Pembuktian Dalil Apollonius pada Ellips dan Hiperbola
Oleh leh :
Fitri Handayani NIM. 07 05045 136
FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MULAWARMAN 2010
HALAMAN JUDUL DAN PENGESAHAN
Judul Judul
: Pembuktian Pembuktian Dalil Apollonius Apollonius pada Ellips dan Hiperbola
Nama
: Fitri Handayani
Nim
: 070504536
Diajukan pada mata kuliah
: Seminar PendidikanMatematika
Pembim Pembimbin bing gI
Dra. Suriaty, M.Pd
Pembim Pembimbin bing g II
Drs. H. Zainuddin Untu, M.Pd
199203 1 041 NIP. 19571213 198601 198601 2 001 NIP.19651231 199203
i
Pembim Pembimbin bing g III
Safrudiannur, S.Pd, M.Pd NIP.
KATA PENGANTAR
Segala puji hanya milik Allah SWT, karena berkat rahmat dan hidayah Nya makalah ini dapat disusun. Shalawat dan salam semoga selalu tercurah kepada suri teladan, Rasulullah SAW. Makalah ini disusun untuk memenuhi tugas mata kuliah Seminar Pendidikan Matematika dengan judul “Pembuktian Dalil Apollonius pada Ellips dan Hiperbola”. Tak lupa penulis mengucapkan terima kasih kepada Bapak Drs. Zainuddin Untu, M.Pd dan Bapak Safrudiannur, M. Pd serta Ibu Dra. Suriaty, M.Pd selaku dosen mata kuliah Seminar Pendidikan Matematika yang telah memberikan bimbingan
dan
arahan
selama
penyusunan
makalah
ini.
Penulis
juga
mengucapkan terima kasih kepada keluarga dan teman-teman yang memberikan semangat dan bantuan kepada penulis. Penulis menyadari, bahwa makalah ini masih terdapat banyak kekurangan, karena keterbatasan kemampuan penulis dalam penyusunannya. Oleh karena itu kritik dan saran sebagai perbaikan sangat penulis harapkan.
Samarinda, 26 Desember 2010
Penulis
ii
DAFTAR ISI
HALAMAN JUDUL DAN PENGESAHAN
...................................................i
KATA PENGANTAR ...................................................................................... ii DAFTAR ISI ....................................................................................................iii BAB I. PENDAHULUAN
..................................................................................1
A. Latar Belakang .................................................................................. 1 B. Rumusan Masalah.............................................................................. 2 C. Batasan Masalah ................................................................................ 2 D. Tujuan Penulisan ............................................................................... 2 E. Manfaat Penulisan.............................................................................. 3 BAB II. PEMBAHASAN ....................................................................................4
A. Ellips ................................................................................................. 4 B. Pembuktian Dalil Apollonius I pada Ellips.........................................8 C. Pembuktian Dalil Apollonius II pada Ellips .......................................6 D. Hiperbola...........................................................................................10 E. Pembuktian Dalil Apollonius I pada Hiperbola ..................................12 F. Pembuktian Dalil Apollonius II pada Hiperbola .................................16 BAB III. PENUTUP .............................................................................................22
A. Kesimpulan .......................................................................................22 B. Saran ................................................................................................. 22 DAFTAR PUSTAKA .......................................................................................23
iii
BAB I PENDAHULUAN A. Latar Belakang
Matematika memiliki struktur dan keterkaitan yang kuat dan jelas antar konsepnya. Sehingga untuk mencapai konsep yang lebih tinggi, harus diketahui dulu konsep-konsep dasar yang menjadi pondasinya. Begitu pula dengan irisan kerucut. Untuk memahami lebih dalam tentang irisan kerucut, harus dipahami terlebih dahulu konsep tentang kerucut, bangun ruang, bangun datar, dan konsep-konsep dasar lain yang mendukung. Apollonius adalah salah satu matematikawan yang memperkenalkan irisan kerucut lewat karya-karyanya yang berdampak besar bagi perkembangan matematika. Buku karyanya yang terkenal, Conics (kerucut), mengenalkan istilah-istilah yang sekarang populer seperti: parabola, elips dan hiperbola. Disebut dengan kerucut karena irisan dari sebuah kerucut akan menghasilkan tiga bentuk yang sudah disebut di atas. Dalam pembahasannya tentang irisan kerucut, Apollonius menemukan sebuah dalil pada ellips dan hiperbola yang kemudian diberi nama Dalil Apollonius. Pada ellips, Dalil Apollonius I berbunyi, ”Jumlah kuadrat garis tengah sekawan sama dengan jumlah kuadrat sumbu-sumbunya” dan Dalil Apollonius II, “Luas jajargenjang yang mengelilingi elips pada garis-garis tengah sekawan sama dengan luas persegi panjang pada sumbu-sumbu ellips”. Pada hiperbola, Dalil Apollonius I berbunyi, “Selisih kuadrat garis tengah sekawan sama dengan selisih kuadrat sumbu-sumbunya.” dan Dalil
2
Apollonius II, “Luas jajargenjang yang mengelilingi hiperbola pada garis-garis tengah sekawan sama dengan luas persegi panjang pada sumbu-sumbu hiperbola”. Dalil-dalil ini tentu akan semakin jelas apabila diketahui alur penemuannya, yang pada akhirnya akan terlihat dengan jelas pula keterkaitan antar konsepnya. Untuk itu perlu dilakukan pembuktian pada dalil tersebut. Berdasarkan pemaparan di atas, penulis ingin membahas pembuktian Dalil Apollonius pada ellips dan hiperbola.
B. Rumusan Masalah
Dari latar belakang dan batasan masalah di atas penulis merumuskan masalah yaitu bagaimana pembuktian Dalil Apollonius I dan II pada ell ips dan hiperbola?
C. Batasan Masalah
Berdasarkan latar belakang yang telah dikemukakan di atas, maka dalam makalah ini penulis membatasi masalah pada pembuktian Dalil Apollonius I dan II pada ellips dan hiperbola.
D. Tujuan Penulisan
Tujuan yang diharapkan dari penulisan ini adalah untuk membuktikan Dalil Apollonius pada ellips dan hiperbola yaitu, pada ellips Dalil Apollonius I berbunyi, ”Jumlah kuadrat garis tengah sekawan sama dengan jumlah kuadrat sumbu-sumbunya” dan Dalil Apollonius II, “Luas jajargenjang yang
3
mengelilingi elips pada garis-garis tengah sekawan sama dengan luas persegi panjang pada sumbu-sumbu ellips”. Pada hiperbola, Dalil Apollonius I berbunyi, “Selisih kuadrat garis tengah sekawan sama dengan selisih kuadrat sumbu-sumbunya.” dan Dalil Apollonius II, “Luas jajargenjang yang mengelilingi hiperbola pada garis-garis tengah sekawan sama dengan luas persegi panjang pada sumbu-sumbu hiperbola”.
E. Manfaat Penulisan
Manfaat yang dapat diambil dari hasil penulisan ini adalah dapat membantu siswa, guru, dan semua pihak yang berminat pada matematika dalam memahami Dalil Apollonius pada ellips dan hiperbola, serta dapat menambah pengetahuan kita tentang materi ellips dan hiperbola khususnya pada mata kuliah Geometri Analit Bidang dan Ruang.
4
BAB II PEMBAHASAN
A. Ellips
Ellips adalah tempat kedudukan atau himpunan titik-titik pada bidang datar yang jaraknya terhadap dua titik adalah tetap (konstan) dan merupakan bilangan tertentu, kedua titik tetap itu disebut focus. Dari definisi tersebut, diperoleh persamaan ellips dengan pusat O(0,0) adalah
ellips dengan pusat P ( , ) , persamaannya adalah
x 2 a2
( x ) 2 a2
y 2 b2
1 . Untuk
( y ) 2 b2
1.
Suatu garis lurus dapat memotong ellips, menyinggung, atau tidak memotong dan menyinggung ellips. Dalam hal yang terakhir, garis dan ellips tidak mempunyai titik persekutuan. Misalkan persamaan garis yang gradiennya m adalah y m x n dan
persamaan ellips atau
disebut
x 2 a2
y 2 b2
garis
1 , maka untuk garis yang menyinggung ellips singgung
ellips,
persamaannya
adalah
y mx b 2 a 2 m 2 . persamaan ini untuk ellips dengan pusat O(0,0). Tampak bahwa ada dua garis singgung yang gradiennya m. Sedangkan untuk ellips yang berpusat di P ( , )
dengan gradien m, persamaan garis
singgungnya adalah ( y ) m( x ) b 2 a 2 m 2 .
5
Persamaan garis singgung ellips juga dapat diperoleh dengan menggunakan titik singgung yang diketahui. Misal titik singgungnya adalah T
( x1 , y1 ) . Persamaan garis yang menyinggung ellips
x1 x a2
y1 y b2
1 , sedangkan garis singgung ellips
persamaannya adalah
( x1 )( x ) a2
Garis-garis tengah y = mx dan y
sekawan, sedangkan
Berarti m1 m2
b2 a2
m1= m dan m2 =
b2 a 2m
b2 a2m
a2
( x ) 2
( y1 )( y ) b2
x 2
a2
y 2 b2
1 adalah
( y ) 2
b2
1,
1.
x disebut garis-garis tengah
disebut arah-arah sekawan.
< 0 sehingga m1 dan m2 berlawanan tanda. Jadi, garis-
garis tengah sekawan ellips dipisahkan oleh sumbu-sumbu koordinat.
6
B. Pembuktian Dalil Apollonius I pada Ellips
y A P(x1,y1)
R(x2,y2) b1
a1 a
O
B
D x
b
S
Q C
“Jumlah kuadrat garis tengah sekawan sama dengan jumlah kuadrat sumbusumbunya”
Persamaan Ellips
Misal P ( x1 ,
y1 )
x 2 a
2
dan
y 2 b
2
1
Q( x1 , y1 )
adalah titik ujung garis tengah sekawan.
Garis singgung di P memiliki persamaan
Gradiennya
m1
Gradien PQ adalah
b 2 x1 a 2 y1
m2
y1 x1
x1 x a2
y1 y b2
1
7
Apabila kedua gradien dikalikan, m1 m2
b 2 x1 y1
m1 m2
maka hasilnya adalah
a 2 y 1 x1
b2 a2
Hal ini menujukkan bahwa garis singgung di P sejajar dengan garis tengah yang sekawan dengan P Q . Jadi garis singgung di P sejajar dengan garis tengah sekawan PQ
Jika RS garis tengah sekawan PQ maka persamaannya Koordinat R dan
2 2 x 2 x1 b 1 1. 2 2 a 2 a y1
Karena
x1 b a y1 a b . Jadi 2
2
2
2
sehingga y 2
b a
2
x 2 a2
y
b
2
b1 2
2
a2 b
2
y1 2 2
b
2
0.
P( x1 ,y1)
a 2b 2 a 2 y1
2
b2 a2
x1
2
2
x 2
a 2 y1
terletak
1 atau
x1 .
OP a1 , OR b1 , maka
a1 x1 y1
y1 y
x bx sehingga 2 21 1 atau a a y1
x1bx
b b a a Jadi, R y1 , x1 dan S y1 , x1 a a b b Jika
a
2
S sebagai koordinat-koordinat titik potong RS dengan ellips.
Dari persamaan garis RS diperoleh
2
x1 x
x 2 1
pada
b2 a 2 y1
2
ellips
maka
1 atau x2
a b
y1 ,
8
a1 b1 2
2
a 2 b2 a
2
x1 2
a2 b2 b
2
y12
x12 y12 , karena 2 2 1 b a
x12 y12 a b (a b ) 2 2 b a 2 1
2 1
2
2
a12 b12 a 2 b 2
4a12 4b12 4a 2 4b 2 Jadi terbukti Dalil Apollonius I, bahwa “Jumlah kuadrat garis tengah sekawan sama dengan jumlah kuadrat sumbu-sumbunya”
C. Pembuktian Dalil Apollonius II pada Ellips
A Px
Rx
b
a
O
B
D
b
a
x S
Q C
“Luas jajargenjang yang mengelilingi elips pada garis-garis tengah sekawan sama dengan luas persegi panjang pada sumbu-sumbu ellips”
9
y 2
sin
b1
cos
sin
x2 b1
y1
cos
a1 x1 a1
, sehingga
sin sin( )
sin sin cos cos sin
sin sin
y2 x1
b1 a1
x2 y1
b1 a1
x1 y2 x2 y1 a1b1
Luas jajargenjang OPAR =
Karena x 2 a
2
P( x1, y1)
a 2b 2 2
a y1
2
a1b1 sin a1b1
=
x1 y2 x2 y1
terletak
1 atau
x 2 1
x1 y 2 x2 y1
=
pada b2 2
a y1
2
a1b1
ellips
maka
1 atau x 2
a b
x1 b 2 a 2 y1 a 2 b 2 . 2
2
y1 , sehingga y 2
b a
x1 .
Jadi
10
=
x1 y2 x2 y1
b a x1 y1 y1 a b
= x1
=
b a
x12
a b
y12
=
x12 y12 ab 2 2 b a
=
ab
x12 y12 , karena 2 2 1 b a
Luas jajargenjang ABCD = 4 ab = 4ab Luas persegi panjang = panjang x lebar Luas persegi panjang =
2a 2b 4ab
Jadi terbukti Dalil Apollonius II, bahwa “Luas jajargenjang yang mengelilingi ellips pada garis-garis tengah sekawan sama dengan luas persegi panjang pada sumbu-sumbu ellips”
D. Hiperbola
Hiperbola adalah himpunan titik-titik yang selisih jaraknya terhadap dua titik tertentu tetap besarnya atau hiperbola adalah tempat kedudukan yang perbandingan jaraknya terhadap suatu titik dan suatu garis tertentu tetap besarnya dan perbandingan ini lebih besar dari 1. Titik itu disebut titik api dan garis tertentu disebut garis arah ( direktris). Dari definisi tersebut, diperoleh
11
x 2
persamaan hiperbola dengan pusat O(0,0) adalah hiperbola ( x ) 2
dengan
a2
( y ) 2
b2
pusat
P ( , ) ,
a2
y 2 b2
1 . Untuk
persamaannya
adalah
1.
Garis yang menyinggung hiperbola atau disebut garis singgung hiperbola, persamaannya adalah y mx b 2 a 2 m 2 , persamaan ini untuk hiperbola dengan pusat O(0,0). Sedangkan untuk hiperbola dengan pusat P ( , ) ,
persamaan
garis
singgungnya
adalah
( y ) m( x ) b 2 a 2 m 2 . Persamaan garis singgung hiperbola juga dapat diperoleh dengan menggunakan titik singgung yang diketahui. Misal titik singgungnya adalah T
( x1 , y1 ) . Persamaan garis yang menyinggung hiperbola x1 x a2
y1 y b2
1 , sedangkan garis singgung hiperbola
persamaannya adalah
( x1 )( x ) a2
Garis-garis tengah y = mx dan y
sekawan, sedangkan
Berarti m1 m2
b2 a2
m1= m dan m2 =
b2 a 2m
b2 a 2m
a2
( x ) 2
( y1 )( y ) b2
x 2
a2
y 2 b2
1 adalah
( y ) 2
b2
1 ,
1.
x disebut garis-garis tengah
disebut arah-arah sekawan.
> 0 sehingga m1 dan m2 mempunyai tanda yang sama.
12
E. Pembuktian Dalil Apollonius I pada Hiperbola
y
F
R (x2,y2)
A
D
G b
b1
O
P (x1,y1)
a1 a
Q
x
E B
C
S
D
“Selisih kuadrat garis tengah sekawan sama dengan selisih kuadrat sumbusumbunya”
Persamaan hiperbol yang melalui P adalah
Misal P ( x1 ,
y1 )
dan
Q( x1 , y1 )
Gradiennya
m1
a 2 y1
Gradien PQ adalah
m2
y1 x1
a
2
y 2 b
2
1
adalah titik ujung garis tengah sekawan
Garis singgung di P memiliki persamaan
b 2 x1
x 2
x1 x a2
y1 y b2
1
13
Apabila kedua gradient dikalikan, hasilnya
m1 m2
b2 a2
Jadi garis singgung di P sejajar dengan garis tengah sekawan PQ
Jika RS garis tengah sekawan PQ maka persamaannya
x1 x a
2
b
x 2 a2
x 2 2
a 4 y12 y 2 2
4
2
a b x1
y 2 b2
1
y 2
b
2
y 2 b
2
1 1
a 2 y12 1 y 4 2 2 1 b x1 b 2
a 2 y12 b 2 x12 1 y 4 2 b x 1 2
0
S sebagai koordinat-koordinat titik potong RS dengan
Untuk mencari koordinat R dan
b2
...(i)
Koordinat R dan
a
y1 y
2
b 2 x1
hiperbola
a2
y1 y
a 2 y1 y
x
x1 x
…(ii)
S , substitusikan (i) dan (ii)
14
1
b 4 x12
2 2 a b y 2 2 2 2 a y1 b x1 1 2 2 ab 2
y
b 2 x12 / a 2
2
(a 2 y12 b 2 x12 ) 1
a 2b 2
b 2 x12 / a 2 y 2 y1 x12 2
b2
a2
b 2 x12 / a 2 y 2 y1 x12 2
b2
y 2
y
b 2 x12 a2
bx1 a
y 2
bx1 a
Substitusikan y
x
a2
a 2 y1 y b 2 x1
x
a 2 y1bx1
x
ay1
b 2 x1a
b
bx1 a
ke persamaan (i) akan diperoleh
15
x2
ay1 b
a b R y1 , x1 b a Jika
b a S y1 , x1 a b
OP a1 , OR b1 , maka
a1 x1 y1 2
b1 2
dan
2
a2 b
2
y1
a1 b1 2
2
2
2
b2 a
2
a2 b2 a
2
x1
2
x1 2
a 2 b2 b
2
y12
x12 y12 a1 b1 ( a b ) 2 2 b a 2
2
2
2
, karena
x12 y12 2 2 1 a b
a12 b12 a 2 b 2
4a12 4b12 4a 2 4b 2 Jadi terbukti Dalil Apollonius I , bahwa “Selisih kuadrat garis tengah sekawan sama dengan selisih kuadrat sumbu-sumbunya”.
16
F. Pembuktian Dalil Apollonius II pada Hiperbola y
F
R (x2,y2)
A
D
G
b O
b1
P (x1,y1)
a1 a
Q
x
E B D
S
C
“Luas jajargenjang pada garis-garis tengah sekawan sama dengan luas persegi panjang pada sumbu-sumbu hiperbola”
sin
y 2
cos
x2
sin
b1
b1
y1
cos
a1 x1 a1
, sehingga sin sin( )
sin sin cos cos sin
17
sin sin
y2 x1
b1 a1
x2 y1
b1 a1
x1 y2 x2 y1 a1b1
Luas jajargenjang OPFR =
a1b1 sin x1 y 2 x2 y1
=
a1b1
=
x1 y2 x2 y1
a1b1
Karena P( x1 ,y1) terletak pada hiperbola maka x1 b 2 a 2 y1 a 2 b 2 . Jadi 2
x 2 a
2
a 2b 2 a 2 y1
2
1 atau
x 2 1
b2 a 2 y1
=
=
2
1 atau x 2
b
y1 , sehingga y 2
b a
x1
b a x1 x1 y1 y1 a b b a
x12
a b
y12
=
x12 y12 ab 2 2 b a
=
ab
Luas jajargenjang DEFG =
a
2
x12 y12 , karena 2 2 1 b a
4 ab
Luas persegi panjang ABCD = pajang x lebar Luas persegi panjang ABCD =
2 a 2b 4 ab
Jadi terbukti Dalil Apollonius II , bahwa “Luas jajargenjang pada garis-garis tengah sekawan sama dengan luas persegi panjang pada sumbu-sumbu hiperbola”.
18
Contoh Soal:
x 2 y 2 1 1. Tentukan persamaan garis singgung pada ellips 20 5 yang tegak lurus garis 2x – 2y + 13 = 0 Penyelesaian:
Koefisien arah garis 2x – 2y + 13 = 0 adalah m1 = 1 Andaikan persamaan garis singgungnya mempunyai arah persamaan m, maka berlakulah
m.(m1)
=
-1.
Jadi,
persamaan
garis
singgungnya
y mx b 2 a 2 m 2
y x 20 ( 1) 2 5 y x 5 Jadi, persamaan garis singgung pertama y = -x + 5 dan garis singgung kedua adalah y = -x – 5
x 2 y 2 2. Tentukan persamaan garis singgung pada ellips 30 24 1 yang mempunyai absis 5. Penyelesaian:
Titik yang mempunyai absis 5 pada ellips ordinatnya dapat dicari dengan cara mensubtitusikan absisnya ke persamaan ellips.
19
x 2 y 2 1 30 24 Untuk x = 5, maka
x 2 y 2 1 30 24 5 2 y 2 1 30 24 25 y 2 1 30 24 5 y 2 1 6 24 20 y 2 24 24 24 24
24 20 24 24 24
y 2
y2
24
y2
4 24
24
1 6
6 y 2 24 y2
24 6
y2 4 y 4
20
y 2
Titik singgungnya (5,2) dan (5,-2). Rumus persamaan garis singgung
x1 x
5 x
x
2 x
a2
30
6
y1 y
b2
2y
1
24
y
12
12
y
12
12
2x + y
1
12 12
= 12 atau 2x + y – 12 = 0
Garis singgung yang kedua melalui (5, -2) adalah
5 x
5 x
x
2 x
30
30
6
x
2 x
6
12
2x - y
12
2y
24
2y 24 y
12
1
12
y 12 y
12
1
y 12
12 12
12
12 12
= 12 atau 2x - y – 12 = 0
Jadi, persamaan garis singgung pada ellips adalah 2x + y – 12 = 0 dan
21
2x - y – 12 = 0
x 2 y 2 1 20 5 3. Tentukan persamaan garis singgung pada ellips yang melalui titik A(2, -1). Penyelesaian:
Perlu diselidiki letak A(2, -1) terhadap ellips. Ternyata titik A terletak di luar ellips. Misal titik S(x0, y0) adalah titik singgungnya, maka persamaan garis singgung di S adalah x 0 x
4
y 0 y 1
1
atau x0x + 4y0y = 4. titik A pada garis singgung, maka 2x0 + 4y0 = 4 atau x0 = 2y0 + 2 ………(i) Titik S terletak pada ellips, jadi berlaku
x0
2
4
y0 1
2
1
atau x02 + 4y02 = 4
………(ii)
dari (i) dan (ii) diperoleh 2
2
(2y0 + 2) + 4y0 = 4 2
2
4y0 + 8y0 + 4 + 4y0 = 4 2
y0 + y0 = 0. Jadi, persamaan garis singgung pada ellips adalah y 01 = -1 dan y02 = 0
22
BAB III PENUTUP
A. Kesimpulan
Dari pembahasan dapat disimpulkan bahwa: 1. Dalil Apollonius I pada ellips yang berbunyi, “Jumlah kuadrat garis tengah sekawan sama dengan jumlah kuadrat sumbu-sumbunya” dan Dalil Apollonius I pada hiperbola yang berbunyi, “Selisih kuadrat garis tengah sekawan sama dengan selisih kuadrat sumbu-sumbunya”, dibuktikan dengan memanfaatkan konsep garis singgung, garis tengah sekawan, Teorema Pythagoras, dan operasi aljabar. 2. Dalil Apollonius II pada ellips yang berbunyi, “Luas jajargenjang yang mengelilingi elips pada garis-garis tengah sekawan sama dengan luas persegi panjang pada sumbu-sumbu ellips” dan Dalil Apollonius II pada hiperbola yang berbunyi, “Luas jajargenjang pada garis-garis tengah sekawan sama dengan luas persegi panjang pada sumbu-sumbu hiperbola”, dibuktikan dengan memanfaatkan konsep trigonometri, geometri, dan operasi aljabar. B. Saran
Diharapkan dengan adanya makalah seminar ini dapat menambah pengetahuan khususnya bagi guru untuk dapat menjelaskan pembuktian Dalil Apollonius pada ellips dan hiperbola dalam pembelajaran.
23
DAFTAR PUSTAKA
Kukuh. 2003. Geometri Anallit Bidang dan Ruang Bagian II . Samarinda : FKIP Universitas Mulawarman.
http://id.wikipedia.org/wiki/Apollonius_dari_Perga (diakses pada tanggal 20 Oktober 2010 pukul 16.40)
http://www.matematikk.org/biografi/vis.html?tid=62492 (diakses pada tanggal 20 Oktober 2010 pukul 16.55)
http://choirisa.blogspot.com/2009/06/matematika-dan-ilmperkembangannya.html (diakses pada tanggal 2 November 2010 pukul 11.30)