LOS CULTIVOS SIN SUELO EN LA HORTICULTURA INTENSIVA Juan José Magán Cañadas
CONCEPTO DE CULTIVO CULTIVO SIN S IN SUELO El suelo constituye constituye la rizosfera rizosfera natural de la mayoría mayoría de las plantas terrestres. terrestres. Los cultivos sin suelo (CSS) son todos aquellos sistemas que hacen crecer las plantas fuera del suelo. Dependiendo del medio por el que se sustituya, podemos distinguir varios tipos de CSS: • Sólido (cultivos en sustrato) • Líquido (cultivos en agua - hidroponía) • Gaseoso (aeroponía)
VENTAJAS DE LOS CULTIVOS SIN SUELO • Bien gestionados, pueden conseguir aumentos de producción. • Permiten un mejor control de las enfermedades enfermedades radiculares. • Reducen las necesidades de mano de obra al eliminarse las
labores culturales del suelo. • Permiten una completa automatización de la fertirrigación. • Permiten disponer el cultivo a varias alturas, optimizando así el
aprovechamiento del terreno. terreno. • Pueden facilitar las labores culturales.
INCONVENIENTES DE LOS CULTIVOS SIN SUELO • Conllevan un mayor coste de instalación. • Suponen un riesgo adicional ante cualquier fallo. • Requieren un control muy preciso del manejo. • Algunos sustratos de cultivo pueden originar un residuo
problemático de gestionar al final de su vida útil.
COMPONENTES DE UN SISTEMA DE CULTIVO SIN SUELO • Unidades elementales de cultivo:
Sustrato
o
Contenedor
o
• Equipamiento adecuado • Tecnología para correcto manejo
EVOLUCIÓN DE LOS CULTIVOS SIN SUELO Sistema Gericke
EVOLUCIÓN DE LOS CULTIVOS SIN SUELO Sistema de bancadas de arena
EVOLUCIÓN DE LOS CULTIVOS SIN SUELO Nutrient Film Technique (NFT)
EVOLUCIÓN DE LOS CULTIVOS SIN SUELO Cultivo en sacos de turba
EVOLUCIÓN DE LOS CULTIVOS SIN SUELO Cultivo en sacos de turba
EVOLUCIÓN DE LOS CULTIVOS SIN SUELO Cultivo en lana de roca
EVOLUCIÓN DE LOS CULTIVOS SIN SUELO Cultivo en lana de roca
EVOLUCIÓN DE LOS CULTIVOS SIN SUELO Cultivo en perlita
EVOLUCIÓN DE LOS CULTIVOS SIN SUELO Cultivo en fibra de coco
EVOLUCIÓN DE LOS CULTIVOS SIN SUELO Cultivo en fibra de coco
EVOLUCIÓN DE LOS CULTIVOS SIN SUELO Cultivo en fibra de coco
EVOLUCIÓN DE LOS CULTIVOS SIN SUELO Cultivo en fibra de coco
EVOLUCIÓN DE LOS CULTIVOS SIN SUELO Cultivo en materiales volcánicos
OTROS SUSTRATOS PARA CULTIVO SIN SUELO Arcilla expandida
OTROS SUSTRATOS PARA CULTIVO SIN SUELO Fibra de madera
DISTRIBUCIÓN DE LOS CULTIVOS SIN SUELO EN ESPAÑA
EVOLUCIÓN DE LOS CULTIVOS SIN SUELO EN ALMERÍA Cultivo en suelo enarenado
EVOLUCIÓN DE LOS CULTIVOS SIN SUELO EN ALMERÍA Sistema NFT (1980)
EVOLUCIÓN DE LOS CULTIVOS SIN SUELO EN ALMERÍA Cultivo en sustrato (años 80)
EVOLUCIÓN DE LOS CULTIVOS SIN SUELO EN ALMERÍA Sistemas de cultivo alternativos. Sistema QUASH
EVOLUCIÓN DE LOS CULTIVOS SIN SUELO EN ALMERÍA Sistemas de cultivo alternativos. Cultivo en contenedores de poliestireno
Perlita estratificada (Φ < 1,5 mm en la parte superior y Φ 1,5 – 5 mm en la parte inferior)
EVOLUCIÓN DE LOS CULTIVOS SIN SUELO EN ALMERÍA Sistemas de cultivo alternativos. Cultivo en sistema NGS
ESPECIES CULTIVADAS EN SISTEMAS SIN SUELO EN ALMERÍA
ESPECIES CULTIVADAS EN SISTEMAS SIN SUELO EN ALMERÍA
ESPECIES CULTIVADAS EN SISTEMAS SIN SUELO EN ALMERÍA
ESPECIES CULTIVADAS EN SISTEMAS SIN SUELO EN ALMERÍA
EVOLUCIÓN DE LA SUPERFICIE DE CULTIVO SIN SUELO EN ALMERÍA 6000
5000 ) a 4000 h ( e i c 3000 i f r e 2000 p u S 1000
0 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 1 8 8 8 9 9 9 9 9 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 1 1 1 0 9 9 9 9 9 9 9 9 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2
Año
DISTRIBUCIÓN PORCENTUAL DE LOS SUSTRATOS UTILIZADOS EN CULTIVO SIN SUELO EN ALMERÍA (Céspedes y col., 2009)
DISTRIBUCIÓN PORCENTUAL DEL TIPO DE MEDIO DE CULTIVO EN LOS INVERNADEROS DE ALMERÍA EN 1997 Y 2013 (Valera y col., 2014)
DISTRIBUCIÓN DE LOS SISTEMAS DE CULTIVO EN ALMERÍA SEGÚN LA SUPERFICIE DE CADA TIPO DE ESTRUCTURA DE INVERNADERO. CAMPAÑA 2005/06 (Céspedes y col., 2009)
ESTUDIO COMPARATIVO ENTRE SISTEMAS DE CULTIVO SIN SUELO Y ENARENADO (López-Galvez y Naredo, 1996) Estudio realizado en la Estación Experimental de Cajamar Las Palmerillas en las campañas 1992/93 y 1993/94. Tratamientos comparados: • A. Lana de roca de 10 x 10 x 100 cm (10 L)
• B. Lana de roca de 24 x 7,5 x 100 cm (18 L) • C. Perlita estratificada en contenedores de poliestireno de 27 L
de capacidad • D. Perlita (Φ < 5 mm) en sacos de 40 L de capacidad • E. Suelo enarenado
Se utilizaron dos aguas de riego de diferente CE, 0,5 y 3 dS/m. Ésta última se fabricaba mediante la adición de cloruro sódico.
EFECTO DEL SISTEMA DE CULTIVO SOBRE LA PRODUCTIVIDAD (López-Galvez y Naredo, 1996) Campaña
Tratamiento
Producción precoz (kg/m2)
Producción total (kg/m2)
1992/93 1992/93 1992/93 1992/93 1992/93 1992/93 1992/93 1992/93 1992/93 1993/94 1993/94 1993/94 1993/94 1993/94 1993/94 1993/94 1993/94 1993/94 1993/94
Lana roca 10 L ↓CE Lana roca 18 L ↓CE Perlita estratificada ↓CE Perlita en sacos ↓CE Enarenado ↓CE Lana roca 10 L ↑CE Lana roca 18 L ↑CE Perlita estratificada ↑CE Perlita en sacos ↑CE Lana roca 10 L ↓CE Lana roca 18 L ↓CE Perlita estratificada ↓CE Perlita en sacos ↓CE Enarenado ↓CE Lana roca 10 L ↑CE Lana roca 18 L ↑CE Perlita estratificada ↑CE Perlita en sacos ↑CE Enarenado ↑CE
2,7 a 3,2 a 3,2 a 2,8 a 0,9 b 2,5 a 2,2 a 2,7 a 2,5 a 4,4 ab 4,5 ab 3,5 b 5,9 a 2,8 b 4,1 ab 4,1 ab 3,4 b 3,1 b 3,0 b
17,8 a 16,8 ab 17,4 a 15,9 ab 13,5 ab 12,6 ab 12,7 ab 16,7 ab 11,6 b 18,6 a 19,0 a 20,0 a 19,2 a 17,1 ab 16,1 ab 16,4 ab 13,6 b 13,9 b 14,4 b
DISTRIBUCIÓN DE LA PRODUCCIÓN EN LOS SUSTRATOS Y EN EL ENARENADO (López-Galvez y Naredo, 1996)
RENTABILIDAD ECONÓMICA DE LOS CULTIVOS SIN SUELO. COMPARACIÓN DE LAS TIR (López-Galvez y Naredo, 1996) ↓CE
ampaña
1992/93
1993/94
Alternativa Enarenado existente Enarenado nuevo Lana de roca 10 L Lana de roca 18 L Perlita estratificada Saco de perlita Enarenado existente Enarenado nuevo Lana de roca 10 L Lana de roca 18 L Perlita estratificada Saco de perlita
* Considerando
↑CE
Sustrato + riego
Total
Sustrato + riego*
Total * Sustrato + riego
Total
232,6
-
202,1
-
67,3
18,1
58,0
15,4
107,3
24,9
90,9
20,7
96,7
22,2
78,9
17,6
92,3
21,9
70,7
16,1
91,8
20,5
73,0
15,8
261,4
-
232,6
-
194,0
-
81,6
23,5
72,7
20,8
59,8
16,7
118,6
29,1
97,5
23,1
77,4
19,2
113,4
28,2
92,8
22,5
80,8
20,0
111,6
29,5
89,5
23,0
80,0
18,9
110,3
27,1
88,7
21,3
65,4
15,1
los gastos de desalación del agua utilizada y de traslado a
BALANCE DE NITRÓGENO (López-Galvez y Naredo, 1996)
ESTIMACIÓN DE LA LIXIVIACIÓN DE N EN EL CAMPO DE DALÍAS EN FUNCIÓN DEL MEDIO DE CULTIVO (Peña y col., 2012) Superficie
o l e u S
o t a r t s u S
Cultivo Desinfección Pretrasplante Mantenim. Retranqueo
Cultivo Desinfección Pretrasplante Mantenim.
TOTAL
Riego
-
(hm )
(L m )
389 50 29 12 60 473
14,7 1,7 2,0 0,2 18,6
100 15 13 24 126
N lixiviado (kg N (t) -1 ha ) 1648 112 143 13 224 15 40 44 2055 140
20,9 0,2 0,1 0,8 21,9
584 9 2 23 614
6,5 0,03 0,02 0,08 6,6
181 2 0 2 185
1316 0 0 0 1316
368 0 0 0 368
14,2
91,5
500
25,2
138
3371
184
9,5
3
(ha)
(hm )
14718 11304 14718 14718 922 14718
57,3 5,7 4,3 1,8 0,6 69,6
3579 1789 3579 3579 3579 18297
Drenaje -2
(L m )
3
-2
[NO3 ] (mMol -1 L )
7,9
EL FUTURO DE LOS CULTIVOS SIN SUELO • Progresiva Progresiva evolución a sistemas cerrados (Holanda) • Rápidos avances en automatismos y electrónica • Abandono progresivo de los sustratos → hidropónicos puros.
SISTEMA HIDROPÓNICO
SISTEMA HIDROPÓNICO
SISTEMA HIDROPÓNICO
SISTEMA HIDROPÓNICO
SISTEMA AEROPÓNICO
SISTEMA AEROPÓNICO
PRINCIPIOS BÁSICOS DE LOS CULTIVOS SIN SUELO
PRINCIPIOS BÁSICOS DE LOS CULTIVOS SIN SUELO Los aportes del suelo a la planta (necesarios en el sistema artificial alternativo) son: • Anclaje de las raíces para la fijación de la planta • Volumen para el desarrollo de las raíces • Suficiente aire (oxígeno necesario para los procesos oxidativos
de la respiración) • Agua disponible a sus necesidades • Elementos minerales indispensables para su nutrición • Condiciones de salubridad, temperatura, etc. que permitan el
adecuado funcionamiento y desarrollo de la raíz
PRINCIPIOS BÁSICOS DE LOS CULTIVOS SIN SUELO Los sistemas de cultivo sin suelo pretenden solucionar las necesidades radiculares ventajosamente, con el fin de lograr el máximo rendimiento de la planta. Sustratos, hidroponía y aeroponía ofrecen una solución diferente de los aportes necesarios. Proporcionan una rizosfera más favorable que la natural → menor consumo de energía por la raíz → mayor porción de fotoasimilados destinados a biomasa → teórica superioridad
productiva de los cultivos sin suelo sobre el suelo
ESTRÉS HÍDRICO Debido a la dificultad de absorción de agua por la raíz por: fuerzas de retención (potencial mátrico), presión osmótica de la solución y conductividad hidráulica del medio. Suelo a capacidad de campo: agua en microporos y aire en macroporos (por fuerzas gravitacionales y profundidad del suelo) Sustrato: en general porosidad media/gruesa y poca altura → fuerzas gravitacionales pequeñas → poros en gran parte
ocupados por agua y potencial mátrico mucho menor que en suelo
CURVAS DE RETENCIÓN DE AGUA
CURVA DE RETENCIÓN DE AGUA 300 a u g a l ) e a d u g n a ó i a c n n m e u t l e r o e c d m c a ( z r e u F
POROS: 0,03 a 0,3 mm PARTÍCULAS: 0,25 a 5 mm
250 200 150
Agua difícilmente disponible
100
Agua de reserva 50
Agua fácilmente disponible
0
Vol. de aire 0
0,05
0,1 0,15 0,2 Diámetro de poro (mm)
0,25
0,3
EFECTO DE LA ALTURA DEL CONTENEDOR SOBRE EL GRADIENTE DE HUMEDAD Capacidad de contenedor: cantidad total de agua retenida por un sustrato en un determinado contenedor. 17 15
151 cc 153 cc
32% 33%
156 cc
34%
160 cc
36%
9
168 cc
39%
7
180 cc
43%
5
199 cc
49%
229 cc
59%
291 cc
74%
13
Aire
11
Agua
3 1 100
50
0
% Volumen
Un mismo sustrato tendrá mayor retención media de agua cuanto más bajo sea el contenedor y más aireado cuanto más
CONSIDERACIÓN DE LA ALTURA DEL CONTENEDOR Parámetro R: tensión (en cm de columna de agua) a la que se igualan los contenidos en aire y en agua del sustrato. Para contenedores de media altura (10-20 cm): • Si R entre 10 y 30: suficiente aire y agua fácilmente disponible • Si R < 10: sustrato muy aireado pero poco contenido en agua
fácilmente disponible • Si R > 30: contenido en aire limitante y riesgo de asfixia
radicular
ESTRÉS HÍDRICO Hidropónico o aeropónico: agua en contacto directo con la raíz Fuerzas de retención de agua: • 10-30 kPa en suelo • 1-5 kPa en sustrato • 0 kPa en hidropónico
ESTRÉS HÍDRICO Presión osmótica de la solución: debida a nutrientes y minerales neutros o perjudiciales. Aumenta con la salinidad: 36 kPa por cada dS m-1 de CE → muy superiores a las fuerzas de retención. Hidropónicos: sistemas más favorables respecto a P.O. (CE puede mantenerse prácticamente constante) Sustratos: CE varía ligeramente entre riego y riego Suelo: el cambio es mayor. CE del suelo a capacidad de campo: doble del extracto saturado.
ESTRÉS HÍDRICO Conductividad hidráulica a c i l u á r ) d i 1 h n i d a m d i m v c i t ( c u d n o C
Muy rápido cuando todos los poros están llenos de agua (saturación)
16 12
La velocidad desciende rápidamente al disminuir el contenido de agua
9 6 3
Fibra de coco Dap. 80 g L-1
2
Muy lentamente cuando la succión supera 10-15 cm
4 6 Succión (cm)
8
10
CLASIFICACIÓN DE LOS SUELOS EN FUNCIÓN DE SU CONDUCTIVIDAD HIDRÁULICA (Soil Conservation Service, EEUU) Muy lenta
K (cm min-1)
<0,0017
Lenta 0,00170,0083
Moderadamente lenta 0,0083-0,033
Moderada Moderadamente elevada 0,0330,11
0,11-0,21
Elevada 0,210,42
Muy elevada >0,42
ESTRÉS NUTRICIONAL Medio con capacidad de cambio catiónico → se evitan alteraciones bruscas Medio hidropónico: las concentraciones varían directamente con los aportes o consumos Menor inercia de C.S.S. → más susceptibles a estreses
puntuales ocasionados por averías o errores Sin embargo, se pueden evitar situaciones estresantes prolongadas más fácilmente que en el suelo.
ESTRÉS POR FALTA DE OXÍGENO Aire del que la raíz obtiene el oxígeno para respirar: • Suelo: en macroporos • Sustratos: en porosidad media.
El aire debe ser renovado para evacuar el CO 2 producido y reponer el oxígeno consumido. El oxígeno se difunde a través del aire contenido en los poros. La difusión del oxígeno en el agua es mucho menor que en el aire. Para que el oxígeno sea absorbido por la raíz, debe disolverse previamente en el agua que la rodea.
ESTRÉS POR FALTA DE OXÍGENO Suelo: hipoxia estresante más o menos prolongada después de cada riego, hasta que los macroporos vuelven a llenarse de aire. Sustratos: hipoxia mínima en general. Poco después de cada riego el sustrato alcanza un nivel de aireación muy alto (> 25%). Sin embargo, a concentraciones de oxígeno inferiores a 3 mg L-1 en la solución del sustrato pueden darse, teóricamente, condiciones limitantes de oxígeno.
ESTRÉS POR FALTA DE OXÍGENO Existen factores que pueden afectar tanto a la demanda como al suministro de oxígeno y provocar condiciones de deficiencia de oxígeno o hipoxia en los sustratos: • Gran desarrollo del cultivo junto con elevada demanda hídrica → abundante suministro de agua → posible reducción de la
tasa de difusión de oxígeno, sobre todo en cultivos con una densa capa de raíces en el fondo, donde suelen ocurrir condiciones cercanas a saturación. • Alta temperatura → incremento de la tasa de respiración de
las raíces y disminución del contenido de oxígeno disuelto en la solución del sustrato.
ESTRÉS POR FALTA DE OXÍGENO • El intercambio gaseoso dentro del sustrato puede verse
dificultado por el contenedor que lo rodea. • Los microorganismos aeróbicos compiten con las raíces por el
oxígeno, especialmente cuando el sustrato contiene materia orgánica. • Las raíces, al ocupar espacio en los poros, pueden también
modificar las características físicas de los sustratos, aumentando la capacidad de almacenamiento de agua y disminuyendo la porosidad llena de aire.
MEJORA DE LA OXIGENACIÓN DE LA SOLUCIÓN DEL SUSTRATO (Bonachela y col., 2010) Tomate (del 21 de agosto al 3 de junio)
MEJORA DE LA OXIGENACIÓN DE LA SOLUCIÓN DEL SUSTRATO (Bonachela y col., 2010) Pimiento (del 3 de agosto al 25 de febrero)
MEJORA DE LA OXIGENACIÓN DE LA SOLUCIÓN DEL SUSTRATO (Bonachela y col., 2010) Melón (del 3 de marzo al 21 de junio)
EVOLUCIÓN DE LA CONCENTRACIÓN DE OXÍGENO EN LA SOLUCIÓN DEL SUSTRATO (Holtman y col., 2005)
ESTRATEGIA DE RIEGO DE MUY ALTA FRECUENCIA. SISTEMA WISE IRRISYSTEM Es un novedoso sistema de fertirrigación basado en la dotación de pulsos de riego muy cortos (de menos de 2 minutos de duración) y frecuentes con emisores de bajo caudal (1 L h -1), lo que promueve el movimiento horizontal del agua, facilitando una alta oxigenación y un control eficiente del movimiento de sales.
ESTRÉS POR FALTA DE OXÍGENO Hidropónicos: falta de oxígeno en raíz → uno de los problemas
más graves. Tasa de difusión del oxígeno en agua muy baja (10 -4 que en el aire) Aeropónicos: no existen problemas de oxígeno
ESTRÉS POR TEMPERATURA Temperatura de la raíz: afecta a su desarrollo y actividad funcional Aumento lineal de la actividad a partir de una temperatura mínima (10-14 ºC) hasta un máximo (crecimiento máximo por mayor división celular → mayor consumo de energía y de
oxígeno) A partir de temperatura máxima: caída drástica de la actividad de la raíz (paralización de la mayoría de las reacciones bioquímicas)
ESTRÉS POR TEMPERATURA Temperatura óptima raíz: 5-7 ºC menos que óptima aérea • Suelo: es el mejor sistema por su mayor inercia • Sustratos: oscilaciones térmicas mayores • Aún más en hidropónicos y aeropónicos
EFECTO DEL SISTEMA DE CULTIVO SOBRE LA TEMPERATURA RADICULAR (López-Gálvez y Naredo, 1996) Diferencia entre la temperatura máxima y mínima diaria (ºC) Campaña 1992/93 1993/94
Lana de Lana de Perlita en roca 10 L roca 18 L contenedor 7,5 6,2
6,9 5,0
4,1 4,3
Perlita en sacos
Enarenado
5,9 6,0
3,1 2,6
30/12/1992
MANEJO DEL CULTIVO SIN SUELO
CONSIDERACIONES PREVIAS A LA PLANTACIÓN • Uniformidad del sistema de riego • Colocación de los sacos de cultivo • Saturación del sustrato
CONSIDERACIONES PREVIAS A LA PLANTACIÓN • Apertura de drenajes
PLANTACIÓN Y SIEMBRA DIRECTA
MANEJO DEL RIEGO POR FASES • Implantación del cultivo y desarrollo inicial • Fase de máximo desarrollo y producción • Final del cultivo • Periodo entre cultivos
MANEJO DEL RIEGO AL PRINCIPIO DEL CULTIVO
MANEJO DEL RIEGO AL PRINCIPIO DEL CULTIVO
MANEJO DEL RIEGO AL PRINCIPIO DEL CULTIVO
MANEJO DEL RIEGO AL PRINCIPIO DEL CULTIVO
MANEJO DEL RIEGO EN LA FASE DE MÁXIMO DESARROLLO Y PRODUCCIÓN
MANEJO DEL RIEGO EN LA FASE DE MÁXIMO DESARROLLO Y PRODUCCIÓN DOSIS (VOLUMEN) Y MOMENTO (FRECUENCIA) DE RIEGO: Dosis de riego (suele ser fija): 5% agua útil del sustrato + drenaje Momento de riego (suele ser variable): cuando las condiciones empiezan a no ser favorables para la raíz CRITERIOS: • Agotamiento del agua fácilmente disponible • Superación de una presión osmótica crítica • Disminución crítica de la conductividad hidráulica del sustrato
EQUILIBRIO HÍDRICO ESTÁTICO
Flujo saturado Drenaje
CANALES PREFERENCIALES
Flujo saturado Drenaje
CÁLCULO DEL VOLUMEN DE RIEGO Sustrato: perlita A) Volumen de la unidad de cultivo B) Agua útil (AFD + AR) de la unidad de cultivo C) Nivel de agotamiento del agua en la unidad de cultivo (5 % de B) D) Porcentaje de lixiviación (25 % de C) E) Aporte de agua en cada riego (C + D) F) Caudal de los goteros G) Número de goteros en la unidad de cultivo H) Caudal unitario de la unidad de cultivo (F * G) J) Duración de cada riego (60 * E/H)
40 L 16 L 0,8 L 0,2 L 1L 3 L h-1 3 9 L h -1 6,7 minutos
CÁLCULO DE LA FRACCIÓN DE LIXIVIACIÓN
FL
C s C a C m C a
donde: Cs es la concentración del ion limitante en la solución nutritiva Ca es la concentración de absorción para ese ion, es decir, la cantidad del mismo absorbida por cada volumen de agua absorbido Cm es la concentración máxima permitida para ese ion en el lixiviado
ABSORCIÓN DE SODIO Y CLORO (Sonneveld, 2000) CONCENTRACIONES DE ABSORCIÓN DE SODIO Y CLORO (mmol L -1) Cultivos
Elemento
Concentración radicular < 5 mmol L -1 10 mmol L -1
Hortalizas
omate Pimiento Pepino Rábano (verano) Rábano (invierno)
Na Cl Na Cl Na Cl Na Cl Na Cl
0,4 0,6 0,2 0,3 0,3 0,3 0,3 0,5 1,8 0,9
0,8 1,0 0,3 0,6 1,0 1,5 -
Na Cl Na Cl Na Cl Na Cl Na Cl Na Cl
0,2 1,7 0,1 0,5 0,0 0,1 0,2 0,4 0,1 0,2 0,4 0,6
0,8 2,4 0,3 0,8 0,0 0,2 1,5 2,0 0,1 0,3 1,0 0,9
Flores
Gerbera Clavel Rosa ster Bouvardia zucena
CONCENTRACIONES DE ABSORCIÓN DE SODIO Y CLORO EN TOMATE (Magán y col., 2005) a N n ó i c r ) o 1 s b L a l n o ó i m c m a r ( t n e c n o C
5
5
4 y = 0,060x + 0,40 R2 = 0,99
3
4
y = 0,068x + 0,83 R2 = 0,99
3
2
2
1
1
0
0
0
10
20
30
40
50
60 0
10
20
30
40
50
60
Concentración Na (mmol L-1) Concentración Cl (mmol L-1)
l C n ó i c r o ) s 1 b L a l n o ó i m c m a r ( t n e c n o C
RESPUESTA DE LOS CULTIVOS A LA SALINIDAD
1
a v i t a l e r a h c e s o C
SYD
0
cmin
cmax
CE
RESPUESTA DEL TOMATE A LA SALINIDAD EN EL SURESTE PENINSULAR (Magán, 2005) 110
Producción comercial
Producción total ) 100 % ( a v 90 i t a l e r 80 a h c 70 e s o C 60
Exp.1 (Daniela prim.) Exp.2 (Boludo prim.) Exp.3 (Boludo largo)
50 2
3
4
5
6
7
8
92
CE (dS m-1)
Experimento 1 Experimento 2 Experimento 3
3
4
5
6
7
8
9
CE (dS m-1)
Producción total CEu a R2
Producción comercial CEu a R2
3,74 3,06 3,19
3,80 3,15 3,27
-8,67 -9,95 -7,75 n.s.
0,99 0,99 0,99
-8,80 b -11,84 a -8,94 b *
0,99 0,99 0,99
EJEMPLO DE CÁLCULO DE LA FRACCIÓN DE LIXIVIACIÓN (I) CE ss 3,5 dS m 1 CE ss Nu CE ss
Re
2 CE ss
Re
CE ss
Re
1,5 dS m
donde: CEss es la CE permitida en la solución del sustrato CEss Nu es la CE en la solución del sustrato debida a nutrientes CEss Re es la CE en la solución del sustrato debida a iones residuales (NaCl)
1
EJEMPLO DE CÁLCULO DE LA FRACCIÓN DE LIXIVIACIÓN (II) CE NaCl 0,115 C NaCl
donde: CENaCl es la CE debida a NaCl CNaCl es la concentración milimolar en la solución (hasta 50 mmol L-1 de NaCl) Por tanto: C ss
Re
CE ss
Re
0,115
1,5 0,115
1
13 mmol L
EJEMPLO DE CÁLCULO DE LA FRACCIÓN DE LIXIVIACIÓN (III) C a
Re
0,06 C ss
1
Re
0,4 0,06 13 0,4 1,18 mmol L
donde: Ca Re es la concentración de absorción correspondiente a los iones residuales Css Re es la concentración de iones residuales en la solución del sustrato
EJEMPLO DE CÁLCULO DE LA FRACCIÓN DE LIXIVIACIÓN (IV) CE ss
Re
1,5
CE s
Re
CE d
2
Re
CE d
Re
3 CE s
Re
C d
Re
26,1 C s
donde: CEs Re es la CE correspondiente a los iones residuales en la solución de aporte CEd Re es la CE correspondiente a los iones residuales en la solución de drenaje Cs Re es la concentración de iones residuales en la solución de aporte Cd Re es la concentración de iones residuales en la solución de drenaje
Re
EJEMPLO DE CÁLCULO DE LA FRACCIÓN DE LIXIVIACIÓN (V) FL
C s
Re
C a
Re
C d
Re
C a
Re
C s
Re
1,18
26,1 C s
Re
1,18
C s
Re
1,18
24,9 C s
Re
Si la concentración de NaCl en la solución de aporte es de 5 mmol L-1, entonces: FL
5 1,18 24,9 5
3,8 19,9
20 %
Si la concentración de NaCl en la solución de aporte es de 9 mmol L-1, entonces: FL
9 1,18 24,9 9
7,8 15,9
50 %
CONTROL DEL RIEGO Evolución de la humedad en el sustrato a lo largo del día
EVOLUCIÓN DE TENSIONES DE HUMEDAD EN CULTIVO DE TOMATE EN PERLITA CUANDO LA CONDUCTIVIDAD HIDRÁULICA SATURADA ACTÚA COMO FACTOR LIMITANTE 10
9
8
7
a c 6 m c n 5 ó i s n e 4 T 3
2
1
0 0:00
2:00
4:00
6:00
8:00
10:00
12:00
Hora
14:00
16:00
18:00
20:00
22:00
0:00
CULTIVO DE TOMATE EN FIBRA DE COCO. CORRECCIÓN DE CANALES PREFERENCIALES POR APLICACIÓN DE RIEGOS NOCTURNOS CON UNA CONSIGNA MÁS ELEVADA QUE DURANTE EL DÍA 12
10
) a c m 8 c ( d a d e m 6 u h e d n ó i 4 s n e T 2
0 0:00
2:00
4:00
6:00
8:00
10:00
12:00
Hora
14:00
16:00
18:00
20:00
22:00
0:00
CULTIVO DE TOMATE EN FIBRA DE COCO. CORRECCIÓN DE CANALES PREFERENCIALES POR APLICACIÓN DE RIEGOS NOCTURNOS CON UN ÚNICO VALOR DE CONSIGNA DURANTE LAS 24 HORAS DEL DÍA 10 9 8
) 7 a c m 6 c ( d 5 a d e m 4 u h e 3 d n ó 2 i s n e T 1 0 -1 -2 0:00:00
2:24:00
4:48:00
7:12:00
9:36:00
12:00:00
14:24:00
16:48:00
19:12:00
21:36:00
0:00:00
CONTROL DEL CONTENIDO DE HUMEDAD (WC) EN EL SUSTRATO
CONTROL DEL CONTENIDO DE HUMEDAD (WC) EN EL SUSTRATO
MANEJO DEL RIEGO AL FINAL DEL CULTIVO
REUTILIZACIÓN DEL SUSTRATO
AJUSTE DE LA FRECUENCIA DE RIEGO • Programación horaria • Medida del estado hídrico del sustrato • Parámetros climáticos • Sensores de planta
PROGRAMACIÓN HORARIA • No responde a las necesidades del cultivo • El riego se programa según la experiencia del agricultor • Se usa en periodos post-transplante (antes de implantar otros
sistemas) • A veces se usa en combinación con otros métodos (ej. primer
riego de la mañana cuando se usa solarímetro o en riegos nocturnos con bandeja de demanda)
CONTROL DEL VOLUMEN DE DRENAJE Permite: • Comprobar que la fracción de lavado es adecuada • Calibrar otros métodos: bandeja demanda o radiación
CONTROL DEL VOLUMEN DE DRENAJE
CONTROL AUTOMATIZADO DEL VOLUMEN DE DRENAJE
CONTROL DEL RIEGO MEDIANTE MEDIDA DEL ESTADO HÍDRICO DEL SUSTRATO • Bandeja de demanda • Sensores de medida de potencial mátrico • Sensores de medida de la humedad volumétrica
BANDEJA DE DEMANDA Sistema más usado en el sureste español
BANDEJA DE DEMANDA
BANDEJA DE DEMANDA • Instalar plantas representativas del cultivo • Mínimo 1 bandeja por sector de riego (5000 m2) (4
max./equipo de riego) ALGUNOS PROBLEMAS • Plantas enfermas o con problemas dentro de la bandeja • Drenaje menor en las horas de mayor demanda
CONTROL DEL RIEGO CON SENSORES DE MEDIDA DEL ESTADO HÍDRICO DEL SUSTRATO ALGUNAS CONSIDERACIONES • Imprescindible → medidas de humedad continuas • No afectados por la salinidad • La instalación es crítica → contacto sensor -sustrato
TIPOS • Potencial mátrico → tensiómetros • Humedad volumétrica → FDR o capacitancia
LOCALIZACIÓN DE SENSORES
• Varios sensores por
invernadero • Plantas sanas • Zonas representativas
sensor
DETERMINACIÓN DE LÍMITES DE HUMEDAD O POTENCIAL
Normalmente se riega mediante límite inferior
Apertura de válvulas
ELECTROTENSIÓMETROS • Alta resolución • Rango 0-10 kPa • No afectados por la salinidad • Requieren mantenimiento
periódico
CONTROL DEL RIEGO CON LAPTÓMETRO
SENSORES DE HUMEDAD VOLUMÉTRICA TIPOS MÁS USADOS: • Time Time domain refractometry (TDR) • Sensores de capacitancia (también conocidos como frequency
domain refractometry o FDR) Ambos métodos se basan en medidas de la constante dieléctrica del sustrato
MEDIDA DEL CONTENIDO VOLUMÉTRICO DE HUMEDAD Sensor Grodan WCM-control
SENSOR GRODAN WCM-CONTROL
Interfase
Monitor de control
MÉTODOS CONTROL DE RIEGO BASADOS EN PARÁMETROS CLIMÁTICOS • Método de radiación
• Modelos de evapotranspiración
CONTROL DEL RIEGO POR RADIACIÓN
BANDEJA ACTIVA
Determina el Σ Rs para regar
CONTROL DEL RIEGO CON MODELOS DE ET
piranómetro
sonda de temperatura y HR
ET
Cuando Σ ET = Σ ET umbral → RIEGO
MODELOS BASADOS EN PENMAM-MONTEITH Ecuación de Baille y col. (1994): Radiación solar, DPV e IAF
ET A 1 exp K IAF R g B IAF DPV MODELOS → necesidad de calibración y validación para cada
sistema de cultivo
MODELOS BASADOS EN LA LA MEDIDA DEL ESTADO HÍDRICO DE LA PLANTA HASTA HOY → no se han empleado para automatizar el riego, sino
como técnicas de diagnóstico para evaluar de forma retrospectiva el manejo del riego. TIPOS DE SENSORES • Temperatura cultivo/hoja • Medida de flujo de savia • Medida de variaciones en diámetro del tallo • Balanza lisímetro
BALANZA LISIMÉTRICA
DISEÑO DE LA SOLUCIÓN NUTRITIVA EN CULTIVO SIN SUELO C s C a 1 FL C d FL
C a 1 FL
1 R FL
donde: Cs es la concentración del ion para el que se realiza el cálculo en la solución de aporte Ca es la concentración de absorción para ese ion Cd es la concentración del ion en el drenaje FL es la fracción de lixiviación establecida R es el cociente entre C d y Cs
CONCENTRACIONES DE ABSORCIÓN DE NUTRIENTES PARA DISTINTOS CULTIVOS DE INVERNADERO (Sonneveld, 2000) N
P
S
K
Ca
Mg
mMol L-1
mMol L-1
mMol L-1
mMol L-1
mMol L-1
mMol L-1
Pepper
9.7
0.8
0.6
4.5
1.9
0.7
Tomato
9.6
1.1
1.2
6.1
2.2
0.9
Cucumber
12.2
1.0
0.9
6.6
2.7
0.8
Radish (summer)
8.6
0.4
0.4
4.5
1.2
0.4
Radish (winter)
31.5
1.0
1.7
16.4
5.4
1.6
Rose
5.2
0.4
0.4
1.9
0.9
0.3
Gerbera
10.2
0.7
0.4
7.0
1.6
0.5
CROPS
CONCENTRACIONES DE ABSORCIÓN EN TOMATE (Magán, 2005) 14
1,8
N n 13 ó i c r o ) 12 s 1 b L a l 11 n o ó i m 10 c m a r ( t 9 n e c n 8 o C
1,6 1,4 1,2 1
7
0,8 Oct Nov Dic Ene Feb Mar Abr May Oct Nov Dic Ene Feb Mar Abr May
Mes de cultivo
Mes de cultivo
P n ó i c r o ) s 1 b L a l n o ó i m c m a r ( t n e c n o C
CONCENTRACIONES DE ABSORCIÓN EN TOMATE (Magán, 2005) K n ó i c r o ) s 1 b L a l n o ó i m c m a r ( t n e c n o C
8
3,5
7 3
6 5
2,5
4 3
2 Oct Nov Dic Ene Feb Mar Abr May Oct Nov Dic Ene Feb Mar Abr May
Mes de cultivo
Mes de cultivo
a C n ó i c r ) o 1 s b L a l n o ó i m c ( m a r t n e c n o C
CONCENTRACIONES DE ABSORCIÓN EN TOMATE (Magán, 2005) 1,3
1,3 g M n 1,2 ó i c r ) 1,1 o 1 s b L a l n o 1 ó i m c ( m a 0,9 r t n e c 0,8 n o C 0,7
1,1
0,9
0,7
0,5 Oct Nov Dic Ene Feb Mar Abr May Oct Nov Dic Ene Feb Mar Abr May
Mes de cultivo
Mes de cultivo
S n ó i c r o ) s 1 b L a l n o ó i m c m a r ( t n e c n o C
EFECTO DE LA SALINIDAD SOBRE LAS CONCENTRACIONES DE ABSORCIÓN DE NUTRIENTES (Magán, 2005) 11 N n ó i 10,9 c r o ) s 1 b 10,8 a L l n o ó i m c m 10,7 a ( r t n e c 10,6 n o C 10,5 10,5 6 K n ó i c r o ) 5,5 s 1 b a L l n o ó i m c m a r ( 5 t n e c n o C 4,5
y = -0,041x + 10,97 R2 = 0,77
2,8 a C n ó i c r o 1 ) 2,7 s b L a l n o ó i m c m ( 2,6 a r t n e c n o C 2,5
y = -0,166x + 6,04 R2 = 0,96
y = 0,034x + 2,47 R2 = 0,97
2
3
4
5
6
7 -1
CE (dS m )
2
3
4
5
6
7
8
9
8
9
RELACIONES MÁS USUALES ENTRE LAS CONCENTRACIONES IÓNICAS EN LAS SOLUCIONES DE APORTE Y DRENAJE EN UN SUSTRATO INERTE (Cánovas, 1998; Casas, 1999) ION NO3NH4+ H2PO4K+ Ca++ Mg++ SO4= pH CE
Concentración en la solución de aporte 100 100 100 100 100 100 100 100 100
% % % % % % % % %
Concentración en la solución de drenaje 75-125 % 0-50 % 50-75 % 50-75% 125-200 % 150-250 % 150-250 % + 0,5 Ud + 1-2 Ud
RANGOS EN LOS QUE SUELEN OSCILAR LAS CONCENTRACIONES DE LOS DISTINTOS NUTRIENTES EN LAS SOLUCIONES DE APORTE EMPLEADAS EN EL SURESTE PENINSULAR MACROELEMENTOS ELEMENTOS mmol L -1 Nitratos Fosfatos Sulfatos Calcio Potasio Magnesio
8-15 1-2 1-2,5 3,5-5 4-8 1-2,5
MICROELEMENTOS ELEMENTOS ppm Hierro Manganeso Cobre Zinc Boro Molibdeno
1-3 0,6-1 0,05-0,1 0,2-0,5 0,2-0,5 0,04-0,05
SEGUIMIENTO DEL CULTIVO • Cuantificación diaria del drenaje producido
• Medida diaria de la CE y el pH de la solución de aporte →
posibles anomalías en el cabezal de riego • Medida diaria de la CE y el pH de la solución de drenaje →
control de la acumulación salina en drenaje, equilibrio absorción cationes/aniones • Análisis químico de las soluciones de aporte y drenaje →
control del equilibrio entre ambas • Análisis foliar/savia foliar/savia → detección de posibles deficiencias deficiencias
nutricionales
EJEMPLO DE SOLUCIÓN DE ENTRADA Y DRENAJE (I) Cultivo de tomate joven -1
mM L NO3+ NH4 H2PO4 + K Ca++ ++ Mg = SO4 HCO3 Na+ Cl -1 mg L Fe Mn Cu Zn B pH -1 CE (dS m )
Solución de entrada 12,77 0,42 1,39 7,92 4,64 1,69 2,66 1,12 1,13 1,65
Solución de drenaje 8,57 0,19 0,31 8,50 5,81 4,36 9,47 3,87 4,86 2,25
1,10 0,91 0,06 0,20 0,34 6,23 2,22
0,53 0,09 0,15 0,29 0,27 7,68 2,29
EJEMPLO DE SOLUCIÓN DE ENTRADA Y DRENAJE (II) Uso de agua salina (cultivo a finales de agosto) -1
mM L NO3 NH4+ H2PO4 + K Ca++ ++ Mg = SO4 HCO3+ Na Cl pH -1 CE (dS m )
Solución de entrada 14,52 0,35 1,33 6,39 4,24 1,36 0,82 0,41 13,48 13,75 5,64 3,55
Solución de drenaje 14,35 0 0,71 6,20 4,66 1,68 0,88 1,33 19,78 20,14 6,70 4,24
EJEMPLO DE SOLUCIÓN DE ENTRADA Y DRENAJE (III) Cultivo de pepino en pleno desarrollo -1
mM L NO3 NH4+ H2PO4 K + Ca++ ++ Mg SO4= HCO3+ Na Cl pH CE (dS m-1)
Solución de entrada 15,90 0,73 1,70 6,40 5,70 3,60 2,90 1,80 5,30 5,20 6,30 3,07
Solución de drenaje 14,6 0 1,25 3,30 7,80 5,30 5,0 2,10 9,80 9,20 6,66 3,54
EJEMPLO DE SOLUCIÓN DE ENTRADA Y DRENAJE (IV) Cultivo de pimiento adulto de ciclo largo en primavera -1
mM L NO3 NH4+ H2PO4+ K Ca++ ++ Mg SO4= HCO3+ Na Cl pH CE (dS m-1)
Solución de entrada 7,63 0,90 0,68 3,02 3,28 1,85 1,52 0,50 1,83 3,38 6,45 1,64
Solución de drenaje 10,61 0 1,29 2,11 6,75 4,22 4,10 0,40 4,99 8,48 6,13 2,78
SOLUCIONES DE DRENAJE INADECUADAS Muestreo al inicio de junio -1
mM L NO3 NH4+ H2PO4+ K Ca++ ++ Mg = SO4 HCO3+ Na Cl pH -1 CE (dS m )
Solución de drenaje 1 4,66 0 0 2,12 4,00 3,16 2,60 5,81 14,13 15,40 7,96 3,04
Solución de drenaje 2 4,57 0 0,08 2,25 3,57 2,60 2,05 3,87 11,52 13,62 7,95 2,60
EVALUACIÓN DE LA ABSORCIÓN Y LIXIVIACIÓN DE NITRÓGENO EN CULTIVO DE TOMATE Dos ciclos de cultivo (otoño-invierno y primavera) durante la campaña 2005/06. Se realizaron balances semanales del nitrógeno aportado, absorbido y drenado en 4 bandejas diferentes.
EVALUACIÓN DE LA ABSORCIÓN Y LIXIVIACIÓN DE NITRÓGENO EN CULTIVO DE TOMATE (Thompson y col., 2013) Evolución de la transpiración del cultivo: 5 ) d m m ( n ó i c a r i p s n a r T
1 -
5 ) d m m ( n ó i c a r i p s n a r T
1 -
4 3 2 1
Lavado cubierta
Despunte
0 0
20 SEP
O CTUB RE
40
60 NO VIEMB RE
80
100 DDT
D IC IEM BR E
120 ENERO
140
160
F EBR ERO
180
M ARZ O
4 3 2 1
Blanqueo cubierta Despunte
0 0
20 MARZO
40 ABRIL
60 DDT
80 MAYO
100 JUNIO
120
EVALUACIÓN DE LA ABSORCIÓN Y LIXIVIACIÓN DE NITRÓGENO EN CULTIVO DE TOMATE (Thompson y col., 2013) Evolución del porcentaje de drenaje: 100
100
80
80
) % ( 60 e j a n e r 40 D
) % ( 60 e j a n e r 40 D
20
20
0
0 0
20 SEP
O CTUBRE
40
60 NO VIEMBR E
80
100 DDT
DIC IEMBR E
120 ENER O
140
160
FEBRERO
180
MA RZO
0
20 MARZO
40 ABRIL
60 DDT
80 MAYO
100 JUNIO
120
EVALUACIÓN DE LA ABSORCIÓN Y LIXIVIACIÓN DE NITRÓGENO EN CULTIVO DE TOMATE (Thompson y col., 2013) Evolución de la concentración de N y el porcentaje de N lixiviado: ) 25 L l o 20 m m ( N 15 e d n ó i 10 c a r t n 5 e c n o C 0
) 25 L l o 20 m m ( N 15 e d n ó 10 i c a r t n 5 e c n o C 0
Solución nutritiva
1 -
1 -
Solución drenaje Concentración de absorción
Lavado cubierta
0
20 SEP
Despunte
40
O CTUBRE
60 NO VIEMBR E
80
100 DDT
DIC IEMBR E
120 ENER O
140
160
FEBR ERO
180
) % ( 80 o d a 60 i v i x i l o 40 n e g ó r t i 20 N
Despunte
0 40
60
80
100 DDT
120
140
Blanqueo Despunte cubierta
160
180
20 MARZO
) 80 % ( o d a 60 i v i x i l o 40 n e g ó r t i 20 N
20
Concentración de absorción
MA RZO
100
0
Solución drenaje
0
100
Lavado cubierta
Solución nutritiva
40
60 DDT
ABRIL
80 MAYO
100
120
JUNIO
Blanqueo Despunte cubierta
0 0
20
40
60 DDT
80
100
120
EVALUACIÓN DE LA ABSORCIÓN Y LIXIVIACIÓN DE NITRÓGENO EN CULTIVO DE TOMATE (Thompson y col., 2013) CULTIVO
Concentración absorción N (mMol L-1)
Concentración N aportada (mMol L-1)
Concentración N drenaje (mMol L-1)
Relación Conc. N drenaje / Conc. N aportada (%)
Otoño-invierno
12,5
11,5
8,5
74
Primavera
8,4
9,2
11,8
128
Agua aportada (mm)
Drenaje (mm)
Porcentaje drenaje (%)
N aportado (kg ha-1)
N absorbido (kg ha-1)
N lixiviado (kg ha-1)
N lixiviado (%)
Otoñoinvierno
235
58
24
379
311
68
18
Primavera
362
86
24
463
319
144
31
CULTIVO
EVALUACIÓN DE LA ABSORCIÓN Y LIXIVIACIÓN DE NITRÓGENO EN CULTIVO DE TOMATE (Thompson y col., 2013) Lixiviación teórica de N aportando una solución estándar de 12,5 mMol L-1 de N (García y Urrestarazu, 1999): N aportado teórico -1 (kg ha )
N lixiviado teórico -1 (kg ha )
N lixiviado teórico (%)
N lixiviado real en el ensayo (%)
Otoño-invierno
408
97
24
18
Primavera
626
307
49
31
CULTIVO
SISTEMAS CERRADOS DE CULTIVO SIN SUELO
VENTAJAS DE LOS SISTEMAS CERRADOS FRENTE A LOS ABIERTOS • Permiten obtener un ahorro notable de agua y fertilizantes y
reducir la lixiviación de nutrientes • Permiten establecer altos porcentajes de drenaje y mantener
concentraciones de nutrientes más bajas
INCONVENIENTES DE LOS SISTEMAS CERRADOS FRENTE A LOS ABIERTOS • Necesidad de realizar una inversión extra
• Desajuste de la solución nutritiva: necesidad de realizar
análisis frecuentes • Acumulación progresiva de aquellos iones presentes en
exceso en el agua de riego • Posible dispersión de enfermedades a través de la solución
nutritiva • Seguimiento más estricto y experimentado para obtener
buenos resultados
EVOLUCIÓN DEL APORTE DE AGUA EXTERIOR ACUMULADO EN UN CULTIVO DE TOMATE EN SISTEMAS A SOLUCIÓN PERDIDA Y CON REÚSO DEL DRENAJE (Magán y col., 1999) 4000 3500 a ) a u h g / 3000 a 3 e m2500 d ( a n d e a 2000 t m r 1500 u l o o p V a 1000
Con reúso del drenaje Solución perdida
500 0 0
20
40
60
80
100
d.d.t.
120
140
160
180
200
EFICIENCIA EN EL USO DEL AGUA (GRAMOS DE TOMATE COMERCIAL POR LITRO DE AGUA GASTADA) EN UN SISTEMA A SOLUCIÓN PERDIDA (T2 DE LA CAMAPAÑA 97/98) Y EN OTRO CERRADO (RESTO) (Magán y col., 1999; Magán y col., 2001) Campaña 97/98
Campaña
T1
T2
98/99
43,1
31,7
41
CONSUMO DE FERTILIZANTES, GASTO QUE REPRESENTA Y AHORRO OBTENIDO EN SISTEMA CERRADO (T1) FRENTE A SOLUCIÓN PERDIDA (T2) (Magán y col., 1999) Fertilizantes empleados
Consumo en kg o L haT1 T2
Precio -1 -1 € kg o L
Gasto en € haT1 T2
Reducción Porcentaje del gasto de reducción (T2-T1) (T1/T2)
N. cálcico N. amónico Ác. nítrico
1487,6 36,6 614,6
3145,1 54,9 730,2
0,416 0,43 0,3975
618,84 15,74 244,30
1308,36 23,61 290,25
689,52 7,87 45,95
52,70 33,33 15,83
Ác. fosfórico F. monopotásico N. potásico S. potásico S. magnesio Complejo micros Manganeso Hierro Boro
76,2 465,5 737,2 583,8 94,6 33,0 15,4 9,4 5,5
94,2 707,5 1249,4 890,4 379,4 132,0 5,6 0 3,8
1,08 1,636 0,868 0,66 0,28 8,15 7,81 14,32 6,30
82,30 761,56 639,89 385,31 26,49 268,95 120,27 134,61 34,65 3332,91
101,74 1157,47 1084,48 587,66 106,23 1075,80 43,74 0 23,94 5803,28
19,44 395,91 444,59 202,35 79,74 806,85 -76,53 -134,61 -10,71 2470,37
19,09 34,20 41,00 34,43 75,06 75,00 -174,51 -43,31 42,57
TOTAL
EVOLUCIÓN DE LA CANTIDAD ACUMULADA DE NITRATOS LIXIVIADOS EN UN CULTIVO DE TOMATE A SOLUCIÓN PERDIDA Y CON REÚSO DEL DRENAJE (Magán y col., 1999) ) 3000 2 m s / o l 2500 d o a m i v m 2000 i x ( i l s o 1500 s d o a t l 1000 a u r t i m N u 500 c a
Con reúso del drenaje Solución perdida
0
0
50
100 d.d.t.
150
200
EVOLUCIÓN DE LA CANTIDAD ACUMULADA DE FOSFATOS LIXIVIADOS EN UN CULTIVO DE TOMATE A SOLUCIÓN PERDIDA Y CON REÚSO DEL DRENAJE (Magán y col., 1999) ) 2 250 m s / o l d o 200 a m i v m i x ( i l s 150 s o o d t a 100 l a f u s m o 50 F u c a
Con reúso del drenaje Solución perdida
0 0
50
100 d.d.t.
150
LA SOLUCIÓN NUTRITIVA EN UN SISTEMA DE CULTIVO SIN SUELO CON REUTILIZACIÓN DEL DRENAJE Aporte al sistema de nuevos nutrientes ajustados a las necesidades de absorción del cultivo (CONCENTRACIONES DE ABSORCIÓN)
EVOLUCIÓN DE LA CONCENTRACIÓN DE FOSFATOS EN LAS SOLUCIONES DE APORTE Y SUSTRATO EN UN CULTIVO DE TOMATE EN SISTEMAS A SOLUCIÓN PERDIDA (T1) Y CON REÚSO DEL DRENAJE (T2) (Magán y col., 2003) 3,5
) L 3 l o m 2,5 m ( n 2 ó i c 1,5 a r t n 1 e c n o 0,5 C
Aporte T1 Aporte T2 Sustrato T1 Sustrato T2
1 -
0 0
50
100
Días después del trasplante
150
EVOLUCIÓN DE LA CONCENTRACIÓN DE POTASIO EN LAS SOLUCIONES DE APORTE Y SUSTRATO EN UN CULTIVO DE TOMATE EN SISTEMAS A SOLUCIÓN PERDIDA (T1) Y CON REÚSO DEL DRENAJE (T2) (Magán y col., 2003) 14
) L12 l o m10 m ( n 8 ó i c 6 a r t n 4 e c n o 2 C
Aporte T1 Aporte T2 Sustrato T1 Sustrato T2
1 -
0 0
50
100
Días después del trasplante
150
ESTRATEGIAS PARA EL REAJUSTE DE LA SOLUCIÓN NUTRITIVA • Mezclar drenaje con agua nueva y, posteriormente, añadir
nutrientes hasta alcanzar una CE determinada: permite asegurar el mantenimiento de una determinada CE pero no la presencia de nutrientes. Estrategia adecuada con aguas de buena calidad. • Mezclar drenaje con solución nutritiva nueva que incorpore el
agua y los nutrientes que ha absorbido el cultivo: permite asegurar la presencia de nutrientes pero no el mantenimiento de una determinada CE. Puede ser más adecuada con aguas mediocres.
EJEMPLO DE CÁLCULO DE SOLUCIÓN NUTRITIVA EN UN SISTEMA CON REUTILIZACIÓN DEL LIXIVIADO (I) -
=
+
++
++
-
Nutrientes
N
H2PO4
SO4
K
Ca
Mg
HCO3
CE
Agua de riego
0
0
0,21
0,08
0,64
1,19
3,26
0,4
Drenaje
11,8
0,7
5,94
6,39
7,73
3,29
5,3
3,1
Conc. Absorción
14
1,5
1,3
6
3
1
EJEMPLO DE CÁLCULO DE SOLUCIÓN NUTRITIVA EN UN SISTEMA CON REUTILIZACIÓN DEL LIXIVIADO (II) Si estamos trabajando con un 30 % de lixiviación y al mismo porcentaje de reúso, resultará aproximadamente la siguiente conductividad en la mezcla entre el agua de aporte exterior y el drenaje: CE mezcla: 0,4
•
70 30 + 3,1 = 12 , dS m-1 100 100 •
Y la concentración de bicarbonatos de dicha mezcla será: HCO3 :
70 30 3,26 + 5,3 = 3,87 mMol L-1 100 100 •
•
Como en la solución final hay que dejar 0,5 mMol L -1 de bicarbonatos para ajustar el pH a 5,5, la cantidad a neutralizar con ácido será: 3,87 - 0,5 = =3,37 mMol L-1. Tal concentración equivale en la solución de entrada a:
3,37 = 4,81 mMol L-1 0,7 0,7 es el tanto por uno de agua de aporte exterior ya que se está reutilizando
EJEMPLO DE CÁLCULO DE SOLUCIÓN NUTRITIVA EN UN SISTEMA CON REUTILIZACIÓN- DEL LIXIVIADO (III) Ahora ajustamos el equilibrio en mMol L en base a los coeficientes de absorción estimados: H2PO4- SO4=
K+
Ca++
Mg++
1,3
6
3
1
0
0,21
0,08
0,64
1,19
3,26
1,5
1,09
5,92
2,36
0
-4,81
Nutrientes
N
Concentr. absorción
14
1,5
Agua de riego
0
Aporte de fertilizantes
14
FERTILIZANTES
mMol L-1
Ácido fosfórico
1,5
Ácido nítrico
3,31
3,31
Nitrato cálcico
2,36
4,72
Sulfato potásico
1,09
Nitrato potásico
3,74
3,74
Nitrato amónico
1,115
2,23
1,5
HCO3-
-1,5 -3,31 2,36 1,09
2,18 3,74
TOTAL APORTES
14
1,5
1,09
5,92
2,36
0
-4,81
SOLUCIÓN ENTRADA
14
1,5
1,3
6
3
1,19
-1,55
EJEMPLO DE CÁLCULO DE SOLUCIÓN NUTRITIVA EN UN SISTEMA CON REUTILIZACIÓN DEL LIXIVIADO (IV) Nº de miliequivalentes: 4,72 + 2,18 + 3,74 + 1,115 = 11,755 Incremento CE por fertilizantes:
11755 ,
•
0,7
10
-1
= 0,8 dS m
-1
CE de la solución final: 1,2 + 0,8 = 2,0 dS m -
=
+
++
Mg
++
HCO3
3
1,19
-1,55
6,39
7,73
3,29
5,3
6,12
4,42
1,82
0,5
Nutrientes
N
H2PO4
SO4
K
Ca
Solución entrada
14
1,5
1,3
6
Drenaje
11,8
0,7
5,94
Solución final
13,34
1,26
2,69
-
EXPRESIÓN PARA CALCULAR EL PORCENTAJE DE AGUA A ELIMINAR DEL SISTEMA PARA EVITAR LA ACUMULACIÓN DE UN ION POR ENCIMA DE SU CONCENTRACIÓN MÁXIMA PERMITIDA
(X + P ) a
•
Cg = Pa Ca + X Cm
X=
•
Pa
•
(C
g
- Ca
•
)
Cm - Cg
X: porcentaje de agua eliminada del sistema Pa: porcentaje de agua que es absorbida por el cultivo Cg: concentración del ion limitante en el agua de aporte exterior Ca: concentración de absorción del cultivo para ese ion Cm: concentración máxima que se permite para ese ion en el drenaje
ESTUDIO DE COMPARACIÓN DE ESTRATEGIAS PARA EL REAJUSTE DE LA SOLUCIÓN NUTRITIVA USANDO UN AGUA MEDIOCRE (Massa y col., 2010)
Calidad del agua: 1,5 dS m-1 de CE y 9,5 mMol L-1 de NaCl
EVOLUCIÓN DE LA CE DE LA SOLUCIÓN RECIRCULANTE EN LOS DISTINTOS TRATAMIENTOS SEMICERRADOS
EVOLUCIÓN DE LA N-NO3- DE LA SOLUCIÓN RECIRCULANTE EN LOS DISTINTOS TRATAMIENTOS SEMICERRADOS
EVOLUCIÓN DE LA Na+ DE LA SOLUCIÓN RECIRCULANTE EN LOS DISTINTOS TRATAMIENTOS SEMICERRADOS
EFECTO DE LA ESTRATEGIA DE RECIRCULACIÓN SOBRE EL BALANCE DE AGUA Y NITRÓGENO Estrategia A
Estrategia B
Estrategia C
Estrategia D
-
3517 b 1960 b 5477 c 432 b 168 b 600 b
3428 b 2680 c 6108 b 384 c 14 c 398 d
3586 ab 1420 d 5006 d 455 b 22 c 477 c
3643 a 7198 a 10841 a 500 a 715 a 1215 b
-1
6470 a 3200 b 9670 b 879 a 371 a 1250 a
6524a 4000 a 10524 a 564 c 23 b 587 c
6482 a 2400 c 8882 c 660 b 24 b 684 b
Experimento 2005
Agua absorbida (m ha ) 3 -1 Agua eliminada (m ha ) Agua usada (m ha ) -1 N absorbido (kg ha ) N lixiviado (kg ha - ) -1 N usado (kg ha ) Experimento 2006 3
Agua absorbida (m ha ) Agua eliminada (m ha- ) 3 -1 Agua usada (m ha ) N absorbido (kg ha ) -1 N lixiviado (kg ha ) N usado (kg ha )
PRODUCCIÓN Y EFICIENCIA EN EL USO DEL AGUA Y EL NITRÓGENO EN LOS DISTINTOS TRATAMIENTOS COMPARADOS
ENSAYO DE APLICACIÓN DE LA ESTRATEGIA PLANTEADA POR Massa y col. (2010)
Calidad del agua: 1,5 dS m-1 de CE, 11,6 mMol L-1 de Cly 6,8 mMol L-1 de Na+
USO DE SENSORES CARDY DURANTE EL ENSAYO PARA LA DETERMINACIÓN RÁPIDA DE LA CONCENTRACIÓN DE NITRATOS Y POTASIO Patrón calibración 32,26 mmol L-1 NO3-
Patrón calibración 2,42 mmol L-1 NO3-
Botón de medida Sensores
Botón de calibración Pantalla de lectura
EVOLUCIÓN DE LA CONCENTRACIÓN DE NITRATOS, FOSFATOS Y POTASIO Y DE LA CE EN LA SOLUCIÓN RECIRCULANTE DE UN CULTIVO DE TOMATE CHERRY EN SISTEMA NGS (Magán, datos no publicados) 12
10
) 8 L / l o M m ( n ó i 6 c a r t n e c n o 4 C
2
0
Nitratos
Potasio
Fósforo
Abonado nitrógeno
Abonado fósforo
Abonado potasio
CE
BALANCE ECONÓMICO. AHORRO DE AGUA Y FERTILIZANTES a) Ciclo único: • Ahorro de agua: 1900 m3 ha-1 x 0,25 € m-3 = 475 € ha-1 año-1 • Ahorro de fertilizantes: 4300 € ha-1 año-1
TOTAL: 4775 € ha-1 año-1 b) Doble ciclo: • Ahorro de agua: 2500 m3 ha-1 x 0,25 € m-3 = 625 € ha-1 año-1 • Ahorro de fertilizantes: 5500 € ha-1 año-1
TOTAL: 6125 € ha-1 año-1
BALANCE ECONÓMICO. AUMENTO DE INVERSIÓN NECESARIO PARA REUTILIZAR EL DRENAJE (1 ha) • Recogida del drenaje: 10000 € • Tanques de almacenamiento: 5000 € • Sistema de mezcla: 2500 € • Electrodos selectivos: 3000 € • TOTAL: 20500 € → 2350 € año-1 (para 10 años de vida útil,
excepto los electrodos selectivos para los que se consideran 5 años)
BALANCE ECONÓMICO. AUMENTO DE LOS GASTOS POR RECIRCULACIÓN a) Análisis químicos: • Ciclo único: 2 análisis extra año-1 x 60 € análisis-1 = 120 € año-1 • Doble ciclo: 5 análisis extra año-1 x 60 € análisis-1 = 300 € año-1
b) Gastos de funcionamiento (para un 40% de drenaje): • Ciclo único: 3650 m 3 ha-1 año-1 x 0,02 € m-3 = 73 € ha-1 año-1 • Doble ciclo: 5200 m 3 ha-1 año-1 x 0,02 € m-3 = 104 € ha-1 año-1
c) Gastos de mantenimiento (5% del coste de inversión): 1025 € año-1
BALANCE ECONÓMICO. COSTE DE LA DESINFECCIÓN POR FILTRACIÓN LENTA (DESINFECCIÓN PARCIAL) a) Coste de inversión: 10000 € → 1000 € año-1 (para 10 años de vida útil) b) Gastos de funcionamiento: • Ciclo único: 3650 m 3 ha-1 año-1 x 0,02 € m-3 = 73 € ha-1 año-1 • Doble ciclo: 5200 m 3 ha-1 año-1 x 0,02 € m-3 = 104 € ha-1 año-1
c) Gastos de mantenimiento: despreciables
BALANCE ECONÓMICO. COSTE DE LA DESINFECCIÓN POR OZONIZACIÓN (DESINFECCIÓN TOTAL) a) Coste de inversión: 14000 € → 1400 € año-1 (para 10 años de vida útil) b) Gastos de funcionamiento: Ciclo único: 3650 m3 ha-1 año-1 x 0,08 € m-3 = 292 € ha-1 año-1 Doble ciclo: 5200 m3 ha-1 año-1 x 0,08 € m-3 = 416 € ha-1 año-1 c) Gastos de mantenimiento (5% del coste de inversión): 700 € año-1
BALANCE ECONÓMICO FINAL Sin desinfección Ciclo único +1207 € Doble ciclo +2346 €
Con filtración lenta +134 € +1242 €
Con ozonización -1185 € +170 €