Descripción: Ejercicios de Control de la Calidad por Procesos
Descripción completa
FORMASYON
Descrição completa
FORMASYON
Descripción: calidad
FORMASYON
kpss çalışma notları, kpss çalışma notları indir, KPSS Tarih Çalışma notları, KPSS Tarih Cep Kitabı, kpss tarih notları, KPSS Tarih Özet, KPSS Tarih Özet Cep Kitabı http://www.kpssanaliz.com/
Descripción: nada
Prayitno, M.A.Full description
Descripción completa
Full description
Ejercicios prácticos de psicotecnicos.Descripción completa
Organización Proceso Venta Editorial CEPDescripción completa
six sigmaDescripción completa
Pompa, Cwp, Swbp, Ccwp, Cep
Descripción: Grupo 1
das is gud vir oefening !
Descripción completa
Theories of failure
Over view ●
Stress- strain curve
●
Hardening types
●
Combined stresses
●
Principal stresses, Hydrostatic, Deviatoric and octahedral stresses.
●
Failure theories
●
Yield function
●
Yield criteria
●
Flow rule
●
Various material models
●
Finite element example
Uniaxial loading ●
●
●
●
Simple tension
For some materials yield point is so poorly defined that it is taked as 0.2 percent of the permanent strain. A few materials such as annealed mild steel, exhibit a sharp drop in yield after the upper yield point B is reached, this is because of the luder bands. True stress can be obtained from the nominal stresses by considering no volumetric change. A o L o= AL
Uniaxial loading ●
True stress
P PL σ= = =σn (1+ εn) A A o Lo L
●
True strain
ε=∫ dl / l= ln ( Lo
●
●
L ) Lo
Hardening Types ●
Kinematic Hardening: Elastic range remains constant
σ C =2 σ o −σ B
●
Isotropic Hardening: yield in tension is same as yield in compression
σ C =−σ B
Hardening types ●
Mixed hardening: Yield in tension and compression are independent
σB
σo
σ C =σo σ C =2 σ o −σ B
σo ●
σ Actual
Actual Hardening is above the mixed hardening yield in compression
Stress strain idealized curves ●
Perfectly linear elastic
Elastic Perfectly plastic M
σ
σ σ=E ε
E
σ <σ o then ε= σ E
E
ε
ε ●
Rigid perfectly plastic
σ
Bilinear hardening material M
ε=0 for σ< σ o
ε
σo σ≥σo then ε= +λ E
ε>0 for σ >σ o
M
σ H E
σ <σ o then ε= σ E
σ≥σo then ε=
ε
σ o (σ−σ o) + E H
Emperical equations for stress strain curves ●
Ludwick equation
σ=σo +mε ●
n
Ramberg Osgood equation
ε= σ +k ( σ ) E E
n
Tangent modulus e
d ε=d ε + d ε
p
σ
dσ dσ p dε = ;d ε = p E E
Ep
e
d ε=
dσ dσ + p E E
dσ dσ dσ d ε= t = + p E E E
1 1 1 = + p t E E E
E dε
e
dε
dε
p
ε
Multi directional loads P
P
P
T Q
Q R P ●
Unit stress:
T P
P
Δ Fi ΔF P= lim ( )= lim ( ) Δ A Δ A Δ A→0 Δ A →0 j The unit stress is not normal to the plane. The value of unit stress is referred to a particular plane.
l, m and n be the direction cosines of the normal acting on plane ABC, then
AoB=m Δ A ; AoC=n Δ A ; BoC=l Δ A
B
σs σn
σi
x−direction , Δ A S X =σ x . l . Δ A+ m. Δ A τ xy +n . Δ A τ zx S X =l . σ x +m . τ xy +n. τ zx
n
σ2i σ3i A
σ 1i
S y =l . τ xy +m . σ yy +n . τ yz
o C
S z=l . τ xz +m . τ yz +n . σ zz
S j=σij . ni Cauchy's stress
Stresses on an arbitrary plane S n =l . S x +m . S y +n . S z
S n =l2 σ x +m2 σ y +n2 σ z +2(lm τ xy +mn τ zy +nl τ zx ) 2
2
2
S s=S −S n
Principal stresses ●
Consider a plane on which the resultant stress is perpendicular to the plane B Sy Sx
S
S X =l . S
S y =m . S S z=n . S
Sz
C A
Substituting the above values in the Cauchy's stress equation we get l . S=l . σ xx +m . τ xy + n . τ zx ⇒ l.(σ xx −S )+m . τ xy +n . τ zx=0 m . S=l . τ xy +m. σ yy +n . τ yz ⇒l . τ xy +m.(σ yy −S )+n . τ yz =0 n . S=l . τ xz +m . τ yz +n . σ zz ⇒ l . τ xz +m. τ yz +n .(σ zz−S)=0 In indical notation l i (σ ij −δ ij S)=0
Prinicpal stresses and Invariants ●
For a solution to be non- trivial, determinant of the three equations is zero
I 2=τ xy +τ yz +τ zx −(σ x .σ y +σ y . σ z +σ z .σ x ) 2
2
2
I 3=σ x . σ y . σ z +2 τ xy . τ yz . τ zx −(σ x . τ yz +σ y τ zx +σ z . τ xy )
at a point on any plane the values of these invariants doesn't change.
Principal stresses and Invariants S 3 −I 1. S 2 +I 2.S −I 3 =0 ●
●
●
●
●
The cubic equation has three real roots and consequently three principal stresses σ 1, σ 2 and σ 3 . From the pricipal stress values we can get the eigen vectors l,m and n, if in addition l 2 +m 2 +n 2=1 If σ 1=σ 2=σ3 → Hydrostatic stress (any three perpendicular directions are principal)
σ 1≠σ 2≠σ3 → all principal directions are unique and orthogonal. If σ 1=σ 2≠σ3 → one principal direction will be unique, but the other If
two directions can be any two directions orthogonal to first. ●
If
σ 1, σ 2 and σ 3 are the co-ordinate axes then
I 1=σ 1 +σ 2 +σ 3 ; I 2=−(σ 1. σ2 + σ2. σ 3 +σ3. σ 1); I 3=σ1. σ 2. σ 3
Octahedral shear stresses l=m=n=
1 √(3)
1 S n =l σ x +m σ y + n σ z + 2(lm τ xy + mn τ zy + nl τ zx )= (σ1 + σ2 + σ3 ) 3 2
Stress tensor can be divided in to hydrostatic part and deviatoric part.
σm 0 0 pij =σm δij ( 0 σ m 0 ) 0 0 σm
where σ m=
(σ x + σ y + σ z ) (σ 1 +σ 2 +σ 3) = 3 3
The value of hydrostatic tensor is same for any streess state at a point
σ xx −σ m τ xy τ xz S ij =σij −Pij =( τ yx σ yy−σ m τ yz ) τ zx τ zy σ zz −σ m principal deviatoric stresses can be found out similarly like the previous one
1 1 2 2 2 2 2 2 2 J 2= [(σ x −σ y ) +(σ y −σ z ) +(σ z −σ x ) ]+(τ xy +τ yz +τ xz )= (I 1 +3 I 2) 6 3 1 3 J 3 =(σ1 −σ m)(σ 2−σ m )(σ 3−σ m)= (3 I 1 +9 I 1 I 2+ 27 I 3) 27
in terms of pricipal deviatoric stresses J 2=−( S1 S 2 + S 2 S3 + S 3 S 1)
J 3 =S 1 S 2 S 3
Haigh-Westergaard Stress Space ●
How to geomertrically represent a stress state? a) Considering six indepenedent stresses as six components of positional coordinates. b) Use the pricipal stresses.