Manual de Hidráulica de Canales
Universidad Autónoma de Sinaloa
Facultad de Ingeniería Civil
Página 1
Manual de Hidráulica de Canales
I.
Facultad de Ingeniería Civil
CANALES………………………………………………………………………………………….. …………5 ASPECTOS GENERALES DE
-19
Definición de: Hidráulica, conducto hidráulico, canal, etc. Clasificación de: El flujo en canales, de los canales; presentación de: los elementos geométricos de diferentes secciones de canal, la nomenclatura más común en canales; Análisis de: La distribución de velocidades en un canal, los coeficientes de Corolis y Boussinesq, la distribución de presiones y los efectos de la pendiente y/o la curvatura del canal en la misma. II.
CANALES………………………………………………………………………………………………….. FLUJO UNIFORME EN
20-57
Características del flujo uniforme; hipótesis y ecuación de Chezy; expresiones para valuar el coeficiente (n) de Manning; Factor de Transporte (K); Factor de Sección (AR 2/3); Exponente Hidráulico (N), Rugosidad equivalente; sección compuesta; conductos cerrados parcialmente llenos; Distribución de velocidades en un canal con flujo laminar; Ley Universal de la Distribución de Velocidades para flujo turbulento. III.
UNIFORME………………………………………………………………………………………………58
-109
TICO EN CANALES………………………………………. CANALES……………………………………….……………………110
-139
DISEÑO DE DE CANALES EN FLUJO
Criterios de: La sección de máxima eficiencia Hidráulica, de la velocidad máxima permisible, del esfuerzo cortante crítico, de Maza A. y García F., sección hidráulica estable ideal. IV.
REGIMEN CRI
Definición de: Energía especifica, régimen critico, subcritico y supercritico, de pendiente critica, suave y fuerte, factor de sección Z, exponente hidráulico M, sección de control; Análisis de: Flujos en canales con ampliaciones o reducciones en la sección y con escalones ascendentes o descendentes. V.
E VARIADO…………………………………………………………. DO………………………………………………………….1
FLUJO GRADUALMENT
40-187
Definición de flujo gradualmente variado, hipótesis básicas, ecuaciones que representan al flujo gradualmente variado, análisis cualitativo de los diferentes perfiles del agua en flujo gradualmente variado, métodos de cálculo de los perfiles del agua en flujo gradualmente variado. VI.
FLUJO BRUSCAMENTE VARIADO……………………………………………… DO……………………………………………… …………18 ..
8-231
Definición de salto hidráulico, casos en que se presenta y usos prácticos del mismo; características, clasificación, longitud y ubicación del salto hidráulico, ecuación general del salto hidráulico, salto hidráulico ahogado, ondas de flujo en canales. VII.
CURVAS EN CANALES……………………………………………………………………………. CANALES…………………………………………………………………………….2
32-237
Efectos que las curvas generan al flujo en canales y al canal mismo, objetivos del estudio de curvas en canales, sobre elevación del nivel del agua en curvas, perdidas de energía por curvas en canales, etc. Universidad Autónoma de Sinaloa
Página 2
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
BIBLIOGRAFIA……………………….……………………………………………………………………………….238 BLEMAS A RESOLVER……………………………………… RESOLVER……………………………………… ……………………………………….239 APENDICE……………………………………………………………………………………………………….246 PRO
-245
-
Universidad Autónoma de Sinaloa
Página 3
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
El objetivo general de este trabajo es que sirva como apoyo complemento en el proceso enseñanza- aprendizaje de la hidráulica de canales (con flujo permanente), en las carreras de Ingeniería Civil, Agronomía, Geodesia, Irrigación, Topografía y otras. La elaboración del mismo, fue concebida partiendo de que el estudiante debe tener acceso a los conceptos, definiciones, criterios, ecuaciones y procedimientos de la manera más expedita posible, evitando un desgaste innecesario al tratar de obtener esta misma información en las fuentes originales. Siguiendo este mismo criterio, se presentan como información ejemplos resueltos que muestran la aplicación de los conceptos por temas. Por otra parte el estudiante, como profesionista enfrentara enfrentara problemas que no son exclusivos de un tema sino que requerirán de la aplicación de los conceptos de distintos temas. Por ello los problemas a resolver que se incluyen, no están propuestos al final de cada capitulo, sino al final del libro y estos involucran uno, dos o mas temas en su solución. Finalmente es mi deseo hacer patente mi agradecimiento al hoy Ingeniero Ariel E. Moreno Picos por haber participado en este trabajo en la ardua labor de edición, dibujos, así como revisar la mayor parte de las operaciones numéricas. También agradezco la colaboración de los estudiantes Russel Rodríguez Ramiro y Romo Medina José Manuel, por haber elaborado los dibujos de los temas flujo bruscamente variado y flujo gradualmente variado, respectivamente. Por este mismo conducto agradezco de antemano todas aquellas observaciones, señalamientos, correcciones correcciones y propuestas nuevas que se hagan a este trabajo para que en ediciones posteriores pueda ser sustancialmente mejorado.
Culiacán, Sinaloa., junio 22 de 1988
M. EN I. RODOLFO RUIZ CORTES
Universidad Autónoma de Sinaloa
Página 4
Manual de Hidráulica de Canales
I.
Facultad de Ingeniería Civil
ASPECTOS GENERALES
¿Qué entiende por Hidráulica?
“ “hidor” es agua y “aulos” conducción.
”
Resp. El significado etimológico de hidráulica es conducción conducción de agua , dado que del griego se tiene que El significado actual puede resumirse como: Hidráulica es una ciencia (semi empírica) que estudia el comportamiento del agua y otros líquidos ya sea en reposo o en movimiento. Presente un esquema donde se vean las subdivisiones de la Hidráulica: Resp. General ó Teórico
Hidráulica
Aplicada
Hidrostática Hidrodinámico
Hidráulica Fluvial (ríos y canales de navegación, estuarios, etc. Hidráulica Marítima (puertos, oleaje, etc.) Hidráulica Urbana (Sistema de abastecimiento de agua potable, de remoción de aguas negras, de remoción de aguas pluviales. Hidráulica Agrícola (Irrigación, drenaje, etc.) Hidrometría (Técnica de medición, instalación de estructuras medidoras). Hidráulica de Fenómenos Transitorios.
Defina conductos hidráulicos. Resp. Son todas las paredes que limitan y dirigen el movimiento de un líquido, por ejemplo: tuberías, placas, cauces naturales, canales, etc. Defina que es un canal. Resp. Es un conducto abierto o cerrado en el cual el líquido que fluye presenta una superficie libre sujeta a la presión atmosférica.
Universidad Autónoma de Sinaloa
Página 5
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Ejemplos:
Clasifique los diferentes flujos en canales en relación con: (i) el tiempo, (ii) su comportamiento en el espacio, (iii) la forma como se mueve en el espacio, (iv) los efectos viscosos, (v9 el efecto de la gravedad, (vi) la rugosidad de las paredes y el espesor de la subcapa laminar y (vii) su vorticidad. Resp. Los diferentes flujos en canales se clasifican en relación con:
i) EL TIEMPO: Permanente o estable;
0
No permanente o transitorio;
Universidad Autónoma de Sinaloa
[t=tiempo].
0 Página 6
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
ii) SU COMPORTAMIENTO EN EL ESPACIO:
0 0
Uniforme;
(v = velocidad media; x = en la dirección del flujo)
No uniforme o variado;
iii) LA FORMA COMO SE MUEVE EN EL ESPACIO: Las características del flujo varían en: Unidimensional; una sola dirección o coordenada. Bidimensional; dos direcciones en un plano. Tridimensional; tres direcciones en el espacio.
iv) EL EFECTO DE GRAVEDAD:
Supercritico; Critico;
> 1
=1
Subcritico;
donde
< 1
= nº de Froude =
v gD
v) LOS EFECTOS VISCOSOS: Laminar;
ℝ ℝ onde ℝ ;ℝ < 500
De transición; 500 < Turbulento
<2000 d
= nº de Reynolds =
> 2000
δ
vi) LA RUGOSIDAD (KS) DE LAS PAREDES Y EL ESPESOR ( 0) DE LA SUBCAPA LAMINAR:
En pared hidráulicamente lisa; δ pared hidráulicamente rugosa; δ 0 >
En
vii) SU VORTICIDAD: Rotacional; rot
KS 0 <
KS
v 0 existe gradiente transversal de velocidades
Universidad Autónoma de Sinaloa
Página 7
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Irrotacional; rot v = 0
Haga una clasificación de los canales de acuerdo a: (a) su origen, (b) la geometría del canal, (c) la geometría de la sección transversal, (d) su finalidad o empleo. Resp. Clasificación de los canales de acuerdo a:
a)
SU ORIGEN:
Naturales
Artificiales
b)
Ríos Arroyos Estuarios de mar
Canales Drenes
LA GEOMETRIA DEL CANAL: Prismáticos (sección transversal y pendiente constantes). No prismáticos.
c)
LA GEOMETRIA DE LA SECCION TRANSVERSAL:
Abiertos
Rectangular Triangular Trapecial Semicircular Parabólico Etc.
Cerrados
Circular De herradura Portal Rectangular
Universidad Autónoma de Sinaloa
Página 8
Manual de Hidráulica de Canales
d)
Facultad de Ingeniería Civil
LA FINALIDAD O FUNCIONAMIENTO: De conducción (a la zona de riego). De riego (en al zona de riego). De navegación. De potencia (en hidroeléctricas). De descarga (en vertedores). De drenaje (de aguas pluviales, excedentes de riego y subterránea). De drenaje (de aguas negras o pluviales). De desvió (para construcción de presas). De experimentación (modelos).
Escriba la nomenclatura más común que se emplea en un canal abierto de sección trapecial. Resp. Sección transversal: BóT
c
c
b.1
1
d
θ
t b
Tramo longitudinal: H. de E.
v
2
S
2 g
SL
hp v
Y
2
2 g
Q S0 z
L
Y
z
P.H.R.
Universidad Autónoma de Sinaloa
Página 9
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
NOMENCLATURA Y = tirante vertical del flujo. d = tirante perpendicular (a S 0) del flujo. b = plantilla (o ancho del fondo). B ó T = ancho de la superficie. b.1 = bordo libre (o libre bordo).
Θ ó α ó φ ángulo de inclinación de las paredes laterales del canal talud. talud; t ctg θ.
t ó z ó k ó m = cotangente del ángulo de inclinación de las paredes laterales del canal c = ancho de la corona del bordo lateral.
A = área hidráulica, es el área de la sección ocupada por el flujo y normal a este. P = perímetro mojado, es el perímetro del área hidráulica en contacto con la superficie del canal. R = radio hidráulico; R =
D = tirante hidráulico o tirante medio (D = )
Q = gasto o caudal que escurre en el canal. v = velocidad media de la sección.
α coeficiente de coriolis; α 1. α
v
2
2g
= carga de la velocidad en la sección.
H. de E. = horizonte de energía. P.H.R. = plano horizontal de referencia. z = cota topográfica del fondo de la sección del flujo. hp = perdidas de energía del flujo a lo largo del canal. S = pendiente (o gradiente) de energía; S = hp/L L = longitud del tramo del canal. SL = pendiente de la superficie libre del agua. S0 = pendiente longitudinal del fondo del canal;S
0
Universidad Autónoma de Sinaloa
=
Δz
L
Página 10
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Realice un cuadro con los elementos geométricos de las secciones transversales de canales más utilizadas. Resp.
Área Hidráulica (A)
Sección
Rectangular bY
Y
Triangular 2
tY
Y t
Trapecial bY+tY² Y
1 t
b Circular
D
β
(R = )
Y2Y 2 1 2 1 2 1 2 1 angcos12YD
Ancho de S. L. A. (B)
Tirante hidráulico
b
Y
2tY
b+2tY
(D = )
2 Yt Y 2tY
Nota: Ángulo β en radianes es
Y
D4 sencos Para
Herradura
D
Radio hidráulico
b+2Y
b
1
Perímetro mojado (P)
Para
Dsencos 4
0 0.0885 ; cos1 /
D B2 DYD Y
Dβ
2Dβ0
D sen β
Dsencos 4sen
D 2B2 DYD / 2 Y20Y D B2DYD / 2 Y20Y
0.0885 ; angsen0.5 /
D1 A 8sin 2 4sin B AP 2Y2 DY AB
01.4366B AP 2 1 DsenD 1 ; angcos 1/ 1 (1.6962-2β1) D
Para
0.8Y293 4 B 3.2672D D 0.5 2DD Universidad Autónoma de Sinaloa
Página 11
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Presente las diferentes formulas que hay para estimar la velocidad media sobre una línea vertical de la sección transversal de un flujo. Resp. Se mide con un molinete que Price o un tubo de Pitot, las velocidades del flujo sobre una vertical a las profundidades requeridas por cada ecuación:
V áreadABCA V12 V. V. VV. V 0.95V
V= ¼ (V0.2d + 2V0.6d + V0.3d )
¿Como se puede determinar el gasto Q que ocurre por una sección de canal? Resp. Se puede determinar de la siguiente manera:
Se divide la sección transversal del canal en fajas verticales, trazando sucesivas líneas verticales. Se obtiene las velocidades medidas en cada vertical. Se promedian las velocidades medidas de dos verticales y se multiplican por el área de las faja entre las verticales lo que viene dado el gasto que ocurre por esa faja. Se suman los gastos que ocurren por cada faja y se obtiene el gasto que escurre por la sección del canal. Esto es:
QA OV2 A V V2 A V 2 V A 0V2 Universidad Autónoma de Sinaloa
Página 12
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
¿Qué son y para que se emplean los coeficientes. α De energía o de coriolis y de α 2 , es un f a c t o r de c o r e c i ó n de l a momento o Boussinesq? Resp.
a) El coeficiente de energía o de Coriolis
carga de velocidad de un flujo
por lo echo de utilizar una velocidad V (que es la
Vmedida), como representativa de la velocidad del flujo no obstante que la distribución de velocidades es no uniforme en la sección de un canal.
El c o ef i c i e nt e de moment o o Bous s i n es q , es un f a c t o r de c o r e c i ó n del “momento” de un fluido PVQ por el hecho de utilizar la velocidad V que es la
Vmedida), como representativa de la velocidad del flujo no obstante que la distribución de velocidades es no uniforme en la sección de un canal.
Escria las ecuaciones para otener los coeficientes α y en la sec ión de un flujo en un canal. Resp. a) Forma general.
∫ ∫ V dA VA ∑ ∑ 1 3e 2 ; 1 ; VV1 1 ; 1 3 ; VV1 ;
b) considerando áreas entre isovelas en la sección del flujo. ;
c) Considerando una distribución logarítmica de velocidad.
d) Considerando una distribución lineal de velocidad (Rehbock).
Donde: v = velocidad del flujo que pasa por un referencial del área hidráulica dA V= velocidad medial del flujo (V=Q/A) i= arrea dentro de dos isovelas (curvas de igual velocidad) adyacentes.
ΔA
Universidad Autónoma de Sinaloa
Página 13
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Vmax= velocidad máxima del flujo. Vi´=velocidad promedio entre isovelas adyacentes. A= área hidráulica del flujo.
Deduzca la ecuación de los coeficientes de (a) coriolis o de energía, (b) Boussinesq o de momento. Resp.
cvelonsociiddéradesdele unfludijofequerencpasialadeporáre“adA”dA, entdeloárnceeashiladenerráuligcíaatcoitnaétl. Siicaldelamamos “ v ” a l a f l u j o que pas a vv ∫ A v dA. α v vA α v A ∑ ∫ / v dA v A El “momento” o cantidad de movimiento del agua que pasa por un difere/nc ialvdel dAár.ea / v dA. / v ∫ / v dA /v A ∫ ∑
a)
por dA. por unidad de peso es y el peso por unidad de tiempo de este flujo será: será:
dA. Por lo que la energía cinética del flujo por unidad de tiempo dA). Considerando el área hidráulica total, la energía cinética es igual a Ahora, tomado el área hidráulica total A y la velocidad madia V, la
energía cinética por unidad de peso para el area total es (considerado el coeficiente de corrección) por lo que la energía cinética total es . Igualando ambas energías se tiene:
b)
hidráulica dA por unidad de tiempo es (masa x velocidad ÷ tiempo) momento o cantidad de movimiento total es A
El
El momento corregido
para el área total. Considerando su velocidad media V resulta ser Igualando ambas expresiones se tiene:
(A).
¿Cómo es la distribución de presiones es una vertical de la sección transversal de un canal con al alindamiento recto?
Universidad Autónoma de Sinaloa
Página 14
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Resp. Los canales de pendientes pequeñas (So <0.1) con flujos sin componentes de aceleración en el plano transversal al mismo (es decir, sin curvatura sustancial, ni
divergencia, ni convergencia de las líneas de cor ientes esto es con “flujo paralelo”, se
rigen por la ley hidropática de distribución de presiones. En general los canales con flujos uniforme o gradualmente variados, es tan poco el efecto de las componentes de aceleración en el plano transversal al flujo, que para fines prácticos se aplica también la ley hidrostática de distribución de presiones de presiones (siempre y cuando So<0.1).
¿De que manera es necesario corregir la carga de presión cuando se tiene flujo en canales con gran pendientes (So>0.1)? Resp.
d = tirante normal a la pendiente del fondo y = tirante vertical
P d cos θ ó P y cosθ , Pues dy cosθ ¿De que manera es necesario corregir la carga de presión cuando se tiene flujo curvilíneo vertical en canales de gran pendiente (So>0.1)? Resp.
d cos / cos / d cos // cos / Para:
Caso I
Caso II
Universidad Autónoma de Sinaloa
Página 15
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Caso II
r= radio de curvatura del fondo = Angulo por la tangente al punto con la horizontal ө
v= velocidad media del flujo
Determine el efecto de la pendiente del canal sobre la distribución de presiones. Resp. Considerando un canal recto inclinado un ángulo ө con respecto a la horizontal y con ancho unitario,
El peso del elemento rayado sobre el punto A es igual a:
dwd dw dv d 1 dLdL Y coscos θ dL dw cos θ Y cosθ dL P
El peso de elemento rayado proyectado normal al fondo del canal es:
La presión generada por este peso sobre el fondo del canal es:
Universidad Autónoma de Sinaloa
Página 16
Manual de Hidráulica de Canales
Ycosθ
Facultad de Ingeniería Civil
carga piezometrica en A.
no “diferirá” aprecialemente de la unidad. Por lo que es co V V H Z Ycos θ 2g ó H Z d cosθ osθ 2g Calcule los coeficientes de energía α y momento de la sección transversal que se Y puesto que d = y cos, podemos escribir
= d cos ө
Si el ángulo es pequeño ( ө<6°), el coeficiente de corrección por la pendiente del canal (cos²ө nveniente usar solo la corrección en canales de gran pendiente, esto es ө>6° o So>= 0.1, por lo que la ecuación de energía para una sección dada quedara:
muestra en la figura. a) utilizando las ecuaciones generales (simplificando por O' Brien y Jonson). Solución:
Donde:
∑ ∫
Coeficiente de Coriolis; y
Universidad Autónoma de Sinaloa
∑ ∫
Página 17
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Tablas de cálculos: Franja Isovelas i Envolventes (m/s) 1 1.60 2 1.60-1.50 3 1.50-1.35 4 1.35-1.15 5 1.15-0.00
Velocidad media ui (m/s) 1.600 1.550 1.425 1.250 0.575
∑ ∑ .. 1.14
A=4.062m²
SUMAS SUMAS
Entonces: Velocidad media = V =
A
Área i (m²) 0.097 0.484 0.930 1.385 1.166
u A u A uAA 0.248 1.163 1.888 2.164 0.386
0.397 1.802 2.691 2.705 0.222
0.155 0.750 1.325 1.731 0.670
3.849
7.817
4.631
v=
Además:
.... 1.299 coeficientente de energia o de coriolis .... 1.108 coeficiente de momentnto o d Boussinesnesq .:
.:
Cuestiones para discutir. Aspectos generales del flujo en canales se sabe que el cuerpo c uerpo humano flota con más facilidad en agua salada que en agua dulce. ¿Se nada más aprisa?
En un canal de sección y pendiente determinada, ¿Que fluye mas aprisa, el mercurio o el agua? ¿Por qué?
¿Por que es necesario que el espacio situado por debajo de la lamina vertiente de un vector este a la presión atmosférica si va a utilizar este para medir gastos?
Es la viscosidad dinámica o absoluta (µ) del agua aproximadamente setenta veces mayor que la del aire a temperatura normal ¿La viscosidad cinemática del agua es mayor o menor que la del aire?
Universidad Autónoma de Sinaloa
Página 18
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
¿Por qué un cuerpo de arena conservara su forma cuando esta húmeda y se desmorona al estar completamente mojada o seca?
Cite ejemplos de flujo laminar a superficies libres.
¿Cuáles son las hipótesis simplificadoras del método unidimensional de análisis?
Los perfiles de los vertederos en presas, se proyectan en general, de acuerdo con la superficie inferior de una lamina vertiente en similares condiciones de carga (altura del agua) y descarga (gasto), para conseguir así presiones atmosféricas en la cresta del vector ¿Como seria la variación de presiones en la cresta vertedora si se sobrepasara la altura del agua para para la cual se proyectó proyectó el vertedor? vertedor?
Universidad Autónoma de Sinaloa
Página 19
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
II.- FLUJO UNIFORME
¿Cuáles son las principales características de un escurrimiento con flujo uniforme? Resp. a) El tirante, el área hidráulica, la velocidad madia u el gasto son constantes a lo largo del canal. b) Las líneas de las pendientes de energía (s), de la pendiente de la superficie libre del a agua (SL) y la pendiente del fondo del canal (So) son todas iguales (s= SL=So).
¿Qué se requiere para que se establezca el flujo uniforme en un canal? Resp. Se requieren que se igualen la fuerza de gravedad que hace posible el escurrimiento y las fuerzas de de fricción que actúa en los contornos de contacto entre el fluido y as paredes del canal.
¿Cuáles son las dos hipótesis en que se basa la deducción de la ecuación de Antoine Chezy?
Resp. La primera hipótesis establece que la fuerza resistente al flujo por unidad de área de contacto del canal ( ) es proporcional al cuadrado de la velocidad (esto es )
La segunda hipótesis establece que la componente efectiva de la fuerza de gravedad de dirección del flujo es igual a la fuerza total de resistencia al mismo.
Presente las expresiones que han sido utilizadas para determinar el valor de coeficiente de Chezy. Resp.
V C√ √ RSRS
EC. Flujo uniforme y permanente en canales.
Tenemos las siguientes expresiones:
Universidad Autónoma de Sinaloa
Página 20
Manual de Hidráulica de Canales
De Darcy-Weisbach (1845-1854) :
De Ganguillet- Kutter (1869):
De Bazin (1897):
De Kutter (1870):
De R.Manning (1890):
De Biel (1907):
De Gauckler- Strickler (1923):
De Forchheimer (1923):
De Mougnie (1915):
De J. Agroskin:
De Powell (1950):
DE Williamson:
Universidad Autónoma de Sinaloa
Facultad de Ingeniería Civil
C . C . / √ C √ C √ √ C C . ,donde f f Darcy C . C R C . C22log 9.5 1.5 C23.2log1.811 C . Página 21
Manual de Hidráulica de Canales
De Kozeny
De Martínez
De Pavloski
De Keulegan (1938):
Facultad de Ingeniería Civil
C20log/ N C17.7 log13.6 C ; z {1.1.35√ nn C18log12.3
En donde: c
=
coeficiente de Chezy (m1/2/seg)
g
=
aceleración de a gravedad (m/ seg 2)
R
=
radio hidráulico (m)
SO
=
pendiente del fondo del canal
KS
=
Rugosidad equivalente de kikuradse
=
altura media de las rugosidades
IR
=
numero de Reynolds
A
=
área hidráulica
d
=
tirantes
B
=
ancho superior
Log
=
Logaritmo decimal
, NC, m, n, f,
, μ, c
=coeficiente de rugosidad, valores propuestos para cada material.
Universidad Autónoma de Sinaloa
Página 22
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
NOTA.- De todas las expresiones presentadas, las mundialmente mas utilizada y estudiada
VC√ R S V RS ¿Qué factores afectan al coeficiente de rugosidad “n” de Manning? en la propuesta por Mannig: siguiente:
por lo tanto la ecuación
toma la forma
y se conoce como formula de Manning.
Resp: Lo afectan: La rugosidad de las superficies en contacto con el flujo, la vegetación, las irregularidades en el perímetro mojado, las variaciones en la sección transversal, el alineamiento del canal, depósitos de materiales suspensión, socavaciones en sección, obstrucciones, tamaño y forma de la sección del canal, tirante y velocidad del flujo, material en suspensión y arrastre de fondo.
¿Qué es el factor de transporte K de la sección de un canal? Resp. Es una medida de la capacidad de transporte de la sección del canal, debido a que es directamente proporcional al gasto Q.
QAVA c R S KCAR Q KS KCAR AR KQ√ S El gasto puede expresarse como entonces
el factor de trasporte de la sección es
Si se emplea la formula de Chezy y cuando es la de Manning la que se usara entonces , o bien, en ambos casos
¿Qué es el factor de sección para calculas de flujo unirme?
Resp: Es un parámetro muy sutil para el calculo del flujo uniforme y se expresa como el producto del arrea hidráulica por el radio hidráulico a la dos tercios, esto es
Q RS R sQn , o ien AR Kn pues K SQ
De la ecuación de Manning y gasto se tiene que
Universidad Autónoma de Sinaloa
de donde:
Página 23
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
¿A que se le conoce como exponente hidráulico N para flujo uniforme? Resp. Es un valor característico de la sección del canal bajo la condición de flujo uniforme.
Deido a que el factor de transporte K es una función del tirante del flujo “Y”, puesto que
K = 1 (AR 2/3), se puede asumir que K 2 = c YN donde c es un coeficiente y N es el parámetro llamado exponente hidráulico para flujo uniforme.
Para canales trapeciales y rectangulares el valor de N es:
Y y 12t / 8√ 1 t 10 8 N 3 1ty 3 12√ 1 ty Para otras secciones de canales abiertos el valor de N se puede calcular en la ecuación:
N2 LogLogKY⁄⁄KY
Donde: K1 y K2 son los factores de transporte de la sección, para dos tirantes Y 1 Y y2 de la sección dada.
Presente los criterios para calcular la rugosidad a lo largo del perímetro mojado es diferente en distintos tramos del perímetro mojado de la sección (considérese el coeficiente n de Manning).
e rugosidad “c,…ompues t a ” , .n
Resp. Se trata de determinar una n Manning a esos canales d que tenga el mismo efecto que los coeficientes de rugosidad parciales n 1, n2 existentes en el perímetro mojado en estudio.
Universidad Autónoma de Sinaloa
N
Página 24
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
CRITERIO DE ROBERT E. HORTON (1933) Y A. EINSTEIN (1934)
… V ……
Ellos partieron de suponer que la velocidad sea la misma en todos los elementos del área, es decir que V 1 = V2 n = V, como V = 1 R 2/3 S1/2,Entonces:
=
Si AI y Pi representan el área hidráulica y el perímetro mojado respectivamente, correspondiente al factor n i; y A, P los correspondientes a la sección transversal total, entonces:
A A PnP n y como A A ,tenemos A A ⁄ A Pn Pn / Pn P n ⁄ , de donde
⁄ ∑ / n
Rugosidad equivalente según Horton y Einstein.
CRITERIO DE G.K. LOTTER (1933) Este investigador ruso Asume en su criterio que el gasto total del flujo es igual a la suma de gastos de las áreas subdivididas correspondientes a cada rugosidad n i, es decir Q = Q1 + Q2 N y como Q = AR 2/3 S ½, entonces:
…Q
………. ,o ien ∑ +
Y como A = P R, la expresión anterior se puede escribir como:
Universidad Autónoma de Sinaloa
Página 25
Manual de Hidráulica de Canales
∑
, de donde
Facultad de Ingeniería Civil
n ∑
rugosidad equivalente según Lotter.
CRITERIO DE N.N. PAVLOVSKI (1931), L. MUHLHOFER (1933). H.A. EINSTEINS Y R. B. BANK (1950) Parten de suponer que la fuerza cortante total resistente al flujo es igual a la suma de las fuerzas cortantes resistentes desarrolladas en las áreas subdivididas correspondientes a
∑ P n n P
cada rugosidad existente, además suponen que proponen que:
NOTA:
. Mediante estas suposiciones,
De los tres criterios presentados, según ponencia presentada y analizada en el X Congreso Latinoamericano de Hidráulica (1982), el criterio mas apropiado es el de Horton y Einstein. Esto es que:
. ∑ P n n P ¿Que presiones se utilizan para calcular los coeficientes α y en canales de sec ión compuesta? Resp.
El coeficiente de Coriolis se calcula con: α. A∑ K A ∑K- Universidad Autónoma de Sinaloa
Página 26
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
El coeficiente de Boussinesq se calcula con: A∑ K ∑K-A Donde: A = Área hidráulica de toda la sección compuesta. AI =Área hidráulica de la subsecció
n “i”
KI = Factor de transporte de la subsección
α
“i” K ⁄ “i” “i”
i
= coeficiente de Cariolis para la subsección
i
= Coeficiente de Boussinnessq para la subsección
Cuestiones a discutir. Flujo uniforme Explique porque en un flujo uniforme no puede ocurrir en un canal: a) Sin fricción
b) horizontal c) de pendiente adversa.
¿Qué se entiende por canal a) largo, b) corto? En el flujo a través de canales abiertos o cerrados, la línea de alturas perizometricas es: a) ¿siempre paralela a la línea de alturas totales? ¿Por qué? b) ¿puede elevarse? ¿Puede elevarse? ¿Cuándo? c) ¿coincide siempre con la superficie libre del agua? ¿Por qué?
¿Para que se emplea el número de Vadernikov?
rugosidad “n” de Manning?
¿Cual es el procedimiento propuesto por Woody L. Cowan para estimar el coeficiente de
¿De donde viene el factor 1.486 = 1.49 que se utiliza en la ecuación de Manning, cuando se van a usar pies y segundos como unidades?
Universidad Autónoma de Sinaloa
Página 27
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
¿Tiene unidades el coeficiente n de Manning? Explique porque. ¿Es posible que en un canal de sección circular, a partir de cierto valor del tirante (Y= 0.938 D) a medida que este crece el gasto disminuya? ¿Por qué?
¿A que se debe que en los canales de sección compuesta es más correcto calcular el canal considerando cada subsección como un canal, que calcular el canal considerando una sola sección (la total)?
¿Por qué el flujo excesivamente rápido (V= 6.00 m/seg.) no puede ser uniforme?
Deduzca la ecuación general para el flujo uniforme y permanente en un canal abierto, deducida por Antoine Chezy en 1775.
aa y
Solución.- considérese el flujo uniforme de agua entre dos secciones transversales ( ) de un canal con sección y pendiente constantes:
∑
Aplicando la 2 a Ley de Newton = m , en la dirección x, dado que el flujo es permanente (aceleración = 0.), entonces queda:
∑F x
=0
Universidad Autónoma de Sinaloa
Página 28
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
. d A . d A Wsin θ Px0 , Wsinθ Px0 Wsi n θPx Ax AxsinθPx AP si n θ ,haciendo AP Rradio hidráulico R sin θ sintan ; Fuerza de presión (en
)- fuerza de presión (en
) + fuerza de peso x - Fza cortante = 0
Principio básico de flujo uniforme (Brahms en 1754)
Donde
entonces
Despejando
Donde, para ángulos pequeños de tenemos pendiente longitudinal del fondo que es igual a la pendiente de energía (s) cuando el flujo es uniforme y permanente
Entonces:
RS …
(1)
De aquí, A. Chezy propuso su conocida hipótesis que establece que el esfuerzo cortante resistente (TO ) es proporcional al cuadrado de la velocidad media (V). Esto es
α
TO v2, o bien TO = KV2 ..(2) Donde K = constante de proporcionalidad Igualando las ecuaciones 1 y 2
RS KV
Despejando la velocidad
Universidad Autónoma de Sinaloa
V RS Página 29
Manual de Hidráulica de Canales
El factor
Facultad de Ingeniería Civil
es conocido como “c”, coeficiente de Chezy por lo que finalmente tenemos: VC RS Ec. De Chezy
Donde:
V = Velocidad media R = radio hidráulico = (área hidráulica) ÷ (perímetro mojado) SO =pendiente longitudinal del fondo del canal o de la energía c = coeficiente de Chezy
“n” camia de las 0.030 en el invierno hasta 0.050 en verano. Para un gasto Q ,
Debido al crecimiento de la vegetación en la cuneta de un canal trapecial, el coeficiente de Manning cuyo tirante en invierno es de 1.20 m. determina su correspondiente tirante de verano, si la plantilla es de 3.00 m de ancho y los taludes son 2:1
Solución Datos: ni = 0.030 nv = 0.050 Qv = Qi di = 1.20 m dV = ?
Sabemos que Gasto en verano = gasto en invierno.
Universidad Autónoma de Sinaloa
Página 30
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Con Manning
R S R S R R , d onde
, la pendiente no cambia,
=
Ayty ; R √
Sustituyendo datos
2 1 . 2 0 3.001.20.0030 21.20 33..000021.20 1.20√1 2 3 dv20.050dv 32dv√ 3 dv21dv2
182.169 . 9.108 Resolviendo la ecuación por prueba y error se tiene que para: dv = 1.547 m.
Se satisface la igualdad. Determine el tirante normal para una sección trapecial si escurren 20 m 3/seg y se sabe que n = 0.025 y SO =0.0004, Además Datos: b= 5.00 m Q = 20.00 m 3/seg t = 2:1 SO =0.0004 n= 0.025 d= ?
Universidad Autónoma de Sinaloa
Página 31
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Solución De Manning y gasto tenemos que:
Q RS , AR . QSn 20.0.0000040.025 SQn 25.00 . 2 1)
Donde
Además para sección trapecial
Adtd 5d2d A5d2d P2d 1t 52d1 2 P54.472 d R AP R 54.5d2d472d Sustituyendo datos en la ecuación 1
5d2d 25.00 5d2d - 54.472 d
, o lo que es lo mismo ; 25.00AR
Expresión que habrá de resolver aproximaciones sucesivas (prueba y error)
La tabla de cálculo siguiente es recomendable:
d 2.00 2.50 2.17
A 18.00 25.00 20.26
P 13.944 16.180 14.704
R 1.291 1.545 1.378
AR2/3 21.34 33.11 25.10
Por lo Tanto el tirante normal es d= 2.17 m
Universidad Autónoma de Sinaloa
Página 32
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Un canal de prueba rectangular tiene un ancho de0.50, m, pendiente de 0.0011. Cuando el fondo del canal y las paredes verticales se hacen lisas con cemento pulido, el tirante normal medido del flujo es de 0.35 m, para un gasto de 0.15 m 3/ seg. El mismo canal se hizo áspero cementando granos de arena y así el tirante normal medido fue de 0.55 m para un gasto de 0,20 m 3/seg. Determinar: a) El gasto para un tirante es de 0.35 m si el fondo fuera rugoso y las paredes verticales lisas. b) El tirante normal para un gasto es de 0.30 m 3/seg si el canal tiene fondo liso y las paredes verticales rugosas.
Solución: a)
Q = ?, para Yn = 0.35 m con fondo rugoso y paredes verticales lisas .
Calculo del coeficiente de rugosidad para el cemento pulido (n j). De Manning y Gasto:
Q RS
Donde A=by=(0.50)(0.35)=0.175 m 2 o R=b+2y=0.50+2(0.35)=1.20 m.
0.15 .
R .. n .. 0.1460.0011 R=0.146 m.
(0.145)2/3 (0.0011)1/
n lisa = 0.0107
Calculo del coeficiente de rugosidad para superficie áspera (con granos de arena) (n r).
De Manning y Gasto:
Q RS
Universidad Autónoma de Sinaloa
Página 33
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Donde:
A=by=(0.50)(0.55)=0.275 m 2 ó
R .. 0.172 m.
P=b+2y=0.50+2(0.55)=1.60 m.
0.20 . 0.1720.0011 . . . . . ∑ P n P n P n 2 0 . 3 5 0 . 1 07 0 . 5 0 . 0 141 n P P P 20.350.50 n rugosa=0.0141
Calculo de la rugosidad equivalente (n e) por el criterio de Horton y Einstein.
ne = 0.0122
Calculo del gasto para un tirante de 0.35 m en el canal de fondo liso y paredes rugosas
A 0 . 5 0 0 . 3 5 0 . 5 0 0 . 3 5 Q n RS 0.0122 0.5020.35 0.0011 Q0.132 ms b)
Yn =? para Q=0.30 m 3/seg, canal con fondo liso y paredes rugosas.
De Manning y Gasto:
A AR Q n R S n SQ 0.00.01130 9.045…1
Se resuelve por tanteos: se propone Y n , se calcula la rugosidad equivalente (n e), el área hidráulica (A), el perímetro mojado (P) y el radio hidráulico (R) para el valor propuesto.
Como: A=by=0.5 y; P=b+2y=0.5+2y; R= =0.5 y/(0.5+2y);
Universidad Autónoma de Sinaloa
Página 34
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Del criterio de Horton y Einstein:
. . . . . ∑ P n n 2yn 0 . 5 0 . 0 107 2y 0 . 0 141 n P 2y 0.52y
5 .53100.33.52486 10
Sustituyendo las expresiones anteriores en la ecuación (1)
0. 5 0y 0.50y0.52y 9.045 5.534 x 100.5 x2y33.48 x10 y y 5.534 x 10 x 33.486 x 10y 28.716 Resolviendo por tanteos resulta que y=0.736 m es el tirante normal para un gasto de 0.30 m3/seg si el canal es de fondo liso y paredes verticales rugosas.
Calcule el gasto que puede escurrir a través del canal y su cauce de alivio, el flujo es permanente y uniforme, para una pendiente S O =0.0008.
Otros datos: Todos los taludes son 1.5:1 Además n1=0.020; n2=0.030 n3 =0.040
Universidad Autónoma de Sinaloa
Página 35
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Solución: Calcularemos por separado los gastos que conducen el canal y su cauce de alivio, además determinaremos una rugosidad equivalente para el canal mediante el criterio de Horton y Einstein. Bueno, usaremos Manning y Gastos:
1.-Gasto por canal
Q An RS
A=
=(25)(2.50)+1.5 (2.5) 2 - (1.50)(1.00)
A = 71.125 m 2
P252.5 11.5/1.5 11.5/ ;P32.211 m A 71. 1 25m R P R 32.211m R2.208m . n ∑PPn . . . 2 . 5 1 1. 5 0 . 0 20 1 . 5 1 1. 5 0 . 0 20 2 5 0 . 3 0 ( √ ) ( √ ) n 32.211 n 0.0279 Calculo de la rugosidad equivalente con el criterio de Horton y Einstein.
Con Manning, calculamos el gasto que pasa por el canal:
Q An RS ; Q71.0.01279252.2080.0008 Universidad Autónoma de Sinaloa
Página 36
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Q=122.263 m 3/seg
2.- Gasto en el cauce de alivio
A=(200)(1.00)+ (1.50)(1.00)
A = 200.75 m 2
P2001.00 11.5/ P201.803 m R R .. R= 0.995 m.
Donde n = 0.040
Con Manning, calculamos el gasto que pasa por el cauce de alivio
Q An RS Q200.0.040750.995⁄0.0008 Q141.478mseg Obviamente, el gasto total que circulara en la suma de los gastos obtenidos, esto es: Q total = Q canal + Q cauce
Q total = 122.63 + 141.478 Q total = 263.741m 3/ seg
Por un tubo de drenaje fluyen uniformemente un gasto de 2.60 m 3/seg. Si el tubo es de cemento pulido liso (n = 0.011), con un diámetro de 2.00 m y esta apoyado sobre una pendiente de 0.00025, determine 4el tirante y la velocidad dsel flujo: a) Mediante ecuaciones b) Mediante graficas de Chow c) Mediante la relación Q/Q0 .
Universidad Autónoma de Sinaloa
Página 37
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Solución: a) Mediante ecuaciones
Arccos1 / Asincos PD en rad. Donde
(1) (2)
(3),
Haremos tanteos proponiendo tirantes hasta que el gasto calculado y el gasto de diseño sean iguales.
1er tanteo. Con y = 1.50 m
arc cos1 212.50 ; 120 , PERO 1rad57.2967 2.094 rad 2 A 2.094sin120cos120- 4 ; A2.527 m
Con (1)
Con (2)
Con (3) P = (2) (2.094) ; P = 4.188 m. Ahora
R
R .. ; R0.603 m
Universidad Autónoma de Sinaloa
Página 38
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Calculando el gasto
Q RS ; Q../0.603⁄0.00025
Q calc =2.60m3 /seg
Como Q cal c =Q diseño, el tirante propuesto es el verdadero Y = 1.50 m Ahora, calculemos la velocidad:
V QA V 2.2.60m527mseg V1.0289mseg
b) Mediante la grafica de Chow Obtención del factor de forma
⁄ ... ZD⁄ ARD 0.285 ARD SQD De la grafica
yD 0.75 y0.75 D y0.752m y1.50 m.
c)Mediante la relación Q/QO Calculo del gasto a conducto lleno (Q O)
D A 4 4 2
Universidad Autónoma de Sinaloa
A 3.141 m Página 39
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
A D R 0.5 m R P D4 D4 24 Q An R S 3.0.1041110.5⁄0.00025 Q 2.845 mseg QQ 2.2.86450 QQ 0.914 QQ 0.914 0.75 Ahora
De la grafica con:
y=0.75D
y=0.75(2m)
y=1.50m
Utilizando la formula de Manning, determine el valor del tirante para le cual la velocidad media es máxima en un canal de sección circular. Solución.- como la ecuación de Manning establece que V= 1 R 2/3 SO1/2, entonces para que la velocidad sea máxima dadas n y S O, se requiere que R 2/3 sea máximo, lo que puede determinarse mediante la derivada de R2/3 formula a emplear) igualada a cero.
respecto a la variale 0 o según sea la R1 sincos D4 . 1 ; o ien R1 siθnθ D4 …2 Veamos, tenemos que:
Rθ 23 R Rθ ,con 2 ; θ R 23 R θ 1 siθnθ D4 θ R 23 R θ cosθsiθ nθ D4 ,pero θ R 0 ,entonces 23 R θ cosθsiθ n θ D4 0 ; θ cosθθs inθ 0 , Empleando la ecuación (2), haciendo
e igualando a cero :
θcosθsinθ ; θcosθsinθ θ cosθsinθ Universidad Autónoma de Sinaloa
Página 40
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Donde
sicosθnθ tg θ θtanθ θ θ rad
Haremos tanteos con valores para ϴ hasta que la igualdad se cumpla
θ
1er. Tanteo =257.454 º, donde 1 rad=57.2967 0 =4.4934, ahora tg =tg257.454º=4.4936 lo que equivale a d=0.8128D. En un canal de laboratorio, sección rectangular de 40 cm de ancho , escurre con flujo uniforme un gasto de 92. 45 Lt/seg . si al tirante del flujo es de 30 cm determine el factor
“f” de razonamiento , el valor “n” de Maninng y la altura aproximada de las proyecciones Ad0.400.300.12m P2d0. 4 02 0 . 3 01. 0 0 m R AP 0.1.102m0m 0.12 m rugosas , si
S0 = 0.001
Datos b = 40cm =0.40 m d =30 cm =0.30 m Q = 92.45 Lts/seg=0.09245 m 3/seg S0 = 0.001
Solución:
Con la ecuación del gasto
QAV V QA sust. datos V 0.092450.12mmseg 0.770 mseg Vc RS c RVS , sust.datos c 0.10.27700.001 c70.33 como c 8fq , de analogia con la ecuacion de Darcy Con la ecuación de Chezy:
Universidad Autónoma de Sinaloa
Página 41
Manual de Hidráulica de Canales
Con Weisbach se tiene que:
Facultad de Ingeniería Civil
factor de rozamiento
f 8gC , sust. datos f 780.93.83 f0.0158
De la ecuación de Manning para el coeficiente de Chezy
R R 0 . 1 2 c n , n c ,sust.datos n 70.33 n0.00999 coeficiente de rugosidad de Manning. n0.01195 , 0.01195n / , sust. datos: .. , 0.3413mm altura de rugosidad
La altura aproximada de las proyecciones rugosas es, con la ecuación de William son:
Deduzca la ecuación que representa a la distribución de velocidades en un canal abierto con flujo laminar, uniforme y permanente (ancho unitario). Solución.
Considérese un elemento del fluido de un canal, cuya parte superior coincida con la superficie libre del líquido, como se muestra: Donde
FpFp …1 F .x1 Fx…2 W sin xd ysin Universidad Autónoma de Sinaloa
Página 42
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
ma F ∑F ma0, Fp W sin Fp F0 , pero Fp Fp, entonces FW sin …4 Aplicando la 2a. Ley de Newton (
se tiene que:
puesto que en el flujo uniforme y permanente a=0
Sustituyendo (2) y (3) en (4)
x dv xd y- sin d y- sin α , para flujo laminar tenemos que μ dy , entonces: μ dvdy d y- sinα dv μ d y sin α . dy , integrando d y dv μ sin . d yd y v μ sinα 2 c c μ sinαd2.Además,para α pequeos sinα tg αS .Entonces, v 2μS y2 dy ó v gS2v y2dy v 39 x 10 ; 910 Como para y = 0, v = 0, entonces la constante de integración es:
La ecuación queda:
Si sobre una superficie plana con pendiente S O de 0.01 fluye aceite
, y el espesor de la lámina del fluido es de 5mm. ¿Cuál es
la velocidad máxima y el gasto por metro de ancho? ¿Cuánto la velocidad media?
a) Considerando flujo laminar, la ecuación de la distribución de velocidades es:
v y2 dy… 1
Universidad Autónoma de Sinaloa
Página 43
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
0 U d2 dd U U ... U 0.0314mseg⁄ Como la velocidad es máxima para y=d (aplicar
), entonces: , sust. datos
, donde d = espesor del flujo = 5mm
b) Calculo de gasto unitario (por metro de ancho)
q ∫ U dy, con… 1 q ∫ y2 dydy q ∫ y2 dydy q d y
, con los límites de
integración:
q d / q ,
sust. datos
q ...
c) la velocidad media es:
V QA ,pero Qq y Ad , V qd V qd q Pero del (b) encontramos que
Entonces:
V , , V V ... V0.021 mseg Universidad Autónoma de Sinaloa
, sust. datos:
Página 44
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Calculo del número de Reynolds (R) para verificar el tipo de flujo:
R VR Vd 0.39021100.005 R2.69500 Por lo tanto el FLUJO ES LAMINAR.
NOTA:
“Tamién se puede ver que la velocidad media v es 23 de la velocidad máxime Umax, V 23 U esto es:
Obtenga la ecuación de la ley universal de la distribución de velocidades dentro de un flujo permanente y turbulento.
Solución: El esfuerzo cortante total en un flujo turbulento es:
μ dudy l ddyu. ddyu
Donde: 1= longitud de mezclado (longitud que se requiere para que se transmita una propiedad de un flujo);
μ l .
= esfuerzo constante viscoso
= esfuerzo constante turbulento
Hipótesis del Dr. L Prandtl para determinar la distribución universal de velocidades para flujo turbulento:
Universidad Autónoma de Sinaloa
Página 45
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
I Existe una variación lineal de la longitud de mezclado con la distancia a la pared, esto es 1= K.Y
, ,donde RS l, se desprecia μ II El esfuerzo cortante en la zona turbulenta
es constante e igual al de la pared
III El esfuerzo constante que predomina es el turbulento. Esto es:
De acuerdo a lo anterior se puede establecer que: De II:
y lddyu ; RS lddyu RS, sustituyendo lKy , queda RS Kyddyu , y saemos que g RSg Kyddyu ,elevano a la 12⁄ amos miemros gRSKy gRS U velocidad asociada al esfuerzo cortante Entonces
Entonces
), donde
Por lo tanto, nos queda que
U Ky/
du
Integrando
UK dyy du Universidad Autónoma de Sinaloa
UK Ln y cu Página 46
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Prandtl propuso K=0.4 para agua libre de sedimentos. Entonces:
2.5 u Ln Y v c u Y Y, u0 c 2.5 u Ln Y 2.5 u Ln Y 2.2.5 u Ln Y u u 2.5 u Ln YY Ln Y , o lo que es lo mismo
Para
tenemos que
, sustituyendo tenemos:
donde: LnLnA B Ln BA
Entonces, finalmente:
u 2.5 u Ln YY
Que es la ecuación, ley o distribución universal de velocidad de prandtl y von Karman para flujo turbulento, donde:
Y
Altura o ancho de rugosidad de la pared
Ln2.3024 log
Puesto que
, también podemos expresar como:
u5.756 u log YY
Se verifico (posteriormente) experimentalmente que la distribución de velocidades era una distribución logarítmica. Esto es:
Universidad Autónoma de Sinaloa
Página 47
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
A partir de la ley universal de la distribución de velocidades de prandtl y Karman para flujo turbulento, obtenga la ecuación general para la velocidad media en flujo turbulento y su localización. Solución:
Y 2. 5 U Ln Ln / 1 d dY Y ∫ ⁄ u dA 2. 5 U ∫ ∫ Q Y U A ∫ dA ∫ 1 dY ∫LnYY dY 2. 5 U YLnYY LnY Ln Y Y dLnddYLnYd YY dLnY YLnY U A- 2.5UdLnddY
⁄ dLnddLnY d Y dLndY d LndY U2.5U dLnddLnY 2. 5 U d Y d Y d Y 1 Y U2.5U LnLn 1 U2.5U LnLn Considerando que
<< d se puede establecer que: ó bien
Para obtener la distancia para la cual la velocidad del flujo (u) coincide con la velocidad media (U) , se logra haciendo:
u U, esto es 2.5 u Ln YY 2.5 u LnLn eYd Ln /Ln/ , ó ien
Por lo que
Finalmente:
Y
, donde e= base de Log. Log. Naturales e= 2.7183
Entonces:
Y . 0.368 d 0.4d,
Universidad Autónoma de Sinaloa
, la cual se mide del fondo hacia arriba.
Página 48
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Esto es:
Además, la velocidad media también se puede expresar como:
U 5.756 u Log eYd
A partir de la ley o ecuación de distribución universal de velocidades( de prantl y von Karman) para flujo turbulento, obtenga la ley de distribución de velocidades para:
δδKK
a) flujo turbulento hidráulico liso b) flujo turbulento hidráulico rugoso Donde:
δ
= espesor de la subcapa viscosa o laminar
Ks = altura de rugosidad
Solución: a) Para flujo turbulento hidráulicamente liso, mediante análisis dimensional y mediciones se ha encontrado que:
Y U , o ien
Y m U
Sustituyendo en la ecuación de distribución universal de velocidades para flujo turbulento, queda:
U 2.5 ULnLnY⁄Y 2.5 U Lnn mYU 2.2.5 U LnLn UY m1 pero como Ln = 2.3024 Log, entonces
u5.756 u Logog uY m1 u 5.5.756 Log uY 5.756 Logm1 Universidad Autónoma de Sinaloa
Página 49
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
A 5.5.756756 log u u 5.5.756 Log uY A
Llamado
, tenemos entonces que:
De sus expresiones en alcantarilla lisas Nikuradse establece que As = 550, por lo tanto:
u u 5.5.756 Log uY 5.500 A 5.50 5.756756 logog anti log .9.02 9 u u 5.5.756 LoguY Y Y mks mk s don d onde de m p or l o que Y u 5.7456 u Log Y Y 5.576 u Log 30 ksY u u 5.5.756 Log 30 ksY Ahora, como Entonces:
b) para flujo turbulento hidráulicamente rugoso. Para superficies hidráulicas rugosas, depende de la altura de rugosidades, es decir . Entonces:
o lo que es lo mismo
Escriba las ecuaciones de la velocidad media (U) para las secciones del canal más comunes, obtenidas por Keulegan a partir de la distribución universal de velocidades de Prantl y Karman. Solución: SECCION CIRCULAR: - Hidráulicamente liso
U 5.756 u Logog 4.4.05 uR o U3.497 u 5.5.756756 u LogLog uR
Universidad Autónoma de Sinaloa
Página 50
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
U 5.756 u Logog 13.13.ks5 R ó U 6.6.506 u 5.5.756756 u Logog ksR - Hidráulicamente rugoso
SECCION RECTANGULAR ANCHA (R = d ). - Hidráulicamente liso:
U 5.756 u LogLog 3.3.32 uR o U3.0 u 5.756 u LogLog uR U 5.756 u LogLog 11.11.04 ksR o U6.0 u 5.756 uLogLog uR - Hidráulicamente rugoso:
SECCION TRAPECIAL
U 5.756 u Logog 3.3.67 u o U3.25 u 5.5.756756 u LogLog ksR U 5.756 u Logog 12.12.20 ksR o U 6.25 u 5.5.756756 u Logog uR
- Hidráulicamente liso
- Hidráulicamente rugoso
De la ecuación:
U 5.756 u Logog 12.12.20 ksR , donde donde u g R S U5.756 g R S LogLog 12.12.20 ksR U 5.5.756 g Log 12.20 ksR √ √ RSRS Sustituyendo tenemos que:
Entonces el coeficiente de Chezy es:
c 18.02 Log 12.2 ksR
Que es el coeficiente de Chezy secciones trapeciales con flujo turbulento e hidráulicamente rugoso, uniforme y permanente. Universidad Autónoma de Sinaloa
Página 51
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
En un canal ancho con pendiente longitudinal de 0.0008 escurre agua con un tirante de 0.15m sobre una superficie rugosa con ks = 6.5 mm. a)
Obtenga y dibuje la distribución teoriza de la velocidad en la sección del canal.
b)
Obtenga la velocidad media y su ubicación.
Solución Veamos que flujo existe en el canal
R Ud gRS d , donde Rd canal ancho y 1.1410 m⁄seg a 15C Entonces
R 9.801..1514100.0008 0.15 R4512.22 R 70 , Como
δ δ 11.60U11.60 gRS 11. g6RS0 ,sust.datos 1. 1 4 10 δ 11.60 9.80.150.00080.000386 m 0.386mm δ K
Ahora, el espesor de la capa viscosa o subcapa laminar ( ) en flujo turbulento es:
Puesto que
, el flujo es hidráulicamente rugoso.
Por lo anterior, se establece que:
EL FLUJO ES TURBULENTO, HIDRAULICAMENTE RUGOSO
Universidad Autónoma de Sinaloa
Página 52
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Entonces, la ecuación a utilizar para la velocidad media (U) es:
U5.756 ULog / , donde U gRS 9.80.150.00080.034 U5.7560.034Log. U0.197 Log4615.4 Y Entonces:
Graficando la ecuación anterior:
Y (m)
u (m/s)
0.02
0.387
0.04
0.446
0.05
0.481
0.08
0.505
0.10
0.525
0.12
0.540
0.15
0.560
Calculo de velocidad media (U):
U5.756 u log11.04 ,sust.de datos U5.7560.034log11.040.0.010655 , U0.471 smeg. Y de 2.0.711835m , Y0.055m de aajo hacia arria. Su ubicación es
Universidad Autónoma de Sinaloa
Página 53
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Obtenga una expresión para determinar (a partir de las velocidades a 0.2 d y a 0.8 d en un canal abierto ) como referencia a la ley logarítmica de la de la distribución de velocidades, el
valor del coeficiente “n” de Mannig, para un canal ancho e hidráulicamente rugoso.
Solución.
Para flujo turbulento e hidráulicamente rugoso:
u5.756 uLog3K0Y
u .d y u.d u. 5.756 uLog30K0.8d, u. 5.756 uLog2K4d u. 5.756 uLog30K0.2d, u. 5.756 uLog6Kd Para cada velocidad pedida
tenemos:
Si se despeja u* de ambas ecuaciones y se igualan queda:
24d Log U U U . 24d . 6d U.. 6dK 5.756 Log K 5.756 Log K Log K Llamamos x UU.. , tenemos que: 24d d d Log Log 24Log 1. 3 8Log x Log 6dKK Log 6LogKdK 0.788LogKKd Universidad Autónoma de Sinaloa
Página 54
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
x 0.778logKd 1.38 logKd Despejando
0.778 x x logKd 1.38 logKd 0.778 x1.38logKd x logKd 0.778 x1.38logKd 1 x, logKd 0.778x1x 1.38 …1 Uu 5.756 ULog11.K04d5.756 Log 11.045.755 LogKd Uu 6.005.756 Log Kd ………2 Ahora, como :
Y además:
Uu c√ gRRSS n c g ,pero c Rn , uU Rn g Uu nd g Sustituyendo 1 en 2 y 2 en 3 resulta
dn 6.005.7560.7781xx1.38 66x4.1x478x7.943 dn 1.5221. 9 43 4. 7 566. 0 83 √ 9 . 8 1x x1 n .. x .. Sistema métrico decimal
Donde:
Universidad Autónoma de Sinaloa
Página 55
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
En un canal muy ancho escurre agua con un tirante de 0.15m en flujo uniforme. Si las velocidades a 0.2 y 0.8 del tirante son obtenidas por medición, resultando 0.54m/seg. Y 0.41 m/seg., respectivamente. Estime:
El coeficiente “n” de Manning
a) b) c) d)
La velocidad media El gasto por unidad de ancho La pendiente del canal
Solución. a) N=? Sabemos que:
n .. ,donde x .. .. x1.317 Entonces
1 . 3 171 0 . 1 5 n 4.7651.3176.083
n0.0187
b) U=?, haremos un promedio de velocidades:
U U. U. 0.540.41 , U0.475 mseg
c) q=?, sabemos que:
d)
q dU0.150.475 m q0.071 mseg S ? 1 U n RS , despejando S RUn , Rd para canal ancho ,con Manning
Universidad Autónoma de Sinaloa
Página 56
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
0 . 4 75 0 . 0 187 S 0.15 ; S 0.00099
Universidad Autónoma de Sinaloa
Página 57
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
III.- DISEÑO DE CANALES
¿Como se clasifican los canales para su diseño en flujo uniforme? Resp. Se clasifican en: -Canales de fondo fijo: revestidos o en material rocosa (no erosionable). -Canales de fondo móvil: no desvestidos en material blando o suelto (Erosionables).
¿En que casos se recomienda revestir un canal? Resp. Es recomendable cuando se desee: a) Reducir la rugosidad y aumentar por consiguiente el gasto para la misma sección, b) Reducir la sección del canal para el mismo gasto; c) Evitar la perdidas de agua por infiltración; d) Evitar erosión por alta velocidad del flujo de agua y/u ondas en el mismo; e) Proteger los taludes de flujo subterráneo.
¿Qué material se utiliza más comúnmente en el revestimiento de camales? Resp. Son usados más comúnmente concreto, mampostería, asfalto. asbesto. etc.
¿Qué factores deben considerarse en el diseño de canales de fondo fijo? Resp. Se deben considerar: a) Material del cauce. La selección del material se hace de acuerdo con su disponibilidad, costo, proceso de construcción y tipo de suelo sobre el que descanse. b) Velocidad mínima permisible. Esto es con el objeto de impedir que se deposite el material sólido que transporte el flujo, así para evitar el crecimiento de vegetación dentro del canal.
Universidad Autónoma de Sinaloa
Página 58
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
c) Velocidad máxima permisible. Esto se considera cuando el canal transporta agua con arena, entonces deberá limitarse la velocidad a fin de reducir al desgaste del revestimiento por abrasión. d) Inclinación de los Taludes. La inclinación de los taludes debe ser tan cercana a la vertical como lo permita la estabilidad del material en que este apoyado el revestimiento. e) Bordo libre. Se dimensiona de tal forma que evite que el agua salga del canal, por efecto de ondas o fluctuaciones del un nivel del agua.
¿Qué se entiende por sección de máxima eficiencia hidráulica? Resp. Es aquella que dada una pendiente y rugosidad, conduce un gasto dado con la mínima área hidráulica o bien el la sección que dadas una pendiente y rugosidad, conduce para una arrea hidráulica dada, el máximo gasto posible.
De una clasificación general de los canales erosionables. Resp. Se puede clasificar en: a) canales que se erosionan pero no depositan. b) canales que depositan pero no se erosionan. c) Canales que depositan y se erosionan simultáneamente.
¿Qué criterios son utilizados para el diseño de canales no revestidos que se erosionan pero no depositan? Resp. Son los criterios y se basan en el conocimiento de la condición crítica de arrastre de una corriente y que genera el inicio del movimiento de articulas del cauce. Son: a) criterio de la velocidad máxima posible( o velocidad media critica); b) criterio del esfuerzo cortante máximo(o esfuerzo cortante crítico).
¿Cómo define esfuerzo cortante o esfuerzo cortante critico?
Universidad Autónoma de Sinaloa
Página 59
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Resp. Es el esfuerzo cortante o tangencial producido por el flujo y que genera inicio del movimiento de las partículas del cauce del canal.
¿Cómo se define velocidad máxima permisible o velocidad media critica? Resp. Es la velocidad media del flujo más grande que no acusara erosión en el cuerpo del canal.
¿Qué expresión proceden Maza y García para valuar la velocidad media critica para suelos granulares? Resp. Proponen la siguiente expresión:
V 4.71D.R. ó V 6.05D.R. y generalmente 1.65 Donde:
Además:
Ys= peso especifico de la partícula (generalmente 2650 Kg/m³) Y = peso especifico del agua (=1000 Kg/m³) D = Dm Si la granulometría del cauce es extendida D = D90 si la granulometría del cauce sigue una dist. Log- normal D = D84 Si la granulometría del cauce es de otro tipo R = radio hidráulico de la sección del cauce Vc= velocidad media critica para canales de suelos granulimétronicos (no cohesivos).
Universidad Autónoma de Sinaloa
Página 60
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
La expresión es válida para 0.0001 m < D < 0.40m.
Indique que representa: a) D90 = 0.542mm; b) D m = 0.432mm. Resp. D90 Indica que el 90%, en peso, del material de la muestra granulométrica, está constituido por partículas cuyos tamaños son iguales o menores que 0.542 mm.
Dm Diámetro medio aritmético de la distribución.
D 1001 PD-
Donde
Δ
Valor en porcentaje de cada intervalo en que se dividió la curva granulométrica, puede ser variable o constante. pi
Di Diámetro medio correspondiente a cada intervalo en que se dividió la curva granulométrica.
¿Qué velocidades fueron recomendadas por Lischtvan y Levediev como velocidades medias críticas en suelos no cohesivos (granulares)? Resp. Velocidades medias críticas ( V max) en el suelo no cohesivos, en m/seg.
Universidad Autónoma de Sinaloa
Página 61
Manual de Hidráulica de Canales
Dm de las partículas, en mm 0.005 0.050 0.250 1.000 2.500 5.000 10.000 15.000 25.000 40.000 75.000 100.000 150.000 200.000 300.000 400.000 5000.000 ó más
Facultad de Ingeniería Civil
Tirante medio del flujo, en mts. 0.40
1.00
2.00
3.00
5.00
más de 10.00
0.15 0.20 0.35 0.50 0.65 0.80 0.90 1.10 1.25 1.50 2.00 2.45 3.00 3.50 3.85 ---------
0.20 0.30 0.45 0.60 0.75 0.85 1.05 1.20 1.45 1.85 2.40 2.80 3.35 3.80 4.35 4.75 -----
0.25 0.40 0.55 0.70 0.80 1.00 1.15 1.35 1.65 2.10 2.75 3.20 3.75 4.30 4.70 4.90 5.35
0.30 0.45 0.60 0.75 0.90 1.10 1.30 1.50 1.85 2.30 3.10 3.50 4.10 4.65 4.90 5.30 5.50
0.40 0.55 0.70 0.85 1.00 1.20 1.45 1.65 2.00 2.45 3.30 3.80 4.40 5.00 5.50 5.60 6.00
0.45 0.65 0.80 0.95 1.20 1.50 1.75 2.00 2.30 2.70 3.60 4.20 4.50 5.40 5.90 6.00 6.20
¿En que casos es recomendable utilizar el método de la velocidad media crítica ó máxima permisible?
Resp. Se recomienda utilizarlo cuando la estabilidad en los taludes no es importante, que es el caso de canales muy anchos en que se permiten ligeras erosiones en las márgenes.
¿Qué velocidades madias críticas (Vmax) fueron recomendadas por Lischtvan y Levediev en las márgenes.
Resp. Velocidades medias críticas en suelos cohesivos, en m/seg.
Universidad Autónoma de Sinaloa
Página 62
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Velocidades medias de la corriente del agua que son admisibles (no erosivas) en los suelos cohesivos, en m/s.
Denominación de Porcentaje del contenido de los suelos partículas
Suelos poco Suelos Suelos poco compactos, peso compactos, peso medianamente volumétrico del volumétrico del compactados, peso material hasta material seco hastaseco volumétrico del
Suelos compactos, peso volumétrico del
Suelos muy compactos, peso
material seco se
volumétrico del
1660 a 2040 Kgf/m³.
material seco de
1160 Kgf/m³. material seco de 1660 Kgf/m³
2040 a 2140 Kgf/m³.
1200 a 1660 Kgf/m³.
Tirantes medios, en m _____ Arcillas
0.005 0.005 - 0.05
0.4 1.0 2.0 3.0
0.4 1.0 2.0 3.0
0.4 1.0 2.0 3.0
0.4 1.0 2.0 3.0
0.35 0.4 0.45 0.5
0.7 0.850.951.1
1.0 1.2 1.4 1.5
1.4 1.7 1.9 2.1
0.35 0.4 0.45 0.5
0.65 0.8 0.9 1.0
0.95 1.2 1.4 1.5
1.4 1.7 1.9 2.1
0.6 0.7 0.8 0.85
0.8 1.0 1.2 1.3
1.1 1.3 1.5 1.7
30-50 70-50
Tierra fuertemente arcillosas 20-30 80-70 Tierra ligeramente arcillosas 10-20 90-80 Suelos de aluVión y arcillas margosas Tierras arenosas 5-10 20-40
Universidad Autónoma de Sinaloa
Según la tabla 1.2a en relación con el tamaño de las fracciones arenosas.
Página 63
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
¿Que hechos favorecen el empleo del método de la fuerza tractiva el diseño de canales no revestidos que no depositan? Resp. Los siguientes: 1. Para valuar la velocidad crítica se requiere el diámetro de las partículas y el tirante del flujo, mientras que el esfuerzo cortante crítico solo es función del diámetro. 2. La mayoría de la información de velocidades medias Críticas solo sirve para material con peso específico de 2650 Kg /m³ o no indica el peso específico del material resistente, o únicamente sirve para un tirante de 1 metro.
Mencione algunos elementos que ayuden a aplicar el método de la fuerza tractiva. Resp. 1. El mínimo talud recomendado desde el punto de vista de facilidad constructiva es 2:1. 2. El valor de K para los suelos cohesivos es K= 1, pues el peso de las partículas es mínima comparado con la fuerza de cohesión. 3. En general, el tirante menor (el de diseño) se obtiene el igualar los esfuerzos cortantes relativos al talud, por ello el fondo está sobrando en resistencia.
Universidad Autónoma de Sinaloa
Página 64
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Determine las características que deben cumplir una sección trapecial para que sea hidráulicamente la más eficiente de datos.
Tenemos:
Q R⁄S⁄……1 Adtd ……. 2 P2d√ 1 t … 3 RAP ⁄ ………4 t………5 de 2 Solución: Se dice que una sección de canal es hidráulicamente la más eficiente, cuando para una rugosidad, pendiente u área dada conduce el gasto máximo posible.
y n para que Q se máximo se requimeterroe mojqueaeldora“diP”oshieadmíráulniimcoo.“R” sea máximo y
Dados A So para que esto se dé es necesario que el perí
Sustituyendo (5) en (3) y haciendo la derivada
e igualando a cero resulta:
PAd td2d 1 t ………6,haciendo Pd 0 0 Ad t2 1 t A t2 1 td ………7 Manteniendo a “d” como constante y haciendo 0 en 6 Despejando
Universidad Autónoma de Sinaloa
Página 65
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Pt 00d2td1t ; 12t1 t 0 2t1t, elev. al 2 amos miemros 4t 1t: 3t 1 t 13 33 ……. 8 , lo cual equivale a un θ60 t cosθ. Sustituyendo (8) en (7)
A √ 33 2 1 √3 3 d ; A √ 33 2 1 39 d A √ 33 2 99 39 d ; A √ 33 2 192 d A √ 33 2 4√ 93 d ; A √ 33 4√ 33 d ; A3√ 33 d Análogamente, se sustituye (8) y (9) en (6) y se observa que:
3 d √ P 3 √ 33 d2d 1 √33 ; P√ 3 d √ 33 d 4√ 33 d P √ 33 d , P2√ 3 d……10 3 d √ R 2√ 3 d , R d2 …11 Ahora, con (9), (10) y (4)
Las ecuaciones (8) ,(9) , (10) y (11) son las condiciones que deben cumplirse para que se tenga la sección trapecial más eficiente de todas.
Universidad Autónoma de Sinaloa
Página 66
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Explique el procedimiento que se debe seguir para el diseño de canales no revestidos por el criterio de velocidad máxima permisible.
Solución. La velocidad máxima permisible, es la velocidad media más grande que no provocara daños (erosión) a la cubeta del canal. Procedimientos (canales trapeciales) Datos Necesarios: Gasto, Pendiente, Tipo de suelo y Tablas para valuar:
n,t,V s t i m a el c o ef i c i e nt e “ n ” , l o s es “ t ” y l a vel o c i d ad medi a máxi m a que, además del t i p o de s u el o t a mi é n es f u nc i ó n de la profundidad “d” por lo que posteriormente hará que verificar si la velocidad 2o.ManniConocng siedotos elienegaseltor“aQdi”olahipendidráuleicntoe“R“S”o” y el coeficiente “n”, con la ecuación de . V R S R 3o. Con la ecuación de gasto se determina el área hidráulica “A” requerida para la descarga Q A. V A QV 4o. se calcula el val or del perímetro mojado “P”: R , P 5o. conocidos “A” ,”P” y”t” con las ecuaciones: 1o . Para el tipo d suelo que forma la cubeta del canal se e talud utilizada corresponde a la profundidad obtenida.
Como
, entonces
y la velocidad máxima permitida: Como
puesto que
, entonces
entonces
Universidad Autónoma de Sinaloa
Página 67
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
A dtd ; P 2d 1 t Se otienen los valores de “” y “d” 6o. Para el valor de “d” otenido rectificar p ratificar el valor de la velocidad
resolviendo por simultáneas dichas expresiones.
máxima permisible (V) y repetir el procedimiento a partir del paso 2o ., tantas veces como sea necesario.
7o. Obtener e incluir la altura de bordo libre y modificar la sección para su placibilidad.
Explique el método de la velocidad máxima permisible de J.A. Maza y M. García Solución. El método se basa en igualar la velocidad media del flujo con la velocidad máxima que pueden soportar las partículas antes de iniciar se movimiento. Para calcular la velocidad media del flujo, se recomienda la siguiente expresión: Para sección rectangular:
Para sección trapecial:
V 5.756 V Log. / V5.756 V Log. /
(I)
Para determinar la velocidad madia máxima que soportan las partículas antes de iniciar su movimiento se recomiendan:
V 6.05 R. D. Donde:
Universidad Autónoma de Sinaloa
Página 68
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
R = radio hidráulico
√g R So ; g gravedad
V* = velocidad asociada al corte (V *
D50= diámetro al 50% en la curva granulométrica (en m)
Dm = diámetro media aritmético en la granulometría (en m)
D 1100 ΔP D -
Δp diámetro medio cor espondiente a cada Δpi en m i = valor en porcentaje de cada intervalo en que
se divide la curva granulométrica del
suelo. Di
PROCEDIMIENTO A SEGUIR
1. En base al suelo en que será excavado se escoge o determinan los taludes. 2. Se igualan las velocidades (ecs. I y II) y queda una expresión en función de R, que se determina por prueba y error (tanteo). 3. El valor de R obtenido (paso 2) se sustituye en cualquiera de las dos ecs. I y II y se conoce la velocidad máxima del flujo (V). 4. Con la ecuación del gasto se obtiene el área: Como
Q AV
, entonces
5. Se obtiene el perímetro mojado con:
A P
6. Conocidos A y P, se resuelve el sistema
A d d P 2d 1 t
Y se obtienen las dimensiones de la plantilla (b) y el tirante (d) de la sección del canal.
Universidad Autónoma de Sinaloa
Página 69
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Deduzca la expresión que relaciona al esfuerzo contante resistente de un grano de suelo en un plano sustancialmente inclinado (taludes), con el esfuerzo cortante resistente de un grano de suelo en un plano prácticamente horizontal (plantilla).
Solución.
Donde: a= área efectiva de la partícula (en m²) *t =esfuerzo cortante de arrastre (del flujo) en el talud ( en Kg/m²) *P= esfuerzo cortante de arrastre (del flujo) en la plantilla (Kg/m²)
ωPpeso de la partícula o grano
sumergida (en Kg)
= ángulo de inclinación del talud
ө
De la Fig. (b), la resultante (R) de las fuerzas que actúan sobre la partícula
Universidad Autónoma de Sinaloa
Página 70
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Es:
R ω . senθat La que deberá estar equilibrada con la fuerza resistente, que es la fuerza de fricción:
F resistente ω cos θ tan Donde:
tan Φ coeficiente de fric ión interna del Φ
material; y
ángulo de reposo del material
Entonces
ω cos θtan ω sen θ at ωcos θ tan ω sen θ at a t ω cos θ tan ω senθωcos θ tan sen θ t ωa -cos θ tan sen θ- , sacando raiz cuadrada t ωa-cosθ tansenθ- ωa tan cosθ steannθ ω s e n t a tan 1sen θ tanθ ω 1 ω c o s t a tan 1sen θ. 1 tan a tan 1sen θ1 sen Universidad Autónoma de Sinaloa
Página 71
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
ω s e n ω s e n t a tan 1sen θ sen a tan 1 senθ t tan 1
Esfuerzo cortante máximo resistente
en los taludes.
Para una partícula localizada en la plantilla del canal ө= 0° y sen ө = sen 0° =0, por lo que sust. en la ec. anterior se tiene que
p tan
Esfuerzo cortante máximo resistente en la plantilla.
tp 1 ,haciendo K ,tenemos t s e n θ t t a n K p 1 sen ó ien K p cosθ 1 tanθ Entonces:
Relación de los esfuerzos resistentes en un canal no revestido.
Deduzca las ecuaciones que rigen la sección hidráulica estable ideal, para un canal no revestido. Solución. Para obtener la sección hidráulica estable para máxima eficiencia se requiere alcanzar la misma condición de resistencia al movimiento, en todos los puntos de la sección. Para un tipo de suelo y gasto de diseño, esta sección implica tener la menor excavación, la menor anchura y la velocidad media máxima aceptable.
Universidad Autónoma de Sinaloa
Página 72
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Deduzca las ecuaciones que rigen la sección hidráulica estable ideal, para un canal no revestido. Solución. Para obtener la sección hidráulica estable para máxima eficiencia se requiere alcanzar la misma condición de resistencia al movimiento, en todos los puntos de la sección. Para un tipo de suelo y gasto de diseño, esta sección explica tener la menor excavación, la menor anchura y la velocidad media máxima aceptable.
La fuer,zaescoigrtualantale enpeseloeldelementvoluomende árdiefeardiencferiaelnc, priaolyecΔAtadodeenlongidirteucd iunión altarfliuajyo. dxcos- Y dx1- s ……. 1, Y S cos ……. 2 Y Y 0 maY S cos0YS max Y SY Scos YY cos ancho, dx/cos Esto es:
El esfuerzo cortante máximo
máx será para
Entonces:
Universidad Autónoma de Sinaloa
Página 73
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Para que las partículas en el , centro del ca nal 0 estén en el punto de inestailidad max cos 1 ttaann insipiente es necesario que el fondo ( en el centro). Por lo tanto:
es el esfuerzo cortante insistente por
De donde:
YY 1 ttaann 4 , o ien tanYY- tantan……..5 HacdyiendoYtan dY dx, y arreglando dx Y-tantan ……….6 YY cosx tYan ………. 7 términos queda:
Para x=0, Y=Yo con esta condición, la solución de la ecuación diferencial anterior es:
Esta ecuación nos indica que el perfil de la sección hidráulica estable para máxima eficiencia, corresponde al de una curva coseno, donde:
El ancho superior es 2Xo, esto es B con *xxy0 en 7 :
El área hidráulica es:
x t a n 2Y A2 Y dx2 Ycos Y -dx A tan El perímetro mojado es :
Universidad Autónoma de Sinaloa
Página 74
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
1tan Y tan- dx d y P2ds 2 1 d x2 Y dx Y p2 1tan 1Y - dx2 1tan1cosx tYan dx Haciendo ω P ∫ 1sensen w dw se tirene que
E ∫ 1sensen w dw P solución existen numerosas talas en manuales: “ HANDBOOK OF MATHEMATICAL O bien
donde
es la integral elíptica para cuya
FUNCTIONS. De Milton Abramowitz e I. Stegun, editorial DOVER (tabla # 17.6,pag.618).
El radio hidráulico (R) será:
t⁄ an 2Y2YEtseann , R YcEos R AP 2Y2YEsen Además, de la igualdad de esfuerzos se obtiene:
D 75 Y 0.047 s 0.97 para todos los casos. Se utilizan.
El gasto Q a transportar por el canal estará dado por la ecuación de Mannig. Si el canal va a transportar un gasto Q1 menor que Q (obtenido con Mannig ), entonces se requiere remover una porción vertical de la sección en la parte central del canal. El ancho B1 a remover en la parte central de la sección es:
B B1 QQ y B BB
Universidad Autónoma de Sinaloa
Página 75
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Por otro lado si el canal va a transportar un gasto Q2 mayor que Q ( obtenido con Mannig), entonces se requiere agregar una sección rectangular al centro, de ancho B2 anchura esta dada por :
B ̇ nYQSQ
Secciones estables para Q1, Q y Q2 respectivamente.
Determine la sección hidráulica más eficiente para un canal que va a transportar un gasto de 10m³/seg. Sobre una pendiente de 0.002 y con revestimiento de mampostería (n= 0.017) , si la sección del canal es : a) Rectangular b) Triangular c) Trapecial
Solución: De la ecuación de Mannig y gasto tenemos que:
Q An RS , desp. AR SQn 100.0020.017 AR 3.801m R d2 ; A2d ; 2d a) Para la máxima eficiencia de una sección rectangular es necesario que:
Entonces
AR 2d 1.26 d⁄ Universidad Autónoma de Sinaloa
pero también sabemos
Página 76
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
AR 3.801m 1.26d 3.801 , d 31..82016 , d1.513 m A2d 21.513 m A4.578 m 2d21.513 3.026 m d1.513m 3.026m R √ 42 d Ad ,taludes 1:1 y BT2d AR d√42 d⁄ AR 0.5d,saemos que AR 3.801 0.5d 3.801, d 30..8501 d2.14m Ad 2.41m A4.58m BT2d22.14m B4.28m ancho superior. que
Por lo tanto tenemos:
Además
La sección será:
b) Para la máxima eficiencia de una sección triangular es necesario que:
Entonces:
Por lo tanto:
Además:
La sección será:
B=4.28m.
Universidad Autónoma de Sinaloa
Página 77
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
c) para la máxima eficiencia de una sección trapecial es necesario que:
R ; A √ 3 d ; taludes a 60 , esto es t √ ; √ 3 d
Entonces:
AR (√3 d) AR 1.091 d , y senos que AR 3.801 d .. ⟶ Por lo tanto 1.901 d 8/3 = 3.81
Además A= b=
√ 3 . d √ 3 √ 3 d √ 3
(1.597 m) 2 (1.597 m)
B = T = 2b = 2(1.844)
La sección será:
d= 1.597 m
⟶ ⟶ ⟶
A= 4,417 m 2 b= 1.84 m B= 3.688 m
d= 1.597 m b)= 1.844 m B)= 3.688 m
t √ 33
Universidad Autónoma de Sinaloa
Página 78
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
¿Cual debe ser el ancho de la plantilla y el tirante de la sección transversal de un canal de concreto (n = 0.015) con taludes de 1.5:1 para conducir un gasto de 11.0m 3/segundo sobre una pendiente de 0.0003. si se desea utilizar la lección de máxima eficiencia hidráulica?
Datos n= 0.015 t = 1.5:1 Q= 11m3/segundo S0 = 0.0005
Solución.Con la ecuación de Manning y Gastos tenemos que:
Q RS …….. 1 R d2 y At2 1 t d
De las condiciones para que la sección sea de máxima eficiencia hidráulica se tiene que:
Entonces en la ecuación 1
⁄ t 2 1 t d 2 Q n Q n 2 S , dS⁄t2 1 t ⁄ 2 1 1 0 . 0 15 Sust.valores d0.0005⁄1.52√ 11.5 d1.903 m Ahora tenemos que:
A = 7625 m 2
At2 1 t d 1.5 2√ 11.5-1.903-
Universidad Autónoma de Sinaloa
Página 79
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Pero sabemos que:
Adtd , Ad td , sust. valores 7.1.692503 1.51.903 1.152 m Un canal cuya sección es como la que se muestra en la figura, se va a dimensionar para que conduzca 18 m 3/seg con velocidad media máxima de 2.00m/seg. ¿Que dimensiones tendrá sise desea sea trazado con la pendiente hidráulica mínima posible?; si n = 0.015, ¿cuál será esta pendiente? Datos: n = 0.015
t 1= 3:1
Q= 18m3/seg
t 2= 0.5:1
V = 2.00m/seg
Solución Para que la pendiente hidráulica (s=s 0) sea mínima se requiere que el radio hidráulico sea máximo (ya que V y n están dadas). Para que se cumpla lo anterior se requiere que P sea mínimo (ya que A = Q/V y por lo tanto está dada). Y esto equivale al diseño de canales bajo el criterio de máxima eficiencia hidráulica.
0
Dado que esta sección tiene taludes diferentes, habrá que obtener sus ecuaciones particulares a partir de
Para este tipo de sección tenemos que:
Pd 1 t d 1 t ……. 1; Ad 12 dt t……2 t t……… 3
De la ec (2)
Universidad Autónoma de Sinaloa
Página 80
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
0 Ad d2 t t d 1 t d 1 t , haciendo Pd 0 0 1 t 1 t , despejando d Sust (3) en (1) y haciendo la
+
d , A A9. 0 m Sust. Valores
d ... Sust.
1.9.80860 1.8286 30.5 1.471 m De la ecuación Manning:
V n S R⁄ ,donde R AP d2 maxima eficiencia Entonces:
S ../.⁄ - , S
0 =0.00097
Un canal trapecial revestido de mampostería (n=0.017) tiene una plantilla de 2.00 m. de ancho, taludes 2:1 y para una pendiente s 0= 0.002 se tiene en flujo uniforme un tirante de 1.50 m. ¿Qué dimensiones habría que darle a la sección para aumentar el gasto transportado, sin que se hagan cambios en la pendiente s o, en los taludes y cantidad de mampostería? ¿Cuánto será este incremento?
Universidad Autónoma de Sinaloa
Página 81
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Solución: a)
Datos: t= 2:1 b=2.00m d=1.50m n=0.017 S0=0.002
El perímetro mojado para la sección dado es:
P2d 1 t 221.5- 12 P8.708 m………1 Para aumentar el gasto, la sección debe de ser de máxima eficiencia, sin cambiar s o, t ni el revestimiento. Las condiciones a satisfacer para tener de sección de máxima eficiencia hidráulica para sección trapecial son:
R d2 y At2 1 t d A A t 2 1 t d Como R P ,entonces P R , P d2 P2( t2 1 t d ) , d (2)
Ahora se nos dice que la cantidad de mampostería y taludes no deben cambiar, incluso la pendiente tampoco, por lo tanto el perímetro mojado permanece constante para ambas secciones.
Universidad Autónoma de Sinaloa
Página 82
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Entonces, sust. (1) en (2)
. d
d= 1.761 m.
Además
At2 1 t d 2( 22 12)-1.761-
A= 7.666m2
Pero sabemos también que:
Adtd, Ad td ,sust.valores 7.1.676661 21.761 b= 0.831
Entonces tendremos la siguiente sección: n = 0.017 So =0.002 P= 8.708 m A= 7.666m2 b) el incremento en el gasto es: Gasto en la sección (A)
Q RS ...-...-⁄0.002-⁄ Q 17.86 mseg Gasto en la sección (B)
Q RS ../.⁄0.002 Q 18.526 mseg el incremento en el gasto es Universidad Autónoma de Sinaloa
Página 83
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
QQ Q Q18.52617.86 Q0.666 mseg Que sección recomendaría fuese usada para conducir 8m 3/seg. con una velocidad de 2m/seg si se desea utilizar: a)
La mas eficiente de todas las secciones
b)
La mas eficiente de las secciones trapeciales
c)
Compare los perímetros mojados de ambas secciones
Solución: a)
La sección de canal mas eficiente de todas es el semicírculo De la ecuación del gasto
Q 8m A V A 2msseegg A4m De la geometría de la sección
D A 8 , D 8A D 84m 3.19 m P D2 P 32.19 P05.011 m y d D2 1.595 m El perímetro mojado es:
b) La mas eficiente de todas las secciones trapeciales es la mitad de un hexágono (esto de taludes de 60°) cuyas características son: c)
t= ctg = ctg 60° t= 0.577 para la máxima eficiencia
At2 1 t d 0.5772 10.577d Universidad Autónoma de Sinaloa
Página 84
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
d . d1.52m A= 1.732 d2, pero A= 4 m 2 del (a)
Pero, también, sabemos que: A = bd + td 2
4m2 = 1.732 d 2
–
b = a td,
1.452 0.5771.52 1.755 m El perímetro mojado es:
P2d 1 t 1.75521.52- 10.377 P = 5.625 m.
c).-
“sEecl periónímtretapecro mojial “a. do de la sec ión semicircular es menor como se esperaa que el de la sefeiccieiontneses”trparansaverlassalecsondide cloiosnesdosdadas canale, sdet2eyrm3 inarsonparrecataunngulgasaretsoet“ohtaidlráQulicamente
Un canal de concreto de sección rectangular de ancho b 1, con pendiente longitudinal s 1, se bifurca en dos canales recubiertos del mismo concreto y con pendiente s 2 y s3. Si las 1
dado, lo
siguiente:
a) El dato es cada uno de los canales bifurcantes b) El acho de cada uno de los canales bifurcantes
Datos
coef.de rugosidad: n n n 0. 015 Gasto total: Q 71.50m ⁄seg. Ancho 17.00 m Pendientes S 0.000375; S 0.002 ; S 0.001 Universidad Autónoma de Sinaloa
Página 85
Manual de Hidráulica de Canales
Incógnitas:
Facultad de Ingeniería Civil
Gasto: Q y Q Ancho: y Tirantes: Yn, Yn, Y, Yn
Ecuaciones disponibles:
DeDe cManni ontinuingdad: Q QA Q⁄ ⁄……… 1 Q n R S ……… 2 Q An R⁄S⁄ ……… 3 Q R⁄S⁄ …………
(4)
Universidad Autónoma de Sinaloa
Página 86
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
De maxima eficiencia 2Y; R ⁄⁄…………………………………5 hidraulica: 2Y; R …………………. . … …………6 De energia especifica Y V2g Y V2g ……………………. … ………. . 7 V Y 2g Y V2g ………………………………………. 8 Sustituyendo las relaciones (5) y (6) en las (3) y (4) se tiene:
⁄ ⁄ 2 S Q n 4 S Q 5.04n ⁄ …………………. . 3A ⁄ ⁄ 2 S Q n 4 S Q 5.04n ⁄ …………………. . 4A Sustituyendo en la ecuación de continuidad (1) queda
.⁄ ⁄ .⁄ ⁄ Q
………………………………
.. (9)
Despejando b2 de la ecuación 9 queda:
5 . 0 4n S ⁄ S⁄ Q S … ……………. . 10
Y Y ,como y Y y V
De las relaciones (7) y (8) se tiene que
, es decir:
Entonces:
, sust.valores de Q y Q Universidad Autónoma de Sinaloa
(ecs. 3A y 4A)
Página 87
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
0. 0 08 0.5 …………………………………………………. 11 5 . 0 4 0. 0 08 5 . 0 4 00. 5 ⁄ ⁄ ⁄ ⁄ 0.5 0.008 ⁄ .⁄ Q E ;/ F ; . G ; . H ⁄ ⁄ f 0.5EF / GEF / 0.5 H ⁄ 0
Remplazando en la ecuación 1 al valor de b2 de la ecuación 10 e igualando a cero queda:
Si se hace:
La ecuación queda:
En base a los datos es posible saber:
E120.868 ; F0.707 ;G0.071 ;H0.036 Entonces:
f 0.5120.8680.707 0.071120.8680.707⁄ 0.5 0.036⁄ 0 SE EMPLEARA EL POLINOMIO DE LA LAGRANGE DE SEGUNDO ORDEN Para:
X0 = X1 = X =
b3 0 2 4 6 ?
F(b3) 3.800 3.153 1.186 -1.019 0
=f (X0) =f (X1) =f (X2)
Universidad Autónoma de Sinaloa
Página 88
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Como
n xx io Pxgxf xgxf xgxf x; gx iJn ioiJ x x Px xx xxxxxx f x xx xxxxxx f x xx xxxxxx f x 0x 4x 63.1853 x 2x 614.186 x 2x 4 1.0819 Sustituyendo valores:
Multiplicando y sumando términos semejantes la expresión queda:
x 26.148x 26. 1 48 2 6. 1 48 4 1 164. 1 0 5.230 m 21 5.230 m
- 164.1=0, resolviendo con la formula general
Sustituyendo en las ecs. (4A) ,(10) Y (3ª ) se obtiene respectivamente que:
Q 34.435m⁄seg 4.719 m Q 37.023 m ⁄seg
Universidad Autónoma de Sinaloa
Página 89
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Un canal trapecial con 10 m de plantilla y taludes 2:1 será excavado en aluvión, un análisis de cribado muestra que D 75 es de 30 mm. El canal transportara 35m 3/seg bajo condiciones de flujo uniforme. Cual debe ser la pendiente (S 0) máxima si se sabe que la velocidad no debe a 1.50 m/seg. Solución Dato: Vmax=1.580 m/seg
De la ecuación de gasto se tiene que;
⁄seg , A23.33 m QA V , A QV 1.35m50mseg ⁄ Ahora, para sección trapecial sabemos que;
, sust. datos 23.3310d2d,o ien: Adtd 2d 10d23.330 Resolviendo con la formula general
d .
d1.733 m Además
P2d 1 t 1021.7331 2 P17.750 m Y puesto que:
R ,entonces R .. R1.315 m Universidad Autónoma de Sinaloa
Página 90
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
n . n0.023 V RS , S ⁄- ...⁄ - 0.00083 De Strickler
Finalmente, de la ecuación de Manning:
Sust. datos
Diseñar la sección de un canal trapecial para que conduzca un gasto de 12 m 3/seg con una pendiente (S0) de 0.0025. se sabe que el canal será excavado en grava media poco redondeada con D 75 = 38 mm y ángulo
de r e pos o Φ de 36 . Ut i l í c e s e el mét o do de “ L a velocidad máxima permisile” Solución.-
1.- Empleando la ec. de Strickler:
n .
n0.024 Φ, s e r e comi e nda θ ., θ . θ27.70 , Ahora como, t= ctg ө y ө
entonces
Por lo que t= ctg 27.70° = 1.905
se adopta t= 2
De la tabla de velocidades máximas permisibles en suelos no cohesivos se tiene que para D75 =36 mm , V max= 1.65 m/seg considerando un tirante de 1.00 m 2.- De Manning:
R⁄- R...⁄ -⁄ R0.703m 3.- De Gasto
A QV 1.1265 7.273 m Universidad Autónoma de Sinaloa
Página 91
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
R P .. 10.316 m Add ……………………1 P2d√ 1 t ……………… 2
4.-Del radio Hidráulico
5.- Resolver
De la ec (1)
Add , td………………….3
Con (3) en(2)
P td2d√ 1 t , por d APdtd 2d√ 1 t 0 d(2√ 1 t t) PdA0 Con la formula general:
√ ( d (√)) ,sust.datos d // d √.. ……………………………4
Sust..losvalor.esde.“P”y.“A” encontrados d . d0.899 m1m Como d dsup , suponer otros valores para d. Universidad Autónoma de Sinaloa
Página 92
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Tabla de cálculo
d(m)
v(m/s)
R(m)
A(m2)
P(m)
d(m)
b(m)
1.000
1.65
0.705
10.316
10.316
0.899
-
0.899
1.60
0.673
7.500
11.144
0.824
-
0.424
1.57
0.654
7.643
11.687
0.784
-
0.784
1.55
0.642
7.742
12.059
0.761
-
0.761
1.54
0.636
7.792
12.252
0.750
-
–
Se acepta d=0.750 m y de la tabla de velocidades máximas permisibles en suelos no cohesivos se tiene que para D 75 = 38 mm , V max = 1.535 m/seg
Además
Q 12m A A 1.535 mssegeg A7.818m R⁄-⁄ ...⁄ -⁄ R0.632 m Ad td 7.0.871850 20.750 8.924 m P2d 1 t 8.92420.750 12 P12.28 m Entonces, la sección necesaria es la siguiente:
Universidad Autónoma de Sinaloa
Página 93
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Diseñar la sección de un canal trapecial no revestido para que conduzca un gasto de 12m3/seg con una pendiente (S 0) de 0.0025. se sabe que el canal será excavado en grava media poco redondeada con D 75 = 38 mm;
–
Dm =26 mm; D 50=25 mm ; Ø = 36° (Utilice el método de Maza García)
Solución
1.- De la ecuación de Strickler:
n .
n0.024 Ahor36a, como t ctg θ y θ Φ , se recomienda θ Φ 1.3 θ 1.3 27.70 , por lo que tctg 27.701.905 , y se adopta t2 2. Igualando las velocidades
V5.756 V log.; velocidad media del flujo.seccion trapecial V6.05R.D.; velocidad que resiste el suelo Entonces
5.756 V log. 6.05R.D. ,pero V gRS 5.756 gRS log. 6.05R.D. Sustituyendo valores conocidos y operando:
5.756 9.80.0025√ 212.0.20025-6.05.0.026. Universidad Autónoma de Sinaloa
Página 94
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
0.901RR. log212.0.200R25- 1.687 , donde R R. R. log244R- 1.872 , Resolviendo por tanteos resulta que R0.632 m 3. La velocidad media máxima permisible es:
v6.05R.D. 6.050.632.0.026. v1.576 mseg 4. Calculo del area
A .. A7.614m 5. El perímetro mojado es:
A 7. 6 14m P R 0.637m P11.953 m Adtd ………. .1 P2d√ 1 t ………. .2 6. Resolver:
De la ec (2)
P2d√ 1 t … …………3 Sust (3) en (1)
APd2d√ 1 t td A P2d√ 1 tdtd A Pd2d √ 1 t td 0 (2√ 1 t t)d PdA0 Con la formula general:
P P 4 2√ 1 t t A ( ) d 2(2√ 1 t 2) ,sust.valores conocidos
Universidad Autónoma de Sinaloa
Página 95
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
. . / . d / Finalmente
d = 0.755 m
En (3)
P2d√ 1 t 11.98320.755 12 8.577 m Con una velocidad media máxima permisible v = 1.576 m/seg
Diséñese la sección de un canal trapecial no revestido para que conduzca un gasto de 12 m3/seg con una pendiente (S 0) de 0.0025. Se sabe que el canal será excavado en grava media poco redondeada con D 75 = 38 mm y Ø = 36° (Utilice el método de la fuerza tractiva) Solución: 1.
De la ecuación de Stickler.
n . n0.024 θ . 27.70 y como tctg Ahora
Entonces
tctg 27.701.905 , se adopta t2 arc ctg 2 26.5626.60
2. Calculo de la relación del esfuerzo cortante en el talud ( en la plantilla , esto es:
Universidad Autónoma de Sinaloa
y el esfuerzo cortante
Página 96
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
K pt 1 sseenn 1 sesnen26.3660 0.6478 . . . . D Diámetro en m que partícula es específico del grano generalmente m es específico del agua 1000Kgm³ 3.
Calculo del esfuerzo cortante máximo que resiste un grano sobre la plantilla.
Valida para cualquier valor de donde:
, o bien para cuando
= 2650
< 5 mm usar el grafico Lane,
)
Entonces:
... , ... 10000.00252.5 . 1000 0.00252.5 . 4. Esfuerzo resistente de los granos en los taludes: Como entonces = K Esto es:
5. Esfuerzos cortantes que produce el flujo en la plantilla y los taludes: En la plantilla: En los taludes:
6. Igualando los esfuerzos cortantes actuantes y resistentes tanto en plantilla como en taludes, resulta:
Universidad Autónoma de Sinaloa
Página 97
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
2.9472.5p .dp, dp . 1.9102.5 t .dt, dt .
Plantilla: Taludes:
TABLA DE CALCULOS
Se propondrán para b/d hasta que se cumpla que Qcalc. = Qdiseño:
b/d
4.0
0.960
5.0
dp (m)
dt (m)
d (m)
b (m)
A (m²)
P (m)
R (m)
Q (m³/seg)
0.755
1.228
1.012
1.012
4.048
6.145
8.574
0.717
10.253
0.970
0.760
1.215
1.005
1.012
5.026
7.071
9.520
0.743
12.088
4.9
0.970
0.760
1.215
1.005
1.012
4.925
6.970
9.419
0.740
11.880
4.95
0.970
0.760
1.215
1.005
1.012
4.975
7.020
9.469
0.741
11.980
Entonces: b= 4.975m
;
d = 1.005m
;
A= 7.020m²
Además:
V ..³ V1.709 mseg Universidad Autónoma de Sinaloa
Página 98
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Esfuerzo tangencial que la corriente p roduce
Esfuerzo tangencial que la corriente produce
sobre los taludes
en el fondo
Para un canal trapecial excavada en suelo granular muy redondo con D75 =30mm, pendiente (So) de 0.0015 y plantilla de 5.50m, determine el gasto máximo que puede transportar sin que erosione. Solución: Con Strickler:
D n 24 ,
n0.023 Ahorredondoa, de, l.aΦfi34.gura7No.0 de la apéndice “A”, tenemos que para D75 30mm suelo poco . .. n26.70 y como tctgθ tctg 26.701.988,se adapta t2 y θarc ctg 2 θ26.57 Considerando Entonces
Calculo de K:
K 1 1 .. K0.619 Universidad Autónoma de Sinaloa
Página 99
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Calculo de los esfuerzos resistentes:
0.047 D 0.047265010000.030 2.327 kgm K 0.619 2.327kgm⁄ 1.440 kgm Seflujpro paropondra el ávaln ovalr deore“sd”parpraopuesel tirtaontyese“dc”oymparse detaraercmoninelaraesnfuelereszofuqueerzoresiste el material d 3.2.520m5m d 2.44 , de las figuras N . a y N del apendice ; otenemos que 0.90 ; 0.73 En el fondo
En los taludes:
producido por el
el cual deberá ser igual o mayor al del flujo. 1er. Valor propuesto d = 2.25 m
Los esfuerzos producidos por el flujo serán:
En el fondo
d S 0.9010002.250.00953.038kgm⁄ d S 0.7310002.250.00152.464kgm hará que proponer otro valor para el tirante “d”
En los taludes:
Vemos que los esfuerzos producidos por el flujo son mayores que los esfuerzos resistentes, .
Universidad Autónoma de Sinaloa
Página 100
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Tabla de cálculos:
b = 5.50 m
d(m)
b/d
2.250
2.44
0.90
0.73
3.038
2.464
1.125
4.00
0.96
0.755
1.620
1.274
1.467
3.75
0.95
0.75
2.090
1.650
1.260
4.36
0.965
0.76
1.524
1.436
Entonces: b = 5.50 m; t = 2:1 ;
d = 1.260 m;
n=0.023
S 0 = 0.0015
Además:
Add 5.501.2621.269 A10.105 m 5. 5 21.261 2 P11.135 m P2d 1 t R .. R0.907 m El gasto máximo que se puede conducir sin erosión el canal es:
Q An RS 10.0.012305 0.90790.0015 Q15.94 mseg Además:
..
V1.578 mseg
Para un canal que atraviesa una ciudad se desea conocer el ancho mínimo de la plantilla con que debe construirse para que no se erosione cuando por el fluya un gasto de 10 m3/seg. se sabe que los taludes serán protegidos contra la erosión con mampostería (n = 0.017). El canal será excavado en suelo granular muy redondo con D 75 = 30 mm. , con una pendiente (S 0) de 0.005.
Universidad Autónoma de Sinaloa
Página 101
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Solución.- Para D75 = 30 mm y muy redondo, de la grafica correspondiente se obtiene el ángulo de reposo Ø, el cual es Ø = 34.7°
Como θ . θ .. tctg θctg 26.691.989 , se adopta t2
=29069° y el talud es:
Igualando el esfuerzo cortante resistente del material en la plantilla con el esfuerzo cortante respectivo generado por el flujo, queda:
0.047 D d S , d . Sust. Valores
0 . 0 30 0. 4 653 d 0.04726501000 d 10000.005 ……….1 0.96de graficasy resulta que: d .. d0.458 m de rugosi⁄dad “n” ser⁄á en la plantil a: n . 0.022 en los taludes: n0.017 dato , hay mamposteria se propone una n 0.022 a verificar posteriormente Considerando b/d =4, se tiene que:
El coeficiente
:
Considerando R = d = 0.485 m (canal ancho) se puede calcular la velocidad media (con Manning):
Universidad Autónoma de Sinaloa
Página 102
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
V RS .0.485⁄0.005 V1.984 mseg De la ecuación de gasto:
A . A5.040 m Adtd ,entonces: td 0.5.40854 20.485 9.442 m entonces ,para .. 19.427 ,otenemos que 1.00 d .. d0.4653 m Y como
Con el valor obtenido de
en la ec. (1) se tiene que
Entonces: R = d =0.4653 m, pues se trata de un canal ancho , siguiendo el mismo procedimiento:
1 V n RS 0.0122 0.4653⁄0.005⁄ V1.930 mseg A . A5.181 m td .. 20.4653 10.204 m Verificación de la rugosidad equivalente empleada (n = 0.022 )
. ∑ ( n )- …….. criterio de R.Horton.y H.Eintein n .....(√√). -⁄ n 0.022
Universidad Autónoma de Sinaloa
Página 103
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Como:
1 t 10.20420.4653 12 12.285 m P2d R AP 12.5.128185 0.422 m V RS . 0.422⁄0.005⁄ V1.808 mseg A QV 1.10808 A5.531 m Ad td0.5.4565331 20.4653 10.956 m y
n ......(√√)..-⁄ De nuevo:
1 t 10.95620.4653 12 13.037 m P2d R AP 13.5.503137 0.424 m V RS . 0.424⁄0.005⁄ V1.814 mseg A QV 1.10814 A5.513 m Ad td0.5.4565313 20.4653 10.918 m Una vez más:
1 t 10.91820.4653 12 12.999 m P2d R AP 12.5.591399 0.424 m V RS . 0.424⁄0.005⁄ V1.814 mseg Universidad Autónoma de Sinaloa
Página 104
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
A QV 1.10814 A5.513 m Ad td0.5.4565313 20.4653 10.918 m OK Se acepta b = 11.00 m
,
como d = 0.465 m
Determine el perfil de la sección hidráulica estable (ideal) para un canal cuyos datos son los siguientes:
Q12.0m⁄seg ; S 0.0025; D 38 mm; 2650kgm⁄ ; 38; n0.024 Solución: IGUALNDO ESFUERZOS CORTANTES (resistentes y actuantes)
Se empleara la ec. de Meyer-Peter y Müller:
. 0.046 D Entonces:
. Y . .. . Y 1.215 m B2X . B4.886 m ancho superior X . X 2.443 m A t2Yan 2t1an38.215 A3.779 m area hidrailuca E 1sin sinω dω1.409de talas para integral eliptica Universidad Autónoma de Sinaloa
Página 105
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
P si2YnE 21.2si15n381.409 P5.56 m perimetro mojado R Y cosE 1.215cos38 1.409 R0.680 m radio hidraulico. Con Manning:
A 3. 7 79 Q n R S 0.0240.680 0.0025 Q6.088 mseg rectangular al centro, de ancho B’ Calculodelancho.agregar.B’ B .. B
Entonces [Q2 = 12 m 3/seg ] > [ Q = 6.088 m 3/seg ] , habrá que agregar una sección 2
2)
2.058 m
Obtención del perfil de la sección estable para Q = 6.088 m 3/seg
Como cos /, YY cos en radianes/ Tabulando: X(m) Y(m)
0 1.215
0.25 1.199
0.50 1.153
0.75 1.076
1.00 0.972
1.25 0.843
1.50 0.692
1.75 0.524
2.00 0.341
2.443 0
Obtención del perfil de la sección estable para Q = 12 m 3/s Como
X X , X X . X X1.029 m
Tabulando: X2(m) 0 0.50 1.029 1.275 1.529 1.775 2.029 2.279 2.529 2.779 3.029 3.472 Y(m) 1.215 1.215 1.215 1.199 1.153 1.076 0.970 0.843 0.692 0.524 0.341 0
Universidad Autónoma de Sinaloa
Página 106
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
El ancho total es:
B BB 4.8862.056 B 6.944 m
El área hidráulica total es:
A AA, pero A BY 2.0581.215 A 2.5 m A 3.7792.50 A 6.279 m La velocidad media es:
VQA⁄ 12.006.⁄ 279 V1.911 mseg
Tenemos:
Obtenga el perfil de la sección hidráulica estable ideal para un canal cuyos datos son los siguientes:
Gasto de diseo Q60m⁄seg, S 0.001; D 46 mm 2650kgm⁄ ; 36; n0.025. Universidad Autónoma de Sinaloa
Página 107
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Solución.-
Igualando esfuerzos cortantes (resistentes y actuantes) se tiene que:
0 . 0 46 Y 0.046 SD 0.0470.9276501000 10000.0025 Y 3.678 m
Además:
B2X . B15.904 m ancho superior X . X 7.952 m A t2Yan 2t3an36.678 A37.239 m area hidrailuca E 1sin sinω dω1.425de talas para integral eliptica P si2YnE 23.6si78n361.425 P17.834 m perimetro mojado R Y cosE 3.678cos38 R2.088 m radio hidraulico. 1. 4 25 A 37. 2 39 Q n R S 0.024 2.088 0.0025 Q76.95 mseg Entonces [Q2 = 76.95 m 3/seg ] > [ Q = 60 m 3/seg ], habrá que remover una porción vertical de la sección en la parte central del canal.
Calculo del ancho B’ B B 1 15.904 1 ./ B 7.464 m 1 a reducir al ancho B calculado
Obtención del perfil de la sección estable para Q = 76.95 m 3 / seg
Universidad Autónoma de Sinaloa
Página 108
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Como YY cosXtYan, YY cosXtYan en radianes Y3.678cosXt3.a6n3678 3.678cos0.198 X rads- 3.678cos11.318 xTabulando: X(m) Y(m)
0.00 3.678
1.00 3.606
2.00 3.395
3.00 3.051
4.00 2.588
5.00 2.025
6.00 1.383
7.00 0.688
7.952 0.00
Perfil de la sección estable para el gasto de diseño ( Q 1 = 60 m 3 / s).
X X X . X X3.732 m para X
).
Ecuación a utilizar:
Y3.678cos11.318 X 42.239Tabulando:
X(m)
0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.22
Y(m)
2.723
2.466
2.185
1.882
1.562
1.226
0.878
0.521
0.160
1.00
El ancho total es B BB 15.9047. 4 64 B 8.44 m 2Y0 2 2 . 7 23 El area hidruilca es: A AA tan tan36 A 20.411 m La velocidad media es: V . V2.940 mseg Universidad Autónoma de Sinaloa
Página 109
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
IV. REGIMEN CRÍTICO Defina energía específica.Resp.
La energía especifica (E) en la sección de un canal se define como la energía por unidad de peso de agua en cualquier sección de un canal medida con respecto al fondo del canal (esto es Z = 0). Entonces
V V Ed cosθ α 2g EYcos θα 2g Ed EY
Para un canal con pendiente S 0 < 0.01 y
= 1 quedaria:
(este concepto lo introdujo en 1912 Boris A. Bakhmeteff )
Diga cinco maneras de identificación de un flujo en régimen critico. Resp. I) En régimen crítico la energía específica es mínima para un gasto dado (concepto introducido en 1919 por Paul Boss) II) En régimen crítico se conduce el gasto máximo posible para una energía específica dada. III) En régimen crítico la fuerza específica dado.
F AY
es mínima para un gasto
IV) en régimen crítico la altura de velocidad es igual ala mitad de la profundidad hidráulica. Esto es
Universidad Autónoma de Sinaloa
Página 110
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
V) en régimen crítico el número de Froude es igual ala unidad. Esto es:
o ien para canal de pendiente pequea y α1
Y al tirante de un flujo en régimen crítico es conocido como tirante crítico (Yc)
Diga que se conoce como tirantes alternados Y1 e Y2 .Resp. Son aquellos que para un canal y gasto dado, les corresponde la misma energía especifica y son tales que uno (Y1) es menor que el tirante critico (Yc), y el otro (Y2) es mayor que el tirante critico,
¿Cuándo se dice que un flujo esta en régimen (a) supe critico o rápido, (b) subcrítico o lento?
1 1
Resp. a) cuando el tirante del flujo (Y1) es menor que el tirante critico (Y1 > Yc), o cuando la velocidad del flujo es mayor que la unidad ( se dice que el flujo es SUBCRITICO O LENTO, esto es : Y2 > Yc, V2 > Vc y . b) cuando el tirante del flujo (Y2) es mayor que el tirante critico (Y2 < Yc ) , o cuando la velocidad del flujo es menor que la velocidad critica, o bien si el numero de froude del flujo es menor que la unidad se dice que el flujo es SUBCRITICO O LENTO esto es : Y2 > Yc, V2 > Vc y .
1 1
¿Qué condiciones se requieren para que al tirante critico le corresponda la mínima energía especifica para u gasto y sección dadas? Resp. Que las líneas de corriente sean paralelas (flujo uniforme ) e incluso en flujos co líneas de corriente gradualmente divergentes a convergentes (flujo gradualmente variado) es razonablemente aproximado el concepto.
Defina (a) Pendiente crítica, (b) Pendiente suave, (c) Pendiente fuerte Resp. a) PENDIENTE CRITICA (Sc) . Es aquella que para una sección y gasto dado mantiene un tirante en flujo uniforme igual al tirante critico (esto es, si So = Sc entonces Yn = Yc )
Universidad Autónoma de Sinaloa
Página 111
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
b) PENDIENTE SUAVE.- Es toda pendiente menor que la critica calculada para la sección y gasto del canal en cuestión y sus tirantes ( Yn) de flujo uniforme son menores que el tirante critico ( esto es So > Sc, Yn < Yc )
c) PENDIENTE FUERTE.- Es toda pendiente mayor que la critica calculada para la sección y gasto del canal en cuestión y sus tirantes ( Yn) de flujo uniforme son mayores que el tirante critico ( esto es So > Sc, Yn < Yc )
¿Qué es el factor de sección Z para cálculos de flujo crítico?
1 A , donde Dtirnante hidraulico A√ D , lo cual es el factor de sec ion. Z o ien Z A√ D
Resp. Es un parámetro útil para el cálculo y análisis del flujo critico. De la ecuación general de régimen critico (con
Finalmente
¿A que se le conoce como exponente hidráulico M para flujo critico? Resp. Es un valor característico de la sección del canal bajo la condición de régimen critico.
√
Como el factor de sección , entonces por lo que se puede escribir , donde Y = tirante del flujo , o bien donde c= coeficiente y M es el parámetro llamado exponente hidráulico para flujo critico.
Para canales trapeciales:
Universidad Autónoma de Sinaloa
Página 112
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
3 * 1 2t Y M 1 2t Y2t -Y1t1Yt-Y-+ Para canales rectangulares
Para otras secciones:
1Z2 M2LogLogYZ1Y2
M3
Donde: Z1, Z2 son los factores de sección para dos tirantes Y1, Y2 cuales quiera de la sección dada.
Defina sección de control del flujo. Resp. Es la sección donde se establece una condición de flujo definido, esto es una relación única entre el tirante del agua y el gasto que pasa por esa sección. Además controla el flujo de tal manera que evita la transmisión del efecto de cambios con la condición del flujo ya sea hacia aguas arriba o hacia aguas abajo dependiendo del régimen del flujo en el canal.
–
Cuestiones a discutir Régimen critico. ¿En casos una onda elemental puede viajar hacia arriba de un canal y en que casos no?
¿Por qué el tirante crítico no corresponde al tirante de mínima energía específica de una caída hidráulica libre? ¿A que distancia del borde de la caída se localiza el tirante crítico?
¿En que casos la línea recta a la cual se hace asintótico la rama superior de la curva de la ecuación de la energía específica (E) de un canal para un gasto y sección dadas, en un sistema E vs Y, no está a 45° de los ejes?
¿Par que nos puede servir una sección de control de flujo en un canal?
¿Si el numero de froude que caracteriza a un flujo en un canal abierto es menor que la unidad, que acarreará al nivel libre de agua Universidad Autónoma de Sinaloa
Página 113
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
a) Un aumento en la elevación de la plantilla? b) Un aumento en el ancho del canal?
¿En que tipos de modelos es utiliza el numero de froude como base de la semejanza hidráulica? ¿De algunos ejemplos?
¿Si la velocidad media en un canal es mayor que la crítica, que sucederá con el nivel del agua si se tiene a) Un disminución en la elevación de la plantilla? b) Un reducción en el ancho del canal?
sidad “n” de
¿En un canal con sección y gasto dados cambia el valor del tirante crítico (Yc) si se tiene un cambio (o se modifica) en su pendiente (So) Y/o en su coeficiente de rugo Manning? ¿Por qué? ¿Es o no conveniente diseñar canales para que trabajen en régimen crítico?. ¿Por qué?. ¿A que se debe que se recomiende que la velocidad media (V) en un canal en régimen lento sea V<0.80 Vc? ¿Por qué en las rápidas el flujo tenga una velocidad V>1.20 Vc?.
Deduzca la ecuación general para régimen crítico. Solución.
Universidad Autónoma de Sinaloa
Página 114
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Energía total (por unidad de peso ) en una sección cualquiera de un canal es:
V HZd cos θα 2g
Energía especifica ( por unidad de peso ) en una sección cualesquiera ( A) de un canal, es la energía medida con respecto al fondo del canal ( esto hace que Z = 0 ) , por lo que :
V E dcosθα 2g 0.01 , cos θ 0.99999 1 y considerando V Q E d 2g ó E d 2gA puesto que V QA derivando “E” respecto a “d” es igualando a dEdd ddd d 2gAQ 1 gAQ dAdd,haciendo dEdd 0
1
Para canales de pequeña pendiente ( S 0 , la ecuación de energía especifica queda:
Como régimen crítico es el estado del flujo para el cual la energía especifica es mínima para un gasto dado. Entonces, cero, se tiene :
Por lo tanto:
/1 ,donde B pues dABdd B1 ,o ien Ecuacion general de regimen critico. 1 QgAB AB gAQ donde D AB y V AQ V V D g se presenta del suiguiente modo gD También
Esto es:
1 Condicion para regimen critico.
Universidad Autónoma de Sinaloa
Página 115
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Entonces también puede decirse que régimen critico es el estrado de flujo para el cual el numero de froude ( ) es igual a la unidad. Graficando la ecuación de Energía Especifica:
V Q Ed 2 d 2 A
Acoparnductirirdeselela defmáxiinimcioón:gas“Etol posrégiimlene, parcritaicunao enenergía especifica dada E cte”; otenga un canal, es aquel con el que puede
la condición para régimen critico. Solución: La energía específica es:
Edcosθα para valores de θ pequeos, cos θ nsideremos α1 Ed V Ed Q E d 2g A Q 2g AEd …1 Ed …2 1, y co
como
tenemos
o bien
de donde
de aquí se observara que para d=0, Q=0 y que para d=E, Q=0 y que además entre estos dos valores existe un máximo para Q (como se ve en la figura).
Universidad Autónoma de Sinaloa
Página 116
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Considerando la energía especifica constante (E = cte.) y derivando el gasto (Q) en la ec (1) con respecto al tirante (d), e igualando a cero se obtiene el gasto máximo que se puede conducir p
or un c i e r t o c a nal empl e ando una ener g í a es p ec i f i c a “ E ” dada. Es t o es : dQdd ddd 2g A . E d-0 2gA1 12E d dAdd E d0 B Donde
, considerando
Entonces:
A B E d 0 2Ed E d 0 A2 BE d0 A⁄2BEd Ed Ed (3)
Sust. (2) en (3) se obtiene:
Q2gA 2BA Qg 2A2BA
condición del Régimen Critico.
Demuestre que para un canal rectangular, el tirante y la velocidad critica puede ser expresado por: a)
dc
b)
Universidad Autónoma de Sinaloa
V gdc
c)
dc E
.
Página 117
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Solución: a) La aplicación de la ecuación general de régimen crítico en un canal de sección rectangular es más simple puesto que:
A d ; B De la ec. gral. De régimen crítico
Qg AB , ó lo que es lo mismo Qg d c Q g dc , dc gQ ,o ien dc qg Donde q= Q/b es gasto por unidad de ancho o gasto unitario.
b) De la ecuación general: para régimen crítico:
Qg AB ó lo que es lo mismo gAQ AB donde V QA V g d V dc , V gdc c) De la ec. gral. Para régimen críticos:
o tamien donde V V dc g y como Ed 2g energia especifica dada Ecte
Edc dc2 3dc2 ,finalmente dc 23 E Universidad Autónoma de Sinaloa
Página 118
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Para un canal que transporta un gasto de 5m³/seg., calcule el tirante crítico y la velocidad crítica si la sección transversal es: a) Rectangular con un ancho de plantilla de 4.00m. b) Trapecial con b=4.00m y taludes 2:1 Solución.-
a) Para canal rectangular sabemos que:
Q 5 dc g 9.84 dc0.542 m tirante critico V gdc 9.80.542 Vc2.305mseg⁄ Velocidad critica V dcQ 40.5542 Vc2.305 mseg Qg AB , pero Adtd y B2td Q d t d 5 4 d 2d g 2td 9.8 422d2.551 ec. al resolver por tanteos, donde valores a “dc” hasta
O también
b) Para canal trapecial, con la ec. gral. de régimen crítico
satisfacer la igualdad.
Tabla de cálculos dc 0.50 0.45 0.497
A 2.500 2.205 2.482
B 6.00 5.80 5.988
A³/B 2.604 1.848 2.553
dc0.Q497 m5 Y V Ac 2.482 V 2.015 mseg Universidad Autónoma de Sinaloa
Página 119
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Un canal trapecial conduce 10m³/seg. Si tiene plantilla de 5m y taludes 2:1, determine: a) El tirante crítico de energía especifica mínima. b) La pendiente crítica, si n = 0.015. Solución.a) Para el cálculo del tirante crítico se emplearan graficas.
. z Cálculo de : Q 10 g z. . √ 59.8. 0.057 . 0.057, se otiene que dc0.1355 dc0.675m Entonces, de la grafica con:
=0.135
Grafica para Regimen Critico 50.67520.675 A 4.286 m Acdctd Vc AcQ 4.10286 Vc2.333 smeg Además:
La energía mínima para un gasto de 10 m 3/seg en el canal en cuestión es:
V 2 . 3 33 E dc g 0.675 29.8 E 0.953 m b) La pendiente critica es ; de Manning:
ScRVc⁄n , pero R ? ,entonces: Ac4.286 m Universidad Autónoma de Sinaloa
Página 120
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Pc2dcAc 4.12t860520.675 12 Pc8.019 Rc Pc 8.019 Rc0.534 m 2.30.3353490.015- ; 0.0028 pequea S o0. 0 1 , c o ns t r u ya una f a mi l i a de c u r v as de: “ e ner g í a es p ec i f i c a c o nt r a tirantes” E vs d, para gastos 2, 6 y 10m³seg. Par un canal trapecial con plantilla de 2.50m. Taludes 2:1 y pendiente longitudinal
Solución.-
Como So < 0.01, usaremos
V Q Ed 2g ó ien Ed 2gA Nota: Si la pendiente So. Fuese So >0.01, entonces deberá emplearse:
Edcosθ
Tabulando para los diferentes valores del gasto: d (m) 0.00 0.10 0.20 0.30 0.40 0.60 0.80 1.00 1.20 1.40 1.60 2.00
Q=2m3/seg
Q=6m3/seg
Q=10m3/seg
E(m)
E(m)
E(m)
∞
∞
∞
2.899 0.807 0.536 0.517 0.641 0.819 1.010 1.206 1.404 1.602 2.001
Universidad Autónoma de Sinaloa
25.295 5.660 2.424 1.454 0.973 0.971 1.091 1.253 1.433 1.622 2.011
70.087 15.367 6.199 3.328 1.635 1.274 1.252 1.347 1.493 1.661 2.030
Página 121
Manual de Hidráulica de Canales
Universidad Autónoma de Sinaloa
Facultad de Ingeniería Civil
Página 122
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Con referencia a un canal de pendiente pequeña (So < 0.01) y cuya sección es rectangular con ancho de plantilla de 2.00m, construya una familia de curvas por unidad de ancho ( q) contra tirantes para las energías especificas: E=1.00, 2.00 y 3.00m. Solución.-
La energía específica es:
V Edcosθα 2g pero como So0.01, 1 1 V Edcosθ 2g , ahora V QA , Ad V dQ Q Q Entonces e0d 2gd , pero q gasto unitario q Ed 2gd despejando q 2gdEd Tabulando para los diferentes valores de la energía especifica: E=1.0 m
E=2.0 m
E=3.0 m
d (m)
Q
q
q
0 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00
0 0.79 1.37 1.68 1.58 0 -
0 1.19 2.24 3.14 3.80 4.43 4.75 4.80 4.48 3.56 -
0 1.48 2.86 4.12 5.25 6.26 7.13 7.84 8.38 8.73 8.85 8.71 8.23 7.28 5.54 0
Universidad Autónoma de Sinaloa
Página 123
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
G r a f i c a n d o:
En un canal de sección rectangular escurre agua a una velocidad de 2.0 m/seg con un tirante de 3.00 m. determine el tirante del agua producida por:
Universidad Autónoma de Sinaloa
Página 124
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
a) Un escalón ascendente de 0.60m, en el fondo del canal. b) Un escalón descendente 0.15m, en el fondo del canal. c) Determine el máximo tamaño del escalón ascendente que se pueda colocar sin que
camie el tirante de aguas arria considere ho0.
Solución.-
a como tiene que q q , se
E E,z0.60 m
Entonces, tenemos que:
V E E z pero Ed 2g Por lo tanto
V V d 2g d 2g z donde V 2 smeg y V ? m 6 V AQ Qd qd pero q q Vd 23 mseg V 6d Entonces
2 6 3 29.81 d 29.81d 0.60 2.604d 1.d837 Resolviendo la ecuación se obtiene que:
Universidad Autónoma de Sinaloa
Página 125
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
d *21..2037m8m pero ¿cual es el valor verdadero d?veamos que tipo de r q 6 d g 9.8 d 1.543 m d d el regimen es sucritico LENTO Grafica “E d” Calculo del tirante crítico
Como
-
De la gráfica se obtiene que:
d d d d
=2.237
E E ,z0.13m Se tiene que:
V V E E z d 2g d 2g z ; donde V d6 2 6 3 29.8 d 29.8d 0.15 3.354 d 1.d837 Universidad Autónoma de Sinaloa
Página 126
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Resolviendo la ecuación se obtiene que:
d*30..187158 mm
y para saber cual es el valor verdadero de d2, hay que saber que tipo de régimen existe. Como d1 > dc, el flujo es subcrítico (lento).
De la gráfica se obtiene que:
d d d d 3.171 m c zmax ? Se tiene que:
z max E E ,para canal rectangular E 32 d V 3 2 z maxd 2g 2 d z max3 29.8 32 1.543 Entonces
zmax0.890 m
En un canal trapecial de 6.00m de plantilla y taludes 2:1, escurre 60m³/seg. Con un tirante de 2.60m. si en un cierto lugar existe una transición gradual a sección rectangular de 6.00m de ancho acompañado de un desnivel gradual y descendente de la plantilla de 0.50m.Determine el tirante del agua en el canal rectangular.
Universidad Autónoma de Sinaloa
Página 127
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Solución Datos:
6m ; 6m t2 ; Q60m seg d 2.6 m ; z0.50 m d ? Para la sección (1)
AdQ td60 62.622.6 29.12m V A 29.14 2.060 mseg Calculo de la energía específica en (1)
V 2 . 0 6 E d 2g 2.60 2908 E 2.817 m Energía entre las secciones (1) y (2) , despreciando perdidas
V V E E z , donde E d 2g d 2gd como q Q 606 10m⁄seg⁄m , se tiene 2.817d . 0.50 3.317d . Resolviendo por tanteos se tiene que:
d *12..8590 mm , pero ¿cual es el valor cor ecto? g. √ 9.86Q6. 0.217 de la grafica correspondiente se otien
Calculo para el tirante crítico para la sección (1).-
Universidad Autónoma de Sinaloa
Página 128
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
d 0.3 , d 0.30.361.8 d 1.8 m como d d , el flujo es sucritico lento .
De la gráfica:
d d d d 2.50 m En un canal de sección rectangular escurre agua a una velocidad de 2.50m/seg. con un tirante de 1.80m. Si el ancho del canal se amplia de 3.00m a 4.00m y la elevación del canal se aumenta en 0.30m en una determinada sección, ¿Cuál será el tirante en la sección ampliada? (NOTA: no considere perdidas de energía y utilice un procedimiento grafico). Solución.Datos:
V 2.50 smeg d 1.80 m 3.00 m 4.50 m z0.30 m d ? La energía especifica en (1) es:
Universidad Autónoma de Sinaloa
Página 129
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
V 2 . 3 0 E d 2g 1.80 29.8 E 2.119 m E E z2.1190.30 E 1.819 m m - QAV dV 31.8 2.5 Q13.50 seg Se graficara “gasto unitario contra tirante” q vs d – E 2.119 m y E 1.819 m con q E d2gd La energía especifica en (2) es:
El gasto que transporta al canal es :
para las energías
Tabulando
para E 2.119 m
d 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.119 q 0.00 1.227 2.322 3.274 4.068 4.683 5.093 5.253 5.103 4.501 3.054 0.000
para E 1.819 m d q
0.00 0.000
0.20 1.127
0.40 2.109
0.60 2.933
0.80 3.575
1.00 4.007
1.20 4.180
1.40 4.092
1.60 3.315
1.80 1.098
1.819 0.000
Graficando: " q vs d" Donde q= Q/b, entonces
q 13.3.0500 4.5 m segm q .. 3.0 m³ seg m Universidad Autónoma de Sinaloa
Página 130
Manual de Hidráulica de Canales
De la grafica se obtiene que:
Facultad de Ingeniería Civil
d 1.64 m
Con la finalidad de medir gastos, el ancho de un canal rectangular se reduce de 3.50m a 2.50m y se levanta la plantilla 30cm en una determinada sección. (a) Siendo el tirante del agua de 2.20m, ¿Qué gasto implicaría un descenso de 15cm. en la superficie libre del agua en la zona sección medidora (desprecie perdida de energía)? (b) Un gasto de 8.0m³/seg. ¿Qué descenso provocara en la S.L.A. si d1=2.00m?. Solución.-
Datos: b1 =3.50 m
b 2=2.50 m
Universidad Autónoma de Sinaloa
z=0.30 m
Página 131
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
a Q? para d0.15 m Sabemos que:
V Q E E z ,pero Ed 2g d 2gA Q Q d 2gA d 2gA z ,donde d 2.20 m y d d zd2.200.300.15 d 1.75 m Despejando Q d zd , pero Ad 1 Q 2gd1zd d 2gd Q 29.83.5101.27.50.20 300.29.8202.5101.75 0.0.00180515 Q√ 83.101 , Q9. 116 mseg d? para Q8m ⁄seg y d 2.00 m Sustituyendo valores conocidos
Sabemos que:
Q E E z, donde Ed 2gA y Ad E d 2.00 ... 2.067 m Entonces
Universidad Autónoma de Sinaloa
Página 132
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Tenemos pues que:
Q 8 2.067d 2gA z 2.067d 29.812.5d 0.30 1.767d 0.d522 Resolviendo por tanteos obtenemos que d2 = 1.55m
Ahora que el descenso en la S.L.A. es:
dd zd d2.000.301.55 d0.15 m
Un canal rectangular de 6.00m de ancho conduce un gasto de 31.50m³/seg. con un tirante de 2.80. Si en una determinada sección se requiere reducir la sección a 4.50m, que cambio deberá realizarse el la elevación de l plantilla del canal para que el cambio de la elevación de la superficie libre del agua (S.L.A.) sea nulo. No considere perdidas de energía.
Solución.Calculo del tirante crítico (dc). Sección rectangular
d gQ 9.831.65.00 d 1.412 m como d 1.412 md 2.80 m ,EL FLUJO ES SUBCRITICO O LENTO En este tipo de flujo una reducción del ancho (aumento del gasto unitario q =Q /b) implica un descenso de la superficie libre del agua y que un escalón gradual descendente (aumento de energía especifica) provoca una elevación en el nivel libre del agua. Entonces:
Universidad Autónoma de Sinaloa
Página 133
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Se tiene que:
V Q E E z donde Ed 2g d 2gA , y Ad Q 3 1. 5 0 E d 2gd 1.80 29.86.002.80- E 2.979 m Q E d 2gd , donde d d z2.80z 3 1. 5 0 50 E 2.80z 29.84.502.80z- E 2.8z 2.82.0z 50 z 2.9792.80 2.82.0z 50 2.9792.8z 2.82.0z 50 2.80z 0.2.15790 0.179 2.82.0z 2.80z 13.9665 2.80z13.96659⁄ z3.73722.80 z0.97372 m Entonces
Además
Por lo que:
Sustituyendo E2 y E1 en la ecuación A
Elevando a la ½ ambos miembros e tiene que :
Universidad Autónoma de Sinaloa
Página 134
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Lo que viene a ser la altura del escalón descendente colocado en la zona de la reducción del ancho de la sección.
Un canal rectangular de ancho constante tiene en su piso en una cierta sección, un escalón ascendente de 0.05m de altura. Cuando el tirante de llegada de flujo es de 0.20m ¿Que gasta por unidad de ancho (q)? indica: a) una caída de 0.01m en la elevación de la superficie libre del agua sobre el escalón (desprecie perdidas de energía). b) Un aumento de 0.01m en la elevación de la superficie libre del agua ( S.L.A) sobre el escalón (desprecie perdidas de energía).Solución.-
; q q V V q q E E z d 2g d 2g z d 2gd d 2gd z q q como cte , q q q d 2gd d 2gd z de donde “q” resulta 2 gd d qd zd-d d donde d 0.20m; z0.05 m ; d d z0.010.20.050.010.14 m Universidad Autónoma de Sinaloa
Página 135
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
q 0.140.050.20-29.0.8160.10.6200.20q0.087m⁄seg m q? E E z ,procediendo de maner a anal oga resulta que q 0.160.050.20-.... . q0.354m⁄seg m Por un canal rectangular escurren 30m³/seg. Con un tirante de 1.00m.Un puente que va a construirse sobre este canal, requiere pilas espaciadas 3.50m entre sus centros. Suponiendo que las pilas tienen perfil aerodinámico y un rozamiento tal que puede despreciarse las perdidas de energía (todas). ¿Cuál es el grosor (e) máximo que pueden tener las pilas para no ocasionar efectos de remanso aguas arriba del puente? Solución.-
Sección transversal
A d10.501.0010.50 m (Antes del puente)
Universidad Autónoma de Sinaloa
Página 136
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Solución.La energía especificada antes de las pilas del puente (E1) es:
V Q 3 0 E d 2g d 2gA 1.00 29.810.50 E 1.416 m que “e” sea máx. e –
Haciendo E1= E zonas de pilas = 1.416m y por no considerarse perdidas de energía. Para max) se requiere que 3.5 e sea mínimo y para que no se provoque remanso se requiere que el tirante en la zona de pilas sea el crítico par la energía que allí se tenga. Esto es Ec=E zona de pilas= E1= 1.416m
Par sección rectangular:
d 23 E , d 23 1.416 d 0.944 m Además, también se tiene que:
Q d g ⁄ Q 3 d g3.5e ⁄ Q 3 3. 5 e dg 3.5 e3.482 emax0.018 emax0.018 m
Que aplicándolo a la zona de pila resulta:
Despejando:
Un canal trapecial de 6.00m de plantilla, taludes 2:1, en un cierto lugar cambia de pendiente suave (So < Sc) a pendiente fuerte (So < Sc). Si
Universidad Autónoma de Sinaloa
Página 137
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Hay una corta y gradual transición a una sección rectangular de 5.50m de ancho justo antes del inicio de la pendiente fuerte; (a) determine el tirante en los extremos e la transición cuando escurra 20m³/seg; (b) ¿Qué ancho debe tener las sección rectangular al fin de que produzca un tirante de 1.50m en el extremo trapecial de la transición?(no consideren perdidas de energía).
Solución.-
a) La sección (2) es una sección de control, por lo que d 2 = do entonces:
d d gQ 9.8220.5 d d 1.105 m Como E1=E2, se tiene:
V V d 2g d 2g , V AQ 5.5201.105 30291mseg⁄ Q 3 . 2 91 2 0 d 2gA 1.105 29.8 d 29.86d 2d 1.658 d 6d20. 2d408 1.658 m por tanteos: d 1.557 m ? si d 1.50 m A d d 1.5021.50 13.50 m Universidad Autónoma de Sinaloa
Página 138
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
V AQ 13.2050 1.481 smeg V 1 . 4 81 E d 2g 1.50 29.8 E 1.612 m haciendo E E ycomo E E 1.612 m , entonces E 1.612 d 1.075 m Además también sabemos que:
Q Q d g , desp. gd
Sust. valores conocidos
2 0 9.81.075 5.732 m
Universidad Autónoma de Sinaloa
Página 139
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
V.- FLUJO GRADUALMENTE VARIADO
Defina flujo gradualmente variado. Resp.- es el punto permanente cuya profundidad varia poco apoco a lo largo de canal lo que conduce a considerar líneas de corriente prácticamente paralelas.
Diga las hipótesis básicas del flujo gradualmente variado. Resp.1.- la perdida de carga en una sección es l a misma que la de un flujo uniforme teniendo la velocidad y radio hidráulico de la sección. 2-. La pendiente del canal es pequeño (So< 0.1) de tal manera que: a)
Yd , esto es cosθ1.
b) El factor de corrección de la presió c) No ocurre arrastre de aire.
n “cosθ” es igual a la unid
ad.
3.- El canal es prismático, esto es, tiene alineamiento y forma constante 4.- Los coeficientes de distribución de la velocidad son constantes. 5.- El coeficiente de rugosidad es independiente de la profundidad del flujo y es constante a través del tramo del canal en consideración.
Escriba las diferentes formas de representar la ecuación de flujo gradualmente variado. Resp. Son:
dydx 1SαQSg AB Universidad Autónoma de Sinaloa
S S dydx 1 Página 140
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
⁄ dy 1 k n k c dx S 1rZc⁄Z , donde d S ⁄, donde
knf Yn; kf Y r
Scn= pendiente critica para el tirante normal del gasto Q.
⁄ dy 1 Q Qn e dx S 1rQ⁄Qc Donde:
Q es el gasto del flujo gradualmente variado para el tirante real “Y” Qn es el gasto normal para un tirante igual a Y. Qc es el gasto crítico para un tirante igual a Y.
f) para canales rectangulares y anchos ( R=Y)
S ⁄⁄ S ⁄⁄
empleando la ecuacion de Manning. empleando la ecuacion de Chezy.
A partir de la ecuación de flujo gradualmente variado, haga un análisis cuantitativo de los diferentes perfiles de flujo que pueden presentarse en canales con pendientes positivas (que baje en la dirección del flujo). Resp.- se utilizara la siguiente ecuación del flujo gradualmente variado (para el análisis):
dYdx 1FS S
Sabemos que si:
Y> Yc, el régimen del flujo es SUBCRITICO y por lo tanto < 1
Y=Yc, el régimen del flujo es CRITICO y por lo tanto =1
Universidad Autónoma de Sinaloa
Página 141
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Y1 Y que para un gasto dado y la mayoría de las secciones usuales S=So si Y=Yn, S>So si Y Y nade mas, se sabe que si
YnYc. La pendiente So es “SUAVE “M YnYc, la pendiente So es “CRITICA” C YnYc la pendiente So es “FUERTE” S Yn∞ pendiente So es “HORIZONTAL” H Yn es importante, la pendiente So es “ADVERSA”A.
pendientes positivas
, la
Para la clasificación de los perfiles es necesaria hacer uso de las zonas o espacios generados por el trazo, a lo largo del canal, de las líneas que representan el tirante normal y el tirante crítico esto es: Zona1, es el espacio por encima de la línea superior (Y>Yn>Yc ó Y>Yc>Yn). Zona2, es el espacio entre las dos líneas (Yn>Y>Yc ó Yc>Y>Yn). Zona3, es el espacio por debajo de la línea inferior (Y
CASO A.- Y>Yn>Yc esto nos indica que el perfil esta en la zona 1. Como: Yn>Yc, la pendiente So es suave (M) y al perfil se le conoce como MI.
Y>Yc, el régimen es subcrítico por lo que < 1 y entonces 1- ² > 0.
– positivo
Y>Tn, entonces S 0. Por consiguiente
Lo que nos indica que el tirante (Y), en el perfil MI, crecerá en la dirección del flujo.
Universidad Autónoma de Sinaloa
Página 142
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
CASO B.- Yn > Y > Yc Esto nos indica que el perfil esta en la zona 2 como: Yn > Yc , la pendiente So es suave ( M ) y al perfil se le conoce como M2
Y > Yc , el régimen es sibcritico por lo que < 1 y entonces 1
–
Y < Yn , entonces S > So por lo que So S < 0
Por consiguiente:
–
2 >
0
positivo
Lo que nos indica que el tirante (y) , en el perfil M2, decrecerá en la dirección del flujo.
CASO C.- Y < Yc < Yn Esto nos indica que el perfil esta en la zona 3, como : Yn > Yc , la pendiente So es suave (M) y al perfil se le conoce como M3
Y < Yc , el régimen es supercrítico por lo que > 1 y entonces 1
–
Y < Yn , entonces S > So por lo que So S < 0
Por consiguiente:
–
2 <
0
positivo
Lo que nos indica que el tirante (Y) en el perfil M3 , crecerá en la dirección del flujo.
CASO D.- Y > Yc > Yn esto nos indica que el perfil esta en la zona 1
Como: Yn < Yc , la pendiente So es fuerte (S) y al perfil se le conoce como S1 Y < Yn, entonces S < So por lo tanto So - S > 0
Por consiguiente:
positivo
Lo que nos indica que el tirante (Y) en el perfil S1 , crecerá en la dirección del flujo.
Universidad Autónoma de Sinaloa
Página 143
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
CASO E.- Yc > Y > Yn Esto nos indica que el perfil del flujo esta en la zona 2 Como:
Yn < Yc, la pendiente So es el fuerte (S) y al perfil se le conoce como S2
Y < Yc, El flujo es súper critico por lo que > 1 y entonces 1
–
Y > Yn entonces S < So por lo que So S > 0
Por consiguiente:
–
2 <
0
negativo
Lo que nos indica que el tirante (y) en el perfil S2 , decrecerá en al dirección del flujo
CASO F.- Yc < Y < Yn Esto nos indica que el perfil del flujo esta en la zona 3 Como:
Yn < Yc, la pendiente So es el fuerte (S) y al perfil se le conoce como S3
Y < Yc , El flujo es supercritico por lo que > 1 y entonces 1
–
Y > Yn entonces S < So por lo que So S > 0
Por consiguiente:
–
2 <
0
negativo
Lo que nos indica que el tirante (y) en el perfil S2 , decrecerá en al dirección del flujo
CASO G .- Yc > Y = Yn Esto nos indica que el perfil del flujo esta en la zona 1 Como:
Yn = Yc, la pendiente So es la critica (C) y al perfil se le conoce como C1
Y > Yc , El régimen del flujo es subcrítico por lo que < 1 y entonces 1
–
–
2 >
0
Y > Yn entonces S < So por lo que So S > 0
Por consiguiente:
Lo que nos indica que el tirante (y) en el perfil C1 , decrecerá en al dirección del flujo.
Universidad Autónoma de Sinaloa
Página 144
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
CASO H.- Yc < Y = Yn Esto nos indica que el perfil del flujo esta en la zona 3 Como:
Yn = Yc, la pendiente So es la critica (C) y al perfil se le conoce como C3
Y < Yc , El régimen del flujo es supercrítico por lo que > 1 y entonces 1
– positivo
Y < Yn entonces S > So por lo que So S < 0
Por consiguiente:
–
2 <
0
Lo que nos indica que el tirante (y) en el perfil C3, decrecerá en al dirección del flujo. Esquematice los perfiles superficiales que en el flujo gradualmente variado pueden presentarse. Resp.
Universidad Autónoma de Sinaloa
Página 145
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
conocido como “METODO DE INTEGRACION GRAFICA” , entonces dxdY , y si se concideran
Desarrolle y presente el método de cálculo de perfiles de flujo gradualmente variado Resp,- Se basa en integrar gráficamente la ecuación del flujo gradualmente variado. Es decir, como:
Dos secciones del canal cuyos tirantes y1 e y2 se localizan a x1 y x2 metros respectivamente de un origen elegido. La distancia a lo largo del fondo existente entre ambas secciones es:
x ∫ dx ∫ dY , como F entonces F f Y y como S⁄-,entonces Sf Y, lo que nos l eva a que f Y, por lo tanto x2x1 ∫ f Ydy, lo que nos indica
Que la distancia existente entre los dos tirantes Y2 =Y1 es igual al área bajo la curva de la función f(Y) entre los limites Y2 = Y1, es decir:
Universidad Autónoma de Sinaloa
Página 146
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
El procedimiento se reduce a proponer una serie de tirantes próximos ente si y cuyos valores están comprendidos aproximadamente en el rango del perfil del flujo qe se esta calculando. Para cada tirante propuesto se calcula su correspondiente f(Y) , después de
haer hec h o es t o s e gr a f i c a n l o s val o r e s de “ Y ” cont r a s u s r e s p ec t i v os val o r e s de “ f Y ” . Fitirnaalntmesent“Ye” de la grafica se otiene las distancias “x” a que se localizan los distintos ent a j a s y des v ent a j a s de c á l c u l o de per f i l e s de f l u j o c o noc i d o c o mo “ M ETODO DE INTEGRACION GRAFICA”. Indique v Resp.-
Ventajas: Se aplica en canales prismáticos de cualquier forma y permite. El método es directo y fácil (no hay tanteos)
Desventajas: Es laborioso.
Descruza la ecuación en que se asa el “METODO DE INTEGRACION DIRECTA” para flujo “in tegrantig the equation of gradually varied flow” y pulicado e gradualmente variado.-
Resp.- Esta ecuación fue presentada por Ven Te Chow en sus trabajos titulados:
n proceedings, American Society of Civil Engineers, Vol. 81, pp. 1-32, noviembre, 1955. Este trabajo de chow, está basado en muchos estudios anteriores avocados a la integración de la ecuación dinámica de flujo gradualmente variado, principalmente en lo realizado por J.A. Bresse (1860) y por A. Bakhmeteff (1912).
De la ecuación de Manning y Gasto podemos decir que: La pendiente de energía (S) se puede calcular con:
S.
Universidad Autónoma de Sinaloa
(1)
Página 147
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
La pendiente de fondo (So) se puede calcular bajo la condición de flujo uniforme:
S .
(2)
Donde
f (Yn); Rn= f (Yn)
Ahora, con (1) y (2):
1 1
Y se considera posible la siguiente expresión:
(A R )GY
Donde C= coeficiente N= exponente hidráulico (depende de la forma de la sección). Entonces:
S SS 1 /
(4)
Sabemos que el número de froude es:
, y como se tiene que
(5)
Donde Ac y Bc son los valores de A y B para el estado crítico. También es factible suponer que Donde
C Y
C= coeficiente M= exponente hidráulico (depende de la forma de la sección).
Universidad Autónoma de Sinaloa
Página 148
Manual de Hidráulica de Canales
Entonces
Facultad de Ingeniería Civil
/ M
(6)
La ecuación dinámica del flujo gradualmente variado se puede escribir como:
1 dx S dY dxdx - dYdY d
Con (4) y (6)
Haciendo u= Y/Yn, en (7) tenemos:
YMYM dxdx YS 1 1YY1u1uMNYMdu YS 1 Y11uN Y u Y Y Mu M u Y Y Y Mu M u u dxdx S u 1 dudu S 1 u du 1 Y 1 u 1 u Y Y Mu M u u ( ) ( ) dxdx S du, operandondo queda: 1 u Y 1 Y u dxdx S 1 1 u Y M 1 udu 8
O bien
Sumando y restando el término
en en el numerador del paréntesis:
Se puede suponer constantes los exponentes hidráulicos M y N dentro de los límites de integración, debido a lo pequeño que es el cambio de tirante en el flujo gradualmente variado, de esta forma la ecuación anterior resulta:
X u ∫ / M ∫ duu
Universidad Autónoma de Sinaloa
(9)
Página 149
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
La primera integral de la expresión (9) depende solo de u y N y se designa por:
Fn.n. N ∫ u ………. 1010la cual se conoce como “Función de flujo variale”. V u u V En la segunda integral de la expresión (9) Chow propone que
entonces
y y J = N/(N-M+1)
, como lo cual dicha integral se transforma en:
v u du v 1 u du 1 v d v 1 v v dv V V V V1 ∫ du ∫ FV,V, J …………. Como
, finalmente:
(11) (11) ésta también es una
Función de flujo variado como como F (u, N) excepto que las las variables u y N son remplazadas por V y J respectivamente. Sustituyendo las expresiones expresiones (10) y (11) en la expresión (9) se tiene que:
x YS u Fu,u, N YY M FVFV,, J
De lo anterior se establece que la distancia 1 que separa dos secciones consecutivas (1) y (2), de características conocidas, en un flujo gradualmente variado, es:
L x x u u Fu N Fu, N- / M FV, J FV, J- Donde:
Y N ; Y 12 Y Y u Y ; vu v u ; J NM1 PrDELesePASOnte elDImétRECTO” odo de. cálculo de flujo gradualmente variado conocido como “METODO Universidad Autónoma de Sinaloa
Página 150
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Resp.
Si aplicamos la ecuación de energía entre dos secciones 1 y 2 suficientemente próximas de un canal, se tiene
Y Z Y Z h y como Y E enerenergigia espepecicificaca; Z Z ZSx , h Sx entonces E SxE Sx.de donde x ESSE ó x S ES De esta manera se otiene la distancia Δx a que se encuentran osy además seccionesel val, a couryosde “ ̅” en tirantes del flujo corresponden las energías especificas E 1 y E2 la ecuación es el valor promeio de los pendientes de energía S 1 y S2 correspondientes a dichos tirantes.
Se recomienda utilizar la siguiente tabla de cálculos:
y
A
P
P
Universidad Autónoma de Sinaloa
V
V 2/2g
E
ΔE
S
̅ Δ
X
X
Página 151
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
variado conocido como “METODO DEL PASO PASO DIRECTO”
Indique las ventajas y desventajas del método de calculo de perfiles de flujo gradualmente Resp.
Ventajas: Es sencillo y directo.
Desventajas: Solo se aplica a canales prismáticos.
Explique el “METODO DEL PASO DIRECTO” que se utiliza para
el calculo de los tirantes en
un flujo gradualmente variado
Este método se basa en el principio de la energía (utilizando la ecuación de Bernoulli ) , aplicando a un tramo de canal cuyas secciones extremas 1 y 2 se encuentran suficientemente próximas entre si . Teniendo conocidas las características geométricas de
la sección “” y “t“t” , el gasto Q . el coeficiente de rugosidad n , la pendiente de fondo f ondo
( S0 ) y además el tirante ( Y ) de la sección que rija en el tramo en estudio ( esto es, la sección de aguas arriba si el flujo es supercrítico o la sección de aguas abajo del tramo si el flujo es subcrítico ) , se procede a obtener el tirante desconocido de la sección correspondiente , resolviendo resolviendo por prueba y error (tanteos) la siguiente expresión:
Y SxY Sx pendiente de energía “S” se calcula utilizando los valores promedios de S ⁄ - ,donde V V V; R R R Mencione ventajas y desventajas del “METODO DEL PASO ESTANDAR”. En este caso la velocidad ( V m ) y de radio hidráulico ( R m ). Es decir:
Resp. Ventajas: se puede utilizar para para canales prismáticos, como también para canales no prismáticos, esto es, en ríos, canales de sección y/o pendiente
Desventajas: Requiere de tanteos a la hora de calcular cada tirante, lo que convierte en un método lento y tedioso a no ser que se utilice una u na computadora y su correspondiente programa.
Desarrolle el procedimiento a seguir en el calculo de un perfil de flujo gra-
Universidad Autónoma de Sinaloa
Página 152
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Dualmente variado si se utiliza el “METODO DE INTEGRACI INTEGRACION DIRECTA”.
Resp. Datos necesarios: necesarios: El gasto Q, la pendiente de fondo S 0, el coeficiente de rugosidad n, el ancho de la plantilla y el talud, así como los tirantes de los extremos del tramo en estudio.
Procedimiento a seguir: 1.- calcular los tirantes normal ( Yn ) y critico ( Yc ) para los datos del canal en estudio.
exponentes hidráulicosN yMYpar Yael,dtionderante promedio “Y” estimado para el tramo 2.- Obtener de gráficos (o con las ecuaciones correspondientes) correspondientes) los valores de los
considerado, esto es tramo.
Y1 e Y2 son los tirantes ti rantes en los extremos del
3.- Calcular el parámetro J con J = N/(-M+N+) 4.- Calcular los valores
uYY⁄ y vu
para las secciones extremas del tramo para
5.- Determinar los valores de las funciones de flujo variado F (u,N ) y F ( v,J ) para las secciones extremas, utilizando las tablas correspondientes. correspondientes. 6.- Calcular la distancia que separa a los tirantes Y 1 e Y2 utilizando la ecuación:
L x x *u u Fu, N Fu, N- Fv, J Fv, J
]} ]}
Indique ventajas y desventajas del METODO DE INTEGRACION DIRECTA para calcular perfiles de flujo gradualmente variado. Resp. Ventajas.- Los valores sucesivos de x son independientes entre si, es decir, la determinación de la distancia que separa a dos tirantes lejanos entre si, no requiere calcular valores intermedios. Desventajas.- Es valido únicamente para canales canales prismáticos, no es recomendable recomendable para calcular perfiles completos.
Universidad Autónoma de Sinaloa
Página 153
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
¿ que cambios deben hacerse en el METODO DE INTEGRACION DIRECTA para aplicarlo a canales de pendiente adversa (pendiente negativa ) ? Resp. Se calcula el tirante normal ( Yn ) como si la pendiente fuese positiva y se utiliza la siguiente expresión:
xx x YS *u u+ Fu, N Fu, N Fv, J Fv, J du donde Fu,N 1u y Fv, J 1vdv son las funciones de flujo ]}
variado para canales con pendiente adversa.
Presente la ecuación a utilizar cuando se emplea el METODO DE LA INTEGRACION DIRECTA para el calculo de perfiles de flujo gradualmente variado en canales con pendiente horizontal (S 0 = 0). Resp. es:
xx x ⁄⁄ ⁄ Cuestiones a analizar y discutir. Flujo gradualmente variado
¿Para que perfiles del flujo gradualmente variado lea energía especifica se incrementa en dirección de (a ) aguas arriba, ( b ) aguas abajo?
–
¿En que casos las secciones de control de un flujo se localiza ( 1 ) aguas arriba del flujo (b) aguas abajo del flujo en estudio?
¿De que hipótesis se parte aplicar la ecuación de Chezy ( Manning ) al caso de un flujo gradualmente variado?.
Universidad Autónoma de Sinaloa
Página 154
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
¿En que casos de un flujo se podrá tener :
Y QueQue YY YY Y Y
a) Que Y = Yc = Yn b) Que Y = Yc n c) c n d) c = Yn
¿En que sentido deben hacerse los cálculos de los tirantes en los perfiles S1, S2, S3?.
¿En que sentido deben hacerse los cálculos de los tirantes en los perfiles M1, M2, M3?
Presente los perfiles del agua que podrían generarse en un canal cuando este comunica a dos embalses ( para diferentes niveles en la descarga )
a) Si el canal tiene pendiente subcritica. b) Si el canal tiene pendiente supercritica
Deduzca la ecuación general del flujo gradualmente variado y permanente en un canal. Solución.-
En este caso las pendientes de la línea de energías S y del fondo del canal S 0 son diferentes puesto que se tienen variaciones de tirantes y velocidad a lo largo del flujo.
Universidad Autónoma de Sinaloa
Página 155
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
La energía total en cualquier sección viene dada por:
V HZY cos θ α 2g o ien αQ HZYcos θ
2gA 1
La derivada de la ec. (1) con respecto a x ( eje correspondiente al fondo del canal ), será:
cosθ α
dAB dy B En donde:
S pendiente de energia S pendiente del fondo del canal será: . , de la FIG. 1, B ancho superior del canal B variacion del tirante Ya lo largo del canal.
Por lo que la ec. (2) se puede escribir como sigue:
SS cosθ α B , ó ien 0.01 0.573
Para canales con pendiente de fondo
Universidad Autónoma de Sinaloa
se acepta
Página 156
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
θ 1 , y en canales con
que cos2 ec. gral. En estos casos es:
distribución
de velocidades uniforme α 1 , por lo que
la
(4)
Ahora tenemos que:
QgAB gAQ BA donde QA V; AB Dtirante hidraulico pero F , F , F
(5)
Con (5) en (4) , también tenemos que la ec. gral. De flujo gradualmente variado también puede escribirse como:
Si
S 0.01
Los valores positivos de de
indican profundidad (tirantes) crecientes y valores negativos
indican profundidades decrecientes (esto es visto de izquierda a derecha)
Para canales rectangulares de gran anchura (Radio hidráulico tirante), se tiene que A = bY ; R = Y; q = Q/b; V = q/Y , por lo que la pendiente de energía según la ec. de Manning se puede obtener con:
V RS, lo que queda como sigue YS S
(7)
Para condiciones de flujo uniforme:
S
(8)
Además
Universidad Autónoma de Sinaloa
Página 157
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
QgAB gQY Q . gY1 gYq , y como Y qg Q B Y gA Y Sust. (7), (8) y (9) en (4)
⁄ ⁄ , operando S ⁄⁄⁄ Donde Y = profundidad existente. Esta ec. permite estudiar fácilmente la razón del cambio longitudinal del nivel del agua en función de tres parámetros básicos: la pendiente del fondo ( S 0 ) y las relaciones Y n / Y e Y c / Y.
Un canal de gran longitud conduce agua desde un embalse de grandes dimensiones, hasta una caída (d) hidráulica. En una sección intermedia se coloca una compuerta deslizante vertical con una aber pendiente del fondo es:
tura “a” menor que el tirante critico. Otenga el perfil del agua si la a suave S S fuerte S S
Solución.-
a)
. Por lo tanto Y n > Yc y como Y n > 0 entonces aguas arriba dela compuerta se producirá un tirante del agua mayor que el normal ( Y > Y n ) lo que genera un perfil M1 por ser sobre pendiente suave y el agua en la zona 1, esto es Y > Yn > Yc . aguas debajo de la compuerta el tirante del agua es Y < Y c < Yn lo que lo ubica en la zona 3 y como la pendiente sigue siendo suave la curva es M3. Como el flujo de la curva M3 es supercrítico y este se localiza en un canal largo de pendiente suave , esto produce se presente un salto hidráulico después de la M3. Al final del canal se tiene una caída, entonces en esta parte se alcanza el tirante critico y como el nivel del agua después del salto era uniforme Y = Y n , entonces en la cercanía de la caída, el perfil del agua esta en la zona 2 lo que nos da una curva M2. Esto es:
Universidad Autónoma de Sinaloa
Página 158
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
S S
. por lo tanto Y n < Yc y como h > Yn , entonces Tc < h por lo que se considera flujo subcrítico aguas arriba del canal y como los tramos de canal son suficientemente largos para que se establezca flujo uniforme, entonces en el tramo aguas abajo del embalse será flujo supercrítico ( pues Y n < Yc ) lo que implica que al inicio del canal el tirante Y = Y c por ser la frontera entre el régimen subcrítico y el supercrítico, además como el tirante va de Y = Y c a Y = Yn se tendrá un perfil localizado en la zona 2 y como la pendiente S 0 es fuerte (steep) la curva es del tipo S2. Aguas arriba de la compuerta Y > Y c > Yn , puesto que a Yn < Yc el perfil se localiza en la zona 1y la curva es una S1 cuyo flujo es subcrítico como se tiene que ligar la curva S2 ( aguas abajo del embalse ) de flujo supercrítico con la curva S1 (aguas arriba de la compuerta ) de flujo subcrítico, la única forma es mediante la presencia de un salto hidráulico. Aguas debajo de la compuerta como a < Y c La zona es la 3 y la curva será S3 y se prolonga hasta alcanzar el Y n con el cual llega a la rápida sin variar, ya que al flujo supercrítico no le afecta condiciones de aguas abajo (en este caso la rápida)
Universidad Autónoma de Sinaloa
Página 159
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Esquematice los efectos que ala superficie libre del agua produce las contracciones locales generadas por pilas de fuente en un canal de gran longitud. Solución.-
Cuando una corriente es dividida por interposición de una isla larga, ¿Cómo puede calcularse los gastos que escurren por cada uno de los canales circundantes?
Universidad Autónoma de Sinaloa
Página 160
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Si el flujo es subcrítico la sección control se ubica aguas debajo de la isla (sección B), y la solución puede establecerse suponiendo un par de valores Q 1 y Q2 , tal que su suma sea igual al gasto Q, con estos valores se calculan los perfiles superficiales en los dos canales, hacia aguas arriba y a partir de la profundidad en B. si el tirante calculado para la sección A es la misma por cada uno de los canales, los valores de Q 1 y Q2 propuestos serán los correctos. En caso contrario, será necesario proseguir los cálculos, con nuevos valores de Q1 y Q2 . si los flujos son supercrítico (poco común), la sección de control se ubicara en la sección A y se procede de manera similar que para flujo subcrítico.
Determinar los elementos teóricos del método de integración grafica para el cálculo de perfiles en canales prismáticos.
Solución.-
La ecuación general para flujo gradualmente variado la podemos escribir como:
dYdx 1S SQB , de Manning SARQn⁄ gA Sustituyendo y despejando dx resulta que:
Universidad Autónoma de Sinaloa
Página 161
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
dx dY Integrando entre Y1 e Y2 para conocer la distancia X 1-2 necesaria para pasar del tirante Y 1 al tirante Y2 tenemos que:
X dY
(1)
1, indicando que no hay camio en “X” al variar “Y” despreciando la
Cuando el valor del denominador (numerador) dela función integral es cero, el flujo es critico (Q2B/gA3 curvatura de las líneas de corriente) y cuando esto ocurre no se puede decir que el flujo es gradualmente variado, por lo que cuando el flujo este próximo al critico (Y=Y c) las formulas para gradualmente variado no lo describen con precisión.
es t o nos s e al c a nza ya que “ X ” t e nder í a a – c o n val o r e s de “ n ” y “ S ” c o ns t a nt e s , l a f u nc i ó n i n t e gr a l e c . # 1 nicamente de “Y”. Si esta función la denominamos F gAB Q 1 FY S Qn A R
Cuando el denominador de la función es cero (S 0=S), el flujo es uniforme y el tirante a alcanzado su valor normal (Y=Y n). Teóricamente infinito para S0 S=0.
Para un canal prismático depende ú
0
(Y) tal que :
Entonces
X FYdY Universidad Autónoma de Sinaloa
Página 162
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Lo que gráficamente x1-2 será el área bajo la curva de la función F(Y) entre los límites de e Y2 . Esto es:
La gráfica de función “F Y vs Y” para los perfiles mas comunes son:
PENDIENTES SUAVES (S O < SC)
PEDIENTES FUENTES (SO > SC)
Una compuerta instalada descarga 10m3/seg a un canal rectangular de 4.00 m de ancho, pendiente de 0.03 y una n = 0.015. Si se sabe QUE LA vena contracta a la salida de la compuerta es de 0.13 m, obtenga el perfil de la curva de descarga que se genera.
Universidad Autónoma de Sinaloa
Página 163
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Solución.-
QSn 0.10030.4050.021,de gráficas Y 0.108, Y 0.432 m.
Calculo del tirante normal 1 (Yn).
Además, comprobando con Manning si el tirante normal es el correcto: A = By = (4.00) (4.32) =1.728 m 2
P = b + 2Y = 4.00 + 2(0.432) = 4.864
. R .. 0.355 m Q R S . 0.355- 0.03- Q10.00m seg
OK.
Calculo del tirante crítico (YC)
Q 1 0 Y g 9.84 ; Y 0.861 m, y se tiene que Y Y
Ahora como la pendiente S 0 = 0.03 es fuerte y (Y0 = 0.015 m)
Universidad Autónoma de Sinaloa
Página 164
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Calculo del perfil del flujo por el método del Paso Directo
Y(m)
A(m2)
P(m)
R2/3
0.19 0.17 0.20 0.25 0.30 0.35 0.40 0.432
0.60 0.68 0.80 1.00 1.20 1.40 1.60 1.728
4.30 4.34 4.40 4.50 4.60 4.70 4.80 4.864
0.269 0.291 0.321 0.367 0.409 0.446 0.481 0.502
V Q EY V2g SvR n ̅ 2 ̅ 16.667 14.705 12.500 10.000 8.333 7.143 6.250 5.787
14.322 11.204 8.172 5.352 3.843 2.953 2.393 2.141
0.86376 0.57455 0.34119 0.16705 0.09339 0.06771 0.03799 0.03000
----0.71915 0.45787 0.25412 0.13022 0.07555 0.04783 0.033995
0 4.524 7.086 12.583 15.057 19.539 31.373 63.079
Un conductor circular de 2.00 m de diámetro conduce un gasto de 2.00m 3/seg sobre una pendiente S0 = 0.00025 y n = 0.015, si este conducto termina en una caída hidráulica (VER FIGURA), obtenga el perfil del agua que se genera antes de la caída.
SOLUCIÓN
Se resolverá el problema por el Método de Integración Gráfica, calculo del tirante normal (Yn )
. . 0.299,de talas Y 1.57 m.
= 0.785,
Cálculo del tirante crítico (Y c)
Universidad Autónoma de Sinaloa
Página 165
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Q gD 9.822 0.113,de talas YD 0.3345, Y 0.669 m. Como Yn Yc entonces S0 = 0.00028 es suave (Mild). El flujo va desde un flujo lento (Y n >Yc) establecido en el conducto hasta un régimen rápido (en la caída libre) esto genera que Yn > Y >YC por lo que la curva será uno tipo M2, cuyo calculo se hará a partir de la sección (S) en la cual se puede aceptar Y = Yc pues en la transición entre el régimen SUBCRITICO y el SUPERCRITICO
TABLA DE CALCULO
[Graficar: Y vs F (Y)]
Qg A B AQRn
Y/D
Y
A
B
R4/3
0.3345
0.669
0.9173
1.8857
0.2682
0.9972
0.0039
- 0.7671
0.35
0.70
0.9800
1.9078
0.2881
0.8273
0.0033
0.40
0.80
1.1736
1.9596
0.3230
0.4948
0.45
0.90
1.3712
1.9950
0.3616
0.50
1.00
1.5706
2.0000
0.60
1.20
1.9680
0.65
1.30
0.70
x grafica
X
0
0
- 56.623
0.890
0.890
0.0020
-288.686
17.265
18.155
0.3158
0.0013
- 651.619
47.015
65.170
0.3969
0.2107
0.0001
- 1214.308
93.296
158.466
1.9596
0.4564
0.1049
0.0005
- 3580.400
461.755
620.221
2.1616
1.9078
0.4796
0.0707
0.0004
- 6195.333
488.787
1109.008
1.40
2.3488
1.8330
0.4976
0.0577
0.0003
-188846
958.000
2067.008
0.775
1.55
2.6124
1.6702
0.5139
0.0382
0.00026
-96180
4313.500
6380.508
0.785
1.570
2.6456
1.6432
0.5148
0.0362
0.00025
-
Universidad Autónoma de Sinaloa
F(Y)
∞
∞
∞
Página 166
Manual de Hidráulica de Canales
Universidad Autónoma de Sinaloa
Facultad de Ingeniería Civil
Página 167
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Fluye agua un tajo de desvío de sección rectangular y alineamiento recto. Calcule el perfil del agua cuando pasa un gasto de 25 m³/seg. La superficie del fondo del tajo puede considerarse horizontal y el coeficiente de Mannig de 0.040. Se debe que para este gasto la descarga del desvío es libre (ver figura).
Solución.Cálculo del tirante normal (Yn).-
es Yn ∞ Y gQ 9.82540 Y 0.342 m
Como So = 0 = horizontal, entonc Cálculo del tirante crítico (Yc).-
Como el nivel del agua l final del tajo es aprox. Y= Yc =0.342 m y el tirante crece hacia aguas arriba se tiene que Yn> Y> Yc por lo que la curva será una H2 la cual calcula de aguas abajo hacia aguas arriba.
CALCULO DEL PERFIL DEL AGUA POR EL METODO GRAFICO
Bueno, sabemos que:
Q B 1 FY 0 AQ9ARn
Para secciones rectangulares anchas R=Y, B=b, So = 0 (dato),
Universidad Autónoma de Sinaloa
Página 168
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Q 1 FY 0 gYQYnY , donde q Q gY g Y 1 1 ³ q Y FY Yqn , donde Y g , FY Yqn Y Y Y Y 0 . 3 42 ³ Y FY qn ,sust.datos FY 0.6250.040 FY1600 Y0.040Y Tabulando
Y(m) 0.342 0.360 F(Y) 0 -7.58 x(m) 0 0.068 X(m) 0 0.068
0.400 -28.30 0.718 0.786
Universidad Autónoma de Sinaloa
0.450 0.500 -62.70 -107.97 2.275 4.267 3.061 7.328
0.550 -165.70 6.842 14.170
0.600 -237.55 10.081 24.251
0.650 -325.23 14.070 38.321
0.700 -430.51 18.884 57.217
0.747 -547.12 22.974 80.191
Página 169
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Con lo cual obtenemos el sig. Perfil:
–
Fluye un gasto de 15 m³/seg en un canal trapecial de 5.00 m de plantilla, taludes 2:1, n = 0.025 y pendiente longitudinal de 0.0015. Una presa vertedora sobre eleva el nivel del agua a 5.00 m. obtenga el perfil del agua generado aguas arriba de la presa (METODO SEMIGRAFICO DE LA ESCALA).
Solución.Cálculo del tirante normal
. ..(
0.133, de tablas
=0.266,
Y 1.328 m
Cálculo del tirante crítico
z gQ 9.8155 0.085,de fráficas Y 0.172, Y 0.860 m Ahora, como Yn>Yc, So es suave que (Y=5m)> Yn>Yc la curva es del tipo M1 la cual se calcula de aguas abajo hacia aguas arriba.
Universidad Autónoma de Sinaloa
Página 170
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
TABLA DE CÁLCULO:
Q15m³seg; 5m;t 2:1;n 0.025; S 0.0015;EY ,x100m;S . Y
A
P
R V QA
E
12 hp S2
E-
E+
5.00
75.00
27.316 1.959
0.200
5.002 0.00030
5.00170
5.00230
4.80
70.00
26.466 1.914
0.214
4.802 0.00040
4.80160
4.80240
4.40
60.72
24.677 1.822
0.274
4.403 0.00057
4.10243
4.40357
4.00
52.00
22.889 1.725
0.288
4.004 0.00087
4.00313
4.00487
3.50
42.00
20.652 1.605
0.357
3.506 0.00155
3.50445
3.50755
3.00
33.00
18.416 1.475
0.455
3.011 0.00297
3.00803
3.01397
2.50
25.00
16.180 1.336
0.600
2.518 0.00630
2.51170
2.52430
2.00
18.00
13.944 1.186
0.833
2.035 0.01542
2.01958
2.02042
1.50
12.00
11.708 1.017
1.250
1.580 0.4725
0.53278
1.62721
1.328
10.167 10.939 0.952
1.475
1.439 0.07501
1.36399
1.51401
N
OTA: Se tomo x100m.
Con lo cual se obtiene el siguiente perfil (fuera de escala).
Universidad Autónoma de Sinaloa
Página 171
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
De la gráfica se obtienen los siguientes tirantes: X(m)
0
100
200
300
400
500
600
700
Y(m)
5.0
4.85
4.70
4.55
4.40
4.25
4.10
3.94
800 3.80
900 3.64
1000
1100
1200
1300
1400
15000
3.36
3.21
3.07
2.93
2.80
3.50
X(m)
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
Y(m)
5.0
4.85
4.70
4.55
4.40
4.25
4.10
3.94
3.80
3.64
3.50
3.36
3.21
3.07
2.93
2.80
1.36
Universidad Autónoma de Sinaloa
Página 172
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Un vertedor de una presa descarga 250 m 3/seg a un canal de descarga rectangular de 50 m de ancho, con una pendiente de 0.00026 y n = 0.20 . Si la velocidad del agua al pie del vertedor es de 13 m/seg. ¿Qué longitud deberá revestirse del canal si se desea que el salto hidráulico quede en el tramo revestido?
SOLUCION.Calculo del tirante normal (Y n) Como el canal es rectangular y muy ancho, se puede aceptar que R=Y y con las ecs. De Manning y gasto se tiene que:
Q RS Q Y⁄S⁄ Y ⁄-⁄
Sust. datos:
Y ..⁄-⁄ Y 3.00 m Y gQ 9.825050 Y 1.366 m
Calculo del tirante crítico (Y c).-
Y Y
Como era de esperarse, S 0 =0.00026 es pendiente suave. Calculo del tirante conjugado menor (Y 1) del salto hidráulico. Haciendo que el conjugado mayor (Y2 sea igual al tirante normal (Y n), se tiene que:
Universidad Autónoma de Sinaloa
Página 173
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
250 5 0 3 2 1 8 1, 9.83 0.307 32 1 80.307 1 0.488 Calculo del tirante al pie del vertedor (sección 0).
QAV,donde A Y, QY V Y VQ Sust. Datos:
Y 5025013.00, Y 0.385
Calculo de la distancia entre los tirantes Y o = 0.385 e Y 1 = 0.480 m (L 01). Se calculo con el Método del Paso Directo
TABLA DE CÁLCULO Q= 250m²/seg; b=50; n=0.015; So= 0.00026;
Y(m)
A(m²)
P(m)
0.385
19.25
50.77
0.524
12.987
V EY 2 m
0.410
20.50
50.82
0.546
12.195
7.998
0.435
21.75
50.87
0.568
11.494
0.460 0.488
23.00 24.40
50.92 50.98
0.589 0.612
10.870 10.246
R
V(m/s)
8.990
SV.n S R
x(m)
X(m)
0.13821
--------
0
0
0.11224
0.12523
7.937
7.937
7.175
0.9214
.010219
8.073
16.010
6.488 5.844
0.07663 0.06306
0.08438 0.06985
8.167 9.254
24.177 33.431
Entonces la distancia entre Yo = 0.385 m e Y 1 = 0.485 m es:
L 33.431
Calculo de la longitud del salto hidráulico.-
Universidad Autónoma de Sinaloa
Página 174
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Empleando el criterio del USBR
F VgY QAgY 250 9.8500.04.88488- 4.685
Para F1 = 4.685 de tablas:
LY 6; L 6Y63L 18m
Finalmente, la longitud total a revestir será:
L L L 33.43118L 51.43151.50m
En un canal trapecial una represa hace que el flujo tenga una velocidad de 0.75 m/seg aguas arriba de la represa, cuando por este ocurre un flujo de 18 m3/seg. A que distancia aguas arriba de la represa se localiza la sección cuya velocidad media del flujo es de 1.50 m/seg. Datos:
SOLUCION.Calculo de los tirantes en las secciones (1) y (2) Calculo de Y1.
A .³ A A Y tY 125Y 2Y donde Y 1.50m Y
Se tiene que:
Ahora:
Cálculo de
Universidad Autónoma de Sinaloa
Página 175
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
A .³ A 25m A Y tY 255Y 2Y donde Y 2.50m
Se tiene que:
Ahora:
Calculo del tirante normal (Y n)
AR SQ.n 0.0100880.0145 0.122 , de talas Y 0.254; Y 1.270 z 9Q 9.8185 0.103, de talas Y 0.195, Y 0.975m L YS {u uFu, NFu, N- YYM NJ FV, J FV, J-} N Y Y Y2 , u, YY ; V, u, , J NM1 Y 1 t 10 1 2t Y 8 N 3 1tY 3 [12 1t Y] Y 3 1 2t 1tYM 12tY2t-Y1tY-
Calculo del tirante crítico (Y c).
Calculo de la longitud (L) por el Método de Integración Directo:
Donde:
Sustituyendo datos en las ecuaciones anteriores:
Y 1.52.2 5 2.00 Y 2.5.0000 0.40 Universidad Autónoma de Sinaloa
Página 176
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
10 1 2 2 0 . 4 0 8 1 2 N 3 120.40 3 12 1 220.400.403.960 0.404120. 4 M 31 22120.402-02.4-2120. J 3.9603.3.9607181 3.188 , Nj 3.3.916088 1.242 u 1.1.5207 1.181 ; u 2.1.5207 1.970 ;V 1.181. 1.230 V 1.970. 2.321 F1.970 , 3.960 0.049 Fu, NF Fu, N 1.181 , 3.960 0.328 FV, J F2.321 , 3.188 0.091 FV, J F1.230 , 3.188 0.398
De tablas de la función de flujo variado:
Por lo que la longitud entre Y1 = 1.50 m e Y2 = 2.50 m es:
L .. 1.9701.1810.0490.328- ../3.718.. 0.0910.398- L1548m
SOLUCION
Calcule la elevación del nivel del agua a la altura del poblado PERICOS, si se construye una presa derivadora en la estación 66+000+del rio PERICOS, si se sabe que el NAME alcanzara la cota 380.00 m para el gasto máximo extraordinario que es de 10,000 m3/seg (considérese n = 0.040).
Universidad Autónoma de Sinaloa
Página 177
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Datos del cause del rio.
POBLADO PERICOS
PRESA DERIVADA
ESTACIÓN (Km+m) 52+000 54+000 56+000 58+000 60+000 62+000 64+000 60+000
COTA DEL FONDO (M) 373.22 371.45 371.85 369.55 367.56 366.44 363.65 360.12
ANCHO DE LA PLANTILLA (M) 50.00 50.00 15.00 25.00 19.00 20.00 5.00 40.00
TALUDES IZQ DER 36.20 36.20 36.80 22.00 28.00 33.00 22.10 22.10 3.00 3.80 4.60 4.60 5.10 4.70 2.60 2.60
SOLUCION El cálculo se hará de aguas abajo hacia aguas arriba ya que en este tipo de problemas la curva generada es del tipo M1.
2
La carga H = cota del terreno + tirante + carga de velocidad o bien H = nivel superior de agua + carga de velocidad = NSA + se utilizar =1.15 como corrección de la velocidad media.
Las perdidas de energía son por fricción y por cambio de sección.-
Universidad Autónoma de Sinaloa
Página 178
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
h h h h SL ; h k |V2V| V. n 2gn V 2 9 . 8 0 . 0 4 V 0. 0 3136 V SR R 2g R 2g R 2g sminuyea en la direc ion del flujo uusarsareemosmos KK 0.0.0150 K {00..00aa0.0.1200ssiielelarareeaadiaument Donde
El problema se resolverá por el método estándar de incrementos finitos, esto es, conocida la carga hidráulica H1, en una sección se propondría el tirante para la sección inmediata (aguas arriba en este caso) y se calculara la carga hidráulica H2 en esa sección, y si a estas se le restan las perdidas de energía que haya entre ambas secciones, esto debería ser igual a la carga hidráulica de la primer sección. En caso contrario se procede a proponer otro valor para el tirante de la sección (2) hasta que se cumpla la igualdad .
H H ∑hp ó H ∑hp H stación
Y
NSA
A
V
(m)
(m)
(m²)
(m/s)
H
P
(m)
(m)
R m
S
S (x10-³)
(x10-³)
hf
hc
(m)
(m)
hp (m)
16+000 19.88 380.00
1822.8
5.49
381.54
150.76
27.73
11.7359 --
--
--
381.54
14+000 20.14 383.74
2088.2
4.79
384.96
206.45
21.86
1.6786
1.7073
3.414
0.018
384.97
12+000 20.49 386.93
2341.1
4.27
387.86
212.91
24.43
1.1950
1.4368
2.874
0.012
387.96
10+000 20.49 389.31
2021.66
4.95
390.56
173.24
26.45
1.4798
1.3374
2.675
0.032
390.57
8+000
22.56 392.11
11811.87
0.84
392.15
1023.17 26.07
0.0440
0.7619
1.524
0.061
392.15
6+000
2.35
392.20
12935.99
0.77
392.23
1257.02 22.37
0.04276 0.0434
0.087
0.000
392.24
4+000
20.85 392.30
13388.62
0.75
392.33
1235.08 23.97
0.03716 0.03893 0.0779 0.000
392.32
2+000
19.15 393.37
14232.85
0.70
392.395 1438.44 21.23
0.03693 0.03705 0.0741 0.000
392.394
Debido al calculo anterior se puede decir que la elevación del nivel del agua (NSA) a la altura del poblado PERICOS será 392.39 m por encima del BR (banco de referencia) cuando se presente el QMáx. = 10,000 m3/seg. Un canal rectangular de 5.50 m de ancho y 500 mt. de longitud conecta dos embalses. La pendiente del canal es de 0.0016, su factor de rugosidad (n
Universidad Autónoma de Sinaloa
Página 179
a s e r P
o d a l r o P
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
De Manning) es de 0.020. El nivel del agua en el embalse se mantiene constante en 1.60m por encima del fondo del canal a la entrada. El nivel del agua en el embalse inferior es variante. Construya la curva de descargas para el canal como una función del nivel del embalse inferior.
Solución: Las condiciones de flujo que se pueden dar son: 1. Flujo uniforme, el cual ocurre cuando Y 2 = Y1 = Yn, cuya superficie libre del agua es representada por una recta paralela al fondo del canal.
2 1.60 500 0.0016 2.40m con descarg
2. Flujo variado con perfil M1, el cual ocurre para Y 2 = Yn, cuyo limite superior es un nivel horizontal con Y 2 = Y1 a igual a cero. 3. Flujo variado con perfil M2, el cual ocurre cuando Y 2 < Yn, cuyo limite inferior es Y 2 = Yc que es la condición de máxima descarga. Utilizando la ecuación de Energía Especifica podemos calcularlas condiciones de entrad del canal para la energía especifica en (1).
V Q E Y 2g Y 2gY , de donde Q 2gYE Y Q5. 5 0 29.8Y1.6Y Q24.35 Y1.6Y
Universidad Autónoma de Sinaloa
Página 180
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Tabulando Yn (m) Q
S
0.00 0.00
0.40 10.67
0.60 14.61
0.80 17.42
1.00 18.86
1.10 18.94
1.20 18.48
1.40 15.25
Para flujo uniforme en el canal, se resolverá la ecuación
1.60 0.00
Q R
.
de tal forma que Q n e Yn que resulten correspondan a los requerimientos establecidos. Para su solución, de nuevo se calcularan Q n para varios valores de Y n propuestos, y el valor buscado será el que satisfaga también a las condiciones de entrada obtenidas (tabla 2). Entonces:
A Y Y 5. 5 0 Y 5. 5 0 Y Q n R S n 2Y S 0.020 5.502Y 0.0016 Y Q 34.275.502Y Tabulando: Yn (m) Qn
0.50 3.104
Tabla 2
0.80 0.90 1.00 1.10 1.20 1.30 6.405 7.651 8.956 10.315 11.722 13.173
1.40 14.664
1.50 16.192
Para condiciones de régimen crítico:
Qg AB Y gQ Q g Y Q5. 5 0 9.8 Y Q 17.218 Y y para canal rectangular:
o bien:
Universidad Autónoma de Sinaloa
Página 181
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Tabulando: Yc (m) Qc
0.50 6.087
Tabla 3
0.60 0.70 8.002 10.084
0.80 12.320
0.90 14.701
1.00 17.218
1.10 19.864
1.15 21.230
1.20 22.634
Graficando los valores obtenidos en las tablas 1, 2, y 3
De la grafica:
Y 1.413m Y 1.066m
Q 14.861mseg Q Q 18.950mseg
Considérese un gasto de 8m³/seg < Q max y un tirante en la sección 2 (mayor que el Y c) de Y2 = 2.00m y por inspección de la curva Q = f (Y 1) de las condiciones de entrada se considerará Y1=1.55m.
Universidad Autónoma de Sinaloa
Página 182
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Se calculará la distancia entre los tirantes propuestos Y 1, Y2 por el método de integración directa. Como Y 1 = 1.55 m, se usara Y 2 = Y1 = 2.00 m
Y 12 Y Y 21.552.1 00 Y 1.775 m Entonces.
Y⁄ 1.7755.⁄ 50 Y 0.323 ;para secciones rectangulares M3 cte. Además:
N ⁄⁄ .. N2.810 J .. J3.469 De las graficas “Q ” y “Q ” se oserva que para Q 8 M Y 0.925 m ; Y 0.600 m n vs
Yn
c
vs Yc
3/seg:
Por lo que :
.. 378.125 ; B .. ../0.337 u .. 2.162 ; v u⁄ 2.162..⁄ 1.869 u .. 1.676 ; v u⁄ 1.676..⁄ 1.520 Fu, NF2.162,2.8100.146 ; Fv, J F1.869,3.4690.681 Fu, NF1.676,2.8100.243 ; Fv, J F1.520,3.4690.162 Entonces.
Universidad Autónoma de Sinaloa
Página 183
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
L X X A*u uFu, N Fu, N- BFv, J Fv, J-+ L 578.125 2.1621.6760.1460.2430.3370.6810.162 L 438.16 m 500 Repetir el procedimiento para el mismo Q = 8 m 3/seg, pero para otro Y 2 tal que la longitud obtenida entre Y 1 e Y2 sea LII > 500 m
Entonces: Q = 8 m 3/seg; Y1 = 1.55 m; Y 2 = YII = 2.40 m; Y n= 0.925m; Yc = 0.6 m (mismo Q)
Y Y Y 1.552.401.975 m; Y⁄ 1.9755.⁄ 50 0.359 M3 ;N 2.776 ; J3.577 ; NJ 0.776 ; A578.125 B00..690025 3.2.577776 ; u 0.1.95255 1.676 u 0.2.94250 2.594 ; v 1.676. 1.473 ; v 2.594. 2.095 F2.592,2.776 0.107 ; Fv, J 2.095,3.5770.060 Fu, NF Fu, N 1.676,2.7760.286 ; Fv, J F1.493,3.5770.156 Por lo que:
L X X A* u uFu, N Fu, N- BFv, J Fv, J-+ L 578.125 2.5941.6760.1070.2860.3520.060.156- L 614.67 m 500 El valor de Y 2 asociado al gasto Q = 8 m 3/seg se obtiene por aproximación lineal. Esto es:
Universidad Autónoma de Sinaloa
Página 184
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Y L realL- Y Y 614.2.4602.7438.0016 500438.16-2.00 Y 2.140 m Por lo que cuando Y 2 = 2.140 m , el gasto es Q = 8.00 m 3/seg. Ahora, se repetirá el procedimiento pero para otro Q < Q max Para Q = 12.00 m 3/seg, de la curva Q = f (Y1) se tiene que Y1 = 1.490 m, y se usara Y2=2.00m
Entonces
Y Y Y 1.492.001.745; Y⁄ 1.7455.⁄ 50 0.317
Para sección rectangular M = 3
N ⁄⁄ .. N2.316 J .. J3.451 ; .. 0.816 De las graficas “Q ” y “Q ”, para Q 12 m n vs
Yn
Yn = 1.220 m
c
;
vs Yc
3/seg
se obtiene que:
Y c = 0.786 m
Por lo que:
.. 762.50; B ../ ../0.328 u .. 1.639 ; v u⁄ 1.639. 1.497 u .. 1.221 ; v u⁄ 1.221. 1.177
Universidad Autónoma de Sinaloa
Página 185
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
F1.639,2.8160.251 ; Fv, J F1.497,3.4510.170 Fu, NF Fu, N 1.221,2.8160.525 ; Fv, J F1.177,3.4510.381 Entonces:
LXX A*u uFu, N Fu, N- BFv, J Fv, J-+ L762.5 1.6391.2210.2510.5250.3280.1700.381 L 474.879 m 500 Repetir el procedimiento para el mismo gasto 12 m 3/seg pero para otro Y2, tal que la longitud obtenida entre Y1 e Y2 sea LII > 500 m
Entonces, para Q = 12.00 m 3/seg, Y1 = 1.490 m y usando Y 2 = YII = 2.60 m
Yn = 1.220 m; Y c = 0.786 m
(mismo Q); A = 762.50; M = 3
Y 1.442.602.045 m; Y⁄ 2.0455.⁄ 50 0.372 N2.765; J3.614; NJ⁄ 0.765; B0.350 u 2.1F31; u 1.221; v 1.784; v 1. 165 Fu, NF2.131,2.7650.153; Fv, J F1.784,3.614 0.089 Fu, N 1.221,2.7650.547; Fv, J F1.165,3.6140.360 Por l que:
L 762.502.1311.2210.1530.5470.3500.0890.360- L 921.977 m 500 El valor de Y 2 asociado al gasto Q = 12.00 m 3/seg se obtiene por aproximación línea. Esto es:
Universidad Autónoma de Sinaloa
Página 186
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
. 500474.879- 1.490 Y L realL- Y ... Y 1.552 m Resumiendo los valores obtenidos, se tiene que para Y 1 = 1.60 m
Y2 (m)
Q(m3/seg
2.400
0.00
2.140
8.00
1.552
12.00
1.066
18.95
(Yc)
Universidad Autónoma de Sinaloa
Página 187
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
VI.- FLUJO BRUSCAMENTE VARIADO
Defina salto hidráulico. Resp. Es un fenómeno local (se efectúa rápidamente en una distancia relativamente corta) Que se presenta en el cambio de régimen de un flujo, de supercrítico a subcritico (y no viceversa) y es acompañado de gran disipación de energía.
Donde: Y1 = Tirante conjugado menor del salto. Y2 = Tirante conjugado mayor del salto. L = Longitud del salto hidráulico.
=
= n° de Froude del flujo.
¿En que casos prácticos se presenta el salto hidráulico? Resp.- Al pie de vertedores; en el cambio de una pendiente fuerte a una pendiente suave, horizontal o adversa y en la descarga de una compuerta de regulación; en algunas estructuras aforadoras.
¿Qué usos prácticos puede tener el salto hidráulico? Resp. Los siguientes:
1) Como disipador de energía del flujo de agua que escurre aguas debajo de estructuras hidráulicas (vertedores, rápidas, compuertas, etc.) y así prevenir o confinar la socavación al pie de la estructura hidráulica en cuestión. 2)
Para levantar o recuperar el nivel del agua, aguas deajo de “ ” o de algunas rápidas estructuras aforadoras con el propósito de facilitar la derivación del agua en canales de riego.
Universidad Autónoma de Sinaloa
Página 188
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
3) Para incrementar el gasto por una compuerta, manteniendo alejado el nivel de aguas debajo de la compuerta lo que aumenta la carga efectiva y por consiguiente la descarga. 4) Para mezclar eficientemente sustancias químicas usadas para el tratamiento de aguas con fines de uso domestico o de riego. 5) Para remover bolsas de aire en líneas de abastecimiento de aguas y prevención del atrope de aire.
Presente las características básicas de un salto hidráulico. Resp.- Son: i) ii) iii) iv)
es E E – perdida de energía relativa. Es E – perdida de energía. En un salto
1
R =
E2
1 E2/E1
Eficiencia del salto hidráulico. Es la relación n = E 2/E1 Altura del salto hidráulico. Viene dada por h j/E1
¿Cómo se clasifican los saltos hidráulicos de acuerdo con el número de Froude en la sección de aguas arriba del salto hidráulico? Resp.
a cuando 1.0 F Cuando 1.7 F c Cuando 2.5 F
1 < 1.7, el flujo tiene un régimen solo ligeramente inferior al critico y el
cambio de régimen de supercrítico a subcrítico es relativamente gradual y se manifiesta por una ondulación ligera de la superficie del agua. El salto se conoce como SALTO ONDULAR. 1 < 2.5, el flujo presenta en la superficie una serie de pequeñas
ondulaciones, que se hacen mayores para los valores mayores de F 1. Aparte de las ondulaciones prevalece un flujo bastante uniforme. El salto es llamado SALTO DEBIL. < 4.5, se produce un chorro oscilante, que corre alternativamente cerca de la plantilla y luego a lo largo de la superficie del canal de aguas abajo. Cada oscilación produce una gran onda de periodo irregular, la cual comúnmente en canales puede viajar por kilómetros. A este salto se le conoce como SALTO OSCILANTE. 1
Universidad Autónoma de Sinaloa
Página 189
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
d Cuando 4.5 ≥ 9.0, la turiedad dentro del salto hidráulico aumente en actividad, 1 < 9.0, ocurre
un salto hidráulico estable y bien equilibrado, la turbulencia esta confirmada al cuerpo del salto y la superficie de aguas abajo esta comparativamente pareja. Este es conocido como SALTO PERMANENTE, CLARO.
e) Cuando 1 resultando una superficie del agua irregular con ondas superficiales fuertes aguas abajo del salto hidráulico. A este se le conoce como SALTO FUERTE.
Esto es:
Presente algunos criterios existentes para determinar la longitud del salto hidráulico en canales horizontales o pendientes pequeñas. Resp.- Entre las formas más sencillas podemos presentar las siguientes:
Universidad Autónoma de Sinaloa
Página 190
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
a) PARA CANALES DE SECCION RECTANGULAR L = 5.2 Y 2 propuesta por Kurt Safranez [1927] L = 6.02 (Y 2 Y1) propuesto por J. Smetana [1933] L = 3 Y 2 propuesta por J. H. Douma [1943] L = KY2 propuesta por USBR [1995] L = 5 (Y 2 Y1) propuesta por Sienchin [ ]
–
–
Donde K = f( 1) de acuerdo con la siguiente tabla:
1.7
2.0
2.5
3.0
3.5
4.0
5.0
6.0
8.0
10.0
4.00
4.35
4.85
5.28
5.55
5.80
6.00
6.10
6.12
6.10
b) PARA CANALES DE SECCION TRAPECIAL
–
L = A (Y2 Y1) propuesto por Sienchin L = 5Y2 (1+4
Y2 – Y1Y
) propuesto por P. S. Hsing [1938]
Donde A = f ( Talud ) con la siguiente tabla:
0.50 0.75
1.00
1.25
1.50
7.9
10.6
12.6
15.0
9.2
0 .
Presente algunos criterios para calcular la longitud de un salto hidráulico localizado en canales con pendiente ( S 0
Resp.- Para saltos en canales con pendiente, F. M Henderson (1963), propone que L=(6.1+4S0) Y2 para 4.5 < 1 < 13, donde:
Universidad Autónoma de Sinaloa
Página 191
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Por otro lado el “U. S. Bureau of
” propone las siguientes curvas:
Reclamation
Clasifique el salto hidráulico en función fu nción a su posición generada por las condiciones de aguas debajo de la zona donde se localiza el salto hidráulico.
Resp.-
El salto hidráulico puede ser
Universidad Autónoma de Sinaloa
Ahogado; si Y’ Claro; si Y’Y’ Barrido; si Y’ 2
> Y2 2 =
2 <
Y2
Y2
Página 192
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Explique el procedimiento a seguir para ubicar el salto hidráulico considerando la longitud del salto. Resp.- El procedimiento se ilustra utilizando el caso que se muestra:
1.
Se calculan los tirantes “Y” del agua para los perfiles del flujo involucrados, en este
caso de los perfiles M3 y M2 (curvas AB y CD respectivamente), y se dibujan sobre el canal.
conjugados mayores y se diujan línea A’B sore sus respectivos co njugados Donde se corta la curva que representa los conjugados mayores línea A’B con elel del salto punto F’, es decir salto correspondientes al punto F’, forma que alcance a tocar las curvas A’B y CD, sin cruzarlas.
2. A cada uno de los tirantes del perfil M3 se le calculan sus correspondientes tirantes menores.
3.
perfil de agua de aguas debajo de la zona del salto (línea CD) se tendrá la localización teórica hidráulico con longitud igual a cero.
4. Para los tirantes conjugados menor (Y 1) y mayor (Y 2 se calcula la longitud dl salto y a escala se dibuja horizontalmente (recta EF) de tal
5. Ahora será con los tirantes conjugados Y 1 e Y2 que le correspondan al punto E con los que se calculara la longitud correspondiente correspondiente a estos tirantes y dibujara como en el paso 4.
Universidad Autónoma de Sinaloa
Página 193
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
6. Se repiten los pasos 4 y 5 hasta que la longitud calculada sea aproximadamente aproximadamente igual a la anterior.
Cuestiones a analizar y discutir. Flujo rápidamente variado. -¿Por qué el salto hidráulico no no se analiza con métodos energéticos? (Ecuación de la energía de Bernoulli)
-¿Por qué es conveniente que se forme un salto hidráulico claro al pie de un vertedor? Mencione tres formas de lograr esto.
¿Para que numero de Froude en la sección del conjugado menor (F 1) la energía disipada en un salto hidráulico es exactamente el 50% (teóricamente)
- Demuestre que la perdida de energía de un salto hidráulico horizontal es:
EE … … formulula de Bressesser,1860 1860 2 -
- Demuestre que ,donde Y1 e Y2 son los tirantes conjugados conjugados de un salto hidráulico. hi dráulico. (Para sección rectangular)
- ¿Cómo se determina la profundidad y longitud de un tanque amortiguador simple?
- Defina onda positiva y onda negativa de flujo.
- ¿Qué son y para que sirven (a) los bloques de caída, (b) los bloques amortiguadores y (c) las soleras terminales? (ver figura)
Universidad Autónoma de Sinaloa
Página 194
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Obtenga la ecuación general del Salto Hidráulico
Solución. Dado que el salto hidráuli hidráulico co es un fenómeno local local y que no se puede aplicar la ecuación de la energía para conocer las características del flujo de uno de los extremos del salto a partir de las características del flujo del otro extremo ya que no hay manera de determinar las perdidas de energía en el salto, es que se requiere aplicar el principio de la cantidad del movimiento en le análisis del fenómeno.
Para la aplicación del principio de la cantidad del movimiento se harán las siguientes consideraciones: a) El canal es horizontal y de sección constante b) Se desprecia las fuerzas cortantes (fricción) generadas por las paredes y fondo del canal al flujo, debido a la poca longitud del tramo en que desarrolla el salto hidráulico. c) Dentro del tramo no existe ningún obstáculo que pudiera introducir una fuerza desde el exterior d) Se considera que la distribución de velocidades en las secciones de los extremos es prácticamente uniforme y que sus coeficientes de Boussinesq (B) son iguales a la unidad.
Universidad Autónoma de Sinaloa
Página 195
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Donde:
F profundidad del centroide C.G. V.C.= volumen del control.
C.G.= centroide del área hidráulica.
Ahora, tenemos que: Impulso = Incremento en la cantidad de movimiento.
fuerzas exterioress x tcant.mov.finalcant.mov.inicial F F/x tmv mv, dondonde m masa F tm v v, pero mm V V F t v v y como tV voltieumpomen gastoQ ∑ F QQv v…………………………………. ………………………………….1 F F ∑ F F YA F F F YA YA F YA YA 2
Se tiene que
Por otro lado como
y estas fuerzas son hidrostáticas, es decir
, entonces:
Sustituyendo (2) en (1)
YA YA QQv v YA YA Qv v
Universidad Autónoma de Sinaloa
Página 196
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
, como QAVV ,entonces YA YA Qg AQ AQ YA YA gAQ gAQ QgA YA gAQ YA ecuacion general del Salto Hidraulico AY M se le conoce como función “Momrntum” ó momento. Si la grafica “M vs Y” resulta una curva como la que se muestra: Pero
A la expresión
ruea que para un gasto Q dado, la función “
P un tirante del flujo igual al tirante crítico.
” M tiene su valor
momentum
mínimo para
Solución.
Tenemos que: Función momento =
Universidad Autónoma de Sinaloa
M A Y . La Derivada de M con respecto Página 197
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
““M”Yent” deeronceás:ser igual a cero para dMdY dYd QgA AY dYd QgA dYd AY … ………………1 ddY QgA Qg A1 dAdY QgAB ………………2 ; y dAY dAY AY dYBdY/AY AY AdY AY, dAYAdY , dYd AYA ………………. . 3 QgAB A0 , dividiendo por A QgAB 10 , QgAB 1 o ien: AB a
que se obtenga el valor mínimo de la función momento
Donde:
Es el cambio en el momento estatico del area (A) en relación a la superficie libre del agua producida por un cambio en la profundidad (Y), por lo que:
Eliminando la
diferencial al cuadrado y reduciendo términos queda:
Sust. 2 y 3 en 1
que es la condición de Regimen Critico con lo que se demuestra que para Y = Y c
,
M = Mmin
Del análisis de un salto hidráulico sumergido ubicado en la salida de una compuerta con descarga por el fondo de un canal de sección rectangular demuestre que:
Y Y 1 2F1Y⁄Y (Despréciense hp fricción)
Universidad Autónoma de Sinaloa
Página 198
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Solución. Aplicando la ecuación de cantidad de movimiento al volumen de control que s e muestra:
Sabemos que:
F g Qv v g Q A1 A1 g Q AA AA , pero Ad Y2 Y2 g Q YYYY Y2 Y2 Qg YYYY Y Y 2Qg YYYY , pero q Q , Y Y 2qg YYYY Y Y 2qgY 1 YY, div. todo entre Y tenemos YY 1 gY2q 1 YY, como F VgY gYq , entonces Universidad Autónoma de Sinaloa
Página 199
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Y Y 1 2 F1YY Obtenga la ecuación para el salto hidráulico en una sección rectangular a partir de la ecuación de momento (M 1=M2). Solución
Sabemos que:
Q M gA AY, pero q Q , Qq y como cte, q q q M gA AY, pero Ay ; Y Y2 y además M M q gY Y Y2 qgY Y Y2 qgY Y2gYq Y2 qg Y1 Y1 Y2 Y2 qg YYYY 12 Y Y- qg YYYY Y2 Y2 qgYY Y Y2 2Yqg YY YY YY 2Yqg 0 , pero qVY , V por lo que Como
Universidad Autónoma de Sinaloa
Página 200
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Y YY 2Y F 0Re solviendo para Y queda: Y Y Y 42112Y F Y Y2 Y2 1 8F Y Y 12 12 1 8F- YY 12 1 8F 1Para un canal de sección trapecial con plantilla de 6.00m y taludes 2:1, construya una familia de curvas de la función momento vs. Profundidades para gastos de: 2.00m³/seg, 4.00m³/seg y 6.00m³/ seg.
M AP AY 2tY3 Q 2.00m³seg Q 4.00mseg Q 6.00mseg
Función momento:
, donde
Para sección trapecial
Tabla de cálculo.
g9.8mseg Q Q Q AY gA gA gA .
Y (m) 0.05 0.10 0.15 0.20 0.30 0.40 0.60 0.80 1.00
A (m²) 0.305 0.620 0.945 1.280 1.980 2.720 4.320 6.080 8.000
0.0076 0.0307 0.0698 0.1253 0.2880 0.5227 1.2240 2.2613 3.6670
Universidad Autónoma de Sinaloa
1.3382 0.6583 0.4319 0.3188 0.2061 0.1502 0.0945 0.0671 0.0510
M1 5.3530 12.0442 1.3458 2.6330 5.9250 0.6890 1.7277 3.8873 0.5017 1.2755 2.8699 0.4442 0.8246 1.8552 0.4941 0.6002 1.3505 0.6728 0.3779 0.8503 1.3185 0.3685 0.6042 2.3284 0.2041 0.4592 3.7180
M2 5.3606 2.6637 1.7975 1.4008 1.1126 1.1229 1.6020 2.5298 3.8710
M3 12.0518 5.9557 3.9571 2.9952 2.1432 1.8732 2.0743 2.8655 4.1259
Página 201
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
En un canal de sección rectangular escurre agua a una velocidad de 2.00m/ seg , con un tirante de 3.00m.Determine la magnitud y sentido de la fuerza por unidad de ancho (en la dirección del flujo) sobre la cara del escalón ascendente máximo que se puede colocar sin
que camie el tirante de aguas arria considere ∑hp 0. Solución
Calculo del tipo de flujo:
.- 1.43 Y Y,el flujo de l egada es sucritico LENTO.
Para canal rectangular Como
Universidad Autónoma de Sinaloa
Página 202
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
V 3 2 ZmaxE EminY 2g 2 Y 3 29.8 32 1.543 Zmax0.89m
Aplicando la ecuación de cantidad de Movimiento al volumen de control que se muestra, se tiene:
FQV V, pero g ; V QA F g Q AQ AQ FF F F YA YA F,tomando 1.00m YA YA F g Q AQ AQ , pero AY1Y Y Y2Y Y2Y F Qg Y1 Y1, pero QVY F Y2 Y2 VgY Y1 Y1 Donde
Entonces
Sust. datos
F 1.5243 32 29.83- 1.5143 13 F 2.1533F2.1533kg F2153.3kg
Fuerza sobre el escalón F=2153.3kg con sentido de aguas arriba hacia aguas abajo
Universidad Autónoma de Sinaloa
Página 203
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
En un canal trapecial de 3.60m de ancho y taludes 1:1 escurren 20m³/seg con un tirante de 1.50 m. Si en un cierto lugar existe una transición gradual a una sección rectangular de 3.50 m de ancho. Determine la magnitud y sentido de la fuerza (en la dirección del flujo) sobre las paredes laterales de la transición. Solución
Calculo del tirante en la sección (2) Despreciando pérdidas en la transición se tiene que E 1=E2, esto es:
V V 2 0 2 0 Y 2g Y 2g Y 29.83.5Y- 2 29.83.51.511.5- Y 1.Y666 2.3630 por tanteos: Y 11..9103m94m Y Y Y Ahora si empleamos
en régimen subcritico (pues Y2=1.903m
se obtiene que >
= 1.31m, por lo que el flujo de llegada esta
), por lo que el tirante en la sección (2) será:
Calculo de la fuerza sobre las paredes de la transición.
FF F F Yg QV V, pero: Y 1 000 1 . 5 F 6 2 B- 6 23.5 3 . 5 22- 5437.5kg
Universidad Autónoma de Sinaloa
Página 204
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Y 1000 1 . 9 03 y F 2 2- 2 3.50-F 6.337.466kg 0 5 2.667 ms y V 3.50201.903 3.003 ms V QA 3.51.521. 5437.5Ft6337.466 10009.8 20-3.0032.667por lo que Ft1585.68 kg1585.68 kg Además:
Un flujo de agua con tirante de 6.00m y velocidad de 3.00 m/seg. pasa por debajo de un puente cuyas pilas son de 0.60m de espesor y están separadas 6.00m de centro a centro. Considerando un coeficiente de arrastre (C D) de 1.5 para las pilas del puente, determine el tirante del agua fuera de la zona de disturbios provocados por las pilas. Desprecie la pendiente y el razonamiento del cauce. Solución.
Universidad Autónoma de Sinaloa
Página 205
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Aplicando la ecuación de la cantidad de movimiento se tiene que:
F QV V, donde F F F F 12 Y 12 YCA V2g 2 YYCA V2g g Q A1 A1, considerando 6.00 m 12 66Y61.566 9.381 69.6813- 61Y 6161083Y 24.81190.2 6Y1 361 83.23Y 198.367Y⁄ 33.061 Entonces Y . 38.754 por tanteos Y *1.5.8076871 mm Q 6 6 3 Donde: Y g 9.816 , Y 3.209 y como Y Y, El flujo es subcrítico, y por lo que Y2 = 5.071 m solución FD = fuerza de arrastre generada por la pila = CD = coeficiente de arrastre
CA
Dos hileras de bloques están instalados en el tramo de descarga de una rápida, con la finalidad de ayudar a la formación de un salto hidráulico claro. Si se considera que el arreglo de bloques es tal que tiene un coeficiente de arrastre (C D) de 0.50. si la descarga es de 27.00 m 2/seg y el tirante aguas arriba es de 0.60 . Determine el tirante aguas abajo requerido para formar el salto hidráulico claro, si: a) los bloques están instalados. b) Si no lo están
Universidad Autónoma de Sinaloa
Página 206
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Solución a) Aplicando la ecuación de la cantidad de movimiento al volumen de control
F g Q A1 A1 Pero
∑F F F F VAC
Donde AD = área frontal de los bloques Entonces
Y 2 Y2 2g VAC g Q A1 A1 Y Y Vg AC 2Qg Y1 Y1,sust.datos y operando 2 7 2 7 0.6 6Y 6 9.80.66- 0.56-0.5029.81 6Y1 6Y0.62.166Y 8.61 24.Y796 41.3265 6Y 24.Y796 34.876 , o ien Y 4.Y133 5.813 Y *10..971198 mm Por tanteos se obtiene que:
Universidad Autónoma de Sinaloa
Página 207
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Q 2 7 Ahora,como Y g 0.86 Y 1.274 m , escogemos
Y2 > Yc puesto que en la sección (2) el flujo es SUBCRITICO (lento), por lo que: Y2 = 1.911 m
b) Si bloques, lo que se pide calcular entonces el conjunto mayor del salto hidráulico, por lo que:
Y Q Y 2 1 8F 1,,pero F gAY 279.860.6-0.6F 9.50.666 Y 2 1 89.5661 Y 2.3415 m
En un canal fluye agua a una velocidad de 6.00 m/seg con un tirante de 1.00 m. determine el tirante necesario aguas abajo para formar el salto y las perdidas de energía, si la sección del canal es: a) Rectangular con 6 m de ancho b) Trapecial con plantilla de 6 m y taludes 2:1 Solución a) Sección rectangular
Universidad Autónoma de Sinaloa
Página 208
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Y 1 8F 1,pero F . F 3.673 Y 12 1 83.6731 Y 2.256 m Sol. Ahora las pérdidas de energía son:
V 6 E Y 2g 1 29.81 2.837 m El gasto es Q = A 1V1 =[(6)(1)][6]
Q = 36 m 3/seg
V 3 6 E Y 2g 2.256 62.256-29.8- 2.617 m E2.8372.617 E0.220 m sol. b) Sección trapecial.
Q Q M M esto es gA AY gA AY Donde
48m A Y tY 6121 8.00 m Q86 seg 2tYY Y Y3 2BB pero B 2tY Y Y3 322t 2 1 Y 13 32662 221 0.458 m Entonces
Q 4 8 M gA AY 9.88 80.458 M 33.052 Universidad Autónoma de Sinaloa
Página 209
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Ahora, sabemos que M1 = M2 , por lo tanto:
Q 2tYY 33.052 gA AY, donde A Y tY; Y Y3 322t 4 8 33.052 9.86Y 2Y- 6Y 2Y- Y3 184Y 124Y 33.052 6Y235. 2Y102 6Y 2Y- Y3 184Y 124Y Resolviendo por tanteos resulta que:
Y 2 = 2.270 m sol.
EE E V 6 E Y 2g 1 29.8 2.837 m V 4 8 E Y 2g 2.270 62.27022.270-29.8- 2.475 E2.8372.475 E0.362 m sol. urvas de “Momento vs Tirante” M vs Y y “ especifica vs tirante” E vs Y Las perdidas de energía son
Por un canal rectangular de 6.00 m de ancho, fluye 22 m 3/seg. Mediante el uso de las c Energía correspondientes a los datos que se dan, determínese:
a) El tirante conjugado mayor para un salto hidráulico que ha tenido lugar cuyo conjugado menor es de 0.50 m. b) La energía especifica antes y después del salto. c) La perdida de energía en el salto d) La perdida de potencia en el salto
Universidad Autónoma de Sinaloa
Página 210
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Solución
La ecuación de momento es:
Q Y Y Y M gA AY , donde Y 2 , AY Y2, AY 2 M 9.8226 Y 6Y2 M 8.2Y31 3Y 1 La ecuación de la energía específica es:
V Q EY 2g Y 2gA Y 29.8226Y EY 0.Y686
2
Tabla de cálculo:
Y
M
E
0.0
∞ ∞
0.20
0.40
0.60
2.00
2.50
3.00
41.275 21.057
14.798
16.116 22.042
29.744
17.350 4.688
2.506
2.172
3.076
2.609
Universidad Autónoma de Sinaloa
0.80
1.00
1.20
1.40
1.60
12.209 11.231 11.179 11.759 12.824
1.972
1.686
1.676
1.750
1.868
Página 211
Manual de Hidráulica de Canales
De la gráfica se determina que
Facultad de Ingeniería Civil
Y
= 1.10m
a) Para Y1= 0.50m , se obtiene que Y2 =2.05m (de la gráfica) b) E0.5 =3.50m c)
; E 2.05 = 2.25 m
hP E E 0.5 E 2.05 3.50 –2.25 hP E 1.25n
d) Potencia perdida en el salto: Pot perd. =
.
pot.perd.=366.67 HP
Por debajo de una compuesta deslizante se descarga un gasto 5.40m³/seg. a un canal de concreto horizontal de 3.00 m de ancho. El tirante en la vena contracta es de 0.30 m. Si aguas debajo de la compuerta se presenta un salto hidráulico claro con un tirante Y2=1.00 m, ¿A que distancia de la compuerta ocurrirá el salto?
(Utilícese n=0.015 y Cc = 0.60).
Universidad Autónoma de Sinaloa
Página 212
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Solución La velocidad en (2) es:
V AQ V 35.401 V 1.80mseg. V EY 2g 1 219.8.800 E 1.165 m F gYV 9.18.81 F 0.331 31 R 0.60 m R AP 321 Y Y2 1 8F 1 12 1 80.3311Y 0.455m La energía específica en (2) es:
El número de Fraude en (2) es:
El radio hidráulico en (2) es:
Calculo del tirante en (1):
Entonces, la velocidad, energía específica, número de Fraude y radio hidráulico en la sección (1) son:
V .. V .. Universidad Autónoma de Sinaloa
Página 213
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
V E Y 2g 0.455 32.9956.8 E 1.253m 30.445555 R 0.349m R AP 320. E E S L , S E SE ,donde Manning: S VRn, pero V V V2 3.9561.2 80 2.8s78meg . y R R R2 0.3490.2 60 0.4745 m S 2.08.7847450.015S 0.00503 L ... Lo1 17.495 m
Aplicando la ecuación de la energía entre las secciones (0) y (1), resulta:
Entonces:
Como Cc= coeficiente de contracción es 0.60, entonces la abertura de la compuerta es:
a YoCc 0.0.455m60 a0.758m L Cca 0.0.76580 L 1.263m L L 17.4951.263̃
Y la longitud de la compuerta a la vena contracta es:
Por lo cual, la longitud total de la compuerta al inicio del salto es: L=
+
L=18.758
Sol.
Un vertedor descarga 280 m³/seg. a un canal rectangular del mismo ancho que el vertedor, esto es 14.00m. Asumiendo que no hay pérdidas de energía en el flujo a lo largo del vertedor, determine la cota que el fondo de un tanque en la zona de descarga debe tener para que se forme un salto hidráulico al inicio del canal. (Ver figura)
Universidad Autónoma de Sinaloa
Página 214
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Solución. Aplicando la ecuación de bernoulli en las secciones 0 y 1 y haciendo igual a cero las pérdidas de energía entre ellas, se tiene que:
P H V2g P H V2g , donde P P 0, H Yz V 016000Y z 2g V 2g160Y z 1 De la ecuación de gasto se tiene que:
QAV YV V YQ 14Y280 V 20Y 2 Con las ecs. (1) y (2) se tiene que :
20Y 2g160Y z, z160 Y z160 20.Y408 Y 3 (
Ahora
Universidad Autónoma de Sinaloa
Página 215
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
H Y z Y H z, con3 Y 300160 20.Y408 Y por lo que Y Y 20.Y408 30 ………………. 4 De la ecuación de salto hidráulico para secciones rectangulares se tiene que:
Y 20 Y 2 1 89.8Y1 …………. 5
Con (2) y (4) en (5) se tiene que:
20. 4 08 Y 20 Y Y 30 2 1 89.8Y1 o ien Y 20.Y408 30 Y2 1 326.53Y 1 Resolviendo por pruebas y error se tiene que:
Y 0.718 m 6
Sust. el valor de Y 1 en la ecuación (3)
z1600 20.0.741808 0.718 z119.695 m elevacion requerida del fondo Además
Y H z130119.695 Y 10.305 m Universidad Autónoma de Sinaloa
Página 216
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Dibuje el perfil del agua que se genera aguas debajo de la compuerta y localice el salto hidráulico.
Q=12 m³/seg n=0.014 So=0.0008 Yo=0.40m
Solución Calculo del tirante normal (Y n)
AR Q n 0.0100820.0⁄146 0.0500, de talas Y 0.1908 S Y 1.145 Calculo del tirante critico (Y c)
Q 1 2 Y g 9.86 Y 0.742 m
Como Yn > Yc
,
S0 < Sc
Calculo del conjugado mayor para el tirante Y 0 = 0.40 m
Y V Y 2 1 8gY1, donde V AQ 6120.40 5.00 smeg 0. 4 0 5 Y 2 1 8 9.80.4 1 Y 1.243 m mayor cor espondiente a “Y ” por lo que el salto se arrería
Esto nos indica que si acaso se alcanzara el tirante normal (Y n = 1.145) a establecerse, este es menor que el conjugado 0 hacia aguas abajo. Si el tirante aguas abajo del salto es menor que el normal, el salto se barrera a una distancia mayor. Universidad Autónoma de Sinaloa
Página 217
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Cálculos de los tirantes de la curva M2 Tabla de calculo (METODO DEL PASO DIRECTO) Y(m)
A(m2)
P(m)
R2/3
V=Q/A
EY V2g
0.742 0.80 0.85 0.90 0.91 0.92 0.93 0.94
4.452 4.800 5.100 5.400 5.460 5.520 5.580 5.640
7.484 7.600 7.700 7.800 7.820 7.840 7.860 7.880
0.707 0.736 0.760 0.783 0.787 0.791 0.796 0.800
2.695 2.500 2.353 2.222 2.198 2.174 2.151 2.128
1.11268 1.11888 1.13247 1.15195 1.15645 1.161117 1.165960 1.17104
V n SR 0.002848 0.002261 0.001879 0.001578 0.001529 0.001480 0.001431 0.001387
S
Ax
x
--0.002565 0.002070 0.001729 0.001553 0.001505 0.001456 0.001420
0 3.353 10.701 20.969 5.976 6.620 7.383 7.161
0 3.033 14.234 35.203 41.179 47.799 55.182 62.343
Calculo de los tirantes e la curva M3 (De la caída hacia aguas arriba) Tabla de calculo (METODO DEL PASO DIRECTO) Y
A
P
R2/3
V
E
S
S
Ax
x
0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64
2.40 2.52 2.64 2.76 2.88 3.00 3.12 3.24 3.36 3.48 3.60 3.72 3.84
6.80 6.84 6.88 6.92 6.96 7.00 7.04 7.08 7.12 7.16 7.20 7.24 7.28
0.500 0.514 0.528 0.542 0.556 0.569 0.581 0.594 0.606 0.618 0.630 0.642 0.653
5.00 4.762 4.545 4.348 4.167 4.000 3.846 3.704 3.571 3.448 3.333 3.226 3.125
1.676 1.577 1.494 1.424 1.366 1.316 1.275 1.240 2.211 1.187 1.167 1.151 1.138
0.019645 0.01683 0.01452 0.01261 0.01101 0.00969 0.00859 0.00762 0.00681 0.00610 0.00549 0.00495 0.00489
--0.01824 0.01567 0.01357 0.01181 0.01035 0.00914 0.00811 0.00722 0.00646 0.00585 0.00522 0.00492
0 5.939 5.582 5.482 5.268 5.236 4.916 4.788 4.517 5.079 5.347 3.620 3.155
0 5.939 11.521 17.003 22.271 27.507 32.423 37.211 41.728 46.807 52.154 55.773 58.928
Universidad Autónoma de Sinaloa
Página 218
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Calculo de los conjugados mayores ( y sus energías especificas ) Correspondientes a los tirantes del flujo rápido a la salida de la compuerta Tabla de cálculos X (m) 0 5.939 11.521 17.003 22.271 27.507 32.423 37.211 41.728 46.807 52.154 55.773 58.928
Y1 (m) 0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64
Y2 (m) 1.243 1.200 1.160 1.122 1.086 1.052 1.020 0.989 0.959 0.938 0.904 0.879 0.854
V2 (m/seg) 1.609 1.667 1.724 1.782 1.842 1.901 1.961 2.022 2.086 2.132 2.212 2.275 2.342
E2 (m) 1.375 1.342 1.312 1.284 1.259 1.236 1.216 1.198 1.181 1.170 1.154 1.143 1.134
NOTA: solo se grafico la zona donde se cruzan las curvas.
De la gráfica se obtiene que: E=1.162 m.
Universidad Autónoma de Sinaloa
Página 219
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Entonces
V Y 2g 1.162, donde Y es el conjugado mayor del salto hidraulico, V Y . 1.162 Y . 1.162 , de donde Y 0.922 m ⁄ Y V 0. 9 22 20. 9 22 Y 2 1 82g1 2 1 8 9.80.922 1 Y 0.587 m Además
El conjugado menor será:
Perfil teórico calculado:
ONDAS DE FLUJO EN CANALES Deduzca la ecuación de la velocidad del frente de la onda que se genera al incrementar súbitamente el gasto que escurre en un canal prismático, pendiente longitudinal igual a cero ( S 0 = 0 ) y sin fricción.
Universidad Autónoma de Sinaloa
Página 220
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Solución
El problema corresponde al flujo no permanente (es de los casos simples) y es tal que es factible analizar como flujo permanente si utilizamos un sistema de referencia móvil, esto es, que se mueva con la misma velocidad y dirección que el frente de la onda, cuya
velocidad es igual a “C”, entonces esto se puede transformar a:
El frente de la onda se vera estático para un observador ubicado en el sistema de referencia móvil con velocidad igual a c. Aplicando la ecuación de Cantidad de Movimiento al volumen de control de la figura se tiene que:
∑F QV V YA YA AV c-V cV c YA YA A⁄gV c-V cV c
(1)
(2)
Aplicando la ec. de continuidad al volumen de control se tiene que:
AV c AV c ,de donde V
(3)
Sustituyendo (3) en (2) resulta que:
YA YA Ag AV AcAA cAcVA VAA AcAc Universidad Autónoma de Sinaloa
Página 221
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
YA YA gA1 AV Acc VA AgYA YA AA V cc VA A gYA YAcVA1 AA cV gAYA1 YAAA/ c gYA2A1YAA21A/ V – Y Y⁄2 , Y Y⁄2 , ; A Y , A Y Donde:
c = velocidad del frente de la onda.
c V2 = velocidad de la onda con respecto al flujo
Para canales rectangulares:
Y la ecuación de la celeridad queda en (4)
c 2YgY Y YV frente de onda positiva viajando hacia aguas aajo De manera análoga se puede demostrar lo anterior para los otros tres tipos de ondas móviles; esto es:
c A21A2⁄A1 V
c A21A2⁄A1 V
FRENTE DE ONDA (POSITIVA) HACIA
FRENTE DE ONDA (POSITIVA) HACIA
AGUAS ABAJO
AGUAS ARRIBA
Universidad Autónoma de Sinaloa
Página 222
Manual de Hidráulica de Canales
c A21A2⁄A1 V
FRENTE DE ONDA (NEGATIVA) HACIA HACIA AGUAS ABAJO
Facultad de Ingeniería Civil
c A21A2⁄A1 V
FRENTE DE ONDA (NEGATIVA) AGUAS ARRIBA
En un canal rectangular de 4.50 m de ancho fluye agua con una velocidad media de 1.50 m/seg y un tirante de 3.00 m. rápidamente las compuertas de la toma son elevadas hasta duplicar el gasto en el canal. Determine la velocidad con que se mueve la ola originada hacia aguas abajo, así como la profundidad resultante.
Solución
Y2 ₌ 3.00 m V2₌ 1.50 m/seg
b₌ 4.50m Q 2₌ V2 A2 ₌1.5 (4.5)(3)
Q 2 ₌ 20.25 m³/seg
Se nos dice que:
Q 2Q Q 220.25m⁄seg Q 40.50m⁄seg V QA YQ 4.40.50Y50 Y9 VY 9m⁄seg m Además
Universidad Autónoma de Sinaloa
Página 223
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Aplicando continuidad entre las secciones 1 y 2 se tiene que:
AV c AV c, donde AY YV c YV c de donde c YVY YYV 9Y331.5 c Y4. 350 Ahora, de la ecuación de la velocidad del frente de la onda tenemos:
c ⁄ V donde Y Y2 c 9.8Y⁄234.54.Y5-19. 834.534⁄.25Y034.50- 1.50
Para canal rectangular
2 2. 0 5Y 4 5 c 13.51 198. 3Y⁄ 1.5 Con (1)
4.Y 350 22.13.05Y51 198. 4 5 3Y⁄ 1.5 resolviendo por tanteos otenemos que: Y 3.584 y c7.705 ms Un canal rectangular de 12.00 m de ancho, pendiente de 0.0006 y n = 0.015 se utiliza para suministrarle agua a una instalación de turbinas. En condiciones de plena carga, el canal suministra 40 m 3/seg a las turbinas y el flujo es uniforme. Si, debido a una disminución en la demanda se cierra la admisión de la turbina Universidad Autónoma de Sinaloa
Página 224
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
de tal modo que solo entren 15 m 3/seg, se pide determinar la velocidad inicial con la que desplaza la onda hacia aguas arriba. Solución.
Calculando el tirante normal (Yn = Y1)
AR⁄⁄ S⁄Qn⁄ 0.4000060.01512 0.032,de graficar Y 0.141 Y 0.14112m Y 1.692 m V . V 1.970mseg⁄ Además
Entonces: Y1 = 1.692 m
y
V 1 = 1.970m/seg
Como es un frente de onda positivo y hacia aguas arriba, la ecuación a utilizar es, para sección rectangular:
c Y YY
1
Asi como de la ecuación de continuidad que establece para casos que :
AV c AV c, donde AY porlocual se reduce a la siguiente: YV c YV c, despejando: c
Universidad Autónoma de Sinaloa
(2)
Página 225
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Además, la velocidad después del paso de la onda es:
V , V 1.25Y (3)
Sustituyendo las expresiones (2) y (3) en (1)
YV YYY1 .2 5Y⁄ 2YgY Y Y 1.Y25
Sustituyendo valores conocidos se tiene que:
1.6921.1.9701. 2 5 9 . 8 1 . 2 5 125 1 . 6 92 692 2 .. 2.879 . .
Resolviendo por prueba y error
Resolviéndola obtenemos que: Y2=2.334 m
En (3)
V . .. V 0.536
En (2)
...... c3. 2 44mseg⁄ velocidad inicial del frente e la onda hacia aguas arria
Universidad Autónoma de Sinaloa
Página 226
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
En un canal de 5 km de longitud, de sección rectangular con b = 6 m, n = 0.014 y =0.0002, circula un gasto de 20 m 3/seg, en régimen uniforme.
S0
Si se abre repentinamente la estructura de control aguas arriba para aumentar el gasto a 50 m3/seg: a) ¿Qué tipo de onda se produce? b) ¿Cuál es el tirante antes y después de la onda? c) ¿Cuánto tarda la onda en llegar al extremo de abajo? Solución
a) Como el nivel del agua crece en dirección de la onda, esta es una ONDA POSITIVA hacia aguas abajo b) Y1 =?, Y2 = ? Calculo del tirante normal ( Y n = Y2 ) para el gasto de 20 m 3/seg.
⁄⁄ ⁄⁄ .. 0.167, de graficas o talas s otiene que: 0.439 Y 0.4396 m Y 2.634 m e
Entonces:
Y 2.634 m es el tirante del agua antes de la onda. V QA YQ 6202.634 V 1.266 smeg 1 Además:
Universidad Autónoma de Sinaloa
Página 227
Manual de Hidráulica de Canales
V QA YQ 6Y50 V 8.Y333
Facultad de Ingeniería Civil
2
Como se trata de una onda positiva hacia aguas abajo, la expresión a utilizar (para canal rectangular) es :
c 2YgY Y YY
3
De la ecuación de continuidad:
AV c AVc,donde AY, por lo que YV cYV c c De donde:
Sustituyendo las expresiones (2) y (4) en (3).
Y 8.3Y33Y⁄Y YV 2YgY Y YY Sustituyendo valores conocidos:
8.333Y 2.2.6346341.266 29.2.86Y34 Y 2.6341.266 5.Y 2.00634 1.2661.364 YY 2.6340 resolverla Resolviendo por prueba y error resulta que el tirante después del paso de la onda es: Y1 = 3.317 m
En (2):
V 8.3.333317 V 2.512 smeg Velocidad media despues del paso de la onda Universidad Autónoma de Sinaloa
Página 228
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
En (4):
2 . 6 34 1 . 2 66 c 3.31723..5312 172.634 c7. 3 17mseg⁄ c) Ahora, como:
velocidad ditisetmpoancia , tiempo veldisotacncidadia Para este caso:
t Lc t 7.5000m 3s17meg t683.34 seg11.39 min El cual es el tiempo requerido por la onda para recorrer los 5 km de longitud del canal considerando que no esta sujeta a fricción. En un canal de 5 km con b = 6.00 m, S 0 = 0.0002 circula un gasto de 20 m 3/seg con un tirante en flujo uniforme de 2.634 m para n = 0.014 Si repentinamente e cierra la compuerta de aguas debajo de manera que (Q=0) no permita pasar el agua, determine: a) ¿Qué tipo de onda se produce? b) ¿Cuál es el tirante que se presenta en el primer instante en una sección después de la onda producida por el cierre? c) ¿Cuánto tarda la onda en llegar la onda al extremo de aguas arriba? Solución
a) Puesto que el nivel crece en el mismo sentido que el avance de la onda se trata de una ONDA POSITIVA hacia aguas arriba. Universidad Autónoma de Sinaloa
Página 229
Manual de Hidráulica de Canales
b)
Facultad de Ingeniería Civil
Y ?
Se tiene que:
V AQ 6.00202.63m V 1.266mseg ; Y 2.634m La ecuación a utilizar (siendo V2=0) es la siguiente:
c Y Y
(1)
Con la ecuación de continuidad y ubicado un eje de referencia móvil sobre el frente de la onda con velocidad c, se tiene que:
V c A 0 c A AY V c YYc c
(2)
Igualando amabas expresiones para c se tiene que:
2YgY Y Y YVYY
Sustituyendo valores conocidos se tiene que:
9.82Y2.634 2.634Y 1Y.2662.26.34634 3. 3 33 3.593 2.634Y Y Y 2.634 Resolverla Resolviendo por prueba y error da que Y 2=3.327m que es el tirante que se presenta después del paso de la onda. La velocidad del frente de la onda se obtiene de las ecuaciones (1) y (2), Universidad Autónoma de Sinaloa
Página 230
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Cualquiera de ellas. Usando la ec. (2):
662.633464 c4.810mseg c YVYY 3.1.32272. Por lo que el tiempo que tardará en llegar la onda al extremo de aguas arriba será:
t Lc 4.85000m 10mseg t1039.5 seg
En una alberca de profundidad constante, viaja una pequeña onda a 3.00m/seg. (a) Determine la profundidad de la alberca, (b) La velocidad con que esta viajaría si la profundidad de la alberca fuese 2m.
Solución: Se tiene que:
c 2YgY Y YV c Y Y0, c gY c gY, Y Cg 39..080msmseegg Y0.918m SOL. a c g Y c 9.82, c4.427mseg. SOL. En este caso particular Y1=Y2=Y; V1=V2=0, por lo que la ecuación queda: Celeridad de ondas elementales.
a) Por lo que:
b) Ahora, para Y=2m, c=?, entonces:
Universidad Autónoma de Sinaloa
Página 231
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
VII.- CURVAS EN CANALES
¿Qué le genera al flujo y al canal la presencia de curvas en el alineamiento de un canal?
Resp.-Lo que generan las curvas a un canal en mayor o menor grado, según el régimen y las condiciones del mismo es lo siguiente.
1) Sobre elevación del nivel del agua en el talud o pared exterior, 2) Abatimiento del nivel del agua en el talud o pared interior, 3) Pérdidas de energía por curva, 4) Erosión y sedimentación en los taludes exterior e interior respectivamente, 5) Flujo secundario transversal, 6) Distribución de velocidades muy irregulares, 7) Ondas transversales, 8) Corriente en espiral, etc.
¿Qué objetos se buscan al estudiar lo correspondiente al flujo del agua en canales con curvas?
Resp.- Los objetivos son: Realizar el diseño de la sección adecuada del canal cuando éste va en curva o bien diseñar la curva para evitar problemas a la sección del canal e incluso el conocer los efectos que podría generar una curva en un canal cuando se tiene determinadas condiciones de flujo.
Presente el criterio que U.S. ARMY ENGINEERS CORPS propone para el cálculo de la sobre-elevación de la superficie libre del agua generada por una curva en un canal.
Universidad Autónoma de Sinaloa
Página 232
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Resp.- La U.S. ARMY ENGINEERS CORPS propone la siguiente ecuación:
YcgUωr
Donde:
Sobre elevación en la superficie libre del agua, entre la línea del centro (eje del canal) y la pared externa, en pies.
C = coeficiente de circulación, c=f ( , curvatura, sección). V = velocidad medio en el canal recto, en pies/seg.
ω r
= ancho de la superficie libre del agua en el canal recto, en pies. = radio de curvatura a la línea del centro.
Tabla COEFICIENTE DE CIRCULACIÓN Tipo de flujo Sección
Geometría de la curva
Coef. “c”
Lento
Rectangular o trapecial Simple
0.5
Rápido
Rectangular o trapecial Simple
1.0
Rápido
Rectangular
Transición en espiral
0.5
Rápido
trapecial
Transición en espiral
1.0
Rectangular
espiral
0.5
Explique la forma de calcular la pérdida total de energía debida a la presencia de una curva en un canal. Resp.- La pérdida de energía por curva se puede obtener con la expresión:
Donde:
h f 2gV
v= velocidad media en la sección tramo recto del canal.
f
= coeficiente de resistencia de la curva
Universidad Autónoma de Sinaloa
Página 233
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
f r , y y θ180.fAhmed Shukr y 1 950 ot u vo exper i m ent a l m ent e l a s f a mi l i a s de
El coeficiente varia con el número de Reynolds del flujo de llagada, y con las relaciones curvas para valuar
en función de los parámetros ya mencionados.
Procedimiento a seguir:
ℝ r y θ180 se hace lo siguiente: Considerando y1. 0 y θ180 0. 5 0 y c o n r f rf 1.0, θ1800.50 y además y1.0 con el valor de rf1. 0 y c o n θ180 0. 5 0, y c o n y del c a nal y el val o r de ℝ r y c o n θ180 del c a nal y el val o r de f
Conocidos, y/b,
1.
/b del canal y el calor de
flujo se obtiene 2. Considerando flujo se obtiene
3. Considerando flujo se obtiene
del
de la fig. c
del
de la fig. b
del
mediante la fig. b
4. Manteniendo y/b=1.0 y /b=1.0 se obtiene mediante la figura. A
del flujo
5. Finalmente se obtiene el valor de mediante la expresión: Universidad Autónoma de Sinaloa
Página 234
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
f f ffff ¿Cuál es la mayor preocupación en el diseño de curvas en canales erosionables con flujo subcrítico? Resp.- No obstante la existencia de pérdidas de energía generada por la curva, el elemento más preocupante es la seria erosión local debido al flujo espiral generado por la curva. Para que el efecto del flujo espiral sea reducido a un mínimo se recomienda que la curva tenga una relación
/b 3.
¿Cuáles son los principales problemas a considerar en el diseño de curvas en canales (no erosionables) con flujo supercrítico? Resp.- Son dos los principales problemas: 1) Eliminar o reducir la sobre elevación de la superficie libre del agua en el talud externo de la curva; y 2) Eliminar a reducir sustancialmente las ondas transversales de perturbación de la superficie libre del agua.
¿Qué dispositivo propone Robert Knapp (1951) para reducir los problemas básicos que se presentan en los canales curvados con flujo supercrítico? Resp.- Robert T. Knapp propone hacer uso de los siguientes dispositivos:
1) Rampa o fondo con pendientes transversales al flujo, para contrarrestar la acción de la fuerza centrífuga. Knapp propone St =v²/grc como pendiente transversal.
Universidad Autónoma de Sinaloa
Página 235
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
2) Paletas curvas múltiples. Son paletas concéntricas que dividen el ancho del canal en una serie de canales curvados. 3) Soleras diagonales. Se utilizan soleras diagonales instaladas en el fondo del canal, cerca de los extremos de la curva. Este método se utiliza como medida reparadora en canales ya existentes. Su desventaja es el alto de mantenimiento y la muy posible cavitación.
Donde:
α ( gyv) = 30°
0.9
L´=
K 1.15
=ang sen
L15=0.30 L´+
L us=
¿Qué tipo de curvas se emplean en canales? Resp.- Se emplean: 1. La curva simple que es una curva circular de radio
r
r
2. Las curvas de transición, las cuales son curvas compuestas por una curva simple de radio precedida de otra curva de longitud L´= b/tg
Universidad Autónoma de Sinaloa
Página 236
Manual de Hidráulica de Canales
Y cuyo radio es 2
Facultad de Ingeniería Civil
r
3. Las curvas de transición en espiral, son empleados para generar un cambio gradual en la curvatura de un canal con flujo supercrítico. La curva espiral (LAD) propuesta por el U.S: ARMY CORPS ENGINEERS es una modificación de la espiral TALBOT para ferrocarriles. Consiste en arcos circulares de 12.5 pies de longitud y además radio variables, decreciendo en pasos finitos desde el inicio del e spiral.
Universidad Autónoma de Sinaloa
Página 237
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
BIBLIOGRAFIA RECOMENDADA.
“Open Channel Hydraulics”, McGraw Henderson, F.M. “Open Channel Flow”, MacMil an Pu. Co. Inc. New York, 1953. Rouse, H. “Enginnering Hydraulics”, John Wiley & Simon, A.L. “Practical Hydraulics”, John Wiley & Sons. “Manual de Diseo de Oras Civiles “, Vol. A “Manual de Diseo de Oras Civiles “, Vol. A Rouse; H. “Hidráulico, Mecánica Elemental de Fluidos”, John Wiley & Sons Inc., New York, Weer, N.B. “Fluid Mechanics for Civil Enginnering”, E. & F.N. Spoon Ltd. R. H., Acosta A.J., “Fluid Flow”, MacMil an Pu. Co., Inc., New York, 1964. W. King, O. Wister, “Hydraulics”, John Wiley & Sons, Inc. Sotelo A.G. “Hidráulica I ; Facultad de Ingeniería, UNAM. México, 1980. J. Daily, D. Halerman, “Dinámica de los Fluidos”, Tril as, México, 1975. P. Silvestre, “Fundamentos de Hidraulica General”, Limusa, México, 1983. Ven Te Chow.
-
-Hill, Tokio, 1959.
Sons. New York, 1953. New York, 1981.
-2-9, Comisión Federal de Electricidad, Mexico,
D.F., 1983.
-2-11, Comisión Federal de Electricidad,
Mexico, D.F., 1983.
1950.
Londres, 1965.
Sabersky
New York, 1948.
Universidad Autónoma de Sinaloa
Página 238
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
PROBLEMAS A RESOLVER
-El canal circular que se muestra, conduce un gasto de 10.00m³/seg. con velocidad media de 2.00m/seg y un tirante normal y n=0.75D. Para una rugosidad de Manning n=0.012; determine:
a) ¿Cuál es la pendiente s o que corresponde a dicho flujo? b) ¿Qué tipo de régimen tiene el flujo?
Se tiene un rio de 200m de ancho en la superficie libre del agua, y se sabe tiene taludes 2.5:1, pendiente de 0.0001 y cuando conduce 200m³/seg. la velocidad media es de 0.5m/seg. Para los datos, determine:
a El coeficiente de rugosidad “n” de Manning El esfuerzo tractivo promedio b)
o en los contornos.
c) La altura de los granos de arena (ks) que produce una rugosidad equivalente en el diagrama de Moody. d) Es estable a la erosión esta sección si en efecto el material fuese suelto (no cohesivo).
-Diseñe un canal trapecial estable, por los métodos de la velocidad permisibles y del esfuerzo cortante crítico, que conduzca un gasto de 6.00m³/seg. El suelo en que se excavara el canal tiene un D75 = 5mm y muy angulares. La pendiente longitudinal será de 0.002.
Una alcantarilla de concreto de sección cuadrada con 1.20m por lado (dimensiones interiores) y 50m de largo, descarga libremente a) Con la pendiente de la alcantarilla mayor que la crítica y el nivel del agua a la entrada a la altura del borde superior de la misma, determine el gasto máximo que puede entrar (considere velocidad de llegada cero).
Universidad Autónoma de Sinaloa
Página 239
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
b) Determinar la mínima pendiente de la alcantarilla necesaria para conducir este gasto.
Datos n=0.15 Ke=0.10 Ks=0.050
Un canal conduce 25 m 3/seg se divide en dos canales rectangulares excavados en roca (n=0.035). los canales se unen aguas abajo. El canal (1) es de 3.00 m de ancho y 60.00m de largo. El canal (2) es de 4.50 m de ancho y 45 m de largo. El fondo del canal (2) esta en promedio 0.50 m por debajo que el canal (1). Si la caída total de la superficie del agua entre los puntos A y B (división y unión de los canales) es de 0.15 m, calcule los gastos que van por cada canal.
Un canal trapecial con plantilla de 15.00 m, taludes 2:1, n = 0.025 y pendiente longitudinal del fondo S 0 = 0.004, conecta a dos embalses separados a 3000 m. a) Si la profundidad Y 2 aguas abajo se mantiene constante e igual a 2.00 m, construya la curva Q = f(Y 2).
Universidad Autónoma de Sinaloa
Página 240
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
b) Suponiendo profundidades variables Y 1 e Y2 , construya las curvas de Q constante para gastos cuyos tirantes normales son de 0.50 m, 1.00 m, 1.50 m y 2.00 m respectivamente.
Un canal rectangular tiene un ancho de 10.0 m y transporta un gasto de 10.0 m 3/seg el canal termina en una compuerta en la cual el nivel del agua es de 2.00 m. aguas arriba, a una distancia de 150 m de la compuerta, existe una transición en una longitud de 10 m en forma tal que a 160 m aguas arriba de la compuerta, el canal es trapecial con 7.00 m de plantilla y taludes 2:1. Calcule la distancia aguas arriba de la compuerta para la cual el tirante del agua es 1.01 Y n (la rugosidad es n = 0.022 y la pendiente es S 0 = 0.0012)
Un canal para control de avenidas es proyectado en 500 m, paralelo a un camino vecinal. El canal tiene pendiente longitudinal S 0 = 0.020, taludes 2:1 y conduce un gasto de 9.50 m3/seg.
Universidad Autónoma de Sinaloa
Página 241
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Determine. a) El tirante del flujo y el bordo libre. b) Si el canal es estable o no y si se erosiona o deposita (use los valores recomendados por fortier y scobey) c) ¿serán
efectivos los “l oraderos” mostrados? ¿Por qué?
Un canal rectangular de 2.00 m de ancho, revestido de concreto y pendiente S 0 = 0.04 transporta un gasto Q = 10.0 m 3/seg. si se requiere emplear un túnel (de sección circular con D = 3.00 m) para hacer pasar el canal a través de una montaña. Determine a) La pendiente del túnel necesaria para que inicie un salto hidráulico en la sección de entrada al túnel (cuya rugosidad es n = 0.017). b) Si la pendiente del túnel es de 0.015, ¿Qué ocurriría con el salto hidráulico? c) Calcule la pendiente mínima que debe haber en el túnel si no se desea salto hidráulico
Universidad Autónoma de Sinaloa
Página 242
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
seg. si la limpieza del canal hace que “n” camie de
Un canal de 2000 m de longitud, 15.0 m de ancho y con 3.0 m de tirante normal (Y n) cuando transporta un gasto de 50.0 m 3 0.027 a 0.022. determine el tirante del agua en la mitad del tramo, si la profundidad en el extremo superior es de 3.00 m para un gasto de 50.0 m 3/seg.
Un canal trapecial con taludes 1:1, plantilla de 5.00 m, S 0 = 0.0005 y n = 0.020. si el agua puede alcanzar un tirante (y) máximo de 2.00 m, establezca una ley (aproximada) tal que Q = a + by + cy 2 + dy3 ; a, b, c y d son parámetros.
El canal que se muestra fue excavado en arcilla arenosa (e=0.7 ) y conducir un gasto de 10.0 m3/seg con una pendiente de fondo de 0.0015. Se pide revisar si el canal es susceptible a erosión o deposito de sedimento.
θ de 60 , con un radio
Diseñe el tramo curvo de un canal rectangular que gira un ángulo de 70 m. el canal tiene 3.5 m de ancho, coeficiente de rugosidad n = 0.014, pendiente longitudinal de 0.01 y conduce un gasto Q de 10.0 m 3/seg.
pendiente longitudinal “S ” de 0.0001, conduce un gasθ deto80de.10Detmermine: La sore elevación Y del nivel del agua generada por la cu rva.
Un canal trapecial con plantilla de 2.00m, taludes 2:1, coeficiente de rugosidad n = 0.014, 3/seg. si en el trazo del 0 canal hay una curva con radios de 80.0 m y ángulo a) Las pérdidas de energía generadas por la curva. b)
Universidad Autónoma de Sinaloa
Página 243
Manual de Hidráulica de Canales
c) La sobre-elevación
Facultad de Ingeniería Civil
Y del nivel del agua generada por la curva si S
0 =
0.01.
Un canal rectangular que conduce un gasto de 18.0 m 3/seg, tiene una plantilla b=6.00m, pendiente S0 = 0.001, rugosidad n = 0.014, termine en una caída hidráulica. Aguas arriba de la caída se localiza una compuerta que produce un tirante en la sección contraída de 0.50 m. localice el salto hidráulico y dibuje el perfil del agua.
Un canal de sección rectangular de 3.0 m de ancho con n = 0.014 y S 0 = 0.002 sale desde un embalse cuyo nivel superficial esta 3.00 m por encima del fondo del canal a la salida del embalse, determine el gasto que en estas condiciones transporta el canal en cuestión.
Para un canal rectangular de 10 m de ancho, y cuyo trazo se muestra en la figura y comunica dos embalses, se desea el perfil del agua y la localización del salto hidráulico.
Universidad Autónoma de Sinaloa
Página 244
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Construya las curvas que representan las variaciones de la descarga y velocidad a sus correspondientes valores para flujo lleno (esto es Q/Q 0 y V/V0 vs d/D) para un canal de sección cuadrada.
Determine los tirantes conjugados de un salto hidráulico en un canal horizontal de 10.0 m de ancho y con 8.0 m 3/seg de gasto, si la perdida de energía en el salto hidráulico es de 1.50 m Un tramo de canal rectangular inicia en una compuerta cuya abertura genera un tirante de la zona contracta de 0.30 m al descargar 18 m 3/seg sobre el canal de concreto (n=0.014) de 6.00 m de ancho. Determine: a) Con que pendiente mínima S 0 en el canal se evita la presentación del salto hidráulico. b) Localice el salto hidráulico en el canal si este tiene una S 0 = 0.0007 c) Con que pendiente S 0 del canal se logra un salto hidráulico claro ( no-barrido) d) A que distancia de la compuerta habría que colocar otra compuerta que sobreeleve el nivel del agua hasta Y = 1.5 Y n para que evite que el salto hidráulico se barra cuando S0 = 0.0007
Universidad Autónoma de Sinaloa
Página 245
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Un canal cuyo perfil y sección transversal se muestra en la figura, desemboca en un estuario cuyo nivel del agua varia desde 1.00 m por debajo de la desembocadura del canal, hasta 2.00 m por encima de la misma. Considerando cada tramo de canal como
“hidráulicamente largo” determine:
a) Los posibles perfiles de la superficie libre del agua que resultan de las variaciones del nivel del agua en el estuario, si el gasto en el canal es de 12.00 m 3/seg. b) ¿Cuál es el tirante en la base de la caída vertical?
D . YL nD4.3hD. YY 0.1.564hD6hD.. Uses=
Donde D = numero de la caída q = gasto unitario h = altura de la caída
Universidad Autónoma de Sinaloa
Página 246
Manual de Hidráulica de Canales
Facultad de Ingeniería Civil
Valores de la rugosidad equivalente, K S, para diferentes acabados. MATERIAL Vidrio
K S, en mm. 0.05 a 0.90
Cemento Muy bien terminado Mortero
0.2 a 1.2 0.3 a 2.2
Concreto Bien terminado Aplanado con llana Aplanado con plana Sin terminar Cimbra de acero Cimbra de madera cepillada Cimbra de madera sin cepillar Cunita Muy maltratado
Universidad Autónoma de Sinaloa
0.3 a 1.5 0.5 a 2.2 0.9 a 3.0 1.5 a 12 0.6 a 1.5 0.6 a 3.2 2.2 a 14 3.2 a 15 5 a 20
Página 247
Manual de Hidráulica de Canales
Universidad Autónoma de Sinaloa
Facultad de Ingeniería Civil
Página 248
Manual de Hidráulica de Canales
Universidad Autónoma de Sinaloa
Facultad de Ingeniería Civil
Página 249
Manual de Hidráulica de Canales
Universidad Autónoma de Sinaloa
Facultad de Ingeniería Civil
Página 250
Manual de Hidráulica de Canales
Universidad Autónoma de Sinaloa
Facultad de Ingeniería Civil
Página 251
Manual de Hidráulica de Canales
Universidad Autónoma de Sinaloa
Facultad de Ingeniería Civil
Página 252
Manual de Hidráulica de Canales
Universidad Autónoma de Sinaloa
Facultad de Ingeniería Civil
Página 253
Manual de Hidráulica de Canales
Universidad Autónoma de Sinaloa
Facultad de Ingeniería Civil
Página 254
Manual de Hidráulica de Canales
Universidad Autónoma de Sinaloa
Facultad de Ingeniería Civil
Página 255
Manual de Hidráulica de Canales
Universidad Autónoma de Sinaloa
Facultad de Ingeniería Civil
Página 256
Manual de Hidráulica de Canales
Universidad Autónoma de Sinaloa
Facultad de Ingeniería Civil
Página 257
Manual de Hidráulica de Canales
Universidad Autónoma de Sinaloa
Facultad de Ingeniería Civil
Página 258
Manual de Hidráulica de Canales
Universidad Autónoma de Sinaloa
Facultad de Ingeniería Civil
Página 259