JEE(Advanced)-2014 ANSWERS, HINTS & SOLUTIONS FULL TEST – II PAPER-1
Q.NO
ALL INDIA TEST SERIES
From Classroom/Integrated School Programs 7 in Top 20, 23 in Top 100, 54 in Top 300, 106 in Top 500 All India Ranks & 2314 Students from Classroom /Integrated School Programs & 3723 Students from All Programs have been Awarded a Rank in JEE (Advanced), 2013
FIITJEE
PHYSICS
CHEMISTRY
MATHEMATICS
1.
A
A
C
2.
C
A
D
3.
B
A
A
4.
C
A
B
5.
C
A
B
6.
A
A
C
7.
A, B, C, D
A, B, C, D
A, C, D
8.
A, B
A, C, D
A, C
9.
C, D
A, B, C
A, B
10.
B, C
A, D
A, D
11.
B
B
C
12.
B
A
B
13.
B
A
A
14.
C
C
A
15.
A
B
C
16.
B
C
D
17.
A
C
C
18.
A
B
B
19.
C
D
C
20.
D
C
D
21.
C
D
B
22.
D
B
D
23.
C
A
A
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
2 AITS-FT-II (Paper-1)-PCM(Sol)-JEE(Advanced)/14
Physics 2.
3.
4.
PART – I
(v 1cos)t = (v2cos)t = 30 3 1 1 (v 1sin)t gt 2 +h = (v 2sin)t gt 2 2 2 from (1) and (2) h = 60 m
. . . (1) . . . (2)
1 2 = tan g 2 2 u cos2 1 2 = tan g 1 tan2 2 2g 4 tan2 4 tan + 1 =0 If particle will not hit the target. (b2 4ac) < 0 4 16 4 1 <0 4 > 3 mv B2 At B, mg sin = r Using energy considerations 1 mv B2 = mgr(cos sin ) 2 From (1) and (2) mg sin = 2mg(cos sin ) 2cos = 3 sin
(, )
u 2g
Smooth
. . . (1)
A
. . . (2)
Here the position y on the screen will correspond to maxima. n D y d 30,000 when n = 1, 2, 3, 4, ………….. n
8.
a = kx 1 da 2kx tan 60 = 2k 3 k dx 2 x2 a 2 dv x2 v 2 x3 v C1 at x = 0, v = 3 m/s dx 2 2 6 9 C1 2 x3 v2 9 3
2
3 9
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
N
B
7.
hence a = 1.5 and v
u
vB
3 AITS-FT-II (Paper-1)-PCM(Sol)-JEE(Advanced)/14
2T cos h = 59.6 mm rg here 59.6 mm is greater than the protruding part hence water will rise in the capillary of insufficient height 25 mm. 2T Now, R 0.6 mm hrg
9.
Capillary height h
10.
10. Fluid particles passing through the bend are in circular motion. The centripetal acceleration is provided by the variation in pressure. In the section as shown P1A P2 A maC
maC
P2A
2 P1A
P1 P2 applying Bernoulli theorem at 1 and 2 1 1 i.e., P1 1v12 gh1 P2 v 22 gh2 2 2 1 1 2 2 P1 1v1 P2 v 2 as h1 h2 2 2 P1 P2
1
v1 v 2 15.
mAg sin = 5 10 sin 37 = 5 10
3 = 30 N 5
fmax AB (mC mB )gcos 48 N hence f = 30 N 16.
mC gsin 2 10
3 12N 5
fmax mc gcos 0.1 2 10
4 1.6 N 5
hence f = 1.6 N 17.
T
T fA fC mB gsin37 = 91.6 N
fC
fa
18.
mBg sin 37
Optical path difference between the beans arriving at P x ( 2 1 ) dsin for maxima ( 2 1 ) dsin n 1 n ( 2 1 ) d n sin1 2 1 40 sin
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
4 AITS-FT-II (Paper-1)-PCM(Sol)-JEE(Advanced)/14
19.
sin 1 n 1 2 1 1 40 or 20 n 60 Hence number of maxima = 60 – 20 = 40
20.
At C, phase difference 2 ( 2 1 ) = 80 Hence for maximum intensity will appear at C. Now for minimum intensity at C ( 1)t 2 t t 500 nm 2( 1)
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
5 AITS-FT-II (Paper-1)-PCM(Sol)-JEE(Advanced)/14
Chemistry
PART – II
3.
Neither N nor F contain d-orbitals. Further in N2F4 N—N bond is shorter than in N2H4 due to s-character (Bent’s Rule).
4.
Due to poor shielding effect of 3d electron the size of Br ion nearly same as that of Cl ion.
5. C8 H7OCl
N 2O 287 m
Molar mass of C8H7OCl = 8 12 + 7 1 + 16 + 35.5 = 154.5 g Molar mass of N2O = 2 14 + 16 = 44g According to Graham’s Law of diffusion rN2 O MC8H7OCl 154.5 3.5 1.87 : 1 rC8H7 OCl MN2O 44 1.87 th 287 = 187 row from N2O side 2.87 1.0 th dC8H7OCl 287 = 100 row from weeping gas side 2.87 Therefore, the spectator from the side of N2O in the 187th row will be laughing and weeping simultaneously Alternatively, the spectator from the side of weeping gas in 100th row will laugh and weep. dN2O
6.
OH attacks at the more reactive (C=O) group, (containing more EWG or less EDG) Et is more EDG than Me (due to +I effect here no H.C.). Therefore OH attack (C=O) with (Me) group. OH
Me
Me
Me O
O C
OH
O
C
H O
OH
3
OH
OH
Et
10.
O
O
Et
Et
NH4NO3 aq N2 O H2 O NH2 OH HNO2 N2 O 2H2O Hence, (A) and (D) are the correct answers.
13.
Velocity = 2.18 106
14.
(i)
Z n
EBrO M / 5 3
(ii) EBrO M / 6 3
ratio = 6/5
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
6 AITS-FT-II (Paper-1)-PCM(Sol)-JEE(Advanced)/14
17.
Me
Me HNO2
Me H2N
N2
Me
2 C
N
OH
C
bond
2 4 breaks Ring exp ansion
+
N
OH
Me
Me 1 OH
3
A
Me
1
Me
2
Me
Me 4 O
3 H
Me O
Me
RCO3H Me Baeyer Villiger
H
O
i LiAlH4 ii H2O Me
OH OH
O
(B)
(C) (Cyclic ester)
(D)
(Lactone)
18.
2KIO3
Pb NO3 2 Pb IO3 2 2KNO3
0.815 12
350.15 5.25
1 mol of Pb(NO3) reacts with 2 mol of KIO3 5.25 m mol of Pb(NO3)2 reacts = 2 5.25 = 10.5 m mol m mol of KIO3 left = 12 – 10.5 = 1.5 Hence Pb(NO3)2 is the limiting reagent 19.
IO3 1.5 m mol 0.03 M 15 35 mL
20.
Due to common ion IO3
left in the solution the solubility Pb IO
S=
K sp
0.03 2
3 2
decreases.
2.7 1013 104 9
= 0.30 10–9 = 3.0 10–10 21.
pH range of all these indicators lies in between 2-12. Hence, all are suitable indicators.
22.
Since curve is given for strong acid and strong base hence, pH at the end point is 7.
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
7 AITS-FT-II (Paper-1)-PCM(Sol)-JEE(Advanced)/14
Mathematics 1.
PART – III
y = ax2 + bx + c, vertex is (4, 2) 4=–
b 4ac b2 b2 , b = –8a, = 2 + 16a 2 c=2+ 2a 4a 4a 2
2
3
Now = abc = –8a (2 + 16a) = –16(a + 8a )
d 2 = –16(2a + 24a ) < 0 a [1, 3] da
|max = –144, |min = –3600 Difference = 3456 2.
x – [x] = {x} x – [x + 1] = {x} – 1 4
f x dx
2
= 6.
1 1. 1 = 3 2
1
-2
x x
3.
lim
x 0
x sin x 0
t 2dt
at
= lim
x 0
-1
1
2
3
4
t 2dt
at x2 = lim x sin x x 0 a x 1 cos x 0
x2 2 = = 1 (given) x0 x 2 a 2 sin . ax 2
= lim
a=4 4.
(3)6 = 729 < 900 and (3)7 = 2187 > 900
5.
Now by property of triangles 1 a RQ = BC = 2 2 c b Similarly PQ = , PR = 2 2 abc Area of ABC = 4R abc That of PQR = 2 2 2 4R ' Also area of ABC = 4 (area of PQR) abc abc R 2 32R' 16R R' 1
A
R
B
Q
P
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
C
8 AITS-FT-II (Paper-1)-PCM(Sol)-JEE(Advanced)/14
6.
Clearly 2 solutions
B y = 2x –3
y =logx 3
7.
f(x) = cos (|x| + [x]) f(0) =1, f(0 – 0) = cos (–1) = –1
1 2
1 1 0 cos = 0 2 2
f(1/2) = cos = 0, f
1 f 0 cos 0 2 2 for x (0, 1) f(x) = cos x for x (–1, 0) f(x) = cos (–x – 1) = –cos x 8.
OP = 5 2 sec
P1
OP1 = 5 2 cosec PP1P2 =
100 sin 2
O
( | PP1P2)min = 100 = /4 OP =10 P = (10, 0), (–10, 0) 9.
P2
Let P(2, –1) goes 2 units along x + y = 1 upto A and 5 units along x – 2y = 4 up to B Slope of PA = –1 = tan 135°, slope of PB = sin =
1 5
, cos =
1 = tan 2
2 5
A (x1 + r cos 135°, y1 = r sin 135°) = (2 + 2x B (x1 + r cos , y1 + r sin ) = (2 + 5
10.
P
2 5
, –1 +
1 2 5 5
, –1 + 2
1 2
) = (2 – 2, 2 – 1)
) = (25 + 2, 5 – 1)
1 b Slope of tangent = a 1 a b
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
9 AITS-FT-II (Paper-1)-PCM(Sol)-JEE(Advanced)/14
dy dy dt dx dx dt b So, 0 a 12.
4 t2 1 < 0 4 t2
b >0 a
A 1 P A B 1 x P 2 1 P B x B 2 x +x–10
5 1 1 5 or x 2 2 x is positive 5 1 x 2 x
2
13.
a2 b2 c 2 d2 a b c d 4 4
8 e 2 16 e2 16 4 2 64 + e – 16e 64 – 4e2 5e2 – 16e 0 0e
16 5
14.
Let A(a, P(a)), B(b, P(b)), then slope of AB = P(a) = P(b) from LMVT c (a, b) Where P(c) = slope of AB
15.
Given QT = QA = 1 Let PQ = x, then PT x 2 1 Then TQP and APO are similar triangles x 1 Then OT OA x2 1 2(x 1) 1 x x2 1 8 2 x 1 5 x= 3
P T
Q
O
A
16.
From above, OA = 2 and AQ = 1 coordinate of Q (2, 1) equation is (x – 2)2 + (y – 1)2 = 1
17.
ORQ is a right angled triangle. Then O and R are the extremities of the diameter then the coordinates of R(2 3, 2) Equation of circle (x 0)(x 2 3) (y 0)(y 2) 0 x 2 y2 2 3x 2y 0
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com
10 AITS-FT-II (Paper-1)-PCM(Sol)-JEE(Advanced)/14
18.
Perpendicular tangents intersect on the director circle of hyperbola and director circle of rectangular hyperbola is a point circle. Hence centre of hyperbola is (1, 1) and equation of asymptotes are (x – 1) = 0 and y – 1 = 0
19.
Equation of hyperbola is xy – x – y + 1 + = 0 It passes through (3, 2) hence = –2 Equation of hyperbola is xy = x + y + 1
20.
From the centre of hyperbola we can draw two real normals to the rectangular hyperbola
21.
Taking point (r cos , r sin ), we get 3 2 r2 = 3 2 sin 2 4 rmax =
3 2 3 2
, rmin = 1
Max exist when 2
22.
Required equation is
4 2 8
x2 3 2
y2 1
3 2
23.
Centre of circle be origin and its radius is the length of semi minor axis Hence area =
FIITJEE Ltd., FIITJEE House, 29-A, Kalu Sarai, Sarvapriya Vihar, New Delhi -110016, Ph 46106000, 26569493, Fax 26513942 website: www.fiitjee.com