DRAINASE PERKOTAAN PERENCANAAN DAN DESAIN DRAINASE DI PERUMAHAN PONDOK INDAH MATANI BLOK X KUPANG
OLEH RAYMOND APOLINARIO SERAN
(211 13 053)
YULIANUS EKA PUTRA NGGARANG (211 14 081)
FAKULTAS TEKNIK PROGRAM STUDI TEKNIK SIPIL UNIVERSITAS KATOLIK WIDYA MANDIRA KUPANG 2016
KATA PENGANTAR Puji dan syukur Penulis haturkan kepada Allah yang Maha Kuasa, atas rahmat dan perlindungan-Nya, laporan ilmiah ini dapat diselesaikan pada waktunya. Laporan berjudul PERENCANAAN DAN DESAIN DRAINASE DI PERUMAHAN PONDOK INDAH MATANI BLOK X KUPANG disusun sebagai salah satu syarat untuk mengikuti ujian akhir semester mata kuliah Drainase Perkotaan. Di samping itu, juga untuk mengembangkan potensi dan mengaplikasikan pengetahuan yang didapat penulis selama mengikuti mata kuliah Drainase Perkotaan. Laporan ilmiah ini membahas tentang bagaimana merencanakan dan mendesain dimensi saluran drainase yang baik dan benar sesuai dengan kriteria perencanaan. Penulis
merasa
bangga
atas
terselesainya
laporan
ini.
Namun,
dalam
penyelesaian laporan ini, penulis tidak bekerja sendirian, tetapi ada banyak pihak yang terlibat. Oleh karena itu, penulis ingin menyampaikan terima kasih kepada pihak-pihak tersebut. Pertama, kepada Lembaga Perguruan Tinggi Universitas Katolik Widya Mandira Kupang, yang telah menyediakan berbagai fasilitas, sehigga penyelesaian laporan ini dapat berjalan dengan lancar. Kedua, kepada para dosen mata kuliah drainase perkotaan Ibu Priseila Pentewati, ST., Msi dan Ibu Sri Santi L M F Seran, ST., M.Si yang telah membekali penulis dengan berbagai ilmu pengetahuan yang sangat membantu penulis dalam menyelesaikan laporan ini. Ketiga, terima kasih kepada Priseila Pentewati, ST., Msi, yang telah meluangkan waktunya untuk membimbing dan membantu penulis dalam menyelesaikan laporan ini. Keempat, terima kasih kepada sesama anggota kelompok yang telah bekerja sama dengan baik dalam menyelesaikan laporan ini. Akhirnya, penulis menyadari bahwa masih banyak kekurangan yang terdapat di dalam laporan ini. Oleh karena itu, penulis sangat mengharapkan dan membutuhkan kritik, saran, dan ide-ide konstruktif, sehingga laporan ini dapat menjadi laporan ilmiah yang lebih bermutu. Kupang,
Desember 2016
Penulis
i
KATA PENGANTAR Puji dan syukur Penulis haturkan kepada Allah yang Maha Kuasa, atas rahmat dan perlindungan-Nya, laporan ilmiah ini dapat diselesaikan pada waktunya. Laporan berjudul PERENCANAAN DAN DESAIN DRAINASE DI PERUMAHAN PONDOK INDAH MATANI BLOK X KUPANG disusun sebagai salah satu syarat untuk mengikuti ujian akhir semester mata kuliah Drainase Perkotaan. Di samping itu, juga untuk mengembangkan potensi dan mengaplikasikan pengetahuan yang didapat penulis selama mengikuti mata kuliah Drainase Perkotaan. Laporan ilmiah ini membahas tentang bagaimana merencanakan dan mendesain dimensi saluran drainase yang baik dan benar sesuai dengan kriteria perencanaan. Penulis
merasa
bangga
atas
terselesainya
laporan
ini.
Namun,
dalam
penyelesaian laporan ini, penulis tidak bekerja sendirian, tetapi ada banyak pihak yang terlibat. Oleh karena itu, penulis ingin menyampaikan terima kasih kepada pihak-pihak tersebut. Pertama, kepada Lembaga Perguruan Tinggi Universitas Katolik Widya Mandira Kupang, yang telah menyediakan berbagai fasilitas, sehigga penyelesaian laporan ini dapat berjalan dengan lancar. Kedua, kepada para dosen mata kuliah drainase perkotaan Ibu Priseila Pentewati, ST., Msi dan Ibu Sri Santi L M F Seran, ST., M.Si yang telah membekali penulis dengan berbagai ilmu pengetahuan yang sangat membantu penulis dalam menyelesaikan laporan ini. Ketiga, terima kasih kepada Priseila Pentewati, ST., Msi, yang telah meluangkan waktunya untuk membimbing dan membantu penulis dalam menyelesaikan laporan ini. Keempat, terima kasih kepada sesama anggota kelompok yang telah bekerja sama dengan baik dalam menyelesaikan laporan ini. Akhirnya, penulis menyadari bahwa masih banyak kekurangan yang terdapat di dalam laporan ini. Oleh karena itu, penulis sangat mengharapkan dan membutuhkan kritik, saran, dan ide-ide konstruktif, sehingga laporan ini dapat menjadi laporan ilmiah yang lebih bermutu. Kupang,
Desember 2016
Penulis
i
DAFTAR ISI Hal KATA PENGANTA PENGANTAR R ................................ ................................................. .................................. ................................. ................................. ......................... ........ i DAFTAR DAFTAR ISI ............................... ................................................ .................................. ................................. .................................. .................................. .................... .... ii DAFTAR DAFTAR TABEL ................................. ................................................. ................................. .................................. .................................. ............................. ............ v DAFTAR DAFTAR GAMBAR GAMBAR ............................... ................................................ .................................. ................................. .................................. ......................... ....... vii DAFTAR LAMPIRAN .......................................................................................................viii BAB I PENDAHULUAN .................................................................................................. I - 1 1.1.
LATAR BELAKANG BELAKANG ............................................ ............................................................. ................................. ............................ ............I - 1
1.2.
MAKSUD DAN TUJUAN TUJUAN ................... ......... ................... ................... ................... .................. .................. ................... ................. ....... I - 2
1.3.
PEDOMAN KRITERIA KRITERIA DAN STANDAR STANDAR ................ ................... .......... .................. ................... ............... ..... I - 2
1.4.
LINGKUP PEMBAHASAN PEMBAHASAN TUGAS.......... TUGAS.................... ................... .................. ................... ................... .................. ...........I - 2
1.5.
SISTEMATIKA PENYUSUNAN LAPORAN TUGAS ................... ......... ................... .................. ............. .... I - 3
BAB II LANDASAN LANDASAN TEORI........... ................... ......... ................... ................... ................... .................. ................... ................... ............... ...... II - 1 2.1.
GAMBARAN JARINGAN DRAINASE................... ......... ................... .................. ................... ................... ............... ...... II - 1
2.1.1.
Pengertian Drainase ................... ......... ................... .................. ................... ................... ................... ................... .................. ............ ... II - 1
2.1.2.
Tujuan Drainase .............................................................................................. II - 1
2.1.3.
Fungsi Drainase .............................................................................................. II - 2
2.1.4.
Jenis – Jenis – Jenis Jenis dan Pola – Pola – Pola Pola Drainase Drainase ................... .......... ................... ................... ................... ................... ........... II - 2
2.1.4.1. Jenis – Jenis – Jenis Jenis Drainase ................... ......... ................... .................. ................... ................... .................. ................... ................... ......... II - 2 2.1.4.2. Pola – Pola – Pola Pola Drainase ................... .......... ................... ................... .................. ................... ................... ................... ................... ........... II - 4
ii
2.1.5.
Bentuk Penampang Saluran............................................................................ II - 7
2.1.6.
Sistem Jaringan Drainase ............................................................................... II - 9
2.2.
DEBIT HUJAN RANCANGAN ....................................................................... II - 10
2.2.1.
Pemilihan Data Hujan ................................................................................... II - 10
2.2.2.
Curah Hujan Rerata Daerah (Area Rainfall) .................................................. II - 13
2.2.3.
Uji Konsistensi .............................................................................................. II - 17
2.2.4.
Pemilihan Distribusi Hujan Rancangan ......................................................... II - 23
2.2.5.
Perhitungan Curah Hujan Rancangan ........................................................... II - 26
2.3.
DEBIT BANJIR RANCANGAN ...................................................................... II - 30
2.3.1.
Penentuan Batas DAS .................................................................................. II - 30
2.3.2.
Waktu Konsentrasi ........................................................................................ II - 30
2.3.3.
Intensitas Hujan ............................................................................................ II - 32
2.3.3.
Debit Banjir Rancangan ................................................................................ II - 39
2.3.3.1. Debit Banjir Rancangan Non-Hidrograf ......................................................... II - 41 2.3.3.2. Debit Banjir Rancangan Hidrograf ................................................................. II - 44 2.4.
LIMBAH PEMUKIMAN .................................................................................. II - 46
2.5.
KAPASITAS SALURAN ................................................................................ II - 47
2.6.
HIDROLIKA...................................................................................................II - 49
2.6.1.
Perhitungan Dimensi Saluran........................................................................ II - 53
2.6.2.
Bangunan Pelengkap (Gorong-gorong)......................................................... II - 58
BAB III PERENCANAAN JARINGAN DRAINASE PERKOTAAN ................................. III - 1 3.1.
LAYOUT JARINGAN DRAINASE ................................................................... III - 1
iii
3.2.
ANALISA DEBIT HUJAN RANCANGAN ........................................................ III - 2
3.2.1.
Pemilihan Data Hujan .................................................................................... III - 2
3.2.2.
Perhitungan Uji Konsistensi ........................................................................... III - 4
3.2.3.
Pemilihan Distribusi Hujan Rancangan .......................................................... III - 5
3.2.4.
Perhitungan Curah Hujan Rancangan ............................................................ III - 7
3.3.
ANALISA DEBIT BANJIR RANCANGAN ..................................................... III - 10
3.3.1.
Penentuan Batas DAS ................................................................................. III - 10
3.3.2.
Perhitungan Waktu Konsentrasi ................................................................... III - 11
3.3.2.1. Penamaan Saluran dan Data Kependudukan ................. ............................. III - 12 3.3.2.2. Hasil Perhitungan Analisa Curah Hujan ....................................................... III - 13 3.3.3.
Perhitungan Intensitas Hujan ....................................................................... III - 14
3.3.4.
Perhitungan Debit Banjir Rancangan ........................................................... III - 15
3.4.
PERHITUNGAN LIMBAH PERMUKIMAN .................................................... III - 16
3.5.
PERHITUNGAN KAPASITAS SALURAN ..................................................... III - 17
3.6.
ANALISA HIDROLIKA.................................................................................. III - 18
3.6.1.
Perhitungan Dimensi Saluran....................................................................... III - 18
3.6.2.
Perhitungan Bangunan Pelengkap ............................................................... III - 19
BAB IV PENUTUP ...................................................................................................... IV - 1 4.1.
KESIMPULAN ............................................................................................... IV - 1
4.2.
SARAN ......................................................................................................... IV - 1
DAFTAR PUSTAKA
iv
DAFTAR TABEL Hal Tabel 2.1
Nilai Chi Kuadrat Kritik ........................................................................ II – 19
Tabel 2.2
Nilai D Kritis (Dcr) Smirnov Kolmogorof ............................................ II – 21
Tabel 2.3
Hubungan antara Deviasi Standar dengan Jumlah Data................... II – 24
Tabel 2.4
Hubungan Reduksi Variat Rata-Rata dengan Jumlah Data............... II – 24
Tabel 2.5
Nilai Variabel Reduksi Gauss............................................................ II – 25
Tabel 2.6
Kriteria Pemilihan Distribusi .............................................................. II – 26
Tabel 2.7
Tahapan Analisis Hidrologi Untuk Banjir Rancangan ........................ II – 39
Tabel 2.8
Koefisien Limpasan .......................................................................... II – 42
Tabel 2.9
Karakteristik Tanah ........................................................................... II – 42
Tabel 2.10
Koefisien Pengaliran ......................................................................... II – 43
Tabel 2.11
Tinggi Jagaan untuk Saluran Pasangan ........................................... II – 49
Tabel 2.12
Tabel Kecepatan Aliran Berdasarkan Tekstur Tanah ............................... II – 51
Tabel 2.13
Tabel Tinggi Jagaan Untuk Tiap Kawasan .............................................. II – 52
Tabel 2.14
Unsur-Unsur Geometris Penampang Saluran ................................... II – 56
Tabel 2.15
Koefisien Kekasaran Manning .......................................................... II – 58
Tabel 2.16
Nilai Kemiringan Dinding Saluran Sesuai Bahan . .............................. II – 58
Tabel 3.1
Data Curah Hujan .............................................................................. III – 1
Tabel 3.2
Curah Hujan Rerata Daerah dengan Metode Aritmatik ...................... III – 3
Tabel 3.3
Curah Hujan Rerata Daerah dengan Polygon Thiessen..................... III – 3
Tabel 3.4
Hasil Perhitungan Uji Konsistensi Data .............................................. III – 4
Tabel 3.5
Parameter Statistik Curah Hujan Harian Maksimum .......................... III – 5
Tabel 3.6
Parameter Logaritma Curah Hujan Harian Maksimum ....................... III – 6
Tabel 3.7
Rekapitulasi Perhitungan Dispersi ..................................................... III – 7
Tabel 3.8
Evaluasi Perhitungan Dispersi ........................................................... III – 7
Tabel 3.9
Perhitungan Curah Hujan Rancangan Dengan Metode Ej Gumble .... III – 7
Tabel 3.10
Pengurutan Jumlah Data Dari Terkecil Hingga Terbesar ................... III – 8
Tabel 3.11
Uji Keselarasan Sebarandengan Chi Kuadrat (Chi Square Test) ....... III – 9
Tabel 3.12
Uji Keselarasan Sebarandengan Smirnov – Kolmogorov ................... III – 9
Tabel 3.13
Penamaan Saluran .......................................................................... III – 12
Tabel 3.14
Data Kependudukan ........................................................................ III – 13
Tabel 3.15
Hasil Perhitungan Analisa Curah Hujan ........................................... III – 13
v
Tabel 3.16
Hasil Perhitungan Curah Hujan Rencana......................................... III – 13
Tabel 3.17
Hasil Perhitungan Waktu Konsentrasi .............................................. III – 14
Tabel 3.18
Hasil Perhitungan Intensitas Curah Hujan........................................ III – 14
Tabel 3.19
Hasil Perhitungan Debit Banjir Rancangan ...................................... III – 15
Tabel 3.20
Hasil Analisa Debit Limbah Permukiman ......................................... III – 16
Tabel 3.21
Hasil Perhitungan Debit Aliran ......................................................... III – 16
Tabel 3.22
Hasil Analisa Kapasitas Saluran ...................................................... III – 17
Tabel 3.23
Hasil Analisa Perhitungan Dimensi Saluran ..................................... III – 18
Tabel 3.24
Nama Perencanaan Saluran Gorong - Gorong ................................ III – 19
Tabel 3.25
Hasil Analisa Perhitungan Bangunan Pelengkap ............................. III – 20
vi
DAFTAR GAMBAR Hal Gambar 2.1
Jaringan Drainase Siku .........................................................................II – 4
Gambar 2.2
Jaringan Drainase Paralel ..................................................................... II – 5
Gambar 2.3
Jaringan Drainase Grid Iron ..................................................................II – 5
Gambar 2.4
Jaringan Drainase Alamiah ...................................................................II – 6
Gambar 2.5
Jaringan Drainase Radial ...................................................................... II – 6
Gambar 2.6
Jaringan Drainase Jaring-Jaring ...........................................................II – 7
Gambar 2.7
Penampang Trapesium .........................................................................II – 8
Gambar 2.8
Penampang Persegi ..............................................................................II – 8
Gambar 2.9
Penampang Segitiga .............................................................................II – 9
Gambar 2.10
Penampang Setengah Lingkaran ..........................................................II – 9
Gambar 2.11
Poligon Thiessen .................................................................................II – 15
Gambar 2.12
Metode Isohyet ....................................................................................II – 17
Gambar 2.13
Lintasan aliran waktu inlet time (to) dan conduit time (td) ..................II – 31
Gambar 2.14
Kedalaman hujan rencana di satu titik waktu pada Curve IDF ...........II – 32
Gambar 2.15
Hidrograf hujan rencana ...................................................................... II – 33
Gambar 2.16
Hidrograf seragam ...............................................................................II – 38
Gambar 2.17
Hidrograf Segitiga ................................................................................II – 39
Gambar 2.18
Segitiga Tekstur Tanah .......................................................................II – 51
Gambar 2.19
Bentuk-bentuk Profil Saluran...............................................................II – 53
Gambar 2.20
Penampang Persegi Panjang ............................................................. II – 54
Gambar 2.21
Penampang trapesium ........................................................................II – 55
Gambar 3.1
Layout Jaringan Drainase ................................................................... III – 1
Gambar 3.2
Garafik Uji Konsistensi Data ................................................................ III – 4
Gambar 3.3
Skema Pengaruh Stasiun Terhadap Batas DAS .............................. III – 10
Gambar 3.4
Batas DAS Pada Lokasi Survei ......................................................... III – 11
Gambar 3.5
Gambar Penamaan Saluran .............................................................. III – 12
Gambar 3.6
Gambar Penamaan Gorong - Gorong .............................................. III – 19
vii
DAFTAR LAMPIRAN
Lampiran 1. Gambar Potongan Melintang Lampiran 2. Gambar Potongan Memanjang Lampiran 3. Dokumentasi
viii
BAB I PENDAHULUAN
1.1.
LATAR BELAKANG Kota merupakan tempat bagi banyak orang untuk melakukan berbagai aktivitas,
maka untuk menjamin kesehatan dan kenyamanan penduduknya harus ada sanitasi yang memadai, misalnya drainase. Dengan adanya drainase tersebut genangan air hujan dapat disalurkan sehingga banjir dapat dihindari dan tidak akan menimbulkan dampak gangguan kesehatan pada masyarakat serta aktivitas masyarakat tidak akan terganggu. Drainase merupakan suatu sistem untuk menyalurkan air hujan. Sistem ini mempunyai peranan yang sangat penting dalam menciptakan lingkungan yang sehat, apalagi di daerah yang berpenduduk padat seperti di perkotaan. Drainase juga merupakan salah satu fasilitas dasar yang dirancang sebagai sistem guna memenuhi kebutuhan masyarakat dan merupakan komponen penting dalam perencanaan kota ( perencanaan infrastruktur khususnya ). Secara umum, drainase didefinisikan sebagai serangkaian bangunan air yang berfungsi untuk mengurangi dan/atau membuang kelebihan air dari suatu kawasan atau lahan, sehingga lahan dapat difungsikan secara optimal. Drainase juga diartikan sebagai usaha untuk mengontrol kualitas air tanah dalam kaitannya dengan salinitas, dimana drainase merupakan suatu cara pembuangan kelebihan air yang tidak diinginkan pada suatu daerah, serta cara – cara penanggulangan akibat yang ditimbulkan oleh kelebihan air tersebut. Dari sudut pandang lain, drainase adalah salah satu unsur prasarana umum yang dibutuhkan masyarakat kota dalam rangka menuju kehidupan kota yang aman, nyaman, bersih, dan sehat. Prasarana drainase disini berfungsi untuk mengalirkan air permukaan ke badan air ( sumber air permukaan dan bawah permukaan tanah ) dan atau bangunan resapan. Selain itu juga berfungsi sebagai pengendali kebutuhan air permukaan dengan tindakan untuk memperbaiki daerah becek, genangan air dan banjir. Kebutuhan terhadap drainase berawal dari kebutuhan air untuk kehidupan manusia dimana untuk kebutuhan tersebut manusia memanfaatkan sungai sebagai
I-1
kebutuhan rumah tangga, pertanian, perikanan, peternakan dan lainnya. Untuk kebutuhan rumah tangga menghasilkan air kotor yang perlu dialirkan dan dengan makin bertambahnya pengetahuan manusia mengenal industri yang juga mengeluarkan limbah yang perlu di alirkan. Pada musim hujan terjadi kelebihan air berupa limpasan permukaan yang sering kali menyebabkan banjir sehingga manusia mulai berfikir akan kebutuhan sistem saluran yang dapat mengalirkan air lebih terkendali dan berkembang menjadi ilmu drainase.
1.2.
MAKSUD DAN TUJUAN Maksud dan Tujuan dari penulisan laporan ini adalah agar mahasiswa mampu
memahami dan merencanakan suatu sistem drainase serta sebagai suatu syarat kelulusan mata kuliah drainase perkotaan. Namun selain itu juga terdapat beberapa tujuan lain, yaitu : 1.
Agar mahasiswa dapat membuat Lay Out Jaringan Drainase
2.
Agar mahasiswa dapat Menganalisa Debit Hujan Rancangan
3.
Agar mahasiswa dapat Menganalisa Debit Banjir Rancangan
4.
Agar mahasiswa dapat Menghitung Limbah Permukiman
5.
Agar Mahasiswa dapat Menghitung Kapasitas Saluran
6.
Agar mahasiswa dapat Menganalisa Hidrolika
1.3.
PEDOMAN KRITERIA DAN STANDAR Dalam tugas ini Pedoman Kriteria dan Standar Perancangan Drainase
menggunakan Peraturan SNI – 03 – 2406 -1991.
1.4.
LINGKUP PEMBAHASAN TUGAS Adapun lingkup pembahasan dari penulisan ini dapat diuraikan sebagai berikut:
1.
Lay Out Jaringan Drainase
2.
Analisa Debit Hujan Rancangan
3.
Analisa Debit Banjir Rancangan
4.
Perhitungan Limbah Permukiman
5.
Perhitungan Kapasitas Saluran
6.
Analisa Hidrolika
I-2
1.5. 2.
SISTEMATIKA PENYUSUNAN LAPORAN TUGAS BAB I Berisikan Pendahuluan yang terdiri dari Latar Belakang, Maksud dan Tujuan, Pedoman Kriteria dan Standar, Lingkup Pembahasan Tugas, dan Sistematika Penyusunan Laporan Tugas.
3.
BAB II Berisikan Landasan Teori yang terdiri dari Gambaran Jaringan Drainase, Debit Hujan Rancangan, Debit Banjir Rancangan, Limbah Permukiman, Kapasitas Saluran dan Hidrolika.
4.
BAB III Berisikan Perencanaan Jaringan Drainase Perkotaan yang terdiri dari Layout Jaringan Drainase, Analisa Debit Hujan Rancangan, Analisa Debit Banjir Rancangan, Perhitungan Limbah Permukiman, Perhitungan Kapasitas Saluran dan Analisa Hidrolika.
5.
BAB IV Berisikan
Penutup
yang
terdiri
dari
Kesimpulan
dan
saran
I-3
BAB II LANDASAN TEORI
2.1.
GAMBARAN JARINGAN DRAINASE
2.1.1.
Pengertian Drainase Drainase
secara
umum
didefinisikan
sebagai
ilmu
pengetahuan
yang
mempelajari usaha untuk mengalirkan air yang berlebihan dalam suatu konteks pemanfaatan tertentu. Drainase perkotaan adalah ilmu yang diterapkan mengkhususkan pengkajian pada kawasan perkotaan yang erat kaitannya dengan kondisi lingkungan sosial yang ada di kawasan kota. Drainase perkotaan / terapan merupakan sistem pengiringan dan pengaliran air dari wilayah perkotaan yang meliputi: Pemukiman, Kawasan Industri , Kampus dan Sekolah, Rumah Sakit & Fasilitas Umum, Lapangan Olahraga,
Lapangan Parkir,
Pelabuhan Udara dan lain-lain. Kriteria desain drainase perkotaan memiliki kekhususan, sebab untuk perkotaan ada tambahan variable desain seperti: 1.
Keterkaitan dengan tata guna lahan.
2.
Keterkaitan dengan masterplan drainasi kota.
3.
Keterkaitan dengan masalah sosial budaya. (H.A. Halim Hasmar : 2012)
2.1.2.
Tujuan Drainase
1.
Untuk meningkatkan kesehatan lingkungan permukiman.
2.
Pengendalian kelebihan air permukaan dapat dilakukan secara aman, lancar dan efisien serta sejauh mungkin dapat mendukung kelestarian lingkungan.
3.
Dapat mengurangi/menghilangkan genangan-genangan air yang menyebabkan bersarangnya nyamuk malaria dan penyakit-penyakit lain, seperti : demam berdarah,
II-1
disentri
serta
penyakit
lain
yang
disebabkan
kurang
sehatnya
lingkungan
permukiman. 4.
Untuk memperpanjang umur ekonomis sarana-sarana fisik antara lain : jalan, kawasan permukiman, kawasan perdagangan dari kerusakan serta gangguan kegiatan akibat tidak berfungsinya sarana drainase.
2.1.3. 1.
Fungsi Drainase
Mengeringkan bagian wilayah kota yang permukaan lahannya rendah dari genangan sehingga tidak menimbulkan dampak negative berupa kerusakan infrastruktur kota dan harta benda milik masyarakat.
2.
Mengalirkan kelebihan air permukaan ke badan air terdekat secepatnya agar tidak membanjiri/menggenangi kota yang dapat merusak selain harta benda masyarakat juga infrastruktur perkotaan.
3.
Mengendalikan sebagian air permukaan akibat hujan yang dapat dimanfaatkan untuk persediaan air dan kehidupan akuatik.
4.
Meresapkan air permukaan untuk menjaga kelestarian air tanah. (H.A. Halim Hasmar 2012 : 1)
2.1.4.
Jenis – Jenis dan Pola – Pola Drainase
2.1.4.1. Jenis – Jenis Drainase 1.
Menurut Cara Terbentuknya A.
Drainase Alamiah (Natural Drainage) Terbentuk secara alami, tidak ada unsur campur tangan manusia serta tidak terdapat bangunan-bangunan pelimpah, pasangan batu/beton, gorong-gorong dan lain-lain.
B.
Drainase Buatan (Artificial Drainage) Dibentuk berdasarkan analisis ilmu drainasi, untuk menentukan debit akibat hujan, kecepatan resapan air dalam tanah dan dimensi saluran serta memerlukan bangunan-bangunan khusus seperti selokan pasangan batu/beton, gorong-gorong, pipa-pipa dan sebagainya.
2.
Menurut Letak Saluran
II-2
A.
Drainase Muka Tanah (Surface Drainage) Saluran drainase yang berada di atas permukaan tanah yang berfungsi mengalirkan air limpasan permukaan.
B.
Drainase Bawah Tanah (Sub Surface Drainage) Saluran drainase yang bertujuan mengalirkan air limpasan permukaan melalui media di bawah permukaan tanah (pipa-pipa), dikarenakan alasan-alasan tertentu. Alasan itu antara lain: tuntutan artistik, tuntutan fungsi permukaan tanah yang tidak membolehkan adanya saluran di permukaan tanah seperti lapangan sepakbola, lapangan terbang, taman dan lain-lain.
3.
Menurut Fungsi A.
Single Purpose Saluran berfungsi mengalirkan satu jenis air buangan saja, misalnya air hujan atau jenis air buangan lain seperti air limbah domestik, air limbah industry dan lain-lain.
B.
Multy Purpose Saluran berfungsi mengalirkan beberapa jenis buangan, baik secara bercampur maupun bergantian.
4.
Menurut Konstruksi A.
Saluran Terbuka Saluran untuk air hujan yang terletak di area yang cukup luas. Juga untuk saluran air non hujan yang tidak mengganggu kesehatan lingkungan.
B.
Saluran Tertutup Saluran air untuk air kotor yang mengganggu kesehatan lingkungan. Juga untuk saluran dalam kota.
5.
Menurut Segi Fisik A.
Saluran primer
B.
Saluran sekunder
C. Saluran tersier
II-3
D. Saluran kuarter E. 6.
dan seterusnya
Menurut Daerah Pelayanan A.
Sistem drainase utama (mayor) Adalah bagian dari jaringan drainase kota yangmempunyai pengaruh langsung thd kepentingan masyrakatumum; sistem ini mengumpulkan air dari sistem drainaseminor dan membawanya ke sungai.
B.
Sistem drainase lokal (minor) Adalah bagian dari jaringan drainase kota termasuk talangatap, selokan, dan saluran yang mengumpulkan air drainasedari sisi hulu suatu daerah layanan (perumahan, kawasanindustri, dsb) dan membawanya ke sistem; direncanakan dengan periode ulang 1 - 10thn.
2.1.4.2. Pola – Pola Drainase 1.
Siku Dibuat pada daerah yang mempunyai topografi sedikit lebih tinggi dari pada sungai. Sungai sebagai saluran pembuang akhir berada di tengah kota.
Gambar 2.1 Jaringan Drainase Siku
II-4
2.
Paralel Saluran utama terletak sejajar dengan saluran cabang. Dengan saluran cabang (sekunder) yang cukup banyak dan pendek-pendek, apabila terjadi perkembangan kot, saluran-saluran akan dapat menyesuaikan diri.
Gambar 2.2 Jaringan Drainase Paralel 3.
Grid Iron Untuk daerah dimana sungainya terleteak di pinggir kota, sehingga saluran-saluran cabang dikumpulkan dulu pada saluran pengumpul.
Gambar 2.3 Jaringan Drainase Grid Iron
II-5
4.
Alamiah Sama seperti pola siku, hanya sungai pada pola alamiah lebih besar.
Gambar 2.4 Jaringan Drainase Alamiah 5.
Radial Pada daerah berbukit, sehingga pola saluran memencar ke segala arah.
Gambar 2.5 Jaringan Drainase Radial
II-6
6.
Jaring-Jaring Mempunyai saluran-saluran pembuang yang mengikuti arah jalan raya dan cocok untuk daerah dengan topografi datar.
Gambar 2.6 Jaringan Drainase Jaring-Jaring Keterangan: A.
Saluran Cabang adalah saluran yang berfungsi sebagai pengumpul debit yang diperolah dari saluran drainase yang lebih kecil dan akhirnya dibuang ke saluran utama.
B.
Saluran Utama adalah saluran yang berfungsi sebagai pembawa air buangan dari suatu daerah ke lokasi pembuangan tanpa harus membahayakan daerah yang dilaluinya.
2.1.5.
Bentuk Penampang Saluran Bentuk-bentuk saluran untuk drainase tidak jauh berbeda dengan saluran irigasi
pada
umumnya.
Dalam
perancangan
dimensi
saluran
harus
diusahakan
dapat
membentuk dimensi yang ekonomis, sebaliknya dimensi yang terlalu kecil akan menimbulkan permasalahan karena daya tamping yang tidak memedai. Adapun bentukbentuk saluran antara lain: 1.
Trapesium Pada umumnya saluran ini terbuat dari tanah akan tetapi tidak menutup kemungkinan dibuat dari pasangan batu dan beton. Saluran ini memerlukan cukup ruang. Berfungsi untuk menampung dan menyalurkan limpasan air hujan serta air buangan domestik dengan debit yang besar.
II-7
Gambar 2.7 Penampang Trapesium 2.
Persegi Saluran ini terbuat dari pasangan batu dan beton. Bentuk saluran ini tidak memerlukan banyak ruang dan areal. Berfungsi untuk menampung dan menyalurkan limpasan air hujan serta air buangan domestik dengan debit yang besar.
Gambar 2.8 Penampang Persegi 3.
Segitiga Saluran ini sangat jarang digunakan tetap mungkin digunakan dalam kondisi tertentu.
II-8
Gambar 2.9 Penampang Segitiga 4.
Setengah Lingkaran Saluran ini terbuat dari pasangan batu atau dari beton dengan cetakan yang telah tersedia. Berfungsi untuk menampung dan menyalurkan limpasan air hujan serta air buangan domestik dengan debit yang besar.
Gambar 2.10 Penampang Setengah Lingkaran
2.1.6. 1.
Sistem Jaringan Drainase
Sistem Drainase Mayor Sistem drainase mayor yaitu sistem saluran yang menampung dan mengalirkan air dari suatu daerah tangkapan air hujan (Catchment Area). Pada umumnya sistem drainase mayor ini disebut juga sebagai sistem saluran pembuangan utama (major
II-9
system) atau drainase primer. Sistem jaringan ini menampung aliran yang berskala besar dan luas seperti saluran drainase primer, kanal-kanal dan sungai-sungai. Perencanaan drainase mayor ini umumnya dipakai dengan periode ulang antara 5-10 tahun dan pengukuran topografi yang detail diperlukan dalam perencanaan sistem drainase ini. 2.
Sistem Drainase Mikro Sistem drainase mikro yaitu sistem saluran dan bangunan pelengkap drainase yang menampung dan mengalirkan air dari daerah tangkapan air hujan (Catchment Area). Secara keseluruhan yang termasuk dalam sistem drainase mikro adalah saluran di sepanjang sisi jalan, saluran atau selokan air hujan di sekitar bangunan, goronggorong, saluran drainase kota dan lain sebagainya dimana debit yang dapat ditampungnya tidak terlalu besar.(Allafa : 2008)
2.2.
DEBIT HUJAN RANCANGAN
2.2.1.
Pemilihan Data Hujan Hujan ( Presipitasi ) adalah faktor utama yang mengendalikan berlangsungnya
daur hidrologi dalam suatu wilayah DAS. Terjadinya hujan karena adanya perpindahan massa uap air ke tempat yang lebih tinggi sebagai respon adanya beda tekanan udara antara dua tempat yang berbeda ketinggiannya. Di tempat tersebut, karena akumulasi uap air pada suhu yang rendah maka terjadilah proses kondensasi, dan pada gilirannya massa uap air tersebut jatuh sebagai air hujan. Namun demikian, mekanisme berlangsungnya hujan melibatkan tiga faktor utama. Dengan kata lain, akan terjadi hujan apabila berlangsung tiga kejadian (C. Asdak, 1995) sebagai berikut: 1.
Kenaikan massa uap air ke tempat yang lebih tinggi sampai saatnya atmosfer menjadi jenuh.
2.
Terjadi kondensasi atas partikel-partikel uap air di atmosfer.
3.
Partikel-partikel uap air tersebut bertambah besar sejalan dengan waktu untuk kemudian jatuh ke bumi dan permukaan laut ( sebagai hujan ) karena grafitasi. Hujan sangat dipengaruhi oleh iklim dan keadaan topografi daerah., sehingga
keadaanya sangat berbeda untuk masing-masing daerah.
II-10
Menurut Sri Harto (1993),Linsley, dkk (1986), tipe hujan sering dibedakan menurut faktor penyebab terangkatnya udara yang mengakibatkan hujan adalah sebagai berikut : 1.
Hujan Konvektif (convective), bila terjadi ketidak seimbangan udara karena panas setempat, dan udara bergerak keatas dan berlaku proses adiabatik. Biasanya merupakan hujan dengan intensitas tinggi, dan terjadi dalam waktu yang relatif singkat, didaerah yang relatif sempit.
2.
Hujan Siklon (cyclonic), bila gerakan udara ke atas terjadi akibat adanya udara panas yang bergerak diatas lapisan udara yang lebih padat dan lebih dingin. Hujan jenis ini biasanya terjadi dengan intensitas sedang, mencakup daerah yang luas dan berlangsung lama.
3.
Hujan Orografik (orographic rainfall), terjadi karena udara bergerak ke atas akibat adanya pegunungan. Akibatnya , terjadi dua daerah yang disebut daerah hujan dan daerah bayangan hujan. Sifat hujan ini dipengaruhi oleh sifat dan ukuran pegunungan.
Data hujan yang diperlukan dalam analisa hidrologi ada 5 unsur yang harus ditinjau, yaitu: 1.
Intensitas I, adalah laju hujan = tinggi hujan persatuan waktu, misalnya : mm/menit, mm/jam, mm/hari.
2.
Lama waktu (duration) t, adalah lamanya curah hujan (durasi) dalam menit atau jam.
3.
Tinggi hujan d, adalah jumlah atau banyaknya hujan yang dinyatakan dalam ketebalan air di atas permukaan datar, dalam mm.
4.
Frekwensi, adalah frekwensi kejadian, dinyatakan dengan waktu ulang ( return period ) T, misalnya sekali dalam T tahun.
5.
Luas, adalah luas geografis curah hujan. Hujan merupakan komponen masukan yang paling penting dalam proses
hidrologi, karena jumlah kedalaman hujan (rainfall depth) akan dialihragamkan menjadi aliran di sungai, baik melalui limpasan permukaan (surface runoff), aliran antara (interflow, sub surface flow) maupun sebagai aliran air tanah (groundwater). Instrumen pengukur hujan (raingauge) menurut Sri Harto (1993) ada dua jenis yaitu penakar hujan biasa (manual raingauge), dan penakar hujan otomatik (automatic raingauge). Alat-alat tersebut harus dipasang sesuai dengan aturan yang ditetapkan oleh WMO (World Meteorological Organization) atau aturan yang disepakati secara nasional di suatu Negara.
II-11
Data Hujan merupakan masukan utama dari sistem sungai dan aliran sungai. Oleh karena itu untuk mengetahui semua karakteristik aliran, harus diketahui informasi mengenai besaran curah hujan yang terjadi di lokasi yang sama atau disekitarnya. Hampir semua kegiatan pengembangan sumber daya air memerlukan informasi hidrologi untuk dasar perencanaan dan perancangan, salah satu informasi hidrologi yang penting adalah data hujan. Data hujan ini dapat terdiri dari data hujan harian, bulanan dan tahunan. Pengumpulan dan pengolahan data hujan ini diharapkan dapat menyajikan data hujan yang akurat, menerus dan berkelanjutan sesuai dengan kondisi lapangan, tersusun dalam sistem database, data menyediakan data/informasi hidrologi yang tepat sesuai dengan kebutuhan. Dengan
berkembangnya
kondisi
Satuan
Wilayah
Sungai
(SWS),
maka
kebutuhan akan air semakin meningkat yang kadang-kadang terjadi konflik antar kepentingan. Kecermatan dalam analisis ketersediaan air dapat dicapai bilamana tersedia data hujan yang akurat. Data hujan ini juga digunakan untuk input evaluasi unjuk kerja desaign capacity atau pedoman operasi bangunan air. Data hujan yang diperoleh dari alat penakar hujan merupakan hujan yang terjadi hanya pada satu tempat atau titik saja (point rainfall). Mengingat hujan sangat bervariasi terhadap tempat (space), maka untuk kawasan yang luas, satu penakar hujan belum dapat menggambarkan hujan wilayah tersebut. Dalam hal ini diperlukan hujan kawasan yang diperoleh dari harga rata-rata curah hujan beberapa stasiun penakar hujan yang ada di dalam/atau disekitar kawasan tesebut. Curah hujan setiap hari yang direkam dari stasiun curah hujan digunakan sebagai masukan untuk pemodelan konsep periode pertumbuhan yang dihitung berdasarkan curah hujan dengan metode interpolasi spasial. Interpolasi adalah suatu metode atau fungsi matematika yang menduga nilai pada lokasi-lokasi yang datanya tidak tersedia. Interpolasi spasial mengasumsikan bahwa attribut data bersifat kontinu di dalam ruang (space) dan attribut ini saling berhubungan (dependence) secara spasial. Kedua asumsi tersebut mengindikasikan bahwa pendugaan attribut data dapat dilakukan berdasarkan lokasi-lokasi di sekitarnya dan nilai pada titik-titik yang berdekatan akan lebih mirip daripada nilai pada titik-titik yang terpisah lebih jauh.
II-12
Ada beberapa metode interpolasi spasial yng digunakan untuk analisis sebaran data yaitu salah satunya menggunakan metode invers distance. M etode interpolasi invers distance merupakan suatu fungsi jarak antara titik sasaran (H0, V0) dan titik contoh (Hi,Vi) untuk i = 1,2,3 , ..., n. Metode invers distance ini cukup baik dalam menduga nilai contoh pada suatu lokasi . Sedangkan metode. Data curah hujan yang tercatat diproses berdasarkan areal yang mendapatkan hujan sehingga didapat tinggi curah hujan rata-rata dan kemudian meramalkan besarnya curah hujan pada periode tertentu. Dalam menentukan Curah Hujan Areal yang berasal dari pencatatan penakaran curah hujan. Dari pencatatan curah hujan, kita hanya mendapatkan data curah hujan di suatu titik tertentu ( point rainfall ). Jika dalam suatu areal terdapat beberapa alat penakar atau pencatat curah hujan, maka dapat diambil nilai ratarata untuk mendapatkan nilai curah hujan areal.
2.2.2.
Curah Hujan Rerata Daerah (Area Rainfall) Besarnya curah hujan disuatu tempatsangat dipengaruhi oleh lokasi geografis
dan kondisi alam sekitarnya. Lautan adalah sumber dari curah hujan tersebut. Penguapan terjadi darilautan yang menguap akibat panas matahari dan uap air terserap dalam arus udara yang bergerak melewati permukaan laut. Udara yang mengandung uap air tersebut naik ke atmosfer lalu mendingin sampai di bawah suhu titik embun pada waktu uap air itu tercurah sebagai hujan. Curah hujan yang diperlukan dalam merencanakan pemanfaatan air dan merancang pengendalian banjir adalah curah hujan rata-rata di seluruh daerah yang bersangkutan, bukan hanya curah hujan pada suatu titik tertentu. Apabila pada suatu daerah terdapat lebih dari satu stasiun penakar hujan yang ditempatkan secara terpencar, hujan yang tercatat di masing-masing stasiun dapat tidak sama. Curah hujan ini disebut curah hujan wilayah dan dinyatakan dalam kedalaman air (mm). Dalarn analisis hidrologi diperlukan untuk menentukan hujan rerata pada daerah tersebut, yang dapat dilakukan dengan tiga metode berikut yaitu metode rerata aritmatik (aljabar), metode poligon Thiessen, dan metode Isohyet. 1.
Metode Rerata Aritmatik (Aljabar) Metode ini adalah yang paling sederhana untuk menghitung hujan rerata pada suatu daerah. Pengukuran yang dilakukan di beberapa stasiun dalam waktu yang
II-13
bersamaan dijumlahkan dan kemudian dibagi dengan jumlah stasiun. Stasiun hujan yang digunakan dalam hitungan biasanya adalah yang berada di dalam DAS; tetapi stasiun di luar DAS yang masih berdekatan juga bisa diperhitungkan. Metode rerata aljabar ini memberikan hasil yang baik apabila: a)
Stasiun hujan tersebar secara merata di DAS,
b)
Distribusi hujan relatif merata pada seluruh DAS.
Nilai curah hujan daerah / wilayah ditentukan menggunakan rumus berikut :
X=
R1 +R2 +R3 +…..…… +Rn n
......................................................................……………… (0.1)
dengan:
2.
X
= Besar curah hujan rerata daerah (mm)
R1…Rn
= Besar hujan di setiap titik pengamatan (mm)
n
= Jumlah titik pengamatan (stasiun hujan)
Metode Thiessen Metode poligon Thiessen banyak digunakan untuk menghitung hujan rerata kawasan. Metode ini memperhitungkan bobot dari masing-masing stasiun yang mewakili luasan di sekitarnya. Pada suatu luasan di dalam DAS dianggap bahwa hujan adalah sama dengan yang terjadi pada stasiun yang terdekat, sehingga hujan yang tercatat pada suatu stasiun mewakili luasan tersebut, Metode ini digunakan apabila penyebaran stasiun hujan di daerah yang ditinjau tidak merata. Hitungan curah hujan rerata dilakukan
dengan
memperhitungkan
daerah
pengaruh
dari
tiap
stasiun.
Pembentukan poligon Thiessen adalah sebagai berikut ini : a.
Stasiun pencatat hujan digambarkan pada peta DAS yang ditinjau, termasuk stasiun hujan di luar DAS yang berdekatan, seperti dalam Gambar 2.2.
b.
Stasiun-stasiun tersebut dihubungkan dengan garis lurus (garis terputus) sehingga membentuk segitiga-segitiga, yang sebaiknya mempunyai sisi dengan panjang yang kira-kira sama.
c.
Dibuat garis berat pada sisi-sisi segitiga seperti ditunjukkan dengan garis penuh seperti yang ditunjukkan pada Gambar 2.2
II-14
d.
Garis-garis berat tersebut membentuk poligon yang mengelilingi tiap stasiun, yang mewakili luasan yang dibentuk oleh poligon. Untuk stasiun yang berada di dekat batas DAS, garis batas DAS membentuk batas tertutup dari poligon.
e.
Luas tiap poligon diukur dan kemudian dikalikan dengan kedalaman hujan di stasiun yang berada di dalam poligon.
f.
Jumlah dari hitungan pada butir e untuk semua stasiun dibagi dengan luas daerah yang ditinjau menghasilkan hujan rerata daerah tersebut, yang dalam bentuk matematik mempunyai bentuk berikut ini.
A1 R1 +A2 R2 +A3 R3 +…..……+AnRn
X=
A1 +A2 +A3 +…..…… +An
........................................................................… (0.2)
dengan : X
= besar curah hujan rerata daerah (mm)
R1…Rn
= Besar hujan di tiap titik pengamatan (mm)
A1… An
= Luas daerah yang mewakili tiap stasiun (km 2)
(Sumber: Triatmodjo, 2008) Gambar 2.11 Poligon Thiessen
II-15
3.
Metode Isohyet Isohiet adalah garis yang menghubungkan titik-titik dengan kedalaman hujan yang sama. Pada metode isohyet, dianggap bahwa hujan pada suatu daerah di antara dua garis isohyet adalah merata dan sama dengan nilai rerata dari kedua garis isohyet tersebut. Pembuatan garis isohyet dilakukan dengan prosedur berikut ini : a.
Lokasi stasiun hujan dan kedalaman hujan digambarkan pada peta daerah yang ditinjau.
b.
Dari nilai kedalaman hujan di stasiun yang berdampingan dibuat interpolasi dengan pertambahan nilai yang ditetapkan.
c.
Dibuat kurva yang menghubungkan titik-titik interpolasi yang mempunyai kedalaman hujan yang sarna. Ketelitian tergantung pada pembuatan garis isohyet dan intervalnya.
d.
Diukur luas daerah antara dua isohyet yang berurutan dan kemudian dikalikan dengan nilai rerata dari nilai kedua garis isohyet.
e.
Jumlah dari hitungan pada butir d untuk seluruh garis isohyet dibagi dengan luas daerah yang ditinjau menghasilkan kedalaman hujan rerata daerah tersebut. Secara matematis hujan rerata tersebut dapat ditulis:
R +R R +R Rn+Rn+1 A1 1 2 +A2 2 3+…..……+An 2
X=
2
A1 +A2 +…..…… +An
2
...................................................................... (0.1)
atau
X=
∑∑
Ri +Ri+1 n i=1 Ai 2 n A i=1 i
................................................................................................. (0.2)
dengan : X
= Besar curah hujan rerata daerah (mm)
A1 ,A2 ,…,
= luas bagian-bagian antara garis-garis isohyet (km 2)
R1…Rn
= besar curah hujan rata – rata pada bagian A1,A2 ,…, An
II-16
(Sumber: Triatmodjo, 2008) Gambar 2.12 Metode Isohyet
2.2.3.
Uji Konsistensi Data – data hujan dipakai untuk keperluan perencanaan drainase adalah data
hujan harian maksimum dan memenuhi persyaratan baik kualitas maupun k uantitas. Untuk menentukan kecocokan (the goodness of fit test) distribusi frekuensi dari sampel
data
terhadap
fungsi
distribusi
peluang
yang
diperkirakan
dapat
menggambarkan/mewakili distribusi frekuensi tersebut diperlukan pengujian parameter. Pengujian parameter dapat dilakukan dengan dua cara, yaitu Chi-Kuadrat ataupun dengan
Smirnov-Kolmogorov.
Umumnya
pengujian
dilaksanakan
dengan
menggambarkan pada kertas peluang dan menentukan apakah data tersebut merupakan garis lurus, atau dengan membandingkan kurva frekuensi dari data pengamatan terhadap kurva teoritisnya (Soewarno, 1995). 1.
Uji Chi-Kuadrat Uji chi-kuadrat dimaksudkan untuk menentukan apakah persamaan distribusi peluang yang telah dipilih dapat mewakili dari distribusi statistik sampel data yang dianalisis.
II-17
Pengambilan keputusan uji ini menggunakan parameter x 2, oleh karena itu disebut dengan uji Chi-Kuadrat. Prinsip pengujian dengan metode ini didasarkan pada jumlah pengamatan yang diharapkan pada pembagian kelas, dan ditentukan terhadap jumlah data pengamatan yang terbaca di dalam kelas tersebut, atau dengan membandingkan nilai chi square
Xh Xh ∑ (
) dengan nilai chi squarekritis (
rumus (Soewarno, 1995):
X
). Uji keselarasan chi kuadrat menggunakan
2
N (Of -Ef) t=1 Ef
..................................................................................................... (2.6)
dengan:
Xh
= Nilai Chi-Square terhitung
Ef
= Frekuensi (banyak pengamatan) yang diharapkan sesuai dengan pembagian kelasnya.
Of
= Frekuensi yang terbaca pada kelas yang sama
N
= Jumlah sub-kelompok dalam satu grup
Suatu distribusi dikatakan selaras jika nilai
X
Xh
hitungdiperoleh lebih kecil dari nilai
(Chi-Kuadrat kritik), untuk suatu derajat nyata tertentu, yang sering diambil 5%.
Derajat kebebasan dihitung dengan persamaan berikut : DK= K-(α+1).......................................................................................................... (2.7) dengan : DK
= Derajad kebebasan
K
= Banyaknya kelas
α
= Banyaknya keterikatan (parameter), untuk uji Chi-Kuadrat adalah 2.
Nilai
X
, diperoleh dari Tabel 2.1 dibawah ini. Disarankan agar banyaknya kelas tidak
kurang dari 5 dan frekuensi absolut tiap k elas tidak kurang dari 5 pula. Tabel 2.1 Nilai Chi Kuadrat Kritik
II-18
Distribusi
DK
X
0.995
0.9
0.5
0.1
0.05
0.01
1
0
0.016
0.455
2.706
3.841
6.635
2
0.01
0.211
1.386
4.605
5.991
9.21
3
0.072
0.584
2.366
6.251
7.815
11.345
4
0.207
1.064
3.357
7.779
9.488
13.277
5
0.412
1.61
4.351
0.236
11.07
15.086
6
0.676
2.402
5.348
10.645
12.592
16.812
7
0.989
2.833
6.346
12.017
14.067
18.475
8
1.344
3.49
7.344
13.362
15.507
20.09
9
1.735
4.168
8.343
14.684
16.919
21.666
10
2.156
4.865
9.342
15.987
18.307
23.209
(Sumber: Soemarto, 1987) Adapun prosedur pengujian Chi-kuadrat adalah sebagai berikut : A.
Urutkan data pengamatan (dari yang terbesar ke yang terkecil atau sebaliknya)
B.
Kelompokan data menjadi G sub-grup yang masing – masing beranggotakan minimal 4 data pengamatan
C. Jumlahkan data pengamatan sebesar O f tiap – tiap sub-grup D. Jumlahkan data dari persamaan distribusi yang digunakan sebesar Ef
O – E dan –
E.
Pada tiap sub grup hitung nilai
F.
Jumlah seluruh G sub-grup nilai
–
untuk menentukan nilai chi-kuadrat
G. Tentukan derajat kebebasan dk = G-R-1 (nilai R = 2 untuk distribusi normal dan binominal, nilai R = 1 untuk distribusi poisson dan gumbel). Adapun kriteria penilaian hasilnya adalah sebagai berikut : A.
Apabila peluang lebih dari 5 % maka persamaan distribusi teoritis yang digunakan dapat diterima.
II-19
B.
Apabila peluang lebih kecil dari 1 % maka persamaan distribusi teoritis yang digunakan dapat diterima.
C. Apabila peluang berada diantara 1 % - 5 %, maka tidak mungkin mengambil keputusan, perlu penambahan data. 2.
Uji Smirnov-Kolomogorov Uji kecocokan Smirnov-Kolomogorov, sering juga disebut uji kecocokan non parametrik (non parametrik test), karena pengujiannya tidak menggunakan fungsi distribusi tertentu. Pengujian kecocokan sebaran dengan cara ini dinilai lebih sederhana
dibanding
dengan
pengujian
dengan
cara
Chi-Kuadrat.
Dengan
membandingkan kemungkinan (probability) untuk setiap variat, distribusi empiris dan teoritisnya, akan terdapat perbedaan ( Apabila harga
max
)
tertentu.
yang terbaca pada kertas probabilitas lebih kecil dari
kritis
maka distribusi teoritis yang digunakan untuk menentukan persamaan distribusi dapat diterima, apabila
max
lebih besar dari
kritis
maka distribusi teoritis yang
digunakan untuk menentukan persamaan distribusi tidak dapat diterima. Uji Smirnov Kolmogorof digunakan untuk menguji kesesuaian dari distribusi secara horizontal dari data. Pengujian ini dilakukan dengan membandingkan probabilitas tiap data antara sebaran empiris dan sebaran teoritis. Sebagai alternatif untuk menguji kesesuaian distribusi (goodness of fit), dapat digunakan Uji Smirnov-Kolmogorov. Caranya dengan mengurutkan data X dari kecil ke besar. Kemudian menghitung simpangan maksimum D dengan rumus:
D
Max | P
t
( x)
P ( x ) | e
..................................................................................... (2.8)
dengan: Pt(x)
= posisi data Xmenurut garis sebaran teoritis.
Pe(x)
= posisi data X menurut pengamatan, dalam hal ini dipakai posisi plottingmenurut Weibull
Untuk mendapatkan Sn(x) memakai posisi plotting dari Weibull, digunakan rumus berikut.
II-20
P e
( x)
m
........................................................................................................ (2.9)
1 n
Sedangkan Pt (x) adalah besarnya probabilitasdari sebaran yang diujiuntuk data X. Apabila diketahui besarnya Pr (probabilitas terjadi),maka:
P t
1 / Tr
............................................................................................................ (2.10)
Tr (Q) 1
Tr (Q)
Yt ln ln
.................................................................................... (2.11)
dengan: Pr
= Probabilitas data X untuk disamai atau dilampaui
Simpangan maksimum D dari hasil perhitungan lalu dibandingkan dengan nilai D kritis (Dcr) dari Tabel 2.2 berikut: Tabel 2.2 Nilai D kritis (Dcr) Smirnov Kolmogorof
Level of Significance (a) N 20
15
10
5
1
1
0.9
0.925
0.95
0.975
0.995
2
0.684
0.726
0.776
0.842
0.929
3
0.565
0.597
0.642
0.708
0.829
4
0.494
0.525
0.564
0.624
0.734
5
0.446
0.474
0.51
0.563
0.669
6
0.41
0.436
0.47
0.521
0.618
7
0.381
0.405
0.438
0.486
0.577
II-21
8
0.358
0.381
0.411
0.4457
0.543
9
0.339
0.36
0.388
0.432
0.514
10
0.322
0.342
0.368
0.409
0.486
11
0.307
0.326
0.352
0.391
0.468
12
0.295
0.313
0.338
0.375
0.45
13
0.284
0.302
0.325
0.361
0.433
14
0.274
0.292
0.314
0.349
0.418
15
0.266
0.283
0.304
0.338
0.404
16
0.258
0.274
0.295
0.328
0.391
17
0.25
0.266
0.286
0.318
0.38
18
0.244
0.259
0.278
0.309
0.37
19
0.237
0.252
0.272
0.301
0.361
20
0.231
0.246
0.264
0.294
0.352
1.07
1.14
1.22
1.36
1.63
N0,5
N0,5
N0,5
N0,5
N0,5
N > 50
II-22
2.2.4.
Pemilihan Distribusi Hujan Rancangan Ada berbagai macam distribusi teoritis yang kesemuanya dapat dibagi menjadi
dua yaitu distribusi diskrit dan distribusi kontinyu. Yang diskrit adalah Binomial dan Poisson, sedangkan yang kontinyu adalah Normal, Log Normal, Gama, Beta, Pearson dan Gumbel. Untuk memilih jenis sebaran, ada beberapa macam distribusi yang sering dipakai yaitu Distribusi Normal, Distribusi Log Normal, Distribusi Gumbel, dan Distribusi Log Pearson III. Dalam tahap pehitungan pada perencanaan ini, berdasarkan soal yang telah diberikan maka digunakan Jenis sebaran Distribusi Ej Gumbel dan Log Normal. 1.
Metode Ej Gumbel Distribusi Gumbel umumnya digunakan untuk analisis data ekstrem, misalnya untuk analisis frekuensi banjir. Untuk menghitung curah hujan rencana dengan metode distribusi Ej Gumbel digunakan persamaan distribusi frekuensi empiris sebagai berikut: Rumus :
X X Y−Y ×S
............................................................................................. (2.12)
Dimana: Xt
:Curah Hujan Rencana
X
: Curah Hujan Rata – Rata
S
: Standar Deviasi
Sn : Standar Deviasi Ke – n (Tabel 2.1) Yn : Koefisien Untuk Distribusi Gumbel Ke – n(Tabel 2.2) Y
: Koefisien Untuk Distribusi Gumbel (Tabel 2.3)
II-23
Tabel 2.3 Hubungan antara Deviasi Standar (Sn) dengan Jumlah Data (n) n 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Sn 0,9496 0,9676 0,9833 0,9971 10,095 10,206 10,316 10,411 10,493 10,565 10,628 10,696 10,754 10,811 10,864 10,915 10,961 11,004 11,047 11,086 11,124 11,159 11,193
n 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
Sn 11,226 11,255 11,285 11,313 11,339 11,363 11,388 11,413 11,436 11,458 11,480 11,499 11,519 11,538 11,557 11,574 11,590 11,607 11,623 11,638 11,658 11,667 11,681
n 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
Sn 11,696 11,708 11,721 11,734 11,747 11,759 11,770 11,782 11,793 11,803 11,814 11,824 11,834 11,844 11,854 11,863 11,873 11,881 11,890 11,898 11,906 11,915 11,923
n 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 -
Sn 11,930 11,938 11,945 11,953 11,959 11,967 11,973 11,980 11,987 11,994 12,001 12,007 12,013 12,020 12,026 12,032 12,038 12,044 12,049 12,055 12,060 12,065 -
Sumber: Soewarno 1995, Hidrologi.
Tabel 2.4. Hubungan Reduksi Variat Rata-Rata (Yn ) dengan Jumlah Data (n) n
Yn
N
Yn
n
Yn
n
Yn
10
0,4952
33
0,5388
56
0,5508
79
0,5567
11
0,4996
34
0,5396
57
0,5511
80
0,5569
12
0,5035
35
0,5402
58
0,5515
81
0,5570
13
0,5070
36
0,5410
59
0,5518
82
0,5572
14
0,5100
37
0,5418
60
0,5521
83
0,5574
15
0,5128
38
0,5424
61
0,5524
84
0,5576
16
0,5157
39
0,5430
62
0,5527
85
0,5578
17
0,5181
40
0,5439
63
0,5530
86
0,5580
18
0,5202
41
0,5442
64
0,5533
87
0,5581
19
0,5220
42
0,5448
65
0,5535
88
0,5583
20
0,5236
43
0,5453
66
0,5538
89
0,5585
21
0,5252
44
0,5458
67
0,5540
90
0,5586
22
0,5268
45
0,5463
68
0,5543
91
0,5587
23
0,5283
46
0,5468
69
0,5545
92
0,5589
24
0,5296
47
0,5473
70
0,5548
93
0,5591
25
0,5309
48
0,5477
71
0,5550
94
0,5592
II-24
26
0,5320
49
0,5481
72
0,5552
95
0,5593
27
0,5332
50
0,5485
73
0,5555
96
0,5595
28
0,5343
51
0,5489
74
0,5557
97
0,5596
29
0,5353
52
0,5493
75
0,5559
98
0,5598
30
0,5362
53
0,5497
76
0,5561
99
0,5599
31
0,5371
54
0,5501
100
0,5600
32
0,5380
55
0,5504
-
-
77 78
0,5563 0,5565
Sumber: Soewarno 1995, Hidrologi.
2.
Metode Log Normal Distribusi Log Normal, merupakan hasil transformasi dari Distribusi Normal, yaitu dengan mengubah varian X menjadi nilai logaritmik varian X. Distribusi log-normal disebut
juga
Galton-Mcalister
distribution,
Kapteyn
distribution,
atau
Gibrat
distribution. Rumus:
logX LogX k×S X 10
......................................................................................... (2.13)
.................................................................................................... (2.14)
Dimana:
X X k S
:Curah Hujan Rencana :Curah Hujan Rata-Rata :Koefisien Untuk Distribusi Normal (Tabel 2.4) : Standar Deviasi
Tabel 2.5 Nilai Variabel Reduksi Gauss Periode Ulang T (tahun) 1001 1005 1010 1050 1110 1250 1330
Peluang
KT
0,999 0,995 0,990 0,950 0,900 0,800 0,750
-3,05 -2,58 -2,33 -1,64 -1,28 -0,84 -0,67
II-25
1430 1670 2000 2500 3330 4000 5000 10000 20000 50000 100000 200000 500000 1000000
0,700 0,600 0,500 0,400 0,300 0,250 0,200 0,100 0,050 0,200 0,010 0,005 0,002 0,001
-0,52 -0,25 0 0,25 0,52 0,67 0,84 1,28 1,64 2,05 2,33 2,58 2,88 3,09
(Sumber: Bonnier, 1980; dalam Soewarno, 1995)
Untuk menentukan distribusi yang tepat dalam menghitung curah hujan rencana dengan periode ulang t tahun, maka perlu diperhatikan syarat – syarat dalam tabel 2.6. Tabel 2.6 Kriteria Pemilihan Distribusi No.
2.2.5.
Jenis Distribusi
1
Distribusi Gumbel
2
Distribusi Log Normal
Syarat Cs < 1,1396 Ck < 5,4002 Cs = 3 Cv ; Cv = 0,6
Perhitungan Curah Hujan Rancangan Pada kenyataannya tidak semua varian dari suatu variabel hidrologi terletak atau
sama dengan nilai rata-ratanya. Variasi atau dispersi adalah besarnya derajat dari sebaran varian di sekitar nilai rata-ratanya. Cara menghitung besarnya dispersi disebut perhitungan dispersi. 1.
Dispersi Parameter Statistik A.
Deviasi standar (S)
S ∑−−
................................................................................................ (2.15)
Dimana:
II-26
S X X
: Standar Deviasi :Nilai Hujan Das Ke – i : Nilai Rata – RataHujan Das : Jumlah Data
B. Koefisien skewness (Cs) Koefesien Skewness (Cs), yaitu suatu nilai yang menunjukan derajat ketidak simetrisan dari suatu bentuk distribusi.
∑ − Cs −−
............................................................................................ (2.16)
Dimana:
Cs X X
: Koefisien Skewness : Nilai Hujan Das Ke – i : Nilai Rata – RataHujan Das : Jumlah Data
Cs Cs
Untuk kurva distribusi yang bentuknya simetris, maka yang bentuknya menceng ke kanan maka bentuknya menceng ke kiri maka
Cs
= 0,00; kurva distribusi
lebih besar nol, sedangkan yang
kurang dari nol.
C. Pengukuran Kurtosis (Ck) Pengukuran Kurtosis, yaitu untuk mengukur keruncingan yang munculdari bentuk kurva distribusi.
∑− Ck −−−
.................................................................................... (2.17)
Dimana:
Ck S
: Pengukuran Kurtosis : Standar Deviasi
II-27
X X
: Nilai Hujan Das Ke – i : Nilai Rata – RataHujan Das : Jumlah Data
D. Koefisien Variasi Koefisien Variasi ( CV ), yaitu nilai perbandingan antara standar deviasi dengan nilai rata-rata hitung suatu distribusi.
Cv
........................................................................................................... (2.18)
Dimana:
Cv S X
: Koefisien Variasi : Standar Deviasi : Nilai Rata – RataHujan Das
Dari nilai-nilai di atas, kemudian dilakukan pemilihan jenis sebaran yaitu dengan membandingan koefisien distribusi dari metode yang akan digunakan. 2.
Dispersi Parameter Logaritma A.
Deviasi standar (S)
S ∑−−
............................................................................................ (2.19)
Dimana:
S X X n
: Standar Deviasi : Nilai Hujan Das Ke – i : Nilai Rata – RataHujan Das : Jumlah Data
B. Koefisien skewness (Cs)
II-28
− Cs ∑−−
....................................................................................... (2.20)
Dimana:
Cs X X
: Koefisien Skewness : Nilai Hujan Das Ke – i : Nilai Rata – RataHujan Das : Jumlah Data
C. Pengukuran Kurtosis (Ck)
∑ − Ck −−−
.................................................................................... (2.21)
Dimana:
Ck S X X Cv
: Pengukuran Kurtosis : Standar Deviasi : Nilai Hujan Das Ke – i : Nilai Rata – Rata Hujan Das : Jumlah Data
D. Koefisien Variasi ........................................................................................................... (2.22)
Dimana:
Cv S X
: Koefisien Variasi : Standar Deviasi : Nilai Rata – RataHujan Das
II-29
2.3.
DEBIT BANJIR RANCANGAN
2.3.1.
Penentuan Batas DAS Daerah Aliran Sungai adalah semua bagian aliran air di sekitar sungai yang
mengalir menuju alur sungai, aliran air tersebut tidak hanya berupa air permukaan yang mengalir di dalam alur sungai, tetapi termasuk juga aliran air dipunggung bukit yang mengalir menuju alur sungai sehingga daerah tersebut dinamakan daerah aliran sungai. Pengembangan
Wilayah
Sungai
dalam
rangka
peningkatan
kemampuan
penyediaan air sungai untuk berbagai kebutuhan hidup masyarakat, sehingga meliputi beberapa ketentuan antara lain: 1.
Luas DAS mengikuti pola bentuk aliran sungai dengan mempertimbangkan aspek geografis di sekitar Daerah Aliran Sungai yang mencakup daerah tangkapan (cathment area) untuk perencanaan tersebut.
2.
Luas DAS dapat diketahui dari gambaran (deskripsi) yang diantaranya meliputi petapeta atau foto udara, dan pembedaan skala serta standar pemetaan sehingga dapat menghasilkan nilai-nilai yang sebenarnya.
2.3.2.
Waktu Konsentrasi Menurut Wesli (2008; 35) pengertian waktu konsentrasi adalah waktu yang
diperlukan untuk mengalirkan air dari titik yang paling jauh pada daerah aliran ke titik kontrol yang ditentukan di bagian hilir suatu saluran. Pada prinsipnya waktu konsentrasi dapat dibagi menjadi: Inlet time (to), yaitu waktu yang diperlukan oleh air untuk mengalir di atas permukaan tanah menuju saluran drainase Conduit time (td), yaitu waktu yang diperlukan oleh air untuk mengalir di sepanjang saluran sampai titik kontrol yang ditentukan di bagian hilir.
II-30
Gambar 2.13 Lintasan aliran waktu inlet time (to) dan conduit t ime (td) Waktu konsentrasi besarnya sangat bervariasi dan dipengaruhi oleh faktor – faktorberikut ini: 1.
Luas daerah pengaliran
2.
Panjang saluran drainase
3.
Kemiringan dasar saluran
4.
Debit dan kecepatan aliran
Harga Tc ditentukan dengan menggunakan rumus seperti berikut ini:
×3, 2 8×L× √ , t
.......................................................................................................................... (2.23)
..................................................................................................(2.24)
................................................................................................................................(2.25)
Dimana: Tc
: Waktu Konsentrasi (jam)
to
: Inlet Time Ke Saluran Terdekat (menit)
td
: Conduit Time Sampai Ke Tempat Pengukuran (menit)
n
: Angka Kekasaran Manning
II-31
S
: Kemiringan Lahan (m)
L
: Panjang Lintasan Aliran Di Atas Permukaan Lahan (m)
Ls
: Panjang Lintasan Aliran Di Dalam Saluran (m)
V
: Kecepatan Aliran Di Dalam Saluran (m/dtk)
2.3.3.
Intensitas Hujan Data Hujan rencana yang diperlukan dalam perhitungan debit rencana dapat
berupa; 1.
Intesitas hujan rencana di satu titik waktu.
Gambar 2.14 Kedalaman hujan rencana di satu titik waktu pada Curve IDF 2.
Ketinggian hujan rencana yang terdistribusi dalam hujan jam-jaman (hidrograf hujan rencana)
II-32
Gambar 2.15 Hidrograf hujan rencana Kurve yang ditunjukkan dalam Gambar 2.12 sering disebut Curve IDF (IntensityDuration-Frequency Curve). Kurva ini menggambarkan hubungan antara intensitas hujan, durasi atau lama hujan, dan frekuensi hujan atau periode ulang. Nilai intensitas hujan rencana yang diperoleh dari Curve IDF diperlukan dalam metode perhitungan debit rencana non hidrogaf, contohnya Metode Rasional. Intensitas hujan atau intensitas hujan rencana dapat dikatakan sebagai ketinggian atau kederasan hujan per satuan waktu, biasanya dalam satuan (mm/jam) atau (cm/jam). Jika volume hujan adalah tetap, mak intensitas hujan akan makin tinggi seiring dengan durasi hujan yang makin singkat, sebaliknya intensitas hujan makin rendah seiring dengan durasi hujan yang makin lama. Disamping itu, berkaitan dengan intensitas hujan rencana, tinggi intensitas huja rencana akan semakin besar seiring dengan periode ulang yang semakin besar. Data yang diperlukan untuk menurunkan Curve IDF terukur adalah data hujan jangka pendek, seperti hujan 5 menit, 10 menit, 30 menit, 60 menit, dan data hujan jam jaman. Kemudian persamaan regresinya dapat didekati dengan beberapa rumus Talbot, Ishiguro, dan Sherman.
II-33
Jika data hujan jangka pendek tidak tersedia, dan yan tersedia adalah jangka hujan harian maka persamaan regresi Curve IDF dapat diturunkan dengan metode Monobe. Selain itu, metode Van Breen juga dapat digunakan untuk menurunkan Curve IDF yang didasarkan pada hujan harian. Namun dalam penentuan persamaan regresinya, metode Van Breen memerlukan Curve IDF terukur, disarankan dari daerah pengaliran terdekat, sebagai perbangingan bentuk curve. Grafik yang ditunjukkan dalam Gambar 2.13 adalah ketinggian hujan yang terdistribusi sebagai fungsi waktu, misalnya dalam bentuk hujan jam-jaman atau disebut dengan hidrograf hujan. Data hidrograf hujan rencana diperlukan bila debit rencana dihitung dengan Metode Hidograf. Jika yang tersedia adalah data hujan harian atau hujan rencana maka hidrograf hujan dapat disusun dengan Model Seragam dan Model Segitiga. Sedangkan yang tersedia adalah data intensitas hujan maka hidrograf hujan dapat disusun dengan Model Alternating Block Method (ABM). 1.
Curve IDF Terukur Penurunan Curve IDF terukur, seperti telah diuraikan sebelumnya, memerlukan data hujan jangka pendek. Jika data hujan tersebut sudah tersedia maka perhitungan Curve IDF dapat dilakukan dengan langkah-langkah sebagai berikut: A.
Ubah data hujan dengan durasi menitan atau jaman menjadi data intensitas hujan menitan atau jaman.
B.
Hitung nilai rata-rata data intensitas hujan pada setiap durasi
C. Hitung standar deviasi data intensitas hujan pada setiap durasi. D. Hitung dan rekap nilai intensitas hujan rencana pada setiap durasi dengan berbagai periode ulang berdasarkan distribusi probabilitas seperti:
E.
a)
Gumel
b)
Normal
c)
Log Pearosn Type III dan yang lainnya.
Plot nilai intensitas hujan rencana sebagai ordinat dan durasi sebagai absis, sehinga diperoleh sebaran data koordinat.
II-34
F.
Berdasarkan sebaran data koordinat tersebut kemudian dihitung persamaan garis regresi Curve IDF dengan rumus: a)
Tablot
I +
.................................................................................................... (2.26)
Dimana:
××(×)−(××)× ×) ××−×( ××
: Intensitas Hujan (mm/jam) : Durasi Hujan (menit atau jam)
dan
: Tetapan
: Jumlah Data ............................................................................ (2.27)
.............................................................................. (2.28)
b)
Ishiguro
I √ +
.................................................................................................. (2.29)
Dimana:
I a b a (√ ×)×(N×)−(××√ )× ×√ ) b ×(N×√ ×)−N×( ×
: Intensitas Hujan (mm/jam) : Durasi Hujan (menit atau jam)
dan
: Tetapan
: Jumlah Data
......................................................................... (2.30)
............................................................................ (2.31)
II-35
c)
Sherman
I
...................................................................................................... (2.32)
Dimana:
I a b ×−× Loga N× −× ×−N×× n N× −×
: Intensitas Hujan (mm/jam) : Durasi Hujan (menit atau jam)
dan
: Tetapan
: Jumlah Data
..................................................... (2.33)
.................................................................. (2.34)
G. Pilih salah satu diantara tiga rumus pada butir (6) sebagai rumus regresi paling sesuai berdasarkan nilai srtandar deviasi kecil. 2.
Rumus Van Breen Dalam rumus Van Breen, durasi hujan harian diasumsikan 4 jam khususnya di pulau Jawa, dan besarnya hujan harian efektif adalah 90 % dari hujan harian maksimum. Berdasarkan pengertian diatas, maka rumus intensitas hujan menurut Van Breen adalah:
%×
.......................................................................................................... (2.35)
Dimana:
: Intensitas Hujan (mm/jam) : Hujan Harian Maksimum (mm)
Setelah diketahui besarnya intensitas hujan pada saat 4 jam, kemudian ditentukan persamaan regresi kurve intensitas. Penentuan persamaan regresi tersebut dilakukan dengan mengacu pada kurve intensitas terukur.
II-36
3.
Rumus Monobe Kurve intensitas hujan rencana, jika yang tersedia adalah hujan harian, dapat ditentukan dengan Rumus Monobe. Bentuk umum dari Rumus Monobe adalah:
× /
................................................................................................... (2.36)
Dimana:
4.
: Intensitas Hujan (mm/jam) : Hujan Harian Maksimum (mm) : Durasi Hujan Atau Waktu Konsentrasi (jam)
Model Hidrograf Hujan Rencana Seragam Model hujan jam-jaman seperti ini adalah model hujan rencana yang paling sederhana. Dalam model ini, tinggi hujan rencana dianggap lama selama durasi hujan. Oleh karena itu, intensitas hujan rencana tiap jam dirumuskan sebagai berikut:
.................................................................................................................... (2.37)
Dimana:
: Intensitas Hujan Rencana (mm/jam) : Tinggi Hujan Rencana (mm) : Durasi Hujan Rencana (jam)
II-37
Gambar 2.16 Hidrograf seragam 5.
Model Hidrograf Hujan Rencana Segitiga Dalam model seperti ini, distribusi tinggi hujan rencana jam-jaman dianggap berbentuk segitiga, yakni diawali dan diakhiri dengan tinggi hujan sama dengan nol, dan diantaranya adalah terdapat tinggi puncak hujan rencana. Tinggi puncak hujan rencana dihitung dengan rumus:
................................................................................................................. (2.38)
Dimana:
: Puncak Intensitas Hujan Rencana (mm/jam) : Tinggi Hujan Rencana (mm) : Durasi Hujan Rencana (jam)
Waktu puncak intensitas hujan rencana dihitung dengan rumus berikut;
×
............................................................................................................ (2.39)
Dimana:
: Puncak Intensitas Hujan Rencana (mm/jam) : Durasi Hujan Rencana (jam)
II-38
: Rasio Antara Waktu Puncak Durasi Hujan Rencana, Nilainya Antara 0,3 - 0,5. : Waktu Turun (jam)
Gambar 2.17 Hidrograf Segitiga 6.
Alternating Block Method Hidrograf hujan rencana yang dihasilkan oleh model ini adalah berupa distribusi tingi hujan rencana dalam n rangkaian interval waktu dengan durasi (jadi
2.3.3.
×∆
).
∆
selama waktu t
Debit Banjir Rancangan Banjir rancangan adalah besarnya debit banjir yang ditetapkan sebagai dasar
penentuan kapasitas dan mendimensi bangunan-bangunan hidraulik (termasuk bangunan di sungai), sedemikian hingga kerusakan yang dapat ditimbulkan baik langsung maupun tidak langsung oleh banjir tidak boleh terjadi selama besaran banjir tidak terlampaui. Tabel 2.7 Tahapan Analisis Hidrologi Untuk Banjir Rancangan Kelas
Output
Data Tersedia
Tahapan Analisis
1
Debit puncak
Debit banjir maks. tahunan
Analisis frekuensi data debit
2
Debit puncak
Hujan harian dan karakteristik daerah tangkapan hujan
Analisis frekuensi data hujan dan pengalihragaman hujan-aliran (Rational method)
3
Debit puncak
Hujan jam-jaman, hidrograf banjir dan karakteristik DAS
Analisis frekuensi data hujan dan pengalihragaman
II-39
hujan - aliran (Unit hydrograph atau Rainfall runoff model)
4
Hidrograf banjir
5
Hidrograf banjir
6
Hidrograf banjir
Hujan jam-jaman, karakteristik DAS, tidak ada data hidrograf banjir
Analisis frekuensi data hujan dan pengalihragaman hujan-aliran (Synthetic unit hydrograph)
Hujan jam-jaman dan hidrograf banjir.
Analisis frekuensi data hujan dan pengalihragaman hujan-aliran (Unit hydrograph)
Hujan jam-jaman, hidrograf banjir dan karakteristik DAS
Analisis frekuensi data hujan dan pengalihragaman hujan-aliran (Unit hydrograph atau Rainfall runoff model)
Dalam praktek analisis hidrologi terdapat beberapa cara yang dapat ditempuh untuk menetapkan debit banjir rancangan. Masing-masing cara akan sangat dipengaruhi oleh beberapa faktor berikut: 1.
Ketersediaan data,
2.
Tingkat kesulitan yang dikehendaki,
3.
Kesesuaian cara dengan das yang ditinjau.
Cara analisis dapat dikelompokkan menjadi tiga metode, yaitu: 1.
Cara empirik,
2.
Cara statistik,
3.
Analisis dengan model hidrologi. Cara empirik adalah metode pendekatan dengan rumus rasional. Cara ini
diterapkan apabila tidak tersedia data debit yang cukup panjang tetapi tersedia data hujan harian yang panjang. Terdapat empat metode perhitungan banjir rancangan yang dikembangkan berdasarkan prinsip pendekatan rasional, yaitu: metode rasional, metode Der Weduwen, metode Meichior dan metode Haspers. Penulis menunjuk tiga macam cara yang akan diuraikan pada tulisan ini, yaitu metode Rasional dan Metode Weduwen untuk non-hidrograf banjir rancangan sedangkan untuk
hidrograf
banjir
rancangan
menggunakan
Metode
Snyder
seperti
yang
dipergunakan dalam Standar Perencanaan Irigasi KP-O1 , yang diterbitkan oleh Direktorat Jenderal Pengairan Departemen Pekerjaan Umum tahun 1986.
II-40
2.3.3.1. Debit Banjir Rancangan Non-Hidrograf 1.
Metode Rasional Perhitungan Metode rasional menggunakan rumus sebagai berikut:
Q 0,278×C×I×A m⁄det
.............................................................................. (2.40)
Dimana: Q
: Debit Banjir Rencana (m3 /det )
C
: Koefisien Run Off (koefisien limpasan)
I
: Intensitas Hujan Selama t Jam (mm/jam)
I × T
......................................................................................................... (2.41)
.................................................................................................................. (2.42)
T waktu konsentrasi jam w ⁄H=, ,
............................................................................................ (2.43)
Dimana:
: Waktu Kecepatan Perlambatan (m/det atau km/jam) : Jarak Dari Ujung Daerah Hulu Sampai Titik Yang Ditinjau (km)
A
: Luas DAS (km2)
H
: Beda Tinggi Ujung Hulu Dengan Titik Tinggi Yang Ditinjau (m)
Koefisien limpasan (C), dapat diperkirakan dengan meninjau tata guna lahan. Harga koefisien limpasan disajikan dalam tabel 2.8.
II-41
Tabel 2.8 Koefisien Limpasan No.
Kondisi Tanah Permukaan
Harga C
1
Jalan Beton dan jalan aspal
0.70 - 0.95
2 3
Jalan kerikil dan jalan tanah
0.40 – 0.70
Bahu jalan Tanah berbutir halus
0.40 – 0.65
Tanah berbutir kasar
0.10 – 0.20
Batuan masif kasar
0.70 – 0.85
Batuan masif lunak
0.70 – 0.95
4
Daerah perkotaan
0.70 – 0.95
5
Daerah pinggiran kota
0.60 – 0.70
6
Daerah industri
0.60 – 0.90
7
Pemukiman padat
0.40 – 0.60
8
Pemukiman tidak padat
0.40 – 0.60
9
Taman dan kebun
0.20 – 0.40
10
Persawahan
0.45 – 0.60
11
Perbukitan
0.70 – 0.80
12
Pegunungan
0.75 – 0.90
(Sumber : Subarkah, 1980)
Tabel 2.9 Karakteristik Tanah Tata guna lahan
Karakteristik tanah Campuran pasir dan atau campuran kerikil Geluh dan sejenisnya
Lempung dan sejenisnya
Koeff. limpasan
Pertanian
0,20
Padang rumput
0,15
Hutan
0,10
Pertanian
0,4
Padang rumput
0,35
Hutan
0,3
Pertanian
0,50
Padang rumput
0,45
Hutan
0,40
(Sumber : Subarkah, 1980)
Koefisien pengaliran (α) tergantung dari beberapa faktor antara lain jenis tanah, kemiringan, luas dan bentuk pengaliran sungai. Sedangkan besarnya nilai koefisien pengaliran dapat dilihat pada Tabel 2.10.
II-42
Tabel 2.10 Koefisien Pengaliran
Kondisi Daerah Pengaliaran
Koefisien Pengaliran (α)
Daerah pegunungan berlereng terjal
0,75 – 0,90
Daerah perbukitan Tanah bergelombang dan bersemaksemak Tanah dataran yang digarap
0,70 – 0,80
Persawahan irigasi
0,70 – 0,80
Sungai di daerah pegunungan
0,75 – 0,85
Sungai kecil di dataran
0,45 – 0,75
Sungai yang besar dengan wilayah pengaliran lebih dari seperduanya terdiri dari dataran
0,50 – 0,75
0,50 – 0,75 0,45 – 0,65
(Sumber : Banjir Rencana Untuk Bangunan Air, Ir.Joesron Loebis, M.Eng.)
2.
Metode Weduwen Rumus dari Metode Weduwen adalah sebagai berikut :
Q α×β×q × A t 0,25 LQ−,I−, ++ β ++ ×, q +, 1 ,+
............................................................................................. (2.44) ......................................................................................... (2.45)
.............................................................................................. (2.46)
....................................................................................................... (2.47)
β
....................................................................................................... (2.48)
Dimana:
Q R q Β
: debit banjir rencana (m3 /det ) : curah hujan maksimum (mm/hari) : Debit Persatuan Luas (m3/det.km2) : Koefisien Pengaliran : Koefisien Pengurangan Daerah Untuk Curah Hujan DAS
II-43
A
: Waktu Konsentrasi (jam) : Luas Daerah Pengaliran (km2)
2.3.3.2. Debit Banjir Rancangan Hidrograf 1.
Metode Snyder Metode Snyder pada dasarnya menentukan hidrograf satuan sintetis yang dihitung berdasarkan rumus empiris dan koefisien empiris yang menghubungkan komponen hidrograf satuan dengan karakteristik DAS. Parameter yang menentukan hidrograf satuan adalah luas DAS, panjang sungai utama, dan panjang sungai utama yang diukur dari tempat pengamatan sampai dengan titik pada sungai utama yang berjarak paling dekat dengan titik berat DAS. Hidrograf Satuan Sintetis metode Snyder mempertimbangkan karakteristik DAS yang mempengaruhi bentuk hidrograf satuan, seperti luas dan bentuk DAS, topografi, kemiringan sungai, kerapatan sungai dan simpanan air (Wilson, 1993). Adapun persamaan yang dibuat oleh Snyder adalah sebagai berikut:
tp Ct L×Lc,
.............................................................................................. (2.49)
Dimana: L
: Panjang sungai ( km).
Lc : Panjang sungai dari titik berat basin ke outlet ( km). tp
: Waktu dari titik berat excess rainfall ke peak flow unit Hydrograf.
Ct : Koefisien yang tergantung dari slope basinnya
Qp 0,278 ′
...................................................................................................... (2.50)
Dimana: qp : Debit Maksimum Unit Hidrograf ( 1m3/dt/km2). Cp : Koefisien Yang Tergantung Dari Karakteristik DAS
,
............................................................................................................... (2.51)
II-44
Dimana: tε
: Lamanya curah hujan efektif
Jikat ε > ; ’ 0,25
................................................................. (2.52)
Sehingga didapat waktu untuk mencapai debit maksimum
Tp t’p 0,50 tR Jika tε > R ; Tp tp 0,50 tR
................................................................................................ (2.53) .......................................................................... (2.54)
Tp : time rise to peak tR : lamanya hujan efektif 1 jam Qp = qp x A ......................................................................................................... (2.55) Dimana: Qp : Debit maksimum total (m3/dt). qp : Debit maksimum unit hidrograf ( 1m3/dt/km2). A
: luas daerah aliran ( km2).
Bentuk dari unit hidrograf ditentukan oleh persamaan Alexseyev
Q f t − 10 → 1000 ℎ×
.............................................................................................................. (2.56) ............................................................................................... (2.57)
...................................................................................................... (2.58)
H
............................................................................... (2.59)
: excess rainfall dalam mm
a 1,32 0,15 0,045
............................................................................ (2.60)
II-45
Rumus Snyder sudah banyak digunakan di Indonesia dengan merubah koefisien – koefisiennya, karena dalam pengujiannya untuk beberapa sungai di Pulau Jawa ternyata menunjukkan penyimpangan yang besar, baik dalam besaran waktu puncak (time to peak ) maupun debit puncak (Harto, 1993). Hal ini dapat dipahami karena memang cara ini mengandung beberapa koefisien empirik yang dikembangkan di daerah Appalachian di Amerika yang kurang sesuai dengan keadaan di Indonesia.
2.4.
LIMBAH PEMUKIMAN Debit Air Limbah Buangan adalah semua cairan yang dibuang, baik yang
mengandung kotoran manusia maupun yang mengandung sisa-sisa proses industri. Air Buangan dapat dibagi menjadi 4 golongan, yaitu : 1.
Air Kotor : Air buangan yang berasal dari kloset, peturasan, bidet dan air buangan yang mengandung kotoran manusia yang berasal dari alat-alat plambing.
2.
Air Bekas: Air buangan yang berasal dari alat-alat plambing lainnya seperti bak mandi, baik cuci tangan, bak dapur dan lain-lain.
3.
Air Hujan: Air buangan yang berasal dari atap bangunan, halaman dan sebagainya.
4.
Air Buangan Khusus: Air buangan yang mengandung gas, racun atau bahan-bahan berbahaya seperti berasal dari pabrik, air buangan laboratorium, tempat pengobatan, tempat pemeriksaan di rumah sakit, rumah pemotongan hewan, air buangan yang bersifat radioaktif yang dibuang dari pusat Listrik Tenaga Nuklir. Debit air limbah rumah tangga didapat dari 60% - 70% suplai air bersih setiap
orang, diambil debit limbah rumah tangga 70% dan sisanya dipakai pada proses industri, penyiraman kebun-kebun dal lain-lain. Besarnya air limbah buangan dipengaruhi oleh : 1.
Asumsi jumlah orang setiap rumah 6 orang
2.
Asumsi kebutuhan air bersih rata-rata tiap orang untuk perumahan 100 – 200 l/orang/hari = 150 l/org/hari
3.
Asumsi kebutuhan air bersih rata-rata tiap orang untuk sarana ibadah (masjid) = 20 l/orang/hari
4.
Faktor puncak (Fp) diperoleh berdasarkan jumlah penduduk.
II-46
Air limbah rumah tangga didapat berdasarkan kebutuhan air bersih dan diambil 70%, sisanya dipakai pada proses industri, penyiraman kebun, dan lain-lain. Q rata-rata = (70% x Konsumsi Air Bersih/orang x Jumlah Penduduk x Fp) liter/hari
⁄ ×× × ⁄
....................................... (2.61)
2.5.
KAPASITAS SALURAN Pada tahap awal analisa diasumsikan bahwa yang tejadi adalah aliran seragam.
Analisa untuk menghitung kapasitas saluran, dipergunakan persamaan kontinuitas dan rumus Manning, yaitu:
× × × ×
.................................................................................................................. (2.62) .................................................................................................... (2.63)
.......................................................................................................................... (2.64)
Dimana: Q
: Debit / Debit Saluran (m3/det)
A
: Luas Penampang Basah Saluran (m 2)
V
: Kecepatan Rata-Rata (m/det)
N
: Koefisien Kekasaran Saluran
R
: Jari – Jari Hidrolis (m)
S
: Kemiringan Memanjang Saluran
P
: Keliling Basah Saluran (m)
1.
Kecepatan Pengaliran Penentuan kecepatan aliran air didalam saluran yang direncanakan didasarkan pada kecepatan minimum yang diperbolehkan agar kontruksi saluran tetap aman.
II-47
Persamaan Manning :
⁄⁄
..................................................................................................... (2.65)
Dimana : V
: Kecepatan Aliran
n
: Koefisien Kekasaran Manning
R : Jari-Jari Hidrolis S
: Kemiringan Memanjang Saluran
Untuk desain dimensi saluran tanpa perkerasan, dipakai harga n Manning normal atau maksimum, sedangkan harga n Manning minimum hanya dipakai untuk pengecekan bagian saluran yang mudah terkena gerusan. Harga n Manning tergantung hanya pada kekasaran sisi dan dasar saluran. 2.
Kemiringan Talud Kecepatan maksimum ditentukan oleh kakasaran dinding dan dasar saluran. Untuk saluran tanah V = 0,7 m/det, pasangan batu kali V = 2 m/det dan pasangan beton V = 3 m/det. Kecepatan minimum yang diizinkan adalah kecepatan paling rendah yang akan mencegah pengendapan dan tidak menyebabkan berkembangnya tanamantanaman air. Kecepatan maksimum dan minimum saluran juga ditentukanoleh kemiringan talud saluran (Permen PU No. 12/PRT/M/2014)
II-48
3.
Tinggi Jagaan Tinggi jagaan adalah ketinggian yang diukur dari permukaan air maksimum sampai permukaan tanggul saluran atau muka tanah. Tinggi jagaan harus diperhitungkan untuk mencegah meluapnya air ke tepi saluran. Tabel 2.11 Tinggi Jagaan untuk Saluran Pasangan
< 0,5
F (m) 0,20
0.5 – 1.5
0,20
1.5 – 5.0
0,25
5.0 – 10.0
0,30
10.0 – 15.0
0,40
> 15.0
0,50
Debit (m 3/det)
Sumber : Standar Perencanaan Irigasi, KP-04 Bagian Bangunan, Ditjen Pengairan, 1986
2.6.
HIDROLIKA Zat cair dapat diangkut dari suatu tempat lain melalui bangunan pembawa
alamiah maupun buatan manusia. Bangunan pembawa ini dapat terbuka maupun tertutup bagian atasnya. Saluran yang tertutup bagian atasnya disebut saluran tertutup ( closed conduits), sedangkan yang terbuka bagian atasnya disebut saluran terbuka ( open channels). Pada sistem pengaliran melalui saluran terbuka terdapat permukaan air yang bebas (free surface) di mana permukaan bebas ini dipengaruhi oleh tekanan udara luar secara langsung, saluran terbuka umumnya digunakan pada lahan yang masih memungkinkan (luas), lalu lintas pejalan kakinya relatif jarang, beban kiri dan kanan saluran relatif ringan. Pada sistem pengaliran melalui saluran tertutup (pipa flow) seluruh pipa diisi dengan air sehingga tidak terdapat permukaan yang bebas, oleh karena itu permukaan tidak secara langsung dipengaruhi oleh tekanan udara luar, saluran tertutup umumnya digunakan pada daerah yang lahannya terbatas (pasar, pertokoan), daerah yang lalu lintas pejalan kakinya relatif padat, lahan yang dipakai untuk lapangan parkir. Secara umum, perencanaan hidraulik merupakan salah satu bagian dari aspek teknis perencanaan secara keseluruhan yang memegang peranan penting dalam upaya untuk bisa memenuhi kriteria pelayanan kapasitas suatu sistem drainase.
II-49
Ditinjau dari segi hidrologi, kapasitas saluran dikatakan cukup apabila saluran memiliki kapasitas untuk mengalirkan debit maksimum rencana. Berdasarkan prinsip dasar dalam hidraulika, besarnya kapasitas suatu sistem drainase khususnya saluran dan gorong-gorong dapat dihitung dengan menggunakan persamaan Manning. Prinsip dalam perencanaan hidraulik sebagai berikut: 1.
Kecepatan ijin maksimum aliran: A.
Saluran berdinding tanah
B.
Saluran dengan pasangan batu
C. Saluran dengan dinding beton 2.
0,75 m/dt 2,5
3,0
m/dt
m/dt
Jika kecepatan rata-rata aliran adalah lebih kecil daripada kecepatan maksimum yang diijinkan, maka saluran dianggap stabil.
3.
Jika kecepatan rata-rata aliran adalah lebih besar daripada kecepatan maksimum yang diijinkan, maka: A.
Kemiringan saluran harus diperkecil; atau
B.
Saluran dibuat dengan beberapa terjunan; atau
C. Saluran dibuat dengan material yang lebih kuat. 4.
Umumnya
investigator
dalam
menentukan
kecepatanyang
ijinkan
cenderung
dikaitkan dengan tekstur tanahyaitu perbandingan antara fraksi lempung, liat, danpasir. 5.
Fortier dan Scobey, 1926, dan direkomendasikan olehSpecial Committee on Irrigation Research, ASCE (dalamSimon dan Senturk, 1992), telah menentukan kecepatan maksimum yang diijinkan berdasarkan tekstur tanah.
II-50
Gambar 2.18 Segitiga Tekstur Tanah Tabel 2.12 Tabel 2.12 Tabel Kecepatan Aliran Berdasarkan Tekstur Tanah
6.
Di sisi lain, dengan ditentukannya kecepatan minimum aliran, kemudahan dalam teknis
pelaksanaan
operasi
dan
pemeliharaan
khususnya
untuk
mengurangi/mencegah terjadinya pengendapan pada saluran pun pada akhirnya dapat dicapai.
II-51
7.
Praktis pengendalian lumpur pada saluran juga dilakukan dengan cara menempatkan menempatka n satu atau lebih kantong lumpur pada saluran yang landai dan atau merupakan pertemuan beberapa buah saluran.
8.
Meski saluran telah direncanakan direncanaka n sesuai dengankapasitas dengankapas itas rencana, kecepatan aliran tertentu,
dandilengkapi
dengan
kantong
lumpur,
namun
gunamengantisipasi
terjadinya pengurangan kapasitasakibat pengendapan lumpur sepanjang saluran, salurandibuat dengan tinggi jagaan sesuai dengan jenissalurannya. 9.
Untuk
kawasan
yang
berpotensi
memberikan
volumelimpasan
lebih
besar,
memerlukan tinggi jagaan yang lebih besar pula. Tabel 2.13 Tabel Tinggi Jagaan Untuk Tiap Kawasan
Berdasarkan persamaan energi aliran dan konsepenergi spesifik, selain kapasitas
penampangsaluran,
dalam
penentuan
dimensi
saluran
jugaperlu
mempertimbangkan mempertimbangkan karakteristik aliran(profil) aliran(profil) untuk kondisi-kondisi khusus seperti: 1.
Penyempitan penampang saluran,
2.
Saluran dengan ambang,
3.
Perubahan kemiringan saluran curam – – landai yang secara hidraulik menyebabkan terjadinya loncatan air.
II-52
Berdasarkan konsistensi bentuk penampang dan kemiringan dasarnya saluran terbuka dapat diklasifikasikan diklasifikasikan menjadi: 1.
Saluran prismatik ( prismatic prismatic channel ), ), yaitu saluran yang bentuk penampang melintang dan kemiringan dasarnya tetap. Contoh : saluran drainase, saluran irigasi.
2.
Saluran non prismatik ( non prismatic channel ), ), yaitu saluran yang bentuk penampang melintang dan kemiringan dasarnya berubah-ubah. Contoh : sungai. Aliran pada saluran terbuka terdiri dari saluran alam ( natural channel ), ), seperti
sungai-sungai kecil di daerah hulu (pegunungan) hingga sungai besar di muara, dan saluran buatan (artificial (artificial channel ), ), seperti saluran drainase tepi jalan, saluran irigasi untuk mengairi persawahan, saluran pembuangan, saluran untuk membawa air ke pembangkit listrik tenaga air, saluran untuk supply air minum, dan saluran banjir. Saluran buatan dapat berbentuk segitiga, trapesium, segi empat,bulat, setengah lingkaran, dan bentuk tersusun (Gambar 2.16).
Gambar 2.19 Bentuk-bentuk Bentuk-bentuk Profil Saluran Sumber : Sistem Drainase Perkotaan yang Berkelanjutan ( 2003: 121)
2.6.1. 1.
Perhitungan Dimensi Saluran
Bentuk Saluran yang Paling Ekonomis
II-53
A.
Penampang Berbentuk Persegi yang Paling Ekonomis Jika B adalah lebar dasar saluran dan h adalah kedalaman air (Gambar 2.5), luas penampang basah, A, dan keliling basah, P, dapat dituliskan sebagai berikut:
×ℎ 2ℎ 2ℎ ℎ
..................................................................................................... (2.66) ................................................................................................... (2.67) ........................................................................................ (2.68)
Jari-jari hidaraulik R:
+×
................................................................................................. (2.69)
Bentuk penampang melintang persegi yang paling ekonomis adalah jika:
ℎ
.......................................................................................... (2.70)
Gambar 2.20 Penampang Persegi Panjang B.
Penampang Berbentuk Trapesium yang Paling Ekonomis Saluran dengan penampang melintang bentuk trapesium dengan lebar dasar B, kedalaman aliran h, dan kemiringan dinding 1: m (Gambar 2.20), luas penampang melintang A dan keliling basah P, dapat dirumuskan sebagai berikut:
II-54
ℎℎ 2ℎ√ 1 2ℎ√ 1
............................................................................................. (2.71) ...................................................................................... (2.72) ...................................................................................... (2.73)
Atau
ℎ√ 3 ℎ√ 3
..................................................................................................... (2.74) ...................................................................................................... (2.75)
Gambar 2.21 Penampang trapesium Penampang trapesium yang paling efisien adalah jika:
(1⁄√ 3), 60
° ............................................................................... (2.76)
II-55
Tabel 2.14 Unsur-Unsur Geometris Penampang Saluran
Perhitungan dimensi saluran didasarkan pada debit harus ditampung oleh saluran (Qs dalam m3/det) lebih besar atau sama dengan debit rencana yang diakibatkan oleh hujan rencana (QT dalam m 3/det). Kondisi demikian dapat dirumuskan dengan persamaan berikut:
Q ≥ Q
..................................................................................................................... (2.77)
II-56
Debit yang mampu ditampung oleh saluran (Qs) dapat diperoleh denganrumus seperti di bawah ini:
Q As×V
................................................................................................................ (2.78)
Dimana: As
: Luas Penampang Saluran (m2)
V
: Kecepatan Rata – RataAliran Di Dalam Saluran (m/det)
Kecepatan rata-rata aliran di dalam saluran dapat dihitung dengan menggunakan rumus Manning sebagai berikut:
× ×
.......................................................................................................... (2.79)
........................................................................................................................ (2.80)
Dimana: V
: Kecepatan Rata-Rata Aliran Di Dalam Saluran (m/det)
n
: Koefisien Kekasaran Manning (Tabel 2.9)
R
: Jari-jari hidrolis (m)
S
: Kemiringan Dasar Saluran
As
: Luas Penampang Saluran (m2)
P
: Keliling Basah Saluran (m)
Nilai koefisien kekasaran Manning n, untuk gorong-gorong dan saluran pasangan dapat dilihat pada Tabel 2.11.
II-57
Tabel 2.15 Koefisien Kekasaran Manning Koefisien Manning (n) 0,011 – 0,014
Tipe Saluran Baja Baja permukaan Gelombang
0,021 – 0,030
Semen
0,010 – 0,013
Beton
0,011 – 0,015
Pasangan batu
0,017 – 0,030
Kayu
0,010 – 0,014
Bata Aspal
0,011 – 0,015 0,013
(Wesli, 2008, Drainase Perkotaan : 97) Nilai kemiringan dinding saluran diperoleh berdasarkan bahan saluran yang digunakan. Nilai kemiringan dinding saluran dapat dilihat pada Tabel 2.12 Tabel 2.16 Nilai Kemiringan Dinding Saluran Sesuai Bahan
Bahan Saluran Batuan/ cadas Tanah lumpur Lempung keras/ tanah Tanah dengan pasangan batuan Lempung Tanah berpasir lepas Lumpur berpasir
Kemiringan dinding (m) 0 0,25 0,5 – 1 1 1,5 2 3
Sumber: ISBN: 979 – 8382 – 49 – 8
2.6.2.
Bangunan Pelengkap (Gorong-gorong) Gorong-gorong adalah saluran tertutup yang digunakan untuk mengalirkan air
melewati jalan raya, rel kereta api, atau timbunan lainnya. Gorong-gorong biasanya dibuat dari beton, alumunium gelombang, baja gelombang dan lainnya. Penampang goronggorong berbentuk bulat, persegi, oval, tapal kuda, dan segitiga. Untuk menghitung sebuah gorong-gorong biasa mengunakan rumus sebagai berikut:
II-58
0,681
............................................................................................................... (2.80)
Keterangan: A
: Luas penampang gorong-gorong (m2)
D
: Diameter gorong-gorong (m)
II-59
BAB III PERENCANAAN JARINGAN DRAINASE PERKOTAAN 3.1.
LAYOUT JARINGAN DRAINASE
Gambar 3.1 Layout Jaringan Drainase
III-1
3.2.
ANALISA DEBIT HUJAN RANCANGAN
3.2.1.
Pemilihan Data Hujan Hasil pengukuran data hujan dari masing-masing alat pengukuran hujan pada
setiap stasiun merupakan data hujan pada suatu titik (point rainfall). Berikut merupakan data curah hujan yang diambil dari stasiun BMKG Lasiana. Tabel 3.1. Data Curah Hujan Tahun
Data Curah Hujan Harian Maksimum ( mm )
Curah Hujan
Jan
Feb
Mar
Apr
Mei
Jun
Jul
Agust
Sep
Okt
Nov
Des
Max. ( mm )
1988
15.0
39.0
60.0
40.0
2.0
10.0
-
-
-
-
55.0
38.0
60.0
1989
60.0
125.0
40.0
7.0
3.0
35.0
39.0
3.0
34.0
11.0
35.0
33.0
125.0
1990
50.0
50.0
15.0
15.0
30.0
18.5
19.5
-
0.5
-
60.0
60.0
60.0
1991
60.0
60.0
60.0
10.0
51.0
-
8.0
5.0
-
-
60.0
48.0
60.0
1992
82.0
180.0
120.0
101.0
169.0
-
-
-
-
-
-
-
180.0
1993
51.0
61.0
44.0
180.0
5.5
13.5
-
-
-
-
34.5
39.0
180.0
1994
74.0
36.5
-
15.5
22.0
7.0
1.5
9.0
17.0
7.0
57.0
56.0
74.0
1995
48.0
95.0
53.0
60.0
47.0
2.0
10.0
-
1.5
13.0
2.0
40.5
95.0
1996
45.5
74.0
28.0
50.0
15.0
2.5
-
3.5
-
-
-
35.0
74.0
1997
55.0
75.0
110.0
56.0
17.0
13.0
4.0
-
-
41.0
31.0
55.0
110.0
1998
55.0
76.0
67.0
25.0
10.0
5.0
2.0
17.0
-
-
47.0
165.0
165.0
1999
55.0
120.0
52.0
12.0
-
7.0
9.0
-
-
-
9.0
65.0
120.0
2000
145.0
95.0
22.0
55.0
55.0
-
21.0
-
1.0
55.0
37.0
55.0
145.0
2001
55.0
90.0
115.0
45.0
-
-
-
10.0
-
3.0
60.0
60.0
115.0
2002
115.0
55.0
-
25.0
60.0
47.0
-
-
-
6.0
55.0
33.0
115.0
2003
45.0
115.0
55.0
6.0
-
13.0
6.0
-
-
27.0
38.0
66.0
115.0
2004
45.0
55.0
44.0
60.0
-
-
5.0
-
30.0
-
17.0
18.0
60.0
2005
45.0
115.0
55.0
6.0
-
13.0
6.0
-
-
23.0
21.0
102.0
115.0
2006
46.0
65.0
56.0
9.0
21.0
-
-
2.0
-
20.0
28.0
71.5
71.5
2007
51.0
60.0
90.0
24.0
-
-
4.0
-
-
60.0
60.0
70.0
90.0
Untuk kepentingan analisis dilakukan dua cara untuk mendapatkan data hujan wilayah yaitu: 1.
Metode Aritmatik Nilai curah hujan wilayah dapat ditentukan dari beberapa data curah hujan stasiun penakar/klimatologi dengan menggunakan nilai rata-rata curah hujan stasiun yang terdapat di dalam DAS.
III-2
Rumus yang digunakan persamaan 2.1:
⋯ ̅ ⋯
Tabel 3.2. Curah Hujan Rerata Daerah (Area Rainfall) dengan Metode Aritmatik
No.
Tahun
1 1996 2 1997 3 1998 4 1999 5 2000 6 2001 7 2002 8 2003 9 2004 10 2005 11 2006 12 2007 Rata – Rata
2.
Bulan Hujan FEB MAR DES FEB JAN MAR JAN FEB APRIL FEB DES MAR
Curah Hujan Maksimum Stasiun Lasiana 74.0 110.0 165.0 120.0 145.0 115.0 115.0 115.0 60.0 115.0 71.5 90.0
R 74 110 165 120 145 115 115 115 60 115 72 90 108
Metode Polygon Thiessen Rumus yang digunakan persamaan 2.2 A1 R1 +A2 R2 +A3 R3 +…..…… +An Rn X= A1 +A2 +A3 +…..…… +An Luas pengaruh Stasiun Eltari =37000 m2 = 0.037 Km2 = 3.7 ha Koefisien Thiessen
=1
Tabel 3.3. Curah Hujan Rerata Daerah (Area Rainfall) dengan Polygon Thiessen
No.
Tahun
Bulan Hujan
1 2 3
1996 1997 1998
FEB MAR DES
Curah Hujan Maksimum Stasiun Lasiana 1 74 110 165
R 74 110 165
III-3
4 5 6 7 8 9 10 11 12 Rata – Rata
3.2.2.
1999 2000 2001 2002 2003 2004 2005 2006 2007
FEB JAN MAR JAN FEB APRIL FEB DES MAR
120 145 115 115 115 60 115 71.5 90
120 145 115 115 115 60 115 72 90 108
Perhitungan Uji Konsistensi
Tabel 3.4. Hasil Perhitungan Uji Konsistensi Data
No.
Tahun
Bulan Hujan
1 2 3 4 5 6 7 8 9 10 11 12
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
FEB MAR DES FEB JAN MAR JAN FEB APRIL FEB DES MAR
Hujan Harian Maksimum (mm) Stasiun Lasiana 74 110 165 120 145 115 115 115 60 115 71.5 90
Kumulatif Hujan Harian maks. (mm) Stasiun Lasiana 74 184 349 469 614 729 844 959 1019 1134 1206 1296
Rata Rata
Kumulatif Rata - Rata
74 110 165 120 145 115 115 115 60 115 72 90
74 184 349 469 614 729 844 959 1019 1134 1206 1296
Grafik Uji Konsistensi 1500
1000
500
0 0
200
400
600
800
1000
1200
1400
1600
Gambar 3.2 Garafik Uji Konsistensi Data
III-4
3.2.3. 1.
Pemilihan Distribusi Hujan Rancangan
Parameter Statistik Perhitungan parameter statistik dilakukan sebelum perhitungan dispersi.
X X X X
Parameter statisik adalah(Xi – ),(Xi – )2,(Xi – )3,(Xi – )4. dimana : Xi
= Besarnya curah hujan daerah (mm)
X
= Rata-rata curah hujan maksimum daerah (mm)
Tabel 3.5. Parameter Statistik Curah Hujan Harian Maksimum
No
Tahun
1 1996 2 1997 3 1998 4 1999 5 2000 6 2001 7 2002 8 2003 9 2004 10 2005 11 2006 12 2007 Jumlah Rata Rata(Xr) n
Xi (mm)
Xi-Xr
74 110 165 120 145 115 115 115 60 115 72 90 1296
-34 2 57 12 37 7 7 7 -48 7 -36 -18
(Xi-Xr)2
(Xi-Xr)3
(Xi-Xr)4
(mm)
(mm)
(mm)
1153 4 3254 145 1372 50 50 50 2300 50 1329 323 10078
-39160 9 185599 1746 50824 349 349 349 -110304 349 -48461 -5792 35859
1329797 17 10586900 21026 1882617 2459 2459 2459 5290008 2459 1766799 104007 20991008
108 12
Perhitungan Dispersi untuk Parameter Statistik Deviasi standar (Sd)
∑ X X Sd n1 30.269 Koefisien skewness (Cs)
III-5
X n∑ X = Cs n1n2Sd 0.141 ∑ n X X = Ck n1n2n3Sd 3.637 Pengukuran Kurtois (Ck)
Koefisien Variasi
Cv SXd 0.280 2.
Parameter Logaritma Tabel 3.6. Parameter Logaritma Curah Hujan Harian Maksimum
No
Tahun
Xi (mm)
1 1996 74 2 1997 110 3 1998 165 4 1999 120 5 2000 145 6 2001 115 7 2002 115 8 2003 115 9 2004 60 10 2005 115 11 2006 72 12 2007 90 Jumlah 1296 Rata - Rata(Xr) n
Log Xi 1.869232 2.041393 2.217484 2.079181 2.161368 2.060698 2.060698 2.060698 1.778151 2.060698 1.854306 1.954243 24.198149 2.016512 12
(Log Xi-Xr)
(Log Xi-Xr)2
(Log Xi-Xr)3
(Log Xi-Xr)4
-0.147281 0.024880 0.200972 0.062669 0.144856 0.044185 0.044185 0.044185 -0.238361 0.044185 -0.162206 -0.062270
0.021692 0.000619 0.040390 0.003927 0.020983 0.001952 0.001952 0.001952 0.056816 0.001952 0.026311 0.003878 0.182425
-0.003195 0.000015 0.008117 0.000246 0.003040 0.000086 0.000086 0.000086 -0.013543 0.000086 -0.004268 -0.000241 -0.009483
0.000471 0.000000 0.001631 0.000015 0.000440 0.000004 0.000004 0.000004 0.003228 0.000004 0.000692 0.000015 0.006509
Perhitungan Dispersi untuk Parameter Logaritma Deviasi standar (Sd) = 0.129
Koefisien skewness (Cs) = -0.484`
III-6
Pengukuran Kurtois (Ck) = 3.442
Koefisien Variasi = 0.064
Tabel 3.7. Rekapitulasi Perhitungan Dispersi
No. 1 2 3 4
Parameter Statistik Logaritma 30.269 0.129 0.280 0.064 0.141 -0.484 3.637 3.442
Dispersi S CV CS CK
Tabel 3.8. Evaluasi Perhitungan Dispersi No.
Jenis
1
Ej Gumbel Log Normal
2
3.2.4. 1.
Syarat
Hasil hitungan
Keterangan
Cs
≤
1.139
Cs
=
0.141
Memenuhi
Ck
≤
5.400
Ck
=
3.637
Memenuhi
Cs
=
Cv^3+3Cv
=
0.192
Cs
=
-0.484
Tidak Memenuhi
=
Cv^8+(6Cv)^6+(15Cv)^4+(16Cv)^2+3
=
4.889
Ck
=
3.442
Tidak Memenuhi
Ck
Perhitungan Curah Hujan Rancangan
Metode Ej Gumble Perhitugan menggunakan rumus persamaan 2.12
×
Tabel 3.9. Perhitungan Curah Hujan Rancangan Dengan Metode Ej Gumble No
Periode
Xrt
S
Y
YN
SN
Xt
1
5
108
30
1.50
0.504
0.983
138.63
2
20
108
30
2.97
0.504
0.983
183.89
3
50
108
30
3.90
0.504
0.983
212.57
III-7
4
100
108
30
4.60
0.504
0.983
234.06
5
200
108
30
5.30
0.504
0.983
255.49
6
1000
108
30
6.92
0.504
0.983
305.45
Dari jenis sebaran yang telah memenuhi syarat tersebut perlu diuji kecocokan sebarannya dengan beberapa metode. Hasil uji kecocokan sebaran menunjukan distribusinya dapat diterima atau tidak. 1.
Uji Sebaran Chi Kuadrat (Chi Square Test) a.
Data Diurutkan Dari Yang Terkecil Tabel 3.10. Pengurutan Jumlah Data Dari Terkecil Hingga Terbesar
b.
No.
Xi (mm)
1
74
Xi Diurut Dari Kecil Ke Besar 60
2 3 4 5 6 7 8 9 10 11 12
110 165 120 145 115 115 115 60 115 72 90
71.5 74 90 110 115 115 115 115 120 145 165
Menghitung Jumlah Kelas i.
Jumlah data (n)
= 12
ii.
Data terbesar
= 165
iii.
Data terkecil
= 60
iv.
Kelas Distribusi (K)
= 1+3,3 log n = 4.561 ≈ 5 kelas
v.
Rentang Data
= Data terbesar – data terkecil + 1 =106
vi.
Rentang Kelas
= Rentang data : Jumlah interval = 21.2 ≈22
III-8
Tabel 3.11. Uji Keselarasan Sebarandengan Chi Kuadrat (Chi Square Test)
No 1 `2 3 4 5
c.
Probabilitas 55 78 101 124 147
< < < < <
x x x x x
< < < < <
77 100 123 146 169
Jumlah Data Oi Ei 3 2.40 1 2.40 6 2.40 1 2.40 1 2.40 12 12
Menghitung derajat kebebasan (Dk) dan
Oi - Ei 0.60 -1.40 3.60 -1.40 -1.40
i.
Parameter (p) untuk uji Chi-Kuadrat adalah
=2
ii.
Derajat Kebebasan (Dk) = K - (p+1) = 5-(2+1)
=2
iii.
Nilai
X
Xh X
0.15 0.82 5.40 0.82 0.82 8
dengan jumlah data (n) = 12, α = 5% dan Dk = 2 adalah = 5,9910
Derajat Signifikasi (α)
= 5%
hasil hitungan
=3 = 5,991
Dilihat hasil perbandingan di atas bahwa ternyata hipotesa yangdiuji tidak dapat diterima. 2.
`
Xh
hitungan >
X
, maka
Uji Sebaran Smirnov – Kolmogorov Tabel 3.12. Uji Keselarasan Sebarandengan Smirnov – Kolmogorov
Xi
M
1 74 110 165 120 145 115 115 115 60 115 72 90
2 1 2 3 4 5 6 7 8 9 10 11 12
P(x) = M/(n+1) 3 0.0769 0.1538 0.2308 0.3077 0.3846 0.4615 0.5385 0.6154 0.6923 0.7692 0.8462 0.9231
P(x<) 4 = nilai 2 - 3 0.9231 1.8462 2.7692 3.6923 4.6154 5.5385 6.4615 7.3846 8.3077 9.2308 10.1538 11.0769
F(t) = (Xi - Xrt) / Sd 5 -1.1219 0.0675 1.8845 0.3978 1.2238 0.2326 0.2326 0.2326 -1.5844 0.2326 -1.2045 -0.5933
P'(x)=M/(n1) 6 0.09 0.18 0.27 0.36 0.45 0.55 0.64 0.73 0.82 0.91 1.00 1.09
P'(x<)
D
7 = nilai 2 - 6 0.91 1.82 2.73 3.64 4.55 5.45 6.36 7.27 8.18 9.09 10.00 10.91
8=4-7 0.0140 0.0280 0.0420 0.0559 0.0699 0.0839 0.0979 0.1119 0.1259 0.1399 0.1538 0.1678
III-9
Derajat Signifikasi
= 0.05 (5%)
Dmaks
= 0.1678
Do Kritis
= 0.375 (Untuk n = 12)
Dilihat dari perbandingan di atas bahwa Dmaks < Do kritis, maka metode sebaran yang diuji dapat diterima.
3.3.
ANALISA DEBIT BANJIR RANCANGAN
3.3.1.
Penentuan Batas DAS
STASIUN BMKG LASIANA
2 8 9 7 .6 7 m
BATAS DAERAH ALIRAN SUNGAI
Gambar 3.3 Skema Pengaruh Stasiun Terhadap Batas DAS
III-10
BATAS DAERAH ALIRAN SUNGAI KETERANGAN JARINGAN PRIMER
:
JARINGAN SEKUNDER
:
JARINGAN TERSIER
:
SUNGAI BUANGAN
:
JALAN
:
K AWA SA N P ER UMA HA N
:
BATAS DAS
:
Gambar 3.4 Batas DAS Pada Lokasi Survei
3.3.2.
Perhitungan Waktu Konsentrasi Waktu konsentrasi (Tc) adalah waktu yang diperlukan untuk mengalirkan air dari
titik yang paling jauh pada daerah aliran ke titik kontrol yang ditentukan di bagian hilir suatu saluran. Harga Tc ditentukan dengan menggunakan rumus persamaan 2.23, 2.24, 2.25
2 , [3 ×3,28× × √ ] 60
III-11
3.3.2.1. Penamaan Saluran dan Data Kependudukan
P1
T
S8 T S13
S7
T
S12 S6
T
T S11
S1 T
S5
T S10
S4
T
P2
T S9
S3
T
S2
Gambar 3.5 Gambar Penamaan Saluran Tabel 3.13. Penamaan Saluran No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Saluran S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 P1
Nama Saluran Saluran Sekunder 1 Saluran Sekunder 2 Saluran Sekunder 3 Saluran Sekunder 4 Saluran Sekunder 5 Saluran Sekunder 6 Saluran Sekunder 7 Saluran Sekunder 8 Saluran Sekunder 9 Saluran Sekunder 10 Saluran Sekunder 11 Saluran Sekunder 12 Saluran Sekunder 13 Saluran Primer 1
III-12
15 16
P2 T
Saluran Primer 2 Saluran Tersier
Tabel 3.14. Data Kependudukan No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Saluran S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 P1 P2 T
Jumlah penduduk 30 25 25 25 25 25 25 25 25 25 25 25 10 205 110 315
3.3.2.2. Hasil Perhitungan Analisa Curah Hujan Tabel 3.15. Hasil Perhitungan Analisa Curah Hujan Nilai Curah hujan rata-rata S Cv Cs Ck
107.96 30.269 0.280 0.141 3.637
Tabel 3.16. Hasil Perhitungan Curah Hujan Rencana Periode 5 20 50 100 200 1000
Xt 138.63 183.89 212.57 234.06 255.49 305.45
III-13
Tabel 3.17. Hasil Perhitungan Waktu Konsentrasi Ls (m)
V (m/det)
R24 (mm)
t0 (menit)
td (menit)
tc (jam)
4.0
1.10
138.63
1.390
3.317
0.078
0.0
4.0
1.10
138.63
1.224
1.550
0.046
3.0
0.0
4.0
1.10
138.63
1.228
1.579
0.047
106.1
3.0
0.0
4.0
1.10
138.63
1.232
1.608
0.047
S5
108.0
3.0
0.0
4.0
1.10
138.63
1.235
1.636
0.048
6
S6
108.9
3.0
0.0
4.0
1.10
138.63
1.237
1.650
0.048
7
S7
108.3
3.0
0.0
4.0
1.10
138.63
1.236
1.641
0.048
8
S8
110.6
3.0
0.0
4.0
1.10
138.63
1.240
1.676
0.049
9
S9
76.6
3.0
0.0
4.0
1.10
138.63
1.166
1.160
0.039
10
S10
86.3
3.0
0.0
4.0
1.10
138.63
1.190
1.308
0.042
11
S11
94.7
3.0
0.0
4.0
1.10
138.63
1.208
1.434
0.044
12
S12
104.0
3.0
0.0
4.0
1.10
138.63
1.227
1.575
0.047
13
S13
133.3
3.0
0.0
4.0
1.10
138.63
1.279
2.019
0.055
14
P1
278.8
3.0
0.0
4.0
1.10
138.63
1.447
4.224
0.095
15
P2
128.2
3.0
0.0
4.0
1.10
138.63
1.271
1.943
0.054
16
T
3.0
3.0
0.0
4.0
1.10
138.63
0.679
0.045
0.012
No.
Saluran
L (m)
1
S1
218.9
3.0
0.0
2
S2
102.3
3.0
3
S3
104.2
4
S4
5
3.3.3.
n
S (%)
Perhitungan Intensitas Hujan Perhitungan
distribusi
curah
hujan
jam-jaman/intensitas
curah
hujan
ini
menggunakan Metode Dr. Moonobe dengan mengacu pada rumus dibawah ini, yang merupakan sebuah variasi dari persamaan-persamaan curah hujan jangka pendek. Perhitungannya menggunakan Persamaan 2.36 :
I R24 ×[24t] Hasil perhitungan intensitas curah hujan dalam waktu 24 disajikan pada Tabel 3.17 Tabel 3.18. Hasil Perhitungan Intensitas Curah Hujan Intensitas (mm/jam)
No.
Saluran
1
S1
262.3
2
S2
373.1
3
S3
370.2
4
S4
367.3
III-14
5
S5
364.6
6
S6
363.3
7
S7
364.1
8
S8
360.9
9
S9
419.5
10
S10
400.1
11
S11
385.4
12
S12
370.5
13
S13
332.4
14
P1
231.6
15
P2
338.2
16
T
913.2
3.3.4.
Perhitungan Debit Banjir Rancangan Perhitungan debit banjir rancangan men ggunakan metode rasional, dengan
rumus persamaan 2.40 berikut.
Q C ×I×A 3.6 0. 2 78×C×I×A Tabel 3.19. Hasil Perhitungan Debit Banjir Rancangan Luas Catchment area (km2)
Panjang saluran (m)
Intensitas (I)
0.00365
218.93000
262.26
0.3
0.287
S2
0.00232
102.28000
373.12
0.3
0.259
3
S3
0.00360
104.22000
370.17
0.3
0.400
4
S4
0.00377
106.14000
367.31
0.3
0.416
5
S5
0.00402
107.98000
364.62
0.3
0.440
6
S6
0.00385
108.87000
363.34
0.3
0.419
7
S7
0.00420
108.31000
364.15
0.3
0.459
8
S8
0.00150
110.63000
360.85
0.3
0.162
9
S9
0.00163
76.57000
419.53
0.3
0.205
10
S10
0.00305
86.34000
400.09
0.3
0.367
11
S11
0.00360
94.66000
385.37
0.3
0.416
12
S12
0.00322
103.98000
370.53
0.3
0.358
13
S13
0.00226
133.26000
332.42
0.3
0.226
14
P1
0.02320
278.77000
231.63
0.3
1.612
15
P2
0.01378
128.23000
338.21
0.3
1.398
16
T
0.00014
3.00000
913.21
0.3
0.038
No.
Saluran
1
S1
2
C
Q banjir (m3/det)
III-15
3.4.
PERHITUNGAN LIMBAH PERMUKIMAN Debit Air Limbah Buangan adalah semua cairan yang dibuang, baik yang
mengandung kotoran manusia maupun yang mengandung sisa-sisa proses industri. Q rata-rata = (% x Konsumsi Air Bersih/orang Bersih/orang x Jumlah Penduduk x Fp) liter/hari
rakotm ×o60rLirLitmeni emer⁄nidett ×ik60 detitide kk m⁄ detik Q 1000 × 242Qai4 jam× h Tabel 3.20. Hasil Analisa Debit Limbah Permukiman
No.
Saluran
1
S1
0.0036
30
0.0000010
5
air limbah yang dihasilkan (%) 0.75
2
S2
0.0023
25
0.0000010
5
0.75
0.0000977
3
S3
0.0036
25
0.0000010
5
0.75
0.0000977
4
S4
0.0038
25
0.0000010
5
0.75
0.0000977
5
S5
0.0040
25
0.0000010
5
0.75
0.0000977
6
S6
0.0038
25
0.0000010
5
0.75
0.0000977
7
S7
0.0042
25
0.0000010
5
0.75
0.0000977
8
S8
0.0015
25
0.0000010
5
0.75
0.0000977
9
S9
0.0016
25
0.0000010
5
0.75
0.0000977
10
S10
0.0031
25
0.0000010
5
0.75
0.0000977
11
S11
0.0036
25
0.0000010
5
0.75
0.0000977
12
S12
0.0032
25
0.0000010
5
0.75
0.0000977
13
S13
0.0023
10
0.0000010
5
0.75
0.0000391
14
P1
0.0232
205
0.0000010
5
0.75
0.0008008
15
P2
0.0138
110
0.0000010
5
0.75
0.0004297
16
T
0.0001
315
0.0000010
5
0.75
0.0012305
Luas Catchment area (km2)
Jumlah Penduduk (orang)
Jumlah air rata-rata (m3/det)
FP
Qlimbah (m3/det) 0.0001172
Tabel 3.21. Hasil Perhitungan Debit Aliran
Debit aliran m3/det No.
Saluran Q banjir
Q limbah
Qtotal
1
S1
0.287
0.000117
0.287
2
S2
0.259
0.000098
0.259
III-16
3
S3
0.400
0.000098
0.400
4
S4
0.416
0.000098
0.416
5
S5
0.440
0.000098
0.440
6
S6
0.419
0.000098
0.419
7
S7
0.459
0.000098
0.459
8
S8
0.162
0.000098
0.163
9
S9
0.205
0.000098
0.205
10
S10
0.367
0.000098
0.367
11
S11
0.416
0.000098
0.416
12
S12
0.358
0.000098
0.358
13
S13
0.226
0.000039
0.226
14
P1
1.612
0.000801
1.613
15
P2
1.398
0.000430
1.398
16
T
0.038
0.001230
0.039
3.5.
PERHITUNGAN KAPASITAS SALURAN Pada tahap awal analisa diasumsikan bahwa yang tejadi adalah aliran seragam.
Analisa untuk menghitung kapasitas saluran, dipergunakan dipergunakan persamaan kontinuitas dan rumus Manning, yaitu:
× 1 × × × Tabel 3.22. Hasil Analisa Kapasitas Saluran
No.
Saluran
B (m)
h (m)
A (m2)
P (m)
R (m)
S
n
V (m/det)
Qkapasitas (m3/det)
Qtotal (m3/det)
1
S1
0.60
0.60
0.4
1.8
0.2
4
0.03
0.9
0.320
0.287
2
S2
0.60
0.60
0.4
1.8
0.2
4
0.03
0.9
0.320
0.259
3
S3
0.60
0.70
0.4
2.0
0.2
4
0.03
1.0
0.412
0.400
4
S4
0.60
0.70
0.4
2.0
0.2
4
0.03
1.0
0.412
0.416
5
S5
0.60
0.70
0.4
2.0
0.2
4
0.03
1.0
0.412
0.440
6
S6
0.60
0.70
0.4
2.0
0.2
4
0.03
1.0
0.412
0.419
7
S7
0.65
0.70
0.5
2.1
0.2
4
0.03
1.1
0.498
0.459
8
S8
0.40
0.70
0.3
1.8
0.2
4
0.03
0.5
0.151
0.163
9
S9
0.50
0.60
0.3
1.7
0.2
4
0.03
0.7
0.208
0.205
III-17
10
S10
0.60
0.70
0.4
2.0
0.2
4
0.03
1.0
0.412
0.367
11
S11
0.60
0.70
0.4
2.0
0.2
4
0.03
1.0
0.412
0.416
12
S12
0.60
0.70
0.4
2.0
0.2
4
0.03
1.0
0.412
0.358
13
S13
0.4
0.7
0.3
1.8
0.2
4
0.03
0.5
0.151
0.226
14
P1
0.8
1.1
0.9
3.0
0.3
4
0.03
1.9
1.683
1.613
15
P2
0.8
0.9
0.8
2.6
0.3
4
0.03
1.8
1.400
1.398
16
T
0.3
0.5
0.2
1.3
0.1
4
0.03
0.3
0.044
0.039
3.6.
ANALISA HIDROLIKA
3.6.1.
Perhitungan Dimensi Saluran
Perhitungan Dimensi saluran secara implisit telah dihitung pada sub bab 3.5 tabel 3.17. Berikut disajikan table Dimensi Saluran Tabel 3.23. Hasil Analisa Perhitungan Dimensi Saluran
No.
Saluran
B (m)
h (m)
w (m)
H (m)
A (m2)
P (m)
R (m)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 P1 P2 T
0.6 0.6 0.6 0.6 0.6 0.6 0.7 0.5 0.5 0.6 0.6 0.6 0.6 0.8 0.8 0.3
0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.6 0.6 0.7 0.7 0.7 0.7 1.1 0.9 0.5
0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.25 0.20 0.20
0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.8 0.8 0.9 0.9 0.9 0.9 1.4 1.1 0.7
0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.3 0.3 0.4 0.4 0.4 0.4 0.9 0.8 0.2
1.8 1.8 2.0 2.0 2.0 2.0 2.1 1.7 1.7 2.0 2.0 2.0 2.0 3.0 2.6 1.3
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.1
III-18
3.6.2.
Perhitungan Bangunan Pelengkap
G12
S8 G10 G11
S13
S7 G8
S12 G17
G9
P2
G16
S6 S11
S1
G6 G7
G15
S5 S10 G4 G14
G5 S4 S9 G3
G13
S3 G2 S2 G1
Gambar 3.6 Gambar Penamaan Gorong - Gorong Tabel 3.24. Nama Perencanaan Saluran Gorong - Gorong
No.
Gorong - Gorong
Nama Saluran
1
G1
Gorong - Gorong 1
2
G2
Gorong - Gorong 2
3
G3
Gorong - Gorong 3
4
G4
Gorong - Gorong 4
5
G5
Gorong - Gorong 5
6
G6
Gorong - Gorong 6
7
G7
Gorong - Gorong 7
8
G8
Gorong - Gorong 8
III-19
9
G9
Gorong - Gorong 9
10
G10
Gorong - Gorong 10
11
G11
Gorong - Gorong 11
12
G12
Gorong - Gorong 12
13
G13
Gorong - Gorong 13
14
G14
Gorong - Gorong 14
15
G15
Gorong - Gorong 15
16
G16
Gorong - Gorong 16
17
G17
Gorong - Gorong 17
Direncanakan Dibangun gorong-gorong berbahan beton berbentuk persegi mengikuti perencanaan dimensi saluran dimana gorong-gorong berada. Tabel 3.25. Hasil Analisa Perhitungan Bangunan Pelengkap
No.
Nama Gorong – Gorong
B (m)
h (m)
w(m)
H (m)
A(m)
P (m)
R (m)
1
G1
0.8
1.1
0.25
1.4
0.9
3.0
0.3
2
G2
0.8
1.1
0.25
1.4
0.9
3.0
0.3
3
G3
0.8
1.1
0.25
1.4
0.9
3.0
0.3
4
G4
0.8
1.1
0.25
1.4
0.9
3.0
0.3
5
G5
0.8
1.1
0.25
1.4
0.9
3.0
0.3
6
G6
0.8
1.1
0.25
1.4
0.9
3.0
0.3
7
G7
0.8
1.1
0.25
1.4
0.9
3.0
0.3
8
G8
0.8
1.1
0.25
1.4
0.9
3.0
0.3
9
G9
0.8
1.1
0.25
1.4
0.9
3.0
0.3
10
G10
0.8
1.1
0.25
1.4
0.9
3.0
0.3
11
G11
0.8
1.1
0.25
1.4
0.9
3.0
0.3
12
G12
0.8
1.1
0.25
1.4
0.9
3.0
0.3
13
G13
0.8
0.9
0.20
1.1
0.7
2.6
0.3
14
G14
0.8
0.9
0.20
1.1
0.7
2.6
0.3
15
G15
0.8
0.9
0.20
1.1
0.7
2.6
0.3
16
G16
0.8
0.9
0.20
1.1
0.7
2.6
0.3
17
G17
0.8
0.9
0.20
1.1
0.7
2.6
0.3
III-20
BAB IV PENUTUP
4.1. 1.
KESIMPULAN Drainase perkotaan adalah ilmu yang diterapkan mengkhususkan pengkajian pada kawasan perkotaan yang erat kaitannya dengan kondisi lingkungan sosial yang ada di kawasan kota.
2.
Lokasi pembuatan saluran drainase terletak di perumahan Pondok Indah Matani Kupang Blok X, dengan memanfaatkan Stasiun BMKG Lasiana.
3.
Untuk menemukan dimensi saluran dan gorong-gorong, maka Qtotal (Qbanjir rancangan+Qlimbah) = Qkapasitas saluran = Qkapasitas gorong-gorong, yakni berkisar antara 0.039 m3/det s/d 1.613 m3/det.
4.
Dimensi saluran berkisar antara 0.7 m s/d 1.35 m untuk tinggi dan 0.3 m s/d 0.846 m untuk lebar. Daerah saluran yang paling besar berada pada dimensi saluran primer paling akhir, sedangkan dimensi saluran paling kecil berada pada saluran sekunder yang berhubungan langsung dengan rumah penduduk.
5.
Lebar gorong-gorong 0.8 m dan tinggi gorong – gorong berkisar antara 1.1 m s/d 1.4 m, dimana semua gorong-gorong berada pada saluran primer dengan lebar dan tinggi gorong-gorong terbesar berada pada pembuangan paling akhir.
4.2.
SARAN Beberapa hal yang disarankan bertolak belakang terhadap pengamatan didaerah
sekitar lokasi perencanaan adalah sebagai berikut: 1.
Karena kebanyakan perencanaan dimensi saluran terlalu kecil, disarankan agar memperbesar dimensi menyerupai perhitungan diatas karena apabila dilihat didaerah blok X matani hampir 60% saluran drainase tertutup oleh endapan sedimen yang jatuh dari samping kanan dan kiri saluran. Oleh karena desain dimensi yang terlalu kecil sedimen yang menutupi saluran bahkan menutup saluran hamper 100 % dari luas penampang beberapa bagian saluran.
IV-1
2.
Agar pihak yang berwenang segeramelakukan perbaikan penampang saluranyang rusak
3.
Perlunya penambahan alokasi biayapemeliharaan saluran dari instansi ataupihak kelurahan mengajak masyarakat disekitar saluran drainase untuk bergotongroyong untuk menormalisasikan saluran.
4.
Perlunya kesadaran masyarakat akankebersihan linkungan dan bahaya banjiryang diakibatkan oleh banyaknya sampahyang mengurangi debitaliran saluran.
IV-2