Scritti di Termodinamica 2002
! 2014
(02/07/18) Una (02/07/18) Una mole di gas ideale passa dallo stato A allo stato B con una trasformazione isobara in cui: H = H = 2269: 2269:72 J , U = U = 1621: 1621:23 J , S = 6:931 J 931 J=K =K Determinare i valori di T di T A e T B : Soluzione H = U + P V =
)
H = U U + p pV = c p T = c p (T B
U = c V T T = c V (T (T B dS = = =
p 1 T dU + T dV
cp cV
=
H U
=
T ) A
cV dT T dT + R T
2269:72 = 2269: 1621: 1621:23 = 1:4 =
)
U cV
= cT p dT
) ) S = c ln
gas biatomico
1621:23 = 1621: = 78: 78:0 K 5 8:314
T B
T =
T B T A
= exp(S=c exp(S=c p ) = exp(6: exp(6:931= 931=( 72 8:314)) = 1: 1:2689
A
T A +78 K +78 K T A
T A =
= 1:2689
78 0:2689 =
T )
2
) 0:2689T ) 2689T = 78 K 78 K ) A
290: 290:07 K 07 K ,, T B = 368: 368:07 K 07 K ..
1
p
T B T A
A
(02/07/18) Una (02/07/18) Una mole di gas ideale biatomico compie un ciclo reversibile costituito da: 1) una espansione adiabatica da A (T ( T A = 600 K 600 K ) a B (T B = 300 K 300 K ). ). 2) una compressione isoterma …no al punto C a volume uguale a quello iniziale V iniziale V A : 3) una trasformazione isocora …no a tornare alla temperatura T A : Calcolare il rendimento del ciclo. Soluzione: V A C C QAB = 0; QBC = RT B ln V = RT B ln V V B B
V C = 7=5; C = V A ; = T A V A 1
=
T B V B 1
1
) V A V B
=
=
0:17678 QBC = 8: 8 :314 300 ln(0: ln(0:17678) J 17678) J =
QCA = C = C V V (T A
5 2
L QCA
)
V A V B
4322: 4322:1 J
=
T ) = 8:314 300 J 300 J = = 6235: 6235:5 J C C
L = Q = Q BC + Q + QCA = 1913: 1913:4 J =
T B T A
1913: 1913:4 = 6235: 6235:5 = 0:30686
2
T B T A
1 1
=
1 2
5 2
=
(02/07/18) Una (02/07/18) Una mole di gas ideale biatomico compie un ciclo reversibile costituito da: 1) una espansione adiabatica da A (T ( T A = 600 K 600 K ) a B (T B = 300 K 300 K ). ). 2) una compressione isoterma …no al punto C a volume uguale a quello iniziale V iniziale V A : 3) una trasformazione isocora …no a tornare alla temperatura T A : Calcolare il rendimento del ciclo. Soluzione: V A C C QAB = 0; QBC = RT B ln V = RT B ln V V B B
V C = 7=5; C = V A ; = T A V A 1
=
T B V B 1
1
) V A V B
=
=
0:17678 QBC = 8: 8 :314 300 ln(0: ln(0:17678) J 17678) J =
QCA = C = C V V (T A
5 2
L QCA
)
V A V B
4322: 4322:1 J
=
T ) = 8:314 300 J 300 J = = 6235: 6235:5 J C C
L = Q = Q BC + Q + QCA = 1913: 1913:4 J =
T B T A
1913: 1913:4 = 6235: 6235:5 = 0:30686
2
T B T A
1 1
=
1 2
5 2
=
(02/09/12) Un blocco blocco di stagno stagno di massa massa m = 1:5 kg a temperatura ambiente (t (tA = 20 C ) viene posto a contatto con una sorgente alla temperatura di fusione dello stagno (t ( tF = 232 C ): Ad equilibrio raggiunto, la variazione variazione di entropia dell’universo vale vale S S un 42:2 J=K . J=K . Calcolare il calore un = 42: speci…co dello stagno. stagno.
Soluzione F F S Sn = mc ln T + Sn = mc T A
S un S amb un = S Sn Sn + S amb Q = mc = mc((T F F
C =
S amb amb =
T ) + m + m calore ceduto dalla sorgente.. sorgente.. = ; = mC = mC ln ln + = mC ln
S amb amb S un un
m ; T F F
m ln
Q : T F F
A
mc( mc(T F T A )+m )+m T F F T F F T A
S un un T F T F T A T A T F
m T F F
mc( mc(T F )+m F T A )+m T F F
= 1:5(ln
42: 42:2 273: 273 :15+232 23220 273: 273:15+20 273: 273:15+232
3
)
T F F T A
T F F T A T F F
;
J=KgK = = 225: 225:98 J=KgK 98 J=KgK .
(02/09/12) Cinque moli di gas ideale biatomico sono contenute, alla temperatura t1 = 250 C , nel volume V 1 di un cilindro connesso ad un altro cilindro da un rubinetto chiuso. Il gas compie nel primo cilindro una espansione adiabatica reversibile, …no ad occupare un volume V = 4V 1 . Si apre poi il rubinetto e il gas ‡uisce nel secondo cilindro, inizialmente vuoto, di volume V 2 = V 1 : Il sistema è termicamente isolato e con pareti rigide. Calcolare U e S di ciascuna trasformazione.
0
Soluzione S 1 = 0 (Adiab. rev.). U 1 = nc V (T 1 523:15 K 0
C p = 72 R, C V = 52 R, = T 1 V 1
1
= T 1 V 1 0
1
C p C V
= 1:4; 1
V 1 V 1 0
T ); 1
n = 5; T 1 = t 1 +273:15 =
1 = 0:4 1 0:4 1 4
) T = T = T = 0:57435 T = 0:57435 523:15 K = 300:47 K . U = 5 2:5 8:314 (300:47 523:15) J = 23142: J 0
0
1
1
1
1
U 2 = 0 (Espansione libera). V
S 2 = nR ln V fi ; V f = 4V 1 + V 2 = 5V 1 : S 2 = 5 8:314 ln 54 J=K = 9:2761 J=K .
4
(02/09/26) Una macchina termica reversibile assorbe una quantità di calore Q 2 = 2 105 J da una sorgente a T 2 = 973:2 K , e cede una quantità di calore Q1 ad una sorgente a temperatura T 1 = 573:2 K, e una quantità di calore Q 3 = Q1 ad una sorgente a temperatura T 3 = 373:2 K . Calcolare il valore di Q 1 ; il lavoro totale compiuto ed il rendimento.
Soluzione Q1 T 1
+ QT 22 +
Q1 T 1
+ QT 31
=
Q3 T 3
= 0: (Teorema di Clausius) Q2 T 2 ;
1 T 1
1 T 3
Q2 T 2
Q + = ; Q = ; Q = Q = J = 46452 J: L = Q jQ j jQ j = Q 2 jQ j = 2 10 J 2 46452 J = 107096 J . Q2 T 2
T 1 +T 3 1 T 1 T 3 1
2105 973:2
tot
1
1
Q2 T 1 T 3 T 2 T 1 +T 3
573:2373:2 573:2+373:2
2
1
3
2
1
5
=
Ltot Q2
= 107096 = 0:53548: 2 105
5
(02/09/26) Un cilindro con pareti adiabatiche è chiuso da un pistone isolante,scorrevole senza attrito. Il volume interno di 72 dm 3 è diviso a metà da una parete diatermana …ssa. Entrambe le parti sono riempite con un gas ideale avente C v = 16:6 J=Kmol, P = 1 bar e t = 0 C: Si comprime reversibilmente il gas nella parte A …no a che la pressione nella parte B è P B = 2 bar. Calcolare, per il gas contenuto in A, il volume V A , Il lavoro L A e la variazione di entropia S A :
Soluzione T T 0
=
P P 0
=2
) T = 2 T = 546:3 K ( trasf. isocora in B) S = S + S = 0 (adiab. rev.) ) S = S = nc A
0 V 0 n = P RT = 0
S A =
0
B
A
105 36103 8:314273:15
B
V
ln T T 0 :
= 1:5852 mol.
1:5852 16:6 ln 2 = 18:240 J=K .
Ma per la generica trasformazione in A: S A = nC V ln T T 0 + nR ln V V A0 = A ln V V A0 = 2 S nR
2
S A nR
V A V 0
A
) V = V e (18:240 2)=(1:5852 8:314) = 2:7680 U = (L + L ) = L (L = 0 perchè V L = U = 2nc (T T ) = 2nc T = 2 1:5852 16:6 273:15 J = 14376 J A
A
A
0
B
A
V
V A V 0
S + nR ln ) nR ln = 2S = 36 exp(2:768) = 2:2603 dm B
B
V 0
0
6
A
3
= cost.)
(03/01/15) Una mole di gas ideale monoatomico esegue un ciclo ABCA in cui: AB è una espansione isobara che ne raddoppia il volume; BC una trasformazione isocora irreversibile, realizzata ponendo il gas a contatto il gas con una sorgente a temperatura TC; CA una compressione isoterma reversibile. Calcolare il rendimento del ciclo e la variazione di entropia dell’universo. Soluzione Nel ciclo, irreversibile, il calore viene assorbito lungo l’isobara. QAB = nC p (T B
T ); A
viene invece ceduto nell’isocora BC e nell’isoterma CA: QBC = nC V (T T B ) = nC V (T T B ) C A V A V A QCA = nRT A ln = nRT A ln V C V B quindi nC V (T A T B ) + nRT A ln(V A =V B ) C V (T 1) + Rln(V B =V A ) B =T A = 1+ =1 nC p (T B T A ) C p (T B =T A 1) essendo T B =T A = V B =V A = 2; si ottiene: C V + R ln 2 3=2 + ln 2 = 1 =1 = 0:12 C p 5=2 La variazione di entropia nel ciclo è nulla, quindi la variazione di entropia dell’universo è pari alla variazione di entropia delle sorgenti. T B T C T B V A S univ = S sorg = C p ln C V R ln = T A T C V C 8:314 ((5=2) ln 2 (3=2) + ln(1=2)) J=K = 3:18 J=K . T B S sorgAB = C p ln = ( 8:314) (5=2) ln 2 = 14:407 J=K: T A V A S sorgCA = R ln = ( 8:314) ln(1=2) = 5:7628 J=K . V C T C T B S sorgBC = C V = ( 8:314) ( 3=2) = 12:471 J=K . T C T B S gasBC = C V ln = ( 8:314) ln(1=2) 3=2 = 8:6442 J=K . T C S sorgCA + ( S gasBC ) = 5:7628 + 8:6442 = 14:407 J=K .
Si noti che T C = T A 7
(03/01/24) Una massa di ghiaccio m = 0:9 kg a temperatura T 1 = 250 K viene introdotta in un recipiente vuoto di volume 0:1 m 3 , che viene messo a contatto termico con una sorgente a T 2 = 500 K . Calcolare la pressione nel recipiente all’equilibrio, la variazione d’entropia dell’acqua e quella della sorgente termica; l’acqua viene poi riportata reversibilmente alla temperatura iniziale. Calcolare la variazione d’entropia dell’universo nell’intero ciclo di riscaldamento e ra¤reddamento. Soluzione 5 P mol = 18 g=mol, C v = R = 20:785 J=Kmol, 2 C gh = 2093:4 J=kgK , C aq = 4186:8 J=kgK , F = 3:344 105 J=K , E = 2:257 106 J=K Soluzione P =
nRT mRT 900 8:314 500 = = = 2:0785 106 P a V (P mol ) V 18 0:1
Q = C m (T T ) = 2093:4 0:9 (273:15 250) = 43616: J Q = m = 3:344 10 0:9 = 3:0096 10 J Q = C m (T T ) = 4186:8 0:9 (373:15 273:15) = 3:7681 10 J Q = m = 2:257 10 0:9 = 2:0313 10 J 900 Q = C n (T T ) = 20:785 (500 373:15) = 1:3183 10 J 18 1
gh
2
F
3
aq
F
1
5
E
5
F
5
4
E
5
v
6
6
5
E
2
Q = Q1 + Q2 + Q3 + Q4 + Q5 = (0:43616 + 3:0096 + 3:7681 + 2 0:313 + 1:3183) 105 = 2:8845 106 J
2:8845 106 S amb = = 5769:0 J=K 500 T F Q 2 T E Q 4 T 2 S acq = mcgh ln + + mcacq ln + + ncv ln = T 1 T F T F T E T E
Q = T
273:15 3:0096 105 = 0:9 2093:4 ln + + 0:9 4186:8 250 273:15 2:0313 106 + 373:15
8
ln 373:15 + 273:15
900 500 ln = 8191:9 J=K 18 373:15 Il ra¤reddamento reversibile non modi…ca la variazione d’entropia che vale: +20:785
S un = S amb + S acq =
5769:0 + 8191:9 = 2422:9 J=K
9
(03/01/24) Tre moli di gas ideale passano dallo stato A ( V A = 30 dm 3 ; P A = 2 bar) allo stato B (V B = 100 dm3 ; P B = 4 bar) compiendo una trasformazione reversibile, rappresentata da un segmento sul piano (P; V ). Sapendo che S AB = 148:2 J=K decidere se il gas è monoatomico o biatomico. Calcolare il calore scambiato dal gas nella trasformazione. Soluzione S AB nC V
P B V B ln + ln P A V A
S AB =n C V = 5=2 R
P B V B P B V B = nC V ln + nC P ln = n C V ln + (C V + R) ln = P A V A P A V A
+ nR ln
R ln V V
B A
P B V B ln + ln P A V A
V B V A
148:2 =
13 8:314 ln( 103 ) 10 ln 2 + ln( ) 3
= 20:763 J=K =
gas biatomico L = 1=2(P A + P B )(V B T B =
5
V ) = 1=2(6 1:013 10 )(0:1 0:03) = 21273 J A
P B V B P A V A ; T A = nR nR
U = nC V T = 5=2 nR(T B
T ) = 5=2 (P V P V ) = 5=2(4 0:1 2 0:03) 1:013 10 Q = U + L = 86105 + 21273 = 1:0738 10 J
B B
A
A A
5
10
5
= 86105 J
(03/04/15) Un gas ideale biatomico, a pressione P 0 = 1:013 105 P a, volume V 0 = 0:01 m 3 e temperatura T 0 = 293:2 K viene compresso adiabaticamente e reversibilmente …no a V 1 = 1:5 10 3 m3 . A causa dell’imperfetto isolamento termico, dopo un certo tempo il gas ritorna alla temperatura iniziale T 0 . Calcolare la pressione massima raggiunta, la temperatura massima, la pressione …nale del gas, la variazione di entropia del gas e l’energia utilizzabile.
Soluzione 7 = ; P 0 V 0 = P 1 V 1 ; 5
)P = P 1
0
= 1:4424 106 P a
V 0 V 1
= 1:013 105
T 0 V 0
1
= T 1 V 1
1
) T = T 1
0
P V P V = P V ) P = V 1 1
0 0
1
0 0 1
V 0 V 1
1
= 293:2
10 1:5
10 1:5
7 5 P a =
2 5 K = 626:22 K
1:013 105 0:01 = P a = 6:7533 105 P a 3 1:5 10
T 0 P 0 V 0 5 T 0 5 1:013 105 0:01 293:2 J S gas = nC v ln = Rln = ln = T 1 RT 0 2 T 1 2 293:2 626:22 K J = 6:5545 K T 1 T 0 P 0 V 0 5 T 1 T 0 5 P 0 V 0 S amb = nC v = R = (T 1 T 0 ) = T 0 RT 0 2 T 0 2 T 02
5 1:013 105 0:01 = (626:22 2 (293:2)2
J J 293:2) K = 9:8105 K
J J S un = S gas + S amb = ( 6:5545 + 9:8105) = 3:256 = K K J J E in = T 0 S un = 293:2 3:256 = 954:66 K K
11
(03/04/15) Un frigorifero reversibile funziona assorbendo W = 400 J per ciclo, tra t 2 = 25 C e t 1 = 4 C . Se vi si pone all’interno 1 kg di acqua a t3 = 20 C;calcolare in quanti cicli la macchina riuscirà a trasformare tutta l’acqua in ghiaccio a t 1 = 4 C . J calore speci…co dell’acqua C a = 4187 ; kgK J calore speci…co del ghiaccio C g = 2051:5 kgK J calore latente di fusione dell’acqua = 3:344 105 K
Soluzione T 1 = 273:15 K 4 K = 269:15 K; T 2 = 298:15 K; T 3 = 293:15 K; T 0 = 273:15 K temp. di congelamento dell’acqua T 1 269:15 Il rendimento è = 1 =1 = 0:097266 T 2 298:15 W 400 Q2 = = J = 4112 J 0:097266
Q1 = W
Q = (400 + 4112)J = 3712 J 2
Il calore da sottrarre all’acqua è: Q = m [C a (T 3
T ) + + c (T T )] = = (4187 20 + 3:344 10 + 2051:5 4) J = 4:2635 10 J = Q 4:2635 10 n = = = 115 cicli. g
0
0
1
5
5
5
Q1
3712
12
(03/06/23) Il calore speci…co a pressione costante del platino, tra 250 K e 1400 K , dipende da T in accordo alla relazione empirica C p = (122:3 + 0:03T + 2:15 105 T 2 )J=kgK
Una massa di 250 g di platino a T 1 =280 K viene posta, mantenendo la pressione costante, in contatto termico con una sorgente a T 2 =1400 K . Calcolare la variazione di entropia ed entalpia del platino, e la variazione d’entropia dell’universo. Soluzione Q = m
T2 T 1
R
C p dT
C p = a + bT + cT
H = Q = m a(T 2
b T 1 ) + (T 22 2
0:25(122:3 1120 + 0:015 (14002
41454 J S =
dQ = m T
Z
m a ln
T 2 + b(T 2 T 1
2
T 2 T 1
R
1
2 2
1 ) = T 1 1 2802 ) 2:15 105 ( 1400
R
dT C p = m a T
T ) 2c ( T 1
1 T 12 ) C ( T 2
T2 T 1
dT + b T
1 ) = T 12
T 2 T 1
R
dT +c
1 280 ))J =
R T2 T 1
dT = T 3
1400 2:15 105 1 1 J 0:25(122:3 ln + 0:03(1120) ( )) = 280 2 14002 2802 K J 57:938 K Q 41454 J J S univ = S + S sorg = S = (57:938 ) = 28:328 T 2 1400 K K
13
(03/06/23) Due macchine termiche utilizzano le stesse sorgenti, alle temperature T 1 = 300 K e T 2 = 600 K: La prima macchina, reversibile, assorbe Q2 = 2 kJ e produce un lavoro L. La seconda, irreversibile e con rendimento 2 = 0:3, produce lo stesso lavoro L: Calcolare la variazione di entropia dell’universo in un ciclo delle due macchine. Soluzione 1 = rev = 1
T T
1
=1
2
0:5 = 0:5
L = 1 Q2 = 0:5 2000 J = 1000 J L 1000 Q2 = = = 3333 J calore ceduto dalla sorgente calda alla macch. 2 0:3 irrev.
0
0
Q1 = L irrev.
0
Q = 2333 J calore ceduto alla sorgente fredda dalla macch. 2
0
0
S 1 =
Q1 aumento d’entropia della sorgente fredda T 1 0
Q2 S 2 = diminuzione d’entropia della sorg. calda T 2 2333 3333 J J S univ = S 1 + S 2 = = 2:221 300 600 K K 0
0
0
14
(03/07/11) Un cilindro con pistone, contenente n = 3 moli di gas ideale biatomico, si trova in equilibrio termico con 1 Kg di acqua alla temperatura T A = 373:2 K . Il gas viene compresso in modo reversibile a T costante, a 1 contatto con l’acqua …no allo stato B in cui V B = V A . Una trasformazione 3 adiabatica reversibile riporta il gas al volume iniziale V A . In…ne anche la temperatura viene riportata al valore iniziale T A ponendo di nuovo il cilindro in contatto termico con l’acqua e mantenendo costante il volume. Calcolare: Il lavoro richiesto in un ciclo: quanti cicli sono necessari per far evaporare tutta l’acqua; la variazione d’entropia del gas e dell’acqua nell’isocora; l’energia inutilizzabile in un ciclo. Soluzione (A
! B, isoterma)
V B 1 = 3 8:314 373:2 ln J = 10226 J V A 3 = Q AB = calore ceduto dal gas (A B). Per il gas si ha: V B S B S A = QT AB = nRln A V A (B C, adiabatica) LAB = nRT A ln
!
!
LBC = nC V (T B
C
e quindi T C = T B
7 1= 5
1 C C
T ) ma si ha: T V
1 =
V B V C
2 5;
= T B V B
1
1
T C = 373:2
1 3
0:4
= 240:49 K
52 8:314 (373:2 240:5) J = 8274:5 J Per il gas S S = 0 (C ! A, isocora) T L = 0; Per il gas S S = nC ln = T LBC = 3
C
CA
B
A
C
A
V
C
373:2 52 8:314 ln 240:49 J=K = 27:40 J=K Calore assorbito dal gas (C ! A) = Q = U = nC (T T ) = L 3
CA
15
V
A
C
BC
perchè T A = T B La variazione d’entropia dell’acqua nell’isocora vale QCA 8274:5 S aCA = = J=K = 22:17 J=K T A 373:2 La somma delle variazioni d’entropia per acqua e gas nell’isocora (l’unico processo irreversibile) dà
S univ = 27:40 J=K
22:17 J=K = 5:23 J=K =
L’energia inutilizzabile vale
E in = T A S univ = 373:2 5:23 J = 1951:5 J: Il lavoro richiesto in un ciclo è
L = L AB + LBC = (8274:5
10226) J = 1951:5 J
che è il calore ceduto all’acqua a ogni ciclo.
m 2257 103 Numero cicli n = = = 1157 L 1951 Procedura alternativa per il calcolo di E in :
In un ciclo il gas torna allo stato iniziale e quindi S gas = 0 (Infatti S gas = nR ln 2=5
perchè T C V A ln
V B T A + nC V ln =0 V A T C
2=5
= T B V B
2=5
= T A V B
V B = 0) V A
S univ
T A T C
1951:5 = 5:23 J=K 373:2 A = S gas + S acq = 5:23 J=K
In un ciclo S acq =
T Q
5 2
) )
=
E in = T A S univ = 373:2 5:23 J = 1951:5 J:
16
=
V A V B
5 T A ln + 2 T C
(03/07/11) Una macchina termica reversibile lavora con quattro sorgenti. Dalla prima, a temperatura T 1 = 500 K , la macchina assorbe il calore Q1 = 5000 J . Alla quarta sorgente, a T 4 = 280 K , la macchina cede il calore Q4 = 1400 J . Con la seconda e la terza sorgente (T 2 = 400 K e T 3 = 300 K ), la macchina scambia i calori Q2 e Q3 = Q2 . Calcolare il rendimento della macchina.
Soluzione Q1 Q2 Q 3 Q 4 Q1 Q 2 + + + = 0: ; + T 1 T 2 T 3 T 4 T 1 T 2
QT
2
+
3
Q 4 = 0: T 4
Q2 (T 1 T 3 T 4 T 1 T 2 T 4 ) = Q1 T 2 T 3 T 4 Q4 T 1 T 2 T 3 Q1 T 2 T 3 T 4 Q4 T 1 T 2 T 3 Q2 = = T 1 T 3 T 4 T 1 T 2 T 4 5000 400 300 280 + ( 1400) 500 400 300 = J = 6000 J: 500 300 280 500 400 280 Q 3 + Q4 6000 + 1400 = 1 + =1 = 0:327 Q1 + Q2 6000 + 5000
17
(03/09/16) Due moli di gas ideale monoatomico, inizialmente a volume V A = 5 dm3 e temperatura T A = 273:2 K subiscono una trasformazione isoterma reversibile, a contatto con una miscela di acqua e ghiaccio, …no al volume V B = 2 dm3 : Il gas poi viene posto a contatto con una sorgente a temperatura T C = 519 K …no a raggiungere, a prerssione costante, l’equilibrio termico. Quindi, mediante una trasformazione adiabatica reversibile, il gas ritorna al volume iniziale. In…ne, posto a contatto con la miscela di acqua e ghiaccio, torna alla temperatura iniziale mediante una trasformazione isocora. Calcolare per un ciclo: Quanti grammi di ghiaccio si sciolgono ( = 344:4 J=g), il lavoro L compiuto dal gas, il rendimento del ciclo. Soluzione P V = nRT P = nRT=V P A = 2 8:314 273:2=0:005 = 9:0855 105 P a
)
)
P = 2 8:314 273:2=0:002 = 2:2714 10 P a V =nRT =P = 2 8:314 519=(2:2714 10 ) = 3:7994 10 5 = ; P V = P V ; ) 3 6
B
C
C
6
C
C C
P D = P C
D D
) V C V D
P D = 2:2714 106
3
3:7994 10 5:0 10 3
1:4373 106 8:314 273:2=0:002 (A
5 3
=
! B, isoterma) V 1 L = nRT ln = 3 8:314 373:2 ln J = 10226 J V 3 = Q = calore ceduto dal gas (A ! B).
AB
B
A
A
AB
Per il gas si ha: S B
S = A
QAB T A
= nR ln
! C, adiabatica) L = nC (T T ) ma si ha: T V
V B V A
(B
BC
V
B
e quindi T C = T B
1 C C
C
V B V C
1
18
= T B V B
1
3
m3
7 1= 5
1 =
2 5;
T C = 373:2
1 3
0:4
= 240:49 K
52 8:314 (373:2 240:5) J = 8274:5 J Per il gas S S = 0 (C ! A, isocora) T L = 0; Per il gas S S = nC ln = T LBC = 3
C
B
CA
A
C
A
V
C
373:2 52 8:314 ln 240:49 J=K = 27:40 J=K Calore assorbito dal gas (C ! A) Q = U = nC (T T ) = L perchè T = T 3
CA
V
A
C
BC
A
B
La variazione d’entropia dell’acqua nell’isocora vale QCA 8274:5 S aCA = = J=K = 22:17 J=K T A 373:2 La somma delle variazioni d’entropia per acqua e gas nell’isocora (l’unico processo irreversibile) dà J J J S univ = 27:40 22:17 = 5:23 = K K K L’energia inutilizzabile vale E in = T A S univ = 373:2 5:23 J = 1951:5 J:
Il lavoro richiesto in un ciclo è L = L AB + LBC = (8274:5
1951:5 J = Q = calore ceduto all’acqua a ogni ciclo. m 2257 10 Numero cicli n = = = 1157 3
L
1951
19
10226) J =
(03/09/16) Una macchina termica reversibile lavora tra due sorgenti, una costituita dall’ambiente a T 1 = 290 K e l’altra da una grande massa di stagno fuso alla temperatura di fusione T 2 . Ad ogni ciclo della macchina solidi…cano 8:4 g di stagno, viene compiuto il lavoro L = 209:6 J e viene ceduto alla sorgente fredda il calore Q 1 = 282:7 J . Calcolare i valori di T 2 e del calore latente di fusione dello stagno.
Soluzione L = Q 1 + Q2 . Q2 = L Q1 = (209:6 + 282:7) J = 492:3 J Q2 492:3 J J = = = 58607 m 8:4 10 3 kg kg La macchina è reversibile, quindi: Q1 Q 2 Q2 492:3 + = 0 T 2 = T 1 = 290 K = 505 K T 1 T 2 Q1 282:7
)
20
(03/09/30) Un gas ideale inizialmente in A a pressione P 1 e volume V 1 compie una trasformazione isobara …no a un punto B (P 1 ; V 0 ) (V 0 > V 1 ), poi un’isocora che lo porta in C (P 2 ; V 0 )(P 2 < P 1 ) e un’altra isobara …no a D (P 2 ; V 2 = 5V 1 ): In…ne una trasformazione isoterma reversibile lo riporta allo stato iniziale. Calcolare per quale valore di V 0 il lavoro complessivo risulta nullo. Soluzione L = P 1 (V 0 nRT
V ) + P (V V ) + nRT ln V V V V 1 + + ln = 0 1
0
2
1
2
V 1
2
0
0
V 2
5
V 1 = 0 V 2
V ) + V (V V ) + V V ln 15 = 0 V (V V ) V V + V V 1:61 V V = 0 V V 5 V = 1:61 = 1:61 V = 2V V V 4 V 2 (V 0 0
2
1
1
1
1 2
1 2
0
2
2
0
1 2
1 2
1 2
1
1
1
21
(03/09/30) Una macchina frigorifera compie 3 cicli al secondo, assorbendo una potenza P = 1256 W: Essa lavora scambiando calore tra due sorgenti alla temperatura T 1 = 200 K e T 2 = 300 K . Sapendo che ad ogni ciclo l’entropia dell’universo aumenta di S u = 0:7 J=K si calcoli il tempo necessario per sottrarre alla sorgente fredda una quantità di calore pari a Q = 104 J: Se la macchina fosse reversibile quanto tempo impiegherebbe? Soluzione A ogni ciclo dall’esterno si compie un lavoro uguale a L =
P=f = 1256=3 J: = 418:67 J:sempre per ogni ciclo si ha: Q Q L = Q + Q ; + = S : ) Q = 417:34 J; Q = 836:01 J T T 1
2
1
2
1
2
u
1
2
In un secondo la sorgente fredda perde il calore 3Q1 e quindi per sottrarre il calore Q occorrono t secondi: t = Q=3Q1 = 104 =(3 417:34) s = 7:9871 s
Se la macchina fosse reversibile si avrebbe: Q1 Q 2 L = Q 1 + Q2 ; + =0 Q1 = 837:34 J; Q2 = T 1 T 2 0
0
0
0
)
0
t = Q=3Q1 = 104 =(3 837:34)s = 3:9809 s 0
0
22
0
1256:0 J
(04/01/22) Un cilindro rigido e adiabatico è diviso in due parti da un setto di area S = 40 cm2 anch’esso adiabatico, che può scorrere al suo interno. Una parte, di volume V 1 = 6 l, contiene 2 moli di gas ideale biatomico; l’altra parte, di volume V 2 = 3 l contiene 1; 3 moli dello stesso gas. Inizialmente la pressione nelle due parti è p = 10 atm ed il sistema si trova in equilibrio meccanico col setto in una certa posizione. Bloccato il setto in tale posizione e facendo venir meno la sua adiabaticità, si calcoli la forza che agisce su di esso e la variazione di entropia del sistema. Soluzione Le temperature iniziali dei gas vanno determinate mediante l’equazione di stato: 10 1:013 105 6 10 3 T 1 = pV 1 =n1 R = K = 365:53 K; : 2 8:314 10 1:013 105 3 10 3 T 2 = pV 2 =n2 R = K = 281:18 K 1:3 8:314 Una volta che il setto diventa diatermico, calore ‡uisce da una parte all’altra e viene raggiunta la temperatura …nale T f . Tenuto conto che l’energia interna dell’intero sistema è costante, nel processo la sua variazione è nulla: si ha
U = n 1 C v (T f
T ) + n C (T T ) = 0. 1
2
v
f
2
Da cui: n1 T 1 + n2 T 2 2 365:53 + 1:3 281:18 T f = = = 332:3 K n1 + n2 3:3 La forza che agisce sul setto risulta
n2 n 1 F = S ( p2 p1 ) = SRT f = V 2 V 1 1:3 2 40 10 4 8:314 332:3 ( ) 103 N = 1105:1 N . 3 6 La variazione di entropia del sistema è: T f T f S = S 1 + S 2 = n1 C v ln + n2 C v ln = T 1 T 2 332:3 332:3 5=2 8:314 (2 ln + 1:3 ln ) = 0:55 J=K 365:53 281:18
23
(04/01/22) Una mole di gas ideale monoatomico esegue un ciclo composto da una espansione isoterma reversibile AB che ne raddoppia il volume, da una trasformazione isocora irreversibile BC, realizzata ponendo il gas a contatto con una sorgente a temperatura T C , e da una adiabatica reversibile CA che chiude il ciclo. Calcolare il rendimento del ciclo e la variazione di entropia dell’universo. Soluzione Il rendimento è dato da Q BC = 1 + ; (1) QAB dove le quantità di calore assorbito Q AB e ceduto QBC sono, V B QAB = nRT A ln ; QBC = nC V (T C T B ): (2) V A Dall’equazione dell’adiabatica reversibile si ha
T A V A 1
1 = T C V C
T C = T A
)
V A V B
1
:
(3)
Sostituendo la (3) e la (2) nella (1) e ricordando che per il gas ideale 5 monoatomico = , 3 si ottiene 2 1 V A 1 3 1 1 3 V B 3 2 = 1 + =1 + = 0:2 V B 2 2 ln 2 ln V A Per quanto riguarda la variazione di entropia dell’universo si osservi che se il ciclo fosse reversibile tale variazione sarebbe nulla. Poichè la trasformazione isocora è irreversibile si ha necessariamente una variazione di entropia delle sorgenti, in quanto la variazione di entropia dell’intero ciclo è nulla. Pertanto denotando con S l’entropia delle sorgenti, si ha
S u = S AB + S BC :
Ma S AB =
R ln V V
B A
=
8:314 ln 2 J=K = 5:76 J=K; 24
S BC = C V
3 2
8:314
T B
T
C
T C 2 23
= C V
" V B V A
1
#
1
0 1 @ A
=
1 J=K = 7:32 J=K
tenuto conto, per la (3), che T A = T B . Pertanto S u = 1:47 J=K:
25
(04/07/05) Un recipiente cilindrico isolato, di volume V 0 = 40 l è diviso in due parti uguali da una parete di sezione S = 100 cm2 e volume trascurabile, perfettamente scorrevole. In una delle due parti è contenuta una mole di gas ideale monoatomico, mentre l’altra parte è vuota. La parete mobile è mantenuta in equilibrio da una molla di costante elastica k = 104 N=m, compressa di l = 0:1 m. Praticando un piccolo foro nella parete, il gas di¤onde nella parte vuota. Calcolare la variazione di energia interna e di entropia del gas. Soluzione La pressione e la temperatura dello stato iniziale sono: kl 104 0:1 p1 = = P a = 1:0 105 P a; S 0:01 p1 V 1 1:0 105 2 10 2 T 1 = = K =240:56 K ; (V 1 = V 0 =2): nR 8:314
L’energia interna del sistema è costante, U = U gas + U molla = 0; ed essendo: U molla = 0
12 k(l)
2
=
12 k(l)
2
(l’energia …nale della molla è nulla, l = 0), si ha 1 1 U gas = nC V (T T 1 ) = k(l)2 = 104 (0:1)2 J = 50 J: 2 2 2 Si ottiene:
0 B@
1 CA
50 K = 244:57 K ; 3 8:314 2 nRT 2 nRT 2 8:314 244:57 p2 = = = P a = 5:08 104 P a = : 2 V 2 V 0 4 10 La variazione di entropia risulta: T 2 V 0 3 244:57 S = nC V ln +nR ln = 8:314 ( ln +ln 2)J=K = 5:969 T 1 V 0 =2 2 240:56 J=K: T 2 = T 1 +
U gas = nC V
240:56 +
26
(04/07/05) Una mole di gas ideale biatomico esegue il ciclo ABCA, in cui: AB è una espansione isobara che raddoppia il volume iniziale, V B = 2V A ; BC un ra¤reddamento isocoro, ottenuto ponendo il gas in contatto con una sorgente a temperatura T C ; C A una compressione isoterma che riporta il gas nelle condizioni iniziali. Calcolare il rendimento del ciclo e la variazione di entropia dell’universo. Soluzione Dall’equazione di stato, relativa all’isobara, si ha T B V B V C = = = 2. T A V A V A Le quantità di calore scambiate nel ciclo dal gas sono: QAB = nC p(T B
T ) = nCpT ; assorbita; = nC (T T ) = nC (T T ) = nC T ; ceduta; V V = nRT ln = nRT ln = nRT ln 2; ceduta. V V
QBC QCA
V
A
B
A
C
V
C
A
B
A
V A
B
A
A
A
A
Il rendimento risulta: Q BC + QCA C V + R ln 2 5 + 2 ln 2 = 1 + =1 =1 = 0:088 QAB Cp 7 Il ciclo contiene una trasformazione irreversibile: l’isocora che ra¤redda il gas posto a contatto con la sorgente a temperatura T C = T A ; . Ma la variazione di entropia del gas in un ciclo è nulla, dunque la variazione di entropia dell’universo è uguale alla variazione di entropia dell’ambiente e della sorgente. Denotando con S tali variazioni, per n = 1, si ha:
S u = S AB + S BC + S CA
dove
B
S AB =
dT = T
Z
Cp
C ln T T , p
A
S u = =
B
A
S BC =
QT
BC
C ln T T QT QT p
B
BC
CA
A
A
A
C ln2 + C + R ln 2 7 5 = ( ln2 + + ln 2) 8:314 J=K = 6:38 J=K 2 2 p
V
27
A
; S CA =
QT
CA A
oppure: La variazione d’entropia dell’universo S u è data dalla somma di S gas e S sorg nell’isocora irreversibile BC C
S u = C V
dT T
Z B
QT
BC A
5 = R( ln 2 + 1) = 2
5 2
8:314 ( ln 2 + 1) J=K = 6:38 J=K
28
(04/07/27) Un cilindro adiabatico munito di pistone perfettamente scorrevole, contiene n = 5 moli di gas ideale biatomico in equilibrio. Raddoppiando bruscamente la pressione esterna, il gas raggiunge lo stato di equilibrio …nale. Conoscendo il volume iniziale V 1 = 10 l e la temperatura iniziale T 1 = 300 K , calcolare le variazioni di entalpia e di entropia del gas. Soluzione Dalla prima legge della termodinamica, per Q = 0 si ha U =
L; ) nC (T T ) = 2 p (V V ): V
2
1
1
1
2
Tenendo presente l’equazione di stato, si ricava nC V (T 2
T ) = 2 p 1
1
nRT 1 p1
nRT 2 2 p1
Da cui 5 9 9 (T 2 T 1 ) = (2T 1 T 2 ) T 2 = T 1 = 2 7 7 La variazione di entalpia risulta
300 K = 385:71 K
)
T ) = 5 72 8:314
H = U +( pV ) = U + nRT = nC p (T 2 85:71 = 12:47 kJ .
1
La variazione di entropia vale T 2 V 2 T 2 T 2 S = nC V ln + nRln = nC V ln + nR ln = T 1 V 1 T 1 2T 1 5 385:71 385:71 J J 5 8:314 ln + ln = 7:75 2 300 600 K K
dove si è tenuto conto dell’equazione di stato.
29
(04/07/27) Un gas ideale monoatomico, inizialmente alla pressione p0 = 2 atm e volume V 0 = 10 l , esegue la trasformazione reversibile
" #
p = p0 1 +
V
2
V 0
V 0
…no a raddoppiare il volume. Calcolare il calore scambiato durante la trasformazione. Successivamente il gas dapprima con un’isocora reversibile e poi con un’isobara reversibile ritorna allo stato iniziale. Calcolare il rendimento del ciclo. Soluzione Dall’equazione della prima trasformazione si deduce che raddoppiando il volume iniziale, la pressione diventa p1 = 2 p0 : Il calore assorbito nella prima trasformazione è dato dal primo principio: Q = U + L1
(1)
La variazione di energia interna del gas nella prima trasformazione risulta: U = nC V (T 1
3 4 p0 V 0 T 0 ) = nR 2 nR
p 0 V 0 9 = p0 V 0 nR 2
(2)
dove, per ricavare le temperature, si è usata l’equazione di stato. Il lavoro compiuto nella prima trasformazione è: 2V 0
L1 =
Z
pdV =
V 0
p0
2V 0
Z " # p0 1 +
V 0
1 V + 2 (V 3V 0
V 0 )
3
2V 0 V 0
V
2
V 0
V 0
dV =
4 = p0 V 0 : 3
(3)
Sostituendo le (2) e (3) nella (1), si ottiene: 35 35 Q = p0 V 0 = 2 1:013 105 10 10 3 J: = 11818 J 6 6 Il lavoro compiuto nel ciclo vale 1 L = L 1 p0 (2V 0 V 0 ) = p0 V 0 3 e quindi il rendimento del ciclo risulta:
30
1 p0 V 0 L 2 3 = = = = 0:057 35 Q 35 p0 V 0 6
31
(04/09/10) Una macchina termica reversibile assorbe una quantità di calore Q0 da una sorgente costituita da una miscela di acqua e ghiaccio in equilibrio (T 0 = 273 K ), e cede calore ad una mole di gas ideale, in maniera tale che la temperatura T 1 di quest’ultimo rimanga costante. Si determini l’aumento percentuale di volume del gas, in corrispondenza alla solidi…cazione di una massa m = 5 g di acqua. Si calcoli la variazione d’entropia dell’universo. (Calore di fusione del ghiaccio f = 80 cal=g) Soluzione Il gas compie una espansione isoterma reversibile dal volume V 1 al volume V 2 a temperatura T 1 , quindi può essere considerato come una sorgente. Il processo è interamente reversibile; la variazione di entropia dell’universo (macchina e sorgenti) è uguale a zero. La macchina è una macchina di Carnot che opera tra le temperature T 0 e T 1 , quindi Q0 Q 1 T 1 T 1 + = 0, Q1 = Q0 = mf ; T 0 T 1 T 0 T 0 dove Q1 è il calore ceduto al gas. D’altra parte nell’espansione isoterma il calore assorbito dal gas vale:
)
V 2 T 1 Q1 = nRT 1 ln = mf ; V 1 T 0
exp
5 10
Segue: V 2
V
1
V 1
3
=
) 3
80 4:184 10 8:314 273
V 2 V 1
V 2 m f = exp = V 1 nRT 0
1 = exp
= 2:0904
m f nRT 0
1 = 1:09 = 109 %
J J f = 80cal=g = 80 4:184 103 = 3:3472 105 kg kg
32
(04/09/10) Due moli di gas ideale biatomico compiono un ciclo ABCA, dove AB è una espansione reversibile in cui il gas è in equilibrio termico con una sorgente costituita da ghiaccio in presenza della sua acqua di fusione, passando da un volume V A = 10 l ad un volume V B = 15 l; BC è una trasformazione adiabatica reversibile, con la quale il gas ritorna al suo volume iniziale; CA è una trasformazione in cui il gas, posto nuovamente a contatto con la sorgente, ritorna rapidamente allo stato iniziale. Calcolare il lavoro del ciclo e la variazione di entropia dell’universo. Soluzione Nella trasformazione AB, isoterma, T A = T B = 273:15 K: La temperatura in C va ricavata ricorrendo all’equazione dell’adiabatica reversibile, 1 T C V C
= T B V B 1
K .
) T
C
= T B
V B V C
1
= 273:15
2=5
15 10
K = 321:25
Il lavoro compiuto nel ciclo è V B L = L AB + LBC = nRT A ln nC V (T C T A ) = V A 3 5 2 8:314 273:15 ln (321:25 273:15) = 157:92 J: 2 2 La variazione di entropia dell’universo deve essere maggiore di zero in quanto il ciclo contiene una trasformazione irreversibile (isocora CA). Ma la variazione di entropia del gas in un ciclo è nulla, pertanto la variazione di entropia dell’universo è uguale alla variazione di entropia della sorgente. Questa cede calore nella trasformazione AB ed assorbe calore nella trasformazione CA; pertanto QAB Q CA S u = S sorg = dove T A T A V B QAB = nRT A ln ; è il calore assorbito dal gas lungo AB V A e QCA = nC V (T T A ) è il calore ceduto dal gas alla sorgente lungo C CA V B T C T A S sorg = nR ln + nC V = V A T A 3 5 321:25 273:15 2 8:314 ln + J=K = 0:578 J=K 2 2 273:15
33
34
(04/09/28) Una mole di gas ideale monoatomico compie un ciclo ABCD in cui AB è una isoterma reversibile a temperatura T 2 = 350 K , BC una isocora irreversibile, CD una isoterma reversibile a temperatura T 1 = 250K , DA una adiabatica reversibile. calcolare il lavoro compiuto nel ciclo ed il calore scambiato nella trasformazione BC; (V B = 3V A = 9 l). Soluzione Non è noto il volume V D , ma usando l’equazione dell’adiabatica reversibile si ha 1 1 ( 1) ( 1) T 2 V A = T 1 V D ; 1 1 T 2 ( 1) 350 (5=3 1) V D = V A = 3 l = 4:97 l T 1 250
)
Il lavoro del ciclo è dato da
L = L AB + LCD + LDA ;
(1)
dove: V B = 8:314 350 ln 3 = 3196:9 J V A V D 4:97 LCD = RT 1 ln = 8:314 250ln = 1234:2 J V B 9 3 3 LDA = C V (T T 1 ) = R(T 2 T 1 ) = 8:314 100 = 2 2 2 Sostituendo nella (1) si ottiene LAB = RT 2 ln
L = (3196:9
1247:1 J:
1234:2 1247:1) J = 715:6 J
Poichè nel ciclo U = 0;
) Q
ciclo = Q AB + QBC + QCD
= L;
(2)
ed essendo
QAB = L AB ;
QCD = L CD ,
sostituendo nella (2), si ricava: QBC = L
L L AB
CD =
(715:6
3196:9 + 1234:2) = 1247:1 J: 35
(04/09/28) Un gas ideale monoatomico, nel diagramma V -T , compie un ciclo ABCA rappresentato da un triangolo rettangolo, come in …gura. Sapendo che T B = 3T A , calcolare il rendimento.
Soluzione Dalla …gura si riconosce che nella trasformazione AB il rapporto T =V = c è costante, quindi si tratta di una isobara; BC è una isocora; CA una isoterma. Usando l’equazione di stato si ha V B T B = = 3; V B = V C = 3V A : V A T A Le quantità di calore scambiate sono:
)
QAB = C p (T B
T ); = C (T T ); V = RT ln . V
QBC QCA
V
A
B
A
C
C A
Il rendimento risulta QBC + QCA = 1+ QAB
3 (T B T C ) + T A ln 3 =1 2 =1 5 (T B T A ) 2
3 (2) + ln 3 2 1 = 0:18: 5 (2) 2 oppure: 1 LCA = nRT A ln( ); LAB = p A 2V A = 2nRT A 3
36
3 (3T A T A ) + T A ln 3 2 = 5 (3T A T A ) 2
5 QAB = nR 2T A ; 2
=
LAB + LCA QAB
1 1 2nRT A + nRT A ln( ) 2 + ln( ) 3 = 3 = 0:18 = 5 5 nR 2T A 2
37
(05/06/22) Un gas ideale monoatomico compie un ciclo reversibile, costituito da una espansione isoterma AB, dove il gas raddoppia il volume, da una isocora BC e da una adiabatica CA. Calcolare il rendimento del ciclo. Soluzione Detta T la temperatura assoluta dell’isoterma e T C quella dello stato C, si ha: = 1 +
Q1 Q2
dove il calore assorbito nell’isoterma vale Q 2 = RT ln V V BA e il calore ceduto nell’isocora vale Q 1 = = 1
C V (T T C ) V
RT ln V B
:
C (T T ) e quindi si ha V
C
(1)
A
Per ricavare T C , si osservi che nel ciclo la variazione di entropia del gas è nulla: B S = C V ln T T C + R ln V V A = 0
) T
C
= T 2
2=3
:
(2)
Lo stesso risultato si ottiene considerando gli stati A e C dell’adiabatica. Sostituendo la (2) nella (1), si ottiene: = 1
C V T (122=3 ) RT ln 2
=1
1:5(122=3 ) ln 2
38
= 0:2:
(05/06/22) Un recipiente cilindrico adiabatico è diviso in due parti uguali A e B da un pistone scorrevole, anch’esso adiabatico, e di massa trascurabile. Ognuna delle due parti contiene 6 moli di gas ideale monoatomico alla pressione p 0 e alla temperatura T 0 = 300 K . Una resistenza elettrica riscalda reversibilmente il gas contenuto nella parte A, determinando una compressione del gas in B, …no a triplicarne la pressione. Calcolare il lavoro fatto dal gas contenuto in A ed il calore da esso assorbito. Soluzione In A viene dissipato calore mediante la resistenza elettrica (lavoro adiabatico), mentre il gas contenuto in B viene compresso adiabaticamente e reversibilmente, raggiungendo la temperatura T B = T 0
pB p0
( 1)
2
= 300 (3) 5 K = 465:5 K;
avendo tenuto conto dell’equazione delle adiabatiche reversibili, nelle variabili p e T. Di conseguenza, il lavoro fatto dal gas in A su quello contenuto in B è pari alla variazione di energia interna di quest’ultimo: L = nC V (T B
3 2
T ) = 6 8:314(465:5 300) = 12384 J: 0
d’altro canto, il calore assorbito dal gas A è pari alla somma del lavoro e¤ettuato e della sua variazione di energia interna. Per calcolare quest’ultima occorre determinare la temperatura …nale T A del gas. Dall’equazione di stato del gas ideale si ha: pA V A = nRT A ; p0 V 0 = nRT 0 ;
T A T 0
=
pA V A p0 V 0 ;
Ma, essendo V 0 il volume iniziale dei gas, V A = 2V 0
V
B
3 5
V 0 2
1 3
= 2V 0
1= V 0 p pB0
A
h i
= V 0 2
= 1:4827 V 0 ;
pA V A 0 p0 V 0 :
) T = T p0 1= pB
=
e, tenuto conto che nelle due parti pA = pB , si ottiene che T A = 1334:4 K Pertanto: Q = L + U A = 12384 J + 32 nR(T A 12384 J + 9
T ) = 0
8:314 1034:4 J = 89784 J: 39
(05/07/19) Una mole di gas ideale monoatomico descrive un ciclo ABCA costituito da una adiabatica reversibile AB, una isoterma reversibile BC ed una isocora irreversibile CA, durante la quale il gas è posto in contatto con una sorgente a temperatura T A : Sapendo che V B =V A = 2, calcolare il rendimento del ciclo e le variazioni di entropia della sorgente e del gas durante la trasformazione isocora; calcolare in…ne la variazione d’entropia dell’universo in un ciclo. Soluzione Il calore viene assorbito lungo l’isocora CA: QCA = nC V (T A
T ); B
essendo T C = T B . Il calore ceduto lungo la compressione isoterma è B QBC = nRT B ln V V A ;
essendo V C = V A . Pertanto: = 1
nRT B ln(V B =V A ) nC V (T A T B )
=1
R ln(V B =V A ) C V (T A =T B 1) .
Poichè, T B T A
=
1
V A V B
R C V
,
=
1=
2 3
si ottiene: = 1
2 ln 2 3 2 23 1
= 0:21:
Variazioni di entropia lungo l’isocora: QCA T A
S sorg =
= nC
V
1
=
nC V (T A T B ) T A
V A V B
1
=
=
nC
V
1
T B T A
=
4:61 J=K
La variazione d’entropia del gas in un ciclo è nulla e quindi lungo l’isocora: V A 1 S CA = S BC = nR ln V = R ln = 5:76 J=K: 2 B La variazione dell’entropia dell’universo vale:
S univ = S sorg +S CA =
4:61 J=K + 5:76 J=K = 1:15 J=K
40
(05/07/19) Due moli di gas ideale monoatomico compiono una trasformazione reversibile, assorbendo le quantità di calore QA = 850 J e QB = 8 kJ rispettivamente dalle sorgenti alle temperature T A = 400 K e T B = 500 K . Sapendo che la temperatura del gas in seguito alla trasformazione, è raddoppiata, calcolare la variazione percentuale di volume. Soluzione Il processo è reversibile, dunque la variazione di entropia dell’universo è nulla, S u = S sorg + S gas = 0:
(1)
Per le sorgenti si ha: S sorg =
QA T A
+
QB T B
=
850 J=K 400
8000 J=K = 500
18:125 J=K
dove il segno negativo indica che il calore è stato ceduto dalle sorgenti. Per il gas: S gas = nC V ln
T f T i
+ nR ln
V f V i
Sostituendo nella (1), si ottiene: nC V ln 2R ln ln
V f V i
T f T i
V f V i
=
Da cui V f V i
+ nR ln
V f V i
= 3R ln 2 + 2R ln
18:125 28:314
= e 0:05 = 1:051,
V f V i V i
=
= 18:125 J=K
)
= 18; 125 J=K 1 2R
3R ln 2 ) (18:1253R ln2) =
V f V i
V V
= 0; 051 = 5:1%
41
3 ln 2 2
= 5:03 10
2
(05/09/09) Un recipiente con pareti rigide e capacità termica trascurabile, contiene 15 moli di azoto, in equilibrio termodinamico, alla temperatura T 1 . Il sistema viene posto in contatto con una sorgente alla temperatura di T 2 = 0 C , attraverso una parete diatermana. Raggiunto il nuovo equilibrio, si osserva che la variazione di entropia della sorgente è S sorg = 750 J=K: Calcolare la variazione di entropia del gas.
Soluzione La trasformazione è irreversibile, ma la variazione di entropia della sorgente è sempre pari al rapporto tra il calore assorbito (ceduto dal gas) e la sua temperatura, ossia S sorg =
Q T 2
) Q = T S 2
sorg
= 2:0486 105 J
dove T 2 = 273:15 K . Essendo Q = nC V (T 1 T 1 = T 2 +
Q nC V
= 273:15 +
2:0486105 152:58:314
T ), risulta: 2
K = 930:23 K
(C V = 52 R)
La variazione di entropia del gas risulta: 73:15 2 S = nC V ln T = 15 2:5 8:314ln 2930:23 J=K = T 1
42
382:05 J=K
(05/09/09) Un gas ideale monoatomico compie il ciclo reversibile ABCA in cui: AB è una adiabatica che ne raddoppia il volume; BC una isobara che riporta il volume a quello iniziale; CA una isocora che riporta il gas nello stato iniziale. Calcolare il rendimento. Soluzione Il calore viene assorbito lungo la trasformazione isocora CA e ceduto lungo l’isobara BC, pertanto = 1 +
QBC QCA
=1
nC p (T B T C ) nC V (T A T C )
=1
T B =T C 1 T A =T C 1 .
(1)
Nell’isobara, essendo V B = 2V A ; si ha: V B V C
=
V B V A
T B T C
=
=2
(2)
Dall’equazione dell’adiabatica: T A T B
=
1
V B V A
= 2
1;
T A = T B 2 1 ;
e tenendo conto della (2): T A = T C 2 ; T A T C
= 2
Sostituendo le (2) e (3) nella (1) si ottiene: = 1
5 21 3 2 53 1
= 0:23
43
(05/09/30) Un cubetto di ghiaccio di massa m0 alla temperatura 0 = 0 C viene immerso in una massa d’acqua m1 = 0:1 kg, alla temperatura 1 = 27 C; posta in un thermos, di capacità termica trascurabile. Determinare la massima quantità di ghiaccio che può essere sciolta e la variazione di entropia del sistema; (calore di fusione del ghiaccio f = 80 cal=g,).
Soluzione L’entalpia del sistema è costante, dunque H = H gh + H acq = 0; ossia, indicando con E la temperatura di equilibrio e ponendo per l’acqua c p = 1cal=gK , m0 f + m0 cgh (E
) + m c ( ) = 0: 1 p
0
E
1
La massima quantità di ghiaccio che può fondere si ha quando la temperatura del sistema diventa E = 0 = 0 C . Pertanto, dalla relazione precedente si ha:
m0 =
m1 cp (1 E ) f
= 34 g:
Si osservi calore che il calore speci…co del ghiaccio a 0 C , pari a cgh = 0:48 cal=gK; non interviene in quanto la temperatura di equilibrio è 0 C . La variazione di entropia del sistema risulta:
S = S gh + S acq =
m0 f T 0
+ m1 c p ln T T 10 = 80:2 J=K:
44
(05/09/30) Una mole di gas ideale monoatomico esegue un ciclo ABCA in cui: AB è una espansione isobara che ne raddoppia il volume; BC Una trasformazione isocora irreversibile, realizzata ponendo il gas a contatto con una sorgente a temperatura T C ; CA una compressione isoterma reversibile. Calcolare il rendimento del ciclo e la variazione di entropia dell’universo. Soluzione Nel ciclo, irreversibile, calore viene assorbito lungo l’isobara. QAB = nC p (T B
T ); A
ceduto nell’isocora BC e nell’isoterma CA: QBC =
nC (T T ) = nC (T T ) V
B
C
V
B
A
V A V A QCA = nRT A ln V = nRT A ln V C B
Dunque, = 1
nC V (T B T A )+nRT A ln(V B =V A ) nC p (T B T A )
=1
C V (T B =T A 1)+R ln(V B =V A ) : C p (T B =T A 1)
Essendo T B =T A = V B =V A = 2, si ottiene: = 1
C V +R ln 2 C
= 0:12.
p
La variazione di entropia nel ciclo è nulla, quindi la variazione di entropia dell’universo è pari alla variazione di entropia delle sorgenti. S u = S sorg =
C ln p
5 2
3 2
T B T A
C + R ln V + C V T BT CT C = V A
2T C T C T C
R ln2 + R ln2 + R = ln 2 + ln2 + 8:314 = 3:82 J=K:
5 2
3 2
Oppure (l’entropia dell’universo aumenta solo nel tratto BC irreversibile) 3 2
S gas B C = S sorg
! R ln 2 B!C = R 3 2
S u = S g + S sorg = J=K = 3:82 J=K
3 2 R (1
ln2) = 0:46028R = 0:46028 8:314
Si noti che T C = T A :
45
(05/12/02) . Un gas ideale monoatomico, inizialmente a temperatura T A = 300 K , compie una trasformazione adiabatica irreversibile al termine della quale si ra¤redda di T = T B T A = 5 K . Utilizzando il lavoro compiuto durante tale processo, il gas viene riportato, a pressione costante, al volume iniziale V C = V A . Determinare la temperatura …nale del gas.
Soluzione Per la prima legge della termodinamica, il lavoro nella trasformazione adiabatica è uguale alla diminuzione di energia interna: LAB =
nC (T T ); V
B
(1)
A
Nella trasformazione isobara: LBC =
L
AB
= p(V C
V ): B
Poichè V C = V B T C =T B ; si ha pV B (T C T B
T ) = nR(T T ), B
C
B
e tenendo conto della (1): nR(T C
T ) = nC (T T ): B
V
B
A
Essendo T B = T A + T , si ottiene: T C = T A +
C p T R
= T A + 52 T = 287:5 K
46
(05/12/02) Una macchina frigorifera lavora ciclicamente scambiando calore con l’ambiente esterno, da considerare come una sorgente ideale a temperatura 0 = 27 C . Calcolare il lavoro minimo occorrente per solidi…care una massa m = 1 kg di acqua inizialmente in equilibrio a temperatura ambiente. (calore di fusione dell’acqua f = 80 cal=g) Soluzione
Il lavoro minimo si realizza in condizioni di reversibilità. Per la legge di accrescimento dell’entropia, la variazione di entropia dell’universo (frigorifero, acqua, ambiente) dev’essere maggiore o uguale a zero, S u 0, dove il segno di uguaglianza vale per processi reversibili. Pertanto, dette S acq ; S f rig e S amb rispettivamente, le variazioni di entropia dell’acqua, del frigorifero e dell’ambiente, si ha
S u = S acq + S f rig + S amb = 0: Ma S f rig = 0 in quanto la macchina lavora ciclicamente, quindi: S acq + S amb = 0 La variazione di entropia dell’acqua alla …ne della solidi…cazione risulta: S acq =
T 0 T 1
mf T 1
mc ln = 4:184 10 J=K = 1619:8 J=K , 1 cal=gK è il calore speci…co a pressione costante e p
ln 300:15 273:15
80 273:15
3
dove c p 273:15:K Q1 è il calore totale ceduto dall’acqua che vale Q1 =
mc (T T ) m = (27 + 4:47 10 J p
0
f
1
T 1 =
80) 4:184 103 J =
5
La variazione di entropia dell’ambiente è S amb =
S
acq =
1619:8 J=K;
e quindi il calore assorbito dall’ambiente sarà Q2 = T 0 S amb = 300:15 1619:8 J = 4:86 105 J
La parte residua del calore Q1 sottratto all’acqua ad ogni ciclo viene ceduta come lavoro al frigorifero; in totale si ha: Lmin = Q 2 + Q1 = 4:86 105 J
5
4:47 10 47
J = 39 KJ
(06/06/12) Un cilindro munito di pistone perfettamente scorrevole, contiene 0:3 moli di azoto alla pressione p. Il sistema è in equilibrio termico con una miscela di acqua e ghiaccio fondente in cui sono presenti 150 g di ghiaccio alla pressione p 0 = 1 atm. Il gas viene fatto espandere reversibilmente …nchè la sua pressione diventa uguale a p 0 e al termine del processo si osserva che sono presenti 160 g di ghiaccio. Calcolare la pressione iniziale del gas e le variazioni di entropia del gas, della miscela e dell’universo. (Calore latente di fusione del ghiaccio f = 334 kJ=kg). Soluzione Durante l’espansione isoterma reversibile, il gas ha assorbito dalla miscela una quantità di calore pari a Q = mf = 3340 J; dove m = 10 g è la di¤erenza tra le masse di ghiaccio presenti alla …ne e all’inizio. D’altra parte nell’isoterma, Q = L = nRT 0 ln V V 0 = nRT 0 ln pp0 ;
3340 ln pp0 = nRT , 0
da cui: 3340 p = p0 exp nRT = 1 exp 0:3 0
3340 8:314273:15
atm
La variazioni di entropia della miscela è S b =
Q T 0
=
3340 273:15
=
12:2 J=K:
135 atm:
Ma il processo è reversibile, dunque la variazione di entropia del gas è uguale ed opposta a quella della miscela. La variazione di entropia dell’universo è zero.
48
(06/06/12) Una mole di gas ideale monoatomico compie un ciclo ABC, in cui AB è una espansione adiabatica irreversibile, BC una isobara reversibile che riporta il gas al volume iniziale, CA una isocora reversibile che chiude il ciclo. Sapendo che T A = 2T B e S BC + S CA = 6 J=K , calcolare il rendimento del ciclo.
Soluzione
= 1 +
QBC QCA
=1
C p (T B T C ) C V (T A T C )
=1
Dall’equazione di stato si ha: T B T C
=
V B V C
=
V B V A ;
La (1) diventa: = 1
) T
C
V B =V A 1 T A V B =T B V A 1
T B =T C 1 T A =T C 1 :
(1)
V A = T B V : B
=1
V B =V A 1 2V B =V A 1
.
(2)
Per ricavare il rapporto V B =V A , si osservi che la variazione di entropia del ciclo è nulla S AB + S BC + S CA = 0; Poichè B S AB = C V ln T + R ln V V BA ; T A
) S 6 J=K = 0: AB
T A = 2T B ;
sostituendo nella (3) si ha C V ln 12 + R ln V V BA = 6 J=K: Quindi, dividendo per C V , 49
(3)
ln 12 +
B ln V V A =
R C V
6 C V :
Essendo = CpC VC V = si ottiene: R C V
V B V A
ln 12 + ln
1
6 : C V
=
ovvero, ln 12
V B V A
1
=
6 : C V
Si ottiene: V B V A
= 2 1= 1 e6=[C V (
1)]
= 2 3=2 e6=R = 5:8:
Sostituendo nella (2) si ottiene: = 0:248:
50
(06/07/25) Un recipiente adiabatico contiene una mole di gas ideale monoatomico che, da uno stato A di equilibrio viene improvvisamente fatto espandere, raggiungendo uno stato …nale B, anch’esso di equilibrio. Calcolare la variazione di entropia sapendo che nello stato A la pressione è p A = 4 pB : Soluzione La variazione di entropia è data da dS =
1 dU + T p dV T
= T 1 C V dT +
dP P
1 p dT T C
RdT V dP T
T B T A
R ) S = C ln R ln Ma,(L = U ) L = p (V V ) = C (T T ): B
B
p
A
V
B
=
pB pA
(1)
A
Usando l’equazione di stato: RpB
T B pB
T A 4 pB
Si trae: T B T A
=
R=4+C V R+C V
=
=
C (T T ): V
B
A
7 ; 10
Quindi la (1) fornisce 7 S = 52 R ln 10 + R ln4 = 0:49461R = 0:49461 8:314 J=K = 4:1 J=K:
51
(06/07/25) . Un gas ideale monoatomico esegue un ciclo reversibile B ABCA in cui: AB è una espansione isoterma, alla …ne della quale V V A = C 1:3 ; BC una espansione adiabatica dove V V B = 1:2; CA una politropica di equazione pV = cost che riporta il gas nello stato iniziale. Determinare il valore di nella politropica. Soluzione Nel ciclo la variazione di entropia del gas è nulla: T A V A B S = nR ln V + nC V ln T + nR ln V = 0. V A C C
Si ricava: R
V B V C
T C T A
=
C V
:
(1)
Tenuto conto dall’equazione della politropica e dell’equazione di stato del gas, si ha: pA V A = p C V C ;
da cui: T C T A
=
(1)
V A V C
1 A A
1 = T C V C ;
) T V :
Sostituendo nella (1), si ottiene: nR ln ln V V BC
V B V A
+
V B 2 3 ln V C
+ nC V ln
3 2 ln
+ (1
= 1 +
V A V C
V A V C
(1)
) ln
2 ln(V B =V C ) 3 ln(V A =V C )
(1)
V A + nR ln V =0 C
=0
V A V C
= 1+
= 0 ln(1=1:2) 2 3 ln(1=(1:21:3))
52
= 1:27:
(06/09/12) Un recipiente cilindrico adiabatico è diviso in due parti A e B da un pistone di massa trascurabile, perfettamente scorrevole, anch’esso adiabatico. In A sono contenute10 moli di gas ideale biatomico alla temperatura T A = 600 K ; in B sono contenute 5 moli dello stesso tipo di gas a temperatura T B = 300 K . Inizialmente i gas sono in equilibrio ed alla stessa pressione, occupando un volume complessivo V 0 = 0; 12 m 3 : Successivamente nel pistone si veri…ca una perdita di isolamento e calore inizia a ‡uire da A verso B, …nchè non viene raggiunto l’equilibrio …nale. Calcolare la variazione di entropia del sistema. Soluzione Il problema è simile a molti altri in cui si veri…cano processi irreversibili. Nel sistema isolato l’energia interna totale è costante, quindi U = U A + U B = 0; da cui, nA C V (T f
T ) + n A
B C V (T f
T ) = 0; ) T = 500 K: B
f
Poichè i gas inizialmente hanno la stessa pressione, si ha V A V B
A = nnBA T = 4; V A + V B = 120 l V A = 96 l; V B = 24 l: T B All’equilibrio …nale (stesse pressioni e temperature): f V A f V B
)
=
nA nB
= 2;
V A f + V B f = 120 l
f A
) V
= 80V B f = 40 l:
La variazione di entropia del sistema (universo) risulta: T
V f
T
V f
S = nA C V ln T Af + nA R ln V AA + nB C V ln T Bf + nB R ln V BB = 27:84 J=K:
53
(06/09/12) . Due moli di gas ideale biatomico scambiano calore con due sorgenti a temperatura T 1 e T 2 = 4T 1 =5, compiendo un ciclo ABCDA, dove: AB è una espansione isoterma reversibile che ne raddoppia il volume; BC una trasformazione a volume costante che ra¤redda il gas, posto a contatto con la sorgente a temperatura T 2 ; C D una compressione isoterma reversibile che riconduce il volume a quello iniziale; DA una trasformazione a volume costante che riscalda il gas, posto a contatto con la sorgente a temperatura T 1 . Calcolare il rendimento del ciclo. Soluzione
Il rendimento è = 1 +
Qced Qass ;
dove: Qced = QBC + QCD
Qass = QAB + QDA .
Essendo: QBC = nC V (T 2
T ); 1
QCD = nRT ln
B QAB = nRT 1 ln V 1 V A ; QDA = nC V (T
si ottiene: = 1
T 1 1 T 2 T 2 5 T 1 ln2+ 1 T 2 2 T 1
ln2+ 52
(
)
=1
5
4 ln2+ 8 5 ln2+ 12
V A V B
T ); 2
= 0:11:
Si noti che il rendimento risulterebbe lo stesso se le trasformazioni isocore fossero reversibili. 54
(07/01/18). Un corpo di capacità termica C = 15 cal=K; costante nell’intervallo di temperature considerato, si trova alla temperatura 0 = 0 C . Esso viene riscaldato …no alla temperatura 1 = 200 C in due modi diversi. Ponendolo a contatto con una sorgente a temperatura 1 . Ponendolo a contatto con una sorgente a temperatura 2 = 150 C e, dopo aver raggiunto l’equilibrio, con la sorgente a temperatuta 1 . Calcolare la variazione di entropia del corpo e del sistema corpo e sorgenti nei due casi.
Soluzione L’entropia è una funzione di stato e quindi, detta S C la variazione di entropia del corpo, in entrambi i casi risulta: S C = C ln T T 10 = 15 4:18ln 473:15 = 34:4 J=K 273:15
Nel primo caso la variazione di entropia della sorgente è C (T
T )
4:18(200) 0 1 S T1 = = 15473:15 = 26:5 J=K ; T 1 e la variazione di entropia corpo e sorgente (universo):
S u = S C + S T1 = (34:4
26:5) J=K = 7:9 J=K :
Nel secondo caso la variazione di entropia delle sorgenti è S T1 +S T 2 = ;
C (T 2 T 0 ) T 2
C (T 1 T 2 ) T 1
=
154:18150 423:15
154:1850 473:15
=
e la variazione di entropia del corpo e delle sorgenti: S u = S C + S T1 + S T2 = (34:4
28:8) J=K = 5:6 J=K
e la variazione di entropia corpo e sorgenti: S u = S C + S T1 + S T2 = 1:4 cal=K .
55
28:8 J=K
(07/01/18) . Una mole di gas ideale monoatomico alla temperatura T A = 300 K; compie un ciclo ABCA nel quale: AB è una espansione libera; BC una compressione adiabatica irreversibile; CA una isobara reversibile che riporta il gas nello stato iniziale. Sapendo che nella compressione adiabatica viene impiegato il lavoro L = 200 J , calcolare la variazione di entropia dell’universo. Soluzione Si osserva che nell’espansione libera del gas ideale la temperatura rimane costante, dunque T A = T B : Inoltre nella compressione adiabatica BC si ha (Q = 0) nC V (T C
T ) L = 0; ) T B
C
= T B +
L nC V
= T A +
2L = 3R
316 K .
La variazione di entropia dell’universo è data da S u = S gas + S ext : La variazione di entropia del gas è nulla perchè compie un ciclo. S ext è pari alla somma delle variazioni di entropia dell’ambiente esterno, che si riducono solo a quella relativa alla compressione isobara C A:
S
CA =
T A T C
R
nC p dT = C p ln T T CA : T
Infatti la compressione BC è adiabatica. La variazione di entropia dell’universo risulta quindi S u = C p ln T T CA = 52 8:314ln 316 300 J=K = 1:08 J=K
56
(07/06/14). Un gas ideale monoatomico, nello stato iniziale pA = 32:8 atm, V A = 2; T A = 400 K , esegue il ciclo ABCDA dove: AB è un’espansione isoterma reversibile a temperatura T 1 = T A , BC una espansione adiabatica reversibile, CD una compressione isoterma reversibile a temperatura T 2 = T D , DA una isocora irreversibile, che riporta il gas nello stato iniziale. Quest’ultima trasformazione può essere realizzata in due modi: a) ponendo il gas a contatto con la sorgente a temperatura T 1 b) e¤ettuando lavoro adiabatico esterno L. Calcolare il rendimento nei due casi e la variazione di entropia delle sorgenti nel caso b); (V B = 8 l; T 2 = 250K ). Soluzione Le quantità di calore coinvolte nel ciclo sono: B QAB = nRT 1 ln V V A = 90:9 l atm; n =
QBC = 0 QCD = nRT 2 ln QDA
V D V C
85; 7 l atm; = nC (T T ) = 36; 9 l atm: V
1
=
pA V A RT A
= 2 moli
V D = V A ; V C = V B
2
1=( 1)
T 1 T 2
Nel primo caso il rendimento risulta: = 1 +
QCD QAB +QDA
= 0:33:
Nel secondo caso nel gas viene dissipato lavoro adiabatico, che determina la stessa variazione di energia interna del primo caso. Pertanto il rendimento è lo stesso. Si rammenti che il rendimento di una macchina è, in generale, de…nito dal rapporto tra il lavoro utile ottenuto e l’energia, di qualsiasi genere, impiegata. La variazione di entropia delle sorgenti, caso b), è S sorg =
QAB T 1
+
QCD T 2
= 0:12 l:atm=K:
57
(07/06/14) n moli di ossigeno, a temperatura T 0 e volume V 0 vengono fatti espandere isotermicamente, …no a raddoppiare il volume. Calcolare il rapporto dei calori assorbiti nei seguenti casi: a) il gas si consideri ideale b) il gas obbedisca all’equazione di Van der Waals con V 0 = 2nb (b covolume) Soluzione a) Gas ideale: indicato co V f il volume …nale si ha V
Q1 = nRT 0 ln V f0 = nRT 0 ln 2: b) Gas di Van der Waals: dQ2 = dU + pdV dall’espressione dell’energia interna di un gas di Van der Waals si ha u = C V T
a v
+ cost dove u U=n e v V =n e quindi U = nC n + cost V
2 a V
dQ2 = nC V dT + n2 V a 2 dV + pdV ma p = dQ2 =
nRT 0 V bn
n
2 a e V 2
quindi, a T costante
nRT 0 V bn dV
integrando si ottiene Q2 =
Vf nRT 0 V 0 V bn dV
R
V
bn bn
= nRT 0 ln V f0
= nRT 0 ln 3
pertanto il rapporto dei calori assorbiti vale: Q1 =Q2 = 0:63
58
(07/07/25) Due moli di gas ideale monoatomico sono contenute in un recipiente alla temperatura T A = 300 K: Al …ne di dimezzare pressione e volume iniziali p A ; V A , il gas viene sottoposto a due trasformazioni consecutive: una compressione isoterma reversibile AB, che dimezza il volume; una isocora irreversibile BC, realizzata ponendo il gas a contatto con una sorgente a temperatura T C , che ne dimezza la pressione. Calcolare le quantità di calore scambiate con le sorgenti e la variazione di entropia dell’universo. Soluzione Nell’isoterma AB, U = 0; è QAB = nRT A ln V V BA =
2Rt
A ln 2
=
3456 J
Nell’isocora irreversibile BC, W = 0; QBC = nC V (T C
T ) = A
9 4 RT A =
9 4
8:314 300 = 5612 J;
essendo T C = T A =4
La variazione di entropia dell’universo è uguale alla somma della variazione dell’entropia del gas S BC nell’isocora irreversibile BC e della variazione dell’entropia della sorgente a temperature T C : C S u = S BC + S TC = nC V ln T T A
QBC T C
=
3 ln 4 + 9R = 4:84 8:314 = 40:2 J=K oppure:
S u = S AB + S BC + S TB + S T C S AB = +3456=300 J=K = S TB =
11:52 J=K
2 8:314 ln 2 J=K = +11:52 J=K S = 2 3=2 8:314 ln 4 J=K = 34:57 J=K S = = = 74:83 J=K S = (11:52 34:57 + 11:52 + 74:83) J=K = 40:2 J=K BC TC
QBC T C
5612 75
u
59
(07/07/25) Un gas ideale compie un ciclo ABCDA, in cui: AB è una espansione ottenuta ponendo il gas a contatto con una sorgente a temperatura T 1 = 900 K e dimezzando bruscamente la pressione esterna; BC una trasformazione adiabatica reversibile che ra¤redda il gas dalla temperatura T 1 alla temperatura T 2 = 300 K ; CD una compressione ottenuta ponendo il gas a contatto con una sorgente a temperatura T 2 e raddoppiando bruscamente la pressione esterna; DA una compressione adiabatica reversibile che riporta il gas nello stato iniziale. Determinare il rapporto tra il rendimento del ciclo e quello della macchina di Carnot che lavora tra le stesse sorgenti. Calcolare anche la variazione dell’entropia dell’universo in un ciclo e l’energia inutilizzabile. Soluzione Le trasformazioni AB e CD sono evidentemente irreversibili. Poichè per entrambe gli stati iniziali e …nali sono alle stesse temperature, rispettivamente T 1 e T 2 , si ha V B = 2V A ;
V C = 2V D ;
U AB = 0;
U CD = 0:
Inoltre: QAB = W AB = p B (V B
A
QCD = W CD = pD
C
pA V A 2
nRT 1 2
V ) = = (V V ) = P V = nRT D
D D
2
Pertanto i rendimenti del ciclo e C della macchina di Carnot risultano: = 1 +
QCD QAB
=1
2T 2 T 1
= 13 ; C = 1
T 2 T 1
= 23 ;
=
C 2
La variazione dell’entropia dell’universo in un ciclo è quella delle due sorgenti: S u =
QAB T 1
QCD T 2
=
nR 2
+ nR = nR=2 = 8:314 J=K
L’energia inutilizzabile è data da: E in = T 2 S u = W carnot
W
irr =
300 8:314 J = 2494:2 J
E’ il calore in più (rispetto alla macchina di Carnot) ceduto alla sorgente fredda.
60
(07/25/09) Un cubetto di ghiaccio di massa m = 15 g alla temperatura t0 = 0 C , viene posto in un bicchiere d’acqua alla temperatura t 1 = 27 C , in equilibrio con l’ambiente esterno. Il sistema evolve …no a ritornare all’equilibrio iniziale. Calcolare la variazione di entropia del ghiaccio, dell’acqua, del bicchiere e dell’ambiente. (Calore di fusione del ghiaccio = 80 cal=g)
Soluzione Assumendo costante il calore speci…co del ghiaccio e pari a c = 1cal=(gK ), si ha: S gh =
m T 0
+ mc ln T T 10 = 24:279 J =K
Le variazioni di entropia dell’acqua e del bicchiere sono nulle in quanto lo stato …nale è uguale allo stato iniziale: S acq = 0; S bic = 0: La variazione di entropia dell’ambiente esterno, considerando quest’ultimo come una sorgente ideale, è data dal rapporto tra il calore Q fornito al sistema e la temperatura costante dell’ambiente: S amb =
Q T 1
=
m+mc(T 1 T 0 ) T 1
=
22:186 cal=K ,
La variazione di entropia dell’universo risulta S u = S gh + S amb = 2:093 J=K
61
(08-06-16) Un condizionatore viene utilizzato per ra¤reddare una stanza di volume V , dalla temperatura t A alla temperatura t B , mentre l’esterno, da assumere come sorgente termica ideale, è alla temperatura tE . Calcolare il lavoro minimo occorrente per l’operazione, supponendo che nella stanza sia presente aria, da assumere come gas ideale biatomico, a pressione p costante. Quanto tempo impiegherà un condizionatore con una potenza di 2kW a ra¤reddare l’aria della stanza?
(V = 40 m 3 ; p = 1 atm; tA = 40 C; tB = 25 C; tE = 40 C ): Soluzione A questo problema si può applicare la legge di accrescimento dell’entropia. Poichè si richiede il lavoro minimo occorrente, la variazione di entropia dell’universo (S u ) dev’essere pari a zero. Essa consta della variazione di entropia dell’ambiente esterno S E , della variazione di entropia del condizionatore, uguale a zero perchè compie una operazione ciclica, e della variazione di entropia dell’aria della stanza S g : S u = S E + S g = 0;
) S = u
Q1 T E
+ nC p ln T T BA = 0;
(1)
dove Q1 = Q + W è il calore assorbito dall’ambiente esterno, uguale alla somma del calore Q sottratto all’ambiente e del lavoro W compiuto dall’esterno. Essendo n =
pV RT A ;
Q = nC p (T A
dalla (1) si ottiene: W =
nC
p
h
(T A
1:013105 40 7 (2 313:15
T ); B
T ) + T ln B
E
T B T A
i
=
4 15 + 313:15ln 298:15 313:15 J = 1:68 10 J:
Il tempo impiegato a ra¤reddare l’aria è t = (16800=2000) s = 8:4 s
62
(08-06-16) Una macchina termica funziona scambiando calore con due sorgenti alle temperature T A = 300K e T B = 250K . Dopo un certo numero di cicli essa produce un lavoro W = 30 cal, mentre la variazione di entropia dell’universo risulta S u = 0:02 cal=K . Ricavare il rendimento della macchina, valutare l’energia inutilizzabile e confrontare il risultato con il rendimento ed il lavoro di una macchina di Carnot reversibile che operi tra le stesse temperature. Soluzione Si ha un aumento dell’entropia dell’universo, quindi la macchina è irreversibile. Poichè la variazione di entropia di quest’ultima, che lavora ciclicamente, è nulla, la variazione di entropia dell’universo è uguale alla variazione di entropia delle sorgenti; S u =
QB T B
QA : T A
(1)
dove Q A è il calore che la macchina assorbe dalla sorgente calda, assunto positivo e Q B è il calore ceduto dalla macchina alla sorgente fredda, assunto negativo Tenuto conto che W = Q A + QB ;
QB =
)
Q
A + W ,
sostituendo nella (1), si ricava: S u = QA =
QA W T B
T A T A T B
QA T A ,
(W + T B S u )
Il rendimento risulta: =
W QA
=
W T A T B T A W +T B S u
=
30 50 300 30+2500:02
= 0:14;
l’energia inutilizzabile è E IN = T B S u = 5 cal: Il rendimento di una macchina di Carnot reversible vale R = 1
T B T A
=1
250 300
= 0:166
e la macchina compirebbe quindi un lavoro
W REV = R QA = 1
T B T A
T A T A T B
(W + T B S u ) = W + T B S u = 35 cal
63
(08-07-23) Una mole di gas ideale monoatomico esegue una trasformazione isobara tra gli stati A e B, compiendo il lavoro W = 103 J . Il gas può anche raggiungere lo stato …nale B attraverso un processo irreversibile costituito da due trasformazioni: una trasformazione AC in cui il gas è posto a contatto con una sorgente a temperatura T A , …no ad occupare il volume V B ; una compressione isocora CB, …no ad raggiungere la temperatura T B . Calcolare il calore scambiato nella trasformazione isobara ed il lavoro massimo ottenibile nel processo irreversibile (T A = 300 K ). Soluzione La quantità di calore scambiata nella trasformazione isobara è pari alla variazione di entalpia del gas, Q = H = C p (T B
T ) = U + W; A
(1)
indipendente dal tipo di trasformazione. Infatti l’energia interna è una funzione di stato ed il lavoro è pari a W = p(V B
V ) = R(T T ); A
B
(2)
A
anch’esso indipendente dal tipo di trasformazione. Dalla (2) si ricava T B
T = A
W R ;
T B = T A +
) W R
= 300 +
103 8:314
Sostituendo nella (1) si ottiene
K = 420:28 K:
(3)
5 3 Q = H = C p W R = 2 10 J = 2500 J:
Per determinare il lavoro ottenibile nel secondo processo si può applicare la legge di accrescimento dell’entropia, S sorg + S gas
0. 64
il lavoro massimo si ottiene quando vale il segno di eguaglianza e poichè la variazione dell’entropia delle sorgenti vale S sorg = e
W max T A
C
V
ln T T BA
B S gas = C p ln T T A ;
si ottiene:
W max T A
C
V
T B B ln T T A + C p ln T A = 0;
e quindi
W max = T A (C p
C ) ln V
T B T A
= 300(8:314) ln 420:28 300 J = 840:89 J:
(4)
Poichè le trasformazioni AC e BC sono irreversibili, il lavoro ottenibile è sicuramente minore. Si noti che nella situazione prospettata dal problema non è necessario ricorrere alla legge di accrescimento dell’entropia; infatti la (4), essendo p A = p B ; è proprio uguale a lavoro dell’isoterma reversibile AC.
65
(08-07-23) Un recipiente con pareti rigide e capacità termica trascurabile, contiene 15 moli di azoto, in equilibrio termodinamico, alla temperatura T 1 . Il sistema viene posto in contatto con una sorgente alla temperatura T 2 = 0 C , attraverso una parete diatermica. Raggiunto il nuovo equilibrio, si osserva che la variazione di entropia della sorgente è S sorg = 750 J=K . Calcolare la variazione di entropia del gas.
Soluzione La trasformazione è irreversibile, ma la variazione di entropia della sorgente è sempre pari al rapporto tra il calore assorbito (ceduto dal gas) e la sua temperatura, ossia S sorg =
Q ; T 2
Q = T 2 S sorg = 273:15 750 J=K = 2:0486 105 J
dove T 2 = 273:15 K . Essendo Q = nC V (T 1
T ), risulta: T = T + Q=nC = 273:15 K + 2:0486 10 = 15 8:314 1
2
2
5
V
930:23 K:
5 2
La variazione di entropia del gas risulta: 2 S = nC V ln T T 1 = 15
5 273:15 2 8:314ln 930:23
66
J=K =
382:05 J=K:
K =
(08-09-15)Una mole di gas ideale monoatomico è contenuta in un recipiente adiabatico, in equilibrio alla temperatura T A = 320 K . Successivamente essa si espande, occupando il volume V B = 3V A e compiendo il lavoro W = 150 J ; quindi viene compressa adiabaticamente e reversibilmente …no al volume …nale V C = V A . Determinare la temperatura …nale del gas. Soluzione L’espansione AB è irreversibile. Per la prima legge della termodinamica, C V (T B
T ) + W = 0; A
si ricava: T B = T A
W=C
V
= T A
2W=3R:
Pertanto, tenuto conto dell’equazione dell’adiabatica BC, T C = T B (V B =V C )
1
= T B 3 1 ,
si ottiene: T C = (T A
5=31
2W=3R) 3 = (320 2 150= (3 8:314)) 3
5=31
K = 640:6 K:
67
(08-09-15) Un grammo d’acqua nella transizione liquido-vapore ha una variazione di energia interna U = 500 cal (piccole). Calcolare la variazione di entropia della transizione di fase ritenendo trascurabile il volume del liquido V l ; rispetto a quello del vapore V g , e considerando quest’ultimo come un gas ideale. Assumere costante il calore di evaporazione (calore latente) e pari a e = 22:6 105 J=kg: Soluzione
Dalla prima legge della termodinamica: U = Q
W = m p(V V ) = m (m=A) RT; 500 4:184 = 2092:0 = 2260 W ) W = 2260 2092 = 168:0 e
g
l
e
dove m ed A sono la massa e la massa molecolare dell’acqua. Si ricava T = e A=R AU=mR = 2260 18=8:314 18 500 4:184=8:314 = 363:72 K:
La variazione di entropia risulta: S = me =T = 2260=363:72 = 6:21 J=K:
68
(09-06-23) Una mole di gas ideale monoatomico, a temperatura T 0 = 300 K viene posto a contatto con una sorgente dalla quale assorbe la quantità di calore Q = 1500 cal.(piccole). Il gas, contenuto in un cilindro, chiuso da un pistone di massa trascurabile che può scorrere senza attrito, si espande contro la pressione esterna p0 costante. Calcolare la variazione di entropia del gas e dell’universo. Soluzione Detta T f la temperatura …nale, il calore assorbito dal gas è dato da Q = C p (T f
T ); ) 0
T f T 0
=1 +
Q C p T 0
=2
La variazione di entropia del gas risulta: T
S = C p ln T f0 = 52 R ln 2 =
5 8:314ln2 2
J=K = 14:4 J K
Si osservi che l’espansione è irreversibile; infatti la variazione di entropia dell’ universo, sorgente e gas, è
S u = S + S sorg = 14:4 J=K
14:4
15004:187 600
J=K = 3: 93 J > 0 K
69
Q T f
=
(09-06-23) Una mole di gas ideale biatomico si espande secondo la politropica reversibile pV 2 = cost: Sapendo che la temperatura iniziale è T A = 400 K e che il gas compie il lavoro W AB = 2000 J , determinare la temperatura …nale T B , il calore scambiato nella trasformazione e la variazione d’entropia del gas. Soluzione Nella politropica, pV 2 = pA V A 2 , il lavoro reversibile è dato da V B
V B
Z Z
W AB =
V A
pA V A 2 pA V A
2 pA V A 2 V dV
pdV =
V A
1 V B V V A
p
B V B
= pA V A 2
1 V A
= R(T A
T )
Da cui,
T B = T A
=
1 W AB R
= 400
Il calore scambiato vale
5 2 8:314(159:4
=
(perchè p A V A 2 = p B V B 2 ) :
B
1 2000 8:314
QAB = U + W AB = C V (T B
1 V B
T A ) + W AB =
400) + 2000
K = 159:4 K:
J =
3000:9 J:
Nella trasformazione il calore viene ceduto dal gas e la variazione d’entropia del gas vale: S g = S B
S = C A
V
B ln T + R ln V V BA ; T A
per valutarla occorre calcolare pA V A 2 = pB V B 2 = e quindi si ha
V B V A ;
) T V = T V A A
V B V A
=
T A T B
R ln
T B T A
B B
e si ottiene S = 52 R ln T T BA 3 2 8:314
ln
159:4 400
J K
=
B = 32 R ln T T A =
11: 474
J K
70
(09-07-21)Una mole di gas ideale monoatomico compie una trasformazione reversibile la cui equazione nel piano (T; S ) è T = T 0 +a(S S 0 ) b(S S 0 )2 , con a = 5 K 2 =J , b = 0:8 K 3 =J 2 . Sapendo che la temperatura …nale coincide con quella iniziale T 0 = 300 K , calcolare la quantità di calore ed il lavoro associati alla trasformazione.
Soluzione Nel diagramma (T; S ) la trasformazione è rappresentata da un’arco di parabola ad asse verticale e concavità rivolta in basso, quindi, per un certo valore dell’entropia S 1 = S 0 , si avrà nuovamente un valore della temperatura pari a T 0 . Segue che fra questi due estremi,
6
U = 0;
Q = W:
Il calore associato alla trasformazione è Q =
S1 S 0
R
= T 0 (S 1
T dS =
S ) + 0
S1 S 0
R
[T 0 + a(S
1 2 a(S 1
2
S ) 0
2
S ) b(S S ) ] dS = b(S S ) . 0
0
1 3
1
0
3
Dall’equazione della trasformazione, per T = T 0 si ha S 1
S = 0
a b
= 6:25 J=K:
Sostituendo nella precedente: Q = W = 1:9 kJ: Q = 300 6:25 + 2:5 (6:25)2
1 3
3
0:8 (6:25)
71
= 1907: 6
(09-07-21) Due moli di gas ideale biatomico sono contenute in recipiente alla temperatura T A = 300K . Al …ne di dimezzare volume e pressione iniziali, il gas viene sottoposto a due trasformazioni reversibili consecutive: una compressione adiabatica AB che dimezza il volume e una isocora BC. Calcolare il lavoro compiuto sul gas nella compressione e le variazioni di entropia del gas e delle sorgenti Soluzione Il lavoro compiuto sul gas è pari all’aumento di energia interna del gas, W AB = U = nC V (T B
T ) = 5RT A
A
T B T A
1
Usando l’equazione dell’adiabatica reversibile T A V A
1
= T B V B 1 ,
si ha: W AB = 5RT A
1
V A V B
1 = 5RT A (2
1
1) = 3982:7 J:
Tenuto conto che, per l’equazione di stato, si ricava T C = T A =4; la variazione di entropia del gas è S gas = nC V ln T T CA + nR ln V V CA = 2
5 1 2 ln 4 +
ln 12 8:314 J=K =
69:154 J=K:
Poichè il processo è reversibile, la variazione di entropia delle sorgenti risulta: S sorg = (calcoli: = 7=5 T B = T A
S
gas :
1
V A V B
= 300 (2)2=5 = 395:85 K
QBC = nC V (T B S gas P A V A S gas
T ) = 5 (396 75) 8:314 = 13344 J = nC ln = 5 8:314ln = 69:154 J=K = P V ) P = P (2) = 2:639 P = nC ln = 5 8:314ln = 69:154 J=K ) V
C
T B T C
B B V
B
P C P B
39 5:85 75
A
7=5
A
1 22:639
72
(09-09-25) Una mole di gas ideale biatomico esegue un ciclo costituito da una isobara AB che ne raddoppia il volume, una politropica BC di equazione pV = cost, = 2; e da una isoterma C A. Calcolare il rendimento del ciclo. Soluzione Dall’equazione di stato e dall’equazione della politropica pV = cost; pV = RT
1
) p = RT=V; T V
si trae:
= cost
T B = 2T A ; T C = T A ; T B V B = T C V C ; V C = 4V A Le quantità di calore coinvolte nel ciclo sono: QAB = C p (T B
A
QBC
B
QCA
T ) = C T > 0 = C (T T ) = C T < 0 = RT ln = RT ln 4 < 0,
C
p A
A
V A V C
A
A
con C (calore speci…co molare della politropica) dQ dT
C =
=
C V dT +P dV dT
R 1
= C V +
= 32 R:
infatti nella politropica T V
1
= cost
dT + dV ( P dV = dT
1
) V
1) T V
P V T (1)
=
1
dT + ( =0
2
1) T V
dV dT
)
=
dV = 0
V T (1)
)
R (1)
Il rendimento risulta: = 1 + 1
QBC +QCA QAB
C +R ln 4 C p
=1
=1
C T A +RT A ln 4 C p T A
3=2+ln4 7=2
=
4 7
=
2 ln4 7
73
= 0:17534
18%:
(09-09-25) Un gas ideale monoatomico, di volume iniziale V 0 = 10 2 m3 alla temperatura t0 = 20 C , contenuto in un recipiente diatermico, viene compresso bruscamente …no alla pressione p = 2 MP a che viene mantenuta costante. Una volta raggiunto l’equilibrio, la temperatura del gas è aumentata di 80 C ed il volume è diventato V = V 0 =10. Determinare la quantità di calore scambiata dal gas con l’ambiente esterno.
Soluzione Per la prima legge della termodinamica: Q = U + W , con U = nC V T = 32 nRT; W = pV . Essendo, per l’equazione di stato, nR = pV=T =
pV 0 =10 T ;
si ottiene: Q =
3 pV 0 =10 2 T T + pV
3 2106 103 2 293:15 80
6
=
2 10 0:9 10
2
74
J =
17:18 kJ
(10/06/10) Calcolare il calore speci…co di una mole di gas ideale monoatomico in funzione del volume, C(V), nella trasformazione quasi statica mostrata nella …gura. P P 0
0
V 0
V
Soluzione Il calore speci…co molare è de…nito da C =
Q dT
dal primo principio si ha Q = dU + W = 32 RdT + P (V )dV C (V ) =
Q dT
= 32 R + P (V ) dV dT
L’equazione rappresentativa della retta in …gura è P = P 0
P 0 V 0 V
= P 0 1
V V 0
combinando questa con l’equazione dei gas ideali P V = RT si ottiene
P 0 V 1
V V 0
= RT
per trovare dV=dT si fa il di¤erenziale totale di questa equazione P 0 dV 1
V V 0
+ P 0 V
dV V 0
= P 0 dV 1
75
2 V = RdT V 0
dV dT
=
R 1 P 0 12 V V
0
e si ottiene C(V) C (V ) = 32 R + P (V ) dV = 32 R + dT
R 1 V V
0 V 2 V 0
1
76
R = 1
:
5 V 4 2 V 0
2 V V
0
(10/06/10) Una mole di gas biatomico di equazione di stato p + V a 2 V = RT , esegue un ciclo ABCDA dove: AB è una isoterma reversibile, in cui la tempera-tura della sorgente è T 2 = 400 K ; BC una isocora ottenuta ponendo il gas a diretto contatto con una sorgente alla temperatura T 1 = 200 K ; CD una compressione isoterma reversibile alla temperatura T 1 ; DA una isocora ottenuta ponendo il gas in contatto con la sorgente a temperatura T 2 e che riporta il sistema nello stato iniziale. Calcolare il rendimento del ciclo e la variazione d’entropia dell’universo in un ciclo. Assumere C V = 52 R e V B = 4V A .
Soluzione Per un gas reale si ha U = U (T; V ) = C V T
a V ;
dal primo principio e dall’equazione di stato del gas si ricava
Q = dU + pdV = C V dT + C V dT +
a V 2 dV
RT dV: V
+
RT V dV
a V 2 dV
=
Il ciclo è un ciclo di Stirling per un gas reale e con le isocore irreversibili, le quantità di calore scambiate sono le stesse del ciclo di Stirling reversibile per un gas ideale, il lavoro totale compiuto è lo stesso, ma il calore assorbito è aumentato del termine Q DA : QAB = RT 2 ln V V BA = 8:314 400 ln 4 J = 4610 J QBC QCD QDA
= C (T T ) = 8:314 200 J = 4157 J; = RT ln = 8:314 200 ln 4 J = 2305 J = C (T T ) = 4157 J . V
1
V D V C
1
V
5 2
2
2
1
Il rendimento risulta =
W QAB +QDA
=
QAB +QCD QAB +QDA
=
2305 4610+4157
= 0:26
La variazione d’entropia dell’universo si riduce alla variazione d’entropia delle sorgenti: S u =
QBC T 1
+
QDA T 2
=
4157 200
4157 400
77
J=K = 10:393 J=K:
(10/07/20) (10/07/20) Una certa certa quant quantità ità di ossige ossigeno, no, da consid considera erare re com comee gas ideale, è contenuta in un recipiente cilindrico adiabatico, munito di pistone anch’esso anch’esso adiabatico. adiabatico. Il gas, di volume volume iniziale V iniziale V 0 = 1 m 3 , viene fatto espandere contro una pressione esterna p = 105 P a, …no ad aumentare il volume del 50 del 50% %. Determinare la variazione di entalpia del gas. Soluzione La variazione di entalpia è data da H = nC p T :
(1)
D’altra parte, per il primo principio U + W + W = 0; 0; da cui: T =
) nC T T = W = p pV; V V
p pV : nC V V
Sostituendo nella (1) ed essendo V V = 0:5V 0 , si ottiene: H =
7 5
5
p p V = 10 0:5 J = 70 k 70 kJ J .
78
(10/07/20) Una (10/07/20) Una mole di gas ideale monoatomico alla temperatura iniziale T 0 = 300 K esegue K esegue una trasformazione politropica reversibile di equazione 3 T V = cost, cost, raddoppiando il volume iniziale V 0. Successiv Successivamen amente, te, con una isocora reversibile, il gas ritorna alla pressione iniziale p0 e, con una isobara reversibile, allo stato iniziale; calcolare il calore assorbito nella trasformazione politropica e il rendimento del ciclo
Soluzione L’equazione della politropica T politropica T V T V
3
3
= T 0 V 0
e anche anche pV pV
2
3
= cost si cost si può scrivere
= cost = cost = p p0 V 0 2 ; ( = =
Dal primo principio dQ principio dQ = = dU dU + dW + dW = C V V dT + pdV RT dV V dT ;
C = C = C V V + ma T ma T V dV dT
=
1
2)
= cost
1 V ; ( 1) T
1
) (dT ) dT ) V
+ ( (
2
1) T V
dV = 0;
e quindi il calore molare della politropica vale R (1 )
C = C = C V V +
= 11 6 R
e il calore assorbito Q = nC = nC (T f f ma T ma T f f (2V (2V 0 )
T )
:(1)
0
3
3
= T 0 V 0
Sostituendo nella (1),
) T
f f
= 8T 8 T 0 .
Q = nR = nR 77 T = 8:314 77 300 J 300 J = = 32009 J: 32009 J: 6 0 6 Indicati con A, B, C i punti del ciclo, il rendimento del ciclo vale = = dove W dove W è è il lavoro compiuto in un ciclo W = W AB + W BC + W CA AB + W BC + W CA V B
con W con W AB AB =
V B
Z Z
p0 V 0 2 V 2 dV = 13 p0 V 0 2 (V B 3
pdV =
V 0
=
4 RT 0 3 77 RT 0 6
V 0
W BC BC = 0; W CA CA = p0 V 0 = W = 43 RT 0 (=
4 3
RT
0
8:314 300 J = = 3325: 3325:6 J ) J )
= 0:1
79
3 0
V ) =
7 RT 0 ; 3
W Q,
a (10/09/29) Una (10/09/29) Una mole di gas reale, di equazione di stato p = p = RT V V 2 , con a = 0:7 P a m6 =mol 2 , è contenuta in un cilindro diatermico, chiuso da un pistone scorrevole. Inizialmente il gas è in equilibrio ed occupa il volume V A alla pressione pA , mentre nell’ambiente esterno la pressione è p0 < pA e la temperatura T temperatura T 0 . Calcolare le variazioni di energia interna, di entalpia e di entropia, una volta che il gas, espandendosi, raggiunge l’equilibrio …nale con V f in = 2V A .
Soluzione L’espansione è irreversibile ma gli stati iniziale e …nale hanno la stessa temperatura. Per le funzioni di stato di cui si vuole calcolare la variazione, si ha: a V
U = C V V T
) dU = C dT +
(1)
V V
a V 2 dV
dH = d( d (U + P V ) ) dS = T 1 dU + +
P T dV
dT = C V V T +
a T V 2 dV
dT R C V dV : V T + V dV:
+
R V
a T V 2
dV =
ed essendo uguale la temperatura negli stati iniziale e …nale, si ha U =
V V B a dV V A V 2
R
= a V V BAV V BA = 0: 0 :35 J > 0. 0 .
Per la seconda delle (1) la variazione di entalpia è H = U + p + pB V B
p
A V A ,
e, tenuto conto dell’equazione di stato, pB V B
p
= RT o A V A = RT
H = 0:7 J
a V B
RT + 0
a V A
= a V V BAV V BA
Per Per quant quanto o riguar riguarda da la variaz ariazion ionee di entro entropia pia,, dalla dalla terza terza delle delle (1) si ottiene: S = R = R ln
V fin fin V A
= R ln2 = 5: 5:76 J 76 J=K =K
Si osserv osservii che che sia la variazi ariazione one di energia energia interna interna che le variaz ariazion ionii di entalpia e di entropia dipendono dal volume.
80
(10/09/29) Un sistema termodinamico isolato è costituito da n = 5 moli di gas ideale biatomico in contatto con una sorgente termica (termostato) a temperatura t = 20 C . Inizialmente il gas è alla pressione p0 e successivamente viene fatto espandere …no a raggiungere la pressione p1 = p0 =10. Sapendo che nell’espansione la sorgente ha ceduto la quantità di calore Q = 6 kcal , si determini la variazione di entropia del gas e si stabilisca se la trasformazione è reversibile o meno.
Soluzione L’espansione del gas avviene a temperatura costante, quindi detto V 0 il volume iniziale, la sua variazione di entropia risulta: S gas = nR ln V V 10 = nR ln p p01 = 95:7 J=K: La variazione di entropia della sorgente è S sorg =
Q T
=
60004:186 293:15
=
85:676 J=K:
La variazione di entropia dell’universo vale: S u = S gas + S sorg = (95; 7 Il processo è irreversibile.
85:676)J=K = 10:024 J=K
81
(11-02-22) Una mole di un gas ideale biatomico ( = 1:4 ) si espande adiabaticamente e reversibilmente …no a dimezzare la pressione. Si calcoli: a) La temperatura …nale T f , nota quella iniziale T i ; b) Le energie interne iniziale e …nale, supponendo che le molecole possiedano 5 gradi di libertà; c) il lavoro W e¤ettuato dal gas sull’esterno, supponendo nota la sua pressione iniziale P i . d) Successivamente il gas compie esegue una compressione isoterma reversibile …no al volume iniziale e una compressione isocora reversibile …no a ritornare alla pressione iniziale. Si calcoli il rendimento del ciclo. [T i = 280 K ; P i = 105 P a] Soluzione a) Utilizzando l’equazione di stato pV = nRT per eliminare V dall’equazione pV = cost dell’adiabatica reversibile si ottiene T f = ( pPf i )
1
= 280 K 0:820 = 230 K
b) Dalla relazione U = 5nRT=2 si ottiene: U i = 5:82 kJ ; U f = 4:78 kJ . c) Il lavoro può essere calcolato direttamente, utilizzando il primo principio Q = U + W (Q = 0 in questo caso) W =
U = 1:04 kJ
d) Il rendimento è dato dalla relazione = 1 +
QC QA
=1 +
nRT f ln
V i V f
nC V (T i T f ) )
= 1+
nRT f ln
P f P i
1
nC V (T i T f ) )
=
1
1+
2230ln(0:5) 1:4 5(50)
= 0:09
dove QC è il calore ceduto nell’isoterma e QA è il calore assorbito nell’isocora.
82
(11-02-22) Due moli di gas ideale monoatomico vengono compresse isotermicamente e reversibilmente alla temperatura T A …no a dimezzarne il volume. Una volta raggiunto lo stato …nale il gas viene isolato dalla sorgente facendolo espandere liberamente, …no a ripristinare lo stato iniziale. Calcolare la variazione di entropia dell’universo. Soluzione Nell’universo termodinamico, costituito dal gas e dalla sorgente, avviene una trasformazione irreversibile pertanto, per la legge di accrescimento dell’entropia si ha S u = S isot + S irr + S sorg > 0: Ma la variazione di entropia del gas nel ciclo è nulla: S isot + S irr = 0; S irr = pertanto
S
isot ;
(1)
S u = S sorg > 0: Per la seconda delle (1) la variazione di entropia della sorgente è uguale ed opposta a quella del gas nell’isoterma; quindi S sorg = S irr =
nR ln
V f V i
= 2R ln 2
83
11:5 J=K > 0;
(11-06-08) Un cilindro diatermico, munito di pistone libero di scorrere, contiene una mole di gas reale assimilabile ad un gas di Van der Waals, in cui a = 1:4 l atm l=mol2 e b = 0:04 l=mol; che occupa il volume V 1 = 1 l: Improvvisamente il gas viene fatto espandere contro la pressione atmosferica p0 …no al volume V 2 = 4 l: (la temperatura dell’atmosfera è T o = 300 K ) Determinare la pressione iniziale del gas, calcolare il calore scambiato dal gas durante l’espansione e la variazione d’entropia dell’universo.
Soluzione Dall’equazione di Van der Waals p1 =
RT 0 V 1 b
a (V 1 )2
8:314300 3 10:04 10 P a
= 6
5
6
1:4 10 1:013 10 P a = 2:6 10
Pa
L’espansione è irreversibile ma, essendo il cilindro diatermico, una volta raggiunto l’equilibrio …nale, la temperatura del gas è uguale a quella iniziale. Per il primo principio, il calore scambiato è dato da Q = U + W:
(1)
l’energia interna del gas di Van der Waals vale ( N = 1) U = C V T
a=V + cost.
la cui variazione dà
dU = C V dT + (a=V 2 ) dV ma la temperatura …nale è uguale a quella iniziale e quindi U =
V2 V 1
R
a dV V 2
= a
1 V 1
1:05 l atm = 1:05 10
1 V 2
= 1:4 l atml(0:75 l 1:013 10 J = 106 J:
3
1
)=
5
Il lavoro contro la pressione esterna p 0 è 3
W = p 0 V = 3 l atm = 3 10
5
1:013 10 J = 304 J;
quindi Q = 106 J + 304 J = 410 J:
La variazione d’entropia del gas è data da 2 S g = R ln V V 1
b b
= 8:314 ln 41
0:04 J 0:04 K
= 11:78 J K ;
la variazione d’entropia dell’ambiente è S a =
Q T 0
=
410 J=K = 300
1:37 J=K
e la variazione d’entropia dell’universo S u = (11:78
1:37) J=K = 10:41 J=K: 84
(11-06-08) In un recipiente cilindrico adiabatico, munito di pistone anch’esso adiabatico, è contenuta una mole di gas ideale ed una massa m = 20 g di ghiaccio. Il sistema è in equilibrio alla pressione p0 = 1 atm e alla temperatura t0 = 0 C . Il gas viene compresso reversibilmente …no a far fondere tutto il ghiaccio. Calcolare il volume …nale del gas, assumendo indipendenti dalla pressione la temperatura ed il calore di fusione del ghiaccio. (f = 80 cal=g).
Soluzione Una mole di gas a p = p0 e a t = t 0 ha un volume V 0 = 22:414 10 3 m3 : Finchè il ghiaccio è presente alla sua temperatura di fusione, la compressione è isoterma reversibile. In tal caso dal primo principio
U = 0;
) Q = W ,
dove Q è il calore assorbito nella fusione del ghiaccio e W il lavoro di compressione esterno. Detto V 1 il volume …nale del gas, si ha Q = mf = da cui: V 1 = V 0 exp = 1:17
10
nRT ln 0
mf nRT 0
3
V 1 V 0
= 22:414 10
3
m3 .
85
exp
20804:187 8:314273:15
m3
(11-07-19) Una mole di gas ideale monoatomico alla temperatura iniziale di tA = 27 C e pressione p 0 = 1 atm esegue una trasformazione politropica reversibile di equazione pV 2 = cost, aumentando il volume iniziale V A del 50%. Quindi con una isoterma reversibile arriva a uno stato C con V C = 2V A ; dimezzando improvvisamente la pressione passa poi a uno stato D con volume uguale a quello iniziale ed in…ne con una isocora reversibile ritorna allo stato iniziale. Determinare il rendimento del ciclo.
Soluzione pA V A 2 = pV
2
) p = p
2 2
A V A
V
il lavoro compiuto da A a B vale W AB = 2 1 3 pA V A
V B pdV V A
R
=
VB p V 2 V 2 dV V A A A
R
(1:5 V A )3
3 A
V
= 13 pA V A 2 (V B 3
3 A
V ) =
= 0:792 pA V A = 0:792RT A
e la temperatura in B vale
T B = R1 pB V B = R1 pA V A 2V B 3 = R1 pA V A 2 (1:5 V A )3 =
3:375 R1 pA V A = 3:375T A ;
per il primo principio il calore assorbito tra A e B è QAB = U AB + W AB = C V (T B 1:5 R(3:375 T A
T ) + W A
AB
=
T ) + 0:792RT = 4:354RT ;
A
A
A
nell’isoterma da B a C
2 C QBC = W BC = RT B ln V = R 3:375 T A ln 1:5 = 0:971RT A : V B
La pressione in C vale P C = RT B =V C = R 3:375 T A =2V A :
Il lavoro compiuto nell’isobara irreversibile CD è W CD =
P (V V ) = (0:5 R 3:375 T =2V ) V = 0:5 R 3:375 T =2 = 0:844RT e T = P V =R = 0:5 3:375 T =2 = 0:844T : D
C
D
A
A
D
D
A
A
A
A
A
A
Il calore assorbito nell’isocora reversibile DA vale: QDA = C V (T A
T ) = 1:5 R(T 0:844T ) = 0:234RT : D
A
A
Il lavoro da D ad A è W DA = 0 e quindi il rendimento è =
W Qass
=
W AB +W BC +W CD QAB +QBC +QDA
=
0:792+0:9710:844 4:354+0:971+0:234
86
= 0:165
A
(11-07-19) Un sistema termodinamico isolato è costituito da n = 5 mol di gas ideale biatomico, in contatto con una sorgente termica (termostato) a temperatura di 20 C . Inizialmente il gas è alla pressione p0 e successivamente viene fatto espandere …no a raggiungere la pressione p1 = p0 =10. Sapendo che nell’espansione la sorgente ha ceduto la quantità di calore Q = 6 kcal , si determini la variazione di entropia del gas e si stabilisca se la trasformazione è reversibile o meno.
Soluzione L’espansione del gas avviene a temperatura costante, quindi detto V 0 il volume iniziale, la sua variazione di entropia risulta: S gas = nR ln V V 10 = nR ln ppo1 = 95:7 J=K . La variazione di entropia della sorgente è S sorg =
Q=T = 85:7 J=K
La variazione di entropia del sistema vale S = S gas + S sorg = 10 J=K La trasformazione è irreversibile.
87
(11-09-23) Un recipiente con pareti rigide e capacità termica trascurabile, contiene 15 moli di azoto, in equilibrio termodinamico, alla temperatura T 1 . Il sistema viene posto in contatto con una sorgente alla temperatura 0 C , attraverso una parete diatermica. Raggiunto il nuovo equilibrio, si osserva che la variazione di entropia della sorgente è S sorg = 800 J=K: Calcolare la variazione di entropia del gas.
Soluzione La trasformazione è irreversibile, ma la variazione di entropia della sorgente è sempre pari al rapporto tra il calore assorbito (ceduto dal gas) e la sua temperatura, ossia S sorg =
Q ; T 2
)
Q = T 2 S sorg = 273:15 800 = 2:185
dove T 2 = 273:15 K . Essendo Q = nC V (T 1
10
5
T 2 ), risulta:
T 1 = T 2 + Q=nC V = 273:15 +
2:185105 152:58:314
La variazione di entropia del gas risulta:
K = 974 K
2 73:15 2 S = nC V ln T T 1 = 15 2:5 8:314ln 974 J=K =
88
396:4 J=K
J
(11-09-23) Un disco omogeneo di rame, girevole intorno al suo asse, è contenuto in un recipiente rigido termicamente isolato riempito con V 0 = 3 l di azoto alla pressione atmosferica P 0 = 1 atm e alla temperatura T 0 = 300 K . Il raggio del disco è R = 20 cm e la sua massa M = 1 kg, ed esso ruota inizialmente alla frequenza = 9000 giri=min: A causa dell’attrito con il gas, il disco dopo un certo periodo di tempo si ferma. (a) Quanto valgono Q; W e U riferiti al sistema complessivo (disco + gas)? (b) Quanto valgono Q; W e U riferiti al solo gas? (c) A che temperatura …nale si porta il sistema? (d) Qual è lo stato …nale (P,V,T) del gas?
Calore speci…co del rame c =
J 385 kgK
Soluzione
L’energia cinetica iniziale del cilindro vale E kin = 12 I!2 = 14 (0:2)2 2 9000 60
2
J = 8882:6 J
! = 2 9000 60 = 942:48 rad=s e si trasforma tutta in calore Q che scalda il sistema disco + gas.
Dal primo principio Q = U + W; ma W è nullo quindi, per il sistema complessivo U = Q Nello stato iniziale, per il gas (considerato ideale) si ha (1:013 105
) n = 3 10
p0 V 0 RT 0
p0 V 0 = nRT 0
3
=
) = (8:314 300) mol = 0:12184 mol
Per calcolare T basta scrivere (c è il calore speci…co del rame) Q = (Mc + nC V ) T T =
Q (M c+nC V )
=
8882:6 K = 22:9 K 385+0:121842:58:314
La temperatura …nale è quindi T f = 322:9 K: La variazione U g per il gas è U g = nC V T = (0:12184 2:5 8:314) 22:9 J = 58 J
89
uguale al calore Q g ceduto al gas La pressione …nale del gas vale (trascurando la variazione di volume del disco il volume del gas è sempre V 0 ) pf =
p0 T f T 0
=
1:013322:9 105 300
P a = 1:0903
3
(Volume iniziale del disco v 0 = 1=Cu Cu = 8:3 103 kg=m3 ; Cu = 5 10
v = v0 Cu
T = 0:12048 10 5 10 22:9 m 3
5
5
3
5
10 P a (= 1:08 atm) : kg = 0:12048 10 m , K
1
= 1:374
90
10
7
m3 )
3
(12-06-21) Si consideri un serbatoio dotato di un’apertura circolare di diametro d. Si vuole confrontare la portata uscente dal serbatoio nel caso in cui sia presente la sola apertura e nel caso in cui quest’ultima sia collegata ad un tubo verticale di lunghezza L (vedere la …gura 4.1). Si consideri il ‡uido come ideale. 1. Determinare nei due casi la velocità del liquido ad una distanza verticale L dall’uscita del serbatoio, posto che il pelo libero del serbatoio sia posto ad un’altezza h rispetto al fondo. Trascurare l’abbassamento del pelo libero con lo svuotamento. 2. Qual è la velocità del liquido nella sezione di uscita del serbatoio nei due casi ? 3. Determinare la portata uscente nell’uno e nell’altro caso. Qual è il dispositivo più e¢cace?
Soluzione 1. Applichiamo il teorema di Bernoulli ad una traiettoria che va da un punto A situato vicino al pelo libero del serbatoio ad un punto L situato verticalmente al di sotto dell’apertura, ad una distanza L da questa. Caso 1: pA +
2 V A 2
+ g (h + L) = p L +
2 V L 2
(1)
In questa espressione, p A = pL = patm , e V A V L =
p
2g (h + L):
0. quindi
Caso 2. L’equazione di Bernoulli scritta tra il pelo libero del serbatoio e un punto L all’uscita del tubo si scrive esattamente come prima (1) e si ha ancora p A = pL = p atm . 91
Le due velocità sono identiche. 2. Stavolta scriviamo l’equazione di Bernoulli tra un punto prossimo al pelo libero ed un punto B situato nella sezione di uscita del serbatoio. Caso 1. pA +
2 V A 2
+ g (h + L) = p B +
dove p A = p B = p atm , e V A V B
p = 2gh
2 V B 2
+ gL (2)
0. Ne deduciamo che
Caso 2. L’equazione di Bernoulli non cambia, ma stavolta il punto U, all’uscita del serbatoio, non si trova a pressione atmosferica. Infatti, per l’equazione di continuità, nel condotto la velocità deve essere costante, dato che il ‡uido è incomprimibile e la sezione è costante. Si ha dunque V U = V L , dove V L è quella calcolata precedentemente. La velocità di eusso dal serbatoio è dunque maggiore nel caso 2. 3. Le portate di eusso nei due casi sono 2
Q1 = d4
p 2gh;
2
Q2 = d4
p
2g (h + L)
Il dispositivo più e¢cace è dunque il secondo.
92
(12-06-21) Una mole di gas ideale monoatomico, inizialmente alla pressione P A = 1 atm e temperatura T A = 500 K subisce le seguenti trasformazioni: 1) isoterma reversibile dallo stato iniziale A allo stato …nale B caratterizzato da V B = 2V A ; 2) adiabatica irreversibile dallo stato B allo stato C tale che V C = 3V B e T C = T A =2, 3) isoterma reversibile …no ad un certo stato D, 4) isobara reversibile dallo stato D allo stato iniziale A. Calcolare: (a) i lavori eseguiti dal gas nelle quattro trasformazioni, (b) le quantità di calore scambiate dal gas nelle quattro trasformazioni, (c) il rendimento del ciclo, (d) la variazione di entropia del gas nella trasformazione adiabatica irreversibile. Soluzione V A =
RT A P A
500 = 8:314 1:013 = 4:1037 10 105
2
m3
Nell’isoterma reversibile il gas compie il lavoro (uguale al calore assorbito) B W AB = QAB = RT A ln V V A = (8:314 500 ln2) J = 2881:4 J
Da B a C QBC = 0;
W = U = C (T T ) = 1:5 8:314 250 J = 3117:8 J BC
BC
V
C
A
Da C a D
V C W CD = Q CD = RT C ln V = D
perchè da D ad A (isobara) V D V A
=
T D T A
1 2
1 2 A
) V = V ;e T = T = T =2 W = P (V V ) = (1:013 10 0:5 4:1037 10 ) J = 2078:5 J U = R(T T ) = (1:5 8:314 250) J = 3117:8 J DA
DA
=
(8:314 250ln12) J = 5164:9 J
A
D
A
D
A
D
D
C
5
A
2
e quindi, per il primo principio
QDA = U DA + W DA = (3117:8 + 2078:5) J = 5196:3 J Il rendimento del ciclo è 93
= 1 +
QCD QAB +QDA
oppure =
=1
5164:9 2881:4+5196:3
W AB +W BC +W CD +W DA QAB +QDA
= 0:36
5164:9+2078:5 = 2881:4+3117:8 = 0:36 2881:4+5196:3
La variazione d’entropia nell’adiabatica irreversibile BC è calcolata lungo una trasformazione reversibile arbitraria, per esempio una isoterma da B a E, stato con V E = V C e una isocora da E a C. C B
dQ T rev
E B
R R
S BC =
=
dU T
+ P T dV +
C E
R
V C C R ln V + C V ln T = R ln 3 + 1:5 R ln 12 = T B B
8:314 ln 3 + 1:5 ln 12 J=K = 0:49 J=K
94
dU T
+ P T dV =
(12-06-21) La temperatura all’interno del motore di un elicottero è 2000 C , la temperatura dei gas combusti è 900 C . La massa dell’elicottero è M = 2 103 kg, il calore prodotto, per unità di massa del combustibile, è q comb = 47 103 kJ=kg; e la densità del combustibile è = 0:8 g=cm3 . A che altezza massima può arrivare l’elicottero bruciando un volume V = 1 l di combustibile?
Soluzione Lavoro necessario per portare l’elicottero ad altezza H :
W = M gH
Per un ciclo di Carnot che dà l’e¢cienza massima il rendimento vale: =
W Q2
=1
T 1 ; T 2
dove T 1 e T 2 sono le temperature delle sorgenti e Q 2 è il calore assorbito Quindi
T 1 T 2
W = 1
Q2
Il calore prodotto nella combustione è Q2 = q comb V e si ottiene
MgH = 1 H =
qcomb V Mg
T 1 T 2
1
q comb V T 1 T 2
=
47103 kJ=kg (0:8kg=l)1l 2103 kg 9:8m=s2
95
1173 2273
1
= 928 m
(12-07-13) Un estintore è in grado di produrre un getto ad alta velocità grazie alla forte pressione interna. Si schematizzi l’estintore come un recipiente cilindrico contenente nella parte inferiore un liquido ideale (con densità uguale a quella dell’acqua) e in quella superiore un gas ad una pressione P; il becco di uscita è collegato con un tubo di altezza h = 25 cm rispetto al livello del liquido interno (la sezione normale del tubo è molto minore della sezione normale del recipiente). 1) Quale deve essere il valore di P per ottenere una velocità di uscita v = 35 m=s? 2) Con il valore di P della domanda precedente, quale diventa la velocità di uscita se l’estintore viene utilizzato ad una quota dove ci sia una pressione atmosferica ridotta al 70% di quella usuale? Soluzione Applichiamo il teorema di Bernoulli P = P 0 + 12 V 2 + gh = 1:013 105 + 500 352 + 9810 0:25 = 1:013 105 + 6:125 105 + 2452:5 = 7:162 105 P a
nel secondo caso si ha: 1 V 1 2 2
V 1 =
5
= P P 1 gh = (7:1625
5
10 0:7 1:013 10 2452:5) P a ) 6:4289 10 =500 = 35:858 m=s
p
5
96
(12-07-13) Tre moli di un gas ideale monoatomico vengono portati dallo stato A allo stato B mediante una espansione adiabatica nel vuoto. Successivamente, il gas viene portato allo stato C tramite una compressione adiabatica irreversibile ed in…ne il gas viene posto a contatto con una sorgente a temperatura T A e ritorna allo stato iniziale A con una trasformazione isobara irreversibile. Sono dati la temperatura T A = 300 K , la pressione pA = 2 105 P a ed il lavoro compiuto nella trasformazione BC; W BC = 3:7 104 J . Determinare il volume dello stato C e calcolare la variazione di entropia dell’universo.
Soluzione La trasformazione AB è un’espansione adiabatica libera, dunque il lavoro è nullo e il calore scambiato è nullo. Quindi, dal primo principio, abbiamo: U AB = 0 la trasformazione AB è anche isoterma, dato che per un gas ideale l’energia interna dipende solo dalla temperatura: T A = T B = 300 K . Nella compressione adiabatica BC, QBC = 0; quindi il primo principio implica che: W BC =
U
BC
= ncv (T B
T ) = nc (T T ) = C
v
A
C
Risolvendo questa relazione rispetto a T C si ottiene: T C = T A
W BC ncv
= 300 + 3:7 104 = (4:5 8:314) = 1288:96K
Il volume dello stato C può essere ricavato dalla relazione pC V C = nRT C , utilizzando il fatto che p A = p C si ha V C = nRT C =pA = 0:16 m3 Nella trasformazione CA il gas cede una quantità di calore QCA che può essere calcolata facilmente perche la trasformazione è isobara: QCA = nc p (T A
T ) = 61666:6 J C
Questa informazione è utile per determinare la variazione di entropia dell’universo nel ciclo. Nel nostro caso, abbiamo S u = S gas + S amb Le tre trasformazioni subite dal gas nel ciclo sono irreversibili, però sommando i contributi risulta S gas = 0 in un ciclo. Quindi rimane solo da 97
determinare la variazione di entropia dell’ambiente. Essa viene data dal fatto che la sorgente termica assorbe il calore Q ceduto dal gas, quindi Q =
Q
CA =
+61666:6 J
e la variazione di entropia dell’ambiente (e dell’universo ) risulta essere: S u = S amb =
Q T A
= 61666:6 300 J=K = 205:56 J=K:
98
(12-07-13) Una macchina termica reversibile lavora tra due sorgenti a temperatura T 1 e T 2 con T 1 < T 2 . Si può considerare la sorgente fredda con massa in…nita, mentre la sorgente calda consiste di n moli di gas ideale biatomico a volume costante e capacità termica molare C V , quindi la temperatura della sorgente calda diminuisce nel tempo …no ad assumere alla …ne il valore T 1. (T 1 = 300 K; T 2 = 500 K; n = 10) 1) Si calcoli il calore totale estratto dalla sorgente calda. 2) Qual è la variazione totale di entropia della sorgente calda? 3) Quanto lavoro ha compiuto alla …ne la macchina? 4) Quanto calore è stato ceduto alla sorgente fredda? Soluzione 1) Q 2 = nC V (T 2
T ) = 10 2:5 8:314 200 = 41570 J 2) dS = = =) S = = nC ln = 10 2:5 8:314 ln J=K = 207:85 (0:51083) = 106:18 J=K 3) (T ) = = = 1 ; dQ = nC dT dQ T
1
T1 nC V dT T 2 T
nC V dT T
R
3 5
dQ2 +dQ1 dQ2
T 1 T
dW dQ2
T 1 T 2
V
V
2
dove dQ 2 è il calore fornito dalla sorgente calda quando T (temperatura istantanea della sorgente calda) varia di dT , dQ1 = T T 1 dQ 2 (la macchina è reversibile) è il calore ceduto alla sorgente fredda e dW è il lavoro compiuto che sarà uguale a
T 1 T
T 1 T
R
dW = 1
dQ2 =
1
nC V dT
e quindi il lavoro totale è W =
T 1 T 2
(41570
1
T 1 T
nC V dT = nC V (T 2
300 106:18) J = 9716 J
T ) nC T ln 1
V 1
T 2 T 1
=
II secondo termine è il calore totale Q 1 ceduto alla sorgente fredda Q1 =
300 106:18 J = 31854 J
99
(12-09-25) In un tubo verticale a forma di tronco di cono, alto 10 m e con sezione 10 cm2 all’estremità più bassa, 30 cm2 all’estremità più alta, scorre acqua. La pressione all’estremità più alta del tubo vale 10 5 P a, mentre la pressione all’estremità più bassa vale 2:01 104 P a. Quanti m 3 al secondo passano nel tubo?
Soluzione L’estremità più bassa si indica con 1, la più alta con 2. Le sezioni sono A1 e A 2 . L’altezza del tronco di cono d = h2 h1 , dove h 1 e h 2 sono le quote delle due facce. Usiamo l’equazione di Bernoulli
1 2 2 (v1
2 2
v ) = P P + gd; 2
1
la portata volumetrica (P = Av) vale A 1 v1 = A 2 v2 , quindi v1 =
A2 A1 v2
e sostituendo: 1 v22 2
v2 = 1 v12 2
v1 =
s q s q A2 A1
2
1 = P 2
P 2 P 1 +gd
1 2
2
A2 A1
2
A1 A2
1
1
1
A1 A2
79900+98100 m=s = 4103
) = P 2
P 2 P 1 +gd
1 2
=
P 1 + gd
2
=
6:67 m=s:
P 1 + gd
79900+98100 4 103 9
= 20:012 m=s
La portata richiesta vale
P = A 2 v2 = 30 10 4 m2 6:67 m=s = 0:02 m 3 =s
100
(12-09-25) Un cilindro chiuso a pareti adiabatiche è diviso in due parti A e B da una parete interna piana …ssa e diatermica. Nella parte A sono contenuti 3 g di elio (gas monoatomico con massa molecolare 4) inizialmente alla temperatura tA = 70 C , mentre in B ci sono 10 g di azoto (gas biatomico con massa molecolare 28) inizialmente a temperature tB = 70 C . Supponendo che i due gas si comportino come gas perfetti, calcolare ad equilibrio termico raggiunto: 1) la temperatura di equilibrio …nale, 2) la quantità di calore scambiata, 3) la variazione d’entropia del sistema.
Soluzione Calcoliamo i numeri di moli N A = 3=4 = 0:75; N B = 10=28 = 0:35714 Il sistema è racchiuso da pareti adiabatiche, quindi, indicando con T e la temperatura …nale, con C V A e C V B le capacità termiche molari a volume costante dei due gas si ha: U A + U B = 0 da cui T e =
) N C A
1 N A C AV +N B C BV
V A (T e
T ) + N C A
B
V B (T e
T ) = 0 B
(N A T A C AV + N B T B C BV ) =
1 0:751:5+0:357142:5 (0:75
203:15 1:5 + 0:35714 343:15 2:5) K = 265:1 K
Il calore Q scambiato (positivo per A e negativo per B vale: Q = N A C V A (T
T ) = 0:75 1:5 8:314 (265:1 203:15) J = 579:43 J A
La variazione d’entropia del sistema è S =
Te T A
R
N A C V A dT T +
Te T B
R
T e T e N B C V B dT T = N A C V A ln T A + N B C V B ln T B =
5:10 265:10 0:75 1:5 8:314 ln 26 203:15 + 0:35714 2:5 8:314ln 343:15 J=K =
0:574 J=K
101
(12-09-25) L’inventore del motore X dichiara che il lavoro svolto dalla sua macchina ad ogni ciclo è W = 120 J; e che esso opera tra le temperature T 2 = 373:15 K e T 1 = 273:15 K , con rendimento X = 75%. 1) Tale a¤ermazione è verosimile? 2) Se il motore X esistesse davvero, quanto calore Q2 assorbirebbe dalla sorgente calda e quanto calore Q1 cederebbe alla sorgente fredda ad ogni ciclo? 3) E se esistesse davvero, quale sarebbe la variazione di entropia ad ogni ciclo per l’intero sistema che comprende il ‡uido e le due sorgenti? Soluzione 1) Il rendimento di un ciclo di Carnot operante tra le stesse temperature vale C = 1
T 1 T 2
=1
273:15 373:15
= 0:268
27%:
Non può esistere un motore con rendimento maggiore di quello di Carnot operante tra le medesime temperature. Quindi il motore X deve avere un rendimento minore del 27%. 2) X = Q2 =
W X
W Q2 ,
=
quindi il calore Q 2 vale
120 0:75 J =
160 J .
E applicando la prima legge della termodinamica a un ciclo W = Q 1 + Q2 . che dà il valore di Q 1 Q1 = W
Q
2
= 120 J
160 J = 40 J .
3) La variazione dell’entropia del ‡uido ad ogni ciclo è nulla: La variazione d’entropia totale ad ogni ciclo è data dalla somma delle variazioni d’entropia della sorgente calda, e della sorgente fredda, S =
Q1 T 1
+
Q2 T 2
=
40 160 273:15 + 373:15
J=K =
0:28 J=K
L’entropia totale diminuisce, quindi il motore non è realizzabile.
102
(13/02/20) L’acqua contenuta in un tubo verticale di sezione S = 102 cm2 e altezza h = 1 m; è spinta da un pistone inferiore a cui è applicata una forza verticale F = 200 N diretta verso l’alto. 1) A quale velocità v fuoriesce il liquido da un piccolo foro posto sulla sommità del tubo? 2) A che altezza H sopra la sommità del tubo arriva il getto? (trascurando la resistenza dell’aria) Soluzione 1) Applichiamo il teorema di Bernoulli tra la sezione inferiore e quella superiore, trascurando la sezione del foro rispetto alla sezione del cilindro, se p è la pressione determinata dalla forza, e la densità dell’acqua, si ha: p = gh + 12 v2 dove p = F =S perciò v = m=s
p
2 (F=S
gh) =
p
2(200= (103 10 2 )
9:81)m=s = 4:51
2) Si conserva la densità d’energia meccanica dell’acqua e quindi 1 2 2 v
= gH
) H =
v2 2g
=
(4:5144)2 29:81 m =
103
1:04 m
(13/02/20) 7 moli di gas perfetto monoatomico sono inizialmente racchiuse in condizioni di equilibrio alla pressione di 10 atm all’interno di un recipiente di volume 10 l con pareti adiabatiche. A un certo istante un laser invia un impulso e scalda il gas fornendogli un calore Q = 20 cal. Trascurando la capacità termica e l’espansione termica del recipiente, determinare: a) l’aumento di temperatura del gas, b) l’aumento di energia interna del gas, c) l’aumento di entropia del gas. d) Determinare inoltre le stesse quantità nel caso in cui le pareti non siano adiabatiche ed il recipiente venga posto in contatto con una sorgente con T s = 0 C: e) Determinare in quest’ultimo caso la variazione d’entropia dell’universo.
Soluzione a) La temperatura iniziale T 0 si determina usando l’equazione di stato p0 V = nRT 0
) T = 0
p0 V nR
=
101:013105 102 K = 78:314
174:06 K
b) L’energia interna iniziale vale U 0 = 32 nRT 0 e l’aumento dell’energia (per il primo principio) è U = Q = 20 4:18 J
) T =
2 Q 3 nR
=
2 204:18 3 78:314
= 0:96 K
c) la variazione dell’entropia del gas vale S = dQ = T J=K = 0:47 J=K
T 1 nC V dT T o T
R R
=
3 2
7 8:314ln
T 1 T 0
=
d) Nel secondo caso il calore fornito al gas vale Q1 = 32 nR (T S
T ) ; 0
La variazione di temperatura è T 1 = (T S
T ) = (273:15 174:06) K = 99:09 K 0
La variazione d’energia vale U 1 = Q 1 =
21 2
8:314 99:09 J = 8650:3 J
La variazione d’entropia del gas
104
3 2
7 8:314ln
175 174:06
S 1gas =
21 2
8:314ln
T S T 0
=
e quella della sorgente S 1s
21 2
273:15 174:06 J=K =
8:314ln = = Q1 T 0
8650:3 J = 273:15
Perciò la variazione d’entropia dell’universo è S 1u = (39:3
31:7) J=K = 7:6 J=K
105
39:3 J=K
31:7 J=K
(13/02/20) Un sistema termodinamico inizialmente in uno stato A a temperatura T 1 = 400 K 400 K passa passa a uno stato B stato B con temperatura T temperatura T 2 = 500 K 500 K mediante mediante una trasformazione reversibile caratterizzata dall’equazione T = aS + b; + b; dove S 2 è l’entropia, T l’entropia, T la temperatura assoluta, a = a = 45 K 45 K =cal e b = b = cost cost.. Calcolare il calore scambiato dal sistema con l’ambiente. Successivamente il sistema passa a uno stato C a temperatura T 1 con una trasformazione adiaba adiabatic tica a revers reversibi ibile le e quindi quindi ritor ritorna na allo allo stato stato inizia iniziale le con un’iso un’isoter terma ma reversibile. Calcolare il rendimento del ciclo. Soluzione Per il terzo principio b principio b deve essere nullo. L’entropia iniziale S A vale T vale T 1 =a e quella in B S B S B = T 2 =a: Il calore assorbito è allora QAB = 4187 J
S S2 S 1
R R T dS =
S
aSdS = = 12 a [S 2 ]S 21 =
1 2 2a (T 2
2 1
T ) =
1 90 (250000
160000) cal = cal =
Il calore scambiato nella trasformazione tra B e C è nullo, mentre il calore ceduto dal sistema tra C e A vale QCA =
T (S (S S ) = T (T (T T ) =a 1
B
A
1
2
1
il rendimento del ciclo è pertanto =
QAB +QCA QAB
=1
T 1 (T 2 T 1 ) a( 21a (T 22 T 12 )
=
T 2 T 1 T 1 +T 2
106
=
100 900
= 1= 1 =9
Una provetta di massa m, altezza altezza l e sezione S S è immersa completamente in un liquido di densità densità che che la riempie completamente. La pressione all’esterno del liquido è la pressione atmosferica P 0 . Si può può trasc trascur urar aree il volume occupato dalla massa della provetta. La si inizia ad estrarre mantenendola capovolta. Si chiede di determinare, sommando esplicitamente le forze in gioco, la forza F che F che è necessario applicare per mantenere la provetta in equilibrio in funzione della quota h della base della provetta.
Provetta completamente immersa (h< (h <0) Soluzione Possiam Possiamo o distinguere distinguere quattro quattro diverse diverse fasi dell’estraz dell’estrazione. ione. Per ciascuna consideriamo il valore delle componenti verticali delle forze che agiscono (asse verticale z verticale z diretto verso l’alto): la forza peso ( mg), mg), la forza F int int = SP int int ; associata alla pressione P int int applicata alla base della provetta dal suo interno, la forza F ext SP ext ext = ext ; associata alla pressione P ext ext applicata alla base della provetta dal suo esterno. Per avere equilibrio dovremo quindi applicare una forza con componente verticale:
F = mg
SP
+ SP ext int int + SP ext
1). La provetta è completamente immersa nel liquido. Dato che possiamo trascurare lo spessore della provetta, le pressioni P int int e P ext ext saranno uguali (perchè alla stessa altezza), e quindi F = mg 107
2). Adesso una parte della provetta di lunghezza h è di fuori dal liquido. Se gh Se gh < P 0 l’interno della provetta resta completamente riempito di ‡uido. Avremo quindi P int = P 0 int = P
gh
e P ext = P 0 , da cui F = mg + mg + gSh gSh ext = P
3). 3). Appen Appena a gh > P 0 l’altezza della colonna di ‡uido all’interno della prove provetta tta smette smette di salire salire,, lascia lasciando ndo una frazio frazione ne vuota. vuota. Di conseg conseguen uen-za P int int = 0 (trascurando la pressione del vapore soprastante il liquido) e P ext = P 0 , da cui ext = P F = mg + mg + P P 0 S 4). Adesso la provetta contiene aria, quindi P int int = P ext ext = P 0 e F = mg Notare Nota re che che la forza forza F F dipende dipende da h in modo modo contin continuo, uo, salvo salvo che al passaggio dalla fase 3 alla fase 4 quando si svuota bruscamente di ‡uido.
108
(13/07/03) Sul fondo di un cilindro adiabatico di sezione S munito di un pistone mobile e adiabatico si trova uno strato di materiale di capacità termica C 1 . Nella parte superiore si trovano n moli di un gas perfetto monoatomico. Inizialmente il sistema è in equilibrio termodinamico, con pressione e temperatura P 0 e T 0 note. 1. Si raddoppia molto lentamente la pressione. Calcolare la nuova temperatura. 2. Partendo dalla stessa condizione iniziale si raddoppia istantaneamente la forza applicata al pistone. Calcolare anche in questo caso la temperatura nello stato …nale di equilibrio. 3. Calcolare la variazione di entropia del sistema e dell’universo nei due casi precedenti. Soluzione 1) Dal primo principio abbiamo, considerando che non si hanno scambi di calore con l’esterno, 0 = dU + pdV ma la variazione dell’energia interna U del sistema si può scrivere come la somma delle variazioni d’energia del gas e del materiale, quindi dU = 32 nRdT + C 1 dT e allora
3 2 nR + C 1
dT +
nRT V dV
=0
che può essere integrata direttamente: 3 2 nR + C 1
ossia
ln T + nR ln V = costante
3
T ( 2 nR+C 1 ) V nR = costante oppure, usando la legge dei gas perfetti, T P
= costante
con
=
Da questo segue subito che T f = T 0
P f P 0
= T 0 2 :
109
nR
5 nR+C 1 2
:
Oppure (usando la condizione di adiabaticità, l’espressione generale di dS e l’equazione di stato dei gas perfetti: 1 dU + P dV = 32 nR + C 1 dT + nR dT T T T V 5 nR nR + C 1 dT dP = 0 2 T P T P 5 nR + C 1 [(ln T )]T f0 = nR [(ln P )]P f0 2
dS =
da cui
V dP T
=
T f = T 0 2
2) In questo caso non abbiamo a che fare con una trasformazione reversibile, quello che possiamo dire è che l’aumento dell’energia interna sarà dato dal lavoro fatto sul sistema:
2P (V V ) = U = 0
f
0
3 2 nR + C 1
(T f
T ) 0
ma d’altra parte negli stati iniziale e …nale di equilibrio P 0 V 0 = nRT 0 ;
2P 0 V f = nRT f
e sostituendo
nR(T 2T ) = f
0
ossia
T f =
7 nR+C 1 2 5 nR+C 1 2
3 2 nR + C 1
(T f
T ) 0
T 0
3) Nel primo caso la trasformazione è reversibile, quindi l’entropia dell’universo non cambia. Ma neppure si hanno scambi di calore con il sistema, quindi anche l’entropia di quest’ultimo non varia. Nel secondo caso la trasformazione è irreversibile. La variazione di entropia del sistema si trova calcolando la di¤erenza tra l’entropia dello stato di equilibrio …nale e quella dello stato di equilibrio iniziale. Dato che dS =
dQ T
= T 1 dU + P dV = T
possiamo scrivere S =
3 nR + C 1 2
e quindi S =
5 nR + C 1 2
T
3 nR + C 1 dT 2 T
V
ln T f0 + nR ln V f0 = ln
7 nR+C 1 2 5 nR+C 1 2
+ nR dV V
5 nR + C 1 2
T
ln T fo
nR ln
nR ln 2
Questa sarà anche la variazione di entropia dell’universo. 110
P f P 0
(13/07/03) Una mole di gas perfetto monoatomico, inizialmente in equilibrio, a temperatura T A = 300 K e volume V A = 1 dm 3 , compie un ciclo costituito dalle seguenti trasformazioni: A B : espansione isobara, ottenuta ponendo a contatto il sistema con una sorgente di calore a temperatura T B incognita; B C : espansione adiabatica reversibile; C D: abbassamento isocoro reversibile della temperatura; D A: compressione adiabatica reversibile. Sapendo che V B = 2V A e che V C = 3V A determinare: 1) Le temperature T B ; T C ; e T D 2) Il rendimento del ciclo. 3) La variazione di entropia del sistema e dell’universo in un ciclo.
! ! ! !
Soluzione nRT A V A
1) p A = pB = pA
T B =
)
! C
8:314300 P a = 103
=
pB V B nR
pB 2V A nR
=
B
trasf. adiab. rev.
pC = p B
oppure D
pC V C R
!A
) :p 6
10
= 600
2 3
2 3
2 3
T D = T A
= 2T A = 600 K 5 3
= pC V C ; T B V B
1
P a = 1:267
1 = T C V C quindi
6
10 P a
K = 458 K
= 458 K
pD V D R
6
10 P a
B V B
D V D
trasf. adiab. rev
pD = p A T D =
= 2:49
1
V B V C
T C = T B T C =
V B V C
2:49
V A V D
=
V A V D
) p 6
= 2:49
1 8:314 1
1 3
= p A V A ;
5 3
5
10 P a = 3:99 10 3:99 10 3 10 K = 144 K 5
= 300
1 3
2 3
Pa
3
= 144: 22
2) Il calore QAB è assorbito nel tratto AB (isobara) del ciclo e il calore QCD è ceduto nel tratto C D (isocora), il rendimento vale quindi: = 1 +
QCD QAB
= 1+
C V (T D T C ) C P (T B T A )
=1
3(314) 5(300)
111
= 0:37
3) La variazione d’entropia del sistema in un ciclo è nulla (S è funzione di stato). Nelle due adiabatiche reversibili la variazione d’entropia dell’universo S u è nulla. nel tratto AB (isobara) la sorgente cede calore al sistema e quindi S uAB =
QAB T B
=
C P (T B T A ) T B
=
5 2 8:314
1 2
1
J=K =
10:39 J=K
nel tratto C D (isocora) il sistema cede calore e quindi si ha: S uCD = 14:43 J=K
T D dq T C T
R
=
nC
V
T D dT T C T
R
perciò, in un ciclo S u = (14:43
T C = 32 R ln T = 32 8:314ln 458 144 J=K = D
10:39) J=K = 4:04
112
J K
(13/07/24) Un serbatoio è posto ad una altezza H = 600 m rispetto ad un bacino contenente acqua. Una conduttura formata da un tubo di di diametro d = 10 cm viene utilizzata per riempire il serbatoio. 1) Qual è la minima pressione necessaria alla base della conduttura per farla funzionare? 2) Si consideri che la conduttura fornisca ogni giorno un volume V = 3000 3 m al serbatoio. Qual è la velocità dell’acqua nella conduttura? 3) Per mantenere questa velocità quale deve essere la pressione aggiuntiva? Soluzione 1) Sia = 1 103 kg=m3 la densità dell’acqua, allora la pressione minima sarà
pmin = gH = 1 103 9:81 600 P a = 5:886
2) la portata nella condotta deve valere q = 3000= (24 3600) m 3 =s = 3:4722
10
2
6
10
P a:
m3 =s
e quindi, se S è la sezione normale della condotta, la velocità dell’acqua nella condotta sarà: v = q=S =
3:4722102 m=s = (5102 )2
4:42 m=s
3) Dal teorema di Bernoulli applicato tra due sezioni, una all’inizio della condotta e l’altra all’ingresso del bacino, si ricava la pressione aggiuntiva p 1 p1 + pmin = p min + 12 v 2 e quindi p1 = 12 v2 = 0:5 103 (4:42)2 P a = 9768:2 P a:
113
(13/07/24) Un cilindro a pareti adiabatiche e munito di pistone anch’esso adiabatico è diviso in due parti uguali da un setto. Inizialmente il pistone è bloccato e la parte inferiore, di volume V A = 2 l , contiene 0:4 moli di gas ideale monoatomico alla temperatura T A = 27 C , mentre nella parte superiore vi è il vuoto. (a) Viene rimosso il setto ed il gas si espande liberamente. Determinare lo stato …nale del gas (valori di pressione, volume e temperatura) e la variazione di entropia del gas. (b) Successivamente viene sbloccato il pistone e il gas viene compresso in modo reversibile …no a riportarlo al volume iniziale. Di che tipo di trasformazione si tratta? Determinare la temperatura e la pressione del gas in questo stato e il lavoro subito dal gas. Soluzione (a) In un’espansione libera di un gas ideale T = 0, per cui (denotando con B lo stato raggiunto dal sistema)
T B = T A = 300:15 K ; inoltre: V B = 2V A = 4 l; la pressione si può ricavare dall’equazione di stato dei gas ideali P B = nRT B =V B = 0:4 8:314 300:15= (4 10 3 ) = 2:4954
5
10
Pa
La trasformazione è adiabatica irreversibile (è una trasformazione spontanea), quindi la variazione di entropia deve essere positiva e vale S = nR ln(V B =V A ) = (0:4 8:314)ln 2 = 2:3 J=K
(b) La trasformazione è adiabatica reversibile. pV = costante; ossia p B V B = p C V C
ma V C = V A , quindi: P C = P B (V B =V A ) = 2:4954
5
10 (2)
5=3
= 7:92
Dall’equazione di stato dei gas perfetti: T C = P C V C =nR = 7:92 e dal primo principio
W = Q 878:76 J
5
10 2 10
3
5
10
Pa
= (0:4 8:314) = 476:31 K
U = nC T = 0:4 1:5 8:314(476:31 300:15)J = V
114
(13/07/24) Una mole di gas perfetto monoatomico subisce le seguenti trasformazioni: una adiabatica irreversibile dallo stato iniziale A; con A; con pressione P pressione P A = 1 atm e atm e volume V volume V A = 22 l 22 l,, ad un certo stato B ; una successiva compressione isobara reversibile …no ad uno stato C C caratterizzato da V C Dal lav lavoro oro C = V B =2. Dal 3 compiuto dal gas in quest’ultima trasformazione pari a W = 1:5 10 J si calcoli la temperatura T B . Si calcoli inoltre il lavoro compiuto nell’ adiabatica irreversibile. In…ne, se lo stato C stato C è è tale che con una trasformazione adiabatica reversibile il gas torna nelle condizioni iniziali, si calcoli la pressione, il volume e la temperatura negli stati B stati B e C e C e la variazione di entropia durante l’adiabatica irreversibile.
Soluzione Dall’equazione di stato pA V A = RT = RT A
si ha
T A = p = pA V A =R =R = = 1:013 105 22 10 3 =8:314 K 314 K = = 268: 268:05 K 05 K
Conoscendo il lavoro W lavoro W BC determina T C BC si determina T C 3
W BC BC = pC V C C = T C C
1:5 10 J = RT = 1:5 10 =8:314 K 314 K = = 180: 180:42 K 42 K
C C
perciò
3
BC è un’isobara e quindi V C C = V B =2
) T
= 2T C 360:84 K 84 K C = 360:
B
CA è un’adiabatica reversibile e dall’equazione T A V A
1
= T C C V C
1
si determinano V determinano V C C e pC V C C = V A
T A T C C
pC = RT C C =V C C
1 1
= 22 10
3
268: 268:05 180: 180:42
3 2
Il lavoro compiuto nell’adiabatica irreversibile vale W AB AB =
U
2
3
= 3:984 10 m = 8: 8 :314 180: 180:42= 42=0:03984 P 03984 P a = 37651 P 37651 P a
C (T (T T ) = 1:5 8:314 314 (360 (360::84 268: 268:05) J = 1157: 1157:2 J AB AB
=
V V
B
A
In un ciclo la variazione dell’entropia è nulla 115
S = = S AB S BC S CA AB + S BC + S CA = 0 S CA CA = 0 (adiabatica reversibile) T TC dU C T B T
2:5 8:314ln 12 = quindi quindi S S AB AB
BC BC
R
V VC dV C V B T
R
S BC BC =
+ P
= C P P
T TC dT C T B T
R
14: 14:407 J 407 J=K =K = S = 14: 14:407 J 407 J=K =K
116
= C P P ln
T C C T B
=
(13/09/24) Dato Dato il cono cono a base base circol circolare are in …gura, …gura, determ determina inare re l’alte l’altezza zza h0 della porzione di solido immerso nel ‡uido a densità 0 .
Soluzione Dal principio di Archimede si ha ha 0 gV 0 + 1gV 1 = gV = gV (essendo, rispettivamente V 0 e V 1 le frazioni di volume del corpo immerse nei ‡uidi a densità 0 e 1 , e V il V il volume totale del corpo). Risultando V 1 = V = V V 0 l’equilibrio al galleggiamento si può scrivere come
V 0 (0
) = V ( ( ). 1
1
D’altra parte i volumi sono dati da V = d d2 h=12 h=12 e e V 0 = = d d20h0 =12
mentre dalla similitudine tra i triangoli si può scrivere d=h = d0 =h0 per cui la precedente relazione diventa: d 20 h0 (0 12
)= 1
d 2 h ( 12
3 0
); ) h = 1
da cui si ricava h ricava h 0 = 0:367 m 367 m..
117
1 3 h; 0 1
(13/09/24) Una quantità n = 1:5 moli di un gas ideale monoatomico si trova in un recipiente di volume V 1 ad una pressione p1 = 1:0 atm e temperatura T 1 = 320 K . A partire da questo stato il gas percorre il ciclo composto dalle seguenti trasformazioni reversibili: i) compressione isoterma …no a V 2 = V 1 =2; ii) espansione isobara …no a V 3 = (3=4) V 1 ; iii) espansione politropica (del tipo pV k = cost) …no a tornare allo stato iniziale. Determinare: a) i valori di V 1 ; p2 ; T 3 e dell’esponente k della trasformazione politropica; b) il lavoro complessivo fatto dal gas nell’intero ciclo; c) la variazione di entropia del gas lungo la trasformazione politropica e il suo calore speci…co. Soluzione Il volume dello stato iniziale è V 1 = nRT 1 =p1 = 3:94 10 2 m3
Per la pressione p 2 abbiamo p1 V 1 = p2 V 2
) p = (V =V ) p = 2 p = 2:0 atm 2
1
2
1
1
In…ne nello stato 3 abbiamo p3 V 3 = p 2 V 3 = nRT 3 480 K
) T = p V =nR = 3
2 3
2 p1 (3=4)V 1 nR
= 32 p1 V 1 =nR = 32 T 1 =
Gli stati 3 e 1 sono gli estremi della compressione politropica e quindi p3 V 3 k = p 1 V 1 k
k
) p =p = (V =V ) ) k = 1
3
3
1
ln( p1 =p3 ) ln(V 3 =V 1 )
=
ln 2 ln 3ln 4
= 2:41
Il lavoro compiuto dal gas in un ciclo è pari a 2 W = W 12 + W 23 + W 31 = nRT 1 ln V V 1 + p2 (V 3 nRT 1 ln 2 + 12 p1 V 1 + knR1 (T 3 T 1 ) = 650 J
V ) + 2
1 1k ( p1 V 1
p V ) = 3 3
Per il calcolo della variazione d’entropia ricorriamo alla prima legge della termodinamica dQ = dU + dW = nc V dT + pdV = nc V dT + dS = dQ=T = ncV dT + nR dV T V 118
nRT V dV
)
Perciò, per la trasformazione 3
! 1 abbiamo
S 31 = ncV ln T T 13 + nR ln V V 13 = nR 1:5 8:314
3 2 2 ln 3 +
ln 43 =
3 ln 23 + ln 43 2
3:99 J=K
=
valutiamo il calore speci…co lungo la trasformazione politropica. Notiamo che pV k = cost
k 1
) T V
= cost
e quindi, di¤erenziando si ricava V k 1 dT + (k
k 2
1)T V
dV = 0
) dV =
1 V dT k1 T
Conseguentemente, sempre dalla prima legge abbiamo dQ = nc V dT + pdV = ncV dT
nRT 1 V dT V k1 T
R k1
= n cV
dT :
Ma osservando questa espressione si capisce che la quantitò tra parentesi tonde è proprio il calore speci…co molare del gas lungo la trasformazione politropica in questione. E cioè c = c V
R k 1
=
3 2
1 k1
R = 0:79R
119
(13/09/24) 5 moli di gas ideale compiono un ciclo con due isobare e due adiabatiche (tutte reversibili). Le due isobare sono alle pressioni pA = 20:0 atm e pB = 10:0 atm, mentre l’espansione isobara a pressione più elevata si svolge tra i volumi V 1 = 5:0 l e V 2 = 10:0 l. Supponendo di poter far lavorare la macchina termica sia con un gas monoatomico che con uno biatomico, determinare: a) la quantità di calore assorbito dai gas in un ciclo e per quale dei due è maggiore; b) la temperatura minima raggiunta da ogni gas lungo il ciclo; c) l’espressione del rendimento della macchina speci…cando per quale gas è maggiore. Soluzione Prendiamo come stati 1 e 2 gli estremi dell’espansione isobara a pressione pA . Le temperature del gas in tali stati sono T 1 =
pA V 1 nR =
244 K ;
T 2 =
pA V 2 nR
=
V 2 V 1 T 1 =
487 K
Gli stati 3 e 4 corrisponderanno agli estremi (tenendo conto dell’orientazione) della compressione isobara a pressione pB . Dato che questi due stati giacciono rispettivamente sulle adiabatiche per gli stati 2 e 1, allora tenendo conto che lungo un’adiabatica è pV = cost:, dovremo avere V 3 =
pA pB
1
V 2
e
V 4 =
pA pB
1
V 1
Corrispondentemente, dato che lungo un’adiabatica è anche T V cost, per le temperature di tali stati avremo T 3 =
V 2 V 3
1
T 2 =
pB pA
1
T 2
e
T 4 =
V 1 V 4
1
T 1 =
Nel ciclo il calore viene assorbito lungo la trasformazione 1 a Qa = Q12 = nc p (T 2 -T 1 ) D’altra parte, il lavoro prodotto in un ciclo è pari a W = Q = Q12 + Q34 = nc p (T 2 1
nc p 1
pB pA
(T 2
T ) + nc (T T ) = 1
p
4
T ) 1
Corrispondentemente, il rendimento del ciclo è 120
1
3
pB pA
1
=
T 1
! 2 ed è pari
=
W Qa
=
ncp (T 2 T 1 )+ncp (T 4 T 3 ) ncp (T 2 T 1 )
=1
pB pA
1
=1
1 2
1
Ora, i calori speci…ci a pressione costante e l’esponente dei gas monoatomici e biatomici sono: c p;mono = 52 R; mono =
5 3
e c p;bi = 72 R; bi = 75 .
Perciò Qa;mono = 52 nR(T 2 T 1 ) = 2:53 104 J; Qa;bi = 72 nR(T 2 T 1 ) = 3:55 104 J ;
che mostrano che il gas biatomico assorbe una maggior quantità di calore. Per i rendimenti abbiamo mono = 1
1 2
2 5
= 0:24
bi = 1
1 2
2 7
= 0:18,
che mostrano che è il ciclo del gas monoatomico quello a rendimento maggiore. La temperatura più bassa raggiunta nel ciclo è chiaramente T 4 . Per i due gas otteniamo T 4;mono =
1 2
2 5
T 1 = 189 K;
T 4;bi =
1 2
2 7
T 1 = 200 K :
La temperatura minima è raggiunta dal gas monoatomico.
121
(14/18/02) Acqua scorre con una portata Q = 50 l=min attraverso una piccola apertura alla base di un serbatoio in cui l’acqua ha una profondità di h = 4 m Quali sono la velocità di eusso e la portata se si applica alla super…cie dell’acqua una pressione aggiuntiva di 49000 P a? Soluzione La velocità di eusso dipende dalla altezza dell’acqua nel serbatoio secondo la legge V =
p 2gh
dove g è l’accelerazione di gravità. La pressione aggiuntiva p1 esercitata equivale a una colonna d’acqua aggiuntiva di altezza h1 = p 1 =g = 4:9 104 =(103 9:81)m = 5 m
dove è la densità dell’acqua La velocità di eusso modi…cata sarà quindi V 1 =
p
2g (h + h1 ) =
p
2 9:81 (4 + 5)m=s = 13:29 m=s
La sezione di uscita A alla base del serbatoio è la medesima nei due casi e quindi A = Q=V = Q 1 =V 1
) Q = QV =V = Q 1
1
122
3
9=4 = 0:00125 ms
p
(14/18/02) Una macchina di Carnot assorbe in un ciclo (dalla sorgente a temperatura più alta) una quantità di calore Q1 = 1:5 103 J ed ha un rendimento = 0:60. Il lavoro W viene utilizzato per comprimere un gas ideale biatomico lungo una trasformazione politropica reversibile ( pV k = cost:) con k = 2:0, a partire da uno stato iniziale caratterizzato dai valori di pressione, volume e temperatura pi = 1 atm; V i = 10 dm 3 e T i = 200 K . Determinare: a) il lavoro W compiuto dalla macchina in un ciclo. b) la pressione p f e il volume V f del gas alla …ne della compressione; c) Il calore scambiato dal gas nella trasformazione.
Soluzione Nella macchina di Carnot la quantità di calore scambiata con la sorgente ad alta temperatura è anche pari al calore assorbito dalla macchina stessa. Perciò il lavoro da essa prodotto sarà pari a = W=Q 1
3
! W = Q = 0:6 1:510 J = 900 J 1
Se tale lavoro viene utilizzato per comprimere un gas biatomico lungo la politropica pV k = cost. (con k = 2) a partire dallo stato ( pi ; V i ; T i ), allora il lavoro compiuto dal gas lungo tale trasformazione dovrà essere pari a W . Se indichiamo con V f il volume …nale della trasformazione, il lavoro fatto dal gas biatomico è pari a
W k =
V f
V f
Z
Z
pdV = pi V i k
V i
V k dV =
V i
Quindi, dovremo avere W k =
pi V k 1k i
W ) [ p V p V ] = p V f f
i i
V 1
k V f V i
h i ) i i
pf V f pi V i
=
1 = (k
1 [ pf V f 1k
p V ] :
1) W
e sostituendo p f =pi = (V i =V f )k ; si ottiene pi V i
V f =
V i V f
h1+
k1
V i
1 = (k
1)W
V i V f
k1
1 (k1) k1 W pi V i
i
Inserendo l’attuale valore di k (k = 2) si ha 123
=1 +
(k1) W pi V i
)
i i
V f =
h1+V i = 0:529 V i = 5:29 dm 3, i W pi V i
e conseguentemente pf =
V i V f
2
pi = 3:57 atm = 3:57 1:013 105 P a = 3:6164
5
10 P a
Notando che è n = p i V i =RT i = 0:61 mol, si ha T f =
pf V f nR
=
3:6164105 5:28103 0:618:314
= 376:5 K:
Il calore scambiato nella trasformazione lo otteniamo con il primo principio della termodinamica. U = Q W 1:34 103 J:
) Q = U +W = nc (T T ) W = V
124
f
5 nR(T f 2
T ) W = i
(14/18/02) Una quantità n = 0:5 mol di un gas ideale monoatomico si trova in un recipiente con pareti adiabatiche di volume V 1 ad una pressione p 1 = 1 atm e temperatura T 1 = 20 C . Successivamente, il volume del recipiente viene aumentato rapidamente …no a V 2 = 3V 1 e il sistema è lasciato in quiete in modo da raggiungere il nuovo stato di equilibrio. Poi la temperatura del gas viene riportata a T 1 tramite una lenta compressione isocora in cui il gas assorbe una quantità di calore Q = 890 J . In…ne tramite una compressione isoterma reversibile il gas è riportato al suo stato iniziale. Determinare: a) la variazione di entropia subita dal gas nella prima trasformazione; b) il lavoro complessivo fatto dal gas nell’intero ciclo; a) la variazione di entropia subita dall’ambiente (l’universo) nell’intero ciclo.
Soluzione Indichiamo con 1, 2 e 3 (nell’ordine) gli stati assunti in successione dal gas. Dalla legge dei gas ideali otteniamo subito V 1 =
nRT 1 p1
= 12 dm 3 ; V 2 = V 3 = 3V 1 = 36 dm 3 :
Il calore Q = Q 23 assorbito dal gas nel passaggio dallo stato 2 allo stato 3 (a temperatura T 3 = T 1 ), dovrà essere pari a Q = Q23 = ncV (T 3
T ) = nc (T T ) 2
V
1
2
e da questa ricaviamo T 2 = T 1
Q ncV
= T 1
2Q 3nR =
150:4 K
Conseguentemente, la variazione di entropia nella prima trasformazione è data da S 12 = ncV ln T T 21 + nR ln V V 21 = 0:5 J=K :
8:314
3 150:4 ln 293:15 + 2
ln 3 = 0:405
Nella prima trasformazione, che è un’adiabatica irreversibile (il volume viene variato rapidamente), non c’è scambio di calore con l’ambiente. D’altra parte il calore scambiato nella compressione isoterma 3 1 è pari a 1 1 Q31 = nRT 1 ln V V 3 = 0:5 8:314 293:15ln 3
125
! = 1:34 10 J = 1340:J 3