INTEGRALES
LA INTEGRAL INDEFINIDA
Introducción. La 2da. parte del cálculo diferencial e integral. La antiderivación llamada también antidiferenciación, o comúnmente denominada integración tiene dos interpretaciones distintas: es un procedimiento inverso a la derivación, i es un método para determinar el área de una región encerrada por una o varias curvas. Cada una de estas interpretaciones tiene numerosas aplicaciones en matemáticas, física, ingeniería, administración, economía, biología, ciencias sociales, etc.
Integral indefinida Definición 18.1 Diremos que la función y = F(x) es una antiderivada de y = f(x) en el intervalo I, si F’(x) = f(x) ∀ x ∈ I. (Otras veces F recibe el nombre de primitiva de f).
Así por ejemplo: la antiderivada de f (x) = 4x 3 es F(x) = x4 ∀x ∈ R ; pues Dx (x 4) = 4x3 (Note que Dx (x4 + 8) = 4x3, Dx (x4 – 6) = 4x3; en general D x (x 4 + C) = 4x3). La antiderivada de g(x) = 1/x es G(x) = ln x, ∀x ∈ ] 0, + ∞[; pues Dx (ln x) = 1/x (Observe que Dx (ln x + 5) = 1/x, D x (ln x – 1) = 1/x; en general D x (ln x + C) = 1/x). La antiderivada de h(x) = cos x es H(x) = sen x, ∀x ∈ R; pues Dx (sen x) = cos x (Mire que D x (sen x + 3) = cos x, Dx (sen x – 2) = cos x; en general D x (sen x + C) = cos x). Así como el operador lineal Dx, llamado diferenciación asigna a la función y = f(x) la función y = g’(x); el operador lineal inverso Ax, llamado antidiferenciación, asigna a la función y = f’(x) la función y = f(x). Para los ejemplos anteriores: A x(4x3) = x4, Ax(1/x) = ln x, Ax(cos x) = sen x. La notación Ax generalmente se reemplaza por otro símbolo. Leibnitz es el autor para emplear “la s alargada”: ∫, i ésta es la que comúnmente se utiliza utiliza casi en todos los textos de cálculo. A este símbolo se adjunta la diferencial dx. Por ejemplo, ∫4x3dx = x4 + C, ∫ (1/x)dx = ln x + C, ∫ cos x dx = sen x + C. En general,
f ( x ) dx = F(x) + C
, se llama antiderivada de f ó la integral
indefinida, donde f(x) se llama el integrando, ∫ se llama el signo integral, C se denomina la constante de integración, i dx la diferencial de x, que indica la variable respecto a la cual se lleva a cabo el proceso de integración.
Lic. José L. Estrada P.
UNAJMA
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
INTEGRALES
2
Esta familia de curvas tiene la propiedad de que, dado un punto (x 0, y0) hay una i sólo una curva de la familia que pasa por este punto particular de modo que la constante C correspondiente estará determinada por C 0 = y0 – f(x0). Vea la figura 1
y (xo , yo)
yo = f(xo) + Co
•
y = f(x) + C
C
•
•
•
a
b
x
Fig. 1
En el estudio de las ecuaciones diferenciales esta familia resulta ser la solución general de una ecuación diferencial ordinaria i la especificación del punto (x 0, y0) se conoce como una condición inicial para hallar la solución particular.
18.1 Integrales inmediatas Desde que la derivación i la integración son operaciones inversas, los casos más sencillos de integración se llevan a cabo invirtiendo las correspondientes fórmulas de la derivación, razón por la cual las fórmulas resultantes se denominan integrales inmediatas. Los casos algo más complicados se manejan mediante técnicas de integración que se verán en un próximo capítulo. En general este proceso es más complicado que el de derivación, i tendremos que ser más cautelosos i pacientes con las técnicas que nos permitan obtener tales antiderivadas. Más adelante abordaremos métodos más especializados. La naturaleza inversa de las operaciones de integración i derivación A x i Dx respectivamente puede simbolizarse, como propiedades, de la manera siguiente: d La derivación es la inversa de la integración: . . . (1) f ( x ) dx = f ( x ) dx
∫
La integración es la inversa de la derivación:
∫ f '(x) dx = f(x) + C
. . . (2)
Aunque hemos definido el proceso de integración, no disponemos aún de reglas prácticas para calcular antiderivadas. Afortunadamente como la integración es inversa de la diferenciación, es fácil obtener reglas de integración a partir, precisamente de las reglas de derivación.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
3
INTEGRALES
Ahora estableceremos dos propiedades fundamentales de la integración indefinida, llamadas propiedades de linealidad, que permitirán facilidad en los cálculos. Si u = f(x) i v = g(x) son dos funciones definidas en un intervalo I, entonces:
∫ [f ' (x)
+ g ' ( x )] dx =
∫ f ' (x) dx + ∫ g' (x) dx = ∫ (du
+ dv)
=
∫ du ∫ dv
.
+
.
.
(3)
∫ k f ' (x) dx = k ∫ f ' (x) dx = k ∫ du .
...
(4)
Las demostraciones de las propiedades (3) i (4) se basan en las fórmulas de derivación correspondiente. Obsérvese que si u = x i v = 0, entonces la propiedad (3) se convierte en
∫ dx = x + C.
Geométricamente, la integral indefinida y = f(x) + C representa una familia de curvas en un intervalo I, de las cuales puede obtenerse una curva cualquiera desplazando y = f(x) una distancia vertical C, resultando todas ellas “paralelas” entre sí.
A. Primer grupo de fórmulas. Si u es una función de x: u = f(x) , donde du = f’(x) dx, entonces: 1.
u n +1
∫ u du = n 1 + C. du ∫ u = ln | u | + C n
o
+
2.
Ejemplo 1.
o
[f ( x )] n +1
∫[f (x)] f '(x) dx = n 1 f ' ( x ) dx ∫ f (x) = ln | f(x) | + C, n
+
∫[4f ' ' (x)
+ 5f ' ( x )]
dx (b) (x +
Solución: Aplicando sucesivamente las propiedades (3) i (2), (a)
∫
4 f ' ' ( x ) dx + 5 f ' ( x ) dx = 4
d
∫ dx (f ' (x)) dx
dx
∫ f ' (x) dx = 1 + f’(x).
∫[4f ' ' (x)
∫ f ' (x ) dx )’. + 5f ' ( x )] dx
=
∫
+ 5 f ' ( x ) dx = 4 f’(x) + 5f(x). (b) Empleando
la derivada de un producto i la propiedad (1): (x + d
n = –1
Suponga que y = f(x) es una función “suficientemente diferenciable”.
Simplifique las siguientes expresiones: (a)
∫
+ C, n ≠ –1
∫
f ' ( x ) dx )’ =
d x + f ' ( x ) dx = 1 + dx
∫
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
INTEGRALES
4 x 4 +1 x5 +C = 4 +1 5
∫ x dx (b) ( 3x 2 x ) dx ∫ ∫ 3x 4
(a)
=
2
(c)
∫
+
=
2
+C
∫
dx + 2 x dx
=
3 +1 x 5
∫
x 3 + 5x 2 − 4
∫ x (e) (1 x ) ∫
2
−
2
dx
x dx
=
=
∫
∫ (x + 5 − 4x )dx = −2
( x1 / 2 − x 5 / 2 ) dx
=
(a)
(b) Desarrollando el binomio:
∫
∫
2 3
(c) Solución: (a) Por la linealidad:
=
x2 2
+ 5x − 4
x 3 / 2 −
∫ ∫ (3x
2 7
x −1
∫
+
2
+
+2
+ 2)
3
=
(3x + 2) 2 dx = x 2 dx + 12
+
−1
2
+C =
x3 + x 2 + C
2
+ 5x +
4 x
+C
x 7 / 2 + C
(b)
3
∫
dx
(d)
∫ ∫ (3x
(3x + 2) 2 dx
∫
x dx + 2 dx =
∫ (9x
2
3
3
4
+
3 2
50 + 2) dx
x 2 + 2x + C .
+ 12x + 4) dx
x dx + 4 dx
=
x2
+C =
(3x + 2) dx
(3x + 2) dx
+
3
3
x2
+C
∫ ∫ ∫ Desarrollando el binomio: ∫ (3x 2) dx = ∫ (27x 27 27 x dx 54 x dx 36 x dx 8 dx ∫ ∫ ∫ ∫ 4 x 18x =9
3
x3
8
Ejemplo 4. Obtener el valor de:
(d)
∫
3 x dx + 2 x dx
5 5 5 x 3 dx = x 3 5dx = +C = x 8 3 +1 5
(d)
(c)
∫
2
=
3x3 + 6x2 + 4x + 4 +C.
+ 54 x
3
2
+ 18x
+ 36x + 8 ) dx
2
+ 8x + C
=
.
(3x + 2)50 dx . ¡Un momento!. Una manera “agresiva” para obtener la integral sería
desarrollar mediante el binomio de Newton, el integrando, i luego integrar los 51 términos del desarrollo; i esto, en principio no suena nada agradable. Este primitivo procedimiento podemos remediar por medio de una sustitución elemental . Sea u = f(x) = 3x+2, entonces du = 3dx. Al integrando lo multiplicamos por 3, i para que no varíe lo dividimos también por 3; esto es:
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
5
INTEGRALES
(Para comprobar el resultado se recomienda derivar la antiderivada, i debe ser igual al integrando). Esta es una de las ideas más importantes que aparecerá constantemente en los problemas de cálculo de integrales. Ejemplo 5. Evaluar las siguientes integrales: (a)
1 ( x 3 + 2) 2 3x 2 dx = (x 6 + 4x 3 + 4 )3x 2 dx = ( 3x 8 + 12x 5 + 12x 2 ) dx = x 9 + 2x 6 + 4x 3 + C. ∫ ∫ ∫ 3
De otra manera, la integral puede evaluarse usando la sustitución u = x 3 + 2, de modo que du = 3x 2 dx; luego la integral dada se convierte en
∫ (x =
(b)
∫ ∫
3
+2
)
2
2
3x dx
=
∫
2
u du
=
u3 3
+ C1 =
(
1 3 x +2 3
∫
u 2 du ; por tanto:
)3 + C1 = 13 x9 + 2x 6 + 4x3 + 83 + C1
1 9 x + 2 x 6 + 4x 3 + C 3 x dx 1 2 = x 2 + 2 − 1 / 4 x dx . Sea x + 2 = u; x dx = du, entonces: 4 2 2 x +2
∫(
u −1 / 4
1 2
du
=
2 3
)
u 3 / 4 + C
=
2 3
( x 2 + 2)3 / 4 + C .
Ejemplo 6. Determinar los valores de las integrales siguientes: (b)
∫
cos3 x sen x dx ,
(c)
∫
tan 4 x sec 2 x dx ,
(a) (d)
∫ sen x cos x dx , ∫ ctg x csc x dx 2
5
2
Solución: Teniendo en cuenta la fórmula 1: (a)
∫
sen 2 x cos x dx =
(b)
∫
cos3 x sen x dx =
(c)
∫
tan 4 x sec 2 x dx =
(d)
∫
ctg5x csc 2 x dx =
−
∫ ∫
1 (cos x ) 3 (−sen x dx ) = − cos 4 x + C 4
∫ −
1
(sen x ) 2 (cos x dx ) =
∫
(tan x ) 4 (sec2 x dx ) =
3
1 5
(ctg x )5 (− csc 2 x dx )
sen 3 x + C
tan 5 x + C
=−
1 6
ctg 6 x + C
Ejemplo 7. Encontrar las siguientes integrales: (a)
∫
dx
; si u = x + 4, du = dx, entonces:
∫
dx
=
∫
du
=
ln u
+C =
ln x + 4
+C
. En
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
INTEGRALES
6
los siguientes ejercicios, para usar la fórmula
∫
du u
=
+C,
ln u
debe tenerse en cuenta
que en el numerador está la diferencial del denominador. (b) (c)
(d) (e)
x dx
∫x
2
1 2
=
−9
x2 + 2
2 x dx
∫x
2
1 ln x 2 − 9 2
=
−9
+C
3 1 x −1 + dx = x 2 − x + 3 ln x + 1 + C . (Cuando el grado del x +1 x + 1 2 numerador es mayor o igual que el grado del denominador, es conveniente dividir previamente).
∫
dx
∫
=
∫
x 4 + x −4
∫e
dx
+2
x3 x
dx
e − x dx
∫1
=
+1
+e
=
∫
=−
−x
x 8 + 2x 4 + 1
dx
x5 −e
∫1
−x
+e
dx
−x
= − ln
=
∫
x4 + 1 x5
dx
(1 + e x )+ C . −
=
∫
1 x
1
dx = ln x x 5
+
−
1 4x 4
+C
(En el cual, se ha multiplicado el
numerador i el denominador por e – x ). EJERCICIOS
1.
Suponga que y = f(x) es derivable lo suficiente. Simplificar las expresiones siguientes:
(a)
[x2
∫
d
(c)
dx
∫
+ sen x + f ( x )
]dx '
(b)
3 d x + dx
∫
x 3f ( x ) dx + f " ( x ) dx
En los ejercicios del 2 al 60, evaluar las integrales dadas: 2. 3. 4. 5. 6.
(4 − x )3
∫ x dx 1 ∫x x C. ∫ (4x 3x 2x 1) dx x 3 x dx x C. ∫ 4 3 3 1 x ) x dx x x ( ∫ 5 8 1 2 2 ∫ dx = 64 ln x
= −
+
3
2
2
3
+
3
+
4 / 3
=
−
+
2
− 48x +
=
=
4
6x 2
−
1 3 x + C. 3
3 +x +
x2 + x + C .
+
5 / 3
−
8 / 3
+C
2
.
∫
[ x f ( x ) ]'dx
(d)
∫
[x 2
+
'
3f ( x ) + x ]' dx
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
7
INTEGRALES
8. 9. 10. 11. 12. 13.
∫ ∫ ∫
2 (3x + 4) 3 / 2 + C . 9 3 1 − 3x dx = − 1 (1 + 3x ) 4 / 3 + C . 4 dx 1 =− +C. (x − 1) 3 2( x − 1 ) 2 3x + 4 dx
15. 16. 17.
x4
∫ (1 x ) dx x 2 x dx 2 ∫ x 3 3 (x 3) 2x dx 3 ∫ (1 x ) 2 (1 x ) 3 2
−
=
−
=
7
3 / 2
+
∫ x ∫x
=
2 / 3
−
3 − x x 2 dx −1
dx
+1
=
2x 3
∫ x 4dx ln (ln x ) ∫ x ln x 2
= −
2 7
x7
+
+
−
14.
=
−6
4 / 3
−
x2
+1
+
dx
(x + 3) 1 / 2 + C (
− 6 1− x
(3 − x ) 7 / 2 +
x − 2 ln x + 1 =
+ C.
+C
4 ln x 2 − 4
=
) 1 / 3 + C 12 5
(3 − x ) 5 / 2 − 6 (3 − x ) 3 / 2 + C .
.
+C.
1 2 ln (ln x ) + ln (ln x ) + C 2
52. 53. 54.
∫
dx
=
x (1 − x ) dx
50. 51.
∫e e
∫e
57. (a)
e
2x x x
dx
−1 +1
∫
=
+1
dx
=
1 ln e 2 x 2
(
ln e x
+1
55. +1 + C
56.
)2 − x + C
cos 2 2x sen 2x dx
=−
1 8
cos 4 2 x + C. (b)
∫
(1 − x ) 2
∫ x ln x ln ln x C 2 ln x 1 dx (2 ln x ) ∫ x 2 ln 3x 1 dx ln 3x C ∫ x 3 dx ∫ x (1 ln x ) ln | 1 ln x | =
+
+
=
3
=
= −
=
1 9
+C
+
−
−
tan 2 3x sec 2 3x dx
2
+
2
2x
C
ln
+C
tan 3 3x + C .
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
INTEGRALES
8
Ejemplo 8. Encontrar las siguientes integrales:
∫
(a) 2 5 x dx . Para emplear la fórmula 3, observe que du es la diferencial de la función
exponente u. Multiplicando i dividiendo por 5, se tiene: (b)
∫a
x3
2
x dx =
(a 2 b ) x ln (a 2b)
+ C.
∫
∫
(b)
donde x = 1 – u −9
∫
En efecto,
x
x
dx
∫
∫
∫
a 2 x b x dx = (a 2 ) x b x dx = (a 2 b) x dx
=
4 − x +1
∫
i du = – dx, luego
∫
1 1 e 2 −3x (− 3dx ) = − e 2−3x 3 3
e
∫
x
.
dx x
Ejemplo 11. Obtener
=2
∫
∫e
=
dx : En efecto: hagamos la sustitución elemental u = –x+1, de
3 − x −1
3 − x −1
dx =
−
∫3
4u
−1+ u −1
du = –
+
C.
Hallar el valor de las siguientes integrales:
∫
∫
4 − x +1
a 2 x b x dx .
1− x
(a) e 2−3x dx = −
+C
C.
u
Ejemplo 10.
(b)
∫
+
(4 / 3) u 9 4 4 + C. = − du = – 9 ln (4 / 3) ln (4 / 3) 3 3
e
∫
3
1 1 ax x3 2 a 3x dx = 3 3 ln a
Hallar: (a)
Ejemplo 9.
∫
1 5x 1 25 x 2 dx = 2 5dx = . 5 5 ln 2 5x
e
x
1 x
+2
dx
=
2 x
2e
+
C
x
+C
dx –x
Solución: Multiplicando numerador i denominador por e resulta
Sea u = 1+2e–x ⇒ du = –2e–x dx, luego:
e − x dx
∫1
+ 2e
−x
.
4u
∫3
u −2
du
=
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
9
INTEGRALES
Ejemplo 13. Calcular
∫
e x / 2 cosh
x dx . 2 x 1 x / 2 − x / 2 (e ) . Nuestra integral se +e = 2 2
Solución: Por definición, sabemos que cosh 1 (e x 2
∫
convierte en
+ 1)
1 x (e 2
dx =
+
x) + C
EJERCICIOS
En los ejercicios del 1 al 40, obtener al valor de las siguientes integrales: 1. 2. 3.
∫ ∫ xe
1
∫
(a)
3x
e 5 x dx = −x
e1 / x
2
dx =
2
−
( ln 3 )
1 5x e 5
+
4. +
C
5.
6.
∫x
22.
2 4 2× 6 ( 2 x + 3x ) dx = + ∫ ln 4 ln 6
2
1 / x = −e +C
dx
7.
x
23. 24. 25.
a xex
x
∫ 1 ln a x x x x 1 e 2 3 dx 2 3 ∫ ln 6 x x
a e dx x e
∫e
e
ex
=
+
e
e
(b)
C
1 −x 2 e 2
dx = −
3x
+C
ex +x
+
dx = e
e
e
ex
e
+C
28. 29.
+C
=
9x ln 9
∫
+C
30. 31.
+C
32.
∫
x
2
∫ ∫e
dx
=
x 4
e x x 3 dx = −x
2+4
(ex / 2 + 2 e
x dx
− x / 2
1 ln 2
1 x4 e 4 =−
x +1 +C
2
1 2
+C
e− x
2+4
)2 dx = 4x + ex − 4e x + C −
∫ senh x dx cosh x C 1 ∫ 1 e dx ln e 1 C ∫ cosh x dx senh x C ∫ tanh x dx ln ( e e ) x 1 ∫ =
+
−x
=
+
x
+
=
=
2
+C
+
+
x
+
−x
+C
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
INTEGRALES
10
C. Tercer grupo de fórmulas Si u es una función de x: u = f(x), donde du = f ’(x)dx, entonces: 5.
∫ sen u du
C
o
∫ sen [ f (x) ][f ' (x) dx]
6.
∫ cos u du sen u C ∫ sec u du tan u C
o
8.
∫
9.
∫ sec u tan u du
7.
= − cos u +
csc 2 u du
=
+
o
= − ctg
u+C
o
∫
+
=
2
∫ csc u ctg u du
= − csc u +
∫ tan u du
= − ln
cos u
+C
∫ ctg u du ln sen u C 13. sec u du ln (sec u tan u ) ∫ 12.
=
=
+
+
=
+
csc 2 [ f ( x ) ] [ f ' ( x ) dx ] = − ctg [ f (x ) ] + C
= sec [ f ( x ) ] + C
o
C
∫ csc [ f (x) ] ctg [ f (x) ] [ f ' (x) dx ] 11.
+
o
= sec u + C
∫ sec [ f (x) ] tan [ f (x) ] [f ' (x) dx ] 10.
C
∫ cos [ f (x) ] [f ' (x) dx] sen [ f (x) ] C ∫ sec [ f (x) ] [ f ' (x) dx ] tan [ f (x) ] C
=
2
= − cos [ f ( x ) ] +
+
C
= − csc [ f ( x ) ] +
C
o
∫ tan [ f (x) ][ f ' (x) dx ]
= − ln
o
∫ ctg [ f (x) ][ f ' (x) dx ]
=
o
∫ sec [ f (x ) ] [ f ' (x) dx ]
=
cos [ f ( x ) ]
ln sen [ f ( x ) ]
+C
+C
ln (sec [ f ( x ) ] + tan [ f ( x ) ])
+
C
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
INTEGRALES
∫ 18. ∫ csc h 17.
sec h 2 u du = tanh u + C 2
∫ ∫ csc h [ f (x) ][ f '(x ) dx ]
sec h 2 [ f ( x ) ][ f ' ( x ) dx ] = tanh [ f ( x ) ] + C
o
2
o
u du = − ctgh u + C
11
− ctgh [ f ( x ) ] + C
∫ sec h u tanh u du sec h u C o ∫ sech [ f (x) ] tanh[ f (x) ][f ' (x) dx ] 20. csc h u ctgh u du csc h u C o ∫ ∫ csc h[ f (x) ]ctgh[ f (x) ][ f '(x )dx ] 19.
=−
=−
= − sec h [ f (x) ] + C
+
+
∫
Ejemplo 14. Obtener el valor de:
sec x tan x dx sec x − 1
∫
Solución: Sea u = sec x –1, donde du = sec x tan x dx, luego
∫ Ejemplo 15.
∫ =
Ejemplo 16.
du
=
u
ln u
+
C
cos ( 4x ) dx . Sea u
1 4
sen u
∫ sen
θ
+
C
=
1 4
=
ln sec x
=
4x ; dx
sen 4x
+
sec x tan x dx = sec x − 1
−1
=
1 4
du , entonces
∫
cos ( 4x ) dx
=
∫
1 du 4
cos u
=
C.
1 + cos θ dθ . Sea u = 1+ cos θ, donde du = – sen θ dθ, luego 2 3 / 2 u 3
2 (1 + cos θ) 3 / 2 3
∫ ∫ 1 1 Ejemplo 17. x sen x dx sen x (2x dx ) cos x C. ∫ 2∫ 2 dx Ejemplo 18. ∫ sen 2x ln (tan x) ( tan x > 0 ). Sea u = ln (tan x), donde: =
= − csc h [ f ( x ) ] + C
1 + cos θ (sen θ dθ) = − 2
=
2
u1 / 2du = −
= −
2
+
+
C
= −
+
C.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
INTEGRALES
12
EJERCICIOS
En los ejercicios del 1 al 50, determinar el valor de las integrales siguientes: 1. 2. 3. 4. 5. 6. 7.
8.
∫ 3x sen x dx 2
3
= − cos x
3
+
C 1 sec (3x 3
∫ x x sen dx 2 cos C ∫ 2 2 1 cos x sen x dx cos x C ∫ 3 1 x cot x dx ln ( sen x ) C ∫ 2 1 x sec x dx tan x C ∫ 3 sec x ∫ x dx 2 ln( sec x tan x ) sec (3x
+ 1) tan
(3x
= −
2
2
=
3
=
=
∫
csc2
3
= −
2
x
dx
+ 1) +
+
2
2
+ 1) dx =
3
9.
+
10.
+
11.
+
+
= −2 ctg
C
x
+
C
12. +
C
13.
∫
sec 2 x tan x
dx
2
=
tan x
+
C
C ∫ sen x cos x ∫ cos x dx ln sec x x 1 e dx e C ∫ 6 x x x tg sec dx 2 tg C ∫ 2 2 2 e x cos e x dx
=
sen e x
+
3 cos 2 x
=
+
3 cos 2 x
= −
2
+
=
2
+
+
+C
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
INTEGRALES
sec2 x
∫e
24.
tan x
dx
= −e
− tan
x
+
C
1
25.
tan 2 x ln cos 2 x ∫ 2 ∫ (sec x tan x) dx 2(tan x sec x) x sec x ∫ 1 tan x dx ln | 1 tan x | C
(tan 2x − 1)2 dx
26. 27.
−
=
2
+
=
+
−
−
∫
2
sec x dx 1 + tan x
= −
1+
1 tan x
+
C
C
+
C
2
28. 29. 30. 31.
=
+
+
+
∫
cosh 2 x senh 2 2 x dx
dx sen x cos x
∫ ctg x ∫ ctg x 1 dx 2
−
= − ln
=
=
1 senh 3 2 x 6
ctg x
+
C
1 ln | sec 2x | +C 2
+
C
32. 33. 34.
1 − senx dx 1 + senx
∫ 1 cos x ∫ x senx dx cos 2 x ∫ sen 2x dx +
=
=
+
3
= −
ln 1 + sen x
ln | x
+
+
C
sen x | +C
1 4 sen 2 2x
+
C
18.3 Aplicaciones de la integral indefinida Muchas situaciones prácticas, especialmente aquellas relacionadas con razones de cambio, pueden describirse en forma matemática mediante ecuaciones diferenciales; i resolver una ecuación diferencial se convierte simplemente en integrar, obteniéndose una
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
14
INTEGRALES
A. Leyes de crecimiento i de decrecimiento En muchos fenómenos naturales el crecimiento o el decrecimiento de una sustancia viene expresado a través de una ley natural, a saber: “La rapidez de cambio de la cantidad de una sustancia con respecto al al tiempo es proporcional proporcional a la cantidad cantidad de la sustancia presente en un instante dado”
Esto ocurre en la química, física, biología, demografía, negocios, etc. Si t denota el tiempo i A la cantidad de sustancia presente en cualquier instante, entonces matemáticamente la ley natural en mención se expresa como: dA dt
=
kA
donde k es la constante de proporcionalidad. Si A aumenta cuando t aumenta, entonces k>0 i se tiene la ley ley del crecimiento natural; alternativamente, si A disminuye cuando t aumenta, entonces k < 0 y se tiene la ley de decaimiento natural. Ya que la ecuación anterior, puede escribirse en la forma al integrar ambos miembros, en virtud de la fórmula 2 se tiene:
dA A
=
k dt, resulta que
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
INTEGRALES
entonces tenemos 100 dN dt
=
0.02 N
⇒
dN N
=
kN N
=
15
2% , es decir k = 0.02, por que la tasa de cambio resulta ser
0.02 dt . Integrando ambos miembros se tiene: tiene:
∫
dN N
=
∫
0.02 dt
⇒
ln N = 0.02t + C 1 ⇒ N(t) = C e0.02 t. Como la condición inicial establece establece que cuando t = 0 (en 1965) se tiene N = 3 (10)9, entonces N(0) = C e 0.02(0)
⇒
C = 3 (10)9 ; esto es,
N(t) = 3 (10)9 e 0.02t . La población en el año 2000 se obtiene cuando t = 35: N(35) = 3(10) 9 e0.02(35) = 3(10)9 e0.7 = 6,041’258,100 habitantes. Ejemplo 5. (Purificación del aire) Una habitación de 2400 pies cúbicos contiene un filtro de aire de carbón activado a través del cual pasa el aire a una razón de 400 pies cúbicos por minuto. El ozono del aire fluye a través del filtro i el aire purificado se vuelve a hacer circular en la habitación. Asumiendo que el ozono restante es distribuído uniformemente por toda la habitación en todo momento, determine cuánto tiempo dura el filtro en retirar el 50% del ozono de la habitación. Solución: Sea x el número de pies cúbicos de ozono que hay en la habitación después de t minutos que ha empezado a funcionar el filtro. Ya que todo el tiempo hay 2400 pies cúbicos de aire en la habitación, al cabo de t minutos el número de pies cúbicos de ozono es x/2400. Como 400 pies cúbicos de aire salen del filtro cada minuto, entonces la habitación pierde 400(x/2400) pies cúbicos de ozono por minuto. Desde que x disminuye a medida
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
INTEGRALES
16
Solución: Sea V(t) el valor de la maquinaria cuando tenga t años. La derivada es igual al
ritmo, i según el enunciado,
dV dt
=
k (V
−
5000) con las condiciones de que cuando t = 0,
V = 40000; i cuando t = 4, V = 30000. Pasemos a resolver la ecuación diferencial: dV dt
=
k ( V − 5000) ⇒
dV V − 5000
=
k dt . Integrando en ambos miembros:
ln (V-5000) = kt + C ⇒ V(t) = 5000 + Ce
kt
40000 = V(0) = 5000 + C e k (0) ⇒
⇒
30000 = V(4) = 5000 + 35000 ek(4) 1
Luego la solución particular es V(t) = 5000 + 35000 e 4
5 t 7
C = 35000 k =
⇒
1 5 ln 4 7
ln
. 1
Deseamos saber V cuando t = 8, entonces: V(8) = 5000 + 35000 e 4 dólares.
5 (8) 7
ln
=22 857.14
2 Ejemplo 14. (Crecimiento) Se calcula que dentro de t años el valor de 1 m de terreno cerca de un pueblo (Departamento del Cusco), estará aumentando a una razón de
14 t 3 4
soles por año. Si el terreno vale actualmente S/. 500 por m 2, ¿cuánto valdrá
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
INTEGRALES
17
Suponiendo que son constantes los índices de natalidad i mortalidad, ¿para cuándo se puede esperar una población mundial de 10 mil millones? (Suponga que el crecimiento de la población mundial obedece la ley del crecimiento natural). Solución: Sabemos que
dP dt
=
kP
P(t) = C e kt, donde C = P(0) = P 0, de modo que la
⇒
solución de la E.D. es P(t) = P 0ekt. Podríamos escribir también la E.D. como P’(t) = k P(t), i para t = 0, P’(0) = k P(0)
⇒
k =
P ' (0) P ( 0)
. Tomaremos t = 0 correspondiente a 1987, así
P0 = 4.5 miles de millones. Como P está aumentando 380 mil / día en t = 0; es decir, 0.00038 mil millones en 1día, entonces en 1 año significa que P’(0) = (0.00038) (365.25) = 0.138795 miles de millones al año. Luego k =
P' (0) P(0)
=
0.138795 4.5
=
0.030843 . Por tanto, el
cambio porcentual de la población al año 1987 está creciendo al 3.08%. Deseamos saber
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
18
INTEGRALES
(b) ¿Cuánto tiempo se necesitará para que un abastecimiento de 50 gramos de radio se reduzca a 5 gramos? 6.
7.
(Crecimiento) Supongamos que la población de bacterias crece en un cultivo a una tasa proporcional al tamaño de la población. Si el tamaño de la población es 10 6 inicialmente i 25 × 105 después de la primera hora, ¿cuál es el tamaño de la población después de 2 horas?. (Decrecimiento) Si la vida media del radio es de 1690 años. ¿Qué porcentaje de la cantidad ahora presente permanecerá después de : (a) 100 años, años, (b)1000 años.
8.
(Crecimiento de población) La población de cierto pais crece al 3.2% anual; es decir, si al comenzar un año es A, al final del año será 1.0321. Suponiendo que ahora es de 4.5 millones, ¿cuál será al finalizar el año, ¿2 años?, ¿10 años?, ¿100 años?.
9.
(Crecimiento) La tasa de crecimiento natural de la población de una cierta ciudad es
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
INTEGRALES
∫ R' (x)dx
=
R (x)
+
19
K
donde K se encuentra generalmente asumiendo que el ingreso es cero cuando la demanda es cero. Si c=f(x) representa la función de consumo nacional total i x es la renta total, entonces la “propensión marginal al consumo” se define como: f ' ( x )
=
dc dx
En el análisis teórico elemental de la renta nacional n acional total se hace frecuentemente la suposición de que la renta disponible x es igual al consumo c más el ahorro s; esto se expresa
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
INTEGRALES
20
Solución: Sea S(t) el costo total de almacenamiento (en soles) durante t semanas. Las semillas de soya se consumen a una razón constante de 300 kilos a la semana, la cantidad de semillas de soya almacenadas después de t semanas es 12000 – 300 t. Como el costo de almacenamiento es un centavo por kilo a la semana, la razón de cambio del costo de
almacenamiento con respecto al tiempo es: (12000 – 300t); es decir,
dS dt
=
dS dt
=
(Costo por kgr) ( Número de kgr.) = (0.01)
120 − 3t ⇒ S(t) = 120t –
3 2
t2
+
K . Para determinar la
constante de integración K, utilizamos el hecho de que en el momento en que llega el cargamento no hay costo; esto es, S = 0 cuando t = 0, luego 0 = S(0) = 0 – 0 + K por tanto tanto S(t) S(t) = 120t –
3 2
K = 0,
⇒
t2. Ahora el costo de almacenamiento durante las próximas 40
semanas es S(40) = 2400 soles.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
INTEGRALES
21
El ejemplo 1, expresado en la sección 8.1, considera P = S/. 15000, r = 2% trimestral, t = 5 años; el interés total simple que obtuvimos fue de S/. 6000, de donde el saldo se determinó A = 15000 + 6000 = S/. 21000. Este mismo resultado obtenemos por la última fórmula (1). En efecto, A(t) = P(1 + rt) 21000.
⇒
A(5) = 15000 [1 + (0.08) (5)] = S/.
En segundo lugar, el interés que se calcula sobre el capital más los intereses previos se llama interés compuesto . Supongamos que se invierte una cantidad de P soles a una tasa de interés r por periodo, compuesto al final de cada periodo, entonces las cantidades A 1, A2, ... , An respectivamente, al final del primer periodo, del segundo periodo, etc, son: A1 = P + Pr = P(1+ r) = P(1+r)1 A2 = A1 + A1 r = A1 (1+r) = P(1+r)2 A3 = A2 + A2 r = A2 (1+r) = P(1+r)3
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
22
INTEGRALES
Por tanto, la cantidad A después de t años, si P soles son invertidos a una tasa del r% compuesto m veces por año, está expresada por: r mt A =P (1 + / m)
soles . . . (3)
que se conoce con el nombre de fórmula del interés compuesto, donde r es la tasa de
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
INTEGRALES
23
condición inicial N = N 0 cuando t = 0 se tiene C 2 = N0, por consiguiente la deuda nacional N viene expresada por: N(t ) =
kB 2 t 2
+
kI 0
+
N0
. . . (6)
que representa la solución del modelo Domar, dado inicialmente por las ecuaciónes
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
INTEGRALES
24
t
=
ln 3 0.06
=
18.31 años.
C. Un modelo de ajuste ajuste de precios. precios.
Sea p el precio de un determinado artículo i S(p) i D(p) las funciones de oferta i demanda de dicho artículo respectivamente. En cierto modelo dinámico de ajuste de
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
INTEGRALES
25
3.
(Costo marginal) El costo marginal del producto “Cusper” es C’(x) = 3 + 0.001 x i el costo de fabricar 100 unidades es S/. 1005. ¿Cuál es el costo de producir 200 unidades?. Los artículos se venden a S/. 5 cada uno. Determine el incremento en la utilidad si el volumen de venta es incrementado de 1000 a 2000.
4.
(Costo total i costo promedio) El costo marginal C’(x) como función de las unidades
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
INTEGRALES
26
“Sea g una función derivable i supongamos que F es una antiderivada de f, entonces si u = g(x),
Ejemplo 1. Hallar
∫ f (g(x)) g' (x) dx ∫ f (u) du
∫x
=
4
2x 5
+ 10
dx
=
F( u ) + C = F(g( x )) + C ”
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.