UNIVERSIDAD NACIONAL DE PIURA FACULTAD DE INGENIERÍA DE MINAS ESCUELA DE INGENIERIA GEOLOGICA
RESISTENCIA Y DEFORMABILIDAD DE MACIZOS ROCOSOS DEFORMACIÓN DE LA CORTESA TERRESTRE
ALUMNA: SONIA ELIZABETH LLENQUE RUIZ GEOLOGÍA ING. J. COBEÑAS.
RESISTENCIA Y DEFORMABILIDAD DE MACIZOS ROCOSOS El comportamiento mecánico de las rocas está definido por su resistencia y su deformabilidad. La resistencia, como se ha definido anteriormente, es el esfuerzo que soporta una roca para determinadas deformaciones. Cuando la resistencia se mide en probetas de roca sin confinar se denomina resistencia a compresión simple, y su valor se emplea para la clasificación geotécnica de las rocas. La resistencia es función de las fuerzas cohesivas y friccionales del material (además de otros factores extrínsecos al material rocoso. Las rocas pueden ser duras o blandas y las fallas de los macizos se pueden presentar por zonas de debilidad o de discontinuidad estructural. Las rocas blandas fallan a través del cuerpo de la masa rocosa y también a través de sus defectos estructurales. Se considera que un suelo o roca es blando o duro, según su resistencia a la compresión esté en los siguientes rangos:
Las rocas blandas son aquellas que pueden fallar a través de material intacto a los niveles de esfuerzos existentes que se pueden dar en el área de influencia de una excavación, sin que tenga sentido un valor numérico para definir la resistencia de dichas rocas, máximo aún si se tiene en cuenta que los macizos de roca más dura pueden fallar y fallan en las excavaciones más profundas. El comportamiento de una galería puede ser dúctil, adecuado o frágil, como se muestra en la fig. , cuando se consideran profundidades del orden de 100, 200 y 300 metros respectivamente. Para valorar estas cuantías de esfuerzo, vale decir que 1 Kg/cm2 equivale a 10 TT/m2 o sea el esfuerzo producido por una columna de 10 m de agua.
PROPIEDADES DE LAS ROCAS
Las rocas ígneas. Son muy resistentes, isotrópicas, rígidas, frágiles, densas y de textura entrabada. Su inconveniente se da por presencia de materiales alterables y diaclasamiento. Las rocas ígneas plutónicas. Tienen minerales resistentes, entrabados, se da fallamiento en escalonado de minerales porque son diferentes. Las rocas ígneas volcánicas. Muestran heterogeneidad de minerales; hay falla en poros que afectan la roca, la porosidad le da plasticidad a la masa que si es de rocas masivas resulta poco porosa. Las rocas sedimentarias. Tienen resistencia media a baja son ortotrópicas, poco rígidas, dúctiles, porosas y presentan textura cementada-laminada. Su inconveniente es la ortotropía que hace difíciles los cálculos de estabilidad y comportamiento del macizo. En las rocas sedimentarias la resistencia depende del grado de cementación y de su densidad. Ella aumenta cuando los granos son finos; si hay disolución en la masa hay porosidad. Los planos de estratificación son zonas de debilidad. Las rocas metamórficas. Se caracterizan por una resistencia medio alta, su ortotropía, tenacidad, textura entrabada y baja porosidad. Hay rigidez en el sentido paralelo y plasticidad en el perpendicular, con relación a los planos de clivaje. Su ortotropía dificulta los c álculos. Las rocas metamórficas resultan elásticas por la cristalización de la masa. Son densas por el empaquetamiento. Si hay minerales laminados hay debilidad. Si hay esquistocidad hay zonas de debilidad. Los gneises son como los granitos aunque el bandeamiento les da debilidad.
MACIZOS EN ROCA BLANDA Los macizos de roca blanda están constituidos por materiales generalmente sedimentarios de grano fino, como arcillolitas, lodolitas, limolitas, tobas y margas, y también areniscas o conglomerados, pobremente cementadas, o por rocas metamórficas con orientación esquistosa desfavorable (filitas, esquistos), cuyo comportamiento geomecánico está controlado por la roca intacta y también por fracturas, diaclasas y fallas.
Los macizos de roca meteorizada también pueden ser considerados como masa de roca blanda cuyas discontinuidades son rellenos de materiales tipo suelo; dichos macizos a menudo muestran una transición hacia suelos residuales donde los saprolitos tienen estructuras relictas, heredadas de la roca sana, las que sirven de zona de falla.
CARACTERIZACIÓN DEL MACIZO ROCOSO Esta es una tarea de observación, mediciones y ensayos para obtener parámetros cuantitativos útiles al diseño ingenieril. Este proceso además se desarrolla a lo largo de todas las etapas del desarrollo del proyecto, desde el diseño hasta su construcción y operación. Según la fase de diseño se requiere establecer un nivel mínimo de caracterización. El primero es con base en observaciones geológicas, el segundo nivel exige prospecciones geofísicas y el nivel final perforaciones exploratorias, medidas y ensayos geotécnicos.
Los parámetros geotécnicos fundamentales son la resistencia al corte, la deformabilidad, la permeabilidad y el estado original de esfuerzos, tanto para macizos en rocas duras como en rocas blandas. En las segundas la durabilidad de las rocas y su potencial de expansión y fluencia deben ser propiedades de primer orden. En el caso de cimentaciones los principales problemas para una estructura en roca blanda son asentamientos diferenciales, rebote, falla a lo largo del contacto estructura-roca, las altas presiones de poros, las fugas excesivas y rara vez la falla por capacidad portante del macizo. En los taludes la altura condiciona el tipo de caracterización geotécnica, como también lo hace la resistencia de la roca intacta y la geometría de las discontinuidades. Si es relevante la resistencia al corte, la deformabilidad puede tener interés por la inducción de fracturas de tensión en la corona, donde el agua introducida genera situaciones de inestabilidad que no existían. Las obras más difíciles de caracterizar y modelar, son las excavaciones subterráneas. A diferencia de una estructura de concreto, el escenario estructural es aleatorio e incierto y queda escondido bajo una cubierta de suelo y material rocoso. Entre los problemas a resolver en el diseño de túneles, que han de conducir agua a presión están el de la estabilidad de las paredes sin agua y con ella, el grosor del refuerzo, la permeabilidad del macizo y la estabilidad de las laderas exteriores vecinas en caso de presiones hidrostáticas inducidas y de fuga de agua hacia los taludes y laderas. La caracterización apropiada de los macizos rocosos, además de ser la base para el diseño de las obras, contribuye a la optimización del método constructivo, da vía al mejoramiento del macizo (anclajes, inyecciones, drenaje) y permite la programación de observaciones durante el funcionamiento de las obras.
La resistencia de un macizo rocoso fracturado depende de las propiedades de los trozos o bloques de roca intacta y, también, de la libertad de éstos para deslizar y girar bajo distintas condiciones de esfuerzo. Esta libertad está controlada por el perfil geométrico de los trozos o bloques de roca intacta, así como también, por la condición de las superficies que separan dichos trozos o bloques. Los trozos de roca angulosos, con caras definidas por superficies lisas y abruptas, producen un macizo rocoso mucho más competente que uno que contenga bloques completamente rodeados por material intemperizado y/o alterado.
La cohesión c, es la fuerza de unión entre las partículas minerales que forman la roca. El ángulo de fricción interna Φ, es el ángulo de rozamiento entre dos planos de la misma roca, para la mayoría de las rocas éste ángulo varía entre 25° y 45°. La fuerza friccional depende del ángulo de fricción y del esfuerzo normal σ actuando sobre el plano considerado.
La resistencia de la roca no es un valor único, ya que además de los valores de c y Φ, depende de otras condiciones, como la magnitud de los esfuerzos confinantes, la presencia de agua en los poros o la velocidad de aplicación de la carga de rotura. También, incluso en rocas aparentemente isótropas y homogéneas, los valores de c y Φ pueden variar según el grado de
cementación o variaciones en la composición mineralógica.
CRITERIOS DE ROTURA La resistencia de la matriz rocosa isótropa se puede evaluar mediante los criterios de rotura de Mohr-Coulomb y de Hoek y Brown. La principal diferencia entre ambos es que el primero es un criterio lineal y el segundo no lineal, más adecuado al comportamiento mecánico real de las rocas.
CRITERIO DE MOHR-COULOMB
Este criterio expresa la resistencia al corte a lo largo de un plano en un estado triaxial de tensiones, obteniéndose la relación entre los esfuerzos normal y tangencial actuantes en el momento de la rotura mediante la expresión matemática Efectos de la anisotropía y de la presión de agua en la resistencia.- Cuando la roca presenta anisotropía, su resistencia compresiva para un mismo estado de esfuerzos varía según el ángulo β (β= 90 - θ) entre la dirección de los planos de anisotropía y la dirección de la carga aplicada,
pudiendo presentar valores muy diferentes. Las rocas anisótropas son difíciles de ensayar por la variabilidad de su resistencia, siendo necesarios numerosos ensayos para obtener parámetros representativos de todo el rango de resistencia. La presión intersticial en la matriz rocosa porosa disminuye su resistencia, al actuar esta presión en contra de la tensión normal que se opone a la rotura, cumpliéndose el principio de la tensión efectiva: Esto sólo afecta a rocas porosas permeables, que permiten la entrada de agua y pueden llegar a saturarse. Muchas de las rocas pueden considerarse prácticamente impermeables, aunque bajo condiciones de presencia de agua, la saturación es cuestión de tiempo. El criterio de Mohr-Coulomb implica que tiene lugar una fractura por corte al alcanzarse la resistencia de pico del material. La gran ventaja de este criterio es su sencillez. Sin embargo presenta inconvenientes debido a que: • Las envolventes de l a resistencia en roca no son
lineales; se ha comprobado experimentalmente que la resistencia de las rocas aumenta menos con el incremento de la presión normal de confinamiento que lo obtenido al considerar una ley lineal, lo que puede implicar errores al considerar los esfuerzos actuantes, sobre todo en zonas de bajos esfuerzos confinantes. - La dirección del plano de la fractura según este criterio no siempre coincide con los resultados experimentales. - El criterio sobrevalora la resistencia a la tracción. No obstante, si se utiliza este criterio lineal de rotura, para evaluar la resistencia de la matriz rocosa, se pueden adoptar las siguientes recomendaciones: - Suponer
que el valor de la cohesión es un valor próximo al 10% de la resistencia a compresión simple de la matriz rocosa. - Adoptar un valor del ángulo de rozamiento interno según el nivel de tensiones con el que trabaja, tomado de ensayos específicos o de tablas.
CRITERIO DE HOEK Y BROWN
El propuesto por Hoek y Brown (1980) es un criterio empírico de rotura no lineal valido para evaluar la resistencia de la matriz rocosa isótropa en condiciones triaxiales: Donde σ1, y σ3 son los esfuerzos principales mayor y menor en rotura, σci, es la resistencia a compresión simple de
la matnz rocosa y mi es una constante que depende de las propiedades de la matnz rocosa.
DEFORMABILIDAD La deformabilidad es la propiedad que tiene la roca para alterar su forma como respuesta a la actuación de fuerzas. Según sea la intensidad de la fuerza ejercida, el modo en que se aplica y las características mecánicas de la roca, la deformación será permanente o elástica; en este último caso el cuerpo recupera su forma original al cesar la actuación de la fuerza. Ensayos de laboratorio de resistencia y deformabilidad Los métodos experimentales para determinar la resistencia y la deformabilidad de las rocas son independientes del criterio de rotura adoptado en cada caso; su finalidad es establecer las relaciones entre los esfuerzos y las deformaciones durante el proceso de carga y rotura, los esfuerzos a que está sometida la roca en el momento de la rotura y sus parámetros resistentes. Estos métodos son los ensayos de laboratorio de compresión uniaxial, compresión triaxial y tracción.
RESISTENCIA Y DEFORMABILIDAD DE MACIZOS ROCOSOS La resistencia de los macizos rocosos es función de la resistencia de la matriz rocosa y de las discontinuidades, siendo ambas extremadamente variables, y de las condiciones geoambientales a las que se encuentra sometido el macizo, como las tensiones naturales y las condiciones hidrogeológicas. La presencia de zonas tectonizadas, alteradas o de diferente composición litológica, implica zonas de debilidad y anisotropía con diferentes comportamientos y características resistentes. Estas circunstancias determinan una gran complejidad en la evaluación de la resistencia de los macizos rocosos.
COMPORTAMIENTO Y PROPIEDADES RESISTENTES DEL MACIZO ROCOSO
Según el grado de fracturación del macizo, su comportamiento y propiedades resistentes quedarán definidas por: • La resistencia de la matriz rocosa (isótropa o anisótropa). • La resistencia al corte de una familia de discontinuidades. • La resistencia al corte de 2 ó 3 familias de discontinuida des (siempre que sean
representativas en el macizo). • La resistencia global de un sistema de bloques rocosos con comportamiento isótropo.
OBTENCIÓN DE L AS CONSTANTES m, s y α Con el fin de ampliar el rango de aplicación del criterio generalizado, sobre todo a macizos rocosos de mala calidad, y emplear parámetros más geológicos para la evaluación de su resistencia, Hoek (1994) y Hoek et al, (1995) han propuesto un índice geológico de resistencia, GSI (geological strength index), que evalúa la calidad del macizo en función del grado y las características de la fracturación, estructura geológica, tamaño de los bloques y alteración de las discontinuidades.
El valor de GSI = 25 es arbitrario. Para GSI > 25 (macizos de media a muy buena calidad) este índice puede obtenerse a partir del RMR, mediante la correlación siguiente, en cuyo caso debe asignarse un valor de 15 para las condiciones de agua del macizo y un valor de 0 al parámetro de ajuste para la orientación de las discontinuidades:
DEFORMABILIDAD DE LOS MACIZOS ROCOSOS La deformabilidad de un macizo rocoso viene dada por las relaciones entre los esfuerzos aplicados y las deformaciones producidas, y queda definida por su módulo de deformación, que relaciona la tensión o esfuerzo con la deformación correspondiente. La deformabilidad, al igual que las demás propiedades de los macizos, presenta un carácter anisótropo y discontinuo, por lo que su determinación resulta compleja, siendo uno de los problemas sin resolver adecuadamente en mecánica de rocas.
Métodos para la Evaluación de la Deformabilidad Los métodos para la evaluación de la deformabilidad del macizo se pueden clasificar en directos e indirectos. En el primero (directos) se incluyen los ensayos in-situ, mientras que el segundo grupo (indirectos) incluye los métodos geofísicos y una serie de correlaciones empíricas. Influencia de las discontinuidades en la deformabilidad del macizo Conforme se considera un mayor volumen de macizo rocoso, se permite a las discontinuidades jugar un papel más importante en su resistencia y deformabilidad, del macizo será función del espaciado de las juntas, con dimensiones varias veces superiores a éste. La resistencia a compresión, al igual que ocurre con otras propiedades del macizo, se reduce con el incremento del tamaño de la muestra, tendencia similar a la de la matnz rocosa y a la de las discontinuidades