L’autore del formulario non assicura niente sulla validità e sul contenuto dello stesso, pertanto declina ogni responsabili re sponsabilità. tà. USARE A PROPRIO RISCHIO E PERICOLO Limiti notevoli lim 1 +
x →∞
x
1
=e
x
lim 1 +
x →∞
lim
x →+∞
lim
(1 + x )
lim
= +∞
x a
1
lim(1 − x) x =
x →0
x →+∞
a
−1
x
x → 0
e x
x →∞
lim
ln x x a
=0
+
lim
( a > 0)
lim
lim
x →+∞
x →1
a x
lim
x n
x →−∞
lim
n →+∞
lim
n →+∞
n
lim
x → 0
n!
( a > 0, a ≠ 1)
lim
lim
=
x
=1
x
(1 + x )
a
1 e
ln (1 + x )
x → 0
= ln a ( a > 0 )
−1
=1
ax lim x a e− x = −0
x → 0
1
=1
lim(1 + x ) = e x
x →+∞
x →0
−n
x
arcsin x
lim
x →−∞
log a x
x p ∀0 < a < 1∈ , ∀p ∈ , ∀n > 0 ∈
lim
x →+∞
lim
n →+∞
=0 =1
=1
n! an
lim
n →+∞
lim
x → 0
lim
x → 0
lim
x → 0
log a x x p
x →+∞
= +∞
2π n
lim x p log a x = 0
= +∞
x →0
= +∞
lim x p log a x = 0
x →+∞
lim a x x p = 0
n p n!
ne
x
x →−∞
x
, ∀p ∈ , ∀n > 0 ∈
lim a x x n = +∞
=∞
1 − cos x
x →0
1
lim 1 −
1
e
Limiti goniometrici sin x =1 lim x →0 x lim
x − 1
x
nt
1
= +∞
x p
x
ln x
=e
ln a
a x − 1
x → 0
nx
t
=
x
=a
∀a > 1 ∈
a x
lg a (1 + x )
x →0
=1
x
x → 0
x
lim 1 +
x →0+
x → 0
lim
=e
t
lim xa ln x= 0− ( a> 0 )
1
lim (1 + ax ) x = ea e x − 1
x
t
sin ax
=
bx
1 − cos x x 2
arcsin ax bx
a!
=
lim
=0
lim
n →+∞
x →0
1
n!
= +∞
nn ( 2n ) !!
n →+∞
lim
b =
= +∞
x n
a
x →0
lim
tan x x
=1
x − sin x
2 a
x → 0
b
x → 0
lim
x3
arg tan x x
=
lim x → 0
1 6
=1
=1
( 2n − 1)!! 2π n
lim
tan ax
=
bx
a b
x − arg tan x
x → 0
lim
x → 0
x 3
arctan ax bx
=
1 3
=
a b
1 www.groups.google.com/group/fisici_ct
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Tavola delle derivate fondamentali fondamentali k
x n
0
n
x
1
x
x
1
x
n
n x a x
1
arccot x
1 − x 1
−
2
cos x
= 1 + tan x
e f ( x)
1
−
cot x
1 1 − x 1
ln x
2
n
[ f ( x)]
e f ( x) ⋅ f ' ( x )
Derivata di funzione esponenziale
Derivata Funzione inversa
=
2
[ g ( x )]
D [ f ( g ( x))] = g' ( f ( x)) ⋅ f ' ( x)
−1
1 1 + x 2 n −1
n[ f ( x)]
f ' ( x) ⋅ g( x) + f ( x) ⋅ g' ( x)
g ( x)
D[ f ( x)]
2
= −(1 + cot x)
ln f ( x)
D [ f ( x) ⋅ g ( x)] = f ' ( x) ⋅ g ( x) + f ( x) ⋅ g ' ( x)
Derivata di funzione composta
cos x
x
Derivata di un prodotto
D
x
arctan x
D [ k ⋅ f ( x) + h ⋅ g ( x)] = k ⋅ f ' ( x ) + h ⋅ g' ( x)
f ( x)
2
sin x
Regole di derivazi der ivazione one Somma di funzioni
Derivata di un rapporto
1
sin x
−
arccos x
2 x
ln x
2
2
1 + x 2
a f ( x) ln a ⋅ f ' ( x)
x2
ex
1
tan x
1
x
1 1 log a e = x xln a
e x
− sin x
arcsin x
a f ( x)
n −1
1
−
1
x
1
log a x
a x ln a
cos x
nnx−1
x
g ( x)
= [ f ( x)]
D f ( y) =
g (x )
⋅ ln f ( x) +
1 f ( x )
x= f − ( y) 1
g ( x) ⋅ f ' ( x ) f ( x)
f ' ( x ) f ( x)
'
f ( x)
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Studio di funzione. f : I → f è continua in I , f è derivabile in I
1°
Dominio della funzione e studio della continuità. continuità. Se esistono punti punti di discontinuità dichiararne dichiararne il tipo. Le principali limitazioni sono: f ( x ) a > 0, a ≠ 1, x > 0 log a x f ( x) f ( x) ≥ 0 g ( x) ≠ 0 g ( x) y= arcsin( f( x)) y= arccos( f( x)) )) −1 ≤ f( x) ≤ 1 −1 ≤ f( x) ≤ 1 f ( x) g ( x ) f ( x) > 0
2° 3°
Eventuali simmetrie della funzione, funzione, funzione funzione pari, pari, dispari, dispari, periodicità periodicità (sin,cos). Calcolo dei limiti della funzione per x → c dove c sono i punti di discontinui d iscontinuità tà di f c ∈ DA \ A (A = dominio di F) Dove possibile calcolare il segno della funzione f(x)>0 e i punti di zero Calcolo della derivata derivata prima e studio della della monotonia, trovare, se esistono, i punti di estremi estremi relativi, cioè:
4° 5°
f ' ( x) ≥ 0, f ' ( x) > 0
Funzione non decrescente, funzione crescente.
f ' ( x) ≤ 0, f ' ( x) < 0
Funzione non crescente, funzione decrescente. Punti di estremi relativi, (vedi derivata seconda)
f ' ( x) = 0
Punto angoloso
f ' ( x− ) ≠ f ' ( x+ )
6°
Calcolo della derivata derivat a seconda e studio della convessità convessit à e punti di flesso, cioè: f '' ( x) ≥ 0, f '' ( x) > 0
La f è convessa, strettamente convessa
f '' ( x) ≤ 0, f '' ( x) < 0
La f è concava, strettamente concava Punto di flesso
f '' ( x) = 0
7°
Ricerca degli asintoti: lim f ( x ) = ±∞
Asintoto verticale. Retta x = x0
lim f ( x) = y0
Asintoto orizzontale Retta y = y0
x → x0
x →±∞
lim f ( x ) = ±∞
x →±∞
∃ lim
f ( x)
=m
Asintoto obliquo. Retta y = mx+ q
x ∃ lim f ( x) − xm = q x →±∞
x →±∞
8°
Calcolo di alcuni valori della funzione, funzione, e di alcune rette tangenti tangenti alla f(x), utili per tracciare tracciare il grafico. La retta t angente angente del punto x0 è data da:
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Integrali indefiniti immediati xα +1
α
x dx=
α + 1
1
(α ≠ 1) + C
x
cos xdx= si n x+ C 1 cos 2 x 1 1 − x2
x
a dx =
1
dx = tan x + C
sin 2 x 1
dx = arcsin x + C
1 − x2
sin xdx= − cos x+ C
dx = ln x + C a x
ln a
x
+C
[
f( x)] ⋅ f ( x) dx= a
'
f ( x )
[ f ( x)]
α + 1
'
⋅ f ( x ) dx =
a f ( x )
ln a
1
dx = − cot x + C
1 + x 2
f ' ( x )
+ C(α ≠ 1)
f ( x)
dx = ln f ( x) + C
sin f ( x) ⋅ f ' ( x) dx = − cos f ( x) + C
+C
f ' ( x)
cos f ( x) ⋅ f ' ( x) dx = sin f ( x) + C
cos 2 f ( x) f ' ( x )
1 − f ( x)
2
dx = arctan x + C
dx = − arccos x + C
α +1
α
x
e dx = e + C
f ' ( x)
dx = arcsin f ( x) + C
1 + f ( x)
2
dx = tan f ( x) + C
dx = arctan f ( x ) + C
Metodi di integrazione Per sostituzione sostituzione Formula Generale:
f ( x) dx =
'
f ( x( t)) x ( t) dt
t =t ( x )
Dove t ( x) è la funzion funzionee inversa inversa di x( t ) Si pone t = f ( x) e si trova la x = f −1 ( t) con dx = D[ f −1 (t ) ]
Per Parti Formula Generale:
'
'
f ( x) g ( x) dx = f ( x) g ( x) − g ( x ) f ( x)dx
Dato un integral integralee si cerca cerca una f ( x) di cui e facile facile fare fare l’integrale l’integrale e una g ( x) dove applicare la derivata
Razionali fratte Calcolare l’integrale del tipo
P( x) Q( x )
dx dove dove il grado del polinomi polinomio o P( x) deve essere minore del
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Integrazione funzioni irrazionali R ,xn
n
ax + b cx + d
(
ax + b cx + d
= t e si ottiene: x =
tnd − b a − t nc
e dx =
ad − bc
(a − t c) n
2
dt
)
ax2 + bx+ c dx si distinguono due casi
R x,
a > 0 si pone:
dx =
dxsi pone
2
ax + bx + c =
2bt − 2 at 2 − 2 a c (b − 2 at )2
dt
a ( x + t) e si ottiene : x =
t2 − c b − 2 at
e
2 a < 0 dette α e β le radici dell’equazione ax + bx + c si pone :
a ( x − α )( x − β ) = ( x − α )t
con t variabile positiva se α < β negativa in caso contrario, quindi si ottiene: o ttiene: x
a β − α t 2 a − t 2
e dx =
2a ( β − α )t 2 2
( a − t )
Integrale Binomio m
n
x ( a+ bx )
p
su distinguono tre casi:
r p intero: si pone x = t dove r è il m.c.m. di m e n m +1 ∀x intero: si pone a + bx n = t s dove s è il denominatore di p ( p = ) n s
p +
m +1 n
intero: si pone
a + bx n x n
s
= t dove s è il denominatore di p ( p =
∀x
s
)
Integrazione funzioni trascendenti cos x) dx si pone: R( sin x, co 2tan
x
1 − tan 2
x
2t 1 − t 2 2 2 tan = t e ricordando che sin x = e cos x = si ottiene = = 2 2 x x 2 1 1 + + t t 1 + tan 2 1 + tan 2 2 2 2 x = 2arctan x e dx = 1 + t 2 x
R( sin
2
x, cos
2
x, tan x) dx si pone: 2
tan x = t e ricordando che sin x = 1
tan 2 x 1 + tan 2 x
=
t 2
1 + t 2
e cos2 x =
1 1 + t an 2 x
=
1 1 + t 2
si ottiene:
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
1 e x = t e si ottiene : x = ln t e dx = dt t
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Integrali calcolati: 1 sin ax D[ax ] ⋅ cos α x ⋅ dx = + C cos α x ⋅ dx = a a 1 cos ax D[ ax]⋅ sin α x⋅ dx= − + C sin α x⋅ dx= a a −1 ⋅ D sin x [cos ]x x − 1⋅ x − ln cos + x ⋅ d= ⋅ d= tan ⋅x d=x cos x cos x D[sin x] cos x ⋅ dx = ⋅ dx = ln sin x+ C cot ⋅x dx= sin x sin x sin xcos x⋅ dx= sin sin xcos x⋅ dx= sin
α
D[ln x]
1
dx = xln x
arctan x 1 + x 2
α
2
ln x
xD [sin x] ⋅ dx= α
1
= ln ln x + C
2
2 xe xdx=
2
dx = 4
2 1+ x
2
x
dx = 1 + 2x
1+ x dx = 1 − x
1
dx = 4
sinα +1 x
α + 1
cos 2 x 4
+ C(*) sisi n 2
x = 2 si sin xcos x
+ C
cosα +1 x
α + 1
+ C
2
1
+ C
sin 2 x⋅ dx= −
2
arctan 2 x
D[ x2 ] e xdx=
2
2 x
1
2 1
xD [cos ]x⋅ dx= −
dx = D[arctan x] ⋅ arctan x =
xe xdx=
1
2
xsin x⋅ dx= −1 co cos
cos
1 + x
xD [sin x] ⋅ dx=
sin 2 x
2 sin xco c os x(*) ⋅ dx=
xcos x⋅ dx= sin
α
x
1
1
C
D [ x2 ]
2 1 + ( x 2 )
2 1 2
dx = 2
+C
2
e x+ C
1 2
2
arctan x + C
2
2 x+ 1 − 1 x+ 1 1 1 dx = dx − dx = 1dx − dx = x − arct an x + C 2 2 2 1+ x 1+ x 1+ x 1 + 2x
1+ x dx = 1− x D[1 − x 2 ]
1+ x 1+ x dx = 1− x 1+ x
1+ x 1− x 2
2
dx =
1 1− x
2
dx +
x
1− x
2
dx =
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
x cos 2 sin 2 +
sin 2
x dx =
cos 2
x d x d x dx = = + 2 2 2 2 2 2 2 2 sin x⋅ cos x sin x⋅ cos x sin x⋅ cos x sin x⋅ cos x 1 1 + d x dx = − cot x + tan x + C cos 2 x sin 2 x
1
x
3 x+ 1 3 x 1 3 2 x 1 3 [ 2x] 1 D dx = dx + dx = dx + dx = dx + dx = 2 2 2 2 2 2 2 1+ x 1+ x 1+ x 2 1+ x 1+ x 2 1+ x 1+ x 3 2 ln(1 + x ) + arctan x+ C 2 sin 2 x 1 − cos 2 x 1 2 d x d x d− x 1 d= x tan − x + x C tan xdx= = = cos 2 x cos 2 x cos 2 x e x D[e x] 1 1 + e x− e x 1+ e x x dx x = dx = dx x − dx x = 1dx − d x = x − ln(1 + e ) + C x x 1+ e 1+ e 1+ e 1+ e 1+ e x 1 D x 1 1 1 1 1 1 a a a r c t a n = = = = + C (∀a > 0 ) d x d x d x d x 2 2 2 a 2 + x2 a2 x a a a a x x 1+ 2 1+ 1+ a a a 1 2
x − a
2
x −
1 2
a +x
2
D x+
dx =
( a)
2
dx =
2
x+
1
( x − a )( x + a )
2
a + x 2
x+ a + x
2
1
a2 + x2 2
2
a + x
2
a +x
a2 + x2
D x+ x+
1
dx =
2
2
dx =
a2 − x2
dx =
2
a + x 2
B
+
(x − a) ( x + a)
2
x+
a +x
2
1 x+
2
a +x
2
dx l'integrazione razionali
fratte
dx =
2
dx = ln( x + a + x ) + C
= 1+
2 x 2
2 a +x
=
2
x+
2
1 a 1−
x2 2
2
a + x a2 + x2
1 1
A
dx =
Trovare A e B con
D
a
dx =
1−
x
2
dx =
1−
x a x
2
dx = arcsin
x a
+C
(∀a > 0 )
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
2
dx 2
x(1 + x )
ln
− x ln
=
(1 +
1+ x − x 2
2
x(1 + x ) 2
)x = ln
1+ x
dx =
2
x (1 + x 2 )
x
+ 2
(1 + x )
C
dx −
x
2 2
x (1 + x )
dx = ln x −
1
2 x 2
2 (1 + x )
dx = ln x −
1 2
ln(1 + x 2 ) =
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
dx
=
x − x
ln x x
dx
=
x 1 − x
2
x1 −
dx = ln xD [ ln x ] dx =
dx
dx = x x 2 sin cos 2 2
=
sin x
log tan dx
x
dx
=
sin x +
mx + n
dx = px+ q 2
1
( )x
π
p p( px+ q) 2
2
x a − x + (−1)
x
+
π
2
dx =
2
m p
1
n
dx = ln xD [ ln x ] dx =
2
2
2
ln
n +1
2
a − x dx =
1 2
2
2
2
2
a + x dx = x a + x −
dx−
2
a −x
1
2
2
2
x
2
x+ a
p
x+
np − mq 2
p
2
2 a2 − x2
2
dx = x a − x +
2
x a
2
2
2
2
2
− a
2
2
x + a −a 2
a −x
2
2
2
dx =
1
2
a − x dx− a
dx da cui si ricava 2 2 a −x x 1 dx = arcsin + C + C si ha: 2 2 a a −x
dx e ricordando che +C +C
2 x
2
dx = x a + x − x
2
2 a +x
2
2
2
2
dx= x a + x
2
2
2
dx = x a + x −
x2 + a2 − a2 2
a +x
2
dx
+ ln px + q + C 2
− 2 x
2
dx= x a − x −
2
a +x 2
px+ q
p
a
x a − x − a arcsin 2
m
=
2
2
2
dx
dx = x a − x − x
2
a −x
np − mq
2
a −x
x a+ x
x
dx +
2
( −1) x − a
2
2
( )x
Vedi integrale sopra.
4
x
2
a − x d x =x a − x − a
2
= arcsin x + C
2
2
2
ln n x
2
x+C n +1 x x x D dx dx D D tan dx dx dx 2 2 2 = = = = x x 2 x x 2 x x sin 2 tan cos tan cos tan x x 2 2 2 2 2 2 2 cos cos x 2 2 cos 2
2
a −x
2
1−
ln x + C -
a − x dx = x a − x −
2
2
2
2
= ln tan
m np − mq
2
2
x dx
+ C
2
cos x
D
dx
2
a + x dx+ a
1
2
dx =
dx da cui si ricava
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Integrali calcolati con formula di riduzione o ricorren r icorrente te 2
x
x
dx = n
+
2
1
x
dx da cui n− n− 2( n− 1)(1 + x2 ) 1 2( n− 1) (1 (1 + x2 ) 1 1 1 x x + (1 − I n −1I+ ... − ) n = n −1I = 2 n −1 2 n −1 2( n − 1)(1 + x ) 2(n − 1) 2(n − 1)(1 + x ) 2(n − 1) 2n − 3 x + I n = I n −1 n− 2( n − 1)(1 + x 2 ) 1 2(n − 1)
(1 + x2 )
n
In =
x
x e dx per n=1 si ha: x
x
xe dx = xxee − n
In = n
x
x
x
x
e dx= xe − e + C Per n>1 abbiamo: n
n −1 x
x
x e dx = x e − ( n − 1) x
=I sin
n
I n = −
sin n −1 xcos x
=I cos
+
n− 1
n n
n
x
dx= x+ C, in caso di n dispari:
I= sin
1
1
xdx= − cos x+ C
I n − 2
xcon dx n intero non negativo:
In caso di n pari: 0I = cos I n =
n
e dx = x e − ( n − 1) In − 1
xcon dx n intero non negativo:
0 In caso di n pari: 0I = sin xdx=
n
I e quindi:
n −1
cos n −1 xsin x n
+
n− 1 n
0
xdx=
dx= x+ C, in caso di n dispari:
1
I= cos
1
xdx= sin x+ C
I n −2
Integrali Generalizzati Criterio di integrabilità. Sia f ( x ) una funzione definita dell’intervallo [ a, b[ con b un punto punto di infinito, se esiste un numero reale α con 0 < α < 1 tale che il limite lim
x →b −
f ( x)
1 x − b
= l esiste ed è finito, allora la funzione
α
f ( x) e’ assolutamente integrabile, se α ≥ 1 la funzione non è integrabile.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trigonometria – Formule di addizione e sottrazione
cos 2 + sin 2 = 1
sin ( x± y) = sin xcos y± sin ycos x
tan ( x± y) =
tan x ± tan y 1 ta t an x ta tan y
x, y≠
π 2
cos ( x
y) = cos xcos y ± sin xcos y
+ kπ
Trigonometria – Formule di duplicazione sin 2 x= 2 sin xcos x cos 2 x= cos 2 x− sin 2 x
Trigonometria – Formule di bisezione 1 − cos 2 x 1 + cos 2 x sin 2 x = cos2 x = 2 2 Trigonometria – Formule di prostaferesi pro staferesi x+ y x− y sin x + sin y = 2 sin cos 2 2 cos x + cos y = 2 cos
x+ y
2
cos
x− y
2
2 tan tan x
tan tan 2 x =
tan
2
1 − tan 2 x
1 − cos 2 x
= x
1 + cos 2 x
sin x − sin y = 2 cos cos x − cos y = −2 sin
x+ y
2
sin
x+ y
2
Trigonometria – Formule parametriche 2
sin x =
tan 2 x
1 + tan 2 x x 2tan 2 sin x = x 1 + tan 2 2
cos2 x =
1 1 + tan 2 x
1 − tan 2 cos x = 1 + tan
∀ ≠ x
x
2 x 2 2
sin
π 2
x− y
2 x− y
2
+
π k
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trigonometria – Angoli Gradi 0° 15°
Radianti 0
π
sin 0
Cos 1
6− 2
6+ 2
4
12
π
18° 22°30'
π
1
6
2
π
45°
4
π
°
60
3 °
67 30 75°
'
3 8 5
π
12
π
90°
π
120°
2 2
π
4 2+ 2
2− 2 2
8 30°
10 + 2 5
4
π
2 2
;
2− 3
2+ 3
1−
2 5
5+2 5
5
2 −1
2 +1
3
3
2
3 2 1 2
3 2 2+ 2 2
6+ 2
2 2
;
1
3 1
3
2 2− 2 2
6− 2 4
1
0
−
1
1
2
1
4
3
1/tan Non esiste
4
5 −1
10
tan 0
3 3
2 +1
2 −1
2+ 3
2− 3
Non esiste
0
− 3
3
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Formule Varie 1 + nx ≤ (1 + x ) n
1 + 2 + 3 + ... + n =
xy = x y n
n
n −1
+a
a + a2 − b
n−2
n−2
b + ... + ab
a − a2 − b
±
2
2 3
a − b = ( a − b ) ( a + b) ( a + b 4
4
2
3
(a + b)
3
2
2
2
2
3
= a + 3ba + 3b a + b
12 ax + bx + c = a ( x − x1 )( x − x2 )
n −1
+b
x1 + x2 = −
b a
3
2
)
c
; x1 − x2 =
4
(
4
2
)
a
si ha: x2 +
3
2
3
2
2
= a − 3ba + 3b a − b
2
3
z
=
)(a
2
−
2 ab + b
2
z = x+ iy
z=
2
2
2
ρ a + b ; cos = 2
x + y
α
=
αβ
x 1 x
π 4
= y
2
)
( n + 1) ! = n !(n + 1)
3
a + ib = ρ( cos ϑ+ i sin ϑ)
z 1 ; = −i; zz = z z i
3 1
2
( n ) ! = n(n − 1)!
1
−
2
= y −2
a + b = ( a + b ) ( a − ab + b
a + b = a + 2 ab + b 3
Posto: x +
π
2 a − b è un quadrato perfetto
solo se
( a − b)
=
2
a − b = ( a − b ) ( a + ab + b
a2 − b2 = ( a + b ) ( a − b )
π
a < b ⇔ a n < bn ; ( a, b > 0)
x − y ≤ x± y ≤ x + y
a − b = ( a − b)(a
a± b =
n( n + 1)
ϑ =
a a 2 + b2
ρ ( cos ϑ + i sin ϑ ) ; β =
; sin
ϑ =
b
a 2 + b2
= ρ ′ ( cosϑ ′ + i sin ϑ ′)
ρρ ′ cos (ϑ + ϑ ′ ) + i sin (ϑ + ϑ ′)
2
)
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Disequazioni Disequazioni irrazionali
A( x) ≥ B( x)
A( x) ≥ B2 ( x)
A( x ) ≥ 0
B ( x) ≥ 0
B ( x ) < 0
A( x) ≤ B2 ( x) A( x) ≤ B( x)
A( x) ≥ 0 B ( x) ≥ 0 A( x) = B2 ( x)
A( x) = B( x)
B ( x) ≥ 0
Formule per i quadrati 2
2
x + px+ q= x + px−
p2
+
p2
4
4
p2
p2
+ q=
x+
p
2
−
p2 − 4 q
2
4
p, q∈ , p2 + 4 q > 0 2
2
x + px+ q= x + px−
+
4
4
+ q=
x+
p
2
+
4 q− p2
2
4
p, q∈ , p2 − 4 q < 0 2
x + px+ q=
x+
p
2
2
p, q∈ , p2 − 4 q = 0 2
2
2
2
4
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
a + 2kπ < x < π − a + 2 kπ
cos x < l; ( l ≤ −1) cos x < l; ( l > 1)
é verificata per ogni x
cos x < l; ( l = 1)
é verificata per ogni x escluso 2k π π
cos x < l; ( l < 1)
La cos x è decrescente dell’intervallo ]0, π [ e la soluzione è:
Impossibile
a + 2kπ < x < 2π − a + 2 kπ
cos x > l; ( l ≥ 1)
Impossibile
cos x > l; ( l < −1)
é verificata per ogni x
cos x > l; ( l − 1)
é verificata per ogni x escluso π + 2k π
cos x > l; ( l < 1)
La cos x è decrescente dell’intervallo ]0, π [ e la soluzione è: −a + 2k π < x < a + 2k π
tan x < l
La tan x è crescente dell’intervallo − −
π 2
tan x > l
π π
e la soluzione è: , 2 2
+ kπ < x < a + kπ
La tan x è crescente dell’intervallo − a + kπ < x <
π 2
Disequazioni trigonometriche trigono metriche notevoli
+ kπ
π π
e la soluzione è: , 2 2
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Valore Assoluto A( x) < k
A( x) < k
A( x) > − k A( x) > k
A( x) > k
A( x) < − k Il trinomio ax 2 + bx + c se ∆ > 0 assume valore concorde al primo coefficiente per tutti e solo i valori esterni alle sue radici x1 , x2 , mentre assume valore opposto per tutti e solo i valore interni all’intervallo x1 , x2 , se ∆ = 0 assume segno concorde ad a per tutti i valori della x escluso la soluzione −
b 2a
, ∆ < 0 assume segno concorde ad a per tutti i valori della x
Equazione reciproche Prima specie = coefficienti uguali Seconda specie = coefficienti opposti 3
2
ax + bx bx + bx bx + a = 0
( x + 1)
2
ax + ( a − b ) x + a = 0
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
f( x) =
1 x
n
(
n> 0, n pari )
f( x) =
1 x n
(
n> 0, n dispari )
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
f ( x) = log a ( x) ( a > 1)
f( x) = log a ( x) (0< a< 1)
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Serie ∞
an = a1 + a2 + ... + an ... , Somma parziale S n = a1 + a2 + ... + an , Se la successione
Serie numerica n= 0
∞
an è convergente e ha
delle somme parziali S n converge ad un numero S, si dice che la serie n =1 ∞
come somma il numero S, cioè S =
an . La serie può essere convergente, divergente, o n =1
∞
oscillante. Se la serie S =
an è convergente detta sn la sua ridotta n-sima si dice resto Rn n-sino n =1
la differenza Rn = S − sn . Se la serie rie converge si ha lim lim Rn = 0 . Se si modificano dei termini finiti n →∞
della serie il carattere della serie non cambia. Se due serie sono convergenti, anche la loro somma lo è. Condizione necessaria affinché la serie converga è che il termine generale della successione sia infinitesimo Serie di Mengoli
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
n −1
2
=x1
n
S= 1 + 1 + 1 + ... + 1
x < 1 x > 1
Sn =
Sn =
1 − xn 1 − x
=
=
n
1 1− x
1 − x n
diverge a + ∞ 1 − x x < −1 oscillante e infinitamente grande x = −1
0 se n è pari 1 se n è dispari
Serie a termini non negativi ∞
termin i non negativi, cioè an ≥ 0 , questa serie è regolare an una serie a termini
Sia n =1
Criterio del confronto ∞
∞
an
1) n =1
bn se an ≤ bn si dice che:
2) n =1
la (1) è maggiorata maggiorata o è una serie minorante dalla (2) la (2) è minorata o è una serie maggiorante della (1)
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
lim n n →∞
lim n n →∞
lim n n →∞
an
− 1 = l > 1, (anche+∞)la serie risulta convergente
an +1 an an+1
− 1 = l < 1, (anche-∞ )la serie risulta di divergente
an an+1
Nulla si può dire su carattere della serie − 1 = 1, Nu
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Serie Armonica Generalizzata ∞ 1 Consideriamo Consideriamo la serie applicando il criterio di Raabe si ha: α n =1 n α
lim n n →∞
( n + 1) α
n
− 1 = lim n n →∞
n +1 n
α
− 1 = lim n n →∞
1+
1 n
1+
α
− 1 = lim n →∞
1 n
1 n
α
−1 = α
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
convergente. convergente. Per x < −1 si ha che la serie è definitivamente non decrescente, quindi la serie oscilla. x n
∞
Infatti si può scrivere: n =1
an =
lim n →∞
x
∞
=
n
n
[(−1)(− x )]
n =1
n
∞
=
n
(−1) n =1
n
[ (− x ) ] n
considerando la successione
n
n an +1 an
e applicando il criterio del rapporto si ha:
=
x
n +1
n
( n + 1) x
n
=
x
n
x
n
(n + 1) x n
= x
n
( n + 1)
= x > 1 da cui si ricava che an +1 ≥ an cioè la
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
The world's largest digital library
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
consideriamo che la successione 1 + e
1+
1
n
1 n
n
tende a e in mode crescente si ha 1 +
1 n
n
< e è quindi
> 1 da cui la serie diverge
n
Per x < 0 si ha: Considerando i valori assoluti si ha per −e < x < 0 la serie è alternate è converge perché assolutamente assolutamente convergente, convergente, per x > −e la serie è alternate a lternate e monotona monotona crescente quindi oscillante.