Teoría de Iluminación de Túnel
Tabla de contenidos Introducción: Por qué iluminar un túnel durante el día? Niveles de Luminancia Iluminación CBL y Simétrica Cómo determinar Lth ?
− −
Concepto L20 Concepto Lseq
Reporte CEN
Tabla de contenidos Introducción: Po Por qué iluminar un tú túnel dura du rant nte e el dí día? Nive vele les s de Lu Lumi mina nanc ncia ia Ni Ilu Ilumi mina nació ción n CBL y Sim Simétr étrica ica Cómo determinar Lth ?
− −
Conce cep pto L20 Conc Co ncep eptto Ls Lseq eq
Reporte CEN
Introduction
Introduction
Introduction
Introduction
Efecto de Oyo negro
Distancia de parada
S.S.D.
Definition of the Point of Attention : the driver looks ahead to a point at a distance which is equal to his stopping distance. distance.
Umbral y zona de Transición
• Lth : Tareas visuales (dada una velocidad máxima) – Detectar obstaculos a la SSD desde la la entrada del túnel – Permitir que el conductor reaccione en tiempo
• Lth et Ltr : fenomeno de adaptación – Adaptación Espacial – Adaptación Visual Temporal (alto nivel bajo nivel)
Tabla de contenidos Introducción: Po Por qué iluminar un tú túnel dura du rant nte e el dí día? Nive vele les s de Lum Lumin inan anci cia a Ni Ilu Ilumi mina nació ción n CBL y Sim Simétr étrica ica Cómo determinar Lth ?
− −
Conce cep pto L20 Conc Co ncep eptto Ls Lseq eq
Reporte CEN
Tabla de contenidos Introducción: Por qué iluminar un túnel durante el día? Niveles de Luminancia Iluminación CBL y Simétrica Cómo determinar Lth ?
− −
Concepto L20 Concepto Lseq
Reporte CEN
Típica sección longitudinal de un túnel de una vía
Access zone Th Transition zone zone e c n a n i m u L
Direction of traffic
Exit
Portal
Lth Ltr
Access zone
Exit zone
Tunnel Length
SSD
L20
Interior zone
Th Transition zone zone
Lex Lin Interior zone
Exit zone
Umbral y zona de Transición
Zona Interior
Zona de Salida
Tabla de contenidos Introducción: Por qué iluminar un túnel durante el día? Niveles de Luminancia Iluminación CBL y Simétrica Cómo determinar Lth ?
− −
Concepto L20 Concepto Lseq
Reporte CEN
Contraste
Lo Ev
C=
Lo - Lb Lb
100%
Lb
Contrast of luminance Negative contrast (C < 0) (Obstacle darker than the background)
Positive contrast (C > 0) (Obstacle brighter than the background)
Positive or negative contrast
Contrast : Quality Factor L r / Ev
LIGHTING SYSTEM
Lr/Ev ratio
Symmetrical
< 0.20
C.B.L.
≥0.60
Lr : Luminance of the road Ev : Vertical illuminance of the obstacle
Symmetrical lighting
Lb Ev
≤ 0.2 Ev
Lb
Symmetrical lighting
Counter Beam Lighting (C.B.L.)
Lb Ev
Lb
Ev
≥ 0.6
Counter Beam Lighting (C.B.L.)
Los obstáculos se hacen visibles por contraste negativo
Counter Beam Lighting (C.B.L.)
Counter Beam Lighting (C.B.L.)
Tabla de contenidos Introducción: Por qué iluminar un túnel durante el día? Niveles de Luminancia Iluminación CBL y Simétrica Cómo determinar Lth ?
− −
Concepto L20 Concepto Lseq
Reporte CEN
Cómo determinar Lth ? • Lth = Valor de Luminancia en la primera mitad de la zona de umbral. • in the driver’s conical field of view • En base a los niveles de luminancia fuera del túnel, a la SSD, en el campo de visión cónico del conductor • Disponibles diferentes métodos
Cómo determinar Lth ?
Lth L20 via k CIE 88-2004 entrega los valores k:
k = Lth / L20
Zona de Acceso Luminance L20
Cómo saber el valor de L20 ? Primer método : Evaluación de L20
Estimación del porcentaje de cielo
Estimación del porcentaje de cielo
Luminacia Promedio L20 en cd/m² Average luminance L20 in a 20° conical field of view in cdm! %ercentage of s&' "#$ Normal
Snow
2#$
10$
Normal
Snow
0$
Normal
Snow
Normal
Snow
Low
High Low
High Low
High Low
High Low
High Low
High Low
High Low
1)
1)
1)
1)
2)
3)
2)
3)
4)
4)
High
Brightness situation in field of view Stopping distance
4 000 5 000 4 000 5 000 2 500 3 500 3 000 3 500 1 500
3 000 1 500
4 000
60 m Stopping distance 100 m to 160m
4 000
6 000 4 000 6 000 4 000 6 000 4 000 6 000 3 000 4 500 3 000 5 000 2 500 5 000 2 500 5 000
Cómo saber el valor de L20 ? Segundo método : Calculando el valor de L20
Calculation of L20 value
L20 diagram
- Stopping distance : 230 m - orientation : S-W
Calculation of L20 value
L20 = γ γL C + ρLR + εLE +τLth Donde: LC = luminancia de cielo LR = luminancia de calzada LE = luminancia entorno Lth = luminance de entranda
Despreciable
γ γ = % de cielo ρ = % de calzada ε = % de entorno τ = % de entrada
Con γ γ + ρ + ε +τ = 1
Los valores típicos de luminancia para diversas superficies
Driving direction
LC (sky) kcd/m²
LR (road) kcd/m²
LE (environment) kcd/m²
N
8
3
Rock 3
E-W
12
4
2
S
16
5
1
Buildings Snow Vegetation 8 15 (V, H) 2 10 (V) 6 2 15 (H) 5 (V) 4 2 15 (H)
NOTE : V refers to vertical, and H to horizontal surfaces
Método L20
CIE 88 2004*
No difference between SYM and CBL System!
Speed (km/h) ! ≤60 km/h
80 km/h 120 km/h
!!!
k = Lth / L20 0.05 0.06 0.10 *CEN TR: L20 methodology
Método L20 Calculation of L20 value Stopping distance : 230m - Orientation : S-W
L 20 Sky (14) Road (4.5) Buiding (5) Meadows (2) Entrance
% 25 41.9 6.7 24 2.4
Values 3500 1900 340 480
Total
100
6220
CIE 88-2004 : Lth SYM & CBL: 6220 .0.1=622 cdm²
Tabla de contenidos Intro Int rod ducc cció ión n: Por qué ilumi min nar un túnel dura ran nte el día día? Nive vele les s de Lu Lumi mina nanc ncia ia Ni Ilu Ilumi mina nació ción n CBL y Sim Simétr étrica ica Cómo determinar Lth ?
− −
Conce cep pto L20 Conc Co ncep eptto Ls Lseq eq
Reporte CEN
Lseq se convierte en el concepto principal Lth
desde Lseq
Método
L20 es dado sólo en el anexo
Calculation of threshold luminance L th =
Lm =
L m 1 ρ
− 1 − 1 C m π .q c
ws
⋅ Latm + Lws +
(τ
ws
⋅ τ atm
)
Lseq
Contrast Reference obstacle: 0,2m x 0,2m ; ρ = 0,2
C int rinsic =
(Lo − Lr )
C perceived =
Lr (Lo,p − Lr,p ) Lr,p
from the stopping distance
El contraste percibido difiere del contraste intrínseco debido a : El velo de luz debido a la luz que se dispersa 1. en la atmosfera en la línea de visión, 2. en el parabrisas (incluyendo la reflección de luz reflejada desde el tablero de instrumentos) y
3. en el ojo (de fuentes fuera de la línea de visión dispersa en la fovea)
Light veil
atmospheric light in windscreen w n screen losses in windscreen
light from surroundings atmospheric contribution atmospheric losses
object Driver’s eye
dashboard
road surface
Perceived luminance of the object:
Lo,
p=τ ws· τ atm· Lo,intrinsic+τ ws· Latm+Lws+Lseq Transmission factors
Light scattered in the eye
Latm and Lseq measured from outside of the vehicle.
Perceived luminance of the road:
Lr, p=τ ws· τ atm· Lr,intrinsic+τ ws· Latm+Lws+Lseq The effect of scattered light in the eye on vision can be expressed by the equivalent veiling luminance Lseq .
• When no local data is available, we can assume: τ atm = 1,0 τ ws = 0,8 • Latm and Lws Veiling levels Atmospheric veiling (cd/m2) Windscreen veiling (cd/m2)
High
Medium
Low
300
200
100
200
100
50
Utilizamos las más altas luminancias que podrían darse durante al menos 75 horas del día al año como referencia para determinar Lseq
Lseq can be determined: • by measurements on site: – with special luminance meters equipped with a "glare lens" measuring Lseq or – with glare evaluation meters inside the car;
• by a graphical method based on the Holladay-Stiles formula
Graphical method
Polar diagram showing zones in which the luminance produces equal amounts of stray light at the centre
• The polar diagram should be superimposed over the image using the following angular relationships:
Ring
Centre
1
2
3
4
5
6
7
8
9
Angle of opening (°)
2,0
3,0
4,0
5,8
8,0
11,6
16,6
24,0
36,0
56,8
Lseq evaluation diagram
Lseq = 5,131x10-4 Σ Lije Lije = (τ τws .Lij ) + Lws Lseq
= the total equivalent veiling luminance in cd/m².
Lije
= the luminance of each section in front of the eye.
Lij
= the average lum. of each section in front of
the windscreen.
Examples of luminances at tunnel portals Driving Direction (Northern hemisphere)
Lc (sky) Kcd/m²
Lr (road) kcd/m²
N
8
E-W S
Le (environment) kcd/m²
Rocks
Buildings
Snow
Meadows
3
3
8
15 (V) 15 (H)
2
12
4
2
6
10 (V) 15 (H)
2
16
5
1
4
5 (V) 15 (H)
2
Calculation of threshold luminance L th =
L m
=
L m 1 ρ
− 1 − 1 C m π .q c ws ⋅
L atm
+
Lws
+
Lveq
(τ ws ⋅τ atm )
Lseq method makes the difference between SYM and CBL !
Minimum required perceived contrast : C m - 28% is recommended - mostly negative for: q c > 0,06 ρ ρ ρ =
0,2
Contrast revealing coefficient: q c
SYM : q c = 0,2 CBL : q c = 0,6
Example of tunnel design with the perceived contrast method
Lseq evaluation diagram
Lij matrix for Lseq evaluation (kcd/m²)
Average luminance over each ring section Ring number SECTION
1
2
3
4
5
6
7
8
9
SUM
1
8.00
8.00
8.00
8.00
8.00
6.20
4.10
8.00
NC
58.30 kcd/ M 2
2
5.36
8.00
8.00
8.00
6.20
3.50
2.00
5.00
7.70
53.76 kcd/ M 2
3
0.00
6.40
8.00
8.00
3.20
2.00
2.00
2.00
3.20
34.80 kcd/ M 2
4
0.00
5.50
5.00
5.00
2.60
2.70
2.70
2.65
2.55
28.70 kcd/ M 2
5
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
27.00 kcd/ M 2
6
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
NC
24.00 kcd/ M 2
7
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
NC
24.00 kcd/ M 2
8
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
3.00
27.00 kcd/ M 2
9
0.00
1.20
3.25
4.37
2.95
2.50
2.60
2.70
2.80
22.37 kcd/ M 2
10
0.80
0.80
4.80
8.00
4.40
2.00
2.00
0.80
2.00
25.60 kcd/ M 2
11
8.00
8.00
8.00
8.00
7.40
3.80
2.00
2.90
5.60
53.70 kcd/ M 2
12
8.00
8.00
8.00
8.00
8.00
6.20
3.80
7.10
NC
57.10 kcd/ M 2 Lij=
436.33 kcd/ M 2
Lije = Lij ⋅
ws
+
Lws τws = 0,8
Lws = 100cd/m² SECTION
1
2
3
4
5
6
7
8
9
SUM
1 2 3 4 5 6 7 8 9
6.5 4.39 0.1 0.1 2.5 2.5 2.5 2.5 0.1
6.5 6.50 5.22 4.5 2.5 2.5 2.5 2.5 1.06
6.5 6.50 6.5 4.1 2.5 2.5 2.5 2.5 2.7
6.5 6.50 6.5 4.1 2.5 2.5 2.5 2.5 3.596
6.5 5.06 2.66 2.18 2.5 2.5 2.5 2.5 2.46
5.06 2.90 1.7 2.26 2.5 2.5 2.5 2.5 2.1
3.38 1.70 1.7 2.26 2.5 2.5 2.5 2.5 2.18
6.5 4.10 1.7 2.22 2.5 2.5 2.5 2.5 2.26
NC 6.26 2.66 2.14 2.5 NC NC 2.5 2.34
47.44 kcd/ m² 43.91 kcd/ m² 28.74 kcd/ m² 23.86 kcd/ m² 22.50 kcd/ m² 20.00 kcd/ m² 20.00 kcd/ m² 22.50 kcd/ m² 18.80 kcd/ m²
10 11 12
0.74 6.5 6.5
0.74 6.5 6.5
3.94 6.5 6.5
6.5 6.5 6.5
3.62 6.02 6.5
1.7 3.14 5.06
1.7 1.7 3.14
0.74 2.42 5.78
1.7 4.58 NC
21.38 kcd/ m² 43.86 kcd/ m² 46.48 kcd/ m² 359.46 kcd/ m²
Lseq = 5,1 10-4 x 359,46 kcd/m² = 183 cd/m²
Calculation of Lth L m
=
CBL:
SYM:
(0 ,8 ⋅ 200 + 100 + 183) / 0 ,8 ⋅ 1 = 554 cd / m² L th
L th
=
=
554
0 , 2 − 1 − 1 ( −0 , 28 ) π ⋅ 0 ,6 1
554
0 , 2 − 1 − 1 ( −0 , 28 ) π ⋅ 0 , 2 1
= 253 cd/m²
= 386 cd/m²
Diagram of luminance level along the various zones 0.5 SD Lth
2 x Linterior (!)
THRESHOLD ZONE stopping dist.
(s)
TRANSITION ZONES 80 km/h
Traffic flow classification CIE 88 - 2004 Traffic flow *
One Way Traffic
Two way traffic
High
> 1500
> 400
Low
< 500
< 100
*
peak hour traffic, vehicles per hour per lane
Luminance values in cd/m² in the interior zone (long tunnels) LONG TUNNELS Stopping Distance(m) 160m 60m
Traffic flow Low 6 3
Heavy 10 6
Luminance values in cd/m² in the second part of the interior zone – very long tunnels VERY LONG TUNNELS Stopping Distance(m) 160m 60m
Traffic flow Low 2,5 1
Heavy 4,5 2
Luminancia sobre las Paredes
•Up to at least a height of 2m above road level
L Walls ≥ 0,6·LRoad
Luminancia en la zona de salida 5 x Lint
Lint Exit SD
20m
Luminancia en la zona de salida
La luminancia de día en la zona de salida se incrementa linealmente en una longitud igual a la SD (antes del portal de salida), desde el nivel de la zona interior a un nivel cinco veces mayor que la de la zona interior a una distancia de 20 m del portal de salida .
Luminance uniformity Overall uniformity: Uo ≥ 0.4 (on road and walls) Longitudinal uniformity: Ul ≥ 0.6 (along axis of each lane)
Glare limitation T I ≤ 15 % T I = 65 . Lv / Lr 0.8
for Lav ≤ 5 cd/m²
T I = 95 . Lv / Lr 1.05
for Lav > 5 cd/m²
Iluminación Nocturna
1. Tunnel is a part of an illuminated road : Lav = at least luminance of approaching road
2. Tunnel is a part of an unilluminated road : Lav = 1 cd/m² with Uo = 40% and Ul = 60%
Parting zone lighting IF
- tunnel is part of an unlit road and V > 50 km/h - Lnight > 1 cd/m² in the tunnel - Different weather conditions at the entrance and at the exit of the tunnel.
iluminación nocturna de la zona de separación se recomienda: ⇒
Length: 2 x S D Luminance level : min.1/3 Lint
Stopping distance 2
⋅ + SD = u t o
u
2 ⋅ g ⋅ (f ± s)
u = traffic speed in m/sec to = reaction time (1 sec) g = gravity acceleration f = friction coefficient tire-pavement s = slope of the road in %
Diagram of friction coefficient 0(* i
f t n e c i f f e o c
n o i t c i r 0
r' pavement
0(6
0(# et pavement
0()
0("
0(2 "0 )0 #0
60 *0
+0
,0 100 110 120 1"0 1)0 - speed . &mh /
Daytime lighting of short tunnels 1. Length of tunnel 2. Is exit fully visible when viewed from stopping distance in front of tunnel ?
yes no yes no
good poorgood poor
3. Is daylight penetration good or poor ? 4. Is wall reflectance high (>0.4) or low (< 0.2) ? 5. Is traffic heavy (*) or light? (*) or includes cyclists or pedestrians.
high low
high low
light heavy light heavy
no daytime lighting
50% of normal normal threshold zone threshold zone lighting level lighting level
Table of contents Introduction: why lighting a tunnel during the day ? Luminance levels CBL and Symmetrical lighting How to determine Lth ?
− −
L20 concept Lseq concept (CIE 88-2004)
The CEN Report
CEN - L20 methodology
k ratio for various speeds
Speed (km/h)
k = Lth / L20
<= 60 km/h
0,05
80 km/h
0,06
120 km/h
0,10
Definition of traffic density
Traffic flow
One Way Traffic
Two Way Traffic
High
> 1500
> 400
Medium
500 - 1500
100 - 400
Low
< 500
<100
Peak hour traffic, vehicles per hour per lane
CEN - L20 methodology Interior zone luminance levels
Stopping Distance S.D.
Low
Medium
Heavy
160 m
5 cd/m²
10 cd/m²
15 cd/m²
100 m
2cd/m²
4 cd/m²
6 cd/m²
60 m
1 cd/m²
2 cd/m²
3 cd/m²
Traffic flow
CEN - Traffic weighted L20 method
Classification of tunnels Traffic Intens
High
Medium
Low
Traffic type
M
A
M
A
M
Tunnel class
4
3
3
2
2
A = motorized traffic only M = mixed traffic including bicycles
A
1 (guidance
CEN - Traffic weighted L20 method
Recommended values of k Stopping Distance SD (
60
100
160
tunnel class 4 3 2 1
0.05 0.04 0.03
0.06 0.05 0.04
0.10 0.07 0.05
no requirements (only orientation lighting)
CEN - Traffic weighted L20 method
Luminance in interior zone Stopping Distance SD (m)
60
100
160
tunnel class 4 3 2 1
3 2 1.5 NR
6 4 2 0,5
10 6 4 1,5
CEN - Traffic weighted L20 method
Luminance uniformities tunnel class 4 3 2 1
U0
Ul
0,4 0,4 0,3 -
0,7 0,6 0,5 -
CEN - Traffic weighted L20 method
Wall Luminance (up to 2m)
Tunnel class 4 LW ≥ LR 2 and 3 LW ≥ 60 % of LR 1 LW ≥ 25 % of LR
CEN - Lighting of short tunnels Look Through Percentage
H
3
4
5
LTP = 100*(EFGH)/(ABCD)
A
B
For LTP < 20%, artificial lighting always needed For LTP > 50%, artificial lighting never needed For the 20% < LTP < 50% situations, additional requirements
CEN - Lighting of short tunnels Motorized traffic only, visibility of a car
8ehicle 19) : 196m "0$ visi;le
Lighting needed when critical object cannot be seen for more than 30% (red > 30% yellow)
CEN - Lighting of short tunnels Mixed traffic, visibility of pedestrian / cyclist
%edestrianc'clist 09# : 19+m #0$ visi;le
Lighting needed when critical object cannot be seen for more than 50% (red > 50% yellow)
CEN - Lighting of short tunnels Table method for straight tunnels Speed
Stopping
Artificial
1istance
1a'time roadroad 1istance 1a'time
Speed
Stopping
Approaching
Artificial
Lighting
50 km/h
50 km/h
50 m 80 km/h
120 km/h
150 m
200 m
road
road
road
road
slope 2°
slope )°
yes
maybe
50m 120 m< 120m
50m
maybe 100 m
yes
50m L 200
L > 150 m
maybe 100 km/h
Approaching
Approaching
slope 2° L > 80 m L > 100 m
150 m 100 m 100 km/h yes
120 km/h
slope 0°
Approaching
Approaching
Lighting slope 0° 50 m yes L > 120 m
no 80 km/h
Approaching
no
L < 50 m
maybe
L > 100 m50m
L > 80 m
50m 80 m
50m
L < 50 m
60m
no
L < 50 m L < 90 m
yes
L > 200 L > 200 mm
L > 150 m
maybe
90m
120m
no
90m L
no200 m
yes
L > 200 m L < 90 m
yes
no
maybe
150m
L < 150 L > 200 mm
slope )°
L < 50 m L < 60 m
L < 40 m
50m
L > 150 mL > 80 m
L < 40 m L > 80 m
70m
60m
50m
50m
L > 150 m
L > 70 m
70m
50m
L < 50 m
L < 60 m
L > 150 mL < 50 m
L > 80 m
L < 70 m
maybe
120m
70m
50m
no
L < 120 m
L < 70 m
L < 50 m
yes
L > 200 m
L > 150 m
L > 70 m
maybe
150m
70m
50m
no
L < 150 m
L < 70 m
L < 50 m
CEN - Lighting of short tunnels Table method for horizontal curved tunnels Speed
Stopping 1istance
Artificial 1a'time Lighting
5urve raduis
50 km/h
50 m
yes maybe no yes maybe no yes maybe no yes maybe no
85 m
80 km/h
100 m
100 km/h
150 m
120 km/h
200 m
250 m
450 m
750 m
5urve raduis L > 20 m L < 20 m L > 50 m 30m 55 m 40m 60 m 50m
170 m
500 m
900 m
1500 m
L > 50 m 20m 70 m 50m 90 m 60m 100 m 65m