Universidad Nacional de Ingeniería __L aboratori o N° 1
Informe de Laboratorio De Física EXPERIMENTO Nº01: Movimiento Armónico Simple
Curso: Física II
Integrantes: NOMBRE Piero Solier Gálvez Ivan Rojas Rojas Pool Narcizo Jaramillo Michel Nizama Mamani
Facultad Facultad de Ing eniería eléctric eléctric a y electrónic electrónic a
1
Universidad Nacional de Ingeniería __L aboratori o N° 1
INDICE: Objetivos……………………………………………………………...2 Objetivos…………………………………………………………… ...2
Materiales…………………………………………………………….2 Materiales……………………………………………………………. 2
Fundamento teórico…………………………………………………3 teórico…………………………………………………3
Diagrama de flujo(procedimiento experimental)…………………6 experimental)…………………6
Cálculos y resultados.………………………………………………7 resultados.………………………………………………7
Conclusiones…………………………………………………………12 Conclusiones………………………………………………………… 12
Bibliografía…………………………………………………………....12 Bibliografía…………………………………………………………... .12
Facultad Facultad de Ing eniería eléctric eléctric a y electrónic electrónic a
2
Universidad Nacional de Ingeniería __L aboratori o N° 1
MOVIMIENTO ARMÓNICO SIMPLE OBJETIVOS:
Determinar la constante de fuerza de un resorte. Verificar las leyes del Movimiento Armónico Simple.
MATERIALES: Un
resorte
Una
tira de papel milimetrado
Facultad Facultad de Ing eniería eléctric eléctric a y electrónic electrónic a
Una
base y soporte universal
Un
cronometro
3
Universidad Nacional de Ingeniería __L aboratori o N° 1
Cuatro
Un clip
pesas de diferente masa
FUNDAMENTO TEORICO: MOVIMIENTO PERIODICO:
Es aquel movimiento que se realiza o repite a intervalos iguales de tiempo, a este intervalo se le llama periodo, definido como el tiempo mínimo para que el cuerpo o partícula que realiza el movimiento tenga las mismas condiciones (posición, velocidad y aceleración).De aquí se desprende el concepto de frecuencia, como el número de eventos por unidad de tiempo, matemáticamente se debe entender como la inversa multiplicativa del periodo.
MOVIMIENTO OSCILATORIO : Es aquel movimiento periódico de vaivén que se realiza con respecto a una posición específica. PERIODO:
= #
FRECUENCIA:
Unidad: segundo(s)
= # =
Facultad Facultad de Ing eniería eléctric eléctric a y electrónic electrónic a
Unidad: Hertz(Hz)
[ ] = [] = −
4
Universidad Nacional de Ingeniería __L aboratori o N° 1
TIPOS DE QUILIBRIO SEGÚN SU ESTABILIDAD: Esta clasificación toma en cuenta el efecto de una pequeña perturbación en el cuerpo: Equilibrio indiferente: Ante una pequeña perturbación, el cuerpo conserva su estado de equilibrio. Equilibrio inestable: Ante una pequeña perturbación, se pierde el estado físico. Equilibrio estable: En este caso la perturbación provoca que el cuerpo salga del equilibro, vuelva a este y otra ves salga, es decir es la que provoca las oscilaciones. Siendo totalmente formales es análisis de la estabilidad del equilibrio se asocia al análisis del potencial, sin embargo solo lo analizamos cualitativamente.
a) MOVIMIENTO ARMONIC ARMONICO O SIMPLE (M.A.S.): Es aquel movimiento oscilatorio en el cual la única condición es que la fuerza resultante sea proporcional y negativa a la posición medida desde la posición de equilibrio estable, esto es:
⃗ =
Al ser la fuerza fuerza resultante, resultante, se cumple la segunda segunda ley de Newton: Newton:
Sabemos:
= = ̈
⃗ = = . + . = 0 + . ̈ = 0
Reemplazando y dando forma, for ma, tenemos: t enemos:
Facultad Facultad de Ing eniería eléctric eléctric a y electrónic electrónic a
5
Universidad Nacional de Ingeniería __L aboratori o N° 1
La expresión anterior es llamada ecuación diferencial del M.A.S., la cual es una ecuación diferencial homogénea ya que su término independiente es igual a 0. El coeficiente de es el cuadrado de la frecuencia angular ( ), la cual se define matemáticamente como:
̈
= 2 =2= (⁄) + ̈ = 0 = (( + )
En tal sentido la ecuación diferencial es: El resolver esta ecuación requiere de cálculo superior, sin embargo solo colocaremos la solución de dicha:
Dónde: A: Amplitud. : Frecuencia angular. : Fase inicial.
Siendo A y son denominados las constantes del movimiento. De la posición se obtienen las expresiones para la velocidad y la aceleración:
⃗ = ̇ = cocoss( + ) = ̈ = sen(en( + ) Sin embargo este no es el único juego de ecuaciones que resulta de resolver la ecuación diferencial el otro es:
= (( + ) ⃗ = ̇ = sen( sen( + ) = ̈ = cos(os( + ) = = √
Ambos juegos de ecuacio ecuaciones nes son válidos, notamos que la posición y la aceleración poseen sentido contrario, incluso: Además en modulo:
Facultad Facultad de Ing eniería eléctric eléctric a y electrónic electrónic a
6
Universidad Nacional de Ingeniería __L aboratori o N° 1
DIAGRAMA DE FLUJO: Procedimiento: 1. Se empe empezó zó colo colocand cando o el el equip equipo o de de trabajo como se muestra en las imágenes de la guía.
2. Suspenda del resorte con distintas masas. Para ello combine las masas que se han proporcionado.
3. Mida Mida la elon elongac gació ión n sufri sufrida da por por el resorte en cada caso y registre sus datos en la tabla 1.
4.
Suspenda del resorte la masa de 100 g y a partir de la posición de equilibrio de un desplazamiento hacia abajo y suelte la masa para que oscile y cuando se estabilicen las oscilaciones determine el número de oscilaciones en 60 o 90 segundos. Repita 3 veces esta prueba para diferentes amplitudes.
5. Repita Repita el paso 3 para para las las otras otras 3 masa masas s restantes.
Facultad Facultad de Ing eniería eléctric eléctric a y electrónic electrónic a
7
Universidad Nacional de Ingeniería __L aboratori o N° 1
CÁLCULOS Y RESULTADOS 1. Determine la constante del resorte y promediando los resultados del paso 2.
Masa (g) 250.4(m 1) 253.8(m 2) 488.7(m 3) 992.0(m 4)
Fuerza(N) 2.45 2.45 4.71 9.71
Elongación(mm) 12 20 60 148
Constante(N/m) 204.17 122.5 78.5 65.67
Dividiendo la fuerza entre la elongación obtenemos las constantes del resorte. Luego pasamos a promediar.
= 204.17+122.54+78.5+65.67 =117.71()
2. Determine la frecuencia frecuencia promedio promedio con cada una de las masas y compare: Masas (g) Frec Fr ecue uenc ncia ia(o (osc sc//
Por formulas del M.A.S:
m1 2.40
=1.14 ; = 253. 8 =1. 0 1 250. 4 =2.1 ; = 488. 7 =1. 9 5 250. 4 =3.81 ; = 992. 0 250.4 =3.96 =
m2 2.25
m3 1.66
m4 1.23
“K”)) ; para un mismo resorte (misma constante “K”
Facultad Facultad de Ing eniería eléctric eléctric a y electrónic electrónic a
8
Universidad Nacional de Ingeniería __L aboratori o N° 1
=1.84 ; =3.35 ; =1.82 ;
= 488. 7 253.8 =1.93 = 992. 0 253.8 =3.91 = 992. 0 488.7 =2.01
3. Adicionando a cada masa un tercio de la masa del resorte vuelva vuelva a comparar las razones del paso 2, esto es:
+ 113 ( ) , + 3 ( ) Frecuencias(osc/s)
2.40
2.25
1.66
1.23
62.5 )) = 253.8+ 131 (62.5) =1.01 = + 113 ( + 3 ( ) 250.4+ 3 (62.5) )) = 488.7+ 131 (62.5) =1.88 = + 113 ( + 3 ( ) 250.4+ 3 (62.5) = + 113 ( ) = 992.0+ 131 (62.5) =3.73 + 3 ( ) 250.4+ 3 (62.5) Masa del resorte:
Facultad Facultad de Ing eniería eléctric eléctric a y electrónic electrónic a
9
Universidad Nacional de Ingeniería __L aboratori o N° 1
)) = 488.7+ 131 (62.5) =1.85 = + 131 ( + 3 ( )) 253.8+ 3 (62.5) )) = 992.0+ 131 (62.5) =3.69 = + 131 ( + 3 ( )) 253.8+ 3 (62.5) )) = 992.0+ 131 (62.5) =1.99 = + 131 ( + 3 ( )) 488.7+ 3 (62.5)
4. Calcule la frecuencia frecuencia para cada masa utilizando utilizando la ecuación (18.6) compare el resultado con las frecuencias obtenidas en el paso 2.
Masas (g) Elongaci Elon gación(m ón(mm m
m1 250.4 12
m2 253.8 20
m3 488.7 60
m4 992.0 148
MASA DEL RESORTE: 62.69 g
PESO = FUERZA ELASTICA m.g = K. ΔX Mx . 10-3 .kg . g= K x . ΔX . 10 -3 K = Mx . g / (ΔX)
117.71()
K= Ecuación (18.6)
f=
Facultad Facultad de Ing eniería eléctric eléctric a y electrónic electrónic a
.
10
Universidad Nacional de Ingeniería __L aboratori o N° 1
Reemplazando:
comparando:
F1 = 2.55 s -1 F2 = 2.23 s -1 F3 =1.89 s -1 F4= 1.34 s -1
F1
2.4
F2
2.25
F3
1.66
F4
1.23
5. ¿Cómo reconocería si el movimiento de una masa que escila, cumple un movimiento armónico? Lo reconocería si fuese periódico y que es producido por la acción de una fuerza recuperadora que es directamente proporcional a la posición.
6.- ¿Qué tan próximo es el movimiento estudiado aquí a un movimiento estudiado aquí a un movimiento armónico simple? La frecuencia teórica la calculamos usando:
= 21
=117.71()
El valor de k se obtuvo anteriormente:
La masa debe estar en kg. El error porcentual lo calculamos usando:
100% %=
Frecuencia obtenida 2.4 2.25 1.66 1.23
Frecuencia teórica 3.457 3.434 2.474 1.736
Facultad Facultad de Ing eniería eléctric eléctric a y electrónic electrónic a
Error porcentual 30.580 34.478 32.921 29.186
11
Universidad Nacional de Ingeniería __L aboratori o N° 1
Se observa que la frecuencia teórica con la obtenida tiene un margen de error producido porque para el cálculo de la frecuencia se establecieron 40 oscilaciones las que fueron contadas solo usando el ojo humano que no es muy exacto al medir una oscilación completa, por dicha razón el porcentaje de error sale relativamente grande.
7.-Haga una gráfica del periodo al cuadrado versus la masa .utilice los resultados del paso
frecuencia 2.4 2.25 1.66 1.23
5.76 5.06 2.76 1.51
masa(kg) 0.2504 0.2538 0.4887 0.992
5.76 5.06 2 ^ )
⁄
2.76
(
2 ^
1.51
0
masa (kg)
Facultad Facultad de Ing eniería eléctric eléctric a y electrónic electrónic a
12
Universidad Nacional de Ingeniería __L aboratori o N° 1
CONCLUSIONES: 1. La amplitud de las oscilaciones en movimiento amortiguado se reduce a medida que transcurre el tiempo, debido a la presencia de una fuerza resistiva la cual provoca que el sistema pierda energía. 2. El experimento llevado a cabo tiene mayor porcentaje de error error mientras más tiempo se deja oscilar el sistema masa resorte ya sea el caso de movimiento armónico simple o amortiguado. 3. La amplitud en el movimiento armónico simple se mantiene constante a través del tiempo ya que no existe una fuerza resistiva notoria que provoque la perdida de energía al sistema.
BIBLIOGRAFIA:
Fisica II Fisica Fisica II
Hugo Medina Solis Serway – Serway – Jenett Jenett Rojas Saldaña
Facultad Facultad de Ing eniería eléctric eléctric a y electrónic electrónic a
13