APLICACIONES
Aplicando la ley circuital de Ampère obtenemos NI 5 Hnúcleolnúcleo 1 Hglg 5 136 At 1 280.19 At 400 At 5 416.19 At (pero dentro de 65% y, por consiguiente, aceptable) Entonces, la solución es,
£ > 1.057 3 10 23 Wb
7.13 APLICACIONES
Cono flexible
Altavoces y micrófonos
Electroimán
Los efectos electromagnéticos son la fuerza que produce movimiento en el diseño de altavoces como el que se muestra en la figura 7.25. La forma de la onda pulsante de la corriente de entrada está determinada por el sonido que va a ser reproducido por el altavoz a un alto nivel de audio. Conforme la corriente alcanza las crestas y regresa a los valles del patrón de sonido, la fuerza del electroimán varía exactamente en el mismo modo. Esto hace vibrar el cono del altavoz a una frecuencia directamente proporcional a la entrada pulsante. Cuanto más alto es el tono del patrón de sonido, más alta es la frecuencia oscilatoria entre las crestas y valles y más alta es la frecuencia de vibración del cono. En la figura 7.26 aparece un segundo diseño que se utiliza con más frecuencia en sistemas de altavoz más costosos . En este caso, el imán permanente está fijo, y la entrada se aplica a un núcleo móvil dentro del imán, como se muestra en la figura. Las altas corrientes de entrada producen un fuerte patrón de flujo en la bobina de voz, que la jala hacia el patrón de flujo del imán permanente. Tal como ocurrió en el altavoz de la figura 7.25, el núcleo vibra a una velocidad determinada por la entrada y genera un sonido audible.
i
i
Sonido
i Muestra magnética (libre para moverse)
FIG. 7.25 Altavoz.
Material ferromagnético magnetizado
Terminal Imán Entrehierro magnético i
i
Cono
Bobina de voz Imán
(a)
(b)
(c)
FIG. 7.26 Altavoz de alta fidelidad coaxial: (a) construcción; (b) operación básica; (c) sección transversal de una unidad real. (Cortesía de Electro-Voice, Inc).
Los micrófonos también emplean efectos electromagnéticos. El sonido entrante hace que el núcleo y la bobina unidos a él se muevan dentro del campo magnético del imán permanente. De acuerdo con la ley de Faraday
319
320
CIRCUITOS MAGNÉTICOS
(e 5 N dfydt), se induce un voltaje a través de la bobina móvil proporcional a la velocidad a la cual se mueve a través del campo magnético. Entonces, el patrón del voltaje inducido resultante puede amplificarse y reproducirse a un nivel de audio mucho más alto por medio de altavoces, como se describió antes. Los micrófonos de este tipo son los que se utilizan con más frecuencia aunque hay disponibles otros tipos que utilizan efectos capacitivos, de carbón granular y piezoeléctricos*. Este diseño particular se conoce comercialmente como micrófono dinámico.
B
I (flujo convencional)
+
VH
Sensor de efecto Hall – (a)
+
Campo magnético hacia dentro de la página I e–
++++++++++++++++ e–
e–
e–
I VH
–––––––––––––––– – (b)
FIG. 7.27 Sensor de efecto Hall: (a) orientación de los parámetros de control; (b) efecto en el flujo de electrones.
El sensor de efecto Hall es un dispositivo semiconductor que genera un voltaje de salida cuando se expone a un campo magnético. La construcción básica consiste en una pastilla de material semiconductor a través del cual se hace pasar una corriente, como se muestra en la figura 7.27(a). Si se aplica un campo magnético, como se muestra en la figura, perpendicular a la dirección de la corriente, se genera un voltaje VH entre las dos terminales, como se indica en la figura 7.27(a). La diferencia de temperatura se debe a la separación de la carga establecida por la fuerza de Lorentz, estudiada por primera vez por el profesor Hendrick Lorentz a finales del siglo XIX. Descubrió que los electrones en un campo magnético se someten a una fuerza proporcional a la velocidad a la que se desplazan a través del campo y a la fuerza del campo magnético. La dirección de la fuerza se determina con la regla de la mano izquierda. Simplemente coloque el dedo índice de su mano izquierda en la dirección del campo magnético, con el segundo dedo perpendicular al dedo índice en la dirección de la corriente convencional a través del material semiconductor, como se muestra en la figura 7.27(b). Si se coloca perpendicular al dedo índice, el pulgar indicará la dirección de la fuerza ejercida en los electrones. En la figura 7.27(b), la fuerza hace que los electrones se acumulen en la región inferior del semiconductor (conectada a la terminal negativa del voltaje VH) y deja una carga positiva neta en la parte superior del material (conectada a la terminal positiva de VH). Cuanto más fuerte es la corriente o la fuerza del campo magnético, más grande es el voltaje inducido VH. Por consiguiente, el sensor de efecto Hall puede revelar la fuerza de un campo magnético o el nivel de la corriente que pasa a través del dispositivo si el factor determinante se mantiene fijo. De modo que aparecen dos aplicaciones del sensor: para medir la fuerza de un campo magnético cerca de un sensor (con una corriente fija aplicada), y para medir el nivel de la corriente a través de un sensor (conociendo la fuerza del campo magnético que enlaza al sensor). El gaussmetro de la figura 6.14 utiliza un efecto sensor Hall. A través de la parte interna del sensor se hace pasar una corriente fija con el voltaje VH que indica la fuerza relativa del campo. Mediante amplificación, calibración y una escala apropiada, el medidor puede mostrar la fuerza relativa en gauss. El sensor de efecto Hall tiene una amplia gama de aplicaciones bastante interesantes e innovadoras. La aplicación más común es como disparador de un sistema de alarma en grandes tiendas departamentales, donde con frecuencia el hurto es un problema difícil. Una tira magnética pegada en una mercancía activa una alarma cuando un cliente pasa a través de las puertas de salida sin haber pagado el producto. El sensor, la corriente de control y el sistema de monitoreo están alojados en la valla de salida y reaccionan ante
*La piezoelectricidad es la generación de un pequeño voltaje al ejercerse una presión externa a través de ciertos cristales.
APLICACIONES
VH
+
321
– I
I
I (procedente de la batería) I
Sensor de efecto Hall Imán permanente
+ VH Sensor de efecto Hall
– B
N S
Tiempo para una revolución
Movimiento
Rayo de la rueda
(a)
(b)
FIG. 7.28 Obtención de la velocidad de una bicicleta con un sensor de efecto Hall: (a) montaje de los componentes; (b) respuesta de efecto Hall.
la presencia del campo magnético cuando el producto sale de la tienda. Cuando se paga el producto, el cajero quita la tira o la desmagnetiza aplicando una fuerza magnetizante que reduce casi a cero el magnetismo residual en la tira. El sensor de efecto Hall también se utiliza para indicar la velocidad de una bicicleta en una pantalla digital convenientemente montada en el manubrio. Como se muestra en la figura 7.28(a), el sensor se coloca en la tijera de la bicicleta, y un pequeño imán permanente se coloca en un rayo de la rueda delantera. El imán debe colocarse con cuidado para asegurarse de que pase sobre la región apropiada del sensor. Cuando el imán pasa sobre el sensor, se produce el patrón de flujo que aparece en la figura 7.28(b), y el sensor desarrolla un voltaje con un pico pronunciado. En una bicicleta con ruedas de 26 pulgadas de diámetro, la circunferencia será aproximadamente de 82 pulg. A lo largo de una milla, el número de rotaciones es
5280 pies a
12 pulg. 1 rotación ba b > 773 rotaciones 1 pie 82 pulg.
Si la bicicleta se está desplazando a 20 mph, ocurre un pulso de salida a razón de 4.29 por segundo. Es interesante observar que a una velocidad de 20 mph, la rueda está girando a más de 4 revoluciones por segundo, y el número total de rotaciones a lo largo de 20 millas es de 15,460.
Interruptor de lengüetas magnético Uno de los interruptores más frecuentemente empleados en sistemas de alarma es el interruptor de lengüetas magnético que se muestra en la figura 7.29. En la figura se muestran dos componentes del interruptor de lengüetas, un imán permanente incrustado en una unidad que está conectada al elemento móvil (puerta, ventana, etcétera) y un interruptor de lengüeta en la otra unidad que está conectada al circuito de control eléctrico. El interruptor de lengüetas se compone de dos lengüetas de aleación de hierro (ferromagnético) en una cápsula herméticamente sellada. Los extremos en voladizo de las dos lengüetas no se tocan pero están muy cerca una de la otra. Si no hay un campo mag-
Imán permanente incrustado Caja de plástico
Lengüetas N
S
Cápsula sellada
FIG. 7.29 Interruptor de lengüetas magnético.
322
CIRCUITOS MAGNÉTICOS
Imán permanente Interruptor de lengüetas Control
FIG. 7.30 Utilización de un interruptor de lengüetas magnético para monitorear el estado de una ventana.
nético, las lengüetas permanecen separadas. Sin embargo, si se introduce un campo magnético, las lengüetas se atraen entre sí porque las líneas de flujo buscan la trayectoria de reluctancia mínima y, si es posible, hacen lo que sea necesario para establecer la trayectoria de resistencia mínima. Es lo mismo que colocar una barra ferromagnética cerca de los extremos de un imán en forma de U. La barra es atraída hacia los polos del imán, y se establece una trayectoria de flujo magnético sin entrehierros y con reluctancia mínima. En el estado de circuito abierto, la resistencia entre las lengüetas es de más de 100 V, en tanto que el estado activo se reduce a menos de 1 V. En la figura 7.30 se colocó un interruptor de lengüetas en el marco fijo de una ventana y un imán en la unidad móvil de la misma. Cuando la ventana está cerrada como se muestra en la figura 7.30, el imán y el interruptor de lengüeta se acercan lo suficiente para que las lengüetas se pongan en contacto, y se establece una corriente a través del interruptor en dirección al panel de control. En el estado armado, el sistema de alarma acepta el flujo de corriente resultante como una respuesta normal segura. Si se abre la ventana, el imán se retira del interruptor de lengüetas y el interruptor se abre. La corriente que pasa a través del interruptor se interrumpe, y la alarma reacciona apropiadamente. Una de las ventajas obvias del interruptor de lengüetas magnético es que la operación correcta de cualquier interruptor puede verificarse con un elemento magnético portátil. Simplemente acerque el imán al interruptor y observe la respuesta de salida, sin tener que abrir y cerrar continuamente ventanas y puertas. Además, el interruptor de lengüetas está sellado herméticamente para que la oxidación y los objetos extraños no puedan dañarlo, de modo que el resultado es una unidad que puede durar de manera indefinida. Los interruptores de lengüetas magnéticos también están disponibles en otras formas y tamaños, lo que permite ocultarlos. Existen algunos de una variedad circular que pueden colocarse en el borde o en el quicio de una puerta, y el resultado son sólo dos pequeños discos visibles cuando la puerta se abre.
Formación de imágenes por resonancia magnética
FIG. 7.31 Equipo de formación de imágenes por resonancia magnética. (Cortesía de Siemens Medical Systems, Inc.).
La formación de imágenes por resonancia magnética (MRI, por sus siglas en inglés) proporciona imágenes de sección transversal de calidad del cuerpo para diagnóstico y tratamiento médicos. La MRI no expone al paciente a rayos X potencialmente peligrosos o a materiales de contraste inyectado como los que se utilizan para obtener exámenes de tomografía axial computarizada (CAT, por sus siglas en inglés). Los tres componentes más importantes de un sistema MRI son un imán fuerte, una mesa para transportar el paciente hacia el interior de una cavidad circular en el imán, y un centro de control, como se muestra en la figura 7.31. La imagen se obtiene introduciendo al paciente en el tubo hasta un profundidad precisa dependiendo de la sección transversal que se requiere obtener, y aplicando un fuerte campo magnético que hace que los núcleos de ciertos átomos en el cuerpo se alineen. Entonces se aplican al paciente ondas de radio de diferentes frecuencias en la región de interés, y si la frecuencia de la onda concuerda con la frecuencia natural del átomo, los núcleos entran en un estado de resonancia y absorben la energía emitida por la señal aplicada. Cuando la señal se retira, los núcleos liberan la energía adquirida en forma de señales débiles pero detectables. La fuerza y duración de la emisión de energía varía de un tejido del cuerpo a otro. Posteriormente, las señales débiles se amplifican, digitalizan y transforman para crear una imagen como la de la figura 7.32. Para algunos pacientes, la sensación claustrofóbica que experimentan mientras se encuentran dentro del tubo circular es difícil de so-
PROBLEMAS
323
FIG. 7.32 Imagen obtenida por resonancia magnética.
FIG. 7.33 Equipo de formación de imágenes por resonancia magnética (variedad abierta).
(Cortesía de Siemens Medical Systems, Inc.).
(Cortesía de Siemens Medical Systems, Inc.).
portar. Se ha desarrollado una unidad más abierta, como se muestra en la figura 7.33, que ha eliminado la mayor parte de la incomodidad. Los pacientes que tienen implantes metálicos o que utilizan marcapasos, o los que han trabajado en ambientes industriales donde pueden haberse alojado partículas ferromagnéticas diminutas en áreas abiertas sensibles como los ojos, la nariz, etcétera, es posible que tengan que utilizar un sistema CAT porque no emplea efectos magnéticos. El médico a cargo está bien capacitado en todas las áreas pertinentes y eliminará cualesquier temores infundados o sugerirá métodos alternativos.
PROBLEMAS SECCIÓN 7.2
Campo magnético
1. Tomando datos del Apéndice E, llene los espacios en blanco en la tabla siguiente. Indique las unidades para cada cantidad.
≥ SI CGS Inglés
5 3 1024 Wb
____________ ____________
B 8 3 1024 T
____________ ____________
2. Repita el problema 1 con la tabla siguiente si el área es de 2 pulg2:
SI CGS Inglés
3. Para el electroimán de la figura 7.34: a. Determine la densidad de flujo en el núcleo. b. Trace las líneas de flujo magnético e indique su dirección. c. Indique los polos norte y sur del imán.
≥
B
____________ 60,000 maxwells ____________
____________
____________ ____________
A = 0.01 m2 Φ = 4 3 10–4 Wb I
N vueltas
I
FIG. 7.34 Problema 3.
SECCIÓN 7.3 Reluctancia 4. ¿Cuál sección de la figura 7.35: (a), (b) o (c), tiene la reluctancia máxima ante el establecimiento de líneas de flujo a través de su dimensión más larga?