BAB III ANALISA STABILITAS BENDUNG Gaya-gaya yang bekerja pada tubuh bendung, akibat: 1. Tekanan air 2. Tekanan lumpur 3. Tekanan berat sendiri bendung 4. Gaya gempa 5. Gaya angkat (uplift pressure)
3.1.
Tekanan Air 3.1.1 Tekanan Air Normal
Gambar 3.1 Diagram tekanan akibat air normal
γ air =
Pa1 =
1 ton/m 3 1 2
2
.γair .h .
=
1 2
.1.3,85 . 2
= 7,411 ton
45
Tabel 3.1 Perhitungan 3.1 Perhitungan Tekanan Akibat Air Normal Gaya (t)
Bagian
Pa1
Momen (tm)
V
H
X
Y
Mr
M0
-
7,411
-
5,905
-
43,763
JUMLAH
3.1.2
Lengan (m)
7,411
43,763
Tekanan Air Banjir
Gambar 3.2 Diagram tekanan akibat air banjir
Pf 1 =
1 2
. γair . h
2
=
Pf 2 = b . h . γ air Pf 3 = Pf 4 =
1 2
1 2
. γair . h
. γair . h
2
1 2
.1.3,85
2
= 7,411 ton
= 1,851.(3,85).(1) 2
= =
1 2
1 2
.1.2,634
.1.2,634
2
2
= 7,126 ton = - 3,469 ton = 3,469 ton
46
Tabel 3.2 Perhitungan Tekanan Akibat Air Banjir Bagian
Berat (ton) V
H
Lengan (m) x
y
Momen ™
Mr
Mo
Pf 1
7,411
5,663
41,972
Pf 2
7,411
6,305
46,728
Pf 3
-3,469
4,756
-16,498
Pf 4
3,469
JUMLAH
3,469
0,892 11,354
3,094 3,904
72,202
3.2. Tekanan Lumpur lumpur
= 0,6 ton/m3
θ
= 300
Ka
= tan2 (450 – θ/2) = tan2 (450 – 30o/2) = 0,333
Keterangan : γlumpur = berat volume lumpur (t/m 3) θ
= sudut gesek dalam
Ka
= tekanan lumpur aktif (0,333)
Gambar 3.3 Diagram tekanan akibat lumpur
47
PL1 = =
1 2 1 2
. K a . lumpur . h2 .(0,333).(0,6).(3,85)2
= 1,481 ton
Tabel 3.3 Perhitugan Tekanan Akibat Lumpur Bagian
PL1
Gaya (t)
Momen (tm)
V
H
x
Y
Mr
M0
-
0,888
-
5,663
-
5,031
0,888
JUMLAH
3.3.
Lengan (m)
5,301
Tekanan Berat Sendiri Bendung Berat volume pasangan batu γ pas batu = 2,2 t/m2 Ditinjau 1 m lebar bendung
Gambar 3.4 Diagram tekanan berat sendiri bendung
W1
=b.h.
pasang an
= 2,0 . 2,0 . 2,2
= 8,800 ton
W2
=b.h.
pasang an
= 1,649 . 3,848 . 2,2
= 13,960 ton
W3
=b.h.
pasang an
= 1,0 . 4,0 . 2,2
= 8,800 ton
W4
=b.h.
pasang an
= 1,5 . 3,5 . 2,2
= 11,550 ton
48
W5
=b.h.
= 2,5 . 3,0 . 2,2
W6
= 2/3 . b. h .
pasang an
= 2/3 . 1,5 . 1,5 . 2,2 = 3,300 ton
W7
= 1/2 . b. h .
pasang an
= 1/2 . 3,0 . 2,5 . 2,2 = 8,250 ton
pasang an
= 16,500 ton
Tabel 3.4 Perhitungan Tekanan Berat Sendiri Bendung Bagian
Lengan (m)
Gaya (ton)
Momen (tm)
Vertikal
x
y
Mr
M0
W1
8,800
6,000
3,000
52,800
26,400
W2
13,960
5,825
5,924
81,311
82,701
W3
8,800
4,500
5,000
39,600
44,000
W4
11,550
3,250
3,750
37,538
43,313
W5
16,500
1,250
1,500
20,625
24,750
W6
3,300
3,500
6,000
11,550
19,800
W7
8,250
1,667
3,833
13,750
31,625
∑
71,160
257,174
272,588
Pada badan bendung yang berbentuk parabola, luas penampang digunakan pendekatan : A = 2/3 . L . H
Didapat: ΣW
3.4.
= 71,160 ton
ΣMo
= 272,588 tm
ΣMr
= 257,174 tm
Gaya Gempa 3.4.1 Gempa Horisontal Gaya Gempa Horisontal (H)
= Kh. ΣW = 0,10. 71,160 = 7,116 ton
Momen akibat H = Kh. ΣMo = 0,10. 272,588 = 27,259 tm
49
Keterangan: Kh = Koefisien gempa horisontal (diambil: Kh = 0,10) ΣW = Total berat sendiri bendung (t) Mo = Momen guling akibat berat sendiri bendung (tm)
3.4.2 Gempa Vertikal Gaya Gempa Vertikal (V) = Kv. ΣW = 0,05. 71,160 = 3,558 ton Momen akibat V = Kv. ΣMr = 0,05. 257,174 = 12,859 tm Keterangan : Kv = Koefisien gempa vertikal (diambil: Kv = 0,005) Mr = Momen tahanan akibat berat sendiri
3.5. Gaya Angkat (Uplift Pressure) 3.5.1 Tekanan Air Normal ΣL
=
Lh + Lv
=
19,15 + 10,62
=
29,77 m
ΔH (air normal) = elev. MAN – elev. Dasar sungai = 168,85 – 165,00 = 3,85 m
.Δ = Σ .3,2 = 29,77 = 0,107 Keterangan : Hx = tinggi muka air dari titik yang dicari (m) Lx
= panjang rayapan (m)
ΣL = total rayapan (m)
50
ΔH = tinggi muka air normal dari lantai dasar bendung (m) Ux = uplift pressure di titik x (t/m 2)
Gambar 3.5 Rayapan gaya angkat akibat muka air normal
Tabel 3.5 Perhitungan Tinggi Air Normal Terhadap Muka Bendung Titik
Hx (m)
Lx (m)
Ux (t/m2)
A
5.23
29..77
1.380
B
8.23
26.77
4.768
C
8.23
24.27
5.091
D
6.23
22.27
3.350
E
6.23
20.77
3.544
F
5.23
19.77
2.673
G
5.23
18.77
2.803
H
6.23
17.77
3.932
I
6.23
15.77
4.191
J
4.23
13.77
2.449
51
= 1+2 = 21+2 31+2
U1
c
R L
U2
Keterangan: R
= Resultante Uplift Pressure (ton)
L
= Lengan momen (m)
U1
= Uplift Pressure terendah di setiap bagian (ton)
U2
= Uplift Pressure tertinggi di setiap bagian (ton)
Tabel 3.6 Perhitungan Uplift Pressure Akibat Air Normal Bagian
Gambar
Gaya angkat per 1 m panjang (t) H=
1.3800
U 1 U 2
=-
A
xH
2
1,380 4,768 2
3
x
= - 9,222 t A-B
h 2a b 3 a b
y =
3.0000
B 4.7680
=
3 (2 x1,380) 4,768
3 1,380 4,768
= 1,224 m Ytotal = 1,224 m
52
V= C
2.5000
U 1 U 2
xH
2
B
V =-
4,768 5.091
x
2
2,5
= -12,324 t B-C
5.0910
h 2b c 3 b c
x =
4.7680
=
2,5 (2 x 4,768) 5,091
3 4,768 5,091
= 1,236 m X total = 3 – 1,236 = 1,764 m
H= H=
U 1 U 2
xH
2
5,091 3,350
x
2
3.3500
D
2,0
= 8,441 t 2.0000
C – D
h 2c d 3 c d
y=
C 5.0910
=
2,0 (2 x5,091) 3,350
3 5,091 3,350
= 1,069 m Ytotal = 1,069 m V= E
1.5000
U 1 U 2
D
V =D – E
3.5440
3.3500
xH
2
3,350 3,544 2
1,5 = - 5,170 t
x
h 2d e 3 d e
x =
=
1,5 (2 x3,350) 3,544 = 0,743 m 3 3,350 3,544
X total = (2,5 – 0,743) + 1,5 = 3,257 m
53
H =
H = 2.6730
F
y = E
3.5440
xH
2
3,544 2,673
1
x
2
= 3,109 t
1.0000
E – F
U 1 U 2
=
h 2e f 3 e f 1 ( 2 x3,544) 2,673
3 3,544 2,673
= 0,523 m Ytotal = 0,523 + 1,0 = 1,523 m V =
U 1 U 2
1.0000
F
G
xH
2
V =-
2,673 2,803 2
1
x
= - 2,738 t F – G
2.6730
2.8030
x =
=
h 2 f g 3 f g 1 (2 x 2,673) 2,803
= 0,496 m
3 2,673 2,803
X total = (1 - 0,496) + 2,5 + 1,5 = 4,504 m
H=
U 1 U 2
H =G
G-H
2.8030
xH
2
2,803 3,932 2
1,0
x
= - 3,367 t
h 2 g h 3 g h
y =
1.0000
H
3.9320
=
1,0 (2 x 2,803) 3,932
3 2,803 3,932 = 0,472 m Ytotal = 0,472 + 1,0 = 1,472 m
54
V=
2.0000
U 1 U 2
H
I
xH
2
V =-
3,932 4,191
x
2
2
= - 8,122 t H-I
h 2 g h 3 g h 2 (2 x3,932) 4,191 = 3 3,932 4,191
x =
3.9320
4.1910
= 0,989 m Xtotal = (2 – 0,989) + 2,5 + 1,5 + 1 = 6,011 m H =
H = 2.4490
U 1 U 2
xH
2
4,191 2,449 2
J
x
2
= 6,640 t I-J
2.0000
h 2 g h 3 g h
y =
I
4.1910
=
2 (2 x 4,191) 2,449
3 4,191 2,449
= 1,087 m Ytotal = 1,087 + 1 = 2,087 m
Tabel 3.7 Gaya Angkat Air Normal Titik
Hx (m)
Lx (m)
Ux (t/m2)
A
5.23
29.77
1.380
Uplift Force (t) V
H
Lengan (m) x
-9.222 B
8.23
26.77
8.23
24.27
1.224 1.236
6.23
22.27
6.23
20.77
Mr
1.224
11.292
Mo
1.764
21.740
1.069
1.069
9.022
3.350 -5.170
E
y (total)
5.091 8.441
D
x (total)
Momen
4.768 -12.324
C
y
Lengan (m)
0.743
3.257
16.840
3.544
55
3.109 F
5.23
19.77
5.23
18.77
0.496
6.23
17.77
6.23
15.77
0.472 0.989
4.23 13.77 Σ (JUMLAH)
12.332 1.472
4.957
6.011
48.824
4.191 6.640
J
4.504
3.932 -8.122
I
4.734
2.803 -3.367
H
1.523
2.673 -2.738
G
0.523
1.087
2.087
13.857
2.449 - 28.355
5.600
30.106
113.491
Catatan : Searah jarum jam (+) Berlawanan arah jarum jam (-)
Gaya Angkat Akibat Air Normal : 1. Tekanan Vertikal V = fu x ΣV = 0,5 x (- 28,355) = - 14,178 ton 2. Tekanan Horizontal H = fu x ΣH = 0,5 x 5,600
= 2,800 ton
3. Momen Mr = 0.5 x ΣMr = 0,5 x (30,106) = 15,053 t.m Mo = 0.5 x ΣMo = 0,5 x (113,491) = 56,746 t.m Dimana :
f u = koefisien reduksi untuk jenis tanah keras (50 %)
3.5.2 Tekanan Air Banjir ΣL
= 29,77 m
ΔH (air banjir) = elev. M.A.B – elev. Dasar sungai = 170,701 – 165,000 = 5,701 m
.Δ= .5,701= 0,192 = Σ 29,77 Keterangan: Hx = tinggi muka air dari titik yang dicari (m) Lx = panjang rayapan (m) ΣL = total rayapan (m)
56
ΔH = tinggi muka air banjir dari lantai dasar bendung (m) Ux = uplift pressure di titik x (t/m2)
Gambar 3.6 Rayapan gaya angkat akibat muka air banjir
Tabel 3.8 Perhitungan Tinggi Air Banjir Terhadap Muka Bendung Titik
Hx (m)
Lx (m)
Ux (tm²)
A
7.08
29.77
1.380
B C D E F
10.08 10.08 8.08 8.08 7.08
26.77 24.27 22.27 20.27 19.77
4.995 5.433 3.816 4.104 3.295
G H I J
7.08 8.08 8.08 6.08
18.77 17.77 15.77 13.77
3.487 4.678 5.061 3.444
57
Tabel 3.9 Perhitungan Uplift Pressure Akibat Air Banjir Bagian
Gambar
Gaya angkat per 1 m panjang (t) U 1 U 2
H=
xH
2
1.3800
A
=-
1,380 4,955
x
2
3,0
= - 9,502 t
3.0000
h 2a b 3 a b
A-B
y = B
3,0 (2 x1,380) 4,955
4.9550
=
3 1,380 4,955
= 1,218 m Ytotal = 1,218 m U 1 U 2
V= B
C
xH
2
2.5000
V =-
4,955 5,433
x
2
2,5
= - 12,985 t B-C
h 2b c 3 b c
4.9550
x =
5.4330
2,5 (2 x4,955) 5,433
=
3 4,955 5,433
= 1,231 m X total = 2,5 – 1,231 = 1,269 m U 1 U 2
H=
xH
2
3.8160
D
H =
5,433 3,816 2
x
2,0 = 9,250 t
2.0000
C-D
h 2c d 3 c d
y= C 5.4330
=
2,0 ( 2 x5,433) 3,816
= 1,058 m
3 5,433 3,816
Ytotal = 1,058 m
58
V=
1.5000
E
U 1 U 2
xH
2
D
V =-
3,816 4,104
1,5
x
2
= - 5,940 t D-E
h 2d e 3 d e 1,5 (2 x3,816) 4,104 = 3 3,816 4,104
x =
3.8160
4.1040
= 0,741 m X total = (1,5 - 0,741) + 2,5 = 3,259 m
H= H = 3.2950
F 1.0000
E-F
xH
2
4,104 3,295
1
x
2
= 3,699 t
h 2e f 3 e f
y =
E
4.1040
U 1 U 2
=
1 (2 x 4,104 ) 3,295
3 4,104 3,295
= 0,518 m Ytotal = 0,518 + 1,0 = 1,518 m V= 1.0000
G
F
U 1 U 2
xH
2
V=-
3,295 3,487 2
1,0
x
= - 3,391 t x =
F-G 3.4870
3.2950
=
h 2 f g 3 f g 1,0 (2 x3,295) 3,487
3 3,295 3,487
= 0,495 m X total = (1,0-0,495)+2,5+1,5 = 4,505 m
59
H=
U 1 U 2
H =3.4870
G
G-H
xH
2
3,487 4,678
1,0
x
2
= - 4,082 t
h 2 g h 3 g h
1.0000
y =
H 4.6780
=
1,0 (2 x3,487) 4,678
3 3,487 4,678
= 0,476 m Ytotal = 0,476 + 1,0 = 1,476 m V= I
2.0000
H
U 1 U 2
xH
2
V =-
4,678 5,061
x
2
2,0
= - 9,739 t H-I
h 2 g h 3 g h
x =
4.6780 5.0610
=
2,0 ( 2 x 4,678 ) 5,061
3 4,678 5,061
= 0,987 m Xtotal = (2 – 0,987) + 2,5 + 1,5 + 1,0 = 6,013 m H= 3.4440
J
H= 2.0000
I
xH
2
5,061 3,444 2
x
2,0
= 8,505 t
I-J 5.0610
U 1 U 2
h 2 g h 3 g h
y =
=
2,0 (2 x5,061) 3,444
= 1,063 m
3 5,061 3,444
Ytotal = 1,063 + 2 = 3,063 m
60
Tabel 3.10 Gaya Angkat Akibat Air Banjir Titik
Hx (m)
Lx (m)
Ux (t/m2)
A
7.08
29.77
1.380
Uplift Force (t) V
H
Lengan (m) x
-9.502 B
10.08
26.77
10.08
24.27
1.214 1.231
8.08
22.27
8.08
20.77
7.08
19.77
0.741
7.08
18.77
8.08
17.77
8.08
15.77
6.08 13.77 Σ (JUMLAH)
3.259
0.495
19.358 1.518
5.615
4.505
15.275
3.487 0.476
1.476
6.025
4.678 0.987
6.031
58.736
5.061 8.505
J
9.789
3.295
-9.739 I
16.478 1.058
0.518
-4.082 H
11.572
Mo
4.104
-3.391 G
1.218 1.269
1.058
3.699 F
Mr
3.816 -5.940
E
y (total)
5.433 9.250
D
x (total)
Momen
4.955 -12.985
C
y
Lengan (m)
1.063
3.063
26.051
3.444 - 32.054
7.870
43.648
125.251
Catatan : Searah jarum jam (+) Berlawanan arah jarum jam (-)
Gaya Angkat Akibat Air Banjir : 1. Tekanan Vertikal V =
fu x ΣV = 0,5 x (-32.054) = - 16.027 ton
2. Tekanan Horizontal H =
fu x ΣH = 0,5 x (7.870) = 3.935 ton
3. Momen Mr = 0.5 x ΣMr = 0,5 x (43.648) = 21.824 t.m Mo = 0.5 x ΣMo = 0,5 x (125.251) = 62.626 t.m Dimana :
f u = koefisien reduksi untuk jenis tanah keras (50 %)
61
Tabel 3.11 Akumulasi Beban – Beban Pada Bendung No.
Keterangan
1
2
Gaya (ton) Vertikal Horizontal 3 4
Tekanan Air a Air Normal b Air Banjir c Tekanan Lumpur Berat Sendiri d Bendung Gaya Gempa e Gempa Horisontal f Gempa Vertikal Gaya Angkat g Air Normal h Air Banjir
3.6.
Momen (ton.meter) Mr Mo 5 6
0.000 3.469 0.000
7.411 11.354 0.888
0.000 3.094 0.000
43.763 72.202 5.031
71.160
-
257.174
-
3.558
7.116 -
27.259 12.859
27.259 12.859
-14.177 -16.027
2.800 3.935
15.053 21.824
56.746 62.626
Kontrol Stabilitas Bendung Ketentuan : 1. Tegangan tanah dasar yang diijinkan ( σ’)
= 2,0 kg/cm2 = 20 t/m2
2. Over Turning safety factor (guling)
= 1,5 kg/cm2
3. Sliding safety factor (geser)
= 1,2 kg/cm2
Kombinasi gaya – gaya yang bekerja pada bendung : 3.6.1
Tanpa Pengaruh Gempa 1. Keadaan Normal dengan Uplift Pressure
ΣH = a(4) + c(4) + g(4) = 7,411 + 0,888 + 2,800 = 11,100 t
ΣV = a(3) + c(3) + d(3) + g(3) = 0,000 + 0,000 + 71,160 – 14,177 = 56,983 t
ΣMr = a(5) + c(5) + d(5) + g(5) = 0,000 + 0,000 + 257,174 + 15,053 = 272,226 tm
ΣM0 = a(6) + c(6) + g(6) = 43,763 + 5,031 + 56,746 = 105,540 tm
Kontrol: a. Terhadap Guling (Over Turning)
Σ = 272,226 =2,579 ≥1,5 = Σ 105,540 62
b. Terhadap Geser (Sliding)
.Σ = 0,7 . 56,983 =3,594 ≥1,2 = f Σ 11,100 Dimana, f = koefisien geser (diambil f= 0,7) c. Terhadap Daya Dukung Tanah (Over Stressing) Resultante beban vertikal bekerja sejarak a dari titik O
272,226105,540 = 2,925 = ΣΣ = Σ 56,983 Resultante beban vertikal bekerja sejarak e dari pusat berat bendung
= 2 = 72 2,925 = 0,575 Jarak e masih terletak didalam “Bidang Kern”
< 6 →0,575< 76 0,575 < 1,167
…….. (OK!)
Gambar 3.7 Jarak e Dalam Bidang Kern
Tegangan yang terjadi pada tanah akibat beban – beban pada bendung:
σ = =
V A
V
b x . b y
M . x
Iy
V . e . 0,5 . b x
1 12
3
. b x . b y
63
=
V
b x . b y
6.V.e 2
b x . b y
V 6 . e 1 b x b x . b y
=
Tegangan izin tanah dasar (σ’) = 2,0 kg/cm 2 = 20 t/m 2
Tegangan tanah dikontrol per 1 meter panjang bendung : σ =
σmin =
σmax =
V 6 . e 1 b x . b y b x
56,983 6 . 0,575 1 = 4,130 t/m2 7,0 1 7,0
> 0
56,983 6 . 0,575 1 = 12,151 t/m 2 < σ’= 20 t/m2 7,0. 1 7,0
(OK!)
(OK!)
2. Keadaan Banjir dengan Uplift Pressure
ΣH = b(4) + c(4) + h(4) = 11,354 + 0,888 + 3,935 = 16,177 t
ΣV = b(3) + c(3) + d(3) + h(3) = 0,000 + 0,000 + 71,160 – 16,027 = 58,602 t
ΣMr = b(5) + c(5) + d(5) + h(5) = 0,000 + 0,000 + 257,174 + 21,824 = 282,091 tm
ΣM0 = b(6) + c(6) + h(6) = 72,202 + 5,031 + 62,626 = 139,858 tm
Kontrol: a. Terhadap Guling (Over Turning)
Σ = 282,091 =2,017 ≥1,5 = Σ 139,858 b. Terhadap Geser (Sliding)
.Σ = 0,7 . 58,602 =2,536 ≥1,2 = f Σ 16,177 f
= koefisien geser (diambil f= 0,7)
c. Terhadap Daya Dukung Tanah (Over Stressing) Resultante beban vertikal bekerja sejarak a dari titik O
,−, = − = ,
= 2,427 m
64
Resultante beban vertikal bekerja sejarak e dari pusat berat bendung
= = < →1,073<
2,427 = 1,073
1,073 < 1,167
Tegangan tanah dikontrol per 1 m panjang bendung:
.−, = , . 1 + = 16,071 ⁄ < 20 ⁄ →
6 .1,073) = 0,673 ⁄ >0→ = 58,602 (1 7 .1 7 3.6.2
Dengan Pengaruh Gempa Horizontal 1. Keadaan Normal dengan Uplift Pressure Tegangan ijin tanah (dengan gempa) σ’= 20 t/m2 x 1,3 = 26 t/m 2 ΣH = a(4) + c(4) + e(4) + g(4)
= 7,411 + 0,888 + 7,116 + 2,800 = 18,216 t ΣV = a(3) + c(3) + d(3) + g(3)
= 0,000 + 0,000 + 71,160 – 14,177 = 56,983 t ΣMr = a(5) + c(5) + d(5) + g(5)
= 0,000 + 0,000 + 257,174 + 15,053 = 272,226 tm ΣM0 = a(6) + c(6) + e(6) + g(6)
= 43,763 + 5,031 + 27,259 + 56,746 = 132,799 tm Kontrol: a.
Terhadap Guling (Over Turning)
= , =2,050 ≥1,5 = , b.
Terhadap Geser (Sliding)
. , =2,190 ≥1,2 = . = ,, f c.
= koefisien geser (diambil f= 0,7)
Terhadap Daya Dukung Tanah (Over Stressing) Resultante beban vertikal bekerja sejarak a dari titik O
,−, = 2,4 47 = − = , Resultante beban vertikal bekerja sejarak e dari pusat berat bendung
= = 2,447 = 1,053 65
< →1,053< 1,053 < 1,167 Tegangan tanah dikontrol per 1 m panjang bendung:
.−, = 15,489⁄ < 26 ⁄ → = , 1 + . 6 .1,053) = 0,792 ⁄ >0→ = 56,983 (1 7 .1 7 2. Keadaan Normal tanpa Uplift Pressure ΣH = a(4) + c(4) + e(4)
= 7,411 + 0,888 + 7,116 = 15,416 t ΣV = a(3) + c(3) + d(3)
= 0,000 + 0,000 + 71,160 = 71,160 t ΣMr = a(5) + c(5) + d(5)
= 0,000 + 0,000 + 257,174 = 257,174 tm ΣM0 = a(6) + c(6) + e(6)
= 43,763 + 5,031 + 27,259 = 76,054 tm Kontrol: a.
Terhadap Guling (Over Turning)
= , =3,381 ≥1,5 = , b.
Terhadap Geser (Sliding)
. , =3,231 ≥1,2 = . = ,, f = koefisien geser (diambil f= 0,7) c.
Terhadap Daya Dukung Tanah (Over Stressing) Resultante beban vertikal bekerja sejarak a dari titik O
,−, = 2,5 45 = − = , Resultante beban vertikal bekerja sejarak e dari pusat berat bendung
= = 2,545 = 0,955 < →0,955< 0,955 < 1,167
66
Tegangan tanah dikontrol per 1 m panjang bendung:
6 .0,955) = 18,485⁄ < 26 ⁄ → = 71,160 (1 + 7 .1 7 6 .0,955) = 1,846 ⁄ >0→ = 71,160 (1 7 .1 7 3. Keadaan Banjir dengan Uplift Pressure ΣH = b(4) + c(4) + e(4) + h(4)
= 11,354 + 0,888 + 7,116 + 3,935 = 23,293 t ΣV = b(3) + c(3) + d(3) + h(3)
= 3,469 + 0,000 + 71,160 – 16,027 = 58,602 t ΣMr = b(5) + c(5) + d(5) + h(5)
= 3,094 + 0,000 + 257,174 + 21,824 = 282,091 tm ΣM0 = b(6) + c(6) + e(6) + h(6)
= 72,202 + 5,031 + 27,259 + 62,626 = 167,117 tm Kontrol: a.
Terhadap Guling (Over Turning)
= , =1,688 ≥1,5 = , b.
Terhadap Geser (Sliding)
. , =1,761 ≥1,2 = . = ,, f c.
= koefisien geser (diambil f= 0,7)
Terhadap Daya Dukung Tanah (Over Stressing) Resultante beban vertikal bekerja sejarak a dari titik O
,−, = 1,9 62 = − = , Resultante beban vertikal bekerja sejarak e dari pusat berat bendung
= = 1,962 = 1,538 < →1,538< 1,538 < 1,167 Tegangan tanah dikontrol per 1 m panjang bendung:
., = 19,408⁄ < 26 ⁄ → = , 1 + . ., = 2,665 ⁄ >0→ = , 1 . 67
4. Keadaan Banjir tanpa Uplift Pressure ΣH = b(4) + c(4) + e(4)
= 11,354 + 0,888 + 7,116 = 19,358 t ΣV = b(3) + c(3) + d(3)
= 3,469+ 0,000 + 71,160 = 74,629 t ΣMr = b(5) + c(5) + d(5) + e(5)
= 3,054 + 0,000 + 257,174 + 27,259 = 287,526 tm ΣM0 = b(6) + c(6) + e(6)
= 72,202 + 5,031 + 27,259 = 104,492 tm Kontrol: a.
Terhadap Guling (Over Turning)
= , =2,752 ≥1,5 = , b.
Terhadap Geser (Sliding)
., =1,047 ≥1,2 = . = ,, f c.
= koefisien geser (diambil f= 0,7)
Terhadap Daya Dukung Tanah (Over Stressing) Resultante beban vertikal bekerja sejarak a dari titik O
,−, = 2,4 53 = − = , Resultante beban vertikal bekerja sejarak e dari pusat berat bendung
= = 2,453 = 1,047 < →1,047< 1,047 < 1,167 Tegangan tanah dikontrol per 1 m panjang bendung:
6 .1,047) = 20,233⁄ < 20 ⁄ → = 74,629 (1 + 7 .1 7 6 .1,047) = 1,090 ⁄ >0→ = 74,629 (1 7 .1 7 3.7.3
Dengan Pengaruh Gempa Vertikal Tegangan ijin tanah (dengan gempa) σ’= 20 t/m2 x 1,3 = 26 t/m 2
68
1. Keadaan Normal dengan Uplift Pressure ΣH = a(4) + c(4) + g(4)
= 7,411 + 0,888 + 2,800= 11,100 t ΣV = a(3) + c(3) + d(3) + f(3) + g(3)
= 0,000 + 0,000 + 71,160 + 3,558 – 14,177= 60,541 t ΣMr = a(5) + c(5) + d(5) + f(5) + g(5)
= 0,000 + 0,000 + 257,174 + 12,859 + 15,053= 285,085 tm ΣM0 = a(6) + c(6) + f(6) + g(6)
= 43,763 + 5,031 + 12,859 + 56,746 = 118,399 tm Kontrol: a.
Terhadap Guling (Over Turning)
= , =2,408 ≥1,5 = , b.
Terhadap Geser (Sliding)
.Σ = 0,7 . 60,541 =3,818 ≥1,2 = f Σ 11,100 f
c.
= koefisien geser (diambil f= 0,7)
Terhadap Daya Dukung Tanah (Over Stressing) Resultante beban vertikal bekerja sejarak a dari titik O
,−, = 2,7 53 = − = , Resultante beban vertikal bekerja sejarak e dari pusat berat bendung
= = 2,753 = 0,747 < →0,747< 0,747 < 1,167 Tegangan tanah dikontrol per 1 m panjang bendung:
.−, = 14,184 ⁄ < 20 ⁄ → = , 1 + . 6 .0,747) = 3,113 ⁄ >0→ = 60,541 (1 7 .1 7 2. Keadaan Normal tanpa Uplift Pressure
ΣH = a(4) + c(4) = 7,411 + 0,888 = 8,300 t
ΣV = a(3) + c(3) + d(3) + f(3)
69
= 0,000 + 0,000 + 71,160 + 3,558 = 74,718 t ΣMr = a(5) + c(5) + d(5) + f(5)
= 0,000 + 0,000 + 257,174 + 12,859 = 270,032 tm ΣM0 = a(6) + c(6)
= 43,763 + 5,031 = 48,795 tm Kontrol: a.
Terhadap Guling (Over Turning)
= , =5,534 ≥1,5 = , b.
Terhadap Geser (Sliding)
. , =6,3017 ≥1,2 = . = ,, f c.
= koefisien geser (diambil f= 0,7)
Terhadap Daya Dukung Tanah (Over Stressing) Resultante beban vertikal bekerja sejarak a dari titik O
,−, = 2,9 61 = − = , Resultante beban vertikal bekerja sejarak e dari pusat berat bendung
= = 2,961 = 0,539 < →0,539< 0,539 < 1,167 Tegangan tanah dikontrol per 1 m panjang bendung:
6 .0,539) = 15,606⁄ < 20 ⁄ → = 74,718 (1 + 7 .1 7 6 .0,539) = 5,742 ⁄ >0→ = 74,718 (1 7 .1 7 3. Keadaan Banjir dengan Uplift Pressure
ΣH = b(4) + c(4) + h(4) = 11,354 + 0,888 + 3,935 = 16,177 t
ΣV = b(3) + c(3) + d(3) + f(3) + h(3) = 3,469 + 0,000 + 71,160 + 3,558 – 16,027 = 62,160 t
ΣMr = b(5) + c(5) + d(5) + h(5) = 3,094 + 0,000 + 257,174 + 21,824 = 282,091 tm
ΣM0 = b(6) + c(6) + f(6) + h(6)
70
= 72,202 + 5,031 + 12,859 + 62,626 = 152,717 tm Kontrol: a.
Terhadap Guling (Over Turning)
= , =1,847 ≥1,5 = , b.
Terhadap Geser (Sliding)
. , =2,690 ≥1,2 = . = ,, f c.
= koefisien geser (diambil f= 0,7)
Terhadap Daya Dukung Tanah (Over Stressing) Resultante beban vertikal bekerja sejarak a dari titik O
,−, = 2,0 81 = − = , Resultante beban vertikal bekerja sejarak e dari pusat berat bendung
= = 2,081 = 1,419 < →1,419 < 1,419 < 1,167 Tegangan tanah dikontrol per 1 m panjang bendung:
., = 19,678⁄ < 20 ⁄ → = , 1 + . 6 .1,419 ) = 1,918 ⁄ >0→ = 62,160 (1 7 .1 7 4. Keadaan Banjir tanpa Uplift Pressure ΣH = b(4) + c(4)
= 11,354 + 0,888 = 12,242 t ΣV = b(3) + c(3) + d(3) + f(3)
= 3,469 + 0,000 + 71,160 + 3,558 = 78,187 t ΣMr = b(5) + c(5) + d(5) + f(5)
= 3,094 + 0,000 + 257,174 + 12,859 = 273,126 tm ΣM0 = b(6) + c(6)
= 72,202 + 5,031 = 77,233 tm Kontrol: a.
Terhadap Guling (Over Turning)
= , =3,536 ≥1,5 = , 71
b.
Terhadap Geser (Sliding)
., =4,471 ≥1,2 = . = ,, f c.
= koefisien geser (diambil f= 0,7)
Terhadap Daya Dukung Tanah (Over Stressing) Resultante beban vertikal bekerja sejarak a dari titik O
273,12677,233 = 2,505 = ΣΣ = Σ 78,187 Resultante beban vertikal bekerja sejarak e dari pusat berat bendung
= = 2,505 = 0,995 < →0,995< 0,995 < 1,167 Tegangan tanah dikontrol per 1 m panjang bendung:
6 .0,995) = 20,691 ⁄ < 20 ⁄ → = 78,187 (1 + 7 .1 7 6 .0,995) = 1,648 ⁄ >0→ = 78,187 (1 7 .1 7 Tabel 3.12 Akumulasi Kombinasi Gaya-Gaya Yang Bekerja Pada Tubuh Bendung Tegangan Tanah
SF No.
1
2
3
Kombinasi Gaya – Gaya pada Tubuh Bendung Tanpa Gempa a. Air Normal + Gaya Angkat b. Air Banjir + Gaya Angkat Dengan Gempa Horizontal a. Air Normal + Gaya Angkat b. Air Normal c. Air Banjir + Gaya Angkat d. Air Banjir Dengan Gempa Vertikal a. Air Normal + Gaya Angkat b. Air Normal c. Air Banjir + Gaya Angkat d. Air Banjir
Tanpa Gempa
Dengan Gempa
Guling ≥1,50
Geser ≥1,20
Max < 20 t/m2
Min >0
Max < 26 t/m2
Min >0
2,579 2,017
3,594 2,536
12,151 16,071
4,130 0,673
-
-
2,050 3,381 1,688 2,752
2,190 3,231 1,761 2,699
-
-
15,489 18,485 19,408 20,233
0,792 1,846 -2,665 1,090
2,408 5,534 1,847 3,536
3,818 6,302 2,690 4,471
-
-
14,184 15,606 19,678
3,113 5,742 -1,918 20,691
1,648
72