Geologi Teknik – Geolistrik
21 " Yuli Yulia Citra-1203221 (Teknik Sipil S1)
BAB I
PENDAHULUAN
Latar Belakang
Geolistrik merupakan salah satu metode geofisika yang mempelajari sifat aliran listrik didalam dan bagaimana cara mendeteksinya di permukaan bumi. Aliran arus listrik yang mengalir didalam tanah yaitu melalui batuan-batuan dan sangat dipengaruhi oleh adanya air tanah dan garam yang terkandung didalam batuan serta hadirnya mineral logam maupun panas yang tinggi. Dalam hal ini yang di ukur yaitu dalam pengukuran potensial, arus dan medan elektromagnetik yang terjadi baik secara alamiah maupun akibat injeksi arus kedalam bumi. Ada beberapa macam metode geolistrik antara lain: metode potensial diri, arus telluric, magnetoteluric, elektromagnetik, IP (Induced polarization), resistivitas (tahanan jenis) dan sebagainya. Metode geolistrik ini digunakan untuk memperkirakan sifat kelistrikan medium atau formasi bantuan bawah permukaan, terutama kemampuannya untuk menghantarkan atau menghambat listrik. Dengan adanya metode ini kita dapat memperkirakan sifat kelistrikan bantuan bawah permukaan tanah. Untuk dapat menerapkan metode geolistrik dengan sempurna, maka kita harus dapat mengetahui tata cara penggunaan metode geolistrik. Penggunan metode geolistrik ini dengan menginjeksikan arus listrik di bawah permukaan tanah melalui dua buah elektroda arus listrik. Dengan kita mengetahui metode-metode geolistrik ini, maka kita sebagai mahasiswa Teknik Sipil dapat mengaplikasikan di kehidupan sehari-hari untuk mengetahui adanya karakteristik lapisan batuan bawah permukaan sehingga dapat mengetahui kemungkinan adanya lapisan akifer yaitu lapisan batuan yang merupakan lapisan pembawa air.
Rumusan Masalah
Berdasarkan Latar Belakang masalah diatas, maka rumusan masalah yang diangkat dalam makalah ini adalah :
Apa itu metode geolistrik ?
Bagaimana cara kerja serta kegunaan dari metode geolistrik ?
Bagaimana konfigurasi metode geolistrik ?
Apa sajakah jenis-jenis dari metode listrik?
Apa sajakah alat dari Geolistrik serta Gangguan (noise) dalam pengukuran Geolistrik?
Tujuan
Adapun tujuan dari makalah ini adalah :
Untuk mengetahui metode geolistrik.
Untuk mengetahui cara kerja dan kegunaan geolistrik.
Untuk mengetahui konfigurasi metode geolistrik.
Untuk dapat mengetahui jenis-jenis dari metode geolistrik.
Untuk dapat mengetahui alat dari Geolistrik serta Gangguan (noise) dalam pengukuran Geolistrik.
BAB II
PEMBAHASAN
Metode Geolistrik
Penggunaan geolistrik pertama kali dilakukan oleh Conrad Schlumberger pada tahun 1912. Geolistrik merupakan salah satu metoda geofisika untuk mengetahui perubahan tahanan jenis lapisan batuan di bawah permukaan tanah dengan cara mengalirkan arus listrik DC ('Direct Current') yang mempunyai tegangan tinggi ke dalam tanah. Injeksi arus listrik ini menggunakan 2 buah 'Elektroda Arus' A dan B yang ditancapkan ke dalam tanah dengan jarak tertentu. Semakin panjang jarak elektroda AB akan menyebabkan aliran arus listrik bisa menembus lapisan batuan lebih dalam.
Dengan adanya aliran arus listrik tersebut maka akan menimbulkan tegangan listrik di dalam tanah. Tegangan listrik yang terjadi di permukaan tanah diukur dengan penggunakan multimeter yang terhubung melalui 2 buah 'Elektroda Tegangan' M dan N yang jaraknya lebih pendek dari pada jarak elektroda AB. Bila posisi jarak elektroda AB diubah menjadi lebih besar maka tegangan listrik yang terjadi pada elektroda MN ikut berubah sesuai dengan informasi jenis batuan yang ikut terinjeksi arus listrik pada kedalaman yang lebih besar.
Dengan asumsi bahwa kedalaman lapisan batuan yang bisa ditembus oleh arus listrik ini sama dengan separuh dari jarak AB yang biasa disebut AB/2 (bila digunakan arus listrik DC murni), maka diperkirakan pengaruh dari injeksi aliran arus listrik ini berbentuk setengah bola dengan jari-jari AB/2.
Gambar 2.1 Cara Kerja Metode Geolistrik
Umumnya metoda geolistrik yang sering digunakan adalah yang menggunakan 4 buah elektroda yang terletak dalamsatu garis lurus serta simetris terhadap titik tengah, yaitu 2 buah elektroda arus (AB) di bagian luar dan 2 buah elektroda ntegangan (MN) di bagian dalam.
Kombinasi dari jarak AB/2, jarak MN/2, besarnya arus listrik yang dialirkan serta tegangan listrik yang terjadi akan didapat suatu harga tahanan jenis semu ('Apparent Resistivity'). Disebut tahanan jenis semu karena tahanan jenis yang terhitung tersebut merupakan gabungan dari banyak lapisan batuan di bawah permukaan yang dilalui arus listrik.
Bila satu set hasil pengukuran tahanan jenis semu dari jarak AB terpendek sampai yang terpanjang tersebut digambarkan pada grafik logaritma ganda dengan jarak AB/2 sebagai sumbu-X dan tahanan jenis semu sebagai sumbu Y, maka akan didapat suatu bentuk kurva data geolistrik. Dari kurva data tersebut bisa dihitung dan diduga sifat lapisan batuan di bawah permukaan.
Cara Kerja Serta Kegunaan Dari Metode Geolistrik
Cara Kerja Geolistrik
Cara kerja metode geolistrik yang sering digunakan adalah yang menggunakan 4 buah elektroda yang terletak dalam satu garis lurus serta simetris terhadap titik tengah, yaitu 2 buah elektroda arus (AB) di bagian luar dan 2 buah elektroda tegangan (MN) di bagian dalam. Kombinasi dari jarak AB/2, jarak MN/2, besarnya arus listrik yang dialirkan serta tegangan listrik yang terjadi akan didapat suatu harga tahanan jenis semu ('Apparent Resistivity'). Disebut tahanan jenis semu karena tahanan jenis yang terhitung tersebut merupakan gabungan dari banyak lapisan batuan di bawah permukaan yang dilalui arus listrik.Bila satu set hasil pengukuran tahanan jenis semu dari jarak AB terpendek sampai yang terpanjang tersebut digambarkan pada grafik logaritma ganda dengan jarak AB/2 sebagai sumbu-X dan tahanan jenis semu sebagai sumbu Y, maka akan didapat suatu bentuk kurva data geolistrik. Dari kurva data tersebut bisa dihitung dan diduga sifat lapisan batuan di bawah permukaan.
Kegunaan Dari Metode Geolistrik
Mengetahui karakteristik lapisan batuan bawah permukaan sampai kedalaman sekitar 300 m sangat berguna untuk mengetahui kemungkinan adanya lapisan akifer yaitu lapisan batuan yang merupakan lapisan pembawa air. Umumnya yang dicari adalah 'confined aquifer' yaitu lapisan akifer yang diapit oleh lapisan batuan kedap air (misalnya lapisan lempung) pada bagian bawah dan bagian atas. 'Confined' akifer ini mempunyai 'recharge' yang relatif jauh, sehingga ketersediaan air tanah di bawah titik bor tidak terpengaruh oleh perubahan cuaca setempat.
Geolistrik ini bisa untuk mendeteksi adanya lapisan tambang yang mempunyai kontras resistivitas dengan lapisan batuan pada bagian atas dan bawahnya. Bisa juga untuk mengetahui perkiraan kedalaman 'bedrock' untuk fondasi bangunan.
Metoda geolistrik juga bisa untuk menduga adanya panas bumi (geotermal) di bawah permukaan. Hanya saja metoda ini merupakan salah satu metoda bantu dari metoda geofisika yang lain untuk mengetahui secara pasti keberadaan sumber panas bumi di bawah permukaan.
Metode geolistrik digunakan untuk eksplorasi diantaranya adalah:
Eksplorasi Batu bara
Salah satu metoda geofisika yang dapat digunakan untuk memperkirakan keberadaan dan ketebalan batu bara di bawah permukaan adalah metoda geolistrik tahanan jenis. Metoda geolistrik dapat mendeteksi lapisan batu bara pada posisi miring, tegak dan sejajar bidang perlapisan di bawah permukaan akibat perbedaan resistansi perlapisan batuan yang satu dengan yang lain, karena pada umumnya batu bara memiliki harga resistansi tertentu.
Eksplorasi Geothermal
Dalam eksplorasi panas bumi digunakan metode geolistrik tahanan jenis untuk memetakan harga tahanan jenis batuan di daerah penelitian dalam rangka menentukan daerah konduktif yang merupakan batas reservoir sistem panas bumi. Peninjauan yang dilakukan dengan cara profiling untuk memperoleh gambaran umum daerah prospek panas bumi.
Eksplorasi Mineral
Dalam eksplorasi mineral digunakan metode geolistrik polarisasi terimbas. Mengenai polarisasi yang terjadi pada batuan dan tanah adalah melingkupi penyebaran atau difusiion-ion menuju mineral-mineral logam dan pergerakan ion-ion didalam pore-filling elektrolit. Yang menjadi efek utama atau mekanisme utama yang terjadi dalam suatu proses polarisasi adalah polarisasi elektroda atau electrode polarization dan polarisasi membrane atau membrane polarization.
Konfigurasi Metode Geolistrik
Metoda geolistrik terdiri dari beberapa konfigurasi, misalnya yang ke 4 buah elektrodanya terletak dalam satu garis lurus dengan posisi elektroda AB dan MN yang simetris terhadap titik pusat pada kedua sisi yaitu konfigurasi Wenner dan Schlumberger. Setiap konfigurasi mempunyai metoda perhitungan tersendiri untuk mengetahui nilai ketebalan dan tahanan jenis batuan di bawah permukaan. Metoda geolistrik konfigurasi Schlumberger merupakan metoda favorit yang banyak digunakan untuk mengetahui karakteristik lapisan batuan bawah permukaan dengan biaya survei yang relatif murah.
Umumnya lapisan batuan tidak mempunyai sifat homogen sempurna, seperti yang dipersyaratkan pada pengukuran geolistrik. Untuk posisi lapisan batuan yang terletak dekat dengan permukaan tanah akan sangat berpengaruh terhadap hasil pengukuran tegangan dan ini akan membuat data geolistrik menjadi menyimpang dari nilai sebenarnya. Yang dapat mempengaruhi homogenitas lapisan batuan adalah fragmen batuan lain yang menyisip pada lapisan, faktor ketidakseragaman dari pelapukan batuan induk, material yang terkandung pada jalan, genangan air setempat, perpipaan dari bahan logam yang bisa menghantar arus listrik, pagar kawat yang terhubung ke tanah dsbnya.
'Spontaneous Potential' yaitu tegangan listrik alami yang umumnya terdapat pada lapisan batuan disebabkan oleh adanya larutan penghantar yang secara kimiawi menimbulkan perbedaan tegangan pada mineral-mineral dari lapisan batuan yang berbeda juga akan menyebabkan ketidak-homogenan lapisan batuan. Perbedaan tegangan listrik ini umumnya relatif kecil, tetapi bila digunakan konfigurasi Schlumberger dengan jarak elektroda AB yang panjang dan jarak MN yang relatif pendek, maka ada kemungkinan tegangan listrik alami tersebut ikut menyumbang pada hasil pengukuran tegangan listrik pada elektroda MN, sehingga data yang terukur menjadi kurang benar.
Untuk mengatasi adanya tegangan listrik alami ini hendaknya sebelum dilakukan pengaliran arus listrik, multimeter diset pada tegangan listrik alami tersebut dan kedudukan awal dari multimeter dibuat menjadi nol. Dengan demikian alat ukur multimeter akan menunjukkan tegangan listrik yang benar-benar diakibatkan oleh pengiriman arus pada elektroda AB. Multimeter yang mempunyai fasilitas seperti ini hanya terdapat pada multimeter dengan akurasi tinggi.
Konfigurasi Wenner
Gambar 2.2 Konfigurasi Wenner
Keunggulan dari konfigurasi Wenner ini adalah ketelitian pembacaan tegangan pada elektroda MN lebih baik dengan angka yang relatif besar karena elektroda MN yang relatif dekat dengan elektroda AB. Disini bisa digunakan alat ukur multimeter dengan impedansi yang relatif lebih kecil.
Sedangkan kelemahannya adalah tidak bisa mendeteksi homogenitas batuan di dekat permukaan yang bisa berpengaruh terhadap hasil perhitungan. Data yang didapat dari cara konfigurasi Wenner, sangat sulit untuk menghilangkan factor non homogenitas batuan, sehingga hasil perhitungan menjadi kurang akurat.
Konfigurasi Schlumberger
Pada konfigurasi Schlumberger idealnya jarak MN dibuat sekecil-kecilnya, sehingga jarak MN secara teoritis tidak berubah. Tetapi karena keterbatasan kepekaan alat ukur, maka ketika jarak AB sudah relatif besar maka jarak MN hendaknya dirubah. Perubahan jarak MN hendaknya tidak lebih besar dari 1/5 jarak AB.
Gambar 2.3 Konfigurasi Schlumberger
Kelemahan dari konfigurasi Schlumberger ini adalah pembacaan tegangan pada elektroda MN adalah lebih kecil terutama ketika jarak AB yang relatif jauh, sehingga diperlukan alat ukur multimeter yang mempunyai karakteristik 'high impedance' dengan akurasi tinggi yaitu yang bisa mendisplay tegangan minimal 4 digit atau 2 digit di belakang koma. Atau dengan cara lain diperlukan peralatan pengirim arus yang mempunyai tegangan listrik DC yang sangat tinggi.
Sedangkan keunggulan konfigurasi Schlumberger ini adalah kemampuan untuk mendeteksi adanya non-homogenitas lapisan batuan pada permukaan, yaitu dengan membandingkan nilai resistivitas semu ketika terjadi perubahan jarak elektroda MN/2.
Agar pembacaan tegangan pada elektroda MN bisa dipercaya, maka ketika jarak AB relatif besar hendaknya jarak elektroda MN juga diperbesar. Pertimbangan perubahan jarak elektroda MN terhadap jarak elektroda AB yaitu ketika pembacaan tegangan listrik pada multimeter sudah demikian kecil, misalnya 1.0 milliVolt.
Umumnya perubahan jarak MN bisa dilakukan bila telah tercapai perbandingan antara jarak MN berbanding jarak AB = 1 : 20. Perbandingan yang lebih kecil misalnya 1:50 bisa dilakukan bila mempunyai alat utama pengirim arus yang mempunyai keluaran tegangan listrik DC sangat besar, katakanlah 1000 Volt atau lebih, sehingga beda tegangan yang terukur pada elektroda MN tidak lebih kecil dari 1.0 milliVolt.
Parameter yang diukur :
Jarak antara stasiun dengan elektroda-elektroda (AB/2 dan MN/2)
Arus (I)
Beda Potensial ( V)
Parameter yang dihitung :
Tahanan jenis (R)
Faktor geometrik (K)
Tahanan jenis semu (ρ )
Cara intepretasi Schlumberger adalah dengan metode penyamaan kurva (kurva matching). Ada 3 (tiga) macam kurva yang perlu diperhatikan dalam intepretasi Schlumberger dengan metode penyamaan kurva, yaitu :
Kurva Baku
Kurva Bantu, terdiri dari tipe H, A, K dan Q
Kurva Lapangan
Untuk mengetahui jenis kurva bantu yang akan dipakai, perlu diketahui bentuk umum masing-masing kurva lapangannya.
Kurva bantu H, menunjukan harga ρ minimum dan adanya variasi 3 lapisan dengan ρ1 > ρ2 < ρ3.
Kurva bantu A, menunjukkan pertambahan harga ρ dan variasi lapisan dengan ρ1 < ρ2 < ρ3.
Kurva bantu, K menunjukan harga ρ maksimum dan variasi lapisan dengan ρ1 < ρ2 > ρ3.
Kurva bantu Q, menunjukan penurunan harga yang seragam : ρ1 > ρ2 > ρ3
Gambar 2.4 Kurva – Kurva Bantu Dalam Metode Penyamaan Kurva Schlumberger
Alat-alat yang digunakan : kertas kalkir/mika plastik, kertas double log, marker OHP.
Plot nilai AB/2 vs ρ pada mika plastik diatas double log. AB/2 sebagai absis dan ρ sebagai ordinat.
Buat kurva lapangan dari titik-titik tersebut secara smooth (tidak selalu harus melalui titik-titik tersebut, untuk itu perlu dilihat penyebaran titik-titiknya secara keseluruhan).
Pilih kurva Bantu apa saja yang sesuai dengan setiap bentukan kurva lapangan.
Letakkan kurva lapangan diatas kurva baku, cari nilai P1 merupakan kedudukan :
d1',ρ1' (kedalaman terukur, tahanan jenis terukur)
d1' = kedalaman lapisan perama = sebagai absis
ρ1 = tahanan jenis lapisan pertama = sebagai ordinat
Pindahlah kurva lapangan dan letakkan diatas tipe kurva Bantu pertama yang telah ditentukan. Tarik garis putus-putus sesuai dengan harga ρ1/ρ2 pada kurva Bantu tersebut. Garis putus-putus sebagai kurva Bantu ini merupakan tempat kedudukan P2.
Kembalikan kurva lapangan diatas kurva baku, geser kurva lapangan berikutnya sedemikian sehingga kurva baku pertama melalui pusat kurva baku. Tentukan nilai ρ3/ρ2serta plot titik P2. (catatan : posisi sumbu-sumbunya harus sejajar dengan sumbu-sumbu pada kurva Bantu)
Dari P2 dapat ditentukan d2', ρ2'
Titik pusat P3, koordinat d3', ρ3' dan nilai kurva Bantu selanjutnya dapat dicari dengan jalan yang sama.
Koreksi Kedalaman
Untuk titik-titik pusat (Pn) yang terletak pada kurva bantu tipe H, tidak perlu dikoreksi.
Titik P pada kurva Bantu tipe A, K dan Q perlu dikoreksi.
Titik P1 apapun kurvanya tidak perlu dikoreksi.
Gambar 2.5 Contoh Kurva Bantu
Titik P1, tidak perlu dikoreksi
Titik P2, tidak perlu dikoreksi karena terletakpada kurva Bantu tipe H
Titik P3 dan P4, perlu dikoreks nilai d (kedalaman), karena terletak pada kurva Bantu selain tipe H.
Cara Koreksi Kedalaman
Untuk titik P3 :
Letakkan/impitkan kembali mika plastik diatas kurva Bantu tipe A (dengan nilai ρ4/ρ3 = 10) dengan pusat P2. baca nilai koreksi (sebagai n) tepat pada titik P3 (nilai absis dari kurva Bantu tersebut ditandai dengan garis putus-putus). Kemudian dapat dicari ketebalan lapisan ke-3 dengan rumus :
H3 = n.d2
Sehingga kedalaman lapisan ke-3 dapat dihitung dengan rumus:
D3 = h3 + d2
Demikian juga untuk titik P4, dan seterusnya.
Jadi, dari hasil penyamaan kurva (curve matching) akan diperoleh data sebagai berikut :
Koordinat Pn = (dn', ρn)
Kn = ρn+1/ρn
Jenis Kurva Bantu
Nilai Koreksi Kedalaman (n)
Setelah diperoleh nilai-nilai ρ dan d, kemudian dibuat penampang tegaknya (berupa kolom) sesuai harga d-nya (menggunakan skala). Selanjutnya dilakukan pendugaan unt interpretasi litologi penyusun pada masing-masing lapisan berdasarkan nilai ρ.
Penafsiran litologi ini akan semakin mendekati kebenaran apabila kita memiliki data bawah permukaan seperti data dari sumur. Jika tidak ada sumur, maka kita sebaiknya mengetahui geologi regional daerah penelitian tersebut atau data yang diperoleh dari pengamatan geologi daerah sekitar (untuk mengetahui variasi litologi).
Tabel 2.1 Nilai Resistivitas
Rock
Resitivitas
Common rocks
Topsoil
Loose sand
Gravel
Clay
Weathered bedrock
Sandstone
Limestone
Greenstone
Gabbro
Granite
Basalt
Graphitic schist
Slates
Quartzite
Ore minerals
Pyrite (ores)
Pyrrhotite
Chalcopyrite
Galena
Sphalerite
Magnetite
Cassiterite
Hematite
Common rocks
50–100
500–5000
100–600
1–100
100–1000
200–8000
500–10 000
500–200 000
100–500 000
200–100 000
200–100 000
10–500
500–500 000
500–800 000
Ore mineral
0.01–100
0.001–0.01
0.005–0.1
0.001–100
0.01–1 000 000
0.01–1000
0.001–10 000
1000–1 000 000
Gambar 2.6 Resistivities of common rocks and ore minerals (ohm-metres) Milsom After Palacky, 1987
Jenis-Jenis Metode Geolistrik
Jenis-jenis metode geolistrik yaitu :
Metode Tahanan Jenis
Metode resistivitas merupakan metode geolistrik yang mempelajari sifat tahanan jenis listrik dari lapisan batuan di dalam bumi. Prinsip dasar metode resistivitas yaitu mengirimkan arus ke bawah permukaan, dan mengukur kembali potensial yang diterima di permukaan. Faktor geometri diturunkan dari beda potensial yang terjadi antara elektroda potensial MN yang diakibatkan oleh injeksi arus pada elektroda arus AB.Besarnya resistansi R dapat diperkirakan berdasarkan besarnya potensial sumber dan besarnya arus yg mengalir. Besaran resistansi tersebut tidak dapat digunakan untuk memperkirakan jenis material karena masih bergantung ukuran atau geometri-nya. Untuk itu digunakan besaran resistivitas yang merupakan resistansi yang telah dinormalisasi terhadap geometri. Ketika melakukan eksplorasi, perbandingan posisi titik pengamatan terhadap sumber arus. Perbedaan letak titik tersebut akan mempengaruhi besar medan listrik yang akan diukur. Besaran koreksi terhadap perbedaan letak titik pengamatan tersebut dinamakan faktor geometri.
Metode Polarisasi Terimbas (Induced Polarization)
Metode polarisasi terimbas (Induced Polarization) adalah salah satu metode geofisika yang mendeteksi terjadinya polarisasi listrik yang terjadi di bawah permukaan akibat adanya arus induktif yang menyebabkan reaksi transfer antara ion elektrolit dan mineral logam. Parameter yang diukur adalah nilai dari chargeability, yaitu nilai dari perbandingan antara peluruhan potensial sekunder terhadap waktu. Konfigurasi pengukurannya sama dengan metoda tahanan Jenis.Metode ini umumnya digunakan untuk penelitian eksplorasi air tanah, geoteknik, ekplorasi mineral, studi lingkungan, dan arkeologi. Peralatan metoda Polarisasi Terimbas yang dimiliki oleh Pusat Survei Geologi, adalah sebagai berikut : IPR-12 Receiver dengan TSQ-3 Transmitter Merk Scintrex.
Metode Potensial Diri
Metoda potensial diri pada dasarnya merupakan metoda yang menggunakan sifat tegangan alami suatu massa (endapan) di alam. Hanya saja perlu diingat bahwa anomali yang diberikan oleh metoda potensial diri ini tidak dapat langsung dapat dikatakan sebagai badan bijih tanpa ada pemastian dari metoda lain atau pemastian dari kegiatan geologi lapangan. Karena pengukuran dalam metoda potensial diri diperoleh langsung dari hubungan elektrik dengan bawah permukaan, maka metoda ini tidak baik digunakan pada lapisan-lapisan yang mempunyai sifat pengantar listrik yang tidak baik (isolator), seperti batuan kristalin yang kering.
Ada dua macam teknik pengukuran Metode Potensial Diri yaitu:
1) Cara yang pertama, salah satu elektroda tetap, sedangkan yang satu lagi bergerak pada lintasannya.
2) Cara yang kedua, kedua elektroda bergerak bersamaan secara simultan, misalnya dengan interval 50 m.
Alat Geolistrik Serta Gangguan (Noise) Dalam Pengukuran Geolistrik
Alat Geolistrik Alat yang digunakan dalam pengukuran geolistrik merupakan serangkaian dari beberapa alat yang digunakan untuk mendeteksi adanya muatan listrik, air dan lain-lain di dalam bumi.
Alat-alat geolistrik ini antara lain terdiri :
G – sound twin probe dan soil box
Gambar 2.7 G – sound twin probe
Gambar 2.8 Soil Box
G-sound dibuat untuk kebutuhan akan alat ukur resistivitas (geolistrik) yang instrumennya didesain untuk pengukuran bergerak (pertable) dengan kedalaman penetrasi arus mencapai 100-150 meter. Pada G-sounds tidak diperlukan adjusting SP dengan rumit, melalui tombol adjusting maka nilai SP terkoreksi secara otomatik teknologi curent source (pembangkit arus) yang terdapat pada G-sound menjadikannya andal, berpengaman sistem anti short circuit, dimana kondisi hubungan singkat sering terjadi pada saat AB (arus) terlalu dekat atau lapisan berimpedansi rendah.
Dengan impedansi multimeter pada instrumen sebesar 10 Mohms dan resolusi 12 bit, menjadikan pengukuran nilai tegangan dan arus sangat resisi dan akurat.Teknologi yang di aplikasikan pada setiap instrumen geolistrik dengan sistem current sources dan anti short circuit dapat dimanfaatkan untuk melakukan pengukuran dalam skala laboratorium misalkan dalam mengukur media tanah (soil box) batuan, (sampel core) dan lumpur. Dengan demikian G-sound mendukung keperluan pengukuran baik dilapangan maupun dilaboratorium.
Alat resistivitas S-Field 16 elektroda automatic multichannel
Gambar 2.9 Alat resistivitas S-Field 16 elektroda automatic multichannel
Dengan adanya alat ini pengukuran resistivitas bias dilakukan secara simultan sampai 16 elektroda, dan dapat pula di upgrade menjadi 32,64,128 elektroda atau lebih (max 1000 cannel). Dengan demikian akan menghemat waktu dan tenaga dalam pengukuran resistivitas bawah pengukuran. Melalui instrument resistivity multichannel pengukuran data resistivity 2D dan 3D menjadi lebih episien. Teknologi current source (pembangkit arus) yang terdapat pada S-field menjadikannya handal, berpengaman system anti short circuit, sehingga aman digunakan pada saat jarak elektroda arus terlalu rapat atau impedansi sangat rendah.
IPMGEO – 4100
Gambar 2.10 IPMGEO – 4100
Inducet polarization atau polarisasi terimbas merupakan salah satu metode geofisika yang mendeteksi terjadinya polarisasi listrik pada permukaan mineral logam. Polarisasi ini terjadi akibat adanya arus induktif yang menyebabkan reaksi transfer antara ion elektrolit dan mineral logam. IPMGEO-4100 dirancang untuk mengukur parameter polarisasi terimbas melalui nilai chargeability. Nilai ini merupakan perbandingan antara keseluruhan potensi sekunder terhadap waktu. IPMGEO-4100 bekerja dalam domain waktu dimana data akuisisi direkam melalui A/D char dengan akurasi 10 bit.
Sonic wave analyser (Sowan).
Gambar 2.11 Sonic wave analyser (Sowan).
Sowan adalah instrument ukur kecepatan gelombang ultrasonic pada sampel batuan. Melalui alat ini dapat terbaca waktu tempuh gelombang ρ dan S secara akurat karena tegangan bernilai 350 V dan lebar 1ns. Instrument ukur ini dapat digunakan untuk analisa kekuatan batuan, instrument ini bermanfaat untuk menganalisa kekuatan bahan, beton misalnya melalui parameter elastic dinamik. Sowan sangat bermanfaat bagi tehnik sifil, mekanika batuan, dan juga ahli geofisika. Untuk analisa fisika batuan (rock physic). khusus untuk analisa fisika batuan, instrument ini dapat dimodifikasi untuk simulasi pengukuran kecepatan gelombang sonic insitu melalui penambahan tabung tekanan tinggi.
Noise Atau Gangguan Pada Saat Pengukuran
Adapun gangguan yang mungkin terjadi pada saat kita melakukan pengukuran geolistrik yaitu:
Hujan
Apabila pada saat hujan kita melakukan pengukuran itu sangat mengganggu karena yang kita ukur adalah kuat arus atau listrik dalam bumi. Jika ada air maka arus listrik besar sehinnga sangat mempengaruhi pada data yang kita butuhkan.
Petir
Pada saat kita mengukur geolistrik dalam tanah pada saat ada petir ini sangat mengganggu, karena kita menggunakan alat hampir semua terbuat dari besi, jadi kemungginan kita bisa tersambar petir. Ini sangat mengganggu pada proses pengukuran dan pada data kita.
Gempa Bumi
Gempa bumi merukapan peristiwa alam berupa getaran atau gerakan bergelombang pada kulit bumi yang disebabkan oleh tenaga endogen. Jika kita melakukan pengukuran pada saat gempa bumi tentu data yang kita dapat tidak akurat. Karena getaran atau gerakan yang terjadi dapat menggeserkan alat yang kita pasang dengan jarak yang telah ditentukan, sehingga jika hal itu terjadi maka kita harus mengukur kembali.
Bunyi
Bunyi yang sangat keras sangat mengganggu pengukuran. Contohnya jika pada saat kita melakukan pengukuran di sekitar jalan, kita sudah memasang alat tetapi pada saat melakukan pengukuran tib-tiba ada sebuah truk lewat maka data yang kita peroleh akan kacau karena disebabkan oleh sumber bunyi dari truk tersebut dan getaran yang ditimbulkannya.
BAB III
PENUTUP
3.1 Kesimpulan
Geolistrik merupakan salah satu metode geofisika yang mempelajari sifat aliran listrik didalam dan bagaimana cara mendeteksinya di permukaan bumi. Aliran arus listrik yang mengalir didalam tanah yaitu melalui batuan-batuan dan sangat dipengaruhi oleh adanya air tanah dan garam yang terkandung didalam batuan serta hadirnya mineral logam maupun panas yang tinggi.
Penggunaan geolistrik pertama kali dilakukan oleh Conrad Schlumberger pada tahun 1912. Geolistrik merupakan salah satu metoda geofisika untuk mengetahui perubahan tahanan jenis lapisan batuan di bawah permukaan tanah dengan cara mengalirkan arus listrik DC ('Direct Current') yang mempunyai tegangan tinggi ke dalam tanah. Injeksi arus listrik ini menggunakan 2 buah 'Elektroda Arus' A dan B yang ditancapkan ke dalam tanah dengan jarak tertentu. Semakin panjang jarak elektroda AB akan menyebabkan aliran arus listrik bisa menembus lapisan batuan lebih dalam.
Metode geolistrik terdiri dari beberapa konfigurasi, misalnya yang ke 4 buah elektrodanya terletak dalam satu garis lurus dengan posisi elektroda AB dan MN yang simetris terhadap titik pusat pada kedua sisi yaitu konfigurasi Wenner dan Schlumberger. Konfigurasi metode geolistrik yaitu : konfigurasi wenner, sclumberger, dipole-dipole, dan Wenner dan Schlumberger.
Metode geolistrik terdiri dari beberapa jenis yaitu: metode potensial diri, IP (Induced polarization), resistivitas (tahanan jenis) dan sebagainya.
Alat-alat geolistrik terdiri dari G-sound twin probe, soil box, IPMGEO-4100, dan lain-lain. Setiap pengukuran geolistrik ada noise atau gangguan yang mungkin terjadi yang disebabkan oleh gejala-gejala alam dan perbuatan manusia itu sendiri.
DAFTAR PUSTAKA
Harlona. (2015) pengertian metode geolistrik. [online]. Available at : http://harlona.blogspot.co.id/2013/05/pengertian-metode-geolistrik.html diakses taggal 03-10-2015
Budie, pt. (2015). Geolistrik. [online]. Available at : https://ptbudie.wordpress.com/2010/12/24/geolistrik/ diakses taggal 03-10-2015
Sumur, gali. (2015) cara kerja geolistrik dan manfaat. [online]. Available at: http://www.gali-sumur.com/2015/07/cara-kerja-geolistrik-dan-manfaat.html diakses taggal 03-10-2015
Geocis (2015). [online]. Available at: http://www.geocis.net/