 15 m
RA
RB
25
Skor 4 menulis diketahui dan ditanya
Skor 8 untuk RA
Skor 8 untuk RB
Skor 5 untuk koreksi
2
a = 5 mb = 11 mF1= 40 NL = 16 mRARBa = 5 mb = 11 mF1= 40 NL = 16 mRARB
a = 5 m
b = 11 m
F1= 40 N
L = 16 m
RA
RB
a = 5 m
b = 11 m
F1= 40 N
L = 16 m
RA
RB
25
Skor 4 menulis diketahui dan ditanya
Skor 8 untuk RA
Skor 8 untuk RB
Skor 5 untuk koreksi
3
a = 8mb = 10 mF1 = 10 NL = 18 mRARBa = 8mb = 10 mF1 = 10 NL = 18 mRARB
a = 8m
b = 10 m
F1 = 10 N
L = 18 m
RA
RB
a = 8m
b = 10 m
F1 = 10 N
L = 18 m
RA
RB
25
Skor 4 menulis diketahui dan ditanya
Skor 8 untuk RA
Skor 8 untuk RB
Skor 5 untuk koreksi
4
a = 2,5 mb = 5,5 mRARBF1 =7 NL = 8 ma = 2,5 mb = 5,5 mRARBF1 =7 NL = 8 m
a = 2,5 m
b = 5,5 m
RA
RB
F1 =7 N
L = 8 m
a = 2,5 m
b = 5,5 m
RA
RB
F1 =7 N
L = 8 m
25
Skor 4 menulis diketahui dan ditanya
Skor 8 untuk RA
Skor 8 untuk RB
Skor 5 untuk koreksi
Total skor
100
Alat Bahan / Sumber Belajar
Spidol dan whiteboard
Penggaris
Modul Statika 1
Buku Paket Mekanika Teknik 1
Mengetahui
Kepala SMKN 1 Bukittinggi
Drs. YON AFRIZAL, M.Pd
NIP. 19580817 198103 1 021
Bukittinggi, Januari 2014
Guru yang mengajar
SOVIA HARYATI, S.Pd
NIP. 19770215 2000604 2 004
Materi Pertemuan 2.
Menghitung Gaya Geser atau Gaya Lintang ( D ) / Defleksi )
L RARBL RARB
L
RA
RB
L
RA
RB
F3F3F2F2F1F1
F3
F3
F2
F2
F1
F1
EEDDCCBBAA
E
E
D
D
C
C
B
B
A
A
Gaya lintang dititik A adalah DA
DA = gaya vertikal dititik A = reaksi di A
DA = RA RA=F.bL
Gaya lintang dititik B adalah DB
DB = selisih gaya lintang dititik A dan di B
DB = RA – F1
Gaya lintang dititik C adalah DC
DC = RA – F1 – F2
Gaya lintang dititik D adalah DD
DD = RA – F1 – F2 – F3
Gaya lintang dititik E adalah DE
DD = - RB
Apabila gaya F berada ditengah-tengah batang (a = b =12L)
Maka gaya geser:
DA = DB = RA = RB = 12F
Besarnya gaya geser di titik C :
DC = RA – F
= 12F-F
DC =-12F
Apabila gaya F berada di atas tumpuan A maka gaya geser penampang X-X yang berada di atas tumpuan A adalah DA = RA – F
Kita tahu bahwa RA = F
maka DA = F – F = 0 DA = 0
Gaya geser di titik B adalah :
DB = RA – F = 0 DB = 0
Gaya F berada diatas tumpuan B :
RB = F
RA = 0
Gaya geser di titik A adalah DA = RA = 0 DA = 0
Atau DA = RB – F = F – F = 0
Gaya geser di titik B adalah
DB = - RA + F = -F + F = 0 DB = 0
Momen Penampang
Momen Penampang adalah momen yang terjadi pada penampang batang (disembarang tempat) di sepanjaang batang yang ditumpu. Pada setiap titik disepanjang batang dapat dihitung momen yang terjadi. Untuk menghitung momen penampang, terlebih dahulu dihitung reaksi tumpuannya.
Misalnya, pada sistem gaya berikut ini :
MA = 0
MB = 0
Mx = RA . x
MC = RA . a
Apabila F berada ditengah-tengah batang maka
MC = 14F.L
Apabila beban F berada di atas tumpuan A maka momen di A adalah :
MA = 0
MB = 0
Apabila beban F berada di atas tumpuan B maka momen di B adalah :
MA = 0
MB = 0
Melukis diagram momen dan diagram gaya lintang
Dalam perhitungan momen-momen penampang dimuka dapat disimpulkan sebagai berikut.
Momen ditumpuan sendi ataupun rol MA = 0 dan MB = 0
Besarnya momen di A =0, dibawah F = maksimum, dan di B = 0
Persamaan garis momen (Mx =RA. X) merupakan persamaan pangkat satu. Jadi garis momen berupa garis lurus.
Gambar diagram momen adalah sebagai berikut :
Keadaan istimewa akan terjadi apabila gaya F berada ditengah batang AB
Diagram gaya lintang akan berbentuk dari perhitungan berikut ini :
DA = RA=F.bL
DC = Dmaks = RA
DB= RA – F = F.bL-F= -RB
Karena RA + RB –F = 0 maka RA – F = -RB
Keadaan istimewa akan terjadi apabila gaya F berada ditengah batang AB
Contoh soal :
L = 5 ma=2 mb = 3 mRARBF1 = 10 NBidang gaya LintangBidang MomenL = 5 ma=2 mb = 3 mRARBF1 = 10 NBidang gaya LintangBidang MomenDiketahui : L = 5 m
L = 5 m
a=2 m
b = 3 m
RA
RB
F1 = 10 N
Bidang gaya Lintang
Bidang Momen
L = 5 m
a=2 m
b = 3 m
RA
RB
F1 = 10 N
Bidang gaya Lintang
Bidang Momen
F = 10 N
a = 2 m
tumpuan A sendi
tumpuan B rol
Ditanyakan : RA , RB dan koreksi.
Penyelesaian :
Reaksi Perletakan
MB = 0
RA=F.bL= 10 N . 3 m5 m=6 N
(+)+((+)+(DA--C=+RADA--C=+RA
(+)
+(
(+)
+(
DA--C=+RA
DA--C=+RA
FFMA = 0
F
F
RB=F.aL= 10 N . 2 m5 m=4 N
DB--C=+RBDB--C=+RB
DB--C=+RB
DB--C=+RB
(-)+((-)+(Koreksi :
(-)
+(
(-)
+(
RA + RB - F = 0
6 N + 4 N - 10 N = 0 ... (memenuhi)
Gaya Lintang :
( + )( + )DA-C = +RA = 6 N
( + )
( + )
DC-A = +DA-C = 6 N
Mc= +RA.aMc= +RA.aDC-B = DC-A – 10 N = - 4 N
Mc= +RA.a
Mc= +RA.a
DB-C = DC-B = -RB = - 4 N
Gaya Momen :
MA = 0
MC = +RA.a =+ 6 N . 2 m = 12 Nm
MB = 0
Kegiatan Pembelajaran Pertemuan 2
NO
KEGIATAN
WAKTU
1
Pendahuluan
5 menit
Salam (Religius)
Berdoa (Religius)
Mengambil absen peserta didik (Disiplin)
Apresepsi
Menjelaskan tujuan pembelajaran (Rasa ingin tahu)
Menjelaskan penjelasan tentang materi yang akan dipelajari (rasa ingin tahu)
2
Kegiatan inti
Ekplorasi :
Menjelaskan pengertian gaya geser atau gaya lintang (D)
Menjelaskan rumus cara mencari gaya lintang.
Menjelaskan dengan contoh cara menghitung gaya lintang
Menjelaskan cara melukis bidang D
Menjelaskan pengertian gaya momen (M)
Menjelaskan rumus cara mencari gaya momen
Menjelaskan dengan contoh cara menghitung gaya momen
Menjelaskan cara melukis bidang M
30 menit
Elaborasi :
Peserta didik mendengarkan pendidik menerangkan (rasa ingin tahu)
40 menit
Peserta didik mengerjakan contoh soal bersama guru (kreatif, rasa ingin tahu)
Peserta didik mengerjakan latihan yang ada pada modul. (kreatif, mandiri)
Peserta didik dapat bertanya langsung terhadap materi /bagian yang belum dimengerti
Konfirmasi :
Setelah hampir semua peserta didik selesai membuat latihan pada modul, pendidik memanggil siswa secara acak, 4 orang untuk membuat latihan yang didalam modul masing-masing 1 soal pada whiteboard (kreatif)
Pendidik membahas bersama peserta didik hasil pekerjaan peserta didik di whiteboard (menghargai prestasi)
Pendidik memberi konfirmasi terhadap jawaban yang kurang tepat pada whiteboard tersebut (Komunikatif)
Pendidik bertanya kepada peserta didik lain siapa yang jawabannya berbeda dengan yang di buat pada whiteboard. (menghargai prestasi),
Pendidik bertanya dimana letak kesalahannya, dan memberi petunjuk atau menerangkan kembali bagian-bagian yang dirasa banyak tidak dimengerti siswa.
Pendidik memberi motivasi kepada peserta didik yang kurang atau belum berpartisipasi aktif (komunikatif)
3
Penutup
5 menit
Pendidik bersama peserta didik membuat rangkuman dari materi hari ini (rasa ingin tahu)
Menyampaikan rencana pembelajaran pada pertemuan berikutnya. (rasa ingin tahu)
Latihan Pertemuan 2
No
Soal
Skor
Keterangan
1
a = 6 mb = 9 mF1 = 30 NL = 15 mRARBa = 6 mb = 9 mF1 = 30 NL = 15 mRARB
a = 6 m
b = 9 m
F1 = 30 N
L = 15 m
RA
RB
a = 6 m
b = 9 m
F1 = 30 N
L = 15 m
RA
RB
25
Skor 5 untuk RA dan RB dan koreksi. (raksi perletakan)
Skor 5 untuk gaya lintang
Skor 5 untuk gaya momen
Skor 5 untuk diagram D
Skor 5 untuk diagram M
2
a = 5 mb = 11 mF1= 40 NL = 16 mRARBa = 5 mb = 11 mF1= 40 NL = 16 mRARB
a = 5 m
b = 11 m
F1= 40 N
L = 16 m
RA
RB
a = 5 m
b = 11 m
F1= 40 N
L = 16 m
RA
RB
25
Skor 5 untuk RA dan RB dan koreksi. (raksi perletakan)
Skor 5 untuk gaya lintang
Skor 5 untuk gaya momen
Skor 5 untuk diagram D
Skor 5 untuk diagram M
3
a = 8mb = 10 mF1 = 10 NL = 18 mRARBa = 8mb = 10 mF1 = 10 NL = 18 mRARB
a = 8m
b = 10 m
F1 = 10 N
L = 18 m
RA
RB
a = 8m
b = 10 m
F1 = 10 N
L = 18 m
RA
RB
25
Skor 5 untuk RA dan RB dan koreksi. (raksi perletakan)
Skor 5 untuk gaya lintang
Skor 5 untuk gaya momen
Skor 5 untuk diagram D
Skor 5 untuk diagram M
4
a = 7 mb = 4 mF1 = 8 NRARBL = 11 ma = 7 mb = 4 mF1 = 8 NRARBL = 11 m
a = 7 m
b = 4 m
F1 = 8 N
RA
RB
L = 11 m
a = 7 m
b = 4 m
F1 = 8 N
RA
RB
L = 11 m
25
Skor 5 untuk RA dan RB dan koreksi. (raksi perletakan)
Skor 5 untuk gaya lintang
Skor 5 untuk gaya momen
Skor 5 untuk diagram D
Skor 5 untuk diagram M
Total skor
100
Mengetahui
Kepala SMKN 1 Bukittinggi
Drs. YON AFRIZAL, M.Pd
NIP. 19580817 198103 1 021
Bukittinggi, Januari 2014
Guru yang mengajar
SOVIA HARYATI, S.Pd
NIP. 19770215 2000604 2 004
Pertemuan ke 3
Materi pembelajaran pertemuan ke 3
Pada pertemuan ke 3 adalah menghitung reaksi tumpuan pada batang dengan lebih dari 1 muatan, serta menghitung dan melukis diagram lintang dan diagram momennya .
Contoh soal :
Diketahui Batang AB (A = sendi, B = rol) dengan gaya P1 = 6 N dan P2 = 8 N. Tentukan reaksi tumpuan A (RA) dan di B (RB), koreksi, diagram lintang (geser) dan diagram momennya.
RBRA4 m2 m4 mRBRA4 m2 m4 mPenyelesaian :
RB
RA
4 m
2 m
4 m
RB
RA
4 m
2 m
4 m
F1 = 6 NF2 = 8 NL = 10 mF1 = 6 NF2 = 8 NL = 10 mDiketahui : P1 = 6 N, P2 = 8 N
F1 = 6 N
F2 = 8 N
L = 10 m
F1 = 6 N
F2 = 8 N
L = 10 m
(A = sendi, B = rol)
a = 2, b = 4, c = 4. L = 10 m
Ditanya : RA , RB, koreksi,
diagram lintang (geser)
diagram momen
Jawab :
Reaksi Perletakan
0 Nm0 Nm0 Nm0 Nm( - ) 6 N( - ) 6 NRARABid DBid D( + ) 2 N( + ) 2 N( + ) 8 N( + ) 8 NMB = 0
0 Nm
0 Nm
0 Nm
0 Nm
( - ) 6 N
( - ) 6 N
RA
RA
Bid D
Bid D
( + ) 2 N
( + ) 2 N
( + ) 8 N
( + ) 8 N
RA=F1b+c+F2. cL
RA=64+4+8.410
RA=6.8+8.410
RA=48+3210=8010=8 N
RBRB
RB
RB
( + ) 16 Nm( + ) 16 Nm( + ) 24 Nm( + ) 24 NmBid MBid MMA = 0
( + ) 16 Nm
( + ) 16 Nm
( + ) 24 Nm
( + ) 24 Nm
Bid M
Bid M
RB=F1.a+F2. a+bL
RB=6.2+8.2+410
RB=6.2+8.610
RB=12+4810=6010=6 N
Koreksi :
RA + RB - (F1+F2) = 0
8 N + 6 N – (6 N + 8 N) =0 .... Memenuhi
Gaya Lintang/Geser
DAC =+RA = 8 N
DCD = +RA – F1 = 8 N – 6 N = 2 N
DDB = +RA– F1– F2 = 8N – 6N – 8N = -6N
DBD = -RB = -6N
Gaya Momen
MA = 0
MC = +RA . a = 8N . 2m = 16 Nm
MD= +RA. (a+b) – F1.b = 8N.(2m + 4m) –6N.4m
= 48Nm - 24Nm = 24Nm
MB = 0
Kegiatan Pembelajaran 3
NO
KEGIATAN
WAKTU
1
Pendahuluan
5 menit
Salam (Religius)
Berdoa (Religius)
Mengambil absen peserta didik (Disiplin)
Apresepsi
Menjelaskan tujuan pembelajaran (Rasa ingin tahu)
Menjelaskan penjelasan tentang materi yang akan dipelajari (rasa ingin tahu)
2
Kegiatan inti
Ekplorasi :
Menjelaskan dengan contoh cara menghitung gaya lintang dengan dua muatan
Menjelaskan cara melukis bidang D dengan 2 muatan
Menjelaskan dengan contoh cara menghitung gaya momen dengan dua muatan
Menjelaskan cara melukis bidang M dengan 2 muatan
30 menit
Elaborasi :
Peserta didik mendengarkan pendidik menerangkan (rasa ingin tahu)
40 menit
Peserta didik mengerjakan contoh soal bersama guru (kreatif, rasa ingin tahu)
Peserta didik mengerjakan latihan yang ada pada modul. (kreatif, mandiri)
Peserta didik dapat bertanya langsung terhadap materi /bagian yang belum dimengerti
Konfirmasi :
Pendidik bersama peserta didik membahas latihan pada modul soal 1 (menghargai prestasi)
Pendidik memberi konfirmasi terhadap jawaban yang kurang tepat. (Komunikatif)
Pendidik bertanya kepada peserta didik lain siapa yang jawabannya berbeda. (menghargai prestasi),
Pendidik memberikan pekerjaan rumah untuk soal no 2.
Pendidik memberi motivasi kepada peserta didik yang kurang atau belum berpartisipasi aktif (komunikatif)
3
Penutup
5 menit
Pendidik bersama peserta didik membuat rangkuman dari materi hari ini (rasa ingin tahu)
Menyampaikan rencana pembelajaran pada pertemuan berikutnya. (rasa ingin tahu)
Latihan pertemuan 3
No
Soal
Skor
Keterangan
1
RBRA2 m2 m3 mF1 = 2 NF2 = 3 NL = 7 mRBRA2 m2 m3 mF1 = 2 NF2 = 3 NL = 7 m
RB
RA
2 m
2 m
3 m
F1 = 2 N
F2 = 3 N
L = 7 m
RB
RA
2 m
2 m
3 m
F1 = 2 N
F2 = 3 N
L = 7 m
50
Skor 10 untuk RA dan RB dan koreksi. (reaksi perletakan)
Skor 10 untuk gaya lintang
Skor 10 untuk gaya momen
Skor 10 untuk diagram D
Skor 10 untuk diagram M
2
RBRA2 m3 m4 mF1 = 3 NF2 = 4 NL = 9 mRBRA2 m3 m4 mF1 = 3 NF2 = 4 NL = 9 m
RB
RA
2 m
3 m
4 m
F1 = 3 N
F2 = 4 N
L = 9 m
RB
RA
2 m
3 m
4 m
F1 = 3 N
F2 = 4 N
L = 9 m
50
Skor 10 untuk RA dan RB dan koreksi. (reaksi perletakan)
Skor 10 untuk gaya lintang
Skor 10 untuk gaya momen
Skor 10 untuk diagram D
Skor 10 untuk diagram M
Total skor
100
Mengetahui
Kepala SMKN 1 Bukittinggi
Drs. YON AFRIZAL, M.Pd
NIP. 19580817 198103 1 021
Bukittinggi, Januari 2014
Guru yang mengajar
SOVIA HARYATI, S.Pd
NIP. 19770215 2000604 2 004
Pertemuan ke 4
Materi pembelajaran pertemuan ke 4
Pada pertemuan ke 4 adalah menghitung reaksi tumpuan pada batang dengan lebih dari 1 muatan dan berlawanan arah, serta menghitung dan melukis diagram lintang dan diagram momennya .
Contoh soal :
Diketahui Batang AB (A = sendi, B = rol) dengan gaya P1 = 5 N dan P2 = 3 N. Tentukan reaksi tumpuan A (RA) dan di B (RB), koreksi, diagram lintang (geser) dan diagram momennya.
Penyelesaian :
F1 = 5 NF2 = 3 NL = 9 mF1 = 5 NF2 = 3 NL = 9 mRBRA4 m2 m3 mRBRA4 m2 m3 mDiketahui : P1 = 5 N, P2 = 3 N
F1 = 5 N
F2 = 3 N
L = 9 m
F1 = 5 N
F2 = 3 N
L = 9 m
RB
RA
4 m
2 m
3 m
RB
RA
4 m
2 m
3 m
(A = sendi, B = rol)
a = 4, b = 3, c = 2. L = 9 m
Ditanya : RA , RB, Koreksi,
diagram lintang (geser)
diagram momen
Jawab :
Reaksi Perletakan
( + ) 13,76 Nm( - ) 9,08 NmBid MBid DRARB( - ) 1,56 N( - ) 4,56 N( + ) 3,44 N( + ) 13,76 Nm( - ) 9,08 NmBid MBid DRARB( - ) 1,56 N( - ) 4,56 N( + ) 3,44 NMB = 0
( + ) 13,76 Nm
( - ) 9,08 Nm
Bid M
Bid D
RA
RB
( - ) 1,56 N
( - ) 4,56 N
( + ) 3,44 N
( + ) 13,76 Nm
( - ) 9,08 Nm
Bid M
Bid D
RA
RB
( - ) 1,56 N
( - ) 4,56 N
( + ) 3,44 N
RA.9 – F1.(2+3) - F2.2 = 0
RA.9 – 5 . 5 - 3 . 2 = 0
RA.9 – 25 - 6 = 0
RA.9 – 31 = 0
RA=319=3,44 N
MB = 0
-RB.9 – F2.(3+4) - F1.4 = 0
-RB.9 – 3.7 - 5.4 = 0
-RB.9 – 21 - 20 = 0
-RB.9 – 41 = 0
RB=419=4,56 N
Koreksi :
RA + RB - (F1+F2) = 0
3,44 N + 4,56 N – (5 N + 3 N) = 0
8 – 8 = 0 .... Memenuhi
Gaya lintang (geser)
DAC = +RA = 3,44 N
DCD = +RA – F1 = 3,44 N – 5 N = -1,56 N
DDB = +RA – F1+ F2 = 3,44 N – 5 N + 3N = -4,56N
DBD = -RB = -4,56N
Gaya Momen
MA = 0
MC = +RA . a = 3,44N . 4m = 13,76 Nm
MD= +RA. (a+b) – F1.b = 3,44N.(4m + 3m) – 5N.3m
= 24,08Nm - 15Nm = - 9,08Nm (arah kebawah)
MB = 0
Kegiatan Pembelajaran 4
NO
KEGIATAN
WAKTU
1
Pendahuluan
5 menit
Salam (Religius)
Berdoa (Religius)
Mengambil absen peserta didik (Disiplin)
Apresepsi
Menjelaskan tujuan pembelajaran (Rasa ingin tahu)
Menjelaskan penjelasan tentang materi yang akan dipelajari (rasa ingin tahu)
2
Kegiatan inti
Ekplorasi :
Menjelaskan dengan contoh cara menghitung gaya lintang dengan dua muatan berbeda arah
Menjelaskan cara melukis bidang D dengan 2 muatan berbeda arah
Menjelaskan dengan contoh cara menghitung gaya momen dengan dua muatan yang berbeda arah
Menjelaskan cara melukis bidang M dengan 2 muatan yang berbeda arah
30 menit
Elaborasi :
Peserta didik mendengarkan pendidik menerangkan (rasa ingin tahu)
40 menit
Peserta didik mengerjakan contoh soal bersama guru (kreatif, rasa ingin tahu)
Peserta didik mengerjakan latihan yang ada pada modul. (kreatif, mandiri)
Peserta didik dapat bertanya langsung terhadap materi /bagian yang belum dimengerti
Konfirmasi :
Pendidik bersama peserta didik membahas contoh soal pada modul (menghargai prestasi)
Pendidik menugaskan peserta didik untuk mengerjakan latihan
Pendidik memberi konfirmasi terhadap jawaban yang kurang tepat, setelah dikumpul. (Komunikatif)
Pendidik memberi motivasi kepada peserta didik yang kurang atau belum berpartisipasi aktif (komunikatif)
3
Penutup
5 menit
Pendidik bersama peserta didik membuat rangkuman dari materi hari ini (rasa ingin tahu)
Menyampaikan rencana pembelajaran pada pertemuan berikutnya. (rasa ingin tahu)
Latihan pertemuan ke 4
No
Soal
Skor
Keterangan
1
RBRA1 m2 m3 mF1 = 2 NF2 = 3 NL = 6 mRBRA1 m2 m3 mF1 = 2 NF2 = 3 NL = 6 m
RB
RA
1 m
2 m
3 m
F1 = 2 N
F2 = 3 N
L = 6 m
RB
RA
1 m
2 m
3 m
F1 = 2 N
F2 = 3 N
L = 6 m
50
Skor 10 untuk RA dan RB dan koreksi. (reaksi perletakan)
Skor 10 untuk gaya lintang
Skor 10 untuk gaya momen
Skor 10 untuk diagram D
Skor 10 untuk diagram M
2
RBRA1 m3 m3 mF1 = 3 NF2 = 4 NL = 7 mRBRA1 m3 m3 mF1 = 3 NF2 = 4 NL = 7 m
RB
RA
1 m
3 m
3 m
F1 = 3 N
F2 = 4 N
L = 7 m
RB
RA
1 m
3 m
3 m
F1 = 3 N
F2 = 4 N
L = 7 m
50
Skor 10 untuk RA dan RB dan koreksi. (reaksi perletakan)
Skor 10 untuk gaya lintang
Skor 10 untuk gaya momen
Skor 10 untuk diagram D
Skor 10 untuk diagram M
Total skor
100
Mengetahui
Kepala SMKN 1 Bukittinggi
Drs. YON AFRIZAL, M.Pd
NIP. 19580817 198103 1 021
Bukittinggi, Januari 2014
Guru yang mengajar
SOVIA HARYATI, S.Pd
NIP. 19770215 2000604 2 004
Pertemuan ke 5
Materi pembelajaran pertemuan ke 5
Pada pertemuan ke 5 adalah menghitung reaksi tumpuan pada batang dengan lebih dari 1 muatan dan mempunyai sudut, serta menghitung dan melukis diagram lintang dan diagram momennya .
Pada materi kali ini gaya normal (N) diperhitungkan karena ada reahksi horizontal.
Rumusnya adalah : H = 0
RAH + P1 cos α – P2 cos α - ... = 0
Sedangkan untuk diagram gaya normalnya
NAD = +RAH A = titik simpul awal, D = gaya yang bersudut 1
NDE = +RAH – P2 cos α D = gaya yang bersudut 1, E gaya yang bersudut ke 2
NEB = +RAH – P2 cos α – P3 cos α B jika titik simpul akhir
Perjanjian tanda jika ( + ) tarik dan jika (-) tekan (plustaminte)
Contoh soal :
RBRAa=1 mP2 = 3 NP1 = 2 NL = 6 mb=2 mc=1 md=2 mP3 = 4 NRBRAa=1 mP2 = 3 NP1 = 2 NL = 6 mb=2 mc=1 md=2 mP3 = 4 NDiketahui Batang AB (A = sendi, B = rol) dengan gaya P1 = 2N ,P2 = 3N bersudut 45 dan P3 = 4N bersudut 60. Tentukan reaksi tumpuan A (RA) dan di B (RB), koreksi, gaya lintang (geser), gaya normal dan gaya momennya, beserta diagramnya.
RB
RA
a=1 m
P2 = 3 N
P1 = 2 N
L = 6 m
b=2 m
c=1 m
d=2 m
P3 = 4 N
RB
RA
a=1 m
P2 = 3 N
P1 = 2 N
L = 6 m
b=2 m
c=1 m
d=2 m
P3 = 4 N
Penyelesaian :
Diketahui : P1 = 2N,
P2 = 3 N sudut 45
P3 = 4 N sudut 60
(A = sendi, B = rol)
a = 1, b = 2, c = 1, d = 2, L = 6 m
Ditanya : RA , RB, koreksi,
Bid DRA=DAC= 3,883NDCD=1,883NDDE=-0,238NDEB=-3,702NBid NNAD=+0,121NNDE=-2NNEB=-4NBid DRA=DAC= 3,883NDCD=1,883NDDE=-0,238NDEB=-3,702NBid NNAD=+0,121NNDE=-2NNEB=-4Ngaya lintang (geser), gaya normal
Bid D
RA=DAC= 3,883N
DCD=1,883N
DDE=-0,238N
DEB=-3,702N
Bid N
NAD=+0,121N
NDE=-2N
NEB=-4N
Bid D
RA=DAC= 3,883N
DCD=1,883N
DDE=-0,238N
DEB=-3,702N
Bid N
NAD=+0,121N
NDE=-2N
NEB=-4N
gaya momen dan diagramnya
Jawab :
Reaksi Perletakan
RBRBMB = 0
RB
RB
RAV.L - P1.(b+c+d) – P2 sin 45(c+d) - P3 sin 60(d) = 0
RAV.6 – 2N.(2+1+2) – 3N . 0,707.(1+2) – 4N.0,866 . 2 = 0
RAV.6 – 2N.5 - 3N . 0,707.3 - 4N.0,866.2 = 0
RAV.6 – 10 – 6,363 – 6,928 = 0
RAV.6 – 23,291 = 0
RAV= 23,2916=3,882 N
MA = 0
ME= 7,411NME= 7,411NMD= 7,649NMD= 7,649N-RBV.L + P1.a + P2 sin 45. (a+b) + P3 sin 60. (a+b+c) = 0
ME= 7,411N
ME= 7,411N
MD= 7,649N
MD= 7,649N
MC= 3,883NMC= 3,883N-RBV.6 +2N.1 + 3N.0,707.(1+2) + 4N.0,866.(1+2+1)=0
MC= 3,883N
MC= 3,883N
Bid MBid M-RBV.6 + 2 + 6,363 + 13,856 = 0
Bid M
Bid M
MBMBMAMA-RBV.6 + 22,219 = 0
MB
MB
MA
MA
RBV= 22,2196=3,703 N
H = 0
RAH + P2 cos 45 – P3 cos 60 = 0
RAH= -P2 cos 45 + P3 cos 60
= -3N. 0,707 + 4N.0,5
= -2,121 + 2 = -0,121 N ()
Kontrol :
RAV + RBV = P1 + P2sin 45 + P3sin 60
3,882N + 3,703N = 2N + 3N.0,707 + 4N.0,866
7,585N = 2N + 2,121N + 3,464
7,585N = 7,585N ......... (memenuhi)
Gaya Lintang/Geser
DAC =+RA = +3,883 N
DCD = +RA – P1 = 3,883 N – 2 N = 1,883 N
DDE = +RA– P1– P2sin 45 = 3,883N – 2N – 3N.0,707 = -0,238 N
DEB = +RA – P1 – P2 sin 45- P3 sin 60 = 3,883N – 2N – 3N.0,707 – 4.0,866 = -3,702 N
DBE = -RB = -3,703 N
Gaya Normal
NAD = +RAH = + 0,121 N (tarik)
NDE = +RAH - P2 cos 45
= 0,121N – 3N. 0707 =0,121N – 2,121N = -2 N (tekan)
NEB = +RAH - P2 cos 45- P3 cos 60
= 0,121N – 3N. 0707 – 4N . 0,5 = 0,121N – 2,121N – 2N = -4 N
Gaya Momen
MA = 0
MC = +RA . a = 3,883N . 1m = 3,883 Nm
MD= +RA. (a+b) – P1.b = 3,883N.3m – 2N.2m
= 12,649Nm -4Nm = 7,649Nm
ME = +RA. (a+b+c) – P1.(b+c) – P2 sin 45. c
= 3,883N. 4m – 2N.3m – 3N. 0,707.1m
= 15,532Nm – 6Nm – 2,121Nm
= 7,411 Nm
MB = 0
Kegiatan Pembelajaran 5
NO
KEGIATAN
WAKTU
1
Pendahuluan
5 menit
Salam (Religius)
Berdoa (Religius)
Mengambil absen peserta didik (Disiplin)
Apresepsi
Menjelaskan tujuan pembelajaran (Rasa ingin tahu)
Menjelaskan penjelasan tentang materi yang akan dipelajari (rasa ingin tahu)
2
Kegiatan inti
Ekplorasi :
Menerangkan cara menghitung reaksi horizontal (RAH)
Menjelaskan rumus cara mencari gaya normal (N)
Menjelaskan dengan contoh cara menghitung gaya normal
Menjelaskan cara melukis bidang N
Menjelaskan dengan contoh cara menghitung gaya lintang dengan muatan yang bersudut.
Menjelaskan cara melukis bidang D dengan muatan yang bersudut
Menjelaskan dengan contoh cara menghitung gaya momen dengan muatan yang bersudut
Menjelaskan cara melukis bidang M dengan muatan yang bersudut
30 menit
Elaborasi :
Peserta didik mendengarkan pendidik menerangkan (rasa ingin tahu)
40 menit
Peserta didik mengerjakan contoh soal bersama guru (kreatif, rasa ingin tahu)
Peserta didik mengerjakan latihan yang ada pada modul. (kreatif, mandiri)
Peserta didik dapat bertanya langsung terhadap materi /bagian yang belum dimengerti
Konfirmasi :
Pendidik bersama peserta didik membahas contoh soal pada modul (menghargai prestasi)
Pendidik menugaskan peserta didik untuk mengerjakan latihan
Pendidik memberi konfirmasi terhadap jawaban yang kurang tepat, setelah dikumpul. (Komunikatif)
Pendidik memberi motivasi kepada peserta didik yang kurang atau belum berpartisipasi aktif (komunikatif)
3
Penutup
5 menit
Pendidik bersama peserta didik membuat rangkuman dari materi hari ini (rasa ingin tahu)
Menyampaikan rencana pembelajaran pada pertemuan berikutnya. (rasa ingin tahu)
Latihan pertemuan 5
No
Soal
Skor
Keterangan
1
F1 = 2 NF2 = 3 NL = 7 mRBRA2 m2 m3 mF1 = 2 NF2 = 3 NL = 7 mRBRA2 m2 m3 m
F1 = 2 N
F2 = 3 N
L = 7 m
RB
RA
2 m
2 m
3 m
F1 = 2 N
F2 = 3 N
L = 7 m
RB
RA
2 m
2 m
3 m
50
Skor 15 untuk RA, RB dan RH dan koreksi. (reaksi perletakan)
Skor 5 untuk gaya lintang
Skor 5 untuk gaya momen
Skor 10 untuk gaya normal
Skor 5 untuk diagram D
Skor 5 untuk diagram M
Skor 5 untuk diagram N
Pertemuan ke 6 langsung mengerjakan soal dibawah ini
2
d=4 mb=3 mL=11 mP1=3 mRBRAa=2 mP3 = 2 Nc=2 mP2=3 md=4 mb=3 mL=11 mP1=3 mRBRAa=2 mP3 = 2 Nc=2 mP2=3 m
d=4 m
b=3 m
L=11 m
P1=3 m
RB
RA
a=2 m
P3 = 2 N
c=2 m
P2=3 m
d=4 m
b=3 m
L=11 m
P1=3 m
RB
RA
a=2 m
P3 = 2 N
c=2 m
P2=3 m
50
Skor 15 untuk RA, RB dan RH dan koreksi. (reaksi perletakan)
Skor 5 untuk gaya lintang
Skor 5 untuk gaya momen
Skor 10 untuk gaya normal
Skor 5 untuk diagram D
Skor 5 untuk diagram M
Skor 5 untuk diagram N
Total skor
100
Pertemuan ke 7 adalah UH KD (soal UH lampiran )
Mengetahui
Kepala SMKN 1 Bukittinggi
Drs. YON AFRIZAL, M.Pd
NIP. 19580817 198103 1 021
Bukittinggi, Januari 2014
Guru yang mengajar
SOVIA HARYATI, S.Pd
NIP. 19770215 2000604 2 004