INCLUSIONES FLUIDAS APLICADA A EXPLORACIÓN DE YACIMIENTOS MINERALES José Andrés Yparraguirre Calderón
[email protected] Gerente de Laboratorio de FAIngenieros SAC 1.- Inclusiones Fluidas Las inclusiones de fluidos (IF) son porciones pequeñas de líquido o de gas o de una mezcla de estas dos fases, f ases, que fueron atrapadas en imperfecciones de minerales durante su crecimiento. Sus tamaños varían de 1 a 100 m, usualmente entre 3 a 20 m. Dichos fluidos están relacionados a procesos hidrotermales que han ocurrido en los yacimientos. Debido a varias evidencias, se supone que las IF han conservado las propiedades químicas y físicas de las soluciones originales, y se les considera como muestras directas de las fases volátiles.
Figura Nº 01.- Inclusión Fluida Polifásica
Vapor
Vapor: H2O (P<<1atm), CO2, CH4, N2, H2S
Líquido Sólido
Liquido: H2O, CO2, Petróleo Sólido: NaCl, KCl, hematita, anhidrita, moscovita, calcopirita, magnetita (otros aun no identificados).
2.- Minerales utilizados. Se estudian en minerales que son transparentes, incoloros o débilmente coloreados, principalmente principalmente en cuarzo y/o calcita.
01)
02)
Fotomicrografía 01 y 02.- 01) Inclusiones tabulares alineadas en baritina; 02) Inclusiones fluidas bifásicas rica en vapor capturadas en esfalerita.
Página 1 de 8
3.- ¿Qué podemos conocer de estas?. El estudio nos brinda la siguiente información: a.- Temperatura de homogeneización (Th ºC); b.- Presión (profundidad) del yacimiento; c.- Calculo de la salinidad del fluido mineralizante; d.- Paleorelieves (desmantelamiento erosivo); e.- Secuencias Parageneticas; f.Paleoisotermas; g.- Direcciones de fluidos mineralizantes.
4.- Contenidos de las inclusiones fluidas. a) Monofásicas. Están formadas completamente por líquido (L), gas (V) o sólidos (S o inclusiones minerales). Entre los fluidos más frecuentes son las de líquidos acuosos, en general formadas a muy baja temperatura. b) Bifásicas. Presentan sólo dos fases, siendo más frecuentes las que tienen vapor y líquido. c) Trifásicas. Cuando aparecen más de dos fases el esquema de clasificación se complica, ya que unas veces son predominantemente líquidas, otras gaseosas con líquidos inmiscibles o baja proporción de sólidos, mientras que en otras son muy abundantes los sólidos. d) Poli- o multifásicas. Las inclusiones más complejas las tenemos cuando aparecen varios tipos de sólidos ("daughter minerals") junto con el líquido o líquidos inmiscibles y la burbuja de gas. Son típicas de ambientes profundos tipo Pórfidos.
Figura Nº 02.- Clasificación de Nash (1976) mostrando los cuatro tipos más importantes de inclusiones fluidas. (L=líquido; V=vapor; S=sólido; C=carbónicas).
Página 2 de 8
5.-. Microtermometría
Es la observación de los cambios de fases en inclusiones fluidas (IF) bajo condiciones de calentamiento y enfriamiento controladas, es la base fundamental para el estudio de inclusiones fluidas.
5.1.- Fase calentamiento- Identificación de la Temperatura de Homogeneización
5.1.1.- En Inclusiones Fluidas tipo Bifásicas.
ThºC Figura 03.- Secuencias de cambio de fase para conseguir la temperatura de Homogeneización (ThºC) en una Inclusión Fluida bifásica. L: Liquida; V: Vapor
5.1.2.- En Inclusiones Fluidas tipo Polifásicas.
V
H
20ºC
160ºC
300ºC
400ºC
Figura 04.- Secuencias de cambio de fase para conseguir la temperatura de Homogeneización y dilución de la Halita en una Inclusión Fluida Polifásica. H: Halita; V: Vapor
Página 3 de 8
5.2.- Fase Enfriamiento- Identificación de la Temperatura de Fusión.
-TfºC
Figura 05.- Secuencias de cambio de fase para conseguir la temperatura de fusión (TfºC) para poder encontrar la salinidad del fluido en una Inclusión Fluida bifásica. L: Liquida; V: Vapor
6.- Inclusiones Fluidas en un Yacimiento Tipo Pórfido. Las Temperaturas de Homogeneización y salinidades según zonas de alteración tenemos:
Figura N° 05.- Ubicación de las alteraciones de un Yacimiento tipo Pórfido.(Lowell y Guilbert, 1970)
Página 4 de 8
a.- Alteración Cálcico-Sódico: se caracteriza por albita, actinolita, epidota, titanita. Cálcico: Granate y piroxenos. Sódico: Sericita, turmalina (inferior T), superiores Los fluidos son salinos con temperaturas moderadas y altas (300-400ºC).
b.- Alteración Potásica: se caracteriza por FPTKs, biotita secundaria +/-magnetita. (Metasomatismo –K, lixiviación Na, Ca, intercambio alcalino). Fluido K y rico Fe. Th: 350-700 °C; Salinidad: 70% en peso de NaCl.
c.- Alteración Propilítica: se caracteriza por epidota, clorita, calcita, albita (hidratación, carbonatación, además de volátiles). Th: 150-250 °; Salinidad: 1-10% en peso de NaCl.
d.- Alteración Fílica: se caracteriza por sericita-cuarzo. Fluidos usualmente de baja salinidad, dominada vapor (pero hay excepciones). Temperatura entre 200-400 °C.
e.- Alteración A rg ílica: por arcillas (illita, esmectita, caolinita)-cuarzo. El fluido es acuoso o dominado o condensado en fase de vapor (i.e, de baja salinidad, temperatura baja). 7.- Inclusiones Fluidas en un Yacimiento tipo Skarn. Las Temperaturas de Homogeneización (ThºC) y salinidades según zonas de alteración Prograda y Retrograda:
A.- Metamorfismo isoquímico B.- Fase Prograda C.-Fase Prograda D.- Fase Retrograda
Figura N° 07.- Ubicación espacial de las ateraciones de un Yacimiento tipo Skarn. (Meinert, 2005)
Página 5 de 8
7.1.- Skarn de Hierro Prograda: Granates y Piroxenos: Th ºC: 370-700°C y 300-690°C; Salinidad: 50 wt % NaCl Retrograda: Epidota y vetas transversales de cuarzo: Th °C: 245-250°C y 100-250°C; Salinidad: 25 wt % NaCl 7.2.- Skarn de Oro Prograda: Granates y Piroxenos: Th °C: 730-695°C; Salinidad: 33 wt % NaCl Retrograda: Escapolita, epidota y actinolita: Th °C: 320-400°C, 255-320°C y 320-350°C 7.3.- Skarn de Tungsteno Prograda: Granates y Piroxenos: Th °C: 800-600°C; Salinidad: 52 wt % NaCl Retrograda: Anfíboles y cuarzo: Th °C: 250-380°C y 290-380°C; Salinidad: 12-28 y 2.5-10.5 wt % NaCl 7.4.- Skarn de Cobre Prograda: Granates y Piroxenos: Th °C: ~750°-400°C. Retrograda: Th: <400°C; Salinidad: <25 wt% NaCl
8.- Interpretaciones.
Figura N° 08.- Diagrama ThºC versus Salinidad para poder ubicar modelos de Yacimientos. Modificada por Yparraguirre de Wilkinson (2001)
Página 6 de 8
Yparraguirre J.A. 2005 09)
Yparraguirre J.A. 2008 10) DIRECCIONES DE FLUIDOS
González-Partida et al . (2006) y de Camprubí et al . (2006b). 11) Figura N° 09 y 11.- 09) Secciones Longitudinal mostrando Paleorelieves, isotermas y direcciones de fluidos.
Página 7 de 8
9.- Bibliografía. Brown (1998) Fluid Inclusion Modeling for Hydrothermal Systems, Techniques in Hydrothermal Ore deposits Geology, Rev. in Economic Geology, Vol 10, p. 151-171 Burnham, C.W., (1979) Magmas and hydrothermal fluid, in Barnes, H.L., ed., Geochemistry of hydrothermal ore deposits, Wiley, New York, p. 71-136 Castroviejo R, Yparraguirre J.A, Cánepa C. (2008) Extensive boiling as a precipitation mechanmism for precious & base metal ores, Bienaventurada Mine, Huancavelica, Perú. 12th Quadrennial IAGOD Symposium, Session C3 (Abs. p. 43 & extended abs. in CD), Moscow, 21-24 august 2006. Camprubí A. (2010) Criterios para la exploración minera mediante microtermometría de inclusiones fluidas, Bol. De la Soc. Geológica Mexicana Vol. 62, Numero 1, pp 25-42. Hollister and Crawford (1981) Fluid Inclusions: Applications to Petrology, Short Course, Mineralogical Association of Canada, Vol. 6, p. 305 Hollister, V.F. (1978) Geology of the porphyry copper deposits of the western hemisphere: Society of Mining Engineers, New York, p. 219 De Vivo and Frezzotti (1994) Fluid Inclusions in Minerals: Methods and Applications, Short Course IMA, Siena, 1-4 Sept. p. 376 Meinert L. (2005) Word Skarn Deposits, Economic Geology 100 th Anniversary Volume pp.229-336 Roedder (1984) Fluid Inclusions, Review a in Mineralogy, Vol. 12, Mineralogical Society of America, p. 646 Shepherd, Rankin and Alderton (1985) Fluid Inclusion Studies, Ed. Blackie, Chapman & Hall, New York, p. 239 Yparraguirre J.A. (2005) Secuencias Paragenéticas, Alteraciones Hidrotermales e Inclusiones Fluidas de la Veta Bienaventurada, Mina Bienaventurada, Huachocolpa- Huancavelica. Tesis de grado, dirigida por el Dr. C. Cánepa. Univ. de San Marcos (UNMSM), Lima, Perú, 113 pp y 3 anexos. Wilkinson (2001) Fluid inclusion in hydrothermal ore deposits, Lithos, 55, 229-272
Página 8 de 8