Home
Add Document
Sign In
Register
Semi 4 Final Prob Sol 14
Home
Semi 4 Final Prob Sol 14
microoFull description...
Author:
KarimovaRaikhanovna
19 downloads
254 Views
620KB Size
Report
DOWNLOAD .PDF
Recommend Documents
Semi 4 Final Prob Sol 14
microoDescription complète
final-sol
wwwwFull description
Prob
probabilidade
Chemalite Sol Final 011112
PROBLEMA DE HANSEN PROB. 4
Descripción: Informe de topografía, meted de Hansen. PROBLEMA DE LOS CUATRO PUNTOS PROBLEMA-CASO-3
Semi Detailed Lesson Plan FINAL
Semi- detailed lesson plan, it contains the format that will help you in your projects and school work.. i hope you enjoy
PROBLEMA DE HANSEN PROB. 4
Informe de topografía, meted de Hansen. PROBLEMA DE LOS CUATRO PUNTOS PROBLEMA-CASO-3Full description
Relacion Prob 2 Tema 4
Descripción completa
Tut+4+-+Sol
EYA-SOL-4
Derecho y división de poderesDescripción completa
COF-SOL-4.pdf
Sol unid 4
TDC-SOL-4
Contabilidad
TDC-SOL-4
ContabilidadDescripción completa
MIT18 05S14 Exam Final Sol
fghjfhdjdFull description
Presentacion Final Circo Del Sol
Esta es la nueva
Webinaire 14 Final
Robot
Capitulo 14 Final
capitulo 14 forja
Capitulo 14 Final
Descripción: capitulo 14 forja
Mochilas Viaxeiras13-14 Final
Descripción completa
14. Examen Final – Solucionario
HHDescripción completa
Capitulo 14 Doc Final
Practice Test Papers 1 to 14 Sol
oooooooooooo
AccAud prob
acc aud
14.1
λ max
=
1.24
E g
(a) Si: λ max
µ m
=
(b) Ge: λ max
1.24 1.12 1.24
=
(c) GaAs: λ max
=
1.24 1.42
1.24
λ =
1.24 1.32
= 0.939 µ m
!" E = 1.90 e$# e$# 1.24 = 0.653 µ m λ = 1.90 _______________________________________
14.3
= ex'( − α d )
= 1 − 0.125 = 0.875 _______________________________________ ____________________________________ ___ 14.4
g ′ =
α I ( x )
hν
!" hν
1.24
λ =
= 1.3 e$#
1.3
= 0.95 µ m
!" siic!n: α ≅ 3 × 10 2 cm −1 *+en ,!" I ( x )
= 10
−2
-cm 2 # /e !bain
(3 ×10 )(10− ) (1.6 ×10 − )(1.3) 2
g ′ =
2
19
!" g ′ = 1.44 × 10 19 cm −3 s −1
*+e excess c!ncen"ai!n is
δ n !"
= g ′τ = (1.44 × 10 19 )(10 −6 ) 13
cm −3 _______________________________________ ____________________________________ ___
δ n
= 1.44 × 10
14.5
(a) λ =
1.24 1.65
= 0.752 µ m
(a) δ p
(i) "!m i%&"e 14.4# α ≅ 9 × 10 3 cm −1
I ν 0
"aci!n abs!"bed
1.24
= = 2.58 e$ λ 0.480 !" λ = 725 nm# 1.24 = 1.71 e$ E = 0.725 (b) !" E = 0.87 e$# e$# 1.24 1.24 = = 1.43 µ m λ = E 0.87 !" E = 1.32 e$# e$#
I ν ( d )
= ex' − ( 2.6 × 10 4 )( 0.80 ×10 −4 ) = 0.125
= 0.873 µ m
(a) !" λ = 480 nm# E =
(ii)
= 1.88 µ m
14.2
1.24
= 0.653 µ m
−1
= 1.11 µ m
0.66
=
1.90
(i) "!m i%&"e 14.4# α ≅ 2.6 ×10 4 cm
= 0.919 µ m 1.35 _______________________________________ (d) InP: λ max
1.24
(b) λ =
(ii)
I ν ( d ) I ν 0
g ′ =
= ex'( − α d )
= ex'[− (9 ×10 3 )()(1.2 × 10 −4 )] = 0.340 "aci!n abs!"bed = 1 − 0.34 = 0.66
= g ′τ p 0 ⇒ g ′ = 5 × 10 15 2 × 10
δ p τ p 0
= 2.5 × 10 22 cm −
3
−7
s
−1
!" hν
= 1.65 e$#
⇒ λ =
1.24 1.65
= 0.752 µ m
"!m i%&"e 14.4# α ≅ 9 × 10 3 cm −1
I ν 0
=
( g ′)() ( hν ) α
− ( )(1.65) 2.5 ×10 )(1.6 ×10 = 22
19
9 ×103
= 0.733 -cm 2
d 2 ( δ p n )
D p
dx 2
+ G L −
δ p n τ p
=0
!"
I ν ( d )
(b)
I ν 0
d 2 ( δ p n )
= 0.1 = ex'( − α d )
dx 2
[ (
0.1 = ex' − 9 ×10 d =
)( d ) ]
1 0.1
1 9 ×10
3
and +e %ene"ai!n "ae is
−4
= α Φ( x ) = α Φ O ex'( − α x )
G L
s! +e di,,e"enia e&ai!n bec!mes
14.6
1.24
λ =
E
=
1.24
d 2 ( δ p n )
= 0.886 µ m
1.40
(a)
d =
I ν 0 1
α
1 = 0.1
1 4.5 ×10
= 5.12 × 10
(b) d =
1 4.5 × 10
2
−3
2
cm =
1 0.1
)n
−
51 .2 µ m
1 0.3
)n
A x
D p
ex'( − α x )
*+en
− x α Φ Oτ p − = A ex' ⋅ ex'( − α x) 2 2 L p α L p − 1
= 0 # /e +ae d ( δ p n )
D p
GaAs: !" x = 1 µ m = 10 −4 cm# /e +ae 50 abs!"bed !" 50 "ansmied# +en
dx
x = 0
= sδ p n
x = 0
s! /e can /"ie δ p n
= 0.50 = ex'( − α x )
x = 0
= A −
α Φ Oτ p 2
2
α L p
−1
and
-e can /"ie
d ( δ p n )
1 1 = 1 ⋅ )n( 2 ) α = ⋅ )n x 0.5 10 − 4
dx
!"
α =
ΦO
α
Φ Oτ p ⋅ ex'( − α x ) 2 2 α L p − 1 As x → ∞ # δ p n = 0 s! +a B = 0 .
−3
14.7
I ( x ) I O
2
L p
=−
α
δ p n ( x )
cm = 26.8 µ m _______________________________________ = 2.68 × 10
δ p n
− x + B ex' + x = A ex' L p L p
δ p n ( x )
= 0.1 = ex'( − α d )
)n
−
*+e %ene"a s!&i!n is !, +e ,!"m
−1
I ν ( d )
2
dx
"!m i%&"e 14.4# α ≅ 4.5 × 10 2 cm
D p
D pτ p
L p =
/+e"e
G L
Φ( x ) = Φ O ex'( − α x )
cm = 2.56 µ m _______________________________________ = 2.56 × 10
L2 p
=−
*+e '+!!n ,&x in +e semic!nd&c!" is
)n
3
δ p n
−
x = 0
=
A − L p
+
Φ Oτ p 2 2 α L p − 1
α
2
*+en /e +ae 0.69 ×10 cm −1 4
*+is a&e c!""es'!nds ! λ = 0.75 µ m # E = 1.65 e$ _______________________________________ 14.8
*+e ambi'!a" "ans'!" e&ai!n ,!" min!"i ca""ie" +!es in sead sae is
−
AD p L p
+
Φ Oτ p D p sα Φ Oτ p = − sA 2 2 2 2 α L p − 1 α L p − 1
α
2
S!in% ,!" A# /e ,ind
A =
Φ Oτ p s + α D p ⋅ 2 2 s ( D L ) + α L p − 1 p p α
*+e s!&i!n can n!/ be /"ien as
δ p n ( x )
Φ Oτ p 2 2 α L p − 1 α
=
W + B sin+ + G Lτ n Ln S!in% ,!" B# /e !bain
s + α D p − x ex'( − α x ) × ⋅ ex' − s + ( D p L p ) L p _______________________________________ 14.9
B =
D n
-e +ae
d 2 (δ n p )
D n
dx 2
δ n p
+ G L −
Ln
=0
τ n
*+e s!&i!n is +en
!"
d (δ n p ) 2
dx 2
/+e"e Ln =
−
δ n p
=−
L2n
G L D n
D nτ n
=
x + B sin+ L + G Lτ n n !" s = ∞ a x = 0 means δ n p ( 0) = 0 .
*+en A x = W # d δ n p − Dn dx
= s o δ n p
W L n
c!s+
x =W
G Lτ n L n
W L n
sin+ B L n
W L n
c!s+
W BD n − L n L n
sin+
−3
cm
D D = eni2 n + p Ln N a L p N d −19
)(1.5 × 10 ) 10
2
−10
A
(a) I L = eG L AW -e ,ind
s! /e can /"ie
L n
!/ J S
= 8.950 × 10
+ G Lτ n D n
= 2.236 × 10
2
and
=−
= (10) (5 ×10 −7 )
25 10 × + 16 15 −3 −3 (5 ×10 )(10 ) ( 2.236 ×10 )(10 ) − J S = 1.790 ×10 10 Acm I S = AJ S = ( 5) (1.79 × 10 −10 )
x =W
W + B sin+ + G L τ n L n
dx
D pτ p 0
(
(W ) = −G Lτ n
d (δ n p )
=
= ( 25) (10 −6 ) = 5 ×10 −3 cm
= 1.6 × 10
!/ δ n p
Dnτ n 0
L p
⇒ A = −G Lτ n
x =W
14.10
x = A c!s+ L n
0 = A + G Lτ n
x sin+ B + L n
/+e"e B /as &s %ien. _______________________________________
Ln
x = G Lτ n 1 − c!s+ L n
δ n p ( x )
*+e %ene"a s!&i!n can be /"ien in +e ,!"m δ n p ( x )
W W + τ s o n c!s+ L − 1 L n n W W + c!s+ sin+ s o L n Ln
G L Ln sin+
W L n
c!s+
W = s o [ − G L τ n c!s+ Ln
(10 )(10 ) = ( 0.0259 ) )n = 0.6350 (1.5 ×10 ) 16
V bi
15
10
2
$
2 ∈ V W = s bi e
N a + N d N N a d
1. 2
2(11.7) (8.85 ×10 −14 )( 0.635) = −19 1.6 ×10
10 + 10 × 16 15 (10 )(10 ) 16
15
W =
1 2
= 120 × 10
9.508 ×10
−5
cm
(b)
= (1.6 ×10 −19 )(5 ×10 21 ) ( 5) (9.508×10 − = 0.380 A = 380 mA I V oc = V t )n1 + L I S
= 112 .75 mA P m = I mV m = (112.75 )( 0.412 ) = 46.5 m-
= I m R L ⇒ R L =
(d) V m
0.380 = ( 0.0259) )n 1 + −10 8.95 ×10 V oc = 0.5145 $ (c)
V oc V bi
=
0.5145 0.635
"!m P"!bem 14.10# I S
A
100 × 10
= 8.95 ×10 −10 A
I = V t )n1 + L I S
−3 10 ×10 = ( 0.0259) )n1 + −10 8.95 ×10
I = V t )n1 + L I S
−3
(i) V oc
= 8.95 ×10 −10
= 0.420 $
= 0.4847 $ V − 1 I = I L − I S ex' V t = 120 ×10
0.11275
(a)
120 ×10 −3 = ( 0.0259 ) )n1 + −10 8.95 ×10
0.412
14.12
14.11
(b)
I m
=
_______________________________________
_______________________________________
(a) V oc
V m
= 3.65 Ω
R L
= 0.810
"!m P"!bem 14.10# I S
−3
0.412 − (8.95 ×10 −10 ) ex' − 1 0.0259 ⇒ I m = 112.75 ×10 −3 A
*+en
I L
V = I L − I S ex' m − 1 V t
I m
= 1+
−3
V m
V t
(ii) 1 +
10 × 10
V m ex' V t
I L 1 = + I S
−3
8.95 × 10
−10 = 1.117 × 10
− 8.95 ×10
(c)
−10
V − 1 ex' V t
"ia and e""!"# V m !/
⇒ V = 0.4383 $ V m V m I L 1 + = + ex' 1 I S V t V t
= 1+
120 × 10
I m
8.95 × 10 −10
"ia and e""!"# V m !/
≅ 0.412 $
V = I L − I S ex' m − 1 V t = 10 × 10
−3
= 1.341 × 10
≅ 0.351 $
8
−3
0.351 − (8.95 ×10 −10 ) ex' − 1 0 . 0259 I m = 9.31× 10 −3 A = 9.31 mA
*+en
7
= I mV m = ( 9.31)( 0.351) = 3.27
P m m(b) (i)
J S
100 ×10 −3 = ( 0.0259) )n1 + −10 8.95 ×10
V oc
= 0.480 $ V m V m I L 1 + = + ex' 1 I S V t V t
(ii)
= 1+
100 ×10
−3
8.95 × 10
−10
= 100 × 10
8
I L
15
3.477 × 10
−1
0.891
10
16
3.478 × 10
−
0.950
10
17
3.484 × 10
−
1.01
10
18
3.539 × 10
−
J S
3.27
−3
/+e"e
= en
N d
τ p
D n τ n
+
18 5 ×10
−6
+
1
2
6 5 ×10
19
10
2
= 4.579 ×10 −12 A
-e +ae
V − I S ex' − 1 V t
1
D p
N d
τ p
I = 50 ×10
−3
V − ( 4.579 ×10 −12 )ex' − 1 V t
-e see +a /+en I = 0 #
V = V OC
= 0.599 $.
-e ,ind
/+ic+ bec!mes
J S
1 × N a
= (1.6 ×10 −19 )(1.8 ×10 6 ) 225 5 × 10 −8
+
−7
!"
30 ×10 = ( 0.0259) )n1 + J S J S
D p
= 2.289 ×10 −12 Acm
I = I L
J = V t )n1 + L J S
1 N a
1
/+ic+ bec!mes
I S
14.13
2 i
τ n
+
!"
= 11.7
_______________________________________
V OC
D n
= (1.6 ×10 −19 )(1.5 ×1010 )
1 × 16 3 ×10 J S
P m1
1 = eni2 N a
!"
= I mV m = ( 94.0) ( 0.407 ) = 38.3 38.3
1.07
= J L ⋅ A = ( 25 × 10 −3 )( 2) = 50 ×10 −3 A
−3
m-
10
J S
*+en
=
($)
-e +ae
0.407 − (8.95 × 10 ) ex' − 1 0.0259 −2 I m = 9.40 × 10 A = 94.0 mA
P m 2
V OC
(a)
≅ 0.407 $
−10
(c)
J S (Acm 2 )
N a (cm −3 )
V = I L − I S ex' m − 1 V t
P m
*+en
14.14
"ia and e""!"# V m !/
I m
6.708 ×10 4 = (5.184×10 − 7 ) + 1.183×10 −15 N a
_______________________________________
= 1.117 × 10
!"
1
7
10 19
5 × 10 −8
2
V ($) 0 0.1 0.2 0.3 0.4
I (mA) 50 50 50 50 49.98
0.45 0.50 0.55 0.57 0.59
49.84 48.89 42.36 33.46 14.19
P m m-
(b) *+e !a%e a +e maxim&m '!/e" '!in is ,!&nd ,"!m
(d) R L
→ (1.5)( 2.379 ) = 3.568 Ω
V
−12
3.568
10
= 1.092 × 10
A +is '!in# /e ,ind I m = 47.6 mA
!" P m
V = 180 × 10 −3 − ( 2 × 10 −9 ) ex' 0.0259
(c) -e +ae
I
=
I m
=
V
*+en I =
(a) V oc
V m
≅ 0.444 $
R L
=
0.444 3.568
= 0.1244 A
= (124.4 )( 0.444 ) = 55.2
14.16
= 24.8 mV
V = I L − I S ex' V t
m _______________________________________
= I mV m = ( 47.6)( 0.520 )
V = IR ⇒ R =
R L
P = IV
s! +e maxim&m '!/e" is
P m
V
"ia and e""!"# V
"ia and e""!"# V m = 0.520 $
= 2.379 Ω
0.169
!/
−3
4.58 ×10
I m
=
0.402
=
I =
50 ×10
V m
(c) R L
V m V m I L = + 1 1 + V ⋅ ex' V I S t t = 1+
= I m V m = (169 )( 0.402 ) = 67.9
= 0.5367 $ V m V m 1 + ex' V V t t
0.520 47.6 ×10 −3
100×10 −3 = ( 0.0259) )n1 + −10 10
(b)
!"
I L 1 = + I S
R = 10.9 Ω
= 1+
_______________________________________
100 ×10 10
14.15
(a) V oc
(b)
180×10 −3 = ( 0.0259) )n1 + −9 2 ×10
= 0.474 $ V m V m I 1 + ex' 1 + L = I S V t V t −3 180 ×10 = 1+ − 2 ×10 9
= 9 × 10
7
≅ 0.402 $
V ≅ I L − I S ex' m V t
0.402 = 180 × 10 −3 − ( 2 ×10 −9 ) ex' 0.0259 = 1.69 × 10
= 10
"ia and e""!"# V m *+en
−3
−10
9
≅ 0.461 $
0.461 = 100 ×10 −3 − (10 −10 ) ex' 0.0259
I m
= 9.463 × 10
−2
A = 94.63 mA
= I m V m = ( 94.63)( 0.461) = 43.62
P m m-
"ia and e""!"# V m
I m
−1
A = 169 mA
(c) n =
10
= 21.7 → n = 22 ces 0.461 (d) !/ V = ( 22 )( 0.461) = 10.14 $ P = IV 5.2
= I (10.14) ⇒ I = 0.5128 A
*+en n ′ =
0.5128 0.09463
= 5.42 → n′ = 6
(e) *+en I = ( 6 )( 0.09463)
= 0.5678 A
V
=
S! R L
=
10.14
= 17.86 Ω
*+en
I 0.5678 _______________________________________ 14.17
e x = 0 c!""es'!nd ! +e ed%e !, +e s'ace c+a"%e "e%i!n in +e ''e mae"ia. *+en in +e '"e%i!n
d (δ n p ) 2
D n
dx 2
+ G L −
δ n p τ n
=0
dx 2
−
δ n p
L2n
=−
G L D n
d (δ n p ) dx
2
−
2 n
L
=−
ΦO
α
D n
ex'( − α x )
− x + x δ n p ( x ) = A ex' L n + B ex' L n
Φ Oτ n ex'( − α x ) 2 α L n − 1 α
2
x → ∞
# δ n p
= 0 s! +a B = 0 .
*+en
− x α Φ Oτ n = A ex' − 2 2 ⋅ ex'( − α x ) L n α L n − 1 α Φ Oτ n -e as! +ae δ n p ( 0) = 0 = A − 2 2 # α L n − 1
δ n p ( x )
/+ic+ ieds α Φ Oτ n
A =
2
2
α L n
−1
-e +en !bain δ n p ( x )
=
1
Φ Oτ n − x α x − − ( ) ex' ex' 2 2 α L n − 1 L n Φ O is +e inciden ,&x a x = 0 . α
/+e"e _______________________________________ 14.18
!" 90 abs!"'i!n# /e +ae
Φ( x ) = ex'( − α x ) = 0.10 ΦO
2.3 µ
and ,!" hν *+en
x
m
= 2.0 e$# α ≅ 10 5 cm −
1
.
1 = 5 ⋅ )n (10) = 0.23 × 10 − 4 cm 10
!"
*+e %ene"a s!&i!n is !, +e ,!"m
As
= 10
1 = 4 ⋅ )n (10 ) = 2.3 × 10 − 4 cm 10
x =
δ n p
0.1
!"
= α Φ ( x ) = α Φ O ex'( − α x )
2
1
1 = ⋅ )n(10) α hν = 1.7 e$ # α ≅ 10 4 cm −
!" *+en
x
*+en /e +ae
−
x
/+e"e
G L
=
!"
!"
d 2 (δ n p )
ex'( + α x )
x =
0.23 µ
m _______________________________________
×
Report "Semi 4 Final Prob Sol 14"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
×
Sign In
Email
Password
Remember me
Forgot password?
Sign In
Our partners will collect data and use cookies for ad personalization and measurement.
Learn how we and our ad partner Google, collect and use data
.
Agree & close