Chapter
3
Trigonometric Functions Solutions SECTION - A Objective Type Questions (One option is correct) Elementary Trigonometric Functions 1.
The radian measure of 450° is (1)
5 4
(2)
5 3
(3)
5 2
(4) 5
Sol. Answer (3)
2.
The degree measure of (1) 160°
7 is 6
(2) 210°
(3) 250°
(4) 270°
(3) sin1° = sin1c
(4) sin1
sin1c 180
(3) cos1° = cos1c
(4) sin1
1 sin1c 180
(3) 2
(4) 0
Sol. Answer (2) 3.
Which of the following is correct? (1) sin1° > sin1c
(2) sin1° < sin1c
Sol. Answer (2) 4.
Which of the following is correct? (1) cos1° > cos1c
(2) cos1° < cos1c
Sol. Answer (1) 5.
If sin + cosec = 2, then sin2 + cosec2 is equal to (1) 1
(2) 4
Sol. Answer (3) 6.
If tan = 3 and lies in the III quadrant, then the value of sin is (1)
1 10
(2) –
1 10
(3)
3 10
(4)
3 10
Sol. Answer (3) Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
48 7.
Trigonometric Functions
If tan
(1)
Solution of Assignment (Set-2)
4 , then sin is 3
4 4 but not 5 5
(2)
4 4 or 5 5
(3)
4 5 but not 5 4
(4)
4 5 and both 5 4
Sol. Answer (2) Correct choice is (2). Since tan sin
8.
4 is negative, lies either in the II quadrant or in the IV quadrant. Thus 3
4 4 if lies in the II quadrant and sin , if lies in the IV quadrant. 5 5
If A lies in the second quadrant and 3 tan A + 4 = 0, then the value of 2cotA – 5cosA + sinA is equal to (1)
53 10
(2)
23 10
(3)
37 10
(4)
7 10
Sol. Answer (2) 3tanA = – 4
5
4
4 tan A 3
3
2cotA – 5cosA + sinA
⎛ 3 ⎞ ⎛ 3 ⎞ 4 = 2 ⎜⎝ ⎟⎠ 5 ⎜⎝ ⎟⎠ 4 5 5
9.
=
6 4 3 4 5
=
30 60 16 46 23 20 20 10
The circular wire of diameter 10 cm is cut and placed along the circumference of a circle of diameter 1 m. The angle subtended by the wire at the centre of the circle is equal to (1)
4
(2)
3
(3)
5
(4)
10
Sol. Answer (3) Diameter of the wire = 10 cm Length of wire = 10 cm Another circle is of diameter = 1 m = 100 cm Radius = 50 cm Required angle =
Length of arc 10 Radius 50 5
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
49
10. The value of (secA + tanA – 1) (secA – tanA + 1) – 2tanA is equal to (1) secA
(2) 2secA
(3) 0
(4) 1
(3) 60°, 240°
(4) 120°, 240°
Sol. Answer (3) = (secA + tanA – 1) (secA – tan A + 1) – 2tanA = [secA + (tanA – 1)] [secA – (tan A – 1)] – 2tanA = [sec2A –(tanA – 1)2]– 2tanA 2 2 = sec A tan A 1 2 tan A 2 tan A
=1–1=0
11.
If cos
1 and 0 360 , then the values of are 2
(1) 120°, 210°
(2) 120°, 300°
Sol. Answer (4) If 0 < < 360°, then cos
1 2 4 ⇒ and 2 3 3 3 3
= 120° and 240° 12. The value of sin15° + cos105° is (1) 0
(2) 2sin15°
(3) cos15° + sin15°
(4) sin15° – cos15°
(3) 1
(4) 0
(3) 0
(4) 1
(3) 1
(4) –1
Sol. Answer (1) sin15° + cos105° = sin15° + cos(90° + 15°) = sin15° – sin15° =0 13. If sin1 + sin2 + sin3 = 3, then cos1 + cos2 + cos3 = (1) 3
(2) 2
Sol. Answer (4) sin1 = sin2 = sin3 = 1. 1 2 3
2
14. The value of cos10° – sin10° is (1) Positive
(2) Negative
Sol. Answer (1) 15. The value of cos1°.cos2°.....cos179° is (1)
1 2
(2) 0
Sol. Answer (2) cos1°.cos2°……cos179° = 0 (as there will be a term cos 90° in this series whose value is zero) Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
50
Trigonometric Functions
16. If sec
(1)
Solution of Assignment (Set-2)
2 3cot ⎞ 13 ⎛ , 0 ⎟ , then the value of is 5 ⎜⎝ 2⎠ 4 9 sec 2 1
15 352
(2)
15 352
(3)
30 352
(4)
5 352
Sol. Answer (1) sec
13 ,0 5 2
5 23 2 3cot 12 = 12 49 4 9 sec 2 1 5
=
13
12 ( sec 2 1 tan2 )
5
3/4 15 88/5 352
17. The value of (cosecA.cosecB cot A.cot B )2 (cosecA.cot B cosecB .cot A)2 is (1) 1
(2) 2
(3) 0
(4) –1
Sol. Answer (1)
(cosecA.cosecB cot A.cot B )2 (cosecA.cot B cosecB .cot A)2 cosec 2 A(cosec 2B cot 2 B ) cot 2 A(cosec 2B cot 2 B ) cosec 2 A cot 2 A 1 18. If tan cot a, then the value of tan4 cot 4 is equal to (1) a 4 4a 2 2
(2) a 4 4a 2 2
(3) a 4 4a 2 2
(4) a 4 2a 2 4
Sol. Answer (2) tan cot a , tan4 cot 4 ? 4 2 2 2 2 tan4 cot 4 = (tan cot ) 4 tan .cot .(tan cot ) 6 tan .cot
a 4 4{(tan cot )2 2 tan .cot } 6 a 4 4a 2 2
19. If acos + bsin = 3 and asin – bcos = 4, then a2 + b2 has the value (1) 25
(2) 14
(3) 7
(4) 15
Sol. Answer (1) a cos b sin 3 a sin b cos 4
Squaring and adding, a2 + b2 = 25 Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
51
20. Suppose that a cos = b and c sin = d, for and some constants a, b, c, d. Then which of the following is true? (1) a 2c 2 b 2c 2 a 2d 2
(2) a 2d 2 b 2c 2 a 2 c 2
(3) b 2c 2 a 2d 2 a 2 c 2
(4) a 2 b 2 b 2c 2 c 2 d 2
Sol. Answer (1)
a cos b, c sin d cos
b d ,sin a c
Squaring and adding,
b2 a2
d2 c2
1
b 2c 2 a 2d 2 a 2c 2
21. The number of intersecting points on the graph for sin x (1) 3
(2) 4
x for x [ , ] is 10
(3) 2
(4) 1
Sol. Answer (1)
sin x
2
x , x [ , ] 10
Clearly the total number of points of intersection is 3. 22.
(3 sec 2 x )max (4 tan2 y )min equals (1) 0
(2) 1
(3) 2
(4) 3
(3) 0
(4) 1
Sol. Answer (3)
(3 sec 2 x )max (4 tan2 y )min 2 4 2
23. If tan
(1)
p sin q cos p , then the value of is p sin q cos q
p2 q 2 p2 q 2
(2)
p2 q 2 p2 q 2
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
52
Trigonometric Functions
Solution of Assignment (Set-2)
Sol. Answer (1)
tan
p p sin q cos , ? q p sin q cos
Divide numerator and denominator by cos p tan q p 2 q 2 p tan q p 2 q 2
24. The value of sin1.cos2.tan3.cot 4.sec 5.cosec6 is (1) Positive
(2) Negative
(3) Zero
(4) May be positive and Negative
Sol. Answer (2) sin1 cos 2 tan3 cot 4 sec 5 cosec 6
= negative 25. Which of the following is correct? (1) tan1 > tan2
(2) tan2 > tan1
(3) sin1 < cos1
(4) cos3 > cos2
Sol. Answer (1) Both the options are correct
2 1
tan 1 > tan 2 (from graph) 26. The perimeter of a certain sector of a circle is equal to half that of the circle of which it is a sector. The circular measure of one angle of the sector is (1) (– 2) radian
(2) (+ 2) radian
(3) radian
(4) (– 3) radian
Sol. Answer (1) 2r l
1 2r where r is radius of the circle and l is the length of the arc i.e. l r 2
2r r r
⇒ ( 2) radian Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
53
27. If , , [0, 2] , then the sum of all possible values of , , if
sin
(1)
1 1 , cos , tan 3, is 2 2
22 3
21 3
(2)
(3)
20 3
(4) 8
Sol. Answer (1)
sin cos
1 2
⇒
, 2 4 4
1 ⇒ , 2 3 3
tan 3 ⇒
, 2 3 3
Sum of all values = 8
2 22 3 3
28. The angles of a triangle are in A.P. and the number of degrees in the least to the number of radians in greatest is 60 to . The angles in degree are (1) 60°, 60°, 60°
(2) 30°, 60°, 90°
(3) 45°, 60°, 75°
(4) 15°, 60°, 105°
Sol. Answer (2) Let the angles be d, , d 3 180 ⇒ 60
d 180 60 d d = 30° Hence the angles are 30°, 60°, 90°. 29. If ABCD is a cyclic quadrilateral such that 12tanA – 5 = 0 and 5cosB+3 = 0, then the quadratic equation whose roots are cosC and tanD is (1) 39 x 2 16 x 48 0
(2) 39 x 2 88 x 48 0
(3) 39 x 2 88 x 48 0
(4) 39 x 2 13 x 46 0
Sol. Answer (1) 12 tan A 5 0 , 5 cos B 3 0
tan A
5 3 cos B 12 5
∵ ABCD is a cyclic quadrilateral
A + C = ,
B+D=
C = – A,
D=–B
cos C – cos A =
12 13
tan D tan B =
4 3
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
54
Trigonometric Functions
Solution of Assignment (Set-2)
⎛ 12 4 ⎞ ⎛ 12 ⎞ 4 ⎟ x ⎜ ⎟ 0 Equation whose roots are cos C and tan D is x 2 ⎜⎝ ⎝ 13 ⎠ 3 13 3 ⎠ 39 x 2 16 x 48 0
30. If cos sec 2, [0, 2] , then sin8 cos8 equal to (1) –2
(2) 1
(3) 24
(4) 25
Sol. Answer (2) cos sec 2 , [0, 2 ]
cos sec 1
sin8 cos8 0 1 1 31. If the maximum value of cos(cosx) is a and minimum value is b, then (1) b = cos a
(2) a = cos b
(3) a = 0
(4) b = 0
(3) 2k
(4)
Sol. Answer (1)
y cos(cos x ) y max 1 a, when x
2
y min cos1 b when x 0
b = cos a
32. If
1 sin A cos A 2sin A is k , then 1 sin A 1 sin A cos A
(1)
k 2
(2) k
1 k
Sol. Answer (2)
2sin A 1 sin A cos A k, ? 1 sin A cos A 1 sin A k
2sin A.(1 sin A cos A) (1 sin A)2 cos2 A
k
2sin A.(1 sin A cos A) (1 sin A)2 (1 sin2 A)
2 sin A.(1 sin A cot A) (1 sin A).{(1 sin A) (1 sin A)}
1 sin A cos A 1 sin A
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
55
33. If sin x sin2 x 1, then the value of cos12 x 3cos10 x 3cos8 x cos6 x 1 is equal to (1) 0
(2) 1
(3) –1
(4) 2
Sol. Answer (1) sin x sin2 x 1
sin x cos2 x
cos6 x.(cos6 x 3cos4 x 3cos2 x 1) 1 {cos2 x(1 cos2 x )}3 1 {sin x(1 sin x )}3 1 {sin x sin2 x }3 1 (1)3 1 0 29
⎛ r
⎞
∑ cos ⎜⎝ 2 ⎟⎠ S1
34. If
29
and
r 15
(1) cot
⎛ r
⎞
∑ sin ⎜⎝ 2 ⎟⎠ S2 ,
then
r 15
(2) tan
S1 equals S2
(3) –cot
(4) –tan
Sol. Answer (1) 29
∑
r 15 29
∑
r 15
⎛ r ⎞ cos ⎜ ⎟ S1 ⎝ 2 ⎠ ⎛ r ⎞ ⎟ S2 sin ⎜ ⎝ 2 ⎠ 29
S1 =
∑
r 15
⎛ r ⎞ cos ⎜ ⎟ ⎝ 2 ⎠
⎛ 15 ⎞ ⎛ 16 ⎞ ⎛ 29 ⎞ cos ⎜ ⎟ cos ⎜ ⎟ .... cos ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ ⎝ 2 ⎠ (sin cos sin cos ) .....
(Sum of consecutive terms is zero and these are 15 terms in all) S1 = (sin cos sin )
cos 29
S2 =
∑
r 15
⎛ r ⎞ ⎟ sin ⎜ ⎝ 2 ⎠
= – cos sin cos = sin
S1
S2
cos sin = cot
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
56
Trigonometric Functions
Solution of Assignment (Set-2)
35. The maximum value of cos2 cos(33 ) sin2 sin(45 ) is (1) 1 + sin21
(3) 1 + cos21
(2) 2
(4) cos22
Sol. Answer (1)
cos2 cos(33 ) sin2 sin(45 ) cos2 ( cos ) sin2 ( sin ) cos2 ( cos ) sin2 (sin ) ∵ cos cos(cos ) 1
cos2 1 cos2 (cos ) 1 and 0 sin2 (sin ) sin2 1 ∵ cos2 1 cos2 (cos ) sin2 (sin ) 1 sin2 1
⎞ ⎛ Maximum value = 1 sin2 1 ⎜⎝ At ⎟⎠ 2
36. If
sin4 x cos4 x 1 , then 2 3 5
(1) tan2 x
(3)
1 3
sin8 x cos8 x 1 8 27 125
(2) tan2 x
1 4
(4) sin2 x
3 4
Sol. Answer (3)
sin4 x cos4 x 1 2 3 5 5(3tan4x + 2) = 6 sec4x 15tan4x + 10 = 6 + 6tan4 x + 12 tan2x 9tan4x – 12tan2 x + 4 = 0 (3tan2x – 2)2 = 0 2⎞ ⎛ 2 ⎜⎝ tan x 3 ⎟⎠
sin2 x
2 3 & cos2 x 5 5
5
2 3
sin8 x sin8 x 8 27
16 81 8 625 27 625
5 1 625 125
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
57
37. If a sin2 b cos2 m, b sin2 a cos n, a tan b tan , then which of the following is true? (1)
1 1 1 1 n m a b
(2)
1 1 1 1 n m a b
2 2 2 2 (3) m n a b
(4) m 2 n 2 a 2 b 2
Sol. Answer (2) asin2+ bcos2= m
…(1)
bsin2 + acos2 = n
…(2)
atan = btan(ii)
…(3)
Divide (1) by cos2 we, get atan2 + b = m sec2 2 tan
mb am
…(4)
Divide (2) by cos2, we get Btan2 + a = nsec2 2 tan
na bn
…(5)
From (3), (4), (5) ⎛ m b⎞ ⎛ n a⎞ b2 ⎜ a2 ⎜ ⎝ a m ⎟⎠ ⎝ b n ⎟⎠
a2(mb – mn – b2 + bn) = b2(an – a2 – mn – am) abm(a – b) + abn(a – b) = mn(a2 – b2) abm + abn = mn(a + b) Divide both sides by abmn, we get
1 1 1 1 n m a b Transformation Formulae 38. The value of sin75° is equal to (1)
2 3 2
(2)
3 1 2 2
(3)
3 1 2 2
(4)
3 1 2 2
Sol. Answer (2) sin(A + B) = sinA cosB + cosA sinB
39. If tan
(1)
6
1 1 and tan , then the value of + is 2 3
(2)
(3) 0
(4)
4
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
58
Trigonometric Functions
Solution of Assignment (Set-2)
Sol. Answer (4) tan( + ) =
tan tan 1 – tan tan
⎛ ⎞ ⎛ ⎞ 40. The value of cot ⎜ ⎟ cot ⎜ ⎟ is ⎝4 ⎠ ⎝4 ⎠ (1) –1
(2) 0
(3) 1
(4) Not defined
Sol. Answer (3) 41. The value of cos248° – sin212° is
5 1 8
(1)
(2)
5 1 8
5 1 5
(3)
5 1
(4)
2 2
Sol. Answer (1) cos2A – sin2B = cos(A + B) cos(A – B) 42. The value of sin(45° + ) – cos(45° –) is (1) 2cos
(2) 2sin
(3) 1
(4) 0
Sol. Answer (4) sin = cos(90° – ) 43. If cos( )
(1)
4 5 and sin( ) where , lie between 0 and , then the value of tan (2) is 5 13 4
25 16
(2)
56 33
(3)
19 12
(3)
3 2
(4)
20 7
Sol. Answer (2)
cos( )
4 5
⇒
tan( )
3 4
sin( )
5 13
⇒
tan( )
5 12
tan tan( ) tan 2 tan ⎡⎣ ( )⎤⎦ 1 tan( ) tan( – )
44. The value of
(1) 1
1 tan2 15 is 1 tan2 15 (2)
3
(4) 2
Sol. Answer (3) 1 tan2 15 cos2 15 sin2 15 cos 30 cos0 1 1 tan2 15 cos2 15 sin2 15
3 2
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
59
45. If (1 + tan)(1 + tan) = 2, then + = (1) 30°
(2) 45°
(3) 60°
(4) 75°
Sol. Answer (2) 46. The value of cos12° + cos84° + cos156° + cos132° is (1)
1 2
(2) 1
(3)
1 2
(4)
(3)
1 2
(4) 2
1 8
Sol. Answer (3) cos12° + cos132° + cos84° + cos156° ⎛ 144 ⎞ ⎛ 120 ⎞ ⎛ 240 ⎞ ⎛ 72 ⎞ = 2cos ⎜⎝ ⎟ cos ⎜⎝ ⎟ 2cos ⎜⎝ ⎟ cos ⎜⎝ ⎟⎠ 2 ⎠ 2 ⎠ 2 ⎠ 2
= 2cos72
1 2cos120 cos36 2
= cos72° – cos36°
⎛ 108 ⎞ ⎛ 36 ⎞ = 2sin ⎜⎝ ⎟ sin ⎜⎝ ⎟⎠ 2 ⎠ 2 = – 2sin54°sin18° ⎛ 5 1⎞ ⎛ 5 1⎞ = 2 ⎜ ⎟⎜ ⎟ ⎝ 4 ⎠⎝ 4 ⎠
=
1 2
47. The value of sin50° – sin70° + sin10° is equal to (1) 1
(2) 0
Sol. Answer (2) sin50° + sin10° – sin70° ⎛ 60 ⎞ ⎛ 40 ⎞ = 2 sin ⎜⎝ ⎟⎠ cos ⎜⎝ ⎟⎠ sin70 2 2
= (cos20°) – cos20° =0
48. The value of sin
(1) sin
2 5 sin sin sin is 18 9 9 18
7 4 sin 18 9
(2) 1
(3) cos
3 cos 6 7
(4) cos
sin 9 9
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
60
Trigonometric Functions
Solution of Assignment (Set-2)
Sol. Answer (1) Let sin + sin2 + sin4 + sin5 = sin + sin5 + sin2+ sin4 = 2sin3cos2 + 2sin3cos = 2sin3 (cos2 + cos) = 2 sin = cos
3 ⎛ 2 ⎞ cos ⎟ ⎜⎝ cos 18 18 18 ⎠
cos 9 18
⎛ ⎞ ⎛ ⎞ = sin ⎜⎝ ⎟⎠ sin ⎜⎝ ⎟⎠ 2 9 2 18
sin
7 8 sin 18 18
= sin
7 4 sin 18 9
49. The value of sin
(1)
13 sin is 10 10
1 2
(2)
1 2
(3)
1 4
(4) 1
4
(4)
Sol. Answer (3)
3 ⎞ ⎛ sin18 sin ⎜ ⎟ ⎝ 10 ⎠ = – sin18°sin54° ⎛ 5 1⎞ ⎛ 5 1⎞ = ⎜ ⎟⎜ ⎟ ⎝ 4 ⎠⎝ 4 ⎠
=
4 1 16 4
50. In a ABC, if sinA – cosB = cosC, then the measure of B is (1)
2
(2)
3
(3)
6
Sol. Answer (1) sinA = cosC + cosB
sin A 2cos
B C B C .cos 2 2
⎛ A⎞ ⎛ B C⎞ sin A 2cos ⎜ ⎟ cos ⎜ ⎝ 2 2⎠ ⎝ 2 ⎟⎠ Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
sin A 2sin
Trigonometric Functions
A ⎛ B C⎞ cos ⎜ ⎝ 2 ⎟⎠ 2
2sin
A A A ⎛ B C⎞ cos 2 sin cos ⎜ 0 ⎝ 2 ⎟⎠ 2 2 2
2sin
A⎛ A B C⎞ ⎜⎝ cos cos ⎟ 0 2 2 2 ⎠
cos
61
A ⎛ B C⎞ cos ⎜ 0 ⎝ 2 ⎟⎠ 2
A A ⎡ ⎤ ⎢∵ A 0 or 2 0 ⇒ sin 2 0⎥ ⎣ ⎦
A B C 2 2 A–B+C=0 A+C=B Also, A + B + C = 180° 2B = 180° B = 90° or
2
51. The value of cos10° cos20° cos40° is (1)
1 cot10 8
(2)
1 tan10 8
(3)
1 sec10 4
(4)
1 cosec10 4
Sol. Answer (1) Multiply and divide by
1 sin10 2
52. The value of the expression
⎛ ⎞ ⎛ 9 ⎞ ⎛ 3 ⎞ ⎛ 5 ⎞ 2cos ⎜ ⎟ cos ⎜ ⎟ cos ⎜ ⎟ cos ⎜ ⎟ is ⎝ 13 ⎠ ⎝ 13 ⎠ ⎝ 13 ⎠ ⎝ 13 ⎠ (1) 0
(2) –1
(3) 1
(4) 2
Sol. Answer (1) ⎛ ⎞ ⎛ 9 ⎞ ⎛ 3 ⎞ ⎛ 5 ⎞ 2cos ⎜ ⎟ cos ⎜ ⎟ cos ⎜ ⎟ cos ⎜ ⎟ ⎝ 13 ⎠ ⎝ 13 ⎠ ⎝ 13 ⎠ ⎝ 13 ⎠
⎛ 10 ⎞ ⎛ 8 ⎞ ⎛ 3 ⎞ ⎛ 5 ⎞ = cos ⎜⎝ ⎟⎠ cos ⎜⎝ ⎟⎠ cos ⎜⎝ ⎟⎠ cos ⎜⎝ ⎟⎠ 13 13 13 13 3 ⎞ 5 ⎞ ⎛ ⎛ ⎛ 3 ⎞ ⎛ 5 ⎞ = cos ⎜⎝ ⎟⎠ cos ⎜⎝ ⎟⎠ cos ⎜⎝ ⎟⎠ cos ⎜⎝ ⎟⎠ 13 13 13 13
⎛ 3 ⎞ ⎛ 5 ⎞ ⎛ 3 ⎞ ⎛ 5 ⎞ = cos ⎜⎝ ⎟⎠ cos ⎜⎝ ⎟⎠ cos ⎜⎝ ⎟⎠ cos ⎜⎝ ⎟⎠ 13 13 13 13 =0 Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
62
Trigonometric Functions
Solution of Assignment (Set-2)
53. If sin + cos = 1, then the value of sin2 is equal to (1) 1
(2)
1 2
(3) 0
(4) –1
(3) 3
(4) 4
Sol. Answer (3) On squaring both the sides, we get (sin + cos)2 = 1 sin2 + cos2 + 2sincos = 1 sin2 = 0 1 1 and tan B , then tan (2A + B) is equal to 2 3
54. If tan A (1) 1
(2) 2
Sol. Answer (3) 2 tan A tan2 A 1 tan2 A
1 2 4 1 3 1 4 2
tan 2 A tan B tan(2 A B ) = 1 tan 2 A tan B
4 1 3 3 3 4 1 1 3 3
55. The value of tan3A – tan2A – tanA is equal to (1) tan3A tan2A tanA
(2) –tan3A tan2A tanA
(3) tanA tan2A – tan2Atan3A – tan3A tanA
(4) tan6A
Sol. Answer (1) 3A = 2A + A tan3A = tan(2A + A) 4 and lies in the III quadrant, then the value of cos is 2 5
56. If sin
(1)
1
(2)
5
1 10
(3)
1 5
(4)
1 10
Sol. Answer (3) 180° < < 270° 90° <
< 135° 2
This means
cos
lies in the second quadrant. 2
will be negative. 2
If sin
4 3 , then cos 5 5
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
63
Now, cos2A = 2cos2A – 1
cos 2cos2
1 2
3 2cos2 1 5 2 2cos2 cos2
cos
2 2 5
1 2 5
1 – [Since lies in the II quadrant] 2 5 2
57. The value of tan75° – cot75° = (2) 2 3
(1) 2 3
(3) 2 3
(4) 2 3
(3) tan
(4) cot
Sol. Answer (1) tan75 cot 75
sin75 cos75 cos75 sin75
sin2 75 cos2 75 2cos(75 2) = sin75 cos75 sin(75 2)
=
58. The value of
(1)
2cos150 2cos30 2 3 sin150 sin30
sin sin 2 is 1 cos cos 2
1 tan 2
(2)
1 cot 2
Sol. Answer (3) sin sin2 sin (1 2cos ) sin tan = 2 cos 1 cos cos 2 cos 2cos
59. The value of 2sinA cos3A – 2sin3A cosA is (1) sin4A
(2)
1 sin 4 A 2
(3)
1 sin 4 A 4
(4) sin2A
Sol. Answer (2) 2sinAcosA(cos2A – sin2A) = sin2Acos2A =
1 sin 4 A 2
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
64
Trigonometric Functions
60. The value of tan
5 tan is 12 12
3
(1)
Solution of Assignment (Set-2)
(2) 2 3
(3)
3 2
3 2
(4)
Sol. Answer (2)
tan
5 tan 12 12
= tan75° – tan15° = cot15° – tan15° 2 3 2 3 2 3
⎛ ⎞ ⎟ is equal to ⎝ 2 ⎠
61. If sin + sin = a and cos – cos = b then, tan ⎜ (1)
a b
(2)
b a
(3)
a2 b2
(4)
a b
Sol. Answer (2) sin + sin = a ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⇒ 2 sin ⎜ cos ⎜ 2 sin ⎜ sin ⎜ b ⎝ 2 ⎟⎠ ⎝ 2 ⎟⎠ ⎝ 2 ⎟⎠ ⎝ 2 ⎟⎠ a ⎛ ⎞ ⇒ cot ⎜ ⎟ ⎝ 2 ⎠ b
b ⎛ ⎞ ⇒ tan ⎜ ⎝ 2 ⎟⎠ a 3 +1
62. If tan =
3 1
, then the expression cos2 + (2 + 3)sin2 is
(1) 2 3
(2) –1
(3) 1
(4) 2 3
Sol. Answer (3) 3 1
tan
3 1
2 3 tan75
= 75°
cos 2 2 3 sin 2
sin2 3 2 3 2 sin50 2
1 1 2
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
63. If 0 < 2 < 1 <
3 , cos(1 + 2 ) = and 4 5
cos(1 – 2) =
4 , then sin21 equal to 5
(1) – 1
(2) 1
(3) 2
65
(4) – 2
Sol. Answer (2) cos 1 2
3 4 , cos 1 2 5 5
sin(21) = sin[(1 + 2) + (1 – 2)]
4 4 3 3 . . 5 5 5 5
25 1 25
64. If sin =
1 1 ,cos = , then belongs to, where 0 < , 2 2 3
⎛ ⎞ ⎝3 2⎠
⎛ 2 ⎞ ⎟ ⎝2 3 ⎠
(1) ⎜ , ⎟
(2) ⎜ ,
⎛ 2 5 ⎞ , ⎟ ⎝ 3 6 ⎠
⎛ 5 ⎞ , ⎟ ⎝ 6 ⎠
(3) ⎜
(4) ⎜
(3) [–4, 4]
(4) [–10, 7]
Sol. Answer (2)
sin
1 , 2
, 6
cos
1 3
3
⎛ 2 ⎞ ⎜ , ⎝ 2 3 ⎟⎠
65. The range of f() = 3cos2 – 8 3 cos·sin + 5sin2 – 7 is given by (1) [–7, 7]
(2) [–10, 4]
Sol. Answer (2) f() = 3cos2 – 8 3 cossin + 5sin2 – 7 = 3(cos2 + sin2) + 2sin2 – 4 3 sin2 – 7 = 3 + 1 – cos2 – 4 3 sin2 – 7 = – cos2 – 4 3 sin2 – 3 Maximum value =
1 48 3 7 3 4
Minimum value = – 7 – 3 = – 10 Rf = [– 10, 4] Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
66
Trigonometric Functions
Solution of Assignment (Set-2)
⎛ ⎞ ⎛ ⎞ ⎟ 2cos ⎜ ⎟ for real values of is 4 4 ⎝ ⎠ ⎝ ⎠
66. The maximum value of 1 sin ⎜ (1) 3
(2) 5
(3) 4
(4) 2
Sol. Answer (3) ⎛ ⎞ ⎛ ⎞ 1 sin ⎜ ⎟ 2cos ⎜ ⎟ ⎝4 ⎠ ⎝4 ⎠ 1
1 2
1 ⎛1 ⎞ (sin cos ) 2 ⎜ cos sin ⎟ ⎝2 ⎠ 2
⎛ 1 ⎞ ⎛ 1 ⎞ 1 sin ⎜ 2 ⎟ cos ⎜ 2⎟ ⎝ 2 ⎠ ⎝ 2 ⎠
1
3 2
sin
3 2
Maximum value =
cos 9 9 1 3 1 4 2 2
⎛⎞ ⎛⎞ ⎛ ⎞ ⎛ ⎞ ·cos ⎜ ⎟ ·cos ⎜ ⎟ ........cos ⎜ n ⎟ equals ⎟ ⎝4⎠ ⎝8⎠ ⎝ 16 ⎠ ⎝2 ⎠
67. The value of cos ⎜
⎛ ⎞ cosec ⎜ n ⎟ 2 ⎝2 ⎠ 1
(1)
n
(2)
1 n 1
2
⎛ ⎞ cosec ⎜ n 1 ⎟ ⎝2 ⎠
(3)
⎛ ⎞ cosec ⎜ n1 ⎟ 2 ⎝2 ⎠ 1
n
(4)
1 n 1
2
⎛ ⎞ cosec ⎜ n ⎟ ⎝2 ⎠
Sol. Answer (4)
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ cos ⎜ ⎟ .cos ⎜ ⎟ .cos ⎜ ⎟ ........cos ⎜ n ⎟ ⎝ 4⎠ ⎝ 8⎠ ⎝ 16 ⎠ ⎝2 ⎠ = cosA.cos2A.cos2nA ………. cos2n–2A., A
1 n
2 sin A
sin 2n 1 A
⎛ 2n A ⎞ sin ⎜ 2 ⎟ 2n sin ⎝ ⎠
⎛ ⎞ sin ⎜ ⎟ ⎝ 2⎠ 2 sin
2n
1
1
n
1 ⎛ ⎞ 2n sin ⎜ n ⎟ ⎝2 ⎠
1 2n
⎛ ⎞ cosec ⎜ n ⎟ ⎝2 ⎠
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
67
68. The expression tan + 2tan2 + 4tan4 + 8cot8 is equal to (if all terms are defined) (1) tan
(2) cot
(3)
1 tan 2 2
(4)
1 cot 2
Sol. Answer (2) tan + 2tan2 + 4tan4 + 8cot8 = cot – 2cot2 + 2cot2 – 4cot + 4cot – 8cot8 + 8cot8 = cot 69. If tanA + tanB + tanC = tanA·tanB·tanC, then (1) A, B, C must be angles of a triangle
(2) The sum of any two of A, B, C is equal to third
(3) A + B + C must be integral multiple of
(4) A + B + C must be odd integral multiple of
Sol. Answer (3) If A + B + C = n tanA + tanB + tanC = tanA · tanB · tanC
70. The value of sin
3 5 + sin + sin +........ to n terms is equal to n n n
(1) 1
(2) 0
(3)
n 2
(4)
n 1 2
(3)
n 1 2
(4)
n 1 2
Sol. Answer (2) sin
3 5 sin sin ....... n n n
⎛ 2 ⎞ sin ⎜ n. ⎟ ⎝ 2n ⎠ 2 ⎞ ⎛ sin ⎜ (n 1) ⎟ 0 ⎝n 2n ⎠ ⎛ 2 ⎞ sin ⎜ ⎟ ⎝ 2n ⎠
n 1
71.
∑ cos2
r =1
(1)
r is equal to n
n 2
(2)
n 1 2
Sol. Answer (3) n 1
∑ cos2 r 1
cos2
r n
2 3 (n 1) cos2 cos2 ......... cos2 n n n n
1⎡ 2 4 ⎤ ⎢(n 1) cos cos ........⎥ upto n 1 terms 2⎣ n n ⎦ Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
68
Trigonometric Functions
Solution of Assignment (Set-2)
⎞ ⎛ sin ⎜ (n 1) ⎟ ⎝ ⎞ n 1 1 n⎠ ⎛ 2 (n 2) · ⎟ · cos ⎜ ⎝ n 2 2 n⎠ ⎛ ⎞ sin ⎜ ⎟ ⎝ n⎠
n 1 1 n 1 2 2 2
⎞ ⎞ ⎛ ⎛ 72. If tan + tan ⎜ + ⎟ + tan ⎜ ⎟ = K tan3 , then K is equal to 3 3 ⎝ ⎠ ⎝ ⎠ (1) 1
(2) 3
(3)
1 3
(4) 2
1 64
(4)
Sol. Answer (2)
⎞ ⎞ ⎛ ⎛ tan tan ⎜ ⎟ tan ⎜ ⎟ K tan3 ⎝ ⎝ 3⎠ 3⎠ K=3 73. The value of sin
3 5 13 ·sin ·sin ........sin is equal to 14 14 14 14
(1) 1
(2)
1 16
(3)
1 32
Sol. Answer (3) sin
3 5 7 9 11 13 .sin .sin .sin .sin .sin .sin 14 14 14 14 14 14 14
sin2
3 5 .sin2 .sin2 14 14 14
3 5 ⎞ ⎛ ⎜ sin .sin .sin ⎟ ⎝ 14 14 14 ⎠
2
2 3 ⎞ ⎛ ⎜ cos .cos .cos ⎟ ⎝ 7 7 7⎠
⎛ 1⎞ ⎜ ⎟ ⎝ 8⎠
2
2
1 64
74. In a triangle ABC, tanA + tanB + tanC = 6 and tanA·tanB = 2, then value of tanA, tanB and tanC are (1) 3, 1, 2
(2) 1, 2, 4
(3) 1, 2, 3
(4) 2, 2, 2
Sol. Answer (3) tanA + tanB + tanC = 6 tanA tanB tanC = 6
⇒
tan C
6 3 2
tanA = 1, tanB = 2, tanC = 3 Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
75. Let a = cosA + cosB – cos(A + B) and b = 4 sin
(1) 1
69
A B ⎛A+B⎞ ·sin ·cos ⎜ ⎟ , then a – b is equal to 2 2 ⎝ 2 ⎠
(2) Zero
1 2
(3) –1
(4)
(3) 2
(4) –2
Sol. Answer (1) a = cosA + cosB – cos(A + B)
2cos
AB AB AB cos 2cos2 1 2 2 2
1 2cos
AB⎛ AB A B⎞ cos ⎜⎝ cos ⎟ 2 2 2 ⎠
1 2cos
AB A B 2sin sin 2 2 2
1 4cos
AB A B sin sin 2 2 2
=1+b a–b=1 76. The value of tan615° – 15tan415° + 15tan215° – 3 is (1) –1
(2) 1
Sol. Answer (4) Let = 15° 3 = 45° tan 3 = 1 3 tan – tan3 = 1 – 3 tan2 Squaring both side 9tan2 + tan6 – 6tan4 = 1 + 9tan4 – 6tan2 tan6 – 15tan4 + 15tan2 – 3 = –2 77. If A, B, C are in A.P., then correct relation is (1) cot A =
sin B sin C cos C sin B
(2) cot B =
sin A sin C cos C cos A
(3) tan A =
sin A sin C cos C cos B
(4) tan B =
sin B sin C cos C cos B
Sol. Answer (2) A, B, C A.P. 2B = A + C B
AC 2
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
70
Trigonometric Functions
Solution of Assignment (Set-2)
⎛ A C⎞ cot B cot ⎜ ⎝ 2 ⎟⎠ ⎛ A C⎞ cos ⎜ ⎝ 2 ⎟⎠ ⎛ A C⎞ sin ⎜ ⎝ 2 ⎟⎠
⎛ A C⎞ ⎛ A C ⎞ cos ⎜ · sin ⎜ ⎝ 2 ⎟⎠ ⎝ 2 ⎟⎠ ⎛ A C⎞ ⎛ A C⎞ sin ⎜ · sin ⎜ ⎝ 2 ⎟⎠ ⎝ 2 ⎟⎠
78.
cos
sin A sinC cosC cos A
3 5 + cos + cos K cot , then K is equal to 14 14 14 14
(1) 1
(2)
1 2
(3) 2
(4) – 2
Sol. Answer (2)
cos
3 5 cos cos K cot 14 14 14 14
cos
4 2cos cos K cot 14 14 14 14
4 2 cos cos 14 14
2cos
sin
14 cos 14 sin 14
K .cos
4 sin K sin 14 14 14
5 3 sin K sin 14 14 14
K sin
2 sin
5 3 sin sin 14 14 14
3 2 3 sin cos 14 14 14
2 sin
3 2cos2 14 14
4 sin
3 cos2 14 14
⇒
K
1 2
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
71
79. The minimum value of 8(cos2 + cos) is equal to (1) –17
(2) –9
(3) 3
(4) –8
Sol. Answer (2) 8(cos2 + cos) = 8(2cos2 – 1 + cos) = 8(2cos2 + cos – 1) 1 1⎞ ⎛ 16 ⎜ cos2 cos ⎟ ⎝ 2 2⎠ ⎛⎛ 16 ⎜ ⎜ cos ⎝⎝
2 1⎞ 6⎞ ⎟⎠ ⎟ 4 16 ⎠
Minimum value = 16
9 –9 16
80. If 4n = , then cot·cot2·cot3 ..... cot(2n – 1) n Z is equal to (1) 1
(2) –1
(3) 2
(4) Zero
Sol. Answer (1) 4n = 2n =
2
cot.cot2.cot3 …….cot(2n – 1)
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ = cot.cot2.cot3 …….. cot ⎜⎝ 3 ⎟⎠ .cot ⎜⎝ ⎟⎠ .cot ⎜⎝ ⎟⎠ 2 2 2 =1
1 81. The value of tan7 is equal to 2
(1)
3 2
(2)
2 +1
3 2 2 1
(3)
3+ 2 2 +1
(4)
3+ 2 2 1
Sol. Answer (1)
tan
Put
1 cos 2 sin2
15 2
15 1 cos15 tan 2 sin15
1
3 1 2 2 3 1 2 2
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
72
Trigonometric Functions
2 2 3 1 3 1
Solution of Assignment (Set-2)
3 1 3 1
2 6 3 3 2 2 3 1 3 1
2 6 42 3 2 2 2
6 4 3 2
3 2 2 1
6 4 3 2
3 2
2 1
3 2 2 1
82. If tan a , where a is a rational number which is not a perfect square, then which of the following is a rational number? (1) sin2
(2) tan2
(3) cos2
(4) cosec2
Sol. Answer (3)
1
+
a
tan a
a
a sin 2 1 a 1 a
a
1
2 a sin2 1 a cos 2 2cos2 1 2
1 1 1 a
2 1 a 1 a 1 a a 1
83. The value of 2tan18° + 3sec18° – 4cos18° is (1) Zero
(2)
5
(3) 5
(4)
3
Sol. Answer (1) 2tan18° + 3sec18° – 4cos18°
2sin18 3 4cos2 18 cos18
2sin18 3 4 4 sin2 18 cos18
4 sin2 18 2sin18 1 cos18
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
4
5 1 16
2
2.
cos18
Trigonometric Functions
73
5 1 1 4
62 5 2 5 24 0 4cos18
84. If tan2 – 2tan2 = 1, then which of the following is correct? (1) 2cos2 – cos2 = 1
(2) cos2 – 2cos2 = 1
(3) 2cos2 – cos2 = – 1
(4) cos2 – 2cos2 = –1
Sol. Answer (3) tan2 – 2tan2 = 1 tan2 = 1 + 2tan2 1 + tan2 = 2 + 2tan2 sec2 = 2sec2 cos2 = 2cos2
2cos2 = 4sin2
1 + cos2 = 2(1 + cos2) 2cos2 – cos2 = – 1 85. The value of tan10°·tan50°·tan70° is (1)
3
(2)
1 3
(3) 1
(4) –1
Sol. Answer (2) tan30° =
1 3
86. The expression 2sin2° + 4sin4° + 6sin6° + ........ 180sin180° equals (1) cot1°
(2) 90cot1°
(3) sin1°
(4) 90cos1°
Sol. Answer (2) 2sin2° + 4sin4° + 6sin6° +………….+ 178sin178° + 180sin180° = (2 + 178)sin2° + (4 + 176)sin4° + (6 + 174)sin6° + …….+ sin88° = 180°(sin2° + sin4° + sin6° + ……) + 90sin90°
2⎞ ⎛ sin ⎜ 44 ⎟ ⎝ 2⎞ 2⎠ ⎛ 180 sin ⎜ 2 (44 1). ⎟ 90 ⎝ ⎠ 2 2 ⎛ ⎞ sin ⎜ ⎟ ⎝ 2⎠
180
sin 44 sin 45 90 sin1
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
74
Trigonometric Functions
180 2
Solution of Assignment (Set-2)
sin(45 1) 90 sin1
1 ⎡ 1 ⎤ cos1 sin1 ⎥ 180 ⎢ 2 2 ⎢ ⎥ 90 sin1 2 ⎢ ⎥ ⎢⎣ ⎥⎦
180 ⎡ 1 1 ⎤ cot1 ⎢ ⎥ 90 2 ⎣ 2 2⎦
90 cot1
180 90 2
= 90cot1° 87. If cos2x + 2cosx = 1, then sin2x(2 – cos2x) is equal to (1) 1
(2) –1
(3) 5
(4)
5
Sol. Answer (1) cos2x + 2cosx = 1 2cosx = 1 – cos2x 2cosx = 2sin2x cosx = sin2x sin2x(2 – cos2x) = sin2x(1 + sin2x) = sin2x + sin4x = sin2x + cos2x =1 88. The value of tan (1) tan2n
(1 + sec)(1 + sec2) (1 + sec22) ........ (1 + sec2n) is 2 (2) tan2n – 1
(3) tan2n + 1
(4) tan2n – 2
Sol. Answer (1) tan
1 sec (1 sec 2)(1 sec 4)........(1 sec 2n ) 2
tan
1 tan 1 tan2 1 tan 4 2 cos cos 2 cos 4
2cos2 2 2 2 2 2cos 2cos 2 cos cos 2 cos 4 cos 2 sin
cos .cos 2 23 sin .cos . 2 2 cos 4 Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
22 sin .cos .
2
Trigonometric Functions
75
cos 2 cos 4
sin2 cos 2 cos 4
= tan4 = tan22
tan (1 sec )(1 sec 2).........(1 sec 22n ) 2 = tan2n 44
89. The value of [100(x – 1)] is where [x] is the greatest integer less than or equal to x and x =
∑ cos n°
n 1 44
∑ sin n°
n 1
(1) 140
(2) 141
(3) 142
(4) 144
Sol. Answer (2)
A
44
∑ cos n
n 1
= cos1° + cos2° + cos3° + …….. + cos44° B = sin1° + sin2° + sin3° + ……. + sin44° x
A cos1 cos 2 cos3 ....... cos 44 B sin1 sin 2 sin3 .......... sin 44
sin89 sin88 sin87 ....... sin 46 sin1 sin 2 sin3 .......... sin 44
1⎞ ⎛ sin ⎜ 44. ⎟ ⎝ 1⎞ 2⎠ ⎛ cos ⎜ 1 (44 1) ⎟ ⎝ 2⎠ ⎛ 1⎞ sin ⎜ ⎟ ⎝ 2⎠ 1⎞ ⎛ sin ⎜ 44. ⎟ ⎝ 1⎞ 2⎠ ⎛ sin ⎜ 1 (44 1) ⎟ 1 ⎝ 2⎠ sin 2 1⎞ ⎟ 1 2⎠ cot 22 1⎞ 2 ⎛ sin ⎜ 22 ⎟ ⎝ 2⎠ ⎛ cos ⎜ 22 ⎝
2 1
⎡100 ⎣
2 1 1 ⎤ 100 1.41 141 ⎦
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
76
Trigonometric Functions
Solution of Assignment (Set-2)
and + = , then tan equals 2
90. If
(1) 2(tan + tan)
(2) tan + 2tan
(3) tan – tan
(4) tan – tan
Sol. Answer (2)
, 2
2
=–
tan = cot
tan
tan tan 1 tan tan
tan + tan tan tan = tan – tan tan = tan – 2tan tan = tan + 2tan 91. If f(, ) = cos2 + sin2·cos2, then which of the following is incorrect?
⎛ 2 ⎞ ⎛ 2 ⎞ (1) f ⎜ , ⎟ f ⎜ 5 , 5⎟ 5 5 ⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞ (2) f ⎜ , ⎟ = f ⎜ , ⎟ 12 3 ⎝ ⎠ ⎝ 3 12 ⎠
⎛ ⎞ ⎛ ⎞ (3) 3f ⎜ , ⎟ f ⎜ , ⎟ 5 3 ⎝ ⎠ ⎝3 5⎠
⎛ ⎞ ⎛ ⎞ (4) f ⎜ , ⎟ 3f ⎜ 18 , 4 ⎟ 4 18 ⎝ ⎠ ⎝ ⎠
Sol. Answer (1) f(, ) = cos2 + sin2.cos2 = 1 – sin2 + sin2.cos2 = 1 – (1 – cos2)sin2 = 1 – (1 – cos2)sin2 = 1 – 2sin2 sin2 ⎛ ⎞ f ⎜ , ⎟ 1 2sin2 sin2 ⎝ 12 3 ⎠ 12 3
1 2 1
1
3 1
2
8
3 42 3
3 4
16
3 2 3 8
863 8
3
23 3 8
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
77
92. Let f(x) = cos10x + cos8x + 3cos4x + 3cos2x and g(x) = 8cosx·cos33x, then for all x we have (1) f(x) = g(x)
(2) 2f(x) = 3g(x)
(3) f(x) = 2g(x)
(4) 2f(x) = g(x)
Sol. Answer (1) f(x) = cos10x + cos8x + 3cos4x + 3cos2x g(x) = 8cosx.cos33x = 8cosx(4cos3x – 3cosx)3 = 8cosx ((4cos3x)3 – 3.(4cos3x)2.3cosx + 3.(4cos3x)(3cosx)2 – (3cosx)3) = 8cosx(64cos9x – 144cos7x + 108cos5x – 27cos3x) = 8cos4x(64cos6x – 144cos4x + 108cos2x – 27) f(x) = cos10x + cos8x + 3cos4x + 3cos2x n
93.
⎛
⎞
1
∑ ⎜⎝ cos + cos(2r + 1) ⎟⎠ , n N is equal to
r =1
sin(n + 1) sin ·cos n
(1)
(2)
sin n sin2 ·cos(n + 1)
(3)
tan(n + 1) sin n
(4)
sin(n 1) sin ·cos n
Sol. Answer (2) n
⎛
1
⎞
∑ ⎜⎝ cos cos(2r 1) ⎟⎠ r 1
1 1 1 ......... cos cos3 cos cos5 cos cos(2n 1)
1 1 1 ......... 2cos 2 cos 2cos3 cos 2 2cos(n 1).cos n
1 ⎡ sin(2 ) sin(3 2) ⎤ ........⎥ ⎢ 2sin ⎣ cos 2.cos cos3 cos 2 ⎦
1 ⎡ sin 2 cos cos 2 sin sin3 cos 2 cos3 sin 2 ⎤ ........⎥ 2 sin ⎢⎣ cos 2.cos cos3 cos 2 ⎦
1 [tan2 – tan + tan3 – tan2 + ……… tan(n + 1) – tann] 2sin
1 [tan(n + 1) – tan] 2sin
1 sin(n 1 1) 2sin cos(n 1) cos
sin n cos(n 1).sin2
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
78
Trigonometric Functions
Solution of Assignment (Set-2)
94. The minimum value of 27cos 3x.81sin 3x is (1) 1
(2)
1 81
(3)
1 243
(4)
1 27
Sol. Answer (3) Let y = 27cos 3x.81sin 3x = 33cos 3x.34sin 3x = 33cos 3x + 4 sin 3x Then minimum value of y is 3–5 =
1 243 o
35
95. Given that
⎛m⎞ ∑ sin5k tan ⎜⎝ n ⎟⎠ , where m and n are relatively prime positive integers that satisfy k 1
o
⎛m⎞ ⎜ n ⎟ 90 , then m + n is equal to ⎝ ⎠ (1) 173
(2) 175
(3) 177
(4) 179
Sol. Answer (3) 35
m
∑ sin5k tan n
k 1
sin5 + sin10 + ….. + sin5.35 = tan
m n
5⎞ ⎛ sin ⎜ 35 ⎟ ⎝ 5⎞ m 2⎠ ⎛ sin ⎜ 5 (35 1) ⎟ tan ⎝ 2⎠ n ⎛ 5⎞ sin ⎜ ⎟ ⎝ 2⎠ ⎛ 175 ⎞ sin ⎜ ⎝ 2 ⎟⎠ m ⎛ 175 5 ⎞ sin ⎜ tan ⎟ ⎝ 2 ⎠ n ⎛ 5 ⎞ sin ⎜ ⎟ ⎝ 2⎠ ⎛ 175 ⎞ sin ⎜ ⎝ 2 ⎟⎠ m tan n ⎛ 5 ⎞ sin ⎜ ⎟ ⎝ 2⎠ ⎛ 175 ⎞ ⎛ m⎞ sin ⎜ sin ⎜ ⎟ ⎝ 2 ⎟⎠ ⎝ n⎠ ⎛ 175 ⎞ ⎛ m⎞ cos ⎜ cos ⎜ ⎟ ⎝ 2 ⎟⎠ ⎝ n⎠
m 175 n 2
m + n = 175 + 2 = 177 Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
96. For
Trigonometric Functions
79
sin + sin2 << , lies in the interval 2 2 1 + cos + cos 2
(1) (–, )
(2) (–2, 2)
(3) (0, )
(4) (–1, 1)
Sol. Answer (1)
sin sin 2 1 cos cos 2
sin (1 2cos ) cos (1 2cos )
= tan ; tan (–, )
A B C⎞ C ⎛ 97. If A + B + C = and sin ⎜ A + ⎟ = K sin , then tan · tan 2 2 2 2 ⎝ ⎠ (1)
K 1 K +1
(2)
K 1 K –1
(3)
K K +1
(4)
K 1 K
Sol. Answer (1) A+B+C= C⎞ C ⎛ sin ⎜ A ⎟ K sin ⎝ 2⎠ 2
C⎞ ⎛ sin ⎜ A ⎟ ⎝ 2⎠ K C 1 sin 2 C⎞ C ⎛ sin ⎜ A ⎟ sin ⎝ ⎠ 2 2 K 1 C⎞ C K 1 ⎛ sin ⎜ A ⎟ sin ⎝ 2⎠ 2
A ⎛ A C⎞ 2 sin ⎜ cos ⎟ ⎝ 2 ⎠ 2 K 1 A C A K 1 ⎛ ⎞ 2cos ⎜ sin ⎟ ⎝ 2 ⎠ 2 B A cos 2. 2 K 1 B A K 1 sin sin 2 2 cos
sin
A B K 1 .sin 2 2 K 1
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
80
Trigonometric Functions
Solution of Assignment (Set-2)
98. If A + B + C = and cosA = cosB·cosC, then tanB·tanC is equal to (1) 1
(2)
1 2
(3) 2
(4) 3
(3) 45°
(4) 60°
Sol. Answer (3) A+B+C= cosA = cosB.cosC cos(B + C) = – cosB cosC cosB cosC – sinB sinC = –cosB cosC sinB sinC = 2cosB cosC tanB tanC = 2 Trigonometric Equations 99. If 2cos2 – 2sin2 = 1, then is equal to (1) 15°
(2) 30°
Sol. Answer (2) 2(cos2 – sin2) = 1 2cos2 = 1 cos 2
1 cos 60 2
2 = 60° = 30°
1 , then the value of is 4
100. If sin2 (1) n
6
(2) n
4
(3) n
3
(4) n
Sol. Answer (1) 101. The solution of the equation cos2 + sin + 1 = 0 lies in the interval
⎛ ⎞ (1) ⎜ , ⎟ ⎝ 4 4⎠
⎛ 3 5 ⎞ (3) ⎜ , ⎟ ⎝ 4 4 ⎠
⎛ 3 ⎞ (2) ⎜ , ⎟ ⎝4 4 ⎠
⎛ 5 7 ⎞ (4) ⎜ , ⎟ ⎝ 4 4 ⎠
Sol. Answer (4) cos2 + sin + 1 = 0 1 – sin2 + sin + 1 = 0 sin2 – sin – 2 = 0 (sin – 2) (sin + 1) = 0 sin = – 1
∵ sin 2
⇒ sin – 2 0
3 6 2 2 4
6 ⎛⎜ 5 , 7 ⎞⎟ 4 ⎝ 4 4⎠ Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
81
102. The general solution of tan3x = 1 is 4
(1) n
(2)
n 3 12
(3) n
(4) n
4
Sol. Answer (2) 103. If sin 3 cos , – < < 0, then the value of is (1)
5 6
(2)
4 6
(3)
2 3
(4)
5 6
Sol. Answer (2) sin 3 cos
tan 3
⇒ n
3
Taking n = – 1, we get
2 4 3 3 6
104. The total number of solutions of the equation tanx + secx = 2 which lie in the interval [0, 2] is (1) 0
(2) 1
(3) 2
(4) 3
Sol. Answer (2) secx = 2 – tanx sec2x = 4 + tan2x – 4tanx 1 + tan2x = 4 + tan2x – 4tanx 4tanx = 3 3 4
tan x
Since tanx is positive in I and III quadrant only, thus tan x 105. If (1)
3 for 2 values of x. 4
3 sec 2 0 , then principal value of may be 5 6
(2)
5 6
(3)
7 6
(4)
7 6
Sol. Answer (1)
sec
2 3
cos
3 2
5 (Principal) 6
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
82
Trigonometric Functions
Solution of Assignment (Set-2)
106. The number of solutions of the equation2tan2 – 7sec – 2 = 0 in the interval [0, 6] is (1) 8
(2) 6
(3) 4
(4) Zero
Sol. Answer (2) 2(1 + sec2) – 7sec – 2 = 0 2sec2 – 7sec = 0 sec
7 2
In every interval of 2, 2 solutions exist. In 6 interval, 6 solutions will exist. 107. The general solution of the equation tanx + tan2x + tanx· tan2x = 1 is (1) x n
5 , n , n I 12 12
(2) x
(3) x n , n , n I 4 12
n , n I 3 12
5 (4) x n , n , n I 4 12
Sol. Answer (2)
tan x tan2 x 1 1 tan x tan2 x tan3x = 1 3 x n
x
4
n 3 12
108. If angles A and B satisfy (1 + tanA)(1 + tanB) = 2, then the value of A + B is (1)
11 4
(2)
15 4
(3)
23 4
(4)
17 4
Sol. Answer (1) 1 + tanA + tanB + tanA tanB = 2
tan A tan B 1 1 tan A tan B
tan(A + B) = 1
A B n
4
For n = –3, A B
11 4
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
83
109. The number of solution of the equation tan3x – tan2x – tan3x · tan2x = 1 in [0, 2] is (1) 1
(2) Zero
(3) 3
(4) 2
Sol. Answer (2) tan3x – tan2x = 1 + tan3x tan2x
tan3 x tan2 x 1 1 tan3 x tan2 x
tanx = 1
x n
4
5 x , , ........ 4 4
But for each of values tan2x, tan3x will not be defined. Therefore no solution exists. Trick : Always check the values by back substitution in case of tanx. 110. If x (0, 1), then greatest root of the equation sin2x 2cos x is
(1)
1 4
(2)
1 2
(3)
3 4
(4)
1 3
Sol. Answer (3) x (0, 1) sin2x 2 cos x
2sin x cos x 2 cos x 2 cos x ⎡⎣ 2 sin x 1⎤⎦ 0 cosx = 0
x (2n 1)
x
2
(2n 1) 2
1 5 x , , ........ 2 2
or
sin x
1 2
x n ( 1)n
x n
4
( 1)n 4
3 1 9 x , , ........ 4 4 4
Greatest root in (0, 1) interval is
3 . 4
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
84
Trigonometric Functions
Solution of Assignment (Set-2)
111. The number of solutions of equation 3cos2 + 5cos = 1 in [0, 2] is (1) 8
(2) 6
(3) 4
(4) 2
Sol. Answer (4) 3cos2 + 5cos = 1 3(2cos2 – 1) + 5cos = 1 6cos2 + 5cos – 4 = 0 6cos2 + 8cos – 3cos – 4 = 0 2cos(3cos + 4) – 1(3cos + 4) = 0 (2cos – 1) (3cos + 4) = 0 cos
1 2
or
In [0, 2], two
cos
4 3
Not possible solutions exist
112. The general solution of the equations tan = –1 and cos
(1) n
7 4
n (2) n ( 1)
7 4
1 is (n I) 2
(3) 2n
7 4
(4) 2n
5 4
Sol. Answer (3)
tan 1, cos
1 2
In [0, 2] interval, tan = –1
3 7 , 4 4
In [0, 2] interval, cos
1 2
7 , 4 4
Common
7 4
General solution : 2n
7 4
113. The general solution of sec tan 3 is (1) 2n , 2n , n I 6 2
(3) 2n
; n I 2
(2) 2n , n I 6
(4) 2n
; n 2k 1, n, k I 2
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
85
Sol. Answer (2)
sec tan 3 We know that sec2 – tan2 = 1 (sec – tan) (sec + tan) = 1
sec tan
1 3
sec tan 3
2sec 3
sec
1 3
4 3
2 3
cos
3 2
2n
6
114. The number of the solutions of the equation 3sinx + 4cosx – x2 – 16 = 0 is (1) 3
(2) 2
(3) 1
(4) 0
Sol. Answer (4) 3sinx + 4cosx = x2 + 16 Range of LHS = [–5, 5] Range of RHS = [16, ) No solution exists. 115. The solution set of sin4x – tan8x = 1 is given by (1) x 2n , n I 8
(2) x n
, n I 12
(3) x 2n
, n I 24
(4) None of these
Sol. Answer (4) sin4x – tan8x = 1 sin4x = 1 + tan8x Range of LHS : [0, 1] Range of RHS : [1, ] Only solution exists when LHS and RHS are both equal to 1. sin4x = 1, 1 + tan8x = 1 sin2x = 1, tan8x = 0
x n
but at these value tan8x 0. 2
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
86
Trigonometric Functions
Solution of Assignment (Set-2)
116. If (0, 2) and 2sin2 – 5sin + 2 > 0, then the range of is
⎛ ⎞ ⎛ 5 ⎞ (1) ⎜ 0, ⎟ ⎜ , 2 ⎟ ⎝ 6⎠ ⎝ 6 ⎠
⎛ ⎞ (2) ⎜ 0, ⎟ ( , 2) ⎝ 6⎠
⎛ ⎞ (3) ⎜ 0, ⎟ ( , 2) ⎝ 6⎠
(4)
Sol. Answer (1) (0, 2) 2sin2 – 5sin + 2 > 0 2sin2 – 4sin – sin + 2 > 0 2sin(sin – 2) – 1(sin – 2) > 0
(2sin 1) (sin 2) 0 ve
1 2 O
2sin – 1 < 0 sin
1 2
6
5 6
2
⎛ ⎞ ⎛ 5 ⎞ ⎜ 0, ⎟ ⎜ , 2⎟ ⎝ 6⎠ ⎝ 6 ⎠
117. The general solution of the equation tan2 tan3 = 1 is (1) = (4n + 1)
, n 4k – 2, k I 10
(2) = (2n + 3)
, n 5k + 2, k I 10
(3) = (4n + 3)
, n 5k + 2, k I 10
(4) = (2n + 1)
, n 5k – 3, k I 10
Sol. Answer (4)
118. If m, n N(n > m), then number of solutions of the equation n| sinx | = m| sinx | in [ 0, 2] is (1) m
(2) n
(3) mn
(4) 3
(3) A = 2n+ B, n I
(4) A = n– B, n I
Sol. Answer (4) n|sinx| = m|sinx| (n – m) |sinx| = 0 Since n > m |sinx| = 0 x = n In [0, 2], x = 0, , 2 119. If sinA = sinB and cosA = cosB, then (1) A = B + n, n I
(2) A = B – n, n I
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
87
Sol. Answer (3) sinA = sinB, cosA = cosB A = m + (–1)n. B, A = 2k ± B Clearly common solution is A = 2n + B, n I 120. The number of values of x [–2, 2] satisfying tanx + cotx = 2cosecx is (1) 2
(2) 4
(3) 6
(4) 8
Sol. Answer (2) tan x cot x 2cosec x
1/2
1 2 sin x cos x sin x
cos x
1 2
(∵ sin x 0)
Number of solutions in [–2, 2] equals 4. 121. The solution set of the equation tanax = tanbx where (a b) constitutes (1) An A.P. with common difference
or ab ab
(2) An H.P. with common difference
|a b|
(3) An A.P. with common difference
ab
(4) An A.P. with common difference
or ab b a
Sol. Answer (4) tan ax = tan bx ax = n + bx
x
n , n Z ab
A.P. with common difference
or (a b ) (b a )
122. The general solution of the equation
(1) n
(2)
n 3
tan x tan2 x 2 0 is tan2 x tan x (3) (2n 1) , n I 3
(4) (3n 1) , n I 3
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
88
Trigonometric Functions
Solution of Assignment (Set-2)
Sol. Answer (4)
tan x tan2 x 20 tan2 x tan x
tan x(1 tan2 x ) 2tan x 20 2tan x (1 tan2 x )tan x If tanx 0,
1 tan2 x 2 20 2 1 tan2 x
2 2 (1 tan x ) 4 2 0 2(1 tan2 x )
1 tan4 x 2tan2 x 4 4 4tan2 x 2(1 tan2 x ) tan4 x 6tan2 x 9 2(1 tan2 x ) (tan2 x 3)2 2(1 tan2 x )
x n
0
0
0 ⇒ tan2 x 3
3
123. The solution of the equation cos2 – 2cos = 4sin – sin2 where [0, ] is (1) – , tan
1 2
(2) – , cot
1 2
(3) – , tan = 2
(4) + , cot = 2
Sol. Answer (1) cos2 – 2cos = 4sin – sin2 cos2 – 2cos = 4sin – 2sin cos cos(cos – 2) + 2sin(cos – 2) = 0 (cos + 2sin) (cos – 2) = 0 cos = 2 Not possible
or
cos = –2sin
tan
1 2
= n +
1 ⎛ 1⎞ n tan ⎜⎝ ⎟⎠ 2
1 = n tan
1 2
1 For n = 1, tan
1 2
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
89
124. The general solution of sin2 sec 3 tan 0 is (1) n ( 1)n 1 , n, n I 3
(2) = n, n I
(3) n ( 1)n 1 , n I 3
(4) =
n , n I 2
Sol. Answer (2)
sin2 sec 3 tan 0 sin2 3 sin 0 cos sin (sin 3) 0, cos 0 =n,nI
125. If sin x cos x y
(1) x
1 , x(0, ) , then y
,y=1 4
(2) y = 0
(3) y = 2
(4) x
3 4
Sol. Answer (1)
sin x cos x y
1 y
x (0, )
Comparing range on both sides, LHS = ⎡⎣ 2, 2 ⎤⎦ RHS = ⎡⎣ 2,
Only solution exists sin x cos x 2 ⎞ ⎛ sin ⎜ x ⎟ 1 ⎝ 4⎠
x
n ( 1)n 4 2
x
4
Also,
y
1 2 ⇒ y 1 y
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
90
Trigonometric Functions
Solution of Assignment (Set-2)
126. The number of solutions of the equation cos( x 4) cos( x ) 1 is (1) Zero
(2) 1
(3) 2
(4) Infinite
(3) 6
(4) 12
Sol. Answer (2) cos x 4 cos x 1
Only possible when cos x 4 1
x 4 2n x 4
cos x 1
and
2
x 2m
(2n 1) 2
x
1 5 7 9 x4 , , , 2 2 2 2
2
(2m 1) 2
1 5 7 x , , ........ 2 2 2
No solution exists. 6
127. The number of solutions of
∑ cos(rx ) 6
in (0, 2] is
r 1
(1) Zero
(2) 1
Sol. Answer (2) cosx + cos2x + …….. + cos6x = 6 cosx = 1, cos2x = 1, cos3x = 1, …….., cos6x = 1
cos x 1
cos2 x 1
cos3 x 1
x 0, 2
x 0, , 2
x
.....................
2 4 , , 2 3 3
cos6 x 1 ⇒ x 2
x = 2 satisfies all conditions. 128. The number of values of x for which sin2x + cos4x = 2 is (1) Zero
(2) 1
(3) 2
(4) Infinite
Sol. Answer (1) sin2x + cos4x = 2 sin2x = 1 , n 2 x n ( 1)
cos4x = 1 2
n ( 1)n 2 4
x
5 x , ........ 4 4
4x = 2n x
n 2
3 x , , ........ 2 2
No solution exists. Except x = 4 one solution. Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
91
129. If the equation cosx + 3cos(2Kx) = 4 has exactly one solution, then (1) K is a rational number of the form
P , P –1 P 1
(2) K is irrational number whose rational approximation does not exceed 2 (3) K is irrational number (4) K is a rational number of the form
P ,P1 P 1
Sol. Answer (3) cosx + 3cos 2kx = 4 cosx = 1,
cos2kx = 1
x = 2n
2kx = 2m
x
Comparing 2n
m k
m m ⇒ k k 2n
For infinite m, n integer, k will be rational but equation has only 1 solution, which is only possible when k irrational. 130. The solution of the inequality log1/2sinx > log1/2cosx is
⎛ ⎞ (1) x ⎜ 0, ⎟ ⎝ 2⎠
⎛ ⎞ (2) x ⎜ 0, ⎟ ⎝ 8⎠
⎛ ⎞ (3) x ⎜ 0, ⎟ ⎝ 4⎠
⎡ ⎤ (4) x ⎢0 , ⎥ ⎣ 4⎦
Sol. Answer (3) log1/2 sinx > log1/2 cosx sinx < cosx
O 4
2
3 2 2
⎛ ⎞ From graph sinx < cosx in ⎜⎝ 0, ⎟⎠ 4
131. The values of k for which the equationsin4x + cos4x + sin2x + k = 0 possesses solution is
⎡ 3 ⎤ (1) k ⎢ ,1⎥ ⎣ 2 ⎦
⎡ 1⎤ (2) k ⎢0, ⎥ ⎣ 2⎦
⎡ 3 1⎤ (3) k ⎢ , ⎥ ⎣ 2 2⎦
⎡1 ⎤ (4) k ⎢ ,1⎥ ⎣2 ⎦
Sol. Answer (3) sin4x + cos4x + sin2x + k = 0 1 – 2sin2x cos2x + 2sinx cosx + k = 0 Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
92
Trigonometric Functions
Solution of Assignment (Set-2)
1 2 sin 2 x sin2 x (k 1) 0 2
D0 ⎛ 1⎞ 1 4 ⎜ ⎟ (k 1) 0 ⎝ 2⎠
1 + 2k + 2 0
2k + 3 0
k
3 2
sin22x – 2sin2x – 2(k + 1) = 0 sin22x – 2sin2x – 2 = 2k (sin2x – 1)2 – 3 = 2k 0 2k + 3 1 –3 2k –2
3 k 1 2
132. The solution set of the equation 4sin4x + cos4x = 1 is (1) x n
6
(3) x (2n 1)
(2) x = n ± where cos2 2
(4) x 2n
3 and x = n, n I 5
3
Sol. Answer (2) 4sin4x + cos4x = 1 4sin4x + (1 – sin2x)2 = 1 4sin4x + 1 + sin4x – 2sin2x = 1 5sin4x – 2sin2x = 0 sin2x(5sin2x – 2) = 0 2 2 sin x 0, sin x
2 5
2 x = n or x = n ± , where sin
2 3 , cos2 , n I 5 5
133. The number of values of [0, 2] satisfying r sin 3 and r 4sin 2( 3 1) is (1) 4
(2) 5
(3) 6
(4) 7
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
93
Sol. Answer (1) r sin 3
r 4sin 2( 3 1) r
4 3 2 3 2 r
r 2 2( 3 1)r 4 3 0
r (r 2 3) 2(r 2 3) 0 r 2 or r 2 3 sin
3 1 , sin 2 2
4 solutions exist in [0, 2] 134. The arithmetic mean of the roots of the equation 4cos3x – 4cos2x – cos(315 + x) = 1 in the interval (0, 315) is equal to (1) 50
(2) 51
(3) 100
(4) 315
Sol. Answer (2) 4cos3x – 4cos2x + cosx = 1 4cos3x – 4cos2x + cosx – 1 = 0 (4cos2x + 1) (cosx – 1) = 0 cosx = 1 x = 2n, n I x = 0, 2, 4, …….. 100
AM =
2 4 ........ 100 50 [102] 51 50 2 50
135. The equation 2sin2x = 8 – k(2 – sinx) possesses a solution if (1) k [–6, –2]
(2) k [–6, 2]
(3) k [–2, 6]
(4) k [2, 6]
Sol. Answer (4) 2sin2x = 8 – 2k + k sinx 2sin2x – ksinx + 2k – 8 = 0
sin x
k k 2 4(2)(2k 8) k k 2 6k 64 k (k 8) 4 4 4
sin x
2k 8 ,2 4
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
94
Trigonometric Functions
1
Solution of Assignment (Set-2)
2k 8 1 4
–4 2k – 8 4 4 2k 12
2 k 6
136. The number of solutions of the x 2tan x (1) 1
in [0, 2] is 2
(2) 2
(3) 3
(4) 6
Sol. Answer (3)
2tan x
x 2
– 2
x tan x 4 2
O
2
3 2
2
3 solutions exist. 137. How many solutions does the equation sec x 1 ( 2 1)tan x have in the interval (0, 6]? (1) 6
(2) 5
(3) 10
(4) 9
Sol. Answer (1)
sec x 1 ( 2 1)tan x 1 cos x ( 2 1)sin x cos x cos x ( 2 1)sin x cos x 1 Using auxiliary form, 6 solutions exist.
138. The solution of the equation
(1) x 3n
6
sin3 x 1 is 2cos2 x 1 2
(2) x n
6
n (3) x n ( 1)
3
n (4) x n ( 1)
6
Sol. Answer (4)
sin3 x 1 2cos2 x 1 2 2(3sinx – 4sin3x) = 2(1 – 2sin2x) + 1 Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
95
6sinx – 8sin3x = 2 – 4sin2x + 1 8sin3x – 4sin2x – 6sinx + 3 = 0 4sin2x(2sinx – 1) – 3(2sinx – 1) = 0 sin x
1 3 or sin2 x 2 4
x n ( 1)n
6
139. The smallest positive values of x (in degrees) such that tan(x + 100°) = tan(x + 50°)tanx·tan(x – 50°) is equal to zero (1) 60°
(2) 30°
(3) 40°
(4) 50°
Sol. Answer (2)
tan( x 100) tan( x 50).tan x tan( x 50)
2sin( x 100)cos( x 50) 2sin( x 50)sin x 2sin( x 50)cos( x 100) 2cos( x 50)cos x
sin(2 x 50) sin150 cos50 cos(2 x 50) sin(2 x 50) – sin150 cos(2 x 50) cos50
2sin(2 x 50) 2cos50 1 2cos(2 x 50)
2sin(2x + 50°) cos(2x + 50°) = – cos50° Sin(4x + 100°) = – sin40° = sin 220°,sin320° 4x + 100 = 220, 320 4x = 120, 220 x = 30, 55 Properties of Triangle 140. If the lengths of the sides of a triangle are 3, 5 and 7, then the largest angle of the triangle is (1)
2
(2)
5 6
(3)
2 3
(4)
3 4
Sol. Answer (3)
141. In ABC,
bc = a
⎛ B C ⎞ cos ⎜ ⎟ ⎝ 2 ⎠ (1) A sin 2
⎛ B C ⎞ sin ⎜ ⎟ ⎝ 2 ⎠ (2) A cos 2
⎛B C ⎞ cos ⎜ ⎟ ⎝ 2 ⎠ (3) A sin 2
⎛B C ⎞ cos ⎜ ⎟ ⎝ 2 ⎠ (4) A cos 2
Sol. Answer (1) Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
96
Trigonometric Functions
Solution of Assignment (Set-2)
142. If a cosA = b cosB, then ABC is (1) Isosceles
(2) Right angled
(3) Equilateral
(4) Either Right angled or Isoceles
Sol. Answer (4)
⎛B⎞ 143. If a = 16, b = 24 and c = 20, then the value of cos ⎜ ⎟ is ⎝2⎠ (1)
3 4
(2)
1 4
(3)
1 2
(4)
1 3
Sol. Answer (1) Find cosB and then cos2 = 2cos2 –1 144. If a 1 3, b 2 and c 2, then the measure of B is (1) 45°
(2) 60°
(3) 90°
(4) 15°
(3) 2 3
(4)
Sol. Answer (1) 145. If A = 60°, b = 2 and c = 4, then the value of a is (1) 2 2
(2) 3 2
6
Sol. Answer (3) 146. If b 3, c = 1 and A = 30°, then the measure of B is (1) 30°
(2) 120°
(3) 45°
(4) 150°
Sol. Answer (2)
147. If in a triangle ABC,
sin A sin(A B ) = , then sin C sin(B C )
(1) a, b, c are in A.P.
(2) a2, b2, c2 are in A.P.
(3) a, b, c are in H.P.
(4) a2, b2, c2 are in H.P.
Sol. Answer (2) Given that
sin A sin( A B ) sin C sin(B C ) sinA.sin(B – C) = sinC. sin(A – B) sin(B + C). sin(B – C) = sin(A + B). sin(A – B) [∵ A + B + C = 180°] sin2B – sin2C = sin2A – sin2B
b2 4R 2
c2 4R 2
a2 4R 2
b2 4R 2
2b2 = a2 + c2
a2, b2, c2 are in A.P. Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
148. In a ABC, if
Trigonometric Functions
97
cos A cos B cos C = = and the side a = 2, then area of the triangle is a b c
(1) 1
(2) 2
(3)
3 2
(4)
3
Sol. Answer (4) Given that ;
cos A cos B cos C ⇒ A B C 60 a b c
So, area of the triangle
149. If cot
=
3 3 (side)2 4 4 4
=
3
A b+c = , then ABC is 2 a
(1) Isosceles
(2) Equilateral
(3) Right angled
(4) Scalene
Sol. Answer (3) Given that
cot
A bc 2 a
A 2 sin B sin C A sin A sin 2 cos
A B C B C 2 sin .cos 2 2 2 A A A sin 2 sin . cos 2 2 2 cos
A A B C 2cos .cos 2 2 2 A A A sin 2sin .cos 2 2 2 cos
A A B C 2cos .cos 2 2 2 A A A sin 2sin .cos 2 2 2 cos
cos
(B C ) A cos 2 2
B – C = A A + C = B But A + B + C = 180° 2B = 180° B = 90° So, triangle is right angled triangle Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
98
Trigonometric Functions
Solution of Assignment (Set-2)
⎛ AB ⎞ 3 a 7 = 150. In triangle ABC, if tan ⎜ and = then the value of angle C is ⎟ b 4 ⎝ 2 ⎠ 11
(1) 30°
(2) 60°
(3) 90°
(4) 45°
Sol. Answer (3) 3 a 7 ab 3 ⎛ A B⎞ and Given that tan ⎜ ⇒ ⎟ ⎝ 2 ⎠ 11 b 4 a b 11
We know that
AB ab C cot 2 2 ab
C C 3 3 .cot ⇒ cot 1 ⇒ C 90 11 11 2 2
151. In a triangle, the length of two larger sides are 24 and 22 respectively. If the angles are in AP, then the third side is (1) 12 + 2 13
(2) 12 – 3 3
(3)
2 3 2
(4)
2 3 2
Sol. Answer (1) Given that, angles A, B and C are in A.P B = 60° We know that cos B
a2 c 2 b2 2ac
1 (24)2 c 2 (22)2 ⇒ c 2 92 24c 2 2 24 c
c2 – 24c + 92 = 0 c 12 2 13 152. In a triangle ABC, a = 4, b = 3, A = 60º, then c is the root of the equation (1) c2 – 3c – 7 = 0
(2) c2 + 3c + 7 = 0
(3) c2 – 3c + 7 = 0
(4) c2 + 3c – 7 = 0
Sol. Answer (1) We know that
cos A
b2 c 2 a2 2bc
1 9 c 2 16 ⇒ c 2 3c 7 0 2 23c
153. In triangle ABC, point D lies on BC such that BAD = 45°, DAC = 30°. If BD : DC = 2 : 1, then 3cotADC is equal to (1) 2 + 3
(2) 2 – 3
(3)
3
(4)
1 3
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
99
A
Sol. Answer (2) Given that BD : DC = 2 : 1
45° 30°
So from (m, n) theorem (2 + 1)cot = 2cot45 – 1.cot30
B
3 cot = 2 3
154. If in a ABC, 3a = b + c, then the value of cot (1) 1
(2)
C
D
B C .cot is 2 2
3
(3) 2
(4) 3
(3) b, a, c are in A.P.
(4) a, b, c are in G.P.
Sol. Answer (3) Given that 3a = b + c Now, cot
B C .cot 2 2
155. In ABC, tan
s (s b ) s (s c ) (s a )(s c ) (s a)(s b)
=
s s a
=
abc [∵ 2s = a + b + c] bc a
=
4a 2 2a
A 5 C 2 = , tan = , then 2 6 2 5
(1) a, b, c are in A.P.
(2) a, c, b are in A.P.
Sol. Answer (1) Given that tan
So, tan
A 5 c 2 , tan 2 6 2 5
A C 5 2 ,tan 2 2 6 5
(s b )(s c ) (s a)(s b) 1 s (s a ) s (s c ) 3
sb 1 ac b 1 ⇒ s 3 abc 3
2b = a + c Hence a, b, c are in A.P. Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
100
Trigonometric Functions
Solution of Assignment (Set-2)
156. If in a triangle ABC, = a2 – (b – c)2, then tanA is equal to (1)
15 16
(2)
8 15
(3)
8 17
(4)
1 2
Sol. Answer (2) Given that = a2 – (b – c)2 s(s a )(s b )(s c ) 4(s b )(s c )
⎡ A ⎢∵ tan 2 ⎣⎢
A (s b )(s c ) 1 tan s (s a ) 4 2
(s b )(s c ) ⎤ ⎥ s(s a ) ⎦⎥
1 A 2 4 8 2 = Now, tan A 1 15 A 1 1 tan2 16 2 2 tan
tan A
8 15
157. If the angles of a triangle are 30° and 45° and the included side is 1+ 3 cm , then the area of the triangle is (in square cm)
(1) 2 1 + 3
(2)
1 1+ 3 2
(3) 2
3 1
(4)
1 2
3 1
Sol. Answer (2)
A c
B
105°
b
30°
45° a=1+ 3
C
From Sine Rule
1 3 c ⇒c 2 sin105 sin 45
Hence Area =
1 1 ac sin B = (1 3 ) 2 2
158. If c2 = a2 + b2, 2s = a + b + c, then 4s(s – a)(s – b)(s – c) (1) s4
(2) b2c2
(3) c2a2
(4) a2b2
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
101
Sol. Answer (4)
B
Given that c2 = a2 + b2 c = 90°
c
Now,
a
4s(s – a) (s – b) (s – c) = 4(Area)2 = 4
A
1 2 2 a b a2 b2 4
C
b
159. A triangle has its sides in the ratio 4 : 5 : 6, then the ratio of circumradius to the inradius of the triangle is (1)
15 7
(2)
13 6
(3)
16 7
(4)
17 6
Sol. Answer (3) Let a = 4, b = 5, c = 6 We know that
r R
cosA + cosB + cosC = 1
b2 c 2 a2 a2 c 2 b2 a2 b2 c 2 r 1 2bc 2ac 2ab R 1
r 23 r 7 R 16 ⇒ ⇒ R 16 R 16 r 7
160. In ABC, if ar(ABC) = 8. Then, a2sin(2B) + b2sin(2A) is equal to (1) 2
(2) 16
(3) 32
(4) 128
Sol. Answer (3) Given that = 8 Now, a2sin2B + b2sin2A = 2a2sinB cosB + 2b2sinAcosA 2 = 2a
=
b a .cos B 2b 2 cos A 2R 2R
ab (a cos B b cos A) R
abc ⎛ abc ⎞ = R 4 ⎜⎝ 4R ⎟⎠ 4 32
a2 sin2B b2 sin2 A 32 161. In ABC, if a2 + b2 + c2 = ac + ab 3 , then
r r3 (1) r = r 2 1
r r2 (2) r = r 1 3
(3) r1 + r2 + r3 = 2R + r
(4) rr1r2r3 = 43
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
102
Trigonometric Functions
Solution of Assignment (Set-2)
Sol. Answer (1) Given that, a2 + b2 + c2 = ac + ab 3 a2 + b2 + c2 – ac – ab 3 = 0 2
2 ⎛a 3 ⎞ ⎛a ⎞ b⎟ ⎜ c ⎟ 0 ⎜ ⎝2 ⎠ ⎝ 2 ⎠
Above equation is possible when
a 3 a b 0& c 0 2 2
3a 2b 2 3c k (let) a
k 3
,b
k k ,c 2 2 3
b2 + c2 = a2 triangle is right angled triangle now taking (1) option r3 r r r ⇒ rr1 r2 r3 2 1
2 2 s(s a ) (s b )(s c )
s2 – sa = s2 – s(b + c) + bc (b + c – a) (b + c + a) = 2bc (b + c – a)s – bc (b + c)2 – a2 = 2bc b2 + c2 – a2 = 0
b2 c 2 a2 proved
So option (1) is correct 162. In a triangle ABC, ab and c are the sides of the triangle satisfying the relation r1 + r2 = r3 – r then the perimeter of the triangle (1)
2ab abc
(2)
ab ac b
(3)
ab abc
(4)
bc bc a
Sol. Answer (1) Given that r1 + r2 = r3 – r
s a s b s c s
(s – a) (s – b) = s(s – c)
2s a b s sc (s a )(s b ) s(s c )
2s
2ab abc
Hence, option (1) is correct Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
103
163. In ABC, which is not right angled, if p = sinA sinB sinC and q = cosA cosB cosC. Then the equation having roots tanA, tanB and tanC is (1) qx3 – px2 + (1 + q)x – p = 0
(2) qx3 + 2px2 + qx – p = 0
(3) qx3 – px2 + (2 + q)x + pq = 0
(4) qx3 – px2 + qx + p = 0
Sol. Answer (1) Given that p = sinA.sinB.sinC q = cosA. cosB. cosC Now, tanA. tanB. tanC =
p q
And also tanA + tanB + tanC = tanA.tanB.tanC =
p q
Now, tanA.tanB + tanB.tanC. + tanC.tanA =
sin A.sin B sin B.sin C sin C.sin A cos A.cos B cos B.cos C cos C.cos A
= sinA.sinB.cosC + sinBsinC.cosA + sinAsinC.cosB/cosAcosBcosC = sinB(sinAcosC + cosAsinC) + sinA.sinC.cosB/cosAcosBcosC = sinB sin(A + C) + sinA. sinC . cosB /cosAcosBcosC =
sin2 B sin A sinC.cos B cos A.cos B.cos C
=
1 cos2 B sin A.sin C.cos B cos A.cos B.cos C
=
1 cos B(cos B sin A sin C ) cos A.cos B.cos C
=
1 cos B { cos( A C ) sin A sin C } cos A.cos B.cos C
=
1 cos B.cos A cos C 1 q q cos A.cos B.cos C
So required equation is
x3
p 2 ⎛ 1 q ⎞ p x ⎜ x 0 ⎟ q q ⎝ q ⎠
qx 3 px 2 (1 q )x p 0 Hence option (1) is correct Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
104
Trigonometric Functions
164. In ABC, if
Solution of Assignment (Set-2)
R 2 , and a = 2, then is equal to ( = ar(ABC)) r
(1) 3
(2) 9
(3)
3
(4)
3 4
Sol. Answer (3) Given that R r 1 2⇒ r R 2
1
r 3 3 ⇒ cos A cos B cos C 2 R 2
…(i)
But we know that cosA + cosB + cosC
3 2
…(ii)
So from (i) & (ii) we get
3 2
cosA + cosB + cosC = A=B=C Hence triangle is equilateral
3 (sinde)2 4
So area of the triangle is =
=
3 4 3 4
Option (3) is correct ⎛ 1 1 ⎞ ⎛ 1 1 ⎞⎛ 1 1 ⎞ 165. In ABC, if r1, r2, r3 are exradii opposites to angles A, B and C respectively. Then ⎜ + ⎟ ⎜ + ⎟⎜ + ⎟ ⎝ r1 r2 ⎠⎝ r2 r3 ⎠⎝ r3 r1 ⎠
is equal to
(1)
64R 3 abc
(2)
16R 3 2 2 2
a b c
(3)
64R 3 2 2 2
a b c
(4)
R3 abc
Sol. Answer (3) ⎛ 1 1 ⎞ ⎛ 1 1 ⎞ ⎛ 1 1⎞ ⎜⎝ r r ⎟⎠ ⎜⎝ r r ⎟⎠ ⎜⎝ r r ⎟⎠ 1 2 2 3 3 1
=
=
abc 3
64R 3 ⎛ using abc R ⎞ ⎜ ⎟⎠ 4 a2 b2c 2 ⎝
So option (3) is correct. Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
166.
Trigonometric Functions
105
2cos A cos B 2cos C a b + + = + , then the value of the angle A is a b c bc ca 3
(1)
(2)
4
(3)
2
(4)
6
Sol. Answer (3)
2cos A cos B 2cos C a b a b c bc ca
2(b2 c 2 a2 ) a2 c 2 b2 2(a2 b2 c 2 ) a2 b2 2abc 2abc 2abc abc
a2 + 3b2 + c2 = 2a2 + 2b2 c2 + b2 = a2 ABC is right angled and A is a right angle. So option (3) is correct 167. In triangle ABC if the line joining incentre to the circumcentre is parallel to the base BC, then the value of (cosB + cosC – 1) is equal to (1) 1
(2) 2
(3) 3
(4) 0
Sol. Answer (4)
A
In ABC cosA + cosB + cosC = 1
r R
I
r r cos B cos C 1 R R
R B
cosB + cosC – 1 = 0
r
O A r
cosA = r
C
R
So, option (4) is correct 168. With usual notations, if in a triangle ABC, b+c c+a a+b = = , then cosA : cosB : cosC is equal to 11 12 13
(1) 7 : 19 : 25
(2) 19 : 7 : 25
(3) 12 : 14 : 20
(4) 19 : 25 : 20
Sol. Answer (1) Let
bc ca ab k 11 12 13
b + c = 11 k c + a = 12 k a + b = 13 k 2(a + b + c) = 36 k a + b + c = 18 k a = 7 k, b = 6 k, c = 5 k Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
106
Trigonometric Functions
Solution of Assignment (Set-2)
cosA : cosB : cosC
b2 c 2 a2 a2 c 2 b2 a2 b2 c 2 : : 2bc 2ac 2ab Put the values of a, b & c 7 : 19 : 25 So option (1) is correct 169. Consider a regular polygon of 12 sides each of length one unit, then which of the following is not true?
(1) The area of polygon is 6 + 3 3
(3) The radius of incircle is
(2) The circum-radius of polygon is
2+ 3 2
1 2
6+ 2
(4) Each internal angle is of 135°
Sol. Answer (4) A
AOP 12
=
=
=
O
1 AB OP 2
= 6 1 OP
B
11 11 12 12
Area of polygon = 12 ArAOB = 12
P
tan / 12
1 2OP
6 2 tan / 12 3 tan / 12
3 3 1
( 3 1)
= 63 3 So option (1) is true (ii) sin
1 12 2R
R
R
A
P 1/2 /12
1
2 sin 12
B
R O
6 2 2
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
1 12 2r
r
/12
1/2
So option (2) is true
tan
107
2 3 2
r
So option (3) is true (iv) Each internal angle = =
(2n 4)90 n 20 90 = 150° 12
Hence option (4) is answer not true 170. If the perimeter of a triangle is 6, then its maximum area is (1)
3
(2) 3
(3) 4
(4) 2
Sol. Answer (1)
a
b
a+b+c=6 c
(s a ) (s b ) ( b c ) {(s a )(s b )(s c )}1/3 3 s ⎛ s(s a )(s b )(s c ) ⎞ ⎟⎠ 3 ⎜⎝ s
s ⎛ A2 ⎞ 3 ⎜⎝ s ⎟⎠
1/3
1/3
s A2/3 3 s1/3
s 4/3 A2/3 3 ⎛ s 4/3 ⎞ ⎜ 3 ⎟ ⎝ ⎠ s2 3 3
3/2
A
A
max A 3 Hence option(1) is correct Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
108
Trigonometric Functions
Solution of Assignment (Set-2)
171. In a triangle ABC, if A – B = 120° and R = 8r, then the value of cosC is (1)
7 8
(2)
3 4
(3)
4 5
(4)
3 5
Sol. Answer (1) A – B = 120° R = 8r r 4R sin
A B C sin sin 2 2 2
R A B C 4R sin sin sin 8 2 2 2 AB A B⎞ C 1 ⎛ ⎜ cos cos sin ⎟ 16 ⎝ 2 2 ⎠ 2 A B⎞ C 1 ⎛1 cos sin 16 ⎜⎝ 2 2 ⎟⎠ 2 C⎞ C 1 ⎛1 sin ⎟ sin 16 ⎜⎝ 2 2⎠ 2 1 ⎛1 ⎞ ⎜ x⎟ x ⎝ ⎠ 16 2
Let sin
C x 2
16x2 – 8x + 1 = 0
x
sin
1 4
C 1 2 4
2 cos C 1 2 sin C / 2
7 8
Hence option (1) is correct 172. If in a triangle 2(acosB + b cosC + c cosA) = a + b + c, then (1) The triangle is isosceles
(2) The triangle is equilateral
(3) The triangle is isosceles right angled
(4) The triangle is right angled
Sol. Answer (1) 2[acosB + bcosC + C cosA] = a + b + c 2[2RsinA cosB + 2RsinBcosC + 2RsinCcosA] = a + b + c 2R[2sinA cosB + 2sinB cosC + 2sinC cosA] = 2R(sinA + sinB + sinC) sin[A + B) + sin(A – B) + sin(B + C) + sin(B – C) + sin(C – A) + sin(C + A) = sinA + sinB + sinC Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
109
sin(A – B) + sin(B – C) + sin(S – A) = 0 sin
A C C B BA sin sin 0 2 2 2
Which is only possible when A = B or B = C or A = C Triangle is isosceles Hence option (1) is correct 173. A regular pentagon is inscribed in a circle. If A1 and A2 represents the area of circle and that of regular pentagon respectively, then A1 : A2 is (1)
2 cos 5 5
(2)
2 2 sin 5 5
(3)
2 2 cosec 5 5
(4)
2 2 cos 5 5
Sol. Answer (3) A1 A2
A
a
r 2 1 5 ah 2
E
/5 r
r r = 5 ah 2
=
2 5
1
2 sin 5
B O
1 cos
5
D C
2 1 5 = sin 2 5
Option (3) is true 174. In ABC, if 8R2 – a2– b2 = c2 then the triangle must be (1) Equilateral
(2) Right angle
(3) Scalene
(4) Isoceles angle
Sol. Answer (2) 175. In ABC, if O is the circumcentre of ABC and R1, R2, R3 are the radii of circumcircles of triangles OBC, OCA and OAB respectively. Then the value of
(1)
abc R
(2)
abc 2R
(3)
A
Sol. Answer (4) Let AOB = 2
c
2
2
abc 4R
3
(4)
abc R3
b
2
BOC = 2
B AOC = 2
a b c + + is equal to R1 R2 R3
a
C
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
110
Trigonometric Functions
Solution of Assignment (Set-2)
In AOB
c 2R3 sin2 C 2sin2 R3
a Similarly R 2sin2 1 b 2sin2 R2
a b c R R R 1 2 3 = 2 sin2 + 2sin2 + 2sin2 = 2[sin2 + sin2 + sin2] = 2[4sin sin sin] = 8sin sin sin = 8
=
a b c 2R 2R 2R
abc R3
Hence option (4) is correct 176. In ABC, if r1 = 2r2 = 3r3, then (1)
a 5 = b 4
(2)
a 3 = b 5
(3)
a 7 = c 4
(4)
c 4 = a 9
Sol. Answer (1) r1 = 2r2 = 3r3
2 3 s a s b s c 1 2 3 s a s b s c Taking
1 2 s a s b
3a = 3b + c Taking
…(i)
1 3 s a s c
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
2a = b + 2c
111
…(ii)
Solving (i) & (ii) a 5 b 4
Hence option (1) is correct 177. In ABC, the expression b2 c 2 c 2 a2 a2 b2 + + is equal to a sin(B C ) b sin(C A) c sin(A B )
(1)
3R 2
(2) 3R
(3) R
(4) 6R
Sol. Answer (4) b2 c 2 (2R sin B )2 (2R sin C )2 a sin(B C ) 2R sin A sin(B C )
=
4R 2 (sin2 B sin2 C ) 2R sin A sin(B C )
=
4R 2 sin(B C )sin(B C ) 2R sin A sin(B C )
= 2R other terms are also 2R 2R + 2R + 2R = 6R
178. In a triangle ABC if 2 =
Hence option (4) a2 b2c 2 2(a 2 + b 2 + c 2 )
, where is the area of the triangle, then the triangle is
(1) Isosceles but not right angled
(2) Right angled
(3) Isosceles right angled
(4) Equilateral
Sol. Answer (2) 2 Given that
a2 b2c 2 2(a2 b 2 c 2 )
But we know that
2
abc R ⇒ abc 4R 4
16 2R 2 2
2
2
2(a b c )
⇒ a2 b2 c 2 8R 2
sin2A + sin2B + sin2C = 2
…(i)
From (i) it is clear that the triangle will be right-angled triangle. So, option (2) is correct Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
112
Trigonometric Functions
Solution of Assignment (Set-2)
179. ABCD is a trapezium such that AB and DC are parallel and BC is perpendicular to them. If BC = 1 cm, CD = 2 cm and ADB = 45°, then the length of AB is (in cm) (1)
12 5
(2)
8 5
(3)
Sol. Answer (3)
D
Using cosine formula in DCB cos
5 4 1 4 5
2 5
A
2
5 3
(4)
16 3
C
5
1
135 –
B
Apply law of sin in ADB sin 45 sin(135 – ) AB 5
1 2 AB
sin135 cos cos135 sin 5
⎛ 2 1 ⎞ 1 ⎜ ⎟ 2 AB ⎝ 10 10 ⎠ 5 1
AB
5 3
Here option (3) is correct 180. If the median of triangle ABC through A is perpendicular AB, then the value of sinA cosB + 2sinB cosA is equal to (1) 0
(2) 1
(3)
1 2
(4)
1 3
A
Sol. Answer (1) From (m1 n) theorem 2x cot(90 + B) = xcot0 – xcot(A – 90)
A–90°
– 2tanB = tanA
– 2sinB cosA = sinAcosB sinAcosB + 2sinBcosA = 0 Hence option (1) is correct
90° + B B
x
D
x
C
181. The number of solutions of the pair of equations 2 sin2 – cos2 = 0 2 cos2 – 3 sin = 0 in the interval [0, 2] is (1) Zero
(2) One
[IIT-JEE 2007] (3) Two
(4) Four
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
113
Sol. Answer (3) 1 4
2sin2 – cos2 = 0 sin2 = 2cos2 – 3sin = 0 sin =
1 –2 2
common solutions are given by sin =
1 2
182. If the angles A, B and C of a triangle are in an arithmetic progression and if a, b and c denote the lengths of the sides opposite to A, B and C respectively, then the value of the expression
(1)
1 2
(2)
3 2
(3) 1
a c sin 2C sin 2 A is [IIT-JEE 2010] c a
(4)
3
Sol. Answer (4) Angles A, B, C are in A.P. hence B = 60° =
3
⎛ sin C ⎞ ⎛ sin A ⎞ a c a cos C 2 ⎜ sin 2C sin 2 A = 2 ⎜ ⎟ ⎟ c cos A c a ⎝ c ⎠ ⎝ a ⎠ = 2(sinA cos C + cosA sinC) = 2 sin(A + C) = 2 sinB = 2
3 3 2
183. Let P { : sin cos 2 cos } and Q { : sin cos 2 sin } be two sets. Then (1) P Q and Q – P
(2) Q P
(3) P Q
[IIT-JEE 2011]
(4) P = Q
Sol. Answer (4) We have sin cos 2 cos
sin ( 2 1)cos
1 2 1
sin cos
( 2 1)sin cos 2 sin sin cos and it shows that the given equations sin cos 2 cos and sin cos 2 sin are identical. Hence their solution sets are equal P=Q Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
114
Trigonometric Functions
Solution of Assignment (Set-2)
184. Let PQR be a triangle of area with a = 2, b =
7 5 and c = , where a, b and c are the lengths of the sides of 2 2
the triangle opposite to the angles at P, Q and R respectively. Then
(1)
3 4
(2)
⎛ 3 ⎞ (3) ⎜ ⎟ ⎝ 4 ⎠
45 4
2 sin P sin 2P equals 2 sin P sin 2P 2
⎛ 45 ⎞ (4) ⎜ ⎟ ⎝ 4 ⎠
[IIT-JEE 2012] 2
Sol. Answer (3) As,
2sin P – sin2P 1 – cos P ⎛P ⎞ tan2 ⎜ ⎟ 2sin P sin2P 1 cos P ⎝2⎠
Now, a = 2, b
7 5 , c 2 2
so, semi perimeter = s
Now, tan
abc 4 2
P (s – b )(s – c ) 3 2 4
⎛ 3 ⎞ 2⎛P ⎞ So, tan ⎜ ⎟ ⎜ ⎟ ⎝ 2 ⎠ ⎝ 4 ⎠
2
185. In a triangle the sum of two sides is x and the product of the same two sides is y. If x2 – c2 = y, where c is the third side of the triangle, then the ratio of the in radius to the circum-radius of the triangle is [JEE(Advanced)-2014 ] (1)
3y 2x( x c )
(2)
3y 2c ( x c )
(3)
3y 4 x( x c )
(4)
3y 4c ( x c )
Sol. Answer (2) a + b = x, ab = y, x2 – c2 = y Now, (a + b)2 – c2 = ab a2 + b2 – c2 = –ab a2 b2 c 2 1 2 ab 2
cos c
2R
1 2
c = 120°
c 2c sin c 3
r (s c ) tan
R
c 3
c 2
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
115
⎛x c ⎞ r ⎜ c⎟ 3 2 ⎝ ⎠ r
(x c) 3 2
r (x c) 3 3( x c ) 3 R 2c 2c
3( x c )( x c ) 2 c( x c )
3( x 2 c 2 ) 2 c( x c )
3y 2 c( x c )
186. For x (0, ), the equation sinx + 2sin2x – sin3x = 3 has (1) Infinitely many solutions
(2) Three solutions
(3) One solution
(4) No solution
[JEE(Advanced)2014]
Sol. Answer (4) sinx + 2sin2x – sin3x = 3 2cos2x(–sinx) + 4sinxcosx = 3 2sinx[2cosx – cos2x] = 3 2sinx(2cosx – (2cos2x – 1)) = 3 2sinx(1 + 2cosx – 2cos2x) = 3 2 ⎡3 1⎞ ⎤ ⎛ 2 sin x ⎢ 2 ⎜ cos x ⎟ ⎥ 3 2⎠ ⎥ ⎝ ⎢⎣ 2 ⎦
Possible only when sinx = 1
…(i) 2
1⎞ ⎛ and ⎜ cos x ⎟ 0 2⎠ ⎝ cos x
1 2
…(ii)
From (i) and (ii) No solution. Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
116
Trigonometric Functions
Solution of Assignment (Set-2)
SECTION - B Objective Type Questions (More than one options are correct) Elementary Trigonometric Functions 1.
If x sec tan and y cosec cot , then
(1) x
y 1 y 1
(2) x
y 1 y 1
(3) y
1 x 1 x
(4) xy x y 1 0
Sol. Answer (2, 3, 4) x = sec – tan, y = cosec + cot y cot
2 2
⎞ ⎛ cos sin ⎟ 1 sin ⎜⎝ 2 2⎠ x cos cos2 sin2 2 2 2
⎞ ⎛ ⎜ cot 2 1⎟ 2 ⎠ ( y 1) y 1 x ⎝ 2 y 1 cot 2 1 ( y 1) 2
2.
⎧ 3 ⎫ The value of F ( x ) 6cos x 1 tan2 x 2sin x 1 cot x where x (0, 2) ⎨, , ⎬ may be ⎩ 2 2⎭ (1) 4
(2) – 4
(3) 8
(4) – 8
Sol. Answer (1, 2, 3, 4) 3 ⎫ ⎧ f ( x ) 6 cos x 1 tan2 x 2 sin x 1 cot 2 x , x (0, 2) ⎨ , , ⎬ 2 2 ⎭ ⎩
= 6cosx. |secx| + 2sinx. |cosecx| ⎧ ⎛ ⎞ x ⎜ 0, ⎟ ⎪ 628 ⎝ 2⎠ ⎪ ⎪ ⎛ ⎞ x ⎜ , ⎟ ⎪6 2 4 ⎪ ⎝2 ⎠ ⎨ ⎪ 6 2 8 x ⎛ , 3 ⎞ ⎜ 2 ⎟ ⎪ ⎝ ⎠ ⎪ ⎛ 3 ⎞ ⎪ x ⎜ , 2 ⎟ ⎪ 62 4 2 ⎝ ⎠ ⎩ Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
3.
If
Trigonometric Functions
117
(a b )2 sin2 , then 4ab (2) a 0, b 0
(1) a = b
(3) a > b
(4) a < b
Sol. Answer (1, 2) (a b )2 sin2 4ab
∵ 0 sin2 1
(a b )2 1 4ab
(a – b)2 0 a = b, but not equal to zero
4.
If sec x
1 , then tan sec is equal to 4x
(1) 2x
(2)
1 2x
(3)
1 x
(4) 4x
Sol. Answer (1, 2) sec = x
1 4x
tan sec 2 1 2
=
1 ⎞ ⎛ ⎜ x 4x ⎟ 1 ⎝ ⎠
= x
1 4x
1 ⎞ 1 ⎛ x sec + tan = ⎜ x ⎟ 4x ⎠ 4x ⎝
⎧ ⎪⎪ 2 x = ⎨ ⎪ 1 ⎪⎩ 2 x
5.
1 4x 1 if x 4x
if x
If tan cot 2, then (1) tann cot n 2 (3) sin2n cos2n
(2) 1 2n 1
tan cot 2
(4) tan2 sec 2 3
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
118
Trigonometric Functions
Solution of Assignment (Set-2)
Sol. Answer (1, 2, 3, 4) tan + cot = 2 tan2 + 1 = 2tan tan = 1 (1) tan4 + cot4 = 2 tan cot 2
(2)
⎛ 1 ⎞ 2n 2n (3) sin cos ⎜ ⎟ 2⎠ ⎝
=
2n
⎛ 1 ⎞ ⎜ ⎟ 2⎠ ⎝
2n
1 2
n1
(4) tan2 + sec2 = 1 + 2 = 3 6.
Which of the following identities are correct? (1)
1 sin cos 2 sec cos 1 sin
(3)
1 sin | sec tan | 1 sin
(2) (1 cot A cos ecA)(1 tan A sec A) 2
(4)
cos cos 2 sec 1 sin 1 sin
Sol. Answer (1, 2, 3, 4) (1)
1 sin cos 2 sin cos 1 sin
L.H.S
1 sin cos (1 – sin ) cos cos2 2 RHS cos
=
(2) (1 + cotA – cosecA) (1 + tanA + secA) = 2 ⎛ sin A cos A 1 ⎞ ⎛ cos A sin A 1 ⎞ L.H.S. = ⎜ ⎟⎜ ⎟ sin A cos A ⎝ ⎠⎝ ⎠
=
(3) =
1 2 sin A cos A 1 2 R.H.S sin A cos A
1 sin | sec tan | 1 sin
L.H.S. =
(1 sin )2 cos2
= |sec + tan| = R.H.S. Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
(4)
Trigonometric Functions
119
cos cos 2 sec 1 sin 1 sin
L.H.S.
=
cos(1 sin ) cos2
cos (1 sin )
cos2
1 sin 1 sin cos cos
= 2sec = R.H.S 7.
The value of the expression sin x sin y sin z where x, y, z are real numbers satisfying x + y + z = 180° is (1) Positive
(2) Zero
(3) –3
(4) Negative
Sol. Answer (1, 2, 4) x + y + z = 180° x = –90°, y = 90°, z = 360°
8.
⎛ ⎞ Let ⎜ 0, ⎟ and a (tan )tan , b (tan )co t , c (cot )tan , d (cot )cot , then ⎝ 4⎠ (1) d > c
(2) b < a
(3) c > a
(4) b < a < c < d
Sol. Answer (1, 2, 3, 4) ⎛ ⎞ ⎜ 0, ⎟ ⎝ 4⎠
0 < tan < 1, 1 < cot < a = (tan)tan, b = (tan)cot c = (cot)tan, d = (cot)cot Clearly b is the smallest and d is the greatest of all Also, Fractional value (number greater than 1) > 1 b
⎛ ⎞ ⎛ ⎞ If tan ⎜ + x ⎟ ·tan ⎜ x ⎟ = 1 , then x equals ⎝4 ⎠ ⎝4 ⎠ (1)
6
(2)
3
(3)
4
(4) Zero
Sol. Answer (1, 2, 4)
⎛ ⎞ ⎛ ⎞ tan ⎜ x ⎟ .tan ⎜ x ⎟ 1 ⎝4 ⎠ ⎝4 ⎠
1 tan x 1 tan x 1 1 tan x 1 tan x
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
120
Trigonometric Functions
Solution of Assignment (Set-2)
1 10. The value of cos 22 is 2
(1)
1 2 2 2
(3)
1 4
4+2 2 +
42 2
4+2 2
(2)
1 4
(4)
1 2 2 2
42 2
Sol. Answer (1, 3)
1 cos 22 ? 2 2cos2 = 1 + cos2 1 1 cos 45 ⇒ cos 22 2 2
2 2 4
cos
1 2 2
1 1 ⇒ cos 22 2 2
2 2 2
1 sin 1 sin
1⎛ 1 1 ⎞ 1 ⎜⎜ 1 ⎟ 2⎝ 2 2 ⎟⎠
1⎛ ⎜ 2⎜ ⎝
1⎛ 4 2 2 42 2 ⎞ ⎜ ⎟ ⎟ 2⎜ 4 4 ⎝ ⎠
1 4
2
2 tan
2 1⎞ ⎟ 2 ⎟⎠
42 2 42 2
11. Let cos 2 =
(1)
1 sin 45 1 sin 45
2 1
21 2 2
3cos 2β 1 , then tan is equal to 3 cos 2β (2) 2 tan
(3)
1 2
tan
(4)
1 2
tan
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
121
Sol. Answer (1, 2)
3cos 2 1 3 cos 2
cos 2
1 tan2
2
1 tan
3 cos 2 1 3 cos 2
1 tan2 1 tan2 2
2
1 tan 1 tan
2 2
2 tan
1 tan2
3 cos 2 1 3 cos 2 3 cos 2 1 3 cos 2
2cos 2 2 4cos 2 4
2(1 cos 2) 2cos2 4(1 cos 2) 2 2 tan2
tan2 = 2tan2 tan = 2 tan
12. If sin
(1)
3 , [0, 2] then the possible values of cos is/are 2 5
1
(2)
10
1 10
(3)
3 10
(4)
3 10
Sol. Answer (2, 4) sin
cos
3 5
1 2 2
1 sin 1 sin
1⎛ 3 3⎞ ⎜⎜ 1 1 ⎟⎟ 2⎝ 5 5⎠
1⎛ 2 2 2⎞ ⎜⎜ ⎟ 2⎝ 5 5 ⎟⎠
1⎛ 4 2 ⎞ 3 ⎜ ⎟ 2 ⎝ 10 10 ⎠ 10
13. The expression f(, ) = cos2 + cos2( + ) – 2coscoscos( + ) (1) Is independent of
(2) Is independent of
(3) Is independent of both and
(4) Is dependent of
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
122
Trigonometric Functions
Solution of Assignment (Set-2)
Sol. Answer (2, 4) f(, ) = cos2 + cos2( + ) – 2cos cos cos( + ) = cos2 + cos( + ) (cos cos – sin sin – 2cos cos) = cos2 – cos( + ) cos( – ) = cos2 – (cos2 – sin2) = cos2 – cos2 + sin2 = sin2 14. The value of cosA·cos2A·cos22A ........ cos(2n – 1A), where A R may be (1) 1
(2) 2
(3) –1
(4)
sin 2n A 2n sin A
Sol. Answer (4) cos A · cos2 A........cos(2n 1 A)
sin2n A 2n sin A
and cosA + cosB = 1, then 3
15. If A B
(1) cos( A B )
1 3
(3) cos( A B )
(2) | cos A cos B | 1 3
(4) | cos A cos B |
2 3
1 2 3
Sol. Answer (2, 3) AB
, cos A cos B 1 3
AB AB cos 1 2 2
⇒
2cos
⇒
AB ⎛⎞ 2cos ⎜ ⎟ cos 1 2 ⎝6⎠
⇒
2
⇒
1 ⎛ AB⎞ cos ⎜ ⎟ 3 ⎝ 2 ⎠
3 ⎛ AB⎞ cos ⎜ ⎟ 1 2 ⎝ 2 ⎠
⎛ AB⎞ ⎛ AB⎞ cos ⎜ ⎟ cos 2 ⎜ 2 ⎟ ⎝ 2 ⎠ ⎝ ⎠
⎛ AB⎞ 2cos2 ⎜ ⎟ 1 ⎝ 2 ⎠ 2
1 1 3
2 1 1 3 3
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
1 ⎛ AB⎞ sin ⎜ 1 ⎟ 3 ⎝ 2 ⎠
cos A cos B 2 sin
123
2 3
AB ⎛ AB⎞ sin ⎜ ⎟ 2 ⎝ 2 ⎠
1 ⎛ AB⎞ 2 sin ⎜ ⎟ 2 ⎝ 2 ⎠
⎛ AB⎞ sin ⎜ ⎟ ⎝ 2 ⎠
16.
2 3
cos3 x·sin2x =
n
∑am sin mx
is an identity in x, then
m =1
(1) a3
3 , a2 = 0 8
(2) n = 6, a1
1 2
(3) n = 5, a1
1 4
(4)
3
∑ am 4
Sol. Answer (1, 3) cos3 x.sin 2 x
n
∑ am sin mx
m 1
= a1sinx + a2sin2x + a3sin3x + ……. + an sinnx 2cos3x.cos2x – 3cos2xsin2x.sinx = a1cosx + 2a2cos2x + 3a3cos3x + ….. Put x = 0 2 = a1 + 2a2 + 3a3 + …… + nan Sn + 1 – Sn = a1 + 2a2 + …….. + nan + (n + 1)an + 1 – a1 – 2a2 ……. nan En + 1 = (n + 1)an + 1 1 (cos3n 3cos n )sin2n 4
a1
1 [2 sin 2 x cos3 x 3.sin 2 x sin x ] 8
1 [sin5 x sin x 3 sin3 x 3 sin x ] 8
1 [sin5 x 3 sin3 x 2 sin x ] 8
1 3 1 , a2 0, a3 , a5 4 8 8
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
124
Trigonometric Functions
Solution of Assignment (Set-2)
17. If 0 < , < and they satisfy cos + cos – cos( + ) = (1) =
(2) + =
2 3
3 2
(3) = 2
(4) = 2
Sol. Answer (1, 2) cos + cos – cos( + ) = cos
3 2
1 1 1 , cos , cos( ) 2 2 2
2 , , 3 3 3
18. The angles A, B, C of a triangle ABC satisfy 4cosAcosB + sin2A + sin2B + sin2C = 4. Then which of the following statements is/are correct? (1) The triangle ABC is right angled (2) The triangle ABC is isosceles (3) The triangle ABC is neither isosceles nor right angled (4) The triangle ABC is equilateral Sol. Answer (1, 2) 4cosA.cosB + sin2A + sin2B + sin2C = 4
1 1 3 ⇒ 4. . 3 2 2 2 2[cos(A + B) + cos(A – B)] + 2cos(A + B) cos(A – B) + 2sinC cosC = 2 – cosC + cos(A – B) – cosC cos(A – B) + sinC cosC = 2 – cocC + cos(A – B) + cosC 19. Which of the following statement(s) is/are correct? (1) cos(sin1) > sin(cos1)
(2) cos(sin1.5) > sin(cos1.5)
7 ⎞ 7 ⎞ ⎛ ⎛ (3) cos ⎜ sin ⎟ > sin ⎜ cos ⎟ 18 ⎠ 18 ⎠ ⎝ ⎝
5 ⎞ 5 ⎞ ⎛ ⎛ (4) cos ⎜ sin ⎟ > sin ⎜ cos ⎟ 18 ⎠ 18 ⎠ ⎝ ⎝
Sol. Answer (1, 2, 3, 4)
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
125
20. If sin = K, –1 K 1, then number of values of , for same value of K in [0, 2] may be (1) 1
(2) 2
(3) 3
(4) 4
Sol. Answer (1, 2, 3)
21. If the sides of a right angled triangle are {cos2 + cos2 + 2cos( + )} and {sin2 + sin2 + 2sin( + )}, then the length of hypoteneous is (1) 2[1 + cos( – )]
(2) 2[1 – cos(+ )]
⎛ ⎞ (3) 4cos2 ⎜ ⎟ ⎝ 2 ⎠
⎛⎞ (4) 4 sin2 ⎜ ⎟ ⎝ 2 ⎠
Sol. Answer (1, 3) a = cos2 + cos2 + 2cos( + ) = 2cos( + )cos( + ) + 2cos( + )
⎛ ⎞ = 2cos( + ) × 2cos2 ⎜⎝ 2 ⎟⎠ ⎛ ⎞ = 4cos( + )cos2 ⎜⎝ 2 ⎟⎠ b = sin2 + sin2 + 2sin( + ) = 2sin( + )cos( – ) + 2sin( + )
⎛ ⎞ = 2sin( + ).2cos2 ⎜⎝ 2 ⎟⎠
⎛ ⎞ = 4sin( + )cos2 ⎜⎝ 2 ⎟⎠ ⎛ ⎞ ⎛ ⎞ 2( + ) cos4 + 16sin2( + ).cos4 ⎜ ⎟ a2 + b2 ⎜ = 16cos ⎟ ⎝ 2 ⎠ ⎝ 2 ⎠ ⎛ ⎞ = 16cos4 ⎜⎝ 2 ⎟⎠ ⎛ ⎞ A = 4cos2 ⎜⎝ 2 ⎟⎠ Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
126
Trigonometric Functions
Solution of Assignment (Set-2)
22. Let a and b be real numbers such that
sina + sinb =
1 2
, cosa + cosb =
(1) cos(a – b) = 1
3 , then 2
(2) cos(a – b) = 0
(3) sin(a + b) =
3 2
(4) sin(a – b) = 1
Sol. Answer (2, 4) 1 + 1 + 2cos(a – b) =
1 3 4 2 2 2 2
cos(a – b) = 0
sin(a b) 1 0 1
23. If cos + cos + cos = 0 = sin + sin + sin, then (1) sin2 + sin2 + sin2 =
3 2
(3) cos2 + cos2 + cos2 =
(2) sin2 + sin2 + sin2 =
3 2
3 4
(4) cos2 + cos2 + cos2 = – 1
Sol. Answer (1, 3) Let a = cos + isin, b = cos + isin, c = cos + isin a+b+c=0 Also,
1 1 1 0 a b c
ab + bc + ca = 0 a2 + b2 + c2 = 0 cos2 + cos2 + cos2 = 0 = sin2 + sin2 + sin2 2cos2 – 1 + 2cos2 – 1 + 2cos2 – 1 = 0 2cos2 + cos2 + cos2 =
3 2
1 – 2sin2 + 1 – 2sin + 1 – 2sin2 = 0 sin2 + sin2 + sin2 =
3 2
Trigonometric Equations 24. If 4cos – 3sec = 2tan, then equals to
⎛ ⎞ (1) n ( 1)n ⎜ ⎟ ⎝ 10 ⎠
n (2) n ( 1)
6
n (3) n ( 1)
3 10
(4) n
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
127
Sol. Answer (1, 3) 4 cos – 3sec = 2tan 4cos2 – 3 = 2sin, cos 0 4sin2 + 2sin – 1 = 0
sin
1 5 2 4
sin 1
n ( 1)n
5 1 5 , sin 4 4 3 or n ( 1)n 10 10
25. If [–2, 2] and
⎛⎞ ⎛⎞ cos ⎜ ⎟ sin⎜ ⎟ 2(cos36 sin18) , then the value of is ⎝2⎠ ⎝2⎠ 7 6
(1)
(2)
6
(3)
5 6
(4)
6
Sol. Answer (1, 4) cos
sin 2 (cos36º sin18º ), [–2, 2] 2 2
⎛ ⎞ ⎛ 5 1⎞ ⎛ 5 1⎞ sin ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ 2 4 ⎠ ⎜⎝ 4 ⎟⎠ ⎜⎝ 4 ⎟⎠
1 2
n ( 1)n 2 4 6
2n ( 1)n . 3 2
7 , 6 6
⎡ 7 ⎤ 26. If sin = a for exactly one value of ⎢0, ⎥ , then the value of a is ⎣ 3⎦
(1)
3 2
(2) 1
(3) Zero
(4) –1
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
128
Trigonometric Functions
Solution of Assignment (Set-2)
Sol. Answer (2, 4)
⎡ 7 ⎤ sin = a for exactly one value of ⎢0, ⎥ ⎣ 3⎦ ∵ in [0, 2] sin takes every value twice except ± 1.
a = ±1 27. If sin 3 cos 6y y 2 11 , [0, 4], y R holds for (1) No value of y and two values of
(2) One value of y and two values of
(3) Two values of y and one value of
(4) Two pairs of (y, )
Sol. Answer (2, 4)
sin 3 cos 6y y 2 11 ⎛ ⎛ ⎞⎞ 2 ⎜ sin ⎜ ⎟ ⎟ ( y 2 6 y 9) 9 11 3 ⎠⎠ ⎝ ⎝
⎞ ⎛ 2sin ⎜ ⎟ ( y 3)2 2 3 ⎝ ⎠ LHS [–2, 2], RHS – 2 only solution exists if LHS = RHS = –2
⎞ ⎛ sin ⎜ ⎟ 1 and (y – 3) = 0 3 ⎝ ⎠ ∵ [0, 4], y = 3
3 7 , 3 2 2
Two values of and one value of y. 28. The equation sin x 3 cos x 2 is satisfied by value of x which is equal to (1) x n
, nI 12
(2) x 2n
5 , nI 12
(3) x n
5 , nI 12
(4) x 2n
, nI 12
Sol. Answer (2, 4)
sin x 3 cos x 2 Or,
sin x 3 1 cos x 2 2 2
⎞ ⎛ Or, sin ⎜ x ⎟ sin 3 4 ⎝ ⎠ Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
x
Trigonometric Functions
129
n ( 1)n 3 4
n = even ; x
2k 3 4
⎛ ⎞ x 2k ⎜ ⎟ ⎝4 3⎠ ; k I 12
x 2k
n = odd ; x
(2k 1) 3 4
x 2k 4 3
29. If
2k
3 4 3
2k
5 ; k I 12
1 tan x tan y and x y , then (x, y) is 1 tan x 6
⎛ 5 ⎞ (1) ⎜ , ⎟ ⎝ 24 24 ⎠
⎛ 7 11 ⎞ (2) ⎜ , ⎟ ⎝ 24 24 ⎠
⎛ 115 119 ⎞ , (3) ⎜ 24 ⎟⎠ ⎝ 24
⎛ 5 13 ⎞ (4) ⎜ , ⎟ ⎝ 24 24 ⎠
Sol. Answer (1, 2, 3) 1 tan x tan y , x y 1 tan x 6
⎛ ⎞ tan ⎜ x ⎟ tan y 4 ⎝ ⎠ y n
x and 4
x y n
xy
x
x–y
6
4
6
n 5 n ,y 2 24 2 24
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
130
Trigonometric Functions
Solution of Assignment (Set-2)
⎛ 5 ⎞ n 0; ( x, y ) ⎜ , ⎟ ⎝ 24 24 ⎠ ⎛ 7 11 ⎞ n 1; ( x, y ) ⎜ , 24 ⎟⎠ ⎝ 24
⎛ 115 119 ⎞ n 10, ( x, y ) ⎜ , 24 ⎟⎠ ⎝ 24 30. The possible value of [–, ] satisfying the equation 2(cos + cos2) + (1 + 2cos)sin2 = 2sin are (1)
2
(2)
3
(3)
3
(4)
Sol. Answer (1, 2, 3, 4) [–, ] 2(cos + cos2) + (1 + 2cos)sin2 = 2sin or, 2(cos + cos2) + 2(cos + 2cos2)sin = 2sin or, 2(cos + cos2) + 2sin[cos + 2cos2 – 1] = 0 or, 2(cos + cos2) + 2sin(cos + cos2) = 0 or, 2(cos + cos2) (1 + sin) = 0 31. The number of all possible triplets (p, q, r) such that p + qcos2 + r sin2 = 0 for all , is (1) (k, –k, –2k)
⎛k k ⎞ (2) ⎜ , , k ⎟ ⎝2 2 ⎠
⎛ k k ⎞ (3) ⎜ , , k ⎟ ⎝ 2 2 ⎠
(4) (–k, k, 2k)
Sol. Answer (1, 2, 3, 4) p + q cos2 + r sin2 = 0
R
or, p + q(1 – 2sin2) + rsin2 = 0 or, (r – 2q)sin2 + (q + p) = 0
R
R
r – 2q = q + p = 0 r = 2q, q = –p
r q p 2 1 1
Or,
p q r 1 1 2
32. A value of satisfying sin sin(60 – ) sin(60 + ) =
(1)
4 3
1 sin3 is ( n) 4
(2)
5 3
(3)
2 3
(4)
5 3
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
131
Sol. Answer (1, 2, 3, 4) 1 As, sin sin(60 )sin(60 ) sin3 is an identity. So it is true for all the given options. 4
⎡ ⎤ 33. The co-ordinates of points of intersection of the curves y = cosx and y = sin3x, x ⎢ , ⎥ are ⎣ 2 2⎦ ⎞ ⎛ (2) ⎜ , cos ⎟ 8⎠ ⎝8
⎛ 1 ⎞ (1) ⎜ , ⎟ ⎝4 2⎠
3 ⎞ ⎛ 3 (3) ⎜ , cos ⎟ 8 ⎠ ⎝ 8
Sol. Answer (1, 2, 3)
y
cosx = sin3x
y = sin3x
1
⎛ ⎞ or, cos x cos ⎜ 3 x ⎟ ⎝2 ⎠
y = cosx
⎛ ⎞ x 2n ⎜ 3 x ⎟ 2 ⎝ ⎠ 4 x 2n
x
3 ⎞ ⎛ 3 (4) ⎜ , cos ⎟ 8 ⎠ ⎝ 8
2
3
6
6
3
x
, 2 2
x
2
or, 2 x 2n 2 2
–1
2n or, x n 4 8 4
⎡ ⎤ 3 So, the values of x in ⎢ , ⎥ is , and 4 8 8 ⎣ 2 2⎦ 34. A value of satisfying 4cos2sin – 2sin2 = 3sin is (1)
9 10
(2)
10
(3)
13 10
(4)
17 10
Sol. Answer (1, 2) sin[4cos2 – 2sin] = 3sin or, sin[4cos2 – 2sin – 3] = 0 or, sin[–4 sin2 – 2sin + 1] = 0 or, sin[4sin2 + 2sin – 1] = 0
sin 0 ,
5 1 5 1 , 4 4
5 1 4
sin = 0
sin
= n
sin sin
10
⎛ ⎞ n ( 1)n ⎜ ⎟ ⎝ 10 ⎠
sin
5 1 4
sin sin
3 10
n 1 n ( 1)
3 10
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
132
Trigonometric Functions
Solution of Assignment (Set-2)
35. The equation sinx + sin2x + 2sinx sin2x = 2cosx + cos2x is satisfied by values of x for which n (1) x n ( 1)
(3) x 2n
, nI 6
2 , nI 3
(2) x 2n
2 , nI 3
(4) x 2n
, nI 2
Sol. Answer (1, 2, 3, 4) sinx + sin2x + 2sinx sin2x = 2cosx + cos2x or, (sinx + sin2x) – cos2x + (2sinx sin2x – 2cosx) = 0 or, sinx(1 + 2cosx) – cos2x + 2cosx(2sin2x – 1) = 0 or, sinx(1 + 2cosx) – cos2x – 2cosx(1 – 2sin2x) = 0 or, sinx(1 + 2cosx) – cos2x – 2cosx cos2x = 0 or, sinx(1 + 2cosx) – cos2x(1 + 2cosx) = 0 or, (1 + 2cosx) (sinx – cos2x) = 0 Either, cos x
x 2n
1 2
2 3
or, cos2x = sinx
or, 1 – 2sin2x = sinx or, 2sin2x + sinx – 1 = 0 sinx = –1,
1 2
x 2n , n ( 1)n , n I 2 6 So, finally the general solution is x 2n
2 , 2n , n ( 1)n , n I 3 2 6
36. The solution set of sin3 + cos2 = –2 is ⎧ ⎫ ⎧ n ( 1)n 1 ⎬ ⎨ x x n (1) ⎨ x x 3 6 ⎩ ⎭ ⎩ ⎧ ⎫ n ( 1)n 1 ⎬ n I (3) ⎨ x x 3 6⎭ ⎩
⎫ ⎬ n I 2⎭
⎧ ⎫ ⎧ n ( 1)n 1 ⎬ ⎨ x x n (2) ⎨ x x 3 6 ⎩ ⎭ ⎩
⎫ ⎬ n I 2⎭
⎧ ⎫ (4) ⎨ x x n ⎬ n I 2⎭ ⎩
Sol. Answer (1, 2, 3, 4) sin3 + cos2 = –2 or, 3sin – 4sin3 + 1 – 2sin2 = –2 or, –4sin3 – 2sin2 + 3sin + 3 = 0 or, 4sin3 + 2sin2 – 3sin – 3 = 0 Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
133
or, 4sin3 – 4sin2 + 6sin2 – 6sin + 3sin – 3 = 0 or, 4sin2(sin – 1) + 6sin(sin – 1) + 3(sin – 1) = 0 (sin – 1) [4sin2 + 6sin + 3] = 0 sin = 1 (∵ Another equation will not give real solutions) sin = 1 is the only real solution 2n
; n I 2
37. The general solution of the equation 2cos2 x 1 3·(2) sin
2
(2) n
(1) n, n I
, nI 2
x
is
(3) n
, nI 2
(4) n
, nI 3
Sol. Answer (1, 2, 3) 2
212 sin
2
1 3.2 sin
x 2
2 22 sin
x
22 sin2 x 2
2 22 sin 2sin
2
x
x
x
3 7 sin2 x 2
3.2sin
x
y
y2 – 3y + 2 = 0 (y – 1) (y – 2) = 0
y 2sin
2
x
1 or 2sin
2
x
2
sin2x = 0 or sin2x = 1 x = n, x n
38.
2
(m 2)sin (2m 1)cos 2m 1 , if
(1) tan
3 4
(2) tan
4 3
(3) tan
2m 2
m 1
(4) tan
2m m2 1
Sol. Answer (2, 3) (m + 2)sin + (2m – 1)cos = 2 m + 1 (m + 2)tan + (2m – 1) = (2m + 1)sec (m + 2)2tan2 + (2m – 1)2 + 2(m + 2) (2m – 1)tan= (2m + 1)2.(1 + tan2) (3m2 – 3) tan2 – 2(2m2 + 3m – 2) tan+ 8 m = 0 3(m2 – 1)tan2 – {4(m2 – 1) + 6m}tan+ 8 m = 0 (m2 – 1)tan. (3tan – 4) – 2m(3 tan– 4) = 0 tan
4 2m or tan 2 3 m 1
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
134
Trigonometric Functions
Solution of Assignment (Set-2)
Properties of Triangle a 2 3, C 60 then in the triangle b (1) One angle is 105° (2) One angle is four times another angle
39. In a triangle ABC,
(3) One angle is 25°
(4) One angle is five times another angle
Sol. Answer (1, 2) In ABC Using sin formula
sin A a 2 3 sin B b 1
Apply components and dividends
sin A sin B 3 3 sin A sin B 1 3
AB AB cos 2 2 3 3 AB A B 1 3 2cos sin 2 2
ab 3 3 a b 1 3
2sin
cot
AB 1 2
A – B = 90° and A + B = 120° A = 105° B = 15° Option (1) and (2) are correct but option (3) & (4) are not correct. 40. In a triangle ABC (1) sinA.sinB.sinC =
2R
2
(3) acosA + bcosB + ccosC =
abc 2R
2
(2) sinA.sinB.sinC =
r (sinA + sinB + sinC) 2R
(4) sinA.sinB.sinC =
R (sinA + sinB + sinC) 2r
Sol. Answer (1, 2) (1) sinA. sinB. sinC
=
2 2 2 bc ac ab
83 2 2 2
a b c
1 ab sin C 2
abc 4R
83 16 2 R 2 2R 2
So option (1) is correct
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
(2) RHS
135
r (sin A sin B sin C ) 2R
r ⎛ 2 2 2 ⎞ 2R ⎜⎝ bc ac ab ⎟⎠
r ⎛abc ⎞ .2 ⎜ ⎟ 2R ⎝ abc ⎠
r 2s R abc
2 2 R.abc
2 2 R.4R
Trigonometric Functions
2R 2
LHS
So option 2 is correct (3) Since option (2) is correct option 4 is not correct Hence correct answers are (1, 2) ⎛C ⎞ 41. If cosA + cosB = 4sin2 ⎜ ⎟ , then ⎝2⎠
(2) cos C 1
(1) 2sinB = sinA + sinC (3) cos A +cos B =
2r R
r R
(4) a, c, b are in G.P.
Sol. Answer (2, 3)
cos A cos B 4 sin2 2cos cos
C 2
AB AB C 4 sin2 cos 2 2 2
AB C 2 sin 2 2
2cos
Multiply by 2cos
C both sides 2
C AB 2sin C cos 2 2
sinA + sinB = 2sinC a, b, c are in A.P.
Option 1 is not correct
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
136
Trigonometric Functions
Solution of Assignment (Set-2)
So we know that cosA + cosB + cosC = 1 4 sin2
r R
C r cos C 1 2 R
(1 cos C ) cos C 1
r R
r cos C R Option (2) is correct 1
Again cosA + cosB + cosC = 1 Put cosC = 1
r R
r R
cos A cos B 1 cos A cos B
r r 1 R R
2r R
Option (3) is correct As a, c, b are in A.P. and all three are not equal a, c, b are not in G.P 42. In a triangle ABC, point D and E are taken on side BC such that BD = DE = EC. If angle ADE = angle AED = , then (1) tan = 3tanB
(2) 3tan = tanC
(3)
6 tan tan2 9
tan A
(4) B = C
A
Sol. Answer (1, 3, 4) Let BC = 6a BD = DE = EC = 2a
h
AndDP = PE = a tan B
h 3a
tan
h a
B
D
P
E
C
6a
tan = 3tanB Option (1) is correct By figure it can be seen that B = C Option (4) is correct And option (2) is incorrect Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Now option (3); LHS
Trigonometric Functions
6 tan 2
tan 9
6
h a
2
⎛h⎞ ⎜a⎟ 9 ⎝ ⎠
137
6ah 2
h 9a2
L.H.S. tanA = – tan(B + C)
[tan B tan C ] 1 tan B tan C
h h tan B tan C 6ah 3a2 3a 2 tan B tan C 1 h h 9a 2 1 9a 2
Option (3) is correct 43. In a triangle, with usual notations, the length of the bisector of angle A is
2bc cos (1)
b+c
A 2
2bc sin (2)
b+c
A 2
A 2 2R(b + c )
abc cosec (3)
(4)
2 A cosec 2 b+c
Sol. Answer (1, 3, 4) Let AD = l Ar ABD + Ar ADC = ArABC 1 1 1 cl sin bl sin bc sin 2 2 2 2
1 1 l sin [b c ] bc 2sin cos 2 2 l
2bc cos 2bc cos A / 2 bc bc
So option (1) is correct and option (2) is incorrect For option (3)
a 2bc cos A / 2 2abc cos A / 2 2abc cos A / 2 a bc (b c ).2R sin A (b c ).2R.2sin A / 2cos A / 2
=
abc cos ec A / 2 2R(b c )
For option (4)
abc cosec A / 2 4R cosec A / 2 2cosecA / 2 2R(b c ) 2R(b c ) bc Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
138
Trigonometric Functions
Solution of Assignment (Set-2)
44. An ordered triplet solution (x, y, z) with x, y, z (0, 1) and satisfying x2 + y2 + z2 + 2xyz = 1 is 7 4 ⎞ ⎛ (1) ⎜ cos , cos , cos 6 18 9 ⎟⎠ ⎝
2 ⎞ ⎛ (2) ⎜ cos , cos , cos ⎟ 5 3 10 ⎠ ⎝
7 ⎞ ⎛ (3) ⎜ cos , cos , cos ⎟ 12 4 6 ⎝ ⎠
4 17 ⎞ ⎛ (4) ⎜ cos , cos , cos 12 9 36 ⎟⎠ ⎝
Sol. Answer (1, 4) Let A cos1 x, B cos1 y , C cos1 z, where A + B + C = A+B+C= cos–1x + cos–1y + cos–1z = cos–1x + cos–1y = – cos–1z
cos–1[ xy 1 x 2 1 y 2 ] cos1(3) xy z 1 x 2 1 y 2
(xy + z2) = (1 – x2) (1 – y2) x2y2 + z2 + 2xyz = 1 – x2 – y2 + x2y2 x2y2 + z2 + 2xyz = 1 which is the given identity A+B+C= which is satisfied by options (1) and (4) and A, B, C should be acute.
45. In a ABC, acosB + bcosC + ccosA =
abc , then 2
(1) Triangle in isosceles
(2) Triangle may be equilateral
(3) sin(A – B) + sin(B – C) + sin(C – A) =
3 2
⎛ A B ⎞ ⎛ B C ⎞ ⎛C A ⎞ (4) 4 sin ⎜ ⎟ sin ⎜ ⎟ sin ⎜ ⎟ =1 ⎝ 2 ⎠ ⎝ 2 ⎠ ⎝ 2 ⎠
Sol. Answer (1, 2) In ABC a cosB + b cos C + c cosA =
abc 2
2RsinAcosB + 2RsinBcosC + 2RsinCcosA =
2R sin A 2R sin B 2R sin C 2
sin(A + B) + sin(A – B) + sin(B + C) + sin(B – C) + sin(C + A) + sin(C – A) = sinA + sinB + sinC sin(B + C) + sin(C – A) + sin(A + B) = 0
4 sin
sin
BA A C C B 0 sin sin 2 2 2
BA A C C B 0 or sin 0 or sin 0 2 2 2
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
139
B = A or A = C or C = B Option (1) is correct Option (2) is correct
(If A = B = C)
Option (3) is not correct Option (4) is not correct 46. In a triangle ABC with fixed base BC, the vertex A moves such that cos B cos C 4 sin2
A 2
If a, b and c denote the lengths of the sides of the triangle opposite to the angles A, B and C respectively, then [IIT-JEE 2009] (1) b + c = 4a
(2) b + c = 2a
(3) Locus of point A is an ellipse
(4) Locus of point A is a pair of straight lines
Sol. Answer (2, 3) 2 Given cos B cos C 4 sin
A 2
A ⎛B C ⎞ ⎛ B C ⎞ .cos ⎜ 4 sin2 2cos ⎜ ⎟ ⎟ 2 ⎝ 2 ⎠ ⎝ 2 ⎠ A ⎛ A⎞ ⎛ B C ⎞ 4 sin2 2sin ⎜ ⎟ .cos ⎜ ⎟ 2 ⎝2⎠ ⎝ 2 ⎠ A ⎛ B C ⎞ A cos ⎜ ⎟ 2sin 2 , as sin 0 2 2 ⎝ ⎠ ⎛ B C ⎞ cos ⎜ ⎟ ⎝ 2 ⎠ 2 ⎛B C ⎞ cos ⎜ ⎟ ⎝ 2 ⎠ B C 1 tan .tan 2 2 2 B C 1 tan .tan 2 2
1
(s a )(s c ) (s a )(s b ) . s (s b ) s (s c )
1
(s a )(s c ) (s a )(s b ) = 2 . s(s b ) s( s c )
(s a ) s 2 s a 1 s 1
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
140
Trigonometric Functions
2s a 2 a
bc 2 a
Solution of Assignment (Set-2)
b c 2a and also b + c = 2a AC + AB = 2BC AC + AB > BC, which shows that the locus of point A is an ellipse.
47. If
sin4 x cos4 x 1 , then 2 3 5
2 (1) tan x
2 3
[IIT-JEE 2009]
sin8 x cos8 x 1 8 27 125
(2)
2 (3) tan x
1 3
(4)
sin8 x cos8 x 2 8 27 125
Sol. Answer (1, 2) We have,
sin4 x cos4 x 1 2 3 5 3 sin4x + 2cos4x =
6 5
3(1 – cos2x)2 + 2cos4x =
6 5
3(1 + cos4x – 2 cos2x) + 2cos4x =
3 + 3cos4x – 6cos2x + 2cos4x =
4 2 5 cos x 6 cos x 3
4 2 5 cos x 6 cos x
6 5
6 5
6 0 5
9 0 5
25cos4x – 30cos2x + 9 = 0 (5cos2x – 3)2 = 0 2 cos x
2 sec x
3 5
5 3
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
tan2 x sec 2 x 1
Trigonometric Functions
141
5 2 1 3 3
Hence option (1) is true sin2 x 1 cos2 x 1
3 2 5 5 4
4
⎛2⎞ ⎛3⎞ sin x cos x ⎜ ⎟ ⎜ ⎟ 5 Now, = ⎝ ⎠ ⎝ 5 ⎠ 2 3 5 1 option (2) 8 27 8 27 5 4 5 4 5 4 125 8
48. For 0
(1)
8
, the solution(s) of 2
4
(2)
6
⎛
∑ cosec ⎜⎝
m 1
6
(m 1) ⎞ m ⎞ ⎛ ⎟ cosec ⎜ 4 ⎟ 4 2 is(are) 4 ⎠ ⎝ ⎠ (3)
12
(4)
[IIT-JEE 2009] 5 12
Sol. Answer (3, 4) We have m ⎞ m ⎞ ⎛ ⎛ Tm cosec ⎜ cosec ⎜ ⎟ 4 ⎠ 4 ⎟⎠ ⎝ ⎝
1 m ⎞ ⎛ m ⎞ ⎛ ⎟ sin ⎜ sin ⎜ 4 4⎠ ⎝ 4 ⎟⎠ ⎝
⎡ ⎛⎛ m ⎞ ⎛ m ⎞ ⎞ ⎤ ⎜ ⎟⎟ ⎥ ⎢ sin ⎜ ⎜ ⎟ 4 ⎠ ⎝ 4 4 ⎠⎠ ⎥ 1 ⎢ ⎝⎝ ⎢ m ⎞ ⎛ m ⎞ ⎥ sin ⎢ sin ⎜⎛ sin ⎜ ⎟⎥ ⎟ 4⎢ 4 ⎠ ⎝ 4 4 ⎠ ⎥⎦ ⎝ ⎣
⎡ ⎛ m ⎞ m ⎞ m ⎞ ⎛ m ⎞ ⎤ ⎛ ⎛ ⎢ sin ⎜ 4 ⎟ cos ⎜ 4 4 ⎟ cos ⎜ 4 ⎟ sin ⎜ 4 4 ⎟ ⎥ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎥ 2⎢ ⎝ ⎢ ⎥ m ⎞ ⎛ m ⎞ ⎛ sin ⎜ ⎟ sin ⎜ 4 4 ⎟ ⎢ ⎥ 4 ⎝ ⎠ ⎝ ⎠ ⎣ ⎦ ⎡ ⎛ m ⎞ m ⎞ ⎤ ⎛ 2 ⎢cot ⎜ ⎟ cot ⎜ ⎥ 4 4⎠ 4 ⎟⎠ ⎦ ⎝ ⎣ ⎝ ⎛ ⎞⎞ ⎛ T1 2 ⎜ cot() cot ⎜ ⎟ ⎟ 4 ⎝ ⎠⎠ ⎝ ⎛ 2 ⎞ ⎞ ⎞ ⎛ ⎛ T2 2 ⎜ cot ⎜ ⎟ cot ⎜ ⎟ 4⎠ 4 ⎟⎠ ⎠ ⎝ ⎝ ⎝ Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
142
Trigonometric Functions
Solution of Assignment (Set-2)
⎛ 5 ⎞ 6 ⎞ ⎞ ⎛ ⎛ T6 2 ⎜ cot ⎜ cot ⎜ ⎟ ⎟ 4 ⎠ 4 ⎟⎠ ⎠ ⎝ ⎝ ⎝
Sum T1 T2 T3 T4 T5 T6 4 2
⎡ 6 ⎞ ⎤ ⎛ 2 ⎢cot cot ⎜ ⎥4 2 4 ⎟⎠ ⎦ ⎝ ⎣
cot + tan = 4
sin2 cos2 4 sin cos
sin cos 2sin cos
1 4
1 2
sin 2
1 2
2
5 , 6 6
5 , 12 12
and let a, b and c denote the lengths of the sides opposite to A, B 6 and C respectively. The value(s) of x for which a = x 2 + x + 1, b = x 2 – 1 and c = 2x + 1 is/are [IIT-JEE 2010]
49. Let ABC be a triangle such that ACB
(1) 2 3
(2) 1 3
(3) 2 3
(4) 4 3
Sol. Answer (2)
cos C
2 2 2 b a c 2ab
2
2
x 2 1 x 2 x 1 2 x 1 3 2 2 x2 1 x2 x 1
2
( x 2)( x 1)x( x 1) ( x 2 1)2 3( x 2 x 1)( x 2 1)
C
3( x 2 x 1) x 2 2 x x 2 1
6
(2 3)x 2 (2 3)x ( 3 1) 0 x (2 3) & x 1 3
A
B
But x (2 3) shows that c is negative, which is not possible in a triangle. Hence x 1 3 is only possible value of x. ⇒ x 1 3 Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
143
50. Let , [0, 2] be such that
⎞ ⎛ 2cos (1 sin ) sin2 ⎜ tan cot ⎟ cos 1 , 2 2⎠ ⎝ tan(2 ) 0 and 1 sin
3 . 2
Then cannot satisfy (1) 0
2
[IIT-JEE 2012] 4 2 3
(2)
(3)
4 3 3 2
(4)
3 2 2
Sol. Answer (1, 3, 4)
⎛ ⎞ ⎜ ⎟ 1 2cos 1 sin sin2 ⎜ ⎟ cos 1 ⎜⎜ sin ·cos ⎟⎟ ⎝ 2 2⎠ 2cos 1 sin 2sin ·cos 1 2cos + 1 = 2sin( + )
…(i)
Now, tan 0 and 1 sin
3 gives 2
⎛ 3 5 ⎞ ⎜ , ⎟ ⎝ 2 3 ⎠ Using (i) ; sin cos
1 2
1 sin( ) 1 2
i.e.,
5 13 17 or, 6 6 6 6
13 17 6 6
2 7 3 6
So, options (1), (3) and (4) are correct.
51. In a triangle PQR, P is the largest angle and cos P =
1 . Further the incircle of the triangle touches the sides 3
PQ, QR and RP at N, L and M respectively, such that the lengths of PN, QL and RM are consecutive even integers. Then possible length(s) of the side(s) of the triangle is (are) [JEE(Advanced)-2013] (1) 16
(2) 18
(3) 24
(4) 22
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
144
Trigonometric Functions
Solution of Assignment (Set-2)
Sol. Answer (2, 4) QR is largest side PM = PN = 2k RM = RL = 2k + 4 QL = QN = 2k + 2 QR = 4k + 6 RP = 4k + 4 QP = 4k + 2
cosP =
1 = 3
PQ 2 PR 2 QR 2 2 PQ PR
R
4 k 2 2 4 k 4 2 4k 6 2 2 4 k 2 4k 4
1 2k 1 4 k 1 2k 3 3 4 2k 1 k 1 2
2
+ 2k 2k +
4
4
L
+ 2k
2Q
2k + 2 N M
2k 2k
P
2
4 k 1 4k 4 2 1 = 4 2 k 1 k 1 3 2
1 = 3
k 12 – 2 k 1 k 1 2k 1
(k + 1) (2k + 1) = 3(k – 1) (k + 1) k = – 1 or 2k + 1 = 3k – 3 4 = k So, PQ = 18, QR = 22, RP = 20
SECTION - C Linked Comprehension Type Questions Comprehension - I If Pn cosn sinn , 1.
6P10 15P8 10P6 is equal to
(1) –1 2.
(2) 0
(3) 1
(4) 8
(3) 4
(4)
Maximum value of P1000 will be (1) 2
(2) 1
1 2
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
⎡ ⎤ ⎢0, ⎥ , n ( , 2) , then minimum of Pn will be ⎣ 2⎦ 1 (1) 1 (2) 2 Solution of Comprehension - I
145
3.
1.
Answer (3)
2.
Answer (2)
3.
Answer (1)
(3)
2
(4)
1 2
Pn = cosn + sinn Pn = cosn + sinn Pn – 2 = cosn – 2 + sinn – 2 Pn – Pn – 2 = (cosn + sinn) – (cosn – 2 + sinn – 2) = cosn – 2 (– sin2) + sinn – 2 (–cos 2) = – sin2 cos2 (Pn – 4) 1.
6P10 – 15P8 + 10P6 = 6P10 – 6P8 – 9P8 + 9P6 + P6 – P4 + P4 – P2 + P2 = 6(–sin2cos2 P6) – 9(–sin2 cos2.P4) + (–sin2cos2P2) + (–sin2cos2P0) + 1 = sin2cos2 [–6P6 + 9P4 – P2) – 2] + 1 = sin2cos2 [–6(P6 – P4) + 3(P4 – P2) – 2P2 – 2] + 1 = sin2cos2 [–6 (–sin2 cos2P2) + 3(sin2 cos2P0) + 2 – 2] + 1 = sin4cos4[– 6P2 + 3P0] + 1 = sin4cos4[– 6 + 6] + 1 = 1
2.
Maximum value of P1000 = ? cos1000 + sin1000 = cos2 cos1998 + sin2 sin1948 cot2 + sin2 = 1 (P1000)max = 1
3.
⎡ ⎤ Pn = cosn + sinn, ⎢0, 2 ⎥ , 2 ( , 2) ⎣ ⎦ Minimum value of Pn = ?
sin2 (sin)n and cos2 (cos)4
⎛ ⎞ n (– , 2) & ⎜ 0, ⎟ ⎝ 2⎠
⎛ ⎞ n (– , 2) & ⎜ 0, ⎟ ⎝ 2⎠
sinn cosn 1
(Pn)min = 1 Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
146
Trigonometric Functions
Solution of Assignment (Set-2)
Comprehension-II From algebra we know that if ax2 + bx + c = 0; a( 0), b, c R has roots and then
c b and . a a
Trigonometric functions sin and cos; tan and sec; cosec and cot obey sin2 + cos2 = 1. A linear relation in sin and cos, sec and tan or cosec and cot can be transformed into a quadratic equation in, say, sin, tan or cot respectively. And then one can apply sum and product of roots to find the desired result. Let acos + bsin = c have two roots 1 and 2, 1 2. 1.
The value of cos(1 + 2) is (a and b not being simultaneously zero)
(1)
a2 b2
(2)
a2 b2
b2 a2
(3)
a2 b2
a2 c 2
(4)
a2 b2
c 2 a2 a2 b2
Sol. Answer (1) acos + bsin = c (acos – c)2 = ab2sin2 = b2 – b2cos2 a2cos2 – 2accos + c2 – b2 + b2cos2 = 0 (a2 + b2)cos2 – 2accos + (c2 – b2) = 0
cos 1 cos 2
2ac a2 b
, cos 1 cos 2 2
c 2 b2 a2 b2
a2cos2 = c2 + b2sin2 – 2bcsin a2 – b2sin2 – b2sin2 + 2bcsin – c2 = 0 (a2 + b2) – 2bcsin + (c2 – a2) = 0 sin1 + sin2 =
sin1 sin2 =
2bc 2
a b2
c 2 a2 a2 b2
cos(1 + 2) = cos1cos2 – sin1sin2
2.
c 2 b2 a2 b2
c 2 a2 a2 b2
a2 b2 a2 b2
The value of cos(1 – 2) is (a and b not being simultaneously zero) (1) 1
2c 2 a2 b2
(2)
2c 2 a2 b2
1
(3) 1
2c 2 2
a b
2
(4)
2c 2 2
a b2
1
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
147
Sol. Answer (4) cos(1 – 2) = cos1cos2 + sin1sin 2
3.
c 2 b2 c 2 a2 a2 b2 2c 2 a2 b2
1
The values of tan1tan2 is (given |b| |c|) (1)
a2 c 2
(2)
a2 b2
a2 c 2 a2 b2
(3)
a2 c 2 c 2 b2
(4)
c 2 a2 c 2 b2
Sol. Answer (4)
tan 1 tan 2
c 2 a2 c 2 b2
a2 b2 c 2 b2
c 2 a2 c 2 b2
Comprehension-III In reducing a given trigonometric equation to the standard form (sinx = sin) or (cosx = cos) etc. we apply several trigonometric or Algebraic transformation. As a result of which final form so obtained may not be equivalent to the original equation resulting either in loss of solutions or appearance of extraneous solutions. 1.
The solution set of the equation
5 2sin x 6sin x 1 is (1) n + (–1)n where sin
(2) x n ( 1)n
2 or x n ( 1)n , n I 6 9
, nI 6
(3) x = n + (–1)n where sin
2 9
(4) Null set Sol. Answer (2) 5 2 sin x 6 sin x 1
5 – 2sinx = 36sin2x – 12sinx + 1 36sin2x – 10sinx – 4 = 0 18sin2x – 5sinx – 2 = 0 18sin2x – 9sinx + 4sinx – 2 = 0 (9sinx + 2) (2sinx – 1) = 0 Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
148
Trigonometric Functions
Putting sin x
sin x
1 2 , sin x 2 9
1 in given equation 2
LHS 5 2
RHS = 6
1 2 2
1 1 = 2 2
Putting sin x
LHS =
Solution of Assignment (Set-2)
5
RHS = 6
2 9
4 7 9 3 2 1 0 9
No solution sin x
1 is a solution 2
n x n ( 1)
2.
;nI 6
The equation 2cot2x – 3cot3x = tan2x has
⎛ ⎞ (1) Two solutions in ⎜ 0, ⎟ ⎝ 3⎠
⎛ ⎞ (2) One solution in ⎜ 0, ⎟ ⎝ 3⎠
(3) No solution in (– , )
(4) Three solution in (0, )
Sol. Answer (3) 2cot2x – 3cot3x = tan2x 2(cot2x – cot3x) = tan2x + cot3x 2(cos 2 x sin3 x cos3 x sin2x ) sin2 x.sin3 x cos 2 x.cos3 x sin2x .sin3 x cos 2 x.sin3 x
2 sin x cos x sin 2 x.sin3 x cos 2 x.sin3 x
2tanx = tan2x 1 – tan2x = 1 tan2x = 0 But tanx 0 as given equation involves terms of cotangent. No solution Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
3.
149
13 18tan x 6tan x 3 is
The solution of (1) tan x
Trigonometric Functions
1 6
1⎞ ⎛ 2 ⎞ ⎛ (3) tan x ⎜ , ⎟ ⎜ , ⎟ 6 ⎝ ⎠ ⎝3 ⎠
(2) tanx =
2 3
(4) tan x
3 4
Sol. Answer (2)
13 18 tan x 6 tan x 3 13 – 18tanx = 36tan2x – 36tanx + 9 36tan2x – 18tanx – 4 = 0 18tan2x – 9 tanx – 2 = 0 18 tan2x – 12tanx + 3tanx – 2 = 0 (6tanx + 1) (3tanx – 2) = 0 tan x
1 2 , tan x 6 3
Putting tan x L.H.S. =
1 in given equation, 6
13 3 4 R.H.S. = –1 – 3 = –4
No solution Putting tan x L.H.S. =
2 in given equation 3
13 12 1
R.H.S. = 4 tan x
2 is a solution. 3
Comprehension-IV There are trigonometrical equations that are nonstandard in aspect in that the equation may contain dissimilar terms, say algebraic as well as trigonometric expressions, or there may be only one equation in more than one unknowns. In such cases we make use of the extreme values of trigonometric functions or algebraic functions. In particular |sinx| 1, |cosx| 1, and maxima/minima of quadratic expressions are widely made use of.
1.
⎛ x ⎞ The equation sin⎜ ⎟ x 2 6 x 10 holds for ⎝ 6 ⎠
(1) Infinitely many values of x
(2) Finitely many values of x
(3) Just one value of x
(4) No value of x
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
150
Trigonometric Functions
Solution of Assignment (Set-2)
Sol. Answer (3) ⎛ x ⎞ sin ⎜ ⎟ = (x – 3)2 + 1 1, x R ⎝ 6⎠ ⎛ x ⎞ We know sin ⎜⎝ ⎟⎠ 1 6
Equality holds at x = 3. Hence the given equation has only one solution.
2.
4 The equation 8 cos
x x 1 sin2 x 2 , x (0, 4] holds for 2 2 x2
(1) No value of x (2) Exactly two values of x, both greater than (3) Exactly two values of x, one smaller than and the other greater than (4) Just one value of x Sol. Answer (1)
2cos2 cos
x 1 sin2 x x 2 2 2 x R, except x = 0 2 x 2
x sin2 x 1 (which is not possible) 2
2 Because 0 cos
2 Hence cos
x sin2 x 1 2
2 But if cos
x sin2 x 1 2
2 Then cos
x 1 and sin2 x 1 2
3.
x 1 and 0 sin2 x 1 2
x n and x k n, k Z , which is not possible simultaneously. Hence no solution exits. 2 2
The equation cosec
x y z cosec cosec 6, where 0 x, y , z and x + y + z = , have 2 2 2 2
(1) Three ordered triplet (x, y, z) solutions
(2) Two ordered triplet (x, y, z) solutions
(3) Just one ordered triplet (x, y, z) solution
(4) No ordered triplet (x, y, z) solution
Sol. Answer (3) cosec
x y z cosec cosec = 2 + 2 + 2 2 2 2
x=y=z=
3
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
151
Comprehension-V Recall that sinx + cosx = u (say) and sinxcosx = v (say) are connected by (sinx + cosx)2 = sin2x + cos2x + 2sinxcosx u2 = 1 + 2v v=
u2 1 2
It follows that any rational integral function of sinx + cosx, and sinxcosx i.e., R(sinx + cosx, sinxcosx), or in our ⎛ u 2 1⎞ ⎟ . Thus to solve an equation of the form R(u, v) = 0, we form notation R(u, v) can be transformed to R ⎜⎜ u, 2 ⎟⎠ ⎝
a polynomial equation in u and then look for solutions. 1.
The solution set of sin x cos x 2 2 sin x cos x 0 is completely described by (1) x 2n
5 11 , 2n , 2n , nZ 4 12 12
(2) x 2n
7 , 2n , 2n , nZ 4 12 12
(3) x 2n
7 , 2n , 2n , nZ 4 12 12
(4) x 2n
7 , 2n , 2n , nZ 4 12 12
Sol. Answer (1) sinx + cosx = 2 2 sinx cosx
⎛ u 2 1⎞ u 2 2 v 2 2 ⎜⎝ 2 ⎟⎠
u
1 1 8 2 2
2,
1 2
2u 2 u 2 0
sin x + cos x =
1 2, 2
⎞ 1 ⎛ ⎛ ⎞ sin ⎜⎝ x ⎟⎠ sin ⎜⎝ ⎟⎠ 4 2 6 x + sin
n ( 1)n 1. 4 6
⎞ ⎛ and sin ⎜⎝ x ⎟⎠ 1 sin 4 2 x
n ( 1)n 4 2
x n
( 1)n = n for n is even or odd. 4 2 4
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
152 2.
Trigonometric Functions
Solution of Assignment (Set-2)
The complete solution of the equation sin2x – 12(sinx – cosx) + 12 = 0 is given by (1) x 2n
, (2n 1), n Z 2
(2) x n
, (2n 1), n Z 2
(3) x 2n
, (2n 1), n Z 2
(4) x n
, (2n 1), n Z 2
Sol. Answer (3) Let u = cosx – sinx, v = sinx cosx =
1 u2 2
Thus the given equation reduces to 2v + 12u + 12 =0 1 – u2 + 12u + 12 = 0 u2 – 12u – 13 = 0 (u + 1) (u – 13) = 0 cosx – sinx = –1 as u 13
⎛ cos ⎜⎝ x x
⎞ 3 ⎟⎠ cos 4 4
3 2n 4 4
x 2n 3.
, (2n 1), n Z (by taking positive and negative respectively) 2
The number of solutions of the equation sin + cos = 1 + sincos in the interval [0, 4] is (1) Four
(2) Six
(3) Eight
(4) Five
Sol. Answer (4) Let y sin x cos x Then the given equation can be reduced to y 1
y2 1 2
y 2 2 y 1 0 y=1 sin x + cos x = 1
x
⎞ 1 ⎛ sin ⎜⎝ x ⎟⎠ 4 2
= , , 2 ,3 , 4 , 5 4 4 4 4 4 4 4
x 0,
5 9 , 2, , 4, 2 2 2
Hence in the given interval x 0,
5 , 2, , 4 five solution exists. 2 2
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
153
Comprehension-VI Consider a triangle ABC, and that AA, BB, CC be the perpendicular from A, B and C upon the sides opposite to them. These three perpendiculars meet in H, called the orthocentre of the triangle. The triangle ABC formed by the feet of the perpendicular is called the pedal triangle of ABC. (Assume A, B, C 90°)
A C
B 1.
H
B
C
A
Suppose the triangle ABC have angles 60°, 70° and 50°. Then the pedal triangle ABC have angles given by (1) 80°, 60°, 40°
(2) 120°, 40°, 20°
(3) 30°, 65°, 85°
(4) 45°, 55°, 80°
Sol. Answer (1) A = – 2A = –120 = 60° B = – 2B = –140 = 40° C = – 2C = –100 = 80° 2.
Suppose a triangle ABC has its sides 13, 14 and 15 cm. Then the circumradius of the pedal triangle is (in cm)
(1)
65 24
(2)
65 8
(3)
26 3
(4)
65 16
Sol. Answer (4) Given a = 13, b = 14, c = 15 Let R is circum radius of ABC, then
R
abc 4
Now, 2s = 13 + 14 + 15 = 42 s = 21 s(s a )(s b )(s c ) =
21 8 7 6 84
R
13 14 15 65 4 21 4 8
Now, circum radius of pedal triangle =
R 65 2 16
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
154 3.
Trigonometric Functions
Solution of Assignment (Set-2)
Suppose ABC is an acute angled triangle, then the area of the pedal triangle is (R being the circum radius of triangle ABC) (1)
R2 sin2A sin2B sin2C 2
(2) R2sin2A sin2B sin2C
(3)
R2 sin A sin B sin C 2
(4) R2sinA sinB sinC
Sol. Answer (1) Area of DEF
DE EF FD 4 R
where R’ is the circumradius of DEF =
(a cos A)(b cos B )(c cos C ) ⎛ R⎞ 4⎜ ⎟ ⎝ 2⎠
=
(2R sin A cos A)(2R sin B cos B )(2R sin C cos C ) 2R
=
R3 sin2 A sin2B sin2C 2R
=
1 2 R sin 2 A sin 2B sin 2C 2
Comprehension-VII Let us consider a triangle ABC having BC = 5 cm, CA = 4 cm, AB = 3 cm D, E are points on BC such that BD = DE = EC, CAE = , then 1.
AE2 is equal to (1)
73 3
(2)
73 5
(3)
73 7
(4)
73 9
Sol. Answer (4) Given BD = DE = EC = x(let) And ACE = In ACE, by using cosine rule
cos
cos
5 AE 2 16 CE 2 and CE 3 2 AE 4
AE 2 16 2 AE 4
25 9
…(i)
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
155
In AEB, by using sine rule
sin(90 – ) sinB BE AE cos
BE 10 4 sin B AE 3.AE 5
…(ii)
From equation (i) and (ii)
10 4 3 AE 5
AE 2 16 2 AE 4
25 9
64 119 AE 2 3 9 2 AE
2.
73 9
tan is equal to (1)
3 4
(2)
1 2
(3)
3 8
(4)
5 8
(2)
52 9
(3)
52 7
(4) 52
Sol. Answer (3) From equation (ii) cos
cos
8 3 AE
8 ⎛ 73 ⎞ 3⎜ ⎟ ⎝ 3 ⎠
tan 3.
8 73
3 8
AD2 is equal to (1)
52 3
Sol. Answer (2) In ABD, by using cosine rule
cos B
3 5
9
BA2 BD 2 AD 2 2BA BD 25 AD 2 9 5 23 3
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
156
Trigonometric Functions
6 9
25 AD 2 9
2 AD
AD 2
Solution of Assignment (Set-2)
25 3 9
52 9
Comprehension-VIII Given a right angled triangle ABC with right angled at C. C = 90° and a, b, c are length of corresponding sides. (b > a). B
c
a2 + b2 = c2
( A B ) 90 1.
A
a
b
C
cos(A – B) will be equal to (1) cos2B
(2) sin2A
(3) cos2A
(4) sinB
Sol. Answer (2) cos(90° – B – B) = cos(90° – 2B) = sin2B Also cos(A – (90° – A)) = cos(2A – 90°) = sin(2A) 2.
sin2A will be equal to
2bc
(1)
(2)
a2
b2 a2 c2
(3)
2ab c2
(4)
b2 c 2 2bc
(4)
a c b
Sol. Answer (3) sin2A = 2sinA cosA
2
a b c c
2ab c2
c2 – b2 = a2 3.
tan
(1)
A will be equal to 2
2ab 2
a b
2
(2)
2ab 2
b a
2
(3)
c b a
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
157
Sol. Answer (3)
A 1 cos A tan2 2 1 cos A
(c b )2 c 2 b2
⇒ tan
b c c b b cb 1 c
1
(c b )2 a2
A cb 2 a
SECTION - D Assertion-Reason Type Questions 1.
STATEMENT-1 : Minimum value of sinx + cosecx is 2 for all x (0, ). and STATEMENT-2 : Min (sinx + cosecx) = 2, x R.
Sol. Answer (3) Statement (2): Min(sinx + cosecx) = 2, x R False ∵ (sinx + cosecx)min = 2 If sinx, cosecx are positive Statemenet (1) minimum value of (sinx + cosecx) = 2 when x R(0, ) is true 2.
STATEMENT-1 : If cos(A + B)sin(C + D) = cos(A – B)sin(C – D), then the value of cotAcotBcotC is cotD. and STATEMENT-2 : If cos(A + B)sin(C + D) = cos(A – B)sin(C – D), then the value of tanAtanBtanC is tanD.
Sol. Answer (1) From Statement-2
cos( A B ) sin(C D ) cos( A B ) sin(C D ) 1 tan A tan B tanC tan D 1 tan A tan B tanC tan D tanA · tanB · tanC = tanD cotA · cotB · cotC = cotD
3.
STATEMENT-1 : If cos =
1 13 and cos = where and both are acute angles, then the value of – is 7 14
. 3
and 1 STATEMENT-2 : cos = 3 2 Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
158
Trigonometric Functions
Solution of Assignment (Set-2)
Sol. Answer (4) cos( – ) = cos · cos + sin · sin
4.
1 13 48 27 · · 7 14 7 14
13 36 49 91 91
STATEMENT-1 : The value of k for which (cos – sin)2 + ksincos – 1 = 0 is an identity is –2. and STATEMENT-2 : An identity in is satisfied by all real values of .
Sol. Answer (4) sin2 + cos2 – 2sin · cos + ksin · cos – 1 (k – 2)sin · cos = 0 k = 2 Statement-1 is false, Statement-2 is true.
5.
STATEMENT-1 : If is acute and 1 + cos = k, then sin
is 2
2k . 2
and 2 STATEMENT-2 : 2sin
x = 1 cos x. 2
Sol. Answer (1) 1 + cos = k 1 1 2sin2
k 2
2k sin2 2 2
2k sin 2 2
Statement-1 is true, Statement-2 is true and Statement-2 is correct explanation of (1).
6.
STATEMENT-1 : The general solution of 2
sin x
cos x
2
1
2
1 2
is n
. 4
and STATEMENT-2 : A.M. G.M. Sol. Answer (1) Statement-1
2
sin x
cos x
2
1
2
1 2
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
159
sin x 2cos x 2 (2sin x 2cos x ) L.H.S. = 2
L.H.S. 2
sin x cos x 1 2 1
1
L.H.S. 2
2
1
∵ R.H.S. = 2
1 2
Equality holds good if 2sin x 2cos x sinx = cosx x n
4
Both statements are correct and statement-2 explains statement-1 correctly. 7.
STATEMENT-1 : The equation 3cosx + 4sinx = 6 has no solution. and STATEMENT-2 : Due to periodic nature of sine and cosine functions, the equation 3cosx + 4sinx = 6 has infinitely many solutions.
Sol. Answer (3) –5 3 cos x + 4sinx 5 Given equation has no solution & statement 2 is false. n
8.
STATEMENT-1 : If
∑ sin( xr ) n , then
r 1
n
∑ cot( xr ) n .
r 1
and STATEMENT-2 : The number of solutions of the equation cosx = x is 1. Sol. Answer (2) Statement (2) cosx = x Only one solution true Statement-1 n
If
∑
r 1
sinxr = n, then cotxr = n
sinx1 + sinx1 + …. + sinxn = n sin x1 sin x2 ..... sin xn 1
x1 x2 ..... xn
2
cot x1 cot x2 .... cot xn n 1 + 1 + …. + 1 = n is also true Both statement are correct but statement -2 is not the correct explanation of statement -1. Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
160 9.
Trigonometric Functions
Solution of Assignment (Set-2)
STATEMENT-1 : The number of real solution of the equation sinx = 4x + 4–x is zero. and STATEMENT-2 : | sinx | 1 x R.
Sol. Answer (1) Statement (2) : | sin x | | x R is true. x x Statement (1) : sin x 4 4 .
L.H.S. [–1, 1]
(as from statement-2)
R.H.S. No solution Both statements are correct and statement -2 is the correct explanation of statement -1.
10. STATEMENT-1 : The general solution of tan 5 = cot 2 is
n , nZ . 7 14
and STATEMENT-2 : The equation cos = k has exactly two solutions in [0, 2] for all k, –1 k 1. Sol. Answer (3) tan5 = cot2
y
It is clear from the graph 5 = n
Hence generalizing =
tan 5
– 2 , n Z 2
n and 7 14
The equation cos x = k has only one solution in [0, 2 ]
10
0
10
for k = {–1, 1} and has three solutions for k = 0.
5
3 10
2
x
cot 2
Statement-2 is false. 11. STATEMENT-1 : sinx = siny x = y. and STATEMENT-2 : sinx = siny has infinitely many solutions for real values of x and y. Sol. Answer (4) Statement (2) is correct thus clearly Statement (1) is wrong sin x = sin y (x = y, – y……) ⎛ ⎞ 12. STATEMENT-1 : f(x) = logcosxsinx is well defined in ⎜ 0, ⎟. ⎝ 2⎠ and
⎛ ⎞ STATEMENT-2 : sinx and cosx are positive in ⎜ 0, ⎟. ⎝ 2⎠ Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
161
Sol. Answer (2) Statement (2) is correct as both sinx and cosx are positive in I quadrant Statement (1) f ( x ) logcos x (sin x )
=
lnsin x lncos x
Is defined if cosx > 0 and cosx 1 ⎛ ⎞ It is defined in ⎜⎝ 0, 2 ⎟⎠ (as given)
Statement (1) is true but (2) is not correct explanation for (1) 13. STATEMENT-1 : If in ABC, 3bc = (a – b+c)(a + b – c) then A = 120°. and STATEMENT-2 : cos120° =
1 2
Sol. Answer (2) 3bc = (a – b + c) (a + b – c) = [a – (b – c)] [a + (b – c)] 3bc = a2 – (b – c)2 3bc = a2 – b2 – c2 + 2bc b2 + c2 – a2 = – bc
b2 c 2 a2 1 2bc 2
cos A
1 ] 2
A = 120° 14. ABCD is a quadrilateral in which a circle is inscribed. STATEMENT-1 : The length of the sides of the quadrilateral can be A.P. and STATEMENT-2 : The length of tangents from an external point to a circle are equal. Sol. Answer (1) If sum of opposite sides of a quadrilateral is equal, then and only then a circle can be inscribed in a quadrilateral Statement-1 : Length of sides of quadrilateral can be in A.P. if common difference is zero. Statement-2 : True. 15. STATEMENT-1 : In ABC, if a < b sinA, then the triangle is possible. and STATEMENT-2 : In ABC
a b = sin A sin B
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
162
Trigonometric Functions
Solution of Assignment (Set-2)
Sol. Answer (4) In ABC a b sin A sin A sin A
a b
sin A
sin A sin B
sin B 1 16. Let ABCD be a cyclic quadrilateral then STATEMENT-1 : sinA + sinB + sinC + sinD = 0 and STATEMENT-2 : cosA + cosB + cosC + cosD = 0 Sol. Answer (4) In cyclic quadrilateral ABCD A + C = 180 and B + D = 180 A = 180 – C and B = 180 – D Then, sin A = sin C Or cos A = – cosC
and sin B = sin D and cos B = – cos D
Hence cos A + cos B + cos C + cos D = 0 17. STATEMENT-1 : In a triangle ABC if tanA : tanB : tanC = 1 : 2 : 3, then A = 45°. and STATEMENT-2 : If p : q : r = 1 : 2 : 3, then p = 1 Sol. Answer (3) Given, tanA : tanB : tanC = 1 : 2 : 3 tanA = k tanB = 2k tanC = 3k In ABC tanA + tanB + tanC = tanA tanB tanC 6K = 6K3 K 0 K = ± 1 K –1 K=1 tanA = 1 A = 45° Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
163
18. STATEMENT-1 : In an acute angled triangle minimum vlaue of tan + tan + tan is 3 3 . and STATEMENT-2 : If a, b, c are three positive real numbers then
a+b+c 3 abc also in a ABC, 3
tanA + tanB + tanC = tanA·tanB·tanC.
Sol. Answer (1)
tan tan tan (tan · tan · tan )1/3 Equality will hold when tan tan tan 5
SECTION - E Matrix-Match Type Questions 1.
Match the following Column-I
Column-II
(A) The minimum value of sec2x + cosec2x – 4 is
(p) 3
(B) The maximum value of || sinx | –4 | – 3 is
(q) 4
(C) 10 log10 3 log10 tan1 log10 tan 2 ..... log10 tan 89
(r) 1
equals (D) If cosx + cos2x = 1, then the value of 4sin2x(2 – cos2x)
(s) 0
Sol. Answer A(s), B(r), C(p), D(q) (A) f(x) = sec2x + cosec2x – 4
sin2 x cos2 x sin2 x cos2 x 4 sin2 2x
4
4
fmin = 4 – 4 = 0 (B) f(x) = ||sinx| – 4| – 3 fmax = |0 – 4| – 3 =1 (C) 10log10 3 log10 tan1 tan10 tan2 log10 tan89 = 3 + log10{(tan1° tan89° ) (tan2° tan88° ) …… (tan44° tan46°) tan45°} =3 (D) cosx + cos2x = 1 cosx = sin2x 4sin2x. (2 – cos2x) = 4sin2x (1 + sin2x) ( sin2x + cos2x = 1) = 4(sin2x + sin4x) = 4(sin2x + cos2x) =4 Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
164 2.
Trigonometric Functions
Solution of Assignment (Set-2)
Match the expression on column I with the expression on column II that is equal to it. Column-I
Column-II
1 cos 1 cos
(A)
(p) tan4 + sec4
2 (B) 1 tan 1 cot 2
(C) 1
(q) cosec + cot
2 tan 2
(r)
cos 2
(D) (1 – sin – cos)2
⎛ 1 tan ⎞ ⎜⎜ ⎟⎟ ⎝ 1 cot ⎠
2
(s) 2(1 – sin)(1 – cos)
Sol. Answer A(q), B(r), C(p), D(s) 1 cos 1 cos
(A)
(1 cos )2
1 cos2 1 cos sin
= |cosec + cot|
(B)
1 tan2 1 cot 2
sec 2 cosec 2
= tan2 2
⎛ 1 tan ⎞ ⎧ 1 tan ⎫ ⎨ tan ⎬ Also, ⎜ ⎝ 1 cot ⎟⎠ ⎩ tan 1 ⎭
2
= tan2 (C) 1
2 tan2 cot 2
= (sec2 – tan2)2 + 2tan2 sec2 = sec4 + tan4 (D) (1 – sin – cos)2 = 2 – 2sin – 2cos + 2sin cos = 2(1 – sin). (1 – cos) Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
3.
Trigonometric Functions
165
Match the expression given in column I with its extreme values given in column II. Column-I (A) If
sin2 x
+
Column-II cosec2 x
= 2, then 2sin x + 3cosec x is
(B) If sinx1 + sinx2 + sinx3 + sinx4 + sinx5 = ± 5, then
(p) 5 (q) –5
cos x1 + cos x2 + cos x3 + cos x4 + cos x5 is equal to (C) If cos2 x1 + cos2 x2 + cos2 x3 + cos2 x4 + cos2 x5 = 5, then
(r) 0
sin x1 + 2sin x2 + 3sin x3 + 4sin x4 + 5sin x5 is less than or equal to (D) If cos3 x1 + cos3 x2 + cos3 x3 + cos3 x4 + cos3 x5 + 5 = 0,
(s) 15
then sin3 x1 + 23 sin3 x2 + 33 sin3 x3 + 43 sin3 x4 + 53 sin3 x5 is equal to (t) 225 Sol. Answer A(p, q), B(r), C(q, r), D(r) (A) sin2x + cosec2x = 2 sinx = ± 1 = cosecx = ± 1 2 sinx + 3 cosecx = ± 5 (B) sinx1 + sinx2 + …+ sinx5 = ± 5 Each of x1, x2, ……, x5 is = ±
2
cosx1 = cosx2 = ……= cosx5 = 0 cosx1 + cosx2 + ……+ cosx5 = 0 (C) cos2x1 + cos2x2 +……+ cos2x5 = 5 cos2x1 = cos2x2 =……= cos2x5 = 1 cosx1 = cosx2 =……= cosx5 = ± 1 Then sinx1 + 2sinx2 + ……+ 5 sinx5 = 0 cos3x1 + cos3x2 + ……+ cos3x5 = – 5 cosx1 = cosx2 = ……= cosx5 = – 1 sinx1 = sinx2 =……= sinx5 = 0 sinx1 + 2sinx2 +……+ 5sinx5 = 0 4.
Match the following : Column-I (A)
Column-II
3 cosec 20 sec 20
3 5 7 ⎞ ⎛ + sin4 + sin4 (B) 2 ⎜ sin4 + sin4 8 8 8 8 ⎟⎠ ⎝ (C) cos
2 4 6 cos cos 7 7 7
(D) sec10°
1 3
cosec10°
(p)
4 3
(q) 3
(r) 4
(s)
1 8
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
166
Trigonometric Functions
Solution of Assignment (Set-2)
Sol. Answer A(r), B(q), C(s) D(p)
3 cosec 20 sec 20
(A)
⎛ 3 ⎞ 1 ⎜ 2 cos 20 2 sin 20 ⎟ 4⎜ ⎟ 2 sin 20 cos 20 ⎟ ⎜ ⎝ ⎠
4.
sin 40 sin 40
=4
3 5 7 ⎞ (B) 2 ⎛⎜ sin4 sin4 sin4 sin4 ⎟ ⎝ 8 8 8 8⎠ 3 ⎞ ⎛ 4 ⎜ sin4 sin4 ⎟ ⎝ 8 8⎠ ⎛⎛ ⎜ ⎜ 2 sin2 ⎝⎝
2 2 2 ⎞ ⎞ ⎞ ⎛ ⎟⎠ ⎜⎝ 2 sin ⎟⎠ ⎟ 8 8 ⎠
2
⎞ 3 ⎞ ⎛ ⎛ ⎜ 1 cos ⎟ ⎜ 1 cos ⎟ ⎝ ⎝ 4⎠ 4⎠ 2
1 ⎞ 1 ⎞ ⎛ ⎛ ⎜1 ⎟ ⎜⎝ 1 ⎟ ⎝ 2⎠ 2⎠
1
2
2
1 1 1 2 2
=3 (C) cos
2 4 6 .cos .cos 7 7 7
2 4 cos .cos .cos 7 7 7
1
2 sin 7 3
8 7
1 8
(D) sec10
.sin
1 3
1 3
cosec10
3 sec10 cosec10
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
167
⎛ 3 sec10 cos10 ⎞ ⎜ sin10 cos10 ⎟⎠ 3 ⎝
1
⎛ 3 ⎞ 1 ⎜ 2 sec10 2 cos10 ⎟ 4⎜ ⎟ sin 20 3 ⎜ ⎟ ⎝ ⎠
1
4
3
sin(10 30) sin20
4
5.
Trigonometric Functions
3
Match the value of the expression given in column-I with value greater than or equal to the number given in column-II. Column-I
Column-II
(A) 2sinx + 2cosx
(p) 2
(B) 2sin
2
x
2cos
2
x
(q) 23/2
(C) 2sin
6
x
2cos
6
x
(r)
(D) 2sin
4
x
2cos
4
x
(s) 25/4
211
2
(t) 29/8 Sol. Answer A(r), B(q), C(t), D(s) (A)
2sin x 2cos x 2 2
2sin x 2cos x 2
⇒ 2 2
2
2sin
x
1 2
2cos 2
⇒ 2sin 1
22 2
sin x cos x 2 2
2 2 2
1
(B)
sin x cos x 2
2
x
2
x
2sin x cos x
2cos
2
x
2sin x cos x 1
sin 2 x 1
1 1 2
3
22
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
168
Trigonometric Functions
(C) 2sin
x
2cos
6
1 (sin 2 x )3 1 8 2
(D) 2sin
2 6.
6
4
x
2cos
1 (sin 2 x )2 1 4
4
x
x
Solution of Assignment (Set-2)
3
x cos3 x 1
2
x cos2 x 1
2sin 9 28
2sin
5 24
Match the following : Column-I (A) If
Column-II
sin 1 cos 3 = and = ; and are acute angles, sin 2 cos 2
(p) 12
then tan is equal to
sin 1 cos 3 = and = ; and are acute angles, sin 2 cos 2
(q)
1 5 3 3
(C) The numerical value of 4 sin50° 3 tan50° is equal to
(r)
5 3
(D) The minimum value of 9tan2 + 4cot2 is greater than or equal to
(s) 1
(B) If
then tan is equal to
(t) 2 Sol. Answer A(q), B(r), C(s), D(p) (A)
sin 1 cos 3 , sin 2 cos 2 sin = 2sin
cos
2 cos 3
1 4 sin
4 cos2 9
⇒ sec 2 4 sin2
4 9
⇒ 1 sin2 4 sin2 ⇒ 3 sin2 1 ⇒ sin2
4 9
4 5 9 9
5 27
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
⇒ tan
(B)
5 3 3
Trigonometric Functions
169
1 5 3 3
sin 1 cos 3 , sin 2 cos 2 ⇒ sin
1 3 sin , cos cos 2 2
1 2 9 sin , cos2 4 4
1
⇒ sec 2
1 2 9 sin 4 4
⇒ 1 sin2
⇒
1 2 9 sin 4 4
3 2 5 sin 4 4
⇒ sin2
5 3
⇒ sin
5 3
(C) 4 sin50 3.sin50 4 sin50 3
sin50 cos50
4 sin50 cos50 3 sin50 cos50
2sin100 3 sin50 cos50
2sin100 2sin50 cos50
2sin100 sin80 sin 20 cos50
sin100 sin 20 2cos 60.sin 40 cos50 cos50
=1 Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
170 7.
Trigonometric Functions
Solution of Assignment (Set-2)
Match the following Column-I
Column-II
(Trigonometric equation)
(Family of solutions)
⎛ ⎞ (A) sin 9 cos⎜ ⎟ 2 ⎝ ⎠
(p) (2n 1)
⎛ ⎞ (B) sin 5 sin⎜ 2 ⎟ 2 ⎝ ⎠
(q)
n ( 1)n , n Z 2 4
(C) cos11 = cos3
(r)
n , nZ 7
(D) 3tan(– 15°) = tan(+ 15°)
(s) ( 4n 1)
, nZ 10
, nZ 14
Sol. Answer A(p), B(s), C(r), D(q) (A) sin9 = cos ⎛⎜ – ⎞⎟ ⎝2 ⎠
sin9 – sin = 0 cos5 = cos
5 = n +
2cos5 sin4 = 0
or sin 4 0 2
n , n Z = (2n + 1) or 4 2 10
⎛ ⎞ (B) sin5 – sin ⎜⎝ 2⎟⎠ = 0 2
⎛ 7 ⎞ ⎛ 3 – ⎞ 2 ⎟ sin ⎜ 2⎟ ⎜ 2cos ⎜ 2 2 ⎟ ⎜ ⎟⎠ = 0 ⎝ ⎠ ⎝
7
2 n 2 2
= (4n + 1)
14
(C) cos11 – cos3 = –2 sin7 sin 4 = 0 =
n n or 7 4
⎡ tan – tan15 ⎤ tan tan15 (D) 3 ⎢ ⎥ = 1– tan tan15 ⎣ 1 tan tan15 ⎦ Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
171
2[tan + tan2 15° tan] = 4[tan2 tan15° + tan15°] tan sec215° = 2tan15° . sec2 sin cos = 2 sin15 cos15
sin2 1 2 2
2 = n + (–1)n 8.
2
n ( 1)n , n Z 2 4
Match the following Column-I
Column-II
⎡ 3 ⎤ (A) The number of solutions of sin3x + cos2x = 0 in ⎢0, ⎥ is ⎣ 2⎦
(p) 1
(B) The number of solutions of the equation
(q) 4
⎡ ⎤ (1 – tanx)(1 + sin2x) = 1 + tanx in ⎢ , ⎥ is ⎣ 2 2⎦
(C) The number of solutions of the equation sin(x) = ex + e–x is
(r) 2
(D) The number of solutions of the equation
(s) 0
⎡ ⎤ sin3x – 3sinxcos2x + 2cos3x = 0 in ⎢ , ⎥ is ⎣ 4 4⎦
Sol. Answer A(q), B(r), C(s), D(p)
2p 3
y sin3x (A)
0 –1
p 6 p 4
p p 3 2
7p p 3p 5p 2 6
6
p 3
3p 2
x
–cos2x It is clear from the graph that 4 points satisfy the given equation (B) (cosx – sinx) (1 + sin2x) = cosx + sinx –sinx + cosx – sinx sin2x + cosx sin2x = sinx + cosx –1 + sin2x + 2cos2x = 1 or sinx = 0 – sinx cosx = 1 – cos2x sinx [cosx + sinx] = 0 x = 0 or
4
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
172
Trigonometric Functions
Solution of Assignment (Set-2)
(C) –1 sin(x) 1 But ex + e– x 2 Hence no solution exists. (D) sin3x – 3sinx cos2x + 2cos3x = 0 sin2x (sinx – cosx) + sinx cosx (sinx – cosx) –2 cos2x (sinx – cosx) = 0. (sinx – cosx) (sinx – cosx) (sinx + 2cosx) = 0 (sinx – cosx)2 (sinx + 2cosx) = 0
9.
x
4
x
⎡ ⎤ , 4 ⎢⎣ 4 4 ⎥⎦
or tan x 2 x
4
Match the following Column-I
Column-II
(A) The range of k such that the equation sin8x + cos8x = k
⎡1 ⎤ (p) k ⎢ , 1⎥ ⎣2 ⎦
admits of a solution is given by (B) The range of k such that the equation ksinx – 4cosx = k + 2
⎡1 ⎤ (q) k ⎢ , 1⎥ ⎣4 ⎦
admits of a solution is given by (C) The range of k such that the equation sin4x + cos4x = k
(r) k (–, 3]
admits of a solution is given by (D) The range of k such that the equation sin6x + cos6x = k
⎡1 ⎤ (s) k ⎢ , 1⎥ ⎣8 ⎦
admits of a solution is given by Sol. Answer A(s), B(r), C(p), D(q) (A)
sin8 x cos8 x sin8 x cos8 x 2
⇒
1 2
sin4 2 x k 1 2 16 16
k
1 8
⎡1 ⎤ k ⎢ , 1⎥ ⎣8 ⎦ Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
173
(B) In order that the given equation admits of a solution we must have (k + 2)2 k2 + 16 k2 + 4k + 4 k2 + 16 k 3 k (–3] (C) Do as ‘a’ part (A.M. G.M) (D) Do as ‘a’ part (A.M. G.M) 10. Match the following Column-I (A) cosx sin3x < sinx cos3x, 0 x 2 is satisfied
Column-II
⎡ 5 ⎤ (p) ⎢ , ⎣ 6 6 ⎥⎦
for x lying in (B) The value of x for which 4 sin2x – 8 sinx + 3 0,
3 ⎤ ⎡ ⎤ ⎡ (q) ⎢, ⎥ ⎢ , ⎥ ⎣ 4 ⎦ ⎣ 4 4⎦
where x[0, 2] lies in
⎡ 3 ⎤ ⎢⎣ 2 , 2 ⎥⎦ 0
(C) |tan x| 1 and x [–, ] is
(r)
(D) cos x – sin x 1 and 0 x 2 is
⎛ ⎞ (s) ⎜ 0, ⎟ ⎝ 4⎠ (t)
⎡ 3 ⎤ ⎢⎣ 4 , ⎥⎦
Sol. Answer A(s), B(p), C(q, t), D(r) (A) cos x sin3 x – sin x cos3 x 0 sin x cos x(sin2 x – cos2 x) 0 sin x cos x(cos2 x – sin2 x) 0 sin x cos x(cos 2x) 0 sin x cos x(cos 2x) 0 sin 2x cos 2x 0 sin 4x 0 4x [0, ]
⎡ ⎤ x ⎢0, ⎥ ⎣ 4⎦ (B) 4 sin2 x – 6 sinx – 2 sinx + 3 0 2 sinx (2 sinx – 3) – 1(2 sinx – 3) 0 (2 sinx – 3) (2 sinx – 1) 0 But 2 sinx – 3 0 2 sinx – 1 0
sinx
1 2
⎡ 5 ⎤ x ⎢ , ⎣ 6 6 ⎥⎦ Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
174
Trigonometric Functions
Solution of Assignment (Set-2)
(C) | tan x | –1 –1 tan x 2 1
3 ⎤ ⎡ ⎤ ⎡ x ⎢ , ⎥ ⎢ , ⎣ 4 4⎦ ⎣ 4 ⎥⎦ (D) cos x – sin x 1
⎞ ⎛ ⇒ 2 ⎜ cos x sin sin x cos ⎟ 1 ⎝ 4 4⎠ 1 ⎛ ⎞ ⎡ 3 ⎤ sin ⎜ x ⎟ ⇒ x ⎢ , 2 ⎥ 0 ⎝4 ⎠ ⎣2 ⎦ 2
11. Based on the relation between the variables in column I match the type of the triangle in column II. Column-I
Column-II
(A) r1 = r2 + r3 + r
(p) Isosceles or right angled
(B) (a2 + b2) sin(A – B) = (a2 – b2) sin(A + B)
(q) Obtuse but not necessarily isosceles
(C) tanA tanB < 1
(r) Right angled but not necessary isosceles
(D) R = 2r
(s) Equilateral
Sol. Answer A(r), B(p), C(q), D(p) (A) r1 = r2 + r3 + r r 1 – r = r 2 + r3
s a s s b (s c ) a 2s (s c ) s(s a ) (s b )(s c ) s(s – a) = (s – b) (s – c)
(s b )(s c ) 1 s (s a )
tan2
A 1 2
A ⇒ A 90 2 4 Then triangle is right angled (B) (a2 + b2) sin(A – B) = (a2 – b2)sin(A + B)
sin( A B ) a 2 b 2 sin( A B ) a 2 b 2
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
175
By using componendo and dividendo
sin( A B ) sin( A B ) 2a 2 sin( A B ) sin( A B ) 2b 2
⇒
2sin A cos B a2 2cos A sin B b 2
⇒
sin A cos B sin2 A cos A sin B sin2 B
⇒
cos B sin A cos A sin B
sin2A = sin2B A B or 2A = – 2B AB
2
Then ABC is isosceles or right angled triangle (C) tanA. tanB < 1 Let B is acute angle then tanA < cot B tanA < cot B (/2 – B)
AB
2
C 2 (D) R = 2r ∵ cos A cos B cos C 1 r 3 R 2 Then it is possible A = B = C 12. Match the following Column-I (A) In triangle ABC, the angle A = 60° and
Column-II (p)
12 5
(q)
7 2
the sides b = 3 cm, c = 5 cm, then the length of median through A is (in cm) (B) In triangle ABC, the angle A = 120° and the sides b = 4 cm, c = 6 cm, then the length of angle bisector through A is (in cm) Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
176
Trigonometric Functions
Solution of Assignment (Set-2)
(C) In triangle ABC, the medians through A and B
are perpendicular, then the value of
(r) 8
a2 + b2 c2
(D) If the lengths of median of a triangle are 3, 4, 5 cm,
(s) 5
then the area of the triangle is (in cm2) Sol. Answer A(q), B(p), C(s), D(r) (A) A = 60°, b = 3 and c = 5
cos A
b2 c 2 a2 1 2bc 2
b2 + c2 – a2 = bc 25 + 9 – a2 = 15 a2 = 19 Length of median AD =
=
1 16 50 19 2
=
7 2
1 2b 2 2c 2 a 2 2
(B) A = 120°, b = 4 and c = 6 cm A ⎛ 2bc ⎞ AD ⎜ cos ⎝ b c ⎟⎠ 2
48 1 12 10 2 5 A
(C) B
C
D
(D) Let AD, BE and CF are the median of triangle ABC A E
F
Let B
D
C
AD = 3 BE = 4 CF = 5 Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
177
13. Match the items of Column I with Column II. Column-I
Column-II
(A) If in ABC, sin2A + sin2B = sin2(A + B),
(p) Right angled triangle
then the triangle must be (B) In a ABC,
bc = b 2 + c 2 2bc cos A , 2cos A
(q) Equilateral
then the ABC must be (C) In ABC, tan
A B C + tan + tan = 3 , 2 2 2
(r)
Isosceles
then must be (D) In a ABC, the sides and the altitudes
(s) Obtuse angled
are in A.P. then must be (t)
Acute angled
Sol. Answer A(p), B(r), C(q, r, t), D(q, r, t) (A) In ABC sin2A + sin2B = sin2(A + B) sin2A + sin2B = sin2C By using Sine Rule a2 + b2 = c2 Triangle must be right angled triangle (B)
bc b 2 c 2 2bc cos A 2cos A By using Cosine Rule
⎛ b2 c 2 a2 ⎞ 2 2 2 b c bc ⎜ ⎟ 2bc 2(b 2 c 2 a 2 ) ⎝ ⎠ bc(2bc )
⇒
b2c 2 b2 c 2 a2
a2
b2c2 = a2b2 + a2c2 – a4 (b2c2 – a2b2) + a4 – a2c2 = 0 b2(c2 – a2) + a2(a2 – c2) = 0 (a2 – b2) (a2 – c2) = 0 a2 – b2 = 0 or a2 – c2 = 0 a = b or a = c Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
178
Trigonometric Functions
(C) tan
Solution of Assignment (Set-2)
A B C tan tan 3 2 2 2
…(i)
A B B C C A tan tan tan tan .tan 1 2 2 2 2 2 2
∵ tan
From equation (i) By squaring both side A B B C C A⎞ ⎛ 2 A 2 B 2C tan 2 tan 2 tan 2 2 ⎜⎝ tan 2 tan 2 tan 2 tan 2 tan 2 tan 2 ⎟⎠ 3 2
tan
A B C tan2 tan2 1 2 2 2 2
2
A B⎞ B C⎞ C A⎞ ⎛ ⎛ ⎛ Now, ⎜ tan tan ⎟ ⎜ tan tan ⎟ ⎜ tan tan ⎟ ⎝ ⎝ ⎝ 2 2⎠ 2 2⎠ 2 2⎠
2
⎡ A B C ⎛ A B B C C A⎞ ⎤ 2 ⎢ tan2 tan2 tan2 ⎜ tan tan tan tan tan tan ⎟ ⎥ 2 2 2 ⎝ 2 2 2 2 2 2⎠⎦ ⎣
= 2[1 – 1] = 0 It is possible if
tan
A B C tan tan 2 2 2
A = B = C (D) Let a, b, c are the sides with usual rotations given a, b, c are in A.P. 2b = a + c
A
…(i)
E
F
Let P1, P2, P3 are the length of altitudes AP, BE, CE respectively
1 1 1 Now, aP1 bP2 cP3 2 2 2 Or P1
B
D
C
2 2 2 , P2 , P3 a b c
And given P1, P2, P3 are in A.P. Then 2P2 = P1 + P3 ⎛ 2 ⎞ 2 2 2⎜ ⎝ b ⎟⎠ a b
2 1 1 b a b
…(ii)
From (i) and (ii) a, b, c are in A.P. as well as in H.P. then it is possible if a = b = c Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
179
SECTION - F Integer Answer Type Questions 1.
If 5cos = 3, then,
cosec cot is equal to cosec cot
Sol. Answer (4) Given, 5cos = 3
cosec cot cosec cot = (cosec + cot)2 =
(1 cos )2 sin2
3⎞ ⎛ ⎜⎝ 1 5 ⎟⎠ = 16 25
2.
2
4
⎛ ⎞ Least integral value of 3(tan2 cot 2 ) 8(tan cot ) 10, ⎜ 0, ⎟ can be ⎝ 2⎠
Sol. Answer (0) ⎛ ⎞ f() = 3(tan2 + cot2) – 8(tan + cot) + 10, ⎜⎝ 0, 2 ⎟⎠
= 3(tan + cot)2 – 6 – 8 (tan + cot) + 10 2
1 1 ⎧ ⎫ ⎧ ⎫ ⎬ 8⎨ ⎬4 = 3⎨ ⎩ sin cos ⎭ ⎩ sin cos ⎭
=
12
16 4 sin 2 sin 2 2
= 4(3cosec22 – 4cosec2 + 1) 4 4 ⎤ 16 ⎡ 2 4 = 12 ⎢cosec 2 cosec2 ⎥ 3 9⎦ 3 ⎣ 2
2⎞ 4 ⎛ = 12 ⎜ cosec2 ⎟ ⎝ 3⎠ 3
fmin = 0 Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
180
Trigonometric Functions
3.
x 2 2 x 2cos2 sin2 0 , then maximum number of ordered pair (x, ) such that x R, [0, 2].
Solution of Assignment (Set-2)
Sol. Answer (2) x2 – 2x + 2cos2 + sin2 = 0, x, R x2 – 2x + cos2 + 1 = 0 D = 4 – 4(cos2 + 1) = – 4 cos2 x is real 0 cos = 0 In [0, 2],
3 , 2 2
x2 – 2x + 1 = 0 x = 1
4.
⎛ ⎞ ⎛ 3 ⎞ ( x, 0) ⎜ 1, ⎟ , ⎜ 1, ⎟ ⎝ 2⎠ ⎝ 2 ⎠
The smallest value of
8 2 p for which sin(p cos) = cos(p sin) has a solution in [0, 2] is
Sol. Answer (4) ⎛ ⎞ sin( p cos ) sin ⎜ p sin ⎟ ⎝2 ⎠
⇒ p cos
p sin 2
⇒ p(sin cos )
⇒ sin cos
2
2p
⎞ ⎛ ⇒ sin ⎜ ⎟ ⎝ 4 ⎠ 2 2p
2 2p
⇒ p
1
2 2
8 2 4 2 2
Smallest value of p is 4. Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
5.
If sec( – ), sec and sec( + ) are in A.P. then cos2 sec 2
Trigonometric Functions
181
+3 , then is equal to 2
Sol. Answer (5) sec( – ), sec, sec( + ) A.P. 2sec = sec( – ) + sec( + )
2 1 1 cos cos( ) cos( )
2 cos( ) cos( ) cos cos( )cos( )
2 2 sin cos cos cos2 sin2 cos2 – sin2 = cos2sin2 cos2(1 – cos) = sin2 ⇒
6.
sin2
sin2 1 cos
cos2 2 2 2 2sin 2
4 sin2
⇒
cos2
⇒
cos2 .sec 2
2 2
⇒
cos2 .sec 2
3 23 5 2
⎛ ⎞ The sum of maximum and minimum values of the expression 5cos x + 3 sin ⎜ x ⎟ + 4 is ⎝6 ⎠
Sol. Answer (8) ⎛ ⎞ 5cos x 3 sin ⎜ x ⎟ 4 ⎝6 ⎠ ⎛1 ⎞ 3 5 cos x 3 ⎜ cos x sin x ⎟ 4 2 ⎝2 ⎠
13 3 3 cos x sin x 4 2 2
Maximum value
169 27 4 4 4
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
182
Trigonometric Functions
Solution of Assignment (Set-2)
196 4 4
= 7 + 4 = 11 Minimum value = – 7 + 4 = – 3
Sum of maximum and minimum value = 11 – 3 =8 7.
Let PQ and RS be two parallel chords of a given circle of radius 6 cm lying on the same side of the centre. If the chords subtends angles of 72° and 144° at the centre and the distance between the chords is d, then d2 is equal to
Sol. Answer (9) OM = 6 sin18°, ON = 6sin54°
O
d = 6 sin54° – 6 sin18° = 6(cos36° – sin18°)
72°
R
⎛ 5 1 5 1⎞ ⎛ 1⎞ 6⎜ ⎟ 3 = 6⎜ ⎟ ⎝ 2⎠ 4 ⎠ ⎝ 4
54°
P
S
M Q
d2 = 9
8.
If 3tan·tan = 1 then
cos( ) is equal to cos( )
Sol. Answer (2)
tan .tan
9.
1 3
⇒
sin .sin 1 cos .cos 3
⇒
sin sin cos cos 1 3 sin sin cos .cos 1 3
⇒
cos( ) 4 2 cos( ) 2
The number of solution of 10sinx = | x | is __________.
Sol. Answer (6)
–7 –3 –2 – 2
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions 2
10. The number of solutions of (81)sin x (81)cos
2
x
183
30 for x [0, 2] is equal to __________.
Sol. Answer (8) 2
x
81cos
2
x
y
81sin 81sin
y
2
x
30
81 30 y
y2 – 30y + 81 = 0 y = 3, y = 27 3 4 sin
2
x
2
31, 3 4 sin
2 sin x
x
33
1 3 or sin2 x 4 4
∵ x [0, 2] ∵ x
5 7 11 , , , 6 6 6 6
or
x
2 4 5 , , , 3 3 3 3
Number of solution = 8 11. If a, b [0, 2] and the equation x2 + 4x + 3sin(ax + b) = 2x has atleast one solution, and the least (+ve) value of a + b is k then,
2k is equal to.
Sol. Answer (3) x2 + 4x + 3sin (ax + b) = 2x at x = 1 5 + 3 sin (a + b) = 2 sin(a + b) = –1 Minimum positive value of (a + b) is
3 k 2
2k 2 3 3 2 12. If sin2x – 2sinx = 1 has exactly four solutions in [0, n], then minimum value of n is equal to. Sol. Answer (4) sin2x – 2sinx = 1 has exactly four solutions in [0, n] sin2x – 2sinx – 1 = 0
sin x
2 4 4 1 2 2
sin x 1 2, sin x (1 2) Minimum value of n = 4 for which this equation has exactly four solutions in (0, n) Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
184
Trigonometric Functions
Solution of Assignment (Set-2)
13. In right angled ABC, if AB = AC, then value of Sol. Answer (2) In right angled ABC
R (value [x] denote the greatest integer of x) r
C
AB = AC A = 90°, B = 45°, C = 45° And r 4R sin
A B C sin sin 2 2 2
r 4R sin 45 sin
=
4R 2
sin2
A
B
45 45 sin 2 2
45 2
=
4R ⎡ 1 cos 45 ⎤ ⎢ ⎥ 2 2⎣ ⎦
=
2R ⎡ 1 ⎤ ⎢1 ⎥ 2⎣ 2⎦
r 2 1 ( 2 1) R 2
R r
1 2 1
2.414
⎡R ⎤ ⎢ ⎥ 2 ⎣r ⎦
14. In a ABC, bc = a, a = 2, the value of 2R is equal to Sol. Answer (2) In a ABC bc = a and a = 2
abc 4R
⇒ R
abc 4
⇒ R
a(a ) 4 4 4
⇒ R = 1
2R = 2 Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
185
⎛ bc ⎞ 15. In a triangle ABC with usual notation bcosecB = a, then value of ⎜ ⎟ is ⎝r R⎠
Sol. Answer (2)
C
Given b cosecB = a b = a sinB
a b 1 sin B
A
A = 90°
B
ABC is a right angled triangle then R
Now,
a A and r (s a ) tan 2 2
bc r R
bc a (s a ) 2
2(b c ) bc = a abc a s 2
bc 2 r R
16. In a triangle ABC, 2B = A + C and b2 = ac, then
a(a b c ) is 3bc
Sol. Answer (1) Clearly B = 60°
1 c 2 a2 b2 2 2ac
c2 + a2 – b2 = ac
But a, b, c are in G.P.
b2 = ac
c2 + a2 – 2ac = 0
c = a = b
Hence
a(a b c ) 3a 2 2 1 3bc 3a
17. In an equilateral triangle with usual notations the value of
27r 2R is equal to r1r2 r3
Sol. Answer (4) In an equilateral triangle
r
s
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
186
Trigonometric Functions
Solution of Assignment (Set-2)
Area of equilateral triangle
s
3 2 a 4
3a 2
r
And
R
Now
3a 2 (2) 1 a 4(3a ) 2 3
r1
s a
3a 2 3 a2 3 a r2 r3 2 ⎛ 3a ⎞ ⎛ a⎞ 4⎜ 4⎜ ⎟ a⎟ ⎝ 2 ⎠ ⎝ 2⎠
a 2a sin A 3 27r 2R 27a2 2a 8 4 43 r1r2 r3 3 3 3a 3
18. In a triangle ABC,
c cos(A )+a cos(C + ) is equal to b cos
Sol. Answer (1) In ABC ∵ ccos(A – ) + a cos(C + )
= c[cosA.cos + sinA.sin] + a[cosC.cos – sinC.sin] = cos[c cosA + a cosC] + sin[c.sinA – a.sinC] By using projection formula and sine rule = cos (b) + 0
c cos( A – ) a cos(C ) b cos 1 b cos b cos
19. Let ABC and ABC be two non-congruent triangles with sides AB = 4, AC = AC = 2 2 and angle B = 30°. The absolute value of the difference between the areas of these triangles is [IIT-JEE 2009] Sol. Answer (4) Required area will be the shaded region in the figure
A 4 2
B
30°
22
2 45°
C
Area of ACC
2 C 1 24 4 2
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
187
n ⎛ ⎞ 20. The number of values of in the interval ⎜ , ⎟ such that for n = 0, ± 1, ± 2 and tan = cot 5 as well 2 2 5 ⎝ ⎠
as sin2 = cos4 is
[IIT-JEE 2010]
Sol. Answer (3)
tan cot 5 we have, ⎛ ⎞ tan tan ⎜⎝ 5⎟⎠ 2
5 n 2
6
n 2
n 12 6
Also, ⎛ ⎞ cos 4 sin2 cos ⎜ 2⎟ ⎝2 ⎠ ⎛ ⎞ 4 2n ⎜⎝ 2⎟⎠ 2
Taking positive
6 2n
2
n 3 12
Taking negative 2 2n n
2
4
Above values of suggests that there are only 3 common solutions.
21. The maximum value of the expression
1 2
sin 3 sin cos 5cos2
is
[IIT-JEE 2010]
Sol. Answer (2) We have, f ( )
1 2
sin 3 sin cos 5 cos2
Let g() = sin2 + 3sincos + 5cos2 Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
188
Trigonometric Functions
Solution of Assignment (Set-2)
1 cos 2 ⎛ 1 cos 2 ⎞ 3 5⎜ ⎟⎠ sin 2 ⎝ 2 2 2
3 2cos 2
3 sin 2 2
g ()min 3 4
3
f ()max
9 4
5 1 2 2
1 2 g ()min
22. Consider a triangle ABC and let a, b and c denote the lengths of the sides opposite to vertices A, B and C respectively. Suppose a = 6, b = 10 and the area of the triangle is 15 3. If ACB is obtuse and if r denotes the radius of the incircle of the triangle, then r2 is equal to [IIT-JEE 2010] Sol. Answer (3)
sin C
3 and C is given to be obtuse. 2
C
2 3
cos C
a2 b2 c 2 1 36 100 c 2 ⇒ 2ab 2 2 6 10
c = 14
r
2
2
⎛ 15 3 2 ⎞ ⎜ ⎟ 3 ⎝ 6 8 14 ⎠
23. The positive integer value of n > 3 satisfying the equation
1 1 1 is ⎛⎞ ⎛ 2 ⎞ ⎛ 3 ⎞ sin ⎜ ⎟ sin ⎜ ⎟ sin ⎜ ⎟ ⎝n⎠ ⎝ n ⎠ ⎝ n ⎠
[IIT-JEE 2011]
Sol. Answer (7) According to the question, 1
sin n
sin
1 1 2 3 sin sin n n
2 3 3 2 sin sin sin sin sin n n n n n n
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
cos
5 2 4 3 cos cos cos cos n n n n n n
sin
9 5 sin sin sin 2n 2n 2n n
sin
9 5 sin 2n 2n
189
9 5 (2k 1), say 2n
n
7 , k is an integer 2k 1
Let us put k = 0 Hence n = 7
SECTION - G Multiple True-False Type Questions 1.
STATEMENT-1 : sin1 > sin2 > sin3 STATEMENT-2 : sin3 < sin1 < sin2
⎛ ⎞ STATEMENT-3 : sinx1 < sinx2, x1< x2, x1, x2 ⎜0, ⎟ ⎝ 2⎠ (1) T F T
(2) F T T
(3) F T F
(4) T F F
Sol. Answer (2) Statement-I : sin1 > sin2 > sin3 (false)
From graph sin2 > sin1 > sin3 Statement-II : True as explained above Statement- III : ⎛ ⎞ True clearly from graph sinx increases is ⎜⎝ 0, 2 ⎟⎠
⎛ ⎞ sinx, sinx2 if x1 < x2 is ⎜⎝ 0, ⎟⎠ 2
FTT Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
190 2.
Trigonometric Functions
Solution of Assignment (Set-2)
STATEMENT-1 : sin2 6° + sin2 12° + sin2 18° +....+ sin2 84° = 7 STATEMENT-2 : tan 9° tan 27° tan 45° tan 36° tan 81° = 1
⎛ STATEMENT-3 : ⎜⎝ tan cot cosec 4 4 (1) T T T
⎞ ⎛ ⎟⎠ ⎜⎝ tan cot cosec 4 4 4
(2) F F T
⎞ 2 ⎟⎠ sec 4 3
(3) T T F
(4) T F F
Sol. Answer (4) Statement-I : sin26 + sin212 + sin218 + …… + sin284 = 7 L.H.S. = (sin26 + cos26) + (sin212 + cos212) + …… + (sin242 + cos242) (sin284 = cos26) & so on = 1 + 1 + …… + 1 (7 times) = 7 = R.H.S. True Statement-II : Tan9°tan27°tan45° tan36 ?tan81° = 1 L.H.S. = tan9° tan27 ° tan36° cot9° = tan27° tan36° 1 (false) Statement-III : ⎞ ⎛ ⎜⎝ tan 4 cot 4 cosec 4 ⎟⎠
⎞ ⎛ 2 ⎜⎝ tan 4 cot 4 cosec 4 ⎟⎠ sec 3
L.H.S. = (1 1 2)(1 1 2) 2 = 4 2 2 sec
3.
false 3
STATEMENT-1 : f ( ) sin2 cos2 then f( ) = 1 for every real value of . STATEMENT-2 : g( ) = sec2 – tan2 then g( ) = 1 for every real value of . STATEMENT-3 : f( ) = g( ) for every real value of . (1) T F F
(2) T T T
(3) T F T
(4) T T F
Sol. Answer (1) Statement -I : f() = sin2 + cos2 = 1 R, true Statement -II : f() = sec2 – tan2 = 1, R, (given statement is false) ⎫ ⎧ ∵ it is true for R ⎨(24 1) 2 ⎬ ⎩ ⎭
Statement-III : f() = g() for all Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
(false) ∵ g() doesn’t contain odd multiples of
191
in its domain 2
Domains of f and g are different f & g are not equal T F F 4.
STATEMENT-1 : cos = x +
1 is possible for some real values of x. x
STATEMENT-2 : sin1° < sin1. STATEMENT-3 : The minimum value of 5cosx – 12sinx + 13 is 0. (1) T T T
(2) F T T
(3) F F T
(4) F T F
Sol. Answer (2) 5cosx – 12sinx + 13 52 122 13 =0
5.
1 1 + x2 = 2. STATEMENT-1 : tan22 is a root of the equation 2 1 x2 STATEMENT-2 : sin = x +
1 k is possible for real value x if k . 4 x
STATEMENT-3 : |sinnx| n|sinx| is valid for all natural numbers n. (1) T T T
(2) T F T
(3) T F F
(4) F F F
Sol. Answer (1) x 2 1
⇒
x2 2 1 2 2
⇒
x2 3 2 2 1 1 x2 1
⇒
2
x 1
x2 1
⇒
1 x2
x 2 k
3 2 2 1 3 2 2 1
42 2 22 2
⎛ 1 2 ⎞ 2⎜ ⎟ 2 1 2 ⎝ 1 2 ⎠
2 2
2
k x k 1 4
| sin nx | n | sin x | | sin nx | 10 Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
192 6.
Trigonometric Functions
STATEMENT-1 : sin x
Solution of Assignment (Set-2)
1 ⇒ tan x p
3 STATEMENT-2 : cos x x
1 p2 1
, p 1
3 , x 0 has no solution in R x
STATEMENT-3 : tan2 x – sin2 x = tan2 x . sin2 x, x R. (1) F F F
(2) F T F
(3) T T T
(4) T T F
Sol. Answer (2) Statement-1 : tan x
3 Statement-2 : As x
1 p2 1
3 x , hence no solution exist x
Statement-3 : false for x = (2 x 1)
7.
, x Z 2
⎛ ⎞ a STATEMENT-1 : If , are different values of x satisfying a cosx + b sinx = c, (b 0), then tan⎜ ⎟ . ⎝ 2 ⎠ b ⎛ ⎞ STATEMENT-2 : sin2x + cos2x + sinx + cosx + 1 = 0 has no solution in ⎜ 0, ⎟ . ⎝ 2⎠
⎡ ⎤ STATEMENT-3 : sin 3 cos 1 when ⎢ , ⎥ . ⎣ 6 2⎦ (1) F F F
(2) T T T
(3) T T F
(4) F T T
Sol. Answer (4) Statement-1 : asinx + bsinx = c
∵ , are two different values of x satisfying this equation
a cos b sin c ∵
a cos b sin c a(cos cos ) b(sin sin ) 0
2a sin tan
2 2 .sin 2b cos .sin 0 q 2 2 2
b 2 a
(∵ )
(False)
Statement-2 :
sin 3 cos 1 ⎛ ⎞ 1 3 .cos ⎟ L.H.S. = 2 ⎜ sin . 2 2 ⎝ ⎠ Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
193
⎞ ⎛ = 2sin ⎜⎝ ⎟⎠ 3
⎞ ⎛ 2 sin ⎜⎝ ⎟⎠ 1 3 ⎞ 1 ⎛ sin ⎜ ⎟ ⎝ 3⎠ 2
5 6 3 6
6 2
(True)
Statement-3 :
⎛ sin2x + cos2x +sinx + cosx + 1 = 0, x ⎜⎝ 0,
⎞ ⎟ 2⎠
2sinx.cosx + 2cos2x – 1 + sinx + cosx + 1 = 0 sinx(2cosx + 1) + cosx(2cosx + 1) = 0
⎛ ∵ x ⎜ 0, ⎝
⎞ ⎟ 2⎠
Each term is positive. No solution 8.
(True)
STATEMENT-1 : The number of solutions of | cosx | = sinx x [0, 4] is 4. STATEMENT-2 : The equation sin2 x
1 3 ( 3 1)sin x 0 has two roots in 4 2
⎡ ⎤ ⎢0, 2 ⎥ . ⎣ ⎦
STATEMENT-3 : The number of solutions of sin + sin5 = sin3, [0, ] is 5. (1) T T T
(2) T F F
(3) T T F
(4) F T T
Sol. Answer (2) Statement-1 : |cosx| = sinx Number of solutions = 4
(True)
Statement-2 : sin2 x
sin x
1 2
( 3 1)sin x
3 0 4
3 1 3 1 2 3 3 2 2 2
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
194
Trigonometric Functions
=
=
Solution of Assignment (Set-2)
3 1 2 2 2 3 1 33 , sin x 2 2 2 2
⎞ ⎟ 2⎠
⎛ One solution in ⎜⎝ 0,
(False)
Statement-3 : sin sin5 sin3, [0, ] 2 sin3.cos 2 sin3
sin3 0, 0,
cos 2
2 , , , 3 3
1 2 5 , 6 6
6 Solution
9.
(False)
STATEMENT-1 : In a ABC, maximum value of sinA sinB sinC is
3 3 8
STATEMENT-2 : In a ABC, sin2A + sin2B + sin2C = 2 – cos2C + cosC cos(A – B) STATEMENT-3 : In a ABC, sin2A + sin2B + sin2C 9/4 (1) T T T
(2) T F T
(3) T F F
(4) F T F
Sol. Answer (1) Statement-1 : In a ABC sin A sin B sin C
3 3 8
Statement-2 : sin2A + sin2B + sin2C = 2 – cos2C + cosC.cos(A – B) R.H.S. = 1 + (1 – cos2C) + cos[ – (A + B)]cos(A – B) = 1 + sin2C – cos(A + B).cos(A – B) = 1 + sin2C – [cos2A – sin2B] = (1 – cos2A) + sin2B + sin2C = sin2A + sin2B + sin2C Statement-3 : In a ABC sin2 A sin2 B sin2 C
9 4
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
10. STATEMENT-1 : In a ABC, if 2a2 + 4b2 + c2 = 4ab + 2ac, then cosA =
STATEMENT-2 : In a ABC if cosA =
195
1 4
1 5 , then (a + b + c)(b + c – a) bc 4 2
STATEMENT-3 : For any ABC, the expression (b + c – a)(c + a – b) (a + b – c) – abc is negative. (1) T T T
(2) F T T
(3) T F T
(4) T T F
Sol. Answer (1) Statement-1 : In a ABC If 2a2 + 4b2 + c2 = 4ab + 2ac a2 + c2 – 2ac + a2 – 4ab + 4b2 = 0 (a – c)2 + (a – 2b)2 = 0 It is possible of if a – c = 0 and a – 2b = 0 c a and b
Let a x, b
cos A
a 2
x , and c x 2
b2 c 2 a2 2bc
x2 x2 x2 4 = ⎛ x⎞ 2 ⎜ ⎟ (x) ⎝ 2⎠ cos A
1 4
Statement-2 : In a ABC Given cos A
1 b2 c 2 a2 4 2bc
bc b2 c 2 a2 2
Now, (b + c + a) (b + c – a) = (b + c)2 – a2 = b2 + c2 – a2 + 2bc Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
196
Trigonometric Functions
=
bc 2bc 2
=
5bc 2
Solution of Assignment (Set-2)
Statement-3 : In a ABC (b + c – a) (c + a – b) (a + b – c) ?abc Let x = b + c – a y=c+a–b z=a+b–c Now,
xy yz 2 x c, a, b 2 2 2
By using A.M. G.M x y 2 xy y z 2 yz
z x 2 zx And(x + y) (y + 2) (2 + x) 8xyz (2a) (2b) (2c) 8(b + c – a) (c + a – b) (a + b – c) (b + c – a) (c + a – b) (a + b – c) abc
SECTION - H Aakash Challengers Questions
1.
If tan
a and 0 < < , then the value of b
a2 b2 |a|
sin is ....
(Assume b 0, a 0, a, b R) Sol. tan
a a2 b2 , sin ?, (0, ) b |a|
∵ lies in (0, ) tan will be positive or negative but sin will be positive sin
|a| a2 b2
2 2 a b sin 1 |a|
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
2.
Trigonometric Functions
197
If cos2009 x1 cos2009 x2 cos2009 x3 ..... cos2009 x2009 2009 , then
sin2009 x1 sin2009 x2 sin2009 x3 ..... sin2009 x2009 is equal to Sol. Given equation can be true only if cosx1 = cosx2 =……= cosx2009 = 1 sinx1 = sinx2 =……= sinx2009 = 0 sin2009x1 + sin2009x2 +……+ sin2009x2009 = 0 3.
If a cos3 3a cos .sin2 m , a sin3 3a cos2 sin n , then (m n )2/3 (m n )2/3 is equal to (1) 2a2
(2) 2a2/3
(3) a2/3
(4) 2a3
Sol. Answer (2) m + n = a{(sin3 + cos3) + 3sincos(sin + cos)} = a(sin + cos) [1 – sin cos + 3sin.cos] = a(sin + cos)3 Also m – n = a[(cos3 – sin3)] + 3 sincos –(sin – cot] = a(cos – sin) [1 + sin cos – 3sin cos] = a(cos – sin)3
(1)
(m + n)2/3 + (m – n)2/3 = a2/3[(sin + cos)2 + (cos – sin2] = 2a2/3 4.
If satisfies 15 sin4 + 10 cos4 = 6, then find the value of 27sin8 + 8cos8
Sol. 15 sin4 + 10cos4 = 6 15 sin4 + 10 = 6(1 + tan4 + 2tan2) 9tan4 – 12tan2 + 4 = 0 (3tan2 – 2)2 = 0 2 tan
2 sin
2 3
2 3 & cos2 3 5
Hence 27sin8 + 8cos8 = 27
16 8 81 625 625
=
216 (2 3) 625
=
216 125
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
198 5.
Trigonometric Functions
Solution of Assignment (Set-2)
Let f and g be function defind by f() = cos2 and g() = tan2. Suppose and satisfy 2f() – g() = 1, then the value of 2f() – g() is ........
Sol. f() = cos2, g() = sin2
2f() – g() = 1 2cos2 – sin2 = 1
2cos2 = 1 + sin2 = sin2 2cos2 = sec2
2f() – g() = 2cos2 – sin2 = sec2 – sin2 =1 a , being an acute angle. Denote by f(a, b) the value of the expression acosec2 – bsec2, where b = 6. Then f(8, 15) is equal to ........
Let tan
2
a b
b
Sol. tan
acosec2 – bsec2
tan
a b
a(cos 2 b sin2) sin2.cos 2
a2 +
6.
a
b
⎛ ⎞ a b a2 b2 ⎜ cos 2 sin 2⎟ ⎝ a2 b2 ⎠ a2 b2 sin 2.cos 2
2 a2 b2
sin( 2) 2sin2.cos 2
2 a2 b2
sin 4 sin 4
2 a2 b2
7.
f (8, 15) 2 82 152 2 64 225 2 17 34 ⎛ ⎝
The value of 2 ⎜ cos
⎛ ⎝
Sol. 2 ⎜ cos
3 5 7 9 ⎞ + cos + cos +cos + cos ⎟ is ........ 11 11 11 11 11 ⎠
3 5 7 9 ⎞ cos cos cos cos ⎟ 11 11 11 11 11 ⎠
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
199
2 ⎞ ⎛ sin ⎜ 5 ⎝ 11 2 ⎟⎠ 2 1 ⎞ ⎛ 2 cos ⎜ 4. ⎟ ⎝ 11 11 2 ⎠ ⎛ 2 1 ⎞ sin ⎜ ⎝ 11 2 ⎟⎠ ⎛ 5 ⎞ ⎛ 5 ⎞ 2sin ⎜ ⎟ cos ⎜ ⎟ sin 10 ⎝ 11 ⎠ ⎝ 11 ⎠ 11 1 sin sin 11 11 8.
The value of cot16°cot44° + cot44°cot76° – cot76°cot16° is ........
Sol. cot16° · cot44° + cot44° · cot76° – cot76° cot16°
= cot16° · cot(60° – 16°) + cot(60° – 16°) · cos(60° + 16°) – cot(60° + 16°) · cot16° 2 2 ⎛ cot 60 cot16 1⎞ cos 60 sin 16 cot 60 · cot16 1 cot16 · ⎜ · cot16 ⎟ ⎝ cot 60 cot16 ⎠ sin2 60 sin2 16 cot 60 cot16
⎛ cot16 3 ⎞ 1 4sin2 16 cot16 3 · cot16 (1 3 cot16)(cot16 3 ) cot16 ⎜ ⎟ ⎝ 1 3 cot16 ⎠ 3 4sin2 16 1 3 cot16 ⎛ (cot16 3 )(1 3 cot16)⎞ 1 4sin2 16 (cot16) ⎜ ⎟ 1 3cot 2 16 ⎝ ⎠ 3 4sin2 16 ⎛ cot16 3 cot 2 16 3 3cot16 cot16 3 3 cot 2 16 3cot16 ⎞ 1 4sin2 16 (cot16) ⎜ ⎟ 1 3cot 2 16 ⎝ ⎠ 3 4sin2 16
cot 2 16 · 2 3(1 cot16) 1 4sin2 16 1 3cot 2 16 3 4sin2 16
=3
9.
If cos( 1 ) =
1 2 3
and sin( 2 ) =
1 3 2
, where 0 < – 1 , – 2 <
, then the value of 2
1 2 3
,
sin( 2 )
1 3 2
1
3
Sol. cos( 1 )
2
⎫⎪ 108 ⎪⎧ 6 2 sin(1 2 )⎬ is ........ ⎨cos (1 2 ) + 5 ⎪⎩ 18 ⎪⎭
cos(1 – 2) = cos((1 – ) + ( – 2))
17
= cos( – 2) – ( – 1)
3
= cos( – 2)cos( – 1) + sin( – 1) sin( – 2)
1
3 2 2 3
11
1
2 3 3 2
11
2
17
1
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
200
Trigonometric Functions
Solution of Assignment (Set-2)
17 11 6 6
sin(1 – 2) = sin(( – 2) – ( – 1)) = sin( – 2)cos( – 1) – cos( – 2)sin( – 1)
1 1 17 11 3 2 2 3 3 2 2 3 1 17 11 6 6
108 ⎧⎪17 11 2 17 11 6 (1 7 11) ⎫⎪ ⎨ ⎬ 5 ⎩⎪ 216 18 6 6 ⎭⎪
1 2 28 2 17 11 1 7 11 10 10
1 28 2 17 11 2 2 17 11 10
1 30 3 10
10. Let cos( – ) + cos( – ) + cos( – ) = Sol. cos( ) cos cos
3 , then the value of cos + cos + cos is ........ 2
3 2
2cos( – ) + 2cos( – ) + 2cos( – ) + 3 = 0 2cos( – ) + 2cos( – ) + 2cos( – ) + cos2 + sin2 + cos2 + sin2 + cos2 + sin2 = 0 (cos + cos + cos)2 + (sin + sin + sin)2 = 0 cos + cos + cos = sin + sin + sin = 0 11. If and satisfy sincos = Sol. sin cos
1 , then the greatest value of 2cossin is ........ 2
1 2
2sincos = – 1 sin( + ) + sin( – ) = – 1 2cossin = sin( + ) – sin( – ) = – (– 1) =1 Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
201
12. If (4cos29° – 3)(4cos227° – 3) = tanK°, then K is equal to Sol. (4cos29° – 3) (4cos227° – 3) = tank°
(2.(1 + cos18°) – 3) (2.(1 + cos54°) – 3) = tank° (2cos18° – 1) (2cos54° – 1) = sin12° 4cos18°cos54° – 2(cos18° + sin54°) + 1 = tank° 4cos18°cos54° – 4cos36°cos18° + 1 = tank° 4cos18°(cos54° – cos36°) + 1 = sink° 1 – 4cos18° × 2sin45°.sin9° = sink° 1 4 2
⇒
1 2
⇒ 1
sin9 cos18 sin k cos9 sin36 tan k cos9
2 ⎛ 1 1 ⎞ ⎜ cos9 sin9⎟ sin x ⎠ cos9 ⎝ 2 2
1 – 1 + tan9° = tank° k = 9
13. If A = tan27 – tan and B
A B A B 10 sin sin3 sin9 , then the value of is..... AB AB 3 cos3 cos9 cos 27
Sol. Given A = tan27 – tan
= tan27 – tan9 + tan9 – tan3 + tan3 – tan tan3 tan tan9 tan3
sin 2 2 sin cos3 cos sin3
2sin3 cos9
tan27 tan9
2 sin9 cos 27
A = 2B
A 2 B
AB 22 A B 2 1 1 3, A B 2 1 A B 21 3
A B A B 3 7 10 AB AB 3 3
A B A B 10 0 AB AB 3
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
202
Trigonometric Functions
Solution of Assignment (Set-2)
14. If A 3 cot 20 4 cos 20 and B = sin12°sin48°sin54° be such that A + B = 2, then the value of 3 + 2000 is...... Sol. Given A
3
3 cot 20 – 4cos 20
cos 20 – 4cos 20 sin20
3 cos 20 4 sin20 cos 20 sin20
2(sin60 cos 20) 2sin 40 sin20
2 sin 60 cos 20 2 sin 40 sin 20
sin80 sin 40 2sin 40 sin20
sin80 sin 40 sin20
2cos 60 sin 20 sin 20
2
1 1 2
B = sin12°sin48°sin54°
1 (2 sin 48 sin12)cos36 2
1 (cos36 cos 60)cos36 2
1 ⎛ 5 1 1⎞ 5 1 ⎟ 2 ⎜⎝ 4 2⎠ 4
1 5 1 5 1 2 4 4
1 4 2 16
1 8
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
203
Now, A + 8B = 1 + 1 = 2 A + 8B = 2 =8
3 + 2000 = 83 + 2000 = 512 + 2000 = 2512
1
15. If tan
2
x( x x 1)
, tan
x 2
x x 1
and tan
1 x
3
1 x
2
1 be such that l + m + n = 0, then the x
value of l3 + m3 + n3 – 3lmn is ...... (where l, m, n Z having no common factor except one) Sol. Given tan
1 2
x( x x 1)
1
tan
1 x x x3
2
Now, tan( )
1
2
x( x x 1) 1
, tan
x 2
x x 1
x x
2
x x 1
tan tan 1 tan .tan
x 2
x x 1
x x ( x x 1) 2
(1 x )
x 2 x x 1 x2 x 1 1 ( x 2 x 1)
( x 1) x x2 x 1
( x 2 x 1) x ( x 1)
x2 x 1 x x 1 1 1 tan x x2 x3
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
204
Trigonometric Functions
Solution of Assignment (Set-2)
+= + – = 0 l = 1, m = 1, n = – 1 Now, l3 + m3 + n3 = 3lmn = 1 + 1 – 1 + 3
=4 16. A = { | 2cos2 + sin 2} ⎧ 3 ⎫ B = ⎨ ⎬ . Find A B 2 2⎭ ⎩
Sol. A = {|2cos2 + sin 2} 2 sin2 sin 0
sin (2 sin 1) 0
…(1)
Since
y
⎡ 3 ⎤ ⎢ , ⎥ ⎣2 2 ⎦
…(2)
x'
Hence (1) and (2) will represent ⎡ 5 ⎤ ⎡ 3 ⎤ ⎢ , ⎥ ⎢ , ⎥ ⎣2 6 ⎦ ⎣ 2 ⎦
0
⎛ 5 ⎞ ⎜ 6 ,0 ⎟ ⎝ ⎠
x
y'
17. Solve for , 4cot2 = cot2 – tan2. Sol. 4cot2 = cot2 – tan2
4(cos2 sin2 ) cos2 sin2 cos2 sin2 . sin .cos cos sin sin .cos 4 cos 2.
sin 2 cos 2 2
cos 2.(2 sin 2 1) 0 cos 0
or
(2n 1)
4
(2n 1)
sin 2
or
1 2
n ( 1)n . 2 12
n ( 1)n . or 4 2 12
18. If 3tan( – 15°) – tan( + 15°) = 0. Find . Sol. 3tan( – 15) – tan( + 15) = 0
tan( 15) 3 tan( 15) Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
205
Applying componendo - dividendo,
sin( 15 15) 3 1 sin( 15 15) 3 1 sin2 2
1 2
=1 2 n ( 1)4 .
2
n ( 1)4 . 2 4
1 ⎞ ⎛ 19. If cos2 ( 2 1)⎜ cos ⎟ , then general value of is _______. 2⎠ ⎝ 1 ⎞ ⎛ Sol. cos 2 ( 2 1) ⎜⎝ cos ⎟ 2⎠
2cos2 1 ( 2 1)cos 1
1 2
0
2 2 cos2 (2 2)cos 1 0
( 2 cos 1) (2cos 1) 0 cos
1 2
2n
or
cos
1 2
or 2n 4 3
20. Solve the equation, sin2n – sin2 [(n – 1)] = sin2. Sol. sin2n – sin2(n – 1) = sin2 sin(2n ) sin sin2 sin 0 or sin(2n – 1) = sin sin = 0 = k sin(2n – 1) = sin (2n – 1) = k + (–1)k k = even = 2m (2n – 1) = 2m +
m n2
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
206
Trigonometric Functions
Solution of Assignment (Set-2)
k = odd = 2m + 1 (2n – 1 ) = (2m + 1) –
(2m 1) 2n
⎛ 2m 1⎞ k or ⎜⎝ ⎟ 2n ⎠
or
m n2
where k, m Z
21. Solve the equation tan x
cos x
Sol. tan x
1 sin2 x
2
tan x
cos x 2, sin x cos x
tan x
1 2 1 tan x
(1 tan x )
cos x 2. 1 sin2 x
if sin x cos x 0
1 3 1 tan x
Let 1 + tanx = y y2 – 3y + 1 = 0 y
3 5 2
tan x
tan x
1 5 2
5 1 , 2
tan x
5 1 2
⎛ 5 1⎞ ⎛ 5 1⎞ x n tan1 ⎜ or n tan1 ⎜ ⎟ 2 ⎟⎠ ⎝ 2 ⎠ ⎝ Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
207
Case II sin x + cos x < 0 tan x
cos x 2 sin x cos x
tan x
1 2 1 tan x
1 tan x
1 3 1 tan x
y 2 3y 1 0
y
(1 tan x y )
3 13 2
tan x
1 13 2
1 13 1 13 , 2 2
22. Let x and y, (0 x, y
) satisfy 3sin 2 x + 2sin 2 y = 1 and 3sin2x = 2sin2y, then the value of 2
232 ( x 2y ) is _______.
Sol. We have, 3 sin2x + 2 sin2y = 1 3 sin2x = cos2y and 3sin2x = 2sin2y ⎛ ⎞ tanx = cot2y = tan ⎜⎝ 2y ⎟⎠ 2
x + 2y = n +
= (2n 1)
2
Since 0 < x, y <
0 < x + 2y <
, 2 n Z
2 3 x + 2y = 2 2
232 ⎛ 232 ⎞ ⎛ ⎞ ( x 2y ) ⎜ 116 ⎝ ⎟⎠ ⎜⎝ 2 ⎟⎠
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
208
Trigonometric Functions
Solution of Assignment (Set-2)
2 cos A cos B cos 3 B and
23. If angles A and B satisfy 1620sin2(A – B) is _______. Sol.
2 sin A sin B sin 3 B , then the value of
⎛ 3 cos 2B ⎞ 2 cos A cos B(1 cos2 B ) cos B ⎜ ⎟⎠ ⎝ 2
⎛ 1 cos 2B ⎞ 2 ⎟⎠ 2 sinA = sinB (1 – sin B) = sin B ⎜⎝ 2
and
2 sin( A B ) sin B cos B
Hence,
2 2 sin( A B ) sin2B 2
and 8 =
cos2B
⎛ 3 cos 2B ⎞ ⎛ 1 cos 2B ⎞ 2 ⎜⎝ ⎟⎠ sin B ⎜⎝ ⎟⎠ 2 2
2
After simplification we shall get cos2B =
1 2 2 and sin 2B = 3 3
Hence 1620 sin2 (A – B) = 1620
sin2 2B 8 1620 180 8 89
24. Let the sum of all solutions of the equation 3 3 sin3 x cos3 x 3 3 sin x cos x 1 in the interval [0, 10] be denoted by S. Then
3S is _______.
Sol. We have, 3 3 sin3 x cos3 x 3 3 sin x cos x 1
3 sin x
3
cos x 1 3 3
3
3 sin x cos x 1 0
3 sin x cos x 1 0
cosx +
cos x
3 sin x 1
1 3 1 .sin x 2 2 2
⎞ ⎛ sin ⎜⎝ x ⎟⎠ sin 6 6 ⎞ ⎛ or cos ⎜ x ⎟ cos ⎝ 3⎠ 3
x
2n 3 3
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
x = 2n, 2n +
Trigonometric Functions
209
2 ,nZ 3
The solutions of the given equation lying in [0, 10] are 0, 2, 4, 6, 8, 10 ;
2 8 14 20 26 , , , , 3 3 3 3 3
Thus the sum of all solutions of the given equation is
160 s 3
3s 3 160 160 3
25. Solve the equation, 4sin2 x 2cos x 41 sin2 x 2sin 2
Sol. 4sin 2 x 2 cos
2
x
2
41 sin 2 x 2 sin
x
2
x
65 .
65
41 cos 2 x sin 2 x 42 sin 2 x cos x 65 4 4cos 2 x sin x 16.4 sin 2 x cos 2 x 65 Let 4cos2x + sin2x = t 4t
16 65 t
4t2 – 65t + 16 = 0 4t2 – 64t – t + 16 = 0 4t2 – 64t – t + 16 = 0 4t (t – 16) – (t – 16) = 0 t = 16
or t
1 4
cos2x + sin2x = 2
or cos2x + sin2x = –1
not possible Ans. x n
4
or x = (2n 1)
2
26. If the equation sin6x + cos4x = –2 have a family of nonnegative solutions xk’s, where 0 x1 < x2 < x3 _______. < xk < xk+1 ......., then the value of
1
1000
∑| xk 1 xk | is _______. k 1
Sol. We have, sin6x + cos4x = –2 Which will be possible only when sin 6 x 1 , cos 4x = –1 Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
210
Trigonometric Functions
6 x 2k
x = n
Solution of Assignment (Set-2)
, 4 x 2m , k, m Z 2
where n Z . 4
So xk+1 – xk =
1 1000 ∑ xk 1 xk 1000 k 1
27. Find all values of x, y and k for which the system of equations sinx cos2y = k4 – 2k2 + 2 cosx sin2y = k + 1 has a solution. Sol. sinxcos2y = k4 – 2k2 + 2 cosxsin2y = k + 1 sinxcos2y = (k2 – 1)2 + 1 and cosxsin2y = k + 1 But L.H.S. is less than or equal to 1. k=±1 So, Case-I, k = 1 sinxcos2y = 1 sinx = 1 and cos2y = 1 or cosxsin2y = 2 which is not possible Case-II, When k = –1 sinx cos2y = 1 sinx = 1 and cos2y = 1 or, sinx = –1 or cos2y = –1 and cosx sin2y = 0 x 2n
2
and y
28. Solve for x and y if Sol.
n 2
sin x cos y 0 and 2sin2x – cos2y – 2 = 0.
sin x cos y 0 and 2sin2 x cos 2y 2 0 sinx = 0 or cosy = 0 when sinx = 0
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
211
cos2y = – 2 (which is not possible) So, cosy = 0 2sin2x – (2cos2y – 1) – 2 = 0 2sin2x = 1 sin x
y 2n
1 2
2
29. The sum of value of , 0 2, such that x2 – 2xcos + 1 = 0 has real roots is ....... times . Sol. x2 – 2xcos + 1 = 0
x=
=
2cos 4 cos2 4 2
2cos 4 sin2 will be real if sin = 0 2
A = 0, , 2 sum of values = 0 + +2 = 3
30. If cos
2+ 6 3 1 3 +1 ⎛ ⎞ = , then all x ⎜ 0, ⎟ such that + = 4 2 , then find x. 12 4 sin x cos x 2 ⎝ ⎠
⎛ 3 1 3 1⎞ ⎜ ⎟ 2 2 2 2 ⎟ Sol. 2 2 ⎜ cos x ⎟ ⎜ sin x ⎜⎝ ⎟⎠
⎛ ⎞ ⎜⎝ sin cos x cos sin x ⎟⎠ 12 12 2 2 sin x cos x ⎛ ⎞⎞ ⎛ ⎜ sin ⎜⎝ x 12 ⎟⎠ ⎟ 4 2⎜ ⎟ sin2 x ⎟ ⎜ ⎜⎝ ⎟⎠ x
2x 12
x
12
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
212
Trigonometric Functions
Solution of Assignment (Set-2)
31. The number of values of x lying in [–, ] and satisfying 2sin2 = cos2 and sin2 + 2cos2 – cos – 1 = 0 is (1) 0
(2) 2
(3) 4
(4) 6
Sol. Answer (2) 2sin2 = cos2 2sin2 = 1 – 2sin2 sin
1 2
…(i)
sin2 + 2cos2 – cos – 1 = 0 2sin cos – cos + 2(1 – 2sin2) – 1 = 0 cos(2sin –1) + (1 – 4sin2) = 0 (2sin –1) [cos – 2sin – 1] = 0 sin
1 or cos – 2sin = 1 …(ii) 2
From (i) & (ii) Common solution is obtained at sin
1 2
Number of solutions in [–, ] is 2 32. The number of solutions of the equation sinx.cosx(cosx – sinx)2. (sinx + cosx) = , where
1 2 2
in the
interval [0, 4], is (1) 0
(2) 2
(3) 4
(4) 8
Sol. Answer (1) sin2x.(cosx – sinx). cos2x = 2
⎞ 4 ⎛ sin4 x.cos ⎜ x ⎟ ⎝ 4⎠ 2 = 2 2 L.H.S. can never exceed one while RHS = 2 2 1 Since
1 2 2
No solution 33. The number of solutions of the equation sin5 (1) 0
(2) 1
1 1 ⎛ cos5 where ⎜ 0, ⎝ sin cos
(3) 2
⎞ ⎟ , is 2⎠
(4) 3
Sol. Answer (2) sin5 – cos5
1 1 cos sin
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
(sin– cos) [sin4 + sin3 cos + sin2 cos2 + sin cos3 + cos4] =
213
sin cos sin cos
sin – cos= 0
…(i)
OR sin4 + cos4 + sincos (sin2 + cos2) + sin2 cos2– From (i) sin cos ⇒
1 0 sin cos
…(ii)
4
From (ii) 1 1 1 2 1 sin2 2 sin2 sin2 2 0 2 2 4 sin2
sin32 – 2sin–22 – 4sin2 + 8 = 0 (sin2– 2) (sin22 – 4) = 0 No solution Only solution is
4
34. The number of solutions of x in the interval [–, ] of the equation (1 + cot267º) (1 + tan222º) = sec2x + cos2x is (1) 1
(2) 2
(3) 3
(4) 4
Sol. Answer (3) L.H.S. = (1 + cot267°) (1 + tan222°) = (1 + tan3°) (1 + tan42°) ∵ 3 + 42 = 45°
tan3 tan42 tan45 1 tan3 tan42
tan3° + tan42° + tan3° tan42° = 1 (tan3° + 1) (tan42° + 1) = 2 L.H.S. = 2 Given equation is sec2x + cos2x = 2 ∵ sec2x + cos2x 2, equality colds of sec2x = cos2x x = , 0, (As the given interval) 3 solutions 35. The general solution of the equation tan(x + 20º) tan(x – 40º) = tan(x – 20º) tan (x + 40º) is (1) x = n, n Z
(2) x n
, n Z 4
(3) x
n , n Z 2
(4) x 2n
,nZ 4
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
214
Trigonometric Functions
Solution of Assignment (Set-2)
Sol. Answer (3)
tan( x 20) tan( x 40) tan( x 20) tan( x 40 A) =
sin( x 20)cos( x – 20) sin( x 40) cos( x – 40) sin( x – 20)cos( x 20) cos( x 40)sin( x – 40)
Applying components-dividends
sin2 x sin(2 x ) sin40 80
sin2x = 0 2x = n
x
n , n Z 2
36. Let x [0, 2]. The curve y = secx tanx + 2tanx – secx and the line y = 2 intersect in (1) No point
(2) 2 points
(3) 3 points
(4) 4 points
Sol. Answer (4) secx tanx + 2tanx – secx – 2 = 0 (secx + 2) (tanx – 1) = 0 tan x 1, sec x 2
5 2 4 x , ,x , (in [0, 2]) 4 4 3 3
The curve and the line intersect is 4 points 37. Let the number of solutions of the equation sinx = x2 – 4x + 5 be . The general solution of the equation
1 tan ( 2 2 1)
(1) n
only n Z 4
2 1 tan(( 2 2 1))
(2) n
0 is
, n Z 4
(3) n
only n Z (4) n , n Z 3 3
Sol. Answer (4) sinx = (x – 2)2 + 1 –1 L.H.S 1 and RHS 1 L.H.S. = 1 at x
while R.H.S. = 1 at x = 2 2
No solution =0 Putting = 0 is given equation, we get 1 tan
2 0 1 tan
1 – tan2 + 2 = 0 tan2 = 3 General solution is n
3
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
215
38. Let three sets be defined as A = {x|cos2x + cosx + 1 = 0} B = {x|cos2x + 3sinx = 2} C = {x|secx + tanx = cosx} The number of elements in A B C is (1) 0
(2) 4
(3) 8
(4) Infinitely many
Sol. Answer (1) (i) For set A cos2x + cosx + 1 = 0 2cos2x + cosx = 0 cosx(2cosx + 1) = 0 cosx = 0 or cosx = –
1 2
2 x (2n 1) or x 2n 2 3
(ii) For set B cos2x = 3sinx = 2 1 – 2sin2x + 3sinx = 2 2sin2x – 3sinx + 1 = 0 (2sinx – 1) (sinx – 1) = 0
sin x
1 or sinx = 1 2
x n (–1)n
or x 2n 6 2
(iii) For set C secx + tanx = cosx 1 + sinx = cos2x sin2x + sinx = 0 sinx = 0, sinx –1 as cosx 0 x = n From (i), (ii), (iii) it is clear that these exists no x satisfying all 3 conditions No. of elements in A B C = 0 39. The number of solutions of the equation 2|x| = 1 + 2|cosx| is (1) 0
(2) 2
(3) 4
(4) Infinite
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
216
Trigonometric Functions
Solution of Assignment (Set-2)
Sol. Answer (2) Clearly from graph these are two solution of the given equation
y
|x|
y=2
y = 1 + 2|cosx|
0
2
x
40. If the equation 1 + sin2x = cos has a non-zero solution in , then x must be (1) An integer
(2) A rational number
(3) An irrational number (4) None of these
Sol. Answer (2) Given 1 + sin2x = cos OR cos = 1 + sin2x It is possible if sin2x = 0 and cos= 1 x = n and = 2m where n; m I
x
x
n 2m
n 2m
41. In a triangle ABC, if the median and altitude from A trisect angle A, then (B – C) is ( in degrees) equal to _______. Sol. From the question it is clear BD = DE and BE = EC Let BD = x So, BD = DE = x & EC = 2x AE is the angle bisector of ADC So,
AD 1 AD , But sin C AC 2 DC
sinC = sin30 C C = 30°
AD AD 1 tan30 ⇒ ⇒ AD 3 x DC 3x 3
In ABD
tan B
AD x
3x x
B = 60 So, B – C = 30° Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
217
42. In a right angled triangle ABC, if r(inradius) = 7 cm and R(circumradius) = 32.5 cm, then the area of the triangle (in square cm) is _____ Sol. r = 7 cm R = 32.5 cm A=? Let C = x C = C5 AP = A5 [Length of tangent drawn from internal point are equal]
A
Apply Pythagoras theorem in w.r.t. ABC AB2
+
BC2
65 – x
AC2
=
7
0
Simplifying we get x = 56 or 9 Ar ABC
65 – x
5
(72 – x)2 + (7 + x)2 = 652
7 C
1 1 BC AB 16 63 2 2
x
7
P 7 B
= 504 sq. units 43. In a triangle ABC, perpendicular distance of BC from the point of intersection of angle bisector of B and C is _____. Sol. From figure it is clear that the perpendicular distance of BC from the point of intersection of angle bisector of B and C is = inradius =r 1
44. In a ABC if
r
2
+
1 r12
+
1 r22
+
1 r32
=
a2 + b2 + c 2 n
, then n is equal to ______.
Sol. Given that, 1 r2
1 r12
1 r22
1 r32
a2 b2 c 2 n
Taking L.H.S. 1 r
2
1 r12
1 r22
1 r32
s 2 (s a )2 (s b )2 (s c )2 2 (a b c )2 (b c a )2 (a b c )2 (a b c )2 4 2
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
218
Trigonometric Functions
4(a 2 b 2 c 2 ) 4 2
Solution of Assignment (Set-2)
a2 b2 c 2 2
So n = 2 45. The radius of the circle touching two sides AB and AC of a triangle ABC and having its centre on BC is equal to ______ .
A
Sol. Let the radius of the circle be r ar(ABC) = ar(ABD) + ar(ACD)
1 1 · r · b · r ·c 2 2 r
r B
r D
C
2 bc
46. Find the cubic equation whose roots are the radius of three inscribed circles in term of inradius, circumradius and perimeter. Sol. Let roots be r1, r2 and r3 Equation x3 – (r1 + r2 + r3)x2 + (r1r2 + r2r3 + r1r3)x – r1r2r3 = 0 r1 + r2 r2r3 + r1r3 =
2 2 2 (s a )(s b ) (s b )(s c ) (s c )(s d )
⎡ s c s as b ⎤ s2 ⎢ ⎥ ⎣ s (s a ) (s b ) ( s c ) ⎦
s 2 .s 2
s2
1 1 1 r2 r3 r1r3 s2 1 r r Also, 12 r1 r2 r3 r1r2 r3 r1r2 r3 r r1r2r3 = s2r and r1 + r2 + r3 = 4R + r Equation x3 – (4R + r)x2 + s2x – s2r = 0 47. ABCD is a cyclic quadrilateral inscribed in circle of radius 21 cm, having diagonals AC and BD at right angles, the point of intersection of AC and BD being E. Then the sum of squares of E from the four vertices (in sqaure cm) is _______. A Sol. We have to find EB2 + ED2 + EA2 + EC2
1 (EB 2 EA2 ) (EB 2 EC 2 ) (EC 2 ED 2 ) (ED 2 EA2 ) 2
1 AB 2 BC 2 CD 2 AD 2 2
D
E
90°–
90°–
B
C
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
Solution of Assignment (Set-2)
Trigonometric Functions
219
Now, let R be the radius of the circumscribed circle using sine rule AD2 = 4R2 sin2 ; AB2 = 4R2 sin2 BC2 = 4R2 cos2 ; CD2 = 4R2 cos2 Hence
1 AB 2 BC 2 CD 2 AD 2 2
1 8R 2 4R 2 1764 2
48. In ABC, 3sinA + 4cosB = 6 and 4sinB + 3cosA = 1. Find the measure of angle C.
3 sin A 4cos B 6 Sol.
3cos A 4 sin B 1 3(sin A cos A) 4(cos B sin B ) 5
4sinB + 3cosA = 1
9 sin2 A 16 cos2 B 24 sin A cos B 36 9 cos2 A 16 sin2 B 24 cos A sin B 1 9 16 24(sin A cos B cos A sin B ) 37
24sin(A + B) = 37 – 25 = 12 sin(A + B) =
1 2
sin( – C) =
sinC =
C
1 2
1 2
5 , 6 6
49. Maximum value of tan
Sol. tan
A B C · tan · tan in a triangle is equal to 2 2 2
A B C tan tan 2 2 2
Given A + B + C =
⇒
⎛ A B C⎞ ⎜⎝ ⎟⎠ 2 2
⇒
tan
A B B C C A tan tan tan tan tan 1 2 2 2 2 2 2
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456
220
Trigonometric Functions
Solution of Assignment (Set-2)
tan A tan B tan B tan C tan C tan A 3 A B C tan2 tan2 tan2 2 2 2 2 2 2 2 2 2
⇒
1 A B C tan2 tan2 tan2 27 2 2 2
⇒
tan
A B C 1 tan tan 2 2 2 3 3
50. If the angle A and angle B of a triangle (A > B) satisfy the equation 2tanx – (1 + tan2x) = 0, then determine the angle C where 0 < < 1. Sol. 2tanx – (1 + tan2x) = 0 A, B satisfy this equation 2 sin x cos x cos2 x
sin2x = sin2A = = sin2B 2A = – 2B A B
C
(∵ A B )
2
2
Aakash Educational Services Pvt. Ltd. - Regd. Office : Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-75 Ph.011-47623456