GRID [(N120,N130),(M140,M150)]
considering X - direction
Column Strip Support Section SIDL Total load 21 KN/m2 KN/m2 LL Shorter span(L2) 7.37 7.37 m DL Longer span(L1) 7.50 7.50 m TOTAL LOAD Mo (kNm) 1089.1 Mcss (0.75x0.65xMo)x2.75x0.475/(2.75x0.475+1.0x0.225) 452.92 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3
11 4 5.63 20.63
Column Strip SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
2750
Depth of the slab with drop CG from top Ecentricity of the cable Area of the section
A Z
475 66 171.5 1306250 1.03E+08
MM MM MM MM MM MM² MM³
1161.24
2750
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
452.92
KNm
679.38 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
117750
N
Factored Bending moment -Mu Area of prestressing steel Maximum prestress before losses Characteristic strength of of concrete Maximum prestress after losses
Aps fpu fcu fpe
Prestressing force P
above na support
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
0.72 1.56 4.38 1246.2
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
8
Depth -d Number of Strands
Nos.
Top fiber
409 4
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
fpu*Aps/fcu*b*d 0.03 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14
2.10
N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
-3.54
fpb
1767
N/MM²
xu
57.26
MM
Aps
392.5
MM²
N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & tota totall mome moment nt o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
266 679. 679.38 38 414
KNm KNm KNm KNm
PUNCHING SHEAR CALCULATIONS Slab thickness Drop thickness Effective depth d/2 Concrete grade-fcu Drop width Drop depth bo Total load (axial) factored value V
Allowable shear
225 475 440 220 35 2750 475 6450 1161.24 1741.86
mm mm mm mm N/mm2 mm mm mm Kn Kn
Vu/bo*d 0.614
N/mm²
1.48
N/mm²
Hence safe 1842.5 2750
3685
4620
Column Strip
0.5
Mid Span Section Mo (kNm) 1089.1 Mcsm (0.60x0.35xMo)x2.75x0.225/(2.75x0.225+1.0x0.225) 167.72 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3 SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
2750 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 171 -58.5 618750 2.32E+07
MM MM MM MM MM MM² MM³
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
-167.72
KNm
Factored Bending moment -Mu
-251.58 98.13
KNm MM²
Aps
TENS (+ve) COMP (-ve) P/A
1.52
above na support
fpu fcu fpe Prestressing force P
1860 35 1200
N/MM² N/MM² N/MM²
117750
N
Pe/Z M/Z
-2.37 -7.23
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
8
Depth -d Number of Strands
Nos.
Top fiber
54 10
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
fpu*Aps/fcu*b*d 0.07 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14
-6.38
N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
fpb
1767
N/MM²
xu
7.56
MM
981.25
MM²
Aps
3.33
N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & tota totall mome moment nt o,the remaining moment only for which which reinforcement has to be provide Provided Reinforcement
88 -251 -251.5 .58 8 -339
KNm KNm KNm KNm
PUNCHING SHEAR CALCULATIONS Slab thickness Drop thickness Effective depth d/2 Concrete grade-fcu Drop width Drop depth bo Total load (axial) factored value V
Allowable shear
225 475 440 220 35 2750 475 6450 1161.24 1741.86
mm mm mm mm N/mm2 mm mm mm Kn Kn
Vu/bo*d 0.614
N/mm²
1.48
N/mm²
600 565
600
Hence safe
Middle Strip Support Section Mo (kNm) Mmss (0.25x0.65xMo), 0.65Mo-D4
1089.1 254.99 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3
SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
4620 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 66 46.5 1039500 3.90E+07
MM MM MM MM MM MM² MM³
7370
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
254.99
KNm
382.49 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
Factored Bending moment -Mu Area of prestressing steel Maximum prestress before losses Charaterisitic compressive strength of concrete Maximum prestress after losses
Aps fpu fcu fpe
Prestressing force P
above na support
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
1.36 1.69 6.54
117750
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
12
Nos.
Top fiber
Depth -d Number of Strands
159 14
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
3.50
fpu*Aps/fcu*b*d 0.06 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14 N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
-6.22
fpb
1767
N/MM²
xu
22.26
MM
1373.75
MM²
Aps N/MM²
3685
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & tota totall mome moment nt o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
362 382. 382.49 49 21
KNm KNm KNm KNm
Middle Strip Mid Span Section Mo (kNm) Mmsm (0.40x0.35xMo),0.35Mo-D89
1089.1 213.46 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3
SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
4620 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 171 -58.5 1039500 3.90E+07
MM MM MM MM MM MM² MM³
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
-213.46
KNm
Factored Bending moment -Mu
-320.19 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
117750
N
Aps fpu fcu fpe Prestressing force P
above na support
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
1.36 -2.12 -5.48
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
12
Nos.
Top fiber
Depth -d Number of Strands
54 10
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
-4.71
fpu*Aps/fcu*b*d 0.06 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14 N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
2.00
fpb
1767
N/MM²
xu
7.56
MM
981.25
MM²
Aps N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & tota totall mome moment nt o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
88 -320 -320.1 .19 9 -408
KNm KNm KNm KNm
GRID [(N120,N130),(M140,M150)]
considering Z - direction
Column Strip Support Section SIDL Total load 21 KN/m2 KN/m2 LL Shorter span(L2) 7.50 7.50 m DL Longer span(L1) 7.37 7.37 m TOTAL LOAD Mo (kNm) 1069.36 Mcss (0.75x0.65xMo)x2.75x0.475/(2.75x0.475+1.0x0.225) 444.71 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3
11 4 5.63 20.63
Column Strip SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
2750
Depth of the slab with drop CG from top Ecentricity of the cable Area of the section
A Z
475 66 171.5 1306250 1.03E+08
MM MM MM MM MM MM² MM³
1160.78
2750
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
444.71
KNm
667.07 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
117750
N
Factored Bending moment -Mu Area of prestressing steel Maximum prestress before losses Characteristic strength of of concrete Maximum prestress after losses
Aps fpu fcu fpe
Prestressing force P
above na support
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
0.90 1.95 4.30 1246.2
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
10
Depth -d Number of Strands
Nos.
Top fiber
409 4
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
fpu*Aps/fcu*b*d 0.04 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14
1.45
N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
-3.25
fpb
1767
N/MM²
xu
57.26
MM
Aps
392.5
MM²
N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & tota totall mome moment nt o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
266 667. 667.07 07 401
KNm KNm KNm KNm
PUNCHING SHEAR CALCULATIONS Slab thickness Drop thickness Effective depth d/2 Concrete grade-fcu Drop width Drop depth bo Total load (axial) factored value V
Allowable shear
225 475 440 220 35 2750 475 6450 1160.78 1741.16
mm mm mm mm N/mm2 mm mm mm Kn Kn
Vu/bo*d 0.614
N/mm²
1.48
N/mm²
Hence safe 1842.5 2750
3685
4620
Column Strip
0.5
Mid Span Section Mo (kNm) 1069.36 Mcsm (0.60x0.35xMo)x2.75x0.225/(2.75x0.225+1.0x0.225) 164.68 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3 SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
2750 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 171 -58.5 618750 2.32E+07
MM MM MM MM MM MM² MM³
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
-164.68
KNm
Factored Bending moment -Mu
-247.02 98.13
KNm MM²
Aps
TENS (+ve) COMP (-ve) P/A
1.90
above na support
fpu fcu fpe Prestressing force P
1860 35 1200
N/MM² N/MM² N/MM²
117750
N
Pe/Z M/Z
-2.97 -7.10
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
10
Depth -d Number of Strands
Nos.
Top fiber
54 10
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
fpu*Aps/fcu*b*d 0.08 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14
-6.03
N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
fpb
1767
N/MM²
xu
7.56
MM
981.25
MM²
Aps
2.23
N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
88 -247.02 -335
KNm KNm KNm
Middle Strip Support Section Mo (kNm) Mmss (0.25x0.65xMo), 0.65Mo-D4
1069.36 250.37 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3
SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
4750 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 66 46.5 1068750 4.01E+07
MM MM MM MM MM MM² MM³
7370
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
250.37
KNm
375.56 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
Factored Bending moment -Mu Area of prestressing steel Maximum prestress before losses Charaterisitic compressive strength of concrete Maximum prestress after losses
Aps fpu fcu fpe
Prestressing force P
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
1.76 2.19 6.25
117750
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
16
Nos.
Top fiber
Depth -d Number of Strands
159 14
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
2.30
fpu*Aps/fcu*b*d 0.08 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14 N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
-5.82
fpb
1767
N/MM²
xu
22.26
MM
1373.75
MM²
Aps N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
Middle Strip Mid Span Section Mo (kNm)
above na support
1069.36
362 375.56 14
KNm KNm KNm
3685
Mmsm (0.40x0.35xMo),0.35Mo-D89
209.6 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3
SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
4750 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 171 -58.5 1068750 4.01E+07
MM MM MM MM MM MM² MM³
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
-209.6
KNm
Factored Bending moment -Mu
-314.39 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
117750
N
Aps fpu fcu fpe Prestressing force P
above na support
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
1.76 -2.75 -5.23
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
16
Nos.
Top fiber
Depth -d Number of Strands
54 10
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
-4.24
fpu*Aps/fcu*b*d 0.08 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14 N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
0.72
fpb
1767
N/MM²
xu
7.56
MM
981.25
MM²
Aps N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
88 -314.39 -402
KNm KNm KNm
GRID [(N108,N120),(M140,M150)]
considering X - direction
Column Strip Support Section SIDL Total load 21 KN/m2 LL Shorter span(L2) 8.08 m DL Longer span(L1) 7.50 m TOTAL LOAD Mo (kNm) 1193.06 Mcss (0.75x0.65xMo)x2.75x0.475/(2.75x0.475+1.0x0.225) 496.16 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3
11 4 5.63 20.63
Column Strip SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
2750
Depth of the slab with drop CG from top Ecentricity of the cable Area of the section
A Z
475 66 171.5 1306250 1.03E+08
MM MM MM MM MM MM² MM³
1272.6
2750
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
496.16
KNm
744.23 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
117750
N
Factored Bending moment -Mu Area of prestressing steel Maximum prestress before losses Characteristic strength of of concrete Maximum prestress after losses
Aps fpu fcu fpe
Prestressing force P
above na support
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
0.90 1.95 4.80 1246.2
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
10
Depth -d Number of Strands
Nos.
Top fiber
409 4
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
fpu*Aps/fcu*b*d 0.04 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14
1.94
N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
-3.75
fpb
1767
N/MM²
xu
57.26
MM
Aps
392.5
MM²
N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
266 744.23 478
KNm KNm KNm
PUNCHING SHEAR CALCULATIONS Slab thickness Drop thickness Effective depth d/2 Concrete grade-fcu Drop width Drop depth bo Total load (axial) factored value V
Allowable shear
225 475 440 220 35 2750 475 6450 1272.6 1908.9
mm mm mm mm N/mm2 mm mm mm Kn Kn
Vu/bo*d 0.673
N/mm²
1.48
N/mm²
Hence safe 1842.5 2750
3685
4620
Column Strip
0.5
Mid Span Section Mo (kNm) 1193.06 Mcsm (0.60x0.35xMo)x2.75x0.225/(2.75x0.225+1.0x0.225) 183.73 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3 SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
2750 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 171 -58.5 618750 2.32E+07
MM MM MM MM MM MM² MM³
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
-183.73
KNm
Factored Bending moment -Mu
-275.6 98.13
KNm MM²
Aps
TENS (+ve) COMP (-ve) P/A
1.90
above na support
fpu fcu fpe Prestressing force P
1860 35 1200
N/MM² N/MM² N/MM²
117750
N
Pe/Z M/Z
-2.97 -7.92
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
10
Depth -d Number of Strands
Nos.
Top fiber
54 10
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
fpu*Aps/fcu*b*d 0.08 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14
-6.85
N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
fpb
1767
N/MM²
xu
7.56
MM
981.25
MM²
Aps
3.05
N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
88 -275.6 -363
KNm KNm KNm
Middle Strip Support Section Mo (kNm) Mmss (0.25x0.65xMo), 0.65Mo-D4
1193.06 279.33 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3
SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
5330 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 66 46.5 1199250 4.50E+07
MM MM MM MM MM MM² MM³
7370
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
279.33
KNm
419 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
Factored Bending moment -Mu Area of prestressing steel Maximum prestress before losses Charaterisitic compressive strength of concrete Maximum prestress after losses
Aps fpu fcu fpe
Prestressing force P
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
1.57 1.95 6.21
117750
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
16
Nos.
Top fiber
Depth -d Number of Strands
159 14
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
2.69
fpu*Aps/fcu*b*d 0.07 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14 N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
-5.83
fpb
1767
N/MM²
xu
22.26
MM
1373.75
MM²
Aps N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
Middle Strip Mid Span Section Mo (kNm)
above na support
1193.06
362 419 57
KNm KNm KNm
3685
Mmsm (0.40x0.35xMo),0.35Mo-D89
233.84 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3
SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
5330 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 171 -58.5 1199250 4.50E+07
MM MM MM MM MM MM² MM³
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
-233.84
KNm
Factored Bending moment -Mu
-350.76 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
117750
N
Aps fpu fcu fpe Prestressing force P
above na support
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
1.57 -2.45 -5.20
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
16
Nos.
Top fiber
Depth -d Number of Strands
54 10
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
-4.32
fpu*Aps/fcu*b*d 0.07 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14 N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
1.18
fpb
1767
N/MM²
xu
7.56
MM
981.25
MM²
Aps N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
88 -350.76 -438
KNm KNm KNm
GRID [(N108,N120),(M140,M150)]
considering Z- direction
Column Strip Support Section SIDL Total load 21 KN/m2 LL Shorter span(L2) 7.50 m DL Longer span(L1) 8.08 m TOTAL LOAD Mo (kNm) 1285.33 Mcss (0.75x0.65xMo)x2.75x0.475/(2.75x0.475+1.0x0.225) 534.53 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3
11 4 5.63 20.63
Column Strip SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
2750
Depth of the slab with drop CG from top Ecentricity of the cable Area of the section
A Z
475 66 171.5 1306250 1.03E+08
MM MM MM MM MM MM² MM³
1272.6
2750
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
534.53
KNm
801.79 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
117750
N
Factored Bending moment -Mu Area of prestressing steel Maximum prestress before losses Characteristic strength of of concrete Maximum prestress after losses
Aps fpu fcu fpe
Prestressing force P
above na support
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
0.90 1.95 5.17 1246.2
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
10
Depth -d Number of Strands
Nos.
Top fiber
409 4
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
fpu*Aps/fcu*b*d 0.04 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14
2.31
N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
-4.12
fpb
1767
N/MM²
xu
57.26
MM
Aps
392.5
MM²
N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
266 801.79 536
KNm KNm KNm
PUNCHING SHEAR CALCULATIONS Slab thickness Drop thickness Effective depth d/2 Concrete grade-fcu Drop width Drop depth bo Total load (axial) factored value V
Allowable shear
225 475 440 220 35 2750 475 6450 1272.6 1908.9
mm mm mm mm N/mm2 mm mm mm Kn Kn
Vu/bo*d 0.673
N/mm²
1.48
N/mm²
Hence safe 1842.5 2750
3685
4620
Column Strip
0.5
Mid Span Section Mo (kNm) 1285.33 Mcsm (0.60x0.35xMo)x2.75x0.225/(2.75x0.225+1.0x0.225) 197.94 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3 SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
2750 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 171 -58.5 618750 2.32E+07
MM MM MM MM MM MM² MM³
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
-197.94
KNm
Factored Bending moment -Mu
-296.91 98.13
KNm MM²
Aps
TENS (+ve) COMP (-ve) P/A
2.28
above na support
fpu fcu fpe Prestressing force P
1860 35 1200
N/MM² N/MM² N/MM²
117750
N
Pe/Z M/Z
-3.56 -8.53
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
12
Depth -d Number of Strands
Nos.
Top fiber
54 10
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
fpu*Aps/fcu*b*d 0.10 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14
-7.25
N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
fpb
1767
N/MM²
xu
7.56
MM
981.25
MM²
Aps
2.68
N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
88 -296.91 -385
KNm KNm KNm
Middle Strip Support Section Mo (kNm) Mmss (0.25x0.65xMo), 0.65Mo-D4
1285.33 300.94 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3
SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
5330 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 66 46.5 1199250 4.50E+07
MM MM MM MM MM MM² MM³
7370
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
300.94
KNm
451.41 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
Factored Bending moment -Mu Area of prestressing steel Maximum prestress before losses Charaterisitic compressive strength of concrete Maximum prestress after losses
Aps fpu fcu fpe
Prestressing force P
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
1.57 1.95 6.69
117750
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
16
Nos.
Top fiber
Depth -d Number of Strands
3.17
MM Nos.
fpu*Aps/fcu*b*d 0.07 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14 N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
-6.31
fpb
1767
N/MM²
xu
22.26
MM
1373.75
MM²
Aps N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
Mid Span Section
159 14
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
Middle Strip
above na support
362 451.41 90
KNm KNm KNm
3685
Mo (kNm) Mmsm (0.40x0.35xMo),0.35Mo-D89
1285.33 251.92 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3
SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
5330 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 171 -58.5 1199250 4.50E+07
MM MM MM MM MM MM² MM³
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
-251.92
KNm
Factored Bending moment -Mu
-377.89 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
117750
N
Aps fpu fcu fpe Prestressing force P
above na support
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
1.57 -2.45 -5.60
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
16
Nos.
Top fiber
Depth -d Number of Strands
54 10
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
-4.72
fpu*Aps/fcu*b*d 0.07 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14 N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
1.58
fpb
1767
N/MM²
xu
7.56
MM
981.25
MM²
Aps N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
88 -377.89 -466
KNm KNm KNm
GRID [(N150,N163),(M140,M150)]
considering X - direction
Column Strip Support Section SIDL Total load 21 KN/m2 LL Shorter span(L2) 8.73 m DL Longer span(L1) 7.68 m TOTAL LOAD Mo (kNm) 1351.66 Mcss (0.75x0.65xMo)x2.75x0.475/(2.75x0.475+1.0x0.225) 562.11 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3
11 4 5.63 20.63
Column Strip SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
2750
Depth of the slab with drop CG from top Ecentricity of the cable Area of the section
A Z
475 66 171.5 1306250 1.03E+08
MM MM MM MM MM MM² MM³
1407.97
2750
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
562.11
KNm
843.16 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
117750
N
Factored Bending moment -Mu Area of prestressing steel Maximum prestress before losses Characteristic strength of of concrete Maximum prestress after losses
Aps fpu fcu fpe
Prestressing force P
above na support
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
1.08 2.34 5.44 1246.2
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
12
Depth -d Number of Strands
Nos.
Top fiber
409 4
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
fpu*Aps/fcu*b*d 0.05 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14
2.01
N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
-4.17
fpb
1767
N/MM²
xu
57.26
MM
Aps
392.5
MM²
N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
266 843.16 577
KNm KNm KNm
PUNCHING SHEAR CALCULATIONS Slab thickness Drop thickness Effective depth d/2 Concrete grade-fcu Drop width Drop depth bo Total load (axial) factored value V
Allowable shear
225 475 440 220 35 2750 475 6450 1407.97 2111.96
mm mm mm mm N/mm2 mm mm mm Kn Kn
Vu/bo*d 0.744
N/mm²
1.48
N/mm²
Hence safe 1842.5 2750
3685
4620
Column Strip
0.5
Mid Span Section Mo (kNm) 1351.66 Mcsm (0.60x0.35xMo)x2.75x0.225/(2.75x0.225+1.0x0.225) 208.15 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3 SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
2750 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 171 -58.5 618750 2.32E+07
MM MM MM MM MM MM² MM³
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
-208.15
KNm
Factored Bending moment -Mu
-312.23 98.13
KNm MM²
Aps
TENS (+ve) COMP (-ve) P/A
2.28
above na support
fpu fcu fpe Prestressing force P
1860 35 1200
N/MM² N/MM² N/MM²
117750
N
Pe/Z M/Z
-3.56 -8.97
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
12
Depth -d Number of Strands
Nos.
Top fiber
54 10
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
fpu*Aps/fcu*b*d 0.10 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14
-7.69
N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
fpb
1767
N/MM²
xu
7.56
MM
981.25
MM²
Aps
3.12
N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
88 -312.23 -400
KNm KNm KNm
Middle Strip Support Section Mo (kNm) Mmss (0.25x0.65xMo), 0.65Mo-D4
1351.66 316.47 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3
SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
5975 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 66 46.5 1344375 5.04E+07
MM MM MM MM MM MM² MM³
7370
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
316.47
KNm
474.7 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
Factored Bending moment -Mu Area of prestressing steel Maximum prestress before losses Charaterisitic compressive strength of concrete Maximum prestress after losses
Aps fpu fcu fpe
Prestressing force P
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
1.75 2.17 6.28
117750
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
20
Nos.
Top fiber
Depth -d Number of Strands
159 14
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
2.35
fpu*Aps/fcu*b*d 0.08 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14 N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
-5.86
fpb
1767
N/MM²
xu
22.26
MM
1373.75
MM²
Aps N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
Middle Strip Mid Span Section Mo (kNm)
above na support
1351.66
362 474.7 113
KNm KNm KNm
3685
Mmsm (0.40x0.35xMo),0.35Mo-D89
264.92 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3
SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
5975 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 171 -58.5 1344375 5.04E+07
MM MM MM MM MM MM² MM³
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
-264.92
KNm
Factored Bending moment -Mu
-397.39 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
117750
N
Aps fpu fcu fpe Prestressing force P
above na support
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
1.75 -2.73 -5.25
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
20
Nos.
Top fiber
Depth -d Number of Strands
54 10
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
-4.27
fpu*Aps/fcu*b*d 0.08 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14 N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
0.77
fpb
1767
N/MM²
xu
7.56
MM
981.25
MM²
Aps N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
88 -397.39 -485
KNm KNm KNm
GRID [(N150,N163),(M140,M150)]
considering Z - direction
Column Strip Support Section SIDL Total load 21 KN/m2 LL Shorter span(L2) 7.68 m DL Longer span(L1) 8.73 m TOTAL LOAD Mo (kNm) 1536.45 Mcss (0.75x0.65xMo)x2.75x0.475/(2.75x0.475+1.0x0.225) 638.96 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3
11 4 5.63 20.63
Column Strip SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
2750
Depth of the slab with drop CG from top Ecentricity of the cable Area of the section
A Z
475 66 171.5 1306250 1.03E+08
MM MM MM MM MM MM² MM³
1407.97
2750
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
638.96
KNm
958.44 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
117750
N
Factored Bending moment -Mu Area of prestressing steel Maximum prestress before losses Characteristic strength of of concrete Maximum prestress after losses
Aps fpu fcu fpe
Prestressing force P
above na support
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
1.44 3.12 6.18 1246.2
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
16
Depth -d Number of Strands
Nos.
Top fiber
409 4
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
fpu*Aps/fcu*b*d 0.06 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14
1.61
N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
-4.50
fpb
1767
N/MM²
xu
57.26
MM
Aps
392.5
MM²
N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
266 958.44 693
KNm KNm KNm
PUNCHING SHEAR CALCULATIONS Slab thickness Drop thickness Effective depth d/2 Concrete grade-fcu Drop width Drop depth bo Total load (axial) factored value V
Allowable shear
225 475 440 220 35 2750 475 6450 1407.97 2111.96
mm mm mm mm N/mm2 mm mm mm Kn Kn
Vu/bo*d 0.744
N/mm²
1.48
N/mm²
Hence safe 1842.5 2750
3685
4620
Column Strip
0.5
Mid Span Section Mo (kNm) 1536.45 Mcsm (0.60x0.35xMo)x2.75x0.225/(2.75x0.225+1.0x0.225) 236.61 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3 SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
2750 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 171 -58.5 618750 2.32E+07
MM MM MM MM MM MM² MM³
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
-236.61
KNm
Factored Bending moment -Mu
-354.92 98.13
KNm MM²
Aps
TENS (+ve) COMP (-ve) P/A
3.04
above na support
fpu fcu fpe Prestressing force P
1860 35 1200
N/MM² N/MM² N/MM²
117750
N
Pe/Z M/Z
-4.75 -10.20
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
16
Depth -d Number of Strands
Nos.
Top fiber
54 10
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
fpu*Aps/fcu*b*d 0.13 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14
-8.49
N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
fpb
1767
N/MM²
xu
7.56
MM
981.25
MM²
Aps
2.40
N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
88 -354.92 -443
KNm KNm KNm
Middle Strip Support Section Mo (kNm) Mmss (0.25x0.65xMo), 0.65Mo-D4
1536.45 359.73 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3
SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
4750 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 66 46.5 1068750 4.01E+07
MM MM MM MM MM MM² MM³
7370
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
359.73
KNm
539.6 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
Factored Bending moment -Mu Area of prestressing steel Maximum prestress before losses Charaterisitic compressive strength of concrete Maximum prestress after losses
Aps fpu fcu fpe
Prestressing force P
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
2.64 3.28 8.98
117750
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
24
Nos.
Top fiber
Depth -d Number of Strands
159 14
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
3.05
fpu*Aps/fcu*b*d 0.12 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14 N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
-8.34
fpb
1767
N/MM²
xu
22.26
MM
1373.75
MM²
Aps N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
Middle Strip Mid Span Section Mo (kNm)
above na support
1536.45
362 539.6 178
KNm KNm KNm
3685
Mmsm (0.40x0.35xMo),0.35Mo-D89
301.14 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3
SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
4750 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 171 -58.5 1068750 4.01E+07
MM MM MM MM MM MM² MM³
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
-301.14
KNm
Factored Bending moment -Mu
-451.72 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
117750
N
Aps fpu fcu fpe Prestressing force P
above na support
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
2.64 -4.12 -7.51
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
24
Nos.
Top fiber
Depth -d Number of Strands
54 10
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
-6.03
fpu*Aps/fcu*b*d 0.12 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14 N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
0.74
fpb
1767
N/MM²
xu
7.56
MM
981.25
MM²
Aps N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
88 -451.72 -539
KNm KNm KNm
GRID [(N108,N120),(M170,M180)]
considering X - direction
Column Strip Support Section SIDL Total load 21 KN/m2 LL Shorter span(L2) 8.11 m DL Longer span(L1) 7.50 m TOTAL LOAD Mo (kNm) 1197.49 Mcss (0.75x0.65xMo)x2.75x0.475/(2.75x0.475+1.0x0.225) 498 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3
11 4 5.63 20.63
Column Strip SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
2775
Depth of the slab with drop CG from top Ecentricity of the cable Area of the section
A Z
475 66 171.5 1318125 1.04E+08
MM MM MM MM MM MM² MM³
2750
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
498
KNm
747 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
117750
N
Factored Bending moment -Mu Area of prestressing steel Maximum prestress before losses Characteristic strength of of concrete Maximum prestress after losses
Aps fpu fcu fpe
Prestressing force P
above na support
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
0.89 1.94 4.77
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
10
Depth -d Number of Strands
Nos.
Top fiber
409 4
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
fpu*Aps/fcu*b*d 0.04 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14
1.94
N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
-3.73
fpb
1767
N/MM²
xu
57.26
MM
Aps
392.5
MM²
N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
266 747 481
KNm KNm KNm
PUNCHING SHEAR CALCULATIONS Slab thickness Drop thickness Effective depth d/2 Concrete grade-fcu Drop width Drop depth bo Total load (axial) factored value V
Allowable shear
225 475 440 220 35 2750 475 6450 1277.33 1915.99
mm mm mm mm N/mm2 mm mm mm Kn Kn
Vu/bo*d 0.675
N/mm²
1.48
N/mm²
Hence safe
Column Strip Mid Span Section Mo (kNm) 1197.49 Mcsm (0.60x0.35xMo)x2.75x0.225/(2.75x0.225+1.0x0.225) 184.41 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3 SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
2775 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 171 -58.5 624375 2.34E+07
MM MM MM MM MM MM² MM³
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
-184.41
KNm
Factored Bending moment -Mu
-276.62 98.13
KNm MM²
Aps
TENS (+ve) COMP (-ve) P/A
1.89
above na support
fpu fcu fpe Prestressing force P
1860 35 1200
N/MM² N/MM² N/MM²
117750
N
Pe/Z M/Z
-2.94 -7.88
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
10
Depth -d Number of Strands
Nos.
Top fiber
54 10
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
fpu*Aps/fcu*b*d 0.08 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14
-6.82
N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
fpb
1767
N/MM²
xu
7.56
MM
981.25
MM²
Aps
3.05
N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
88 -276.62 -364
KNm KNm KNm
Middle Strip Support Section Mo (kNm) Mmss (0.25x0.65xMo), 0.65Mo-D4
1197.49 280.37 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3
SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
5330 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 66 46.5 1199250 4.50E+07
MM MM MM MM MM MM² MM³
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
280.37
KNm
420.56 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
Factored Bending moment -Mu Area of prestressing steel Maximum prestress before losses Charaterisitic compressive strength of concrete Maximum prestress after losses
Aps fpu fcu fpe
Prestressing force P
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
1.96 2.44 6.23
117750
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
20
Nos.
Top fiber
Depth -d Number of Strands
159 14
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
1.84
fpu*Aps/fcu*b*d 0.09 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14 N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
-5.76
fpb
1767
N/MM²
xu
22.26
MM
1373.75
MM²
Aps N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
Middle Strip Mid Span Section Mo (kNm)
above na support
1197.49
362 420.56 59
KNm KNm KNm
Mmsm (0.40x0.35xMo),0.35Mo-D89
234.71 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3
SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
5330 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 171 -58.5 1199250 4.50E+07
MM MM MM MM MM MM² MM³
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
-234.71
KNm
Factored Bending moment -Mu
-352.06 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
117750
N
Aps fpu fcu fpe Prestressing force P
above na support
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
1.96 -3.06 -5.22
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
20
Nos.
Top fiber
Depth -d Number of Strands
54 10
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
-4.12
fpu*Aps/fcu*b*d 0.09 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14 N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
0.19
fpb
1767
N/MM²
xu
7.56
MM
981.25
MM²
Aps N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
88 -352.06 -440
KNm KNm KNm
GRID [(N108,N120),(M170,M180)]
considering Z - direction
Column Strip Support Section SIDL Total load 21 KN/m2 LL Shorter span(L2) 7.50 m DL Longer span(L1) 8.11 m TOTAL LOAD Mo (kNm) 1294.89 Mcss (0.75x0.65xMo)x2.75x0.475/(2.75x0.475+1.0x0.225) 538.5 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3
11 4 5.63 20.63
Column Strip SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
2750
Depth of the slab with drop CG from top Ecentricity of the cable Area of the section
A Z
475 66 171.5 1306250 1.03E+08
MM MM MM MM MM MM² MM³
1277.33
2750
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
538.5
KNm
807.75 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
117750
N
Factored Bending moment -Mu Area of prestressing steel Maximum prestress before losses Characteristic strength of of concrete Maximum prestress after losses
Aps fpu fcu fpe
Prestressing force P
above na support
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
1.44 3.12 5.21 1246.2
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
16
Depth -d Number of Strands
Nos.
Top fiber
409 4
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
fpu*Aps/fcu*b*d 0.06 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14
0.64
N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
-3.53
fpb
1767
N/MM²
xu
57.26
MM
Aps
392.5
MM²
N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
266 807.75 542
KNm KNm KNm
PUNCHING SHEAR CALCULATIONS Slab thickness Drop thickness Effective depth d/2 Concrete grade-fcu Drop width Drop depth bo Total load (axial) factored value V
Allowable shear
225 475 440 220 35 2750 475 6450 1277.33 1915.99
mm mm mm mm N/mm2 mm mm mm Kn Kn
Vu/bo*d 0.675
N/mm²
1.48
N/mm²
Hence safe 1842.5 2750
3685
4620
Column Strip
0.5
Mid Span Section Mo (kNm) 1294.89 Mcsm (0.60x0.35xMo)x2.75x0.225/(2.75x0.225+1.0x0.225) 199.41 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3 SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
2750 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 171 -58.5 618750 2.32E+07
MM MM MM MM MM MM² MM³
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
-199.41
KNm
Factored Bending moment -Mu
-299.12 98.13
KNm MM²
Aps
TENS (+ve) COMP (-ve) P/A
3.04
above na support
fpu fcu fpe Prestressing force P
1860 35 1200
N/MM² N/MM² N/MM²
117750
N
Pe/Z M/Z
-4.75 -8.59
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
16
Depth -d Number of Strands
Nos.
Top fiber
54 10
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
fpu*Aps/fcu*b*d 0.13 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14
-6.89
N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
fpb
1767
N/MM²
xu
7.56
MM
981.25
MM²
Aps
0.80
N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
88 -299.12 -387
KNm KNm KNm
Middle Strip Support Section Mo (kNm) Mmss (0.25x0.65xMo), 0.65Mo-D4
1294.89 303.18 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3
SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
4750 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 66 46.5 1068750 4.01E+07
MM MM MM MM MM MM² MM³
7370
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
303.18
KNm
454.76 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
Factored Bending moment -Mu Area of prestressing steel Maximum prestress before losses Charaterisitic compressive strength of concrete Maximum prestress after losses
Aps fpu fcu fpe
Prestressing force P
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
2.20 2.73 7.56
117750
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
20
Nos.
Top fiber
Depth -d Number of Strands
159 14
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
2.63
fpu*Aps/fcu*b*d 0.10 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14 N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
-7.04
fpb
1767
N/MM²
xu
22.26
MM
1373.75
MM²
Aps N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
Middle Strip Mid Span Section Mo (kNm) Mmsm (0.40x0.35xMo),0.35Mo-D89
above na support
1294.89 253.8
362 454.76 93
KNm KNm KNm
3685
DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3 SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
4750 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 171 -58.5 1068750 4.01E+07
MM MM MM MM MM MM² MM³
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
-253.8
KNm
Factored Bending moment -Mu
-380.7 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
117750
N
Aps fpu fcu fpe Prestressing force P
above na support
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
2.20 -3.44 -6.33
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
20
Nos.
Top fiber
Depth -d Number of Strands
54 10
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
-5.10
fpu*Aps/fcu*b*d 0.10 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14 N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
0.69
fpb
1767
N/MM²
xu
7.56
MM
981.25
MM²
Aps N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
88 -380.7 -468
KNm KNm KNm
GRID [(N130,N140),(M240,M235)]
considering X - direction
Column Strip Support Section SIDL Total load 21 KN/m2 LL Shorter span(L2) 7.16 m DL Longer span(L1) 5.89 m TOTAL LOAD Mo (kNm) 651.58 Mcss (0.75x0.65xMo)x2.75x0.475/(2.75x0.475+1.0x0.225) 270.97 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3
11 4 5.63 20.63
Column Strip SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
2750
Depth of the slab with drop CG from top Ecentricity of the cable Area of the section
A Z
475 66 171.5 1306250 1.03E+08
MM MM MM MM MM MM² MM³
885
2750
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
270.97
KNm
406.46 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
117750
N
Factored Bending moment -Mu Area of prestressing steel Maximum prestress before losses Characteristic strength of of concrete Maximum prestress after losses
Aps fpu fcu fpe
Prestressing force P
above na support
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
0.72 1.56 2.62 1246.2
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
8
Depth -d Number of Strands
Nos.
Top fiber
409 4
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
fpu*Aps/fcu*b*d 0.03 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14
0.34
N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
-1.78
fpb
1767
N/MM²
xu
57.26
MM
Aps
392.5
MM²
N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
266 406.46 141
KNm KNm KNm
PUNCHING SHEAR CALCULATIONS Slab thickness Drop thickness Effective depth d/2 Concrete grade-fcu Drop width Drop depth bo Total load (axial) factored value V
Allowable shear
225 475 440 220 35 2750 475 6450 885 1327.5
mm mm mm mm N/mm2 mm mm mm Kn Kn
Vu/bo*d 0.468
N/mm²
1.48
N/mm²
Hence safe 1842.5 2750
3685
4620
Column Strip
0.5
Mid Span Section Mo (kNm) 651.58 Mcsm (0.60x0.35xMo)x2.75x0.225/(2.75x0.225+1.0x0.225) 100.34 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3 SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
2750 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 171 -58.5 618750 2.32E+07
MM MM MM MM MM MM² MM³
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
-100.34
KNm
Factored Bending moment -Mu
-150.52 98.13
KNm MM²
Aps
TENS (+ve) COMP (-ve) P/A
1.52
above na support
fpu fcu fpe Prestressing force P
1860 35 1200
N/MM² N/MM² N/MM²
117750
N
Pe/Z M/Z
-2.37 -4.32
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
8
Depth -d Number of Strands
Nos.
Top fiber
54 10
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
fpu*Aps/fcu*b*d 0.07 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14
-3.47
N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
fpb
1767
N/MM²
xu
7.56
MM
981.25
MM²
Aps
0.43
N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
88 -150.52 -238
KNm KNm KNm
Middle Strip Support Section Mo (kNm) Mmss (0.25x0.65xMo), 0.65Mo-D4
651.58 152.56 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3
SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
4405 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 66 46.5 991125 3.72E+07
MM MM MM MM MM MM² MM³
7370
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
152.56
KNm
228.84 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
Factored Bending moment -Mu Area of prestressing steel Maximum prestress before losses Charaterisitic compressive strength of concrete Maximum prestress after losses
Aps fpu fcu fpe
Prestressing force P
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
1.19 1.47 4.10
117750
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
10
Nos.
Top fiber
Depth -d Number of Strands
159 14
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
1.44
fpu*Aps/fcu*b*d 0.05 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14 N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
-3.82
fpb
1767
N/MM²
xu
22.26
MM
1373.75
MM²
Aps N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
362 228.84 -133
Middle Strip Mid Span Section Mo (kNm) Mmsm (0.40x0.35xMo),0.35Mo-D89
above na support
651.58 127.71 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3
KNm KNm KNm
3685
SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
4405 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 171 -58.5 991125 3.72E+07
MM MM MM MM MM MM² MM³
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
-127.71
KNm
Factored Bending moment -Mu
-191.57 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
117750
N
Aps fpu fcu fpe Prestressing force P
above na support
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
1.19 -1.85 -3.44
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
10
Nos.
Top fiber
Depth -d Number of Strands
54 10
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
-2.77
fpu*Aps/fcu*b*d 0.05 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14 N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
0.39
fpb
1767
N/MM²
xu
7.56
MM
981.25
MM²
Aps N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
88 -191.57 -279
KNm KNm KNm
GRID [(N130,N140),(M240,M235)]
considering X - direction
Column Strip Support Section SIDL Total load 21 KN/m2 LL Shorter span(L2) 5.89 m DL Longer span(L1) 7.16 m TOTAL LOAD Mo (kNm) 792.63 Mcss (0.75x0.65xMo)x2.75x0.475/(2.75x0.475+1.0x0.225) 329.63 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3
11 4 5.63 20.63
Column Strip SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
2750
Depth of the slab with drop CG from top Ecentricity of the cable Area of the section
A Z
475 66 171.5 1306250 1.03E+08
MM MM MM MM MM MM² MM³
885.62
2750
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
329.63
KNm
494.44 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
117750
N
Factored Bending moment -Mu Area of prestressing steel Maximum prestress before losses Characteristic strength of of concrete Maximum prestress after losses
Aps fpu fcu fpe
Prestressing force P
above na support
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
0.54 1.17 3.19 1246.2
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
6
Depth -d Number of Strands
Nos.
Top fiber
409 4
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
fpu*Aps/fcu*b*d 0.02 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14
1.48
N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
-2.56
fpb
1767
N/MM²
xu
57.26
MM
Aps
392.5
MM²
N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
266 494.44 229
KNm KNm KNm
PUNCHING SHEAR CALCULATIONS Slab thickness Drop thickness Effective depth d/2 Concrete grade-fcu Drop width Drop depth bo Total load (axial) factored value V
Allowable shear
225 475 440 220 35 2750 475 6450 885.62 1328.43
mm mm mm mm N/mm2 mm mm mm Kn Kn
Vu/bo*d 0.468
N/mm²
1.48
N/mm²
Hence safe 1842.5 2750
3685
4620
Column Strip
0.5
Mid Span Section Mo (kNm) 792.63 Mcsm (0.60x0.35xMo)x2.75x0.225/(2.75x0.225+1.0x0.225) 122.07 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3 SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
2750 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 171 -58.5 618750 2.32E+07
MM MM MM MM MM MM² MM³
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
-122.07
KNm
Factored Bending moment -Mu
-183.1 98.13
KNm MM²
Aps
TENS (+ve) COMP (-ve) P/A
1.14
above na support
fpu fcu fpe Prestressing force P
1860 35 1200
N/MM² N/MM² N/MM²
117750
N
Pe/Z M/Z
-1.78 -5.26
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
6
Depth -d Number of Strands
Nos.
Top fiber
54 10
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
fpu*Aps/fcu*b*d 0.05 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14
-4.62
N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
fpb
1767
N/MM²
xu
7.56
MM
981.25
MM²
Aps
2.34
N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
88 -183.1 -271
KNm KNm KNm
Middle Strip Support Section Mo (kNm) Mmss (0.25x0.65xMo), 0.65Mo-D4
792.63 185.58 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3
SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
3140 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 66 46.5 706500 2.65E+07
MM MM MM MM MM MM² MM³
7370
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
185.58
KNm
278.37 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
Factored Bending moment -Mu Area of prestressing steel Maximum prestress before losses Charaterisitic compressive strength of concrete Maximum prestress after losses
Aps fpu fcu fpe
Prestressing force P
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
2.00 2.48 7.00
117750
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
12
Nos.
Top fiber
Depth -d Number of Strands
159 14
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
2.52
fpu*Aps/fcu*b*d 0.09 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14 N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
-6.52
fpb
1767
N/MM²
xu
22.26
MM
1373.75
MM²
Aps N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
Middle Strip Mid Span Section Mo (kNm) Mmsm (0.40x0.35xMo),0.35Mo-D89
above na support
792.63 155.36
362 278.37 -83
KNm KNm KNm
3685
DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3 SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
3140 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 171 -58.5 706500 2.65E+07
MM MM MM MM MM MM² MM³
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
-155.36
KNm
Factored Bending moment -Mu
-233.03 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
117750
N
Aps fpu fcu fpe Prestressing force P
above na support
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
2.00 -3.12 -5.86
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
12
Nos.
Top fiber
Depth -d Number of Strands
54 10
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
-4.74
fpu*Aps/fcu*b*d 0.09 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14 N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
0.74
fpb
1767
N/MM²
xu
7.56
MM
981.25
MM²
Aps N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
88 -233.03 -321
KNm KNm KNm
GRID [(N163,N174),(M140,M150)]
considering X - direction
Column Strip Support Section SIDL Total load 21 KN/m2 LL Shorter span(L2) 8.11 m DL Longer span(L1) 7.50 m TOTAL LOAD Mo (kNm) 1196.75 Mcss (0.75x0.65xMo)x2.75x0.475/(2.75x0.475+1.0x0.225) 497.69 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3
11 4 5.63 20.63
Column Strip SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
2750
Depth of the slab with drop CG from top Ecentricity of the cable Area of the section
A Z
475 66 171.5 1306250 1.03E+08
MM MM MM MM MM MM² MM³
1276.54
2750
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
497.69
KNm
746.54 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
117750
N
Factored Bending moment -Mu Area of prestressing steel Maximum prestress before losses Characteristic strength of of concrete Maximum prestress after losses
Aps fpu fcu fpe
Prestressing force P
above na support
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
0.90 1.95 4.81 1246.2
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
10
Depth -d Number of Strands
Nos.
Top fiber
409 4
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
fpu*Aps/fcu*b*d 0.04 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14
1.96
N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
-3.76
fpb
1767
N/MM²
xu
57.26
MM
Aps
392.5
MM²
N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
266 746.54 481
KNm KNm KNm
PUNCHING SHEAR CALCULATIONS Slab thickness Drop thickness Effective depth d/2 Concrete grade-fcu Drop width Drop depth bo Total load (axial) factored value V
Allowable shear
225 475 440 220 35 2750 475 6450 1276.54 1914.81
mm mm mm mm N/mm2 mm mm mm Kn Kn
Vu/bo*d 0.675
N/mm²
1.48
N/mm²
Hence safe 1842.5 2750
3685
4620
Column Strip
0.5
Mid Span Section Mo (kNm) 1196.75 Mcsm (0.60x0.35xMo)x2.75x0.225/(2.75x0.225+1.0x0.225) 184.3 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3 SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
2750 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 171 -58.5 618750 2.32E+07
MM MM MM MM MM MM² MM³
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
-184.3
KNm
Factored Bending moment -Mu
-276.45 98.13
KNm MM²
Aps
TENS (+ve) COMP (-ve) P/A
1.90
above na support
fpu fcu fpe Prestressing force P
1860 35 1200
N/MM² N/MM² N/MM²
117750
N
Pe/Z M/Z
-2.97 -7.94
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
10
Depth -d Number of Strands
Nos.
Top fiber
54 10
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
fpu*Aps/fcu*b*d 0.08 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14
-6.88
N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
fpb
1767
N/MM²
xu
7.56
MM
981.25
MM²
Aps
3.07
N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
88 -276.45 -364
KNm KNm KNm
Middle Strip Support Section Mo (kNm) Mmss (0.25x0.65xMo), 0.65Mo-D4
1196.75 280.2 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3
SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
5330 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 66 46.5 1199250 4.50E+07
MM MM MM MM MM MM² MM³
7370
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
280.2
KNm
420.3 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
Factored Bending moment -Mu Area of prestressing steel Maximum prestress before losses Charaterisitic compressive strength of concrete Maximum prestress after losses
Aps fpu fcu fpe
Prestressing force P
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
1.57 1.95 6.23
117750
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
16
Nos.
Top fiber
Depth -d Number of Strands
159 14
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
2.71
fpu*Aps/fcu*b*d 0.07 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14 N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
-5.85
fpb
1767
N/MM²
xu
22.26
MM
1373.75
MM²
Aps N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
362 420.3 59
Middle Strip Mid Span Section Mo (kNm) Mmsm (0.40x0.35xMo),0.35Mo-D89
above na support
1196.75 234.56 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3
KNm KNm KNm
3685
SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
5330 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 171 -58.5 1199250 4.50E+07
MM MM MM MM MM MM² MM³
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
-234.56
KNm
Factored Bending moment -Mu
-351.85 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
117750
N
Aps fpu fcu fpe Prestressing force P
above na support
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
1.57 -2.45 -5.22
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
16
Nos.
Top fiber
Depth -d Number of Strands
54 10
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
-4.34
fpu*Aps/fcu*b*d 0.07 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14 N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
1.19
fpb
1767
N/MM²
xu
7.56
MM
981.25
MM²
Aps N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
88 -351.85 -440
KNm KNm KNm
GRID [(N163,N174),(M140,M150)]
considering X - direction
Column Strip Support Section SIDL Total load 21 KN/m2 LL Shorter span(L2) 7.50 m DL Longer span(L1) 8.11 m TOTAL LOAD Mo (kNm) 1294.89 Mcss (0.75x0.65xMo)x2.75x0.475/(2.75x0.475+1.0x0.225) 538.5 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3
11 4 5.63 20.63
Column Strip SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
2750
Depth of the slab with drop CG from top Ecentricity of the cable Area of the section
A Z
475 66 171.5 1306250 1.03E+08
MM MM MM MM MM MM² MM³
1277.33
2750
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
538.5
KNm
807.75 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
117750
N
Factored Bending moment -Mu Area of prestressing steel Maximum prestress before losses Characteristic strength of of concrete Maximum prestress after losses
Aps fpu fcu fpe
Prestressing force P
above na support
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
1.08 2.34 5.21 1246.2
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
12
Depth -d Number of Strands
Nos.
Top fiber
409 4
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
fpu*Aps/fcu*b*d 0.05 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14
1.78
N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
-3.95
fpb
1767
N/MM²
xu
57.26
MM
Aps
392.5
MM²
N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
266 807.75 542
KNm KNm KNm
PUNCHING SHEAR CALCULATIONS Slab thickness Drop thickness Effective depth d/2 Concrete grade-fcu Drop width Drop depth bo Total load (axial) factored value V
Allowable shear
225 475 440 220 35 2750 475 6450 1277.33 1915.99
mm mm mm mm N/mm2 mm mm mm Kn Kn
Vu/bo*d 0.675
N/mm²
1.48
N/mm²
Hence safe
Column Strip Mid Span Section Mo (kNm) 1294.89 Mcsm (0.60x0.35xMo)x2.75x0.225/(2.75x0.225+1.0x0.225) 199.41 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3 SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
2750 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 171 -58.5 618750 2.32E+07
MM MM MM MM MM MM² MM³
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
-199.41
KNm
Factored Bending moment -Mu
-299.12 98.13
KNm MM²
Aps
TENS (+ve) COMP (-ve) P/A
2.28
above na support
fpu fcu fpe Prestressing force P
1860 35 1200
N/MM² N/MM² N/MM²
117750
N
Pe/Z M/Z
-3.56 -8.59
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
12
Depth -d Number of Strands
Nos.
Top fiber
54 10
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
fpu*Aps/fcu*b*d 0.10 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14
-7.32
N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
fpb
1767
N/MM²
xu
7.56
MM
981.25
MM²
Aps
2.75
N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
88 -299.12 -387
KNm KNm KNm
Middle Strip Support Section Mo (kNm) Mmss (0.25x0.65xMo), 0.65Mo-D4
1294.89 303.18 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3
SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
4750 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 66 46.5 1068750 4.01E+07
MM MM MM MM MM MM² MM³
7370
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
303.18
KNm
454.76 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
Factored Bending moment -Mu Area of prestressing steel Maximum prestress before losses Charaterisitic compressive strength of concrete Maximum prestress after losses
Aps fpu fcu fpe
Prestressing force P
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
2.20 2.73 7.56
117750
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
20
Nos.
Top fiber
Depth -d Number of Strands
2.63
MM Nos.
fpu*Aps/fcu*b*d 0.10 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14 N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
-7.04
fpb
1767
N/MM²
xu
22.26
MM
1373.75
MM²
Aps N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
Mid Span Section
159 14
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
Middle Strip
above na support
362 454.76 93
KNm KNm KNm
3685
Mo (kNm) Mmsm (0.40x0.35xMo),0.35Mo-D89
1294.89 253.8 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID L OCATION -3
SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
4750 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 171 -58.5 1068750 4.01E+07
MM MM MM MM MM MM² MM³
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
-253.8
KNm
Factored Bending moment -Mu
-380.7 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
117750
N
Aps fpu fcu fpe Prestressing force P
above na support
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
2.20 -3.44 -6.33
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
20
Nos.
Top fiber
Depth -d Number of Strands
54 10
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
-5.10
fpu*Aps/fcu*b*d 0.10 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14 N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
0.69
fpb
1767
N/MM²
xu
7.56
MM
981.25
MM²
Aps N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
88 -380.7 -468
KNm KNm KNm
GRID [(N160,N174),(M240,M235)]
considering X - direction
Column Strip Support Section SIDL Total load 21 KN/m2 LL Shorter span(L2) 10.30 m DL Longer span(L1) 5.89 m TOTAL LOAD Mo (kNm) 937.99 Mcss (0.75x0.65xMo)x2.75x0.475/(2.75x0.475+1.0x0.225) 390.08 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3
11 4 5.63 20.63
Column Strip SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
2750
Depth of the slab with drop CG from top Ecentricity of the cable Area of the section
A Z
475 66 171.5 1306250 1.03E+08
MM MM MM MM MM MM² MM³
1274.01
2750
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
390.08
KNm
585.12 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
117750
N
Factored Bending moment -Mu Area of prestressing steel Maximum prestress before losses Characteristic strength of of concrete Maximum prestress after losses
Aps fpu fcu fpe
Prestressing force P
above na support
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
0.54 1.17 3.77 1246.2
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
6
Depth -d Number of Strands
Nos.
Top fiber
409 4
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
fpu*Aps/fcu*b*d 0.02 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14
2.06
N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
-3.14
fpb
1767
N/MM²
xu
57.26
MM
Aps
392.5
MM²
N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
266 585.12 319
KNm KNm KNm
PUNCHING SHEAR CALCULATIONS Slab thickness Drop thickness Effective depth d/2 Concrete grade-fcu Drop width Drop depth bo Total load (axial) factored value V
Allowable shear
225 475 440 220 35 2750 475 6450 1274.01 1911.01
mm mm mm mm N/mm2 mm mm mm Kn Kn
Vu/bo*d 0.673
N/mm²
1.48
N/mm²
Hence safe 1842.5 2750
3685
4620
Column Strip
0.5
Mid Span Section Mo (kNm) 937.99 Mcsm (0.60x0.35xMo)x2.75x0.225/(2.75x0.225+1.0x0.225) 144.45 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3 SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
2750 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 171 -58.5 618750 2.32E+07
MM MM MM MM MM MM² MM³
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
-144.45
KNm
Factored Bending moment -Mu
-216.68 98.13
KNm MM²
Aps
TENS (+ve) COMP (-ve) P/A
1.14
above na support
fpu fcu fpe Prestressing force P
1860 35 1200
N/MM² N/MM² N/MM²
117750
N
Pe/Z M/Z
-1.78 -6.23
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
6
Depth -d Number of Strands
Nos.
Top fiber
54 10
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
fpu*Aps/fcu*b*d 0.05 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14
-5.59
N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
fpb
1767
N/MM²
xu
7.56
MM
981.25
MM²
Aps
3.30
N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
88 -216.68 -304
KNm KNm KNm
Middle Strip Support Section Mo (kNm) Mmss (0.25x0.65xMo), 0.65Mo-D4
937.99 219.61 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3
SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
5330 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 66 46.5 1199250 4.50E+07
MM MM MM MM MM MM² MM³
7370
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
219.61
KNm
329.42 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
Factored Bending moment -Mu Area of prestressing steel Maximum prestress before losses Charaterisitic compressive strength of concrete Maximum prestress after losses
Aps fpu fcu fpe
Prestressing force P
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
1.57 1.95 4.88
117750
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
16
Nos.
Top fiber
Depth -d Number of Strands
159 14
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
1.36
fpu*Aps/fcu*b*d 0.07 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14 N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
-4.51
fpb
1767
N/MM²
xu
22.26
MM
1373.75
MM²
Aps N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
Middle Strip Mid Span Section Mo (kNm)
above na support
937.99
362 329.42 -32
KNm KNm KNm
3685
Mmsm (0.40x0.35xMo),0.35Mo-D89
183.85 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3
SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
5330 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 171 -58.5 1199250 4.50E+07
MM MM MM MM MM MM² MM³
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
-183.85
KNm
Factored Bending moment -Mu
-275.77 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
117750
N
Aps fpu fcu fpe Prestressing force P
above na support
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
1.57 -2.45 -4.09
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
16
Nos.
Top fiber
Depth -d Number of Strands
54 10
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
-3.21
fpu*Aps/fcu*b*d 0.07 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14 N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
0.07
fpb
1767
N/MM²
xu
7.56
MM
981.25
MM²
Aps N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
88 -275.77 -363
KNm KNm KNm
NON FIRE TENDER AREA considering Z - direction
Column Strip Support Section SIDL Total load 21 KN/m2 LL Shorter span(L2) 5.89 m DL Longer span(L1) 10.30 m TOTAL LOAD Mo (kNm) 1640.28 Mcss (0.75x0.65xMo)x2.75x0.475/(2.75x0.475+1.0x0.225) 682.14 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3
11 4 5.63 20.63
Column Strip SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
2750
Depth of the slab with drop CG from top Ecentricity of the cable Area of the section
A Z
475 66 171.5 1306250 1.03E+08
MM MM MM MM MM MM² MM³
1274.01
2750
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
682.14
KNm
1023.21 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
117750
N
Factored Bending moment -Mu Area of prestressing steel Maximum prestress before losses Characteristic strength of of concrete Maximum prestress after losses
Aps fpu fcu fpe
Prestressing force P
above na support
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
1.44 3.12 6.60 1246.2
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
16
Depth -d Number of Strands
Nos.
Top fiber
409 4
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
fpu*Aps/fcu*b*d 0.06 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14
2.03
N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
-4.91
fpb
1767
N/MM²
xu
57.26
MM
Aps
392.5
MM²
N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
266 1023.21 757
KNm KNm KNm
PUNCHING SHEAR CALCULATIONS Slab thickness Drop thickness Effective depth d/2 Concrete grade-fcu Drop width Drop depth bo Total load (axial) factored value V
Allowable shear
225 475 440 220 35 2750 475 6450 1274.01 1911.01
mm mm mm mm N/mm2 mm mm mm Kn Kn
Vu/bo*d 0.673
N/mm²
1.48
N/mm²
Hence safe 1842.5 2750
3685
4620
Column Strip
0.5
Mid Span Section Mo (kNm) 1640.28 Mcsm (0.60x0.35xMo)x2.75x0.225/(2.75x0.225+1.0x0.225) 252.6 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3 SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
2750 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 171 -58.5 618750 2.32E+07
MM MM MM MM MM MM² MM³
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
-252.6
KNm
Factored Bending moment -Mu
-378.91 98.13
KNm MM²
Aps
TENS (+ve) COMP (-ve) P/A
3.04
above na support
fpu fcu fpe Prestressing force P
1860 35 1200
N/MM² N/MM² N/MM²
117750
N
Pe/Z M/Z
-4.75 -10.89
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
16
Depth -d Number of Strands
Nos.
Top fiber
54 10
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
fpu*Aps/fcu*b*d 0.13 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14
-9.18
N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
fpb
1767
N/MM²
xu
7.56
MM
981.25
MM²
Aps
3.09
N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
88 -378.91 -467
KNm KNm KNm
Middle Strip Support Section Mo (kNm) Mmss (0.25x0.65xMo), 0.65Mo-D4
1640.28 384.04 DESIGN CALCULATIONS FOR THE POSITIVE MOMENT OF THE GRID LOCATION -3
SECTIONAL PROPERTIES Breadth of the slab Depth of the slab
5330 Depth of the slab
CG from top Ecentricity of the cable Area of the section
A Z
225 66 46.5 1199250 4.50E+07
MM MM MM MM MM MM² MM³
7370
e+ve m+ve Unfactored moment-M-SUPPORT
0
KNm/m
Unfactored moment-M
384.04
KNm
576.07 98.13 1860 35 1200
KNm MM² N/MM² N/MM² N/MM²
Factored Bending moment -Mu Area of prestressing steel Maximum prestress before losses Charaterisitic compressive strength of concrete Maximum prestress after losses
Aps fpu fcu fpe
Prestressing force P
TENS (+ve) COMP (-ve) P/A Pe/Z M/Z
2.55 3.17 8.54
117750
CHECK FOR STRESSES
MOMENT OF RESISTANCE
mid Number of Strands
26
Nos.
Top fiber
Depth -d Number of Strands
159 14
MM Nos.
As per BS 8110-1997, Clause 4.3.7.3 & table 4.4 (-P/A-Pe/Z+M/Z)
2.82
fpu*Aps/fcu*b*d 0.11 fpe/fpu 0.6 On the basis of these two ratios we can determine fpb/0.95fpu from table7.3 fpb/0.95fpu 1 X/d 0.14 N/MM²
Bottom fiber (-P/A+Pe/Z-M/Z)
-7.93
fpb
1767
N/MM²
xu
22.26
MM
1373.75
MM²
Aps N/MM²
Moment of resistance only for PT Tendons fpb*Aps*(d-0.45xu) & total moment o,the remaining moment only for which reinforcement has to be provide Provided Reinforcement
Middle Strip Mid Span Section Mo (kNm)
above na support
1640.28
362 576.07 214
KNm KNm KNm
3685