041/X/SA2/36/A1 Class - X MATHEMATICS Time : 3 to 3½ hours âר : 3 âð 3½ æÅUð
Maximum Marks : 80 ¥çÏ·¤Ì× ¥´·¤ : 80 Total No. of Pages : 11 ·é¤Ü ÂëcÆUæð´ ·¤è â´Øæ : 11
General Instructions : 1.
All questions are compulsory.
2.
The question paper consists of 34 questions divided into four sections A, B, C and D. Section - A comprises of 10 questions of 1 mark each, Section - B comprises of 8 questions of 2 marks each, Section - C comprises of 10 questions of 3 marks each and Section - D comprises of 6 questions of 4 marks each.
3.
Question numbers 1 to 10 in Section - A are multiple choice questions where you are to select one correct option out of the given four.
4.
There is no overall choice. However, internal choice has been provided in 1 question of two marks, 3 questions of three marks each and 2 questions of four marks each. You have to attempt only one of the alternatives in all such questions.
5.
Use of calculator is not permitted.
6.
An additional 15 minutes time has been allotted to read this question paper only.
âæ×æØ çÙÎðüàæ Ñ 1.
âÖè ÂýàÙ ¥çÙßæØü ãñ´Ð
2.
§â ÂýàÙ-Âæ ×ð´ 34 ÂýàÙ ãñ´, Áæð
¿æÚU ¹ÇUæð´ & ¥, Õ, â ß Î ×ð´ çßÖæçÁÌ ãñÐ ¹ÇU - ¥ ×ð´ 10 ÂýàÙ ãñ´ ¥æñÚU ÂýØð·¤
3.
¹ÇU - Õ ×ð´ 8 ÂýàÙ ãñ´ ¥æñÚU ÂýØð·¤ ÂýàÙ 2 ¥´·¤æð´ ·¤æ ãñ, ¹ÇU - â ×ð´ 10 ÂýàÙ ãñ´ ¥æñÚU ÂýØð·¤ ÂýàÙ 3 ¥´·¤æð´ ·¤æ ãñ, ¹ÇU - Î ×ð´ 6 ÂýàÙ ãñ´ ¥æñÚU ÂýØð·¤ ÂýàÙ 4 ¥´·¤æð´ ·¤æ ãñÐ ¹ÇU - ¥ ×ð´ ÂýàÙ â´Øæ 1 10 °·¤ âãè
4.
§â×ð´ ·¤æð§ü Öè âßæðüÂçÚU çß·¤Ë Ùãè´ ãñ, Üðç·¤Ù ¥æ´ÌçÚU·¤ çß·¤Ë 1 ÂýàÙ 2 ¥´·¤æð´ ×ð´, 3 ÂýàÙ 3 ¥´·¤æð´ ×ð´ ¥æñÚU 2 ÂýàÙ
ÂýàÙ
1
¥´·¤ ·¤æ ãñ,
âð
Õãéçß·¤ËÂèØ ÂýàÙ ãñ´Ð
çΰ »° ¿æÚU çß·¤ËÂæð´ ×ð´ âð
çß·¤Ë ¿éÙð´Ð
4 ¥´·¤æð´ ×ð´ çΰ »° ãñ´Ð ¥æÂ çΰ »° çß·¤ËÂæð´ ×ð´ âð °·¤ çß·¤Ë ·¤æ ¿ØÙ ·¤Úð´UÐ
ßçÁüÌ ãñÐ
5.
·ñ¤Ü·é¤ÜðÅUÚU ·¤æ ÂýØæð»
6.
§â ÂýàÙ-Âæ ·¤æð ÂɸÙð ·ð¤ çܰ 15
ç×ÙÅU ·¤æ ¥çÌçÚUÌ âר çÎØæ »Øæ ãñÐ
ÂýàÙ-Âæ ·¤æð Âɸð´»ð ¥æñÚU ßð ©æÚU-ÂéçSÌ·¤æ ÂÚU ·¤æð§ü ©æÚU Ùãè´ çܹð´»ðÐ
1
§â ¥ßçÏ ·ð¤ ÎæñÚUæÙ ÀUææ ·ð¤ßÜ
SECTION - A Question numbers 1 to 10 carry 1 mark each. Each question is provided with four alternative choices of which only one is correct. You have to select the correct choice. 1.
A frustum of a right circular cone of height 16 cm with radii of its circular ends as 8 cm and 20 cm has its slant height equal to (A)
2.
(B)
21.5
(C)
15%
(D)
0.7
a1b
(B)
2b2a
(C)
ab
(D)
a b
4 3 pr 3
(B)
2pr 2
(C)
2 3 pr 3
(D)
4pr 2
11
(B)
11 4
(D)
22
(D)
a radius
(C)
11 2
a diameter
(B)
a secant
(C)
a tangent
608
(B)
458
(C)
308
(D)
908
308
(B)
458
(C)
608
(D)
908
A child reshapes a cone made up of China clay of height 24 cm and radius of base 6 cm into a sphere. The radius of the sphere is (A)
10.
2/3
The angle of elevation of the sun, when the length of the shadow of a pole is equal to its height, is (A)
9.
24 cm
Two circles touch each other externally at C and AB is common tangent to the circles then ∠ ACB is : (A)
8.
(D)
A line that intersects a circle in two distinct points is called (A)
7.
20 cm
If the nth term of an AP is 3 1 n , then its 8th term is 4 (A)
6.
(C)
The volume of a sphere of radius r is : (A)
5.
16 cm
Which of the following is a solution of the quadratic equation x22b25a(2x2a) ? (A)
4.
(B)
Which of the following cannot be the probability of an event ? (A)
3.
18 cm
24 cm
(B)
12 cm
(C)
6 cm
(D)
48 cm
(D)
17 units
The perpendicular distance of A(5, 12) from the y axis is (A)
13 units
041/X/SA2/36/A1
(B)
5 units
(C) 2
12 units
SECTION - B Question numbers 11 to 18 carry 2 marks each. 11.
Which term of the AP : 6, 13, 20, 27, ....... is 98 more than its 24th term ?
12.
Sum of the areas of two squares is 468 m2. If the difference of their perimeters is 24 m, find the sides of the two squares.
13.
In Fig.1, two circles touch each other externally at C. Prove that the common tangent at C bisects the other two common tangents.
OR In Fig. 2, a circle touches the side BC of triangle ABC at P and touches AB and AC produced at Q and R respectively. Show that AQ5
1 (Perimeter of DABC) 2
14.
If A(1, 2), B(4, y), C(x, 6) and D(3, 5) are the vertices of a parallelogram ABCD taken in order, find the values of x and y.
15.
In what ratio does the yaxis divide the line segment joining the points (24, 5) and (3, 27).
16.
Cards marked with numbers 3, 4, 5, ......, 50 are placed in a box and mixed thoroughly. One card is drawn at random from the box. Find the probability that the number on the drawn card is (i)
divisible by 7.
(ii)
is a perfect square.
041/X/SA2/36/A1
3
17.
A toy is in the form of a cone mounted on a hemisphere of common base radius 7 cm. The total height of the toy is 31 cm. Find the total surface area of the toy.
18.
A horse is tied to a peg at one corner of a square shaped grass field of side 25 m by means of a 14 m long rope. Find the area of the part of the field in which the horse can graze
22 Take p5 7
SECTION - C 19.
Question numbers 19 to 28 carry 3 marks each. Solve the following quadratic equation for x : p2x21(p22q2)x2q250
20.
The 4th term of an AP is equal to 3 times the first term and the 7th term exceeds twice the 3rd term by 1. Find the first term and the common difference.
21.
Draw a DABC with BC58 cm, ∠ ABC5458 and ∠ BAC51058. Then construct a triangle whose sides are
2 times the corresponding sides of the DABC. 3
22.
A circle is inscribed in a triangle ABC having sides AB58 cm, BC510 cm and CA5 12 cm as shown in Fig. 13. Find AD, BE and CF.
23.
If the radius of the base of a right circular cylinder is halved, keeping the height same, find the ratio of the volume of the reduced cylinder to that of the original cylinder.
24.
Find the area of the sector of a circle with radius 10 cm and of central angle 608. Also, find the area of the corresponding major sector. OR A solid metallic sphere of diameter 21 cm is melted and recast into a number of smaller cones, each of diameter 3.5 cm and height 3 cm. Find the number of cones so formed.
25.
A man standing on the top of a multistorey building, which is 30 m high, observes the angle of elevation of the top of a tower as 608 and the angle of depression of the base of the tower as 308. Find the horizontal distance between the building and the tower. Also find the height of the tower. OR
041/X/SA2/36/A1
4
An aeroplane, when 3000 m high, passes vertically above another plane at an instant when the angles of elevation of the two aeroplanes from the same point on the ground are 608 and 458 respectively. Find the vertical distance between the two aeroplanes. 26.
A box contains 20 balls bearing numbers 1, 2, 3, 4, ........20. A ball is drawn at random from the box. What is the probability that the number on the drawn ball is (i) An odd number (ii) Divisible for 2 or 3 (iii) Prime number (iv) Not divisible by 10
27.
The mid points of the sides AB, BC and CA of a triangle ABC are D(2, 1), E(1, 0) and F(21, 3) respectively. Find the coordinates of the vertices of the triangle ABC.
28.
ABCD is a rectangle formed by joining the points A(21, 21), B(21, 4), C(5, 4) and D(5, 21). P, Q, R and S are the mid points of AB, BC, CD and DA respectively. Is the quadrilateral PQRS a square, a rectangle or a rhombus ? Justify your answer. OR The line segment joining the points A(2, 1) and B(5, 28) is trisected at the points P and Q where P is nearer to A. If point P lies on the line 2x2y1k50, find the value of k.
SECTION - D 29.
30.
Question numbers 29 to 34 carry 4 marks each. Some students arranged a picnic. The total budget for food was Rs. 240. Because four students of the group failed to go, the cost of food to each student got increased by Rs. 5. How many students went for the picnic ? OR Raghav buys a shop for Rs. 1,20,000. He pays half of the amount in cash and agrees to pay the balance in 12 annual instalments of Rs. 5000 each. If the rate of interest is 12% per annum and he pays with the instalment the interest due on the unpaid amount; find the total cost of the shop. If a, b and c be the sums of first p, q and r terms respectively of an AP, show that
a b c (q 2 r) 1 (r 2 p) 1 (p 2 q ) 5 0 p q r 31.
From the top and foot of a tower 40 m high, the angle of elevation of the top of a light house are found to be 308 and 608 respectively. Find the height of the light house. Also find the distance of the top of the light house from the foot of the tower.
32.
A solid is composed of a cylinder with hemispherical ends. If the whole height of the solid is 100 cm and the diameter of cylindrical part and the hemispherical ends is 28 cm, find the cost of polishing the surface of the solid at the rate of 5 paise per sq cm. 22 use p5 7
OR 041/X/SA2/36/A1
5
A container open from the top, made up of a metal sheet is in the form of a frustum of a cone of height 8 cm with radii of its lower and upper ends as 4 cm and 10 cm respectively. Find the cost of oil which can completely fill the container at the rate of Rs. 50 per litre. Also, find the cost of metal used, if it costs Rs. 5 per 100 cm 2 (Use p53.14) 33.
Water is flowing at the rate of 3 km/h through a circular pipe of 20 cm internal diameter into a cylindrical cistern of diameter 10 m and depth 2 m. In how much time will the 22 cistern be filled. use p5 7
34.
OABC is a rhombus whose three vertices A, B and C lie on a circle with centre O. If the radius of the circle is 10 cm, find the area of the rhombus. -oOo-
041/X/SA2/36/A1
6
¹ÇU - ¥ ÂýàÙ â´Øæ 1 âð 10 Ì·¤ ÂýØð·¤ ÂýàÙ 1 ¥´·¤ ·¤æ ãñÐ ÂýØð·¤ ÂýàÙ ·ð¤ çܰ ¿æÚU ßñ·¤çË·¤ ©æÚU çΰ »° ãñ´, çÁÙ×ð´ âð ·ð¤ßÜ °·¤ âãè ãñÐ ¥æÂ·¤æð âãè ©æÚU ¿éÙÙæ ãñÐ 1.
°·¤ ÜÕ ßëæèØ àæ´·é¤ ·ð¤ çÀUÙ·¤ ·¤è ª¡¤¿æ§ü 16 âð×è ÌÍæ ©â·ð¤ ßëææ·¤æÚU çâÚUæð´ ·¤è çæØæ°¡ 8 âð×è ÌÍæ 20 âð×è ãñ´Ð ©â·¤è çÌÚUÀUè ª¡¤¿æ§ü ÕÚUæÕÚU ãñÐ (A)
2.
7.
24 âð×è
(B)
21.5
a1b
(B)
(C)
15%
(D)
0.7
x22b25a(2x2a) ·¤æ ×êÜ ãñ?
2b2a
(C)
ab
(D)
a b
2pr 2
(C)
2 3 pr 3
(D)
4pr 2
(D)
22
(D)
°·¤ çæØæ
ßæÜð »æðÜð ·¤æ ¥æØÌÙ ãñ Ñ
4 3 pr 3
(B)
11
(B)
11 4
(C)
11 2
Îæð ßëæ °·¤ ÎêâÚðU ·¤æð C ÂÚU SÂàæü ·¤ÚUÌð ãñ´ ÌÍæ ©Ù ßëææð´ ·¤è AB °·¤ ©ÖØçÙD SÂàæü ÚðU¹æ ãñ, Ìæð ∠ ACB ÕÚUæÕÚU ãñ Ñ 608
(B)
458
(C)
308
(D)
908
ÁÕ °·¤ Õæ¡â ·¤è ÂÚUÀUæ§ü ·¤è ÜÕæ§ü ©â·¤è ª¡¤¿æ§ü ·ð¤ ÕÚUæÕÚU ãñ, Ìæð âêØü ·¤æ ©óæØÙ ·¤æðæ ãñ Ñ 308
(B)
458
(C)
608
(D)
908
°·¤ Õææ ¿èÙè ç×^è (China Clay) âð ÕÙð °·¤ àæ´·é¤, çÁâ·¤è ª¤¡¿æ§ü 24 âð×è ÌÍæ ¥æÏæÚU ·¤è çæØæ 6 âð×è ãñ, ·¤æð °·¤ »æðÜð ·ð¤ M¤Â ×ð´ ÕÎÜ ÎðÌæ ãñÐ »æðÜð ·¤è çæØæ ÕÚUæÕÚU ãñ Ñ (A)
10.
(D)
°·¤ ÚðU¹æ Áæð ßëæ ·¤æð Îæð çßçÖóæ çÕÎ饿ð´ ÂÚU ÂýçÌÀðUÎ ·¤ÚUÌè ãñ ·¤ãÜæÌè ãñ Ñ (A) ßëÌ ·¤æ ÃØæâ (B) °·¤ ÀðUη¤ (C) °·¤ SÂàæü ÚðU¹æ
(A) 9.
20 âð×è
4
(A) 8.
(C)
ØçÎ °·¤ â׿´ÌÚU æðæè ·¤æ n ßæ´ ÂÎ 3 1 n ãñ, Ìæð ©â·¤æ 8 ßæ´ ÂÎ ãñ Ñ (A)
6.
2/3
r çæØæ (A)
5.
16 âð×è
çÙÙ ×ð´ âð ·¤æñÙ âæ Îè »§ü çmææÌ â×è·¤ÚUæ
(A) 4.
(B)
çÙÙ ×ð´ âð ·¤æñÙ âè °·¤ æÅUÙæ ·¤è ÂýæçØ·¤Ìæ Ùãè´ ãæð â·¤Ìè ? (A)
3.
18 âð×è
24 âð×è
çÕÎé A (5, 12) ·¤è y¥ÿæ (A)
13
§·¤æ§ü
041/X/SA2/36/A1
(B)
12 âð×è
âð ÜÕßÌ ÎêÚUè ãñ Ñ (B) 5 §·¤æ§ü 7
(C)
6 âð×è
(C)
12
§·¤æ§ü
(D)
48 âð×è
(D)
17
§·¤æ§ü
¹ÇU-Õ ÂýàÙ â´Øæ 11 âð 18 Ì·¤ ÂýØð·¤ ÂýàÙ 2 ¥´·¤ ·¤æ ãñ Ñ 11.
â׿´ÌÚU æðæè 6, 13, 20, 27, ....... ·¤æ ·¤æñÙ âæ ÂÎ,
12.
Îæð ß»æðZ ·ð¤ ÿæðæÈ¤Üæð´ ·¤æ Øæð» 468 ×è2. ãñÐ
24
ßð´ ÂÎ âð 98 ¥çÏ·¤ ãñ?
ØçÎ ©Ù·ð¤ ÂçÚU×æÂæð ×ð´
24 ×è
·¤æ ¥ÌÚU ãñ, Ìæð ÎæðÙæð´ ß»æðZ ·¤è ÖéÁæ°
ææÌ ·¤èçÁ°Ð
13.
¥æ·ë¤çÌ
1 ×ð´,
Îæð ßëæ ÂÚUSÂÚU Õæs M¤Â âð
C ÂÚU
SÂàæü ·¤ÚUÌð ãñ´Ð
çâh ·¤èçÁ° ç·¤
C ÂÚU
¹è´¿è »Øè ©ÖØçÙD
SÂàæü ÚðU¹æ ¥Ø Îæð SÂàæü ÚðU¹æ¥æð´ ·¤æð â×çmÖæçÁÌ ·¤ÚUÌè ãñÐ
¥æ·ë¤çÌ-1
¥Íßæ
¥æ·ë¤çÌ 2 ×ð´, °·¤ ßëæ DABC ·¤è ÖéÁæ BC ·¤æð P ÂÚU SÂàæü ·¤ÚUÌæ ãñ ÌÍæ Õɸæ§ü »§ü ÖéÁæ¥æð´ AB ÌÍæ AC ·¤æð 1 ·ý¤×àæÑ Q ÌÍæ R ÂÚU SÂàæü ·¤ÚUÌæ ãñÐ Îàææü§° ç·¤ AQ5 (Perimeter of DABC) 2
¥æ·ë¤çÌ-2 14.
ØçÎ A(1, 2), B(4, y), C(x, 6) ÌÍæ D(3, 5) §âè ·ý¤× ×ð´ â׿´ÌÚU ¿ÌéÖéüÁ ABCD ·ð¤ àæèáü ãñ, Ìæð x ÌÍæ y ·ð¤ ×æÙ ææÌ ·¤èçÁ°Ð
15. 16.
çÕÎ饿ð´ (24, 5) ÌÍæ (3, 27) ·¤æð ç×ÜæÙð ßæÜð ÚðU¹æ¹´ÇU ·¤æð y¥ÿæ
緤⠥ÙéÂæÌ ×ð´ Õæ¡ÅUÌæ ãñ?
·¤æÇüU, çÁÙ ÂÚU 3, 4, 5, ......, 50 â´Øæ° ¥´ç·¤Ì ãñ,´ °·¤ Õâð ×ð´ ÚU¹·¤ÚU ¥ÀUè Âý·¤æÚU âð ç×Üæ° »° ãñд çȤÚU Õâð âð °·¤ ·¤æÇüU ØæÎëÀUØæ çÙ·¤æÜæ »Øæ ãñÐ ÂýæçØ·¤Ìæ ææÌ ·¤èçÁ° ç·¤ çÙ·¤æÜð »° ·¤æÇüU ÂÚU Áæð â´Øæ ãñ ßã Ñ (i) 7 âð çßÖæçÁÌ ãñ (ii) °·¤ Âêæü ß»ü ãñÐ
041/X/SA2/36/A1
8
17.
18.
°·¤ ç¹ÜæñÙæ ¥Ïü»æðÜð ÂÚU ¥ØæÚUæðçÂÌ àæ´·é¤ ·ð¤ ¥æ·¤æÚU ·¤æ ãñ çÁÙ·¤è ©ÖØçÙD çæØæ 7 âð×è ãñÐ ç¹ÜæñÙð ·¤è ·é¤Ü ª¡¤¿æ§ü 31 âð×è ãñÐ ç¹ÜæñÙð ·¤æ ·é¤Ü ÂëDèØ ÿæðæÈ¤Ü ææÌ ·¤èçÁ°Ð °·¤ ææðÇ¸æ °·¤ ß»æü·¤æÚU ææâ ·ð¤ ×ñÎæÙ, çÁâ·¤è ÖéÁæ 25 ×è ãñ, ·ð¤ °·¤ ·¤æðÙð ÂÚU 14 ×è ÜÕè ÚUSâè âð Õ´Ïæ ãñÐ ×ñÎæÙ ·ð¤ ©â Öæ» ·¤æ ÿæðæÈ¤Ü ææÌ ·¤èçÁ° Áãæ¡ ææðÇ¸æ ¿ÚU â·¤Ìæ ãñ
¹ÇU - â ÂýàÙ â´Øæ 19 âð 28 Ì·¤ ÂýØð·¤ ÂýàÙ 3 ¥´·¤ ·¤æ ãñÐ 19.
çÙÙ çmææÌè â×è·¤ÚUæ ·¤æð
22 p5 7
‹ËÁ¡∞
x ·ð¤ çܰ ãÜ ·¤èçÁ° Ñ
p2x21(p22q2)x2q250
20.
°·¤ â׿´ÌÚU æðæè ·¤æ ¿æñÍæ ÂÎ ©â·ð¤ ÂýÍ× ÂÎ ·¤æ ÌèÙ »éÙæ ãñ ÌÍæ ©â·¤æ 7 ßæ´ ÂÎ, ©â·ð¤ ÌèâÚðU ÂÎ ·ð¤ Îé»éÙð âð 1 ¥çÏ·¤ ãñÐ ÂãÜæ ÂÎ ÌÍæ âæßü-¥ÌÚU ææÌ ·¤èçÁ°Ð
21.
°·¤ DABC ·¤è ÚU¿Ùæ ·¤èçÁ° çÁâ×ð´ BC58 âð×è, ∠ ABC5458 ÌÍæ ∠ BAC51058 ¥Ø çæÖéÁ ·¤è ÚU¿Ùæ ·¤èçÁ° çÁâ·¤è ÖéÁæ°¡
22.
DABC
·¤è â´»Ì ÖéÁæ¥æð´ ·¤æ
2 3
ãñÐ
çȤÚU °·¤
»éÙæ ãñÐ
âð×è, BC510 âð×è ÌÍæ CA512 âð×è ãñ, ·ð¤ ¥Ì»üÌ °·¤ ßëæ ÕÙæØæ »Øæ ãñ Áñâæ ¥æ·ë¤çÌ 3 ×ð´ çÎ¹æØæ »Øæ ãñÐ AD, BE ÌÍæ CF ·¤è Ü´Õæ§üØæ¡ ææÌ ·¤èçÁ°Ð
°·¤
DABC,
çÁâ·¤è ÖéÁæ°¡
AB58
¥æ·ë¤çÌ 3 23.
ØçÎ °·¤ ÕðÜÙ ·ð¤ ¥æÏæÚU ·¤è çæØæ ¥æÏè ·¤ÚU Îè Áæ°, ÁÕç·¤ ©â·¤è ª¡¤¿æ§ü ßãè ÚUãð, Ìæð æÅðU ãé° ÕðÜÙ ·ð¤ ¥æØÌÙ ·¤æ ×êÜ ÕðÜÙ ·ð¤ ¥æØÌÙ âð ¥ÙéÂæÌ ææÌ ·¤èçÁ°Ð
24.
°·¤ ßëæ, çÁâ·¤è çæØæ 10 âð×è ãñ, ·ð¤ ©â çæØ-¹´ÇU ·¤æ ÿæðæÈ¤Ü ææÌ ·¤èçÁ° çÁâ·¤æ ·ð¤ÎýèØ ·¤æðæ 608 ãñÐ â´»Ì Îèæü çæØ-¹´ÇU ·¤æ ÿæðæÈ¤Ü Öè ææÌ ·¤èçÁ°Ð
¥Íßæ °·¤ ÏæÌé ·ð¤ ÆUæðâ »æðÜð, çÁâ·¤æ ÃØæâ 21 âð×è ãñ, ·¤æð çÂæÜæ·¤ÚU ÀUæðÅðU àæ´·é¤, ÕÙæ° »° ãñ, çÁÙ×ð´ âð ÂýØð·¤ ·¤æ ÃØæâ 3.5 âð×è ÌÍæ ª¡¤¿æ§ü 3 âð×è ãñÐ §â Âý·¤æÚU ÕÙð àæ´·é¤¥æð´ ·¤è â´Øæ ææÌ ·¤èçÁ°Ð 041/X/SA2/36/A1
9
25.
°·¤ Õãé-×´çÁÜð ÖßÙ, çÁâ·¤è ª¡¤¿æ§ü 30 ×è ãñ, ·ð¤ ª¤ÂÚU ¹Ç¸æ °·¤ ÃØçÌ °·¤ ×èÙæÚU ·ð¤ çàæ¹ÚU ·¤æ ©óæØÙ ·¤æðæ 608 ÌÍæ ×èÙæÚU ·ð¤ ÂæÎ ·¤æ ¥ßÙ×Ù ·¤æðæ 308 ÂæÌæ ãñÐ ÖßÙ ÌÍæ ×èÙæÚU ·ð¤ Õè¿ ÿæñçÌÁ ÎêÚUè ææÌ ·¤èçÁ°Ð
×èÙæÚU ·¤è ª¡¤¿æ§ü Öè ææÌ ·¤èçÁ°Ð
¥Íßæ
3000 ×è
·¤è ª¡¤¿æ§ü ÂÚU ©Ç¸Ìæ °·¤ ßæØéØæÙ ª¤ßæüÏÚU M¤Â âð °·¤ ¥Ø ßæØéØæÙ ·ð¤ ÆUè·¤ ª¤ÂÚU âð ©Ç¸ ÚUãæ ãñÐ ©â ÿææ, ÏÚUÌè ·ð¤ °·¤ ãè çÕÎé âð ÎæðÙæð´ ßæØéØæÙæð´ ·ð¤ ©óæØÙ ·¤æðæ ·ý¤×àæÑ 608 ÌÍæ 458 ãñÐ ÎæðÙæð´ ßæØéØæÙæð´ ·ð¤
Õè¿ ª¤ßæüÏÚU ÎêÚUè ææÌ ·¤èçÁ°Ð 26.
°·¤ Õâð ×ð´ 20 »ð´Îð´, çÁÙ ÂÚU 1, 2, 3, 4, ........20 ßæÜè â´Øæ°¡ çܹè ãñ, ÚU¹è ãñ´Ð Õâð ×ð´ âð °·¤ »ð´Î ØæÎëÀUØæ çÙ·¤æÜè »§ü ãñÐ ÂýæçØ·¤Ìæ ææÌ ·¤èçÁ° ç·¤ çÙ·¤æÜè »§ü »ð´Î ÂÚU
27.
(i)
°·¤ çßá× â´Øæ ãñ
(ii)
2 ¥Íßæ 3 âð çßÖÌ â´Øæ ãñ
(iii)
°·¤ ¥ÖæØ â´Øæ ãñ
(iv)
°ðâè â´Øæ ãñ Áæð 10 âð çßÖæçÁÌ Ùãè´ ãñ
°·¤ çæÖéÁ ABC ·¤è ÖéÁæ¥æð´ AB, BC ÌÍæ CA ·ð¤ ר çÕÎé ·ý¤×àæÑ D(2, 1), E(1, 0) ÌÍæ F(21, 3) ãñ´Ð çæÖéÁ ABC ·ð¤ àæèáæðZ ·ð¤ çÙÎðüàææ´·¤ ææÌ ·¤èçÁ°Ð
28.
çÕÎ饿ð´ A(21, 21), B(21, 4), C(5, 4) ÌÍæ D(5, 21) ·¤æð ç×ÜæÙð ÂÚU °·¤ ¥æØÌ ABCD ÕÙè ãñ´Ð P, Q, R ÌÍæ S ·ý¤×àæÑ AB, BC, CD ÌÍæ DA ·ð¤ ר çÕÎé ãñ´Ð Øæ ¿ÌéÖüéÁ PQRS °·¤ ß»ü ãñ, °·¤
¥æØÌ ãñ ¥Íßæ °·¤ â׿ÌéÖüéÁ ãñ? ¥ÂÙð ©æÚU ·¤æ ¥æñç¿Ø ÎèçÁ°Ð
¥Íßæ
çÕÎ饿ð´
A(2, 1) ÌÍæ B(5, 28) ·¤æð ç×ÜæÙð ßæÜð ÚðU¹æ¹´ÇU ·¤æð çÕÎ饿ð´ P ÌÍæ Q ÂÚU â×çæÖæçÁÌ ç·¤Øæ »Øæ
ãñ, Áãæ¡ P, A ·ð¤ Âæâ ãñ´Ð ØçÎ çÕÎé P, ÚðU¹æ 2x2y1k50
ÂÚU çSÍÌ ãñ, Ìæð
k
·¤æ ×æÙ ææÌ ·¤èçÁ°Ð
¹ÇU - Î ÂýàÙ â´Øæ 29 âð 34 Ì·¤ ÂýØð·¤ ÂýàÙ 4 ¥´·¤ ·¤æ ãñÐ 29.
·é¤ÀU çßlæçÍüØæð´ Ùð °·¤ ç·¤çÙ·¤ ·¤æ ¥æØæðÁÙ ç·¤ØæÐ ¹æÙð ·ð¤ çܰ ·é¤Ü 240 L¤. ·¤æ ÕÁÅU ÚU¹æ »ØæÐ Øæð´ç·¤ 4 çßlæÍèü ç·¤çÙ·¤ ÂÚU Ùãè´ Áæ â·ð¤ §âçܰ ÂýØð·¤ çßlæÍèü ·ð¤ çܰ ¹æÙð ·¤æ ×êËØ 5 L¤. Õɸ »ØæÐ ç·¤çÙ·¤ ÂÚU ç·¤ÌÙð çßlæÍèü »°?
¥Íßæ
ÚUææß Ùð °·¤ Îé·¤æÙ ·¤è
12 ßæçáü·¤
1,20,000
L¤. ×ð´ ¹ÚUèÎèÐ
©âÙð ¥æÏè ÚUæçàæ Ù·¤Î Îð Îè ÌÍæ àæðá ÚUæçàæ
ç·¤SÌæð´ ×ð´ ÎðÙð ·¤æ ßæØÎæ ç·¤ØæÐ
ØçÎ ØæÁ ·¤è ÎÚU
12% ßæçáü·¤
ØçÎ °·¤ â׿´ÌÚU æðæè ·ð¤ ÂýÍ×
p, q ÌÍæ r ÂÎæð´
·ð¤ Øæð» ·ý¤×æàæÑ
a b c (q 2 r) 1 (r 2 p) 1 (p 2 q ) 5 0 p q r 041/X/SA2/36/A1
10
a, b, c
ÂýØð·¤
ãñ, ÌÍæ ßã ÂýØð·¤ ç·¤SÌ ·ð¤
âæÍ, Õæ·¤è Õ¿è ÚUæçàæ ÂÚU ØæÁ Öè ÎðÌæ ãñ, Ìæð Îé·¤æÙ ·¤è ·é¤Ü ·¤è×Ì ææÌ ·¤èçÁ°Ð
30.
5000 L¤.
ãñ´, Ìæð Îàææü§° ç·¤
31.
40 ×è
ª¡¤¿è ×èÙæÚU ·ð¤ çàæ¹ÚU ÌÍæ ÂæÎ âð °·¤ Âý·¤æàæ SÌ´Ö ·ð¤ çàæ¹ÚU ·ð¤ ©óæØÙ ·¤æðæ ·ý¤×àæÑ
308 ÌÍæ 608 ãñ´Ð
Âý·¤æàæ SÌ´Ö ·¤è ª¡¤¿æ§ü ææÌ ·¤èçÁ°Ð ×èÙæÚU ·ð¤ ÂæÎ âð Âý·¤æàæ SÌ´Ö ·ð¤ çàæ¹ÚU ·¤è ÎêÚUè Öè ææÌ ·¤èçÁ°Ð 32.
°·¤ ÆUæðâ °·¤ ÕðÜÙ ·ð¤ ÎæðÙæð´ ¥æðÚU Ü»ð ¥Ïü»æðÜæð´ âð ÕÙæ ãñÐ ØçÎ ÆUæðâ ·¤è ·é¤Ü ܡտ§ü 100 âð×è ãñ ÌÍæ ÕðÜÙ ÌÍæ ¥Ïü»æðÜæ·¤æÚU çâÚUæð´ ·¤æ ÃØæâ 28 âð×è ãñ, Ìæð ÆUæðâ ·ð¤ ÂëD ·¤æð ÂæçÜàæ ·¤ÚUÙð ·¤æ ÃØØ 5 Âñ. ÂýçÌ ß»ü ×è ·¤è 22 ÎÚU âð ææÌ ·¤èçÁ°Ð p 5 7
∑§Ê ¬˝ÿʪ ∑§⁄UU
¥Íßæ ª¤ÂÚU âð ¹éÜæ °·¤ ÕÌüÙ, Áæð ç·¤ ÏæÌé ·¤è ¿æÎÚU âð ÕÙæ ãñ, àæ´·é¤ ·ð¤ çÀUóæ·¤ ·ð¤ ¥æ·¤æÚU ·¤æ ãñ çÁâ·¤è ª¡¤¿æ§ü
8 âð×è ãñ ÌÍæ çÁâ·ð¤ çÙ¿Üð ÌÍæ ª¤ÂÚUè ßëææ·¤æÚU çâÚUæð´ ·¤è çæØæ ·ý¤×àæÑ 4 âð×è ÌÍæ 10 âð×è ãñÐ ©â ÌðÜ ·¤æ ÃØØ, 50 L¤. ÂýçÌ ÜèÅUÚU, ·ð¤ Öæß âð ææÌ ·¤èçÁ° Áæð ÕÌüÙ ·¤æð ÂêÚUæ ÖÚU â·ð¤Ð ÂýØæð» ·¤è »§ü ÏæÌé ·¤æ ×êËØ 5 L¤. ÂýçÌ 100 ß»ü âð×è ·ð¤ Öæß âð ææÌ ·¤èçÁ°Ð (p53.14
33.
°·¤
10
20 âð×è
×è ÌÍæ »ãÚUæ§ü
22 p5 7
34.
¥æÌçÚU·¤ ÃØæâ ßæÜð Âæ§ü âð
OABC °·¤ çæØæ
2
3 ç·¤×è/æ´ÅUæ
·¤æ ÂýØæð» ·¤Úð´UÐ)
·¤è ÎÚU âð ÂæÙè °·¤ ÕðÜÙæ·¤æÚU Å´U·¤è, çÁâ·¤æ ÃØæâ
×è ãñ , ·ð ¤ ¥ÎÚU ÖÚUæ Áæ ÚUãæ ãñ Ð
ç·¤ÌÙð âר ×ð ´ ßã Å´ U ·¤è ÖÚU ÁæØð » è?
∑§Ê ¬˝ÿʪ ∑§⁄UU
â׿ÌéÖüéÁ ãñ çÁâ·ð¤ ÌèÙ àæèáü
10 âð×è
A, B, C °·¤
ßëæ ÂÚU çSÍÌ ãñ çÁâ·¤æ ·ð¤Îý
ãñ, Ìæð â׿ÌéÖüéÁ ·¤æ ÿæðæÈ¤Ü ææÌ ·¤èçÁ°Ð
-oOo-
041/X/SA2/36/A1
11
O
ãñÐ ØçÎ ßëæ ·¤è