SEQUENCE 1. -2, -3, 1, -4, 5, -9, 14, -23, ... A. 17 B. 37 C . 24 F. 2. 125, 125, 243, 243, 16, 16, 16, 16, 3, 1, ... ... A. 2 B. 1 C. 4 F. 3. 300, 300, 101, 101, 100, 100, 11 111, 20, 20, 10, 10, 30, 110, ... ... A . 1 20 B. 1000 C . 40 F. 8
1
4.
7
,
14
3
, 1
7
D . - 21 E. 18
D. 9 E. 3
D . 121 E. 200
5
, 2, 2
7
3
, 3
7
, 4, ...
3
A. 1 B.
7 4
6 7
C. 8 3
D. 4
7 1
E. 2
5
F. 5. 2, 7, 29, 29, 115 115,, 461 461,, ... ... A. 1821 B. 1843 C . 18 4 2 6.
7.
8.
B G. B. C. D. E.
C D PO M D E F M L … … A. KG JG KF JF JK H. X, W, W, U, U, V, V, T, S, S, Q, R, R, P, P, O, …, … I. A. M, N B. N, M C. M, L D. L, M E. N, L J. LMNQORST…… K. A. WU B. W V C. U V
D . 1 84 0 E. 1882 F.
.
D. U W E. V W L. C DLM EF GN OPH I J… … A. Q R B. Q L C. K L D. K Q E. K R
M. 10. 10. A B C E H ... ... A. J B. K C. L D. M E. N N.
11.ALGEBRA 2
x + 4 x − 12
11.The expression
2
x − 8 x + 12
is equivalent to
A. ½ B. x ! C. "# x x + 2
$.
x − 2 x + 6
E.
x − 6
5
1!.%& a '
3
4a
(
a− 2
) *hat the value o& a+
A. a ( 1) a ( 1, B. a ( 1) a ( 1, C. a ( !) a ( $. a ( !) a ( E. a ( -) a ( , 1.%& a /b ( 0 an -a ' 0b ( 2) *hat is the value o& b+ A. 0 B. "C. 3 $. " E. ! 2
x + 9 x
!". F#$% &'( &'( )*+#( )*+#( -/( *0 x *0 x &'-& 1-2(+ &'( (3)4(++#*$ A. 5 B. C. D. 5 E. 6 3/2 15. I0 a !9, &'($ :'-& #+ a2/3; A. 8 B. 16 C. 32 D. 64 E. 128 16. If 2x = y = 3 !"# x.y x.y. . = 288, $%!& $%!& &%' (!)*' (!)*' +f A. 2 B. 4 C. 6 D. 8 E. 10 "
17.
9
+ !<8
9
=
A. 113 B. 117 C. 123
2
x + 6 x − 27
/$%(0#$(%
D. 127 E. 133
18. 18. If x2 – y2 – 4x + 4 = 0, what the vale !f y "# te$% !f x& A. x/2 B. x ' 2 C. x + 2 D. x2 – 2 E. (a##!t )e *ete$%"#e* f$!% "#f!$%at"!# "ve# !6 !6 !6 ....
1 9 . If
=
9
x
, &%'" x = A. B. C. D. E.
2 3 4 5 6 12.
20. T:* +(&+ *0 " =*$+(=/( )*+#( #$&(>(4+ '-( (3-=&? *$( #$&(>(4 #$ =*11*$. T'(
+/1 *0 &'( #$&(>(4+ #$ &'( +(& :#&' >4(-&(4 $/1@(4+ #+ '*: 1/=' >4(-&(4 &'-$ &'( +/1 *0 &'( #$&(>(4+ #$ &'( *&'(4 +(&; A. B. C. D. E.
4 7 8 12 C!""+& C!""+& ' ' #'&'/ #'&'/"'# "'# f/+ f/+ "f+/ "f+/!& !&+" +" ('" ('" 13. 14. 14. EM EME E
9!. I$ &'( %#->4-1 @(*: @(*:,, #$( CD #+ - &-$>($& -$% #$( E #$( E #+ - +(=-$&. I0 -4= AB -4= AB 6< -$% &'( 4-%#/+ *0 &'( =#4=( #+ 7 /$#&+, :'-& #+ &'( ($>&' *0 #$( E; E; 1-.
!6. A. 7 √ 3 B. !" C. !" √ 2 D. !" √ 3 E. C-$$*& C-$$*& @( @( %(&(41#$ %(&(41#$(% (% 04*1 04*1 #$0*1-*$ #$0*1-*$ >#($ 99. I0 &'( =#4=( #$+=4#@(% #$+=4#@(% #$ +/-4( +/-4( ABCD ABCD '-+ - 4-%#/+ *0 $ , :'-& #+ &'( +#( *0 &'( +'-%(% -4(- #$ &(41+ *0 $ ; 14.
!8. 9
9
A. $ $ $ B. 9$ $ $ 9 2
r
C.
2
π r
5
4 2
π r
D. 4 9 5
4 2
E.
r − π r
2
4
9. B4#- -$% L#$%+-? )-? &($$#+ *$ - 4(=&-$>/-4 =*/4& :#&' -$ -4(- *0 9,<<< 9,<<< 0&.9. I0 &'( ($>&' *0 &'( =*/4& #+ 8< 0&., :'-& #+ &'( )(4#1(&(4 *0 &'( =*/4& #$ 0((&; A. !8< B. 9<< C. 9!< D. 9"< E. 9< 9". I$ &'( %#->4-1 @(*:, #0 &'( 4-%#/+ *0 &'( =#4=( #+ 9 /$#&+, :'-& #+ &'( ($>&' *0 -4= AB; AB;
!. A. <." B. C. !< D. < E. 9< 9. T4#-$ T4#-$>(+ >(+ ABC ABC -$% DE-$% DE- -4( +#1#-4. E-=' +#%( *0 ABC *0 ABC #+ &'4(( (+ &'( ($>&' *0 #&+ =*44(+)*$%#$> +#%( *0 &4#-$>( DE- &4#-$>( DE- . I0 &'( -4(- *0 &4#-$>( ABC &4#-$>( ABC #+ 79 +/-4( /$#&+, :'-& #+ &'( -4(- *0 &4#-$>( DE&4#-$>( DE- #$ +/-4( /$#&+; A. 8 +/+/-4( 4( /$# /$#&+ &+ B. 9" +/+/-4( 4( /$# /$#&+ &+ C. 9!6 9!6 +/ +/-4( -4( /$#& /$#&++ D. 6"8 6"8 +/ +/-4( -4( /$#& /$#&++ E. 688 688 +/+/-4( 4( /$# /$#&+ &+ 96. 9<. 9!.
99. 9. 9". 9. 96. 97. 98. 9. W'#=' *0 &'( 0**:#$> 0**:#$> =*/% @( - -/( *0 3, #$ &'( %#->4-1 -@*(; A. B. C. D. E.
!< 9< "< < -$? -$? *0 *0 &'( &'( -@* -@*((
97. <. !. 9. . ". . 6. 7. 5) 6) 7 an 8 are points on the 9ir9u:&eren9e o& a 9ir9le) 9enter ;. Chors 57 an 68 interse9t at the point <. =756 ( 4!> an =578 ( 2>. 6hat is the si?e o& =5<6+ A. 2 B. 4 , C . 0, D. 4! 98. %& a 3 9: 9u@e is 9ut into 1 9: 9u@es) then *hat is the per9entae in9rease in the sur&a9e area o& the resultin 9u@es+ 8. A. 3 B. 100 C. !00 $. ,, E. 3,, 9. A 9u@e o& sie 4 9: is 9oloure on pair o& opposite &a9es @ Re) Green an 8ello* 8ello* shaes. The 9u@e is i s then 9ut into unit 9u@es. Do* :an o& the unit 9u@es *ill have exa9tl t*o 9oloure &a9es+ . A 1-, B 1!C 0, $ 3/ E 3, <. A pra:i has a square @ase o& 0 9:) an the &our lateral &a9es are &our 9onruent equilateral trianles. 6hat is the total sur&a9e area o& the pra:i in square 9:+ 3,. FA 0 ' 12 √ 3
FB 0 ' 0 √ 3 FC 4! F$ 4! ' 0 √ 3 FE 4! ' 4! √ 3
41. Comparison Comparison
!. The averae Farith:eti9 :ean o& &our nu:@ers is 0 3!.7 ( The su: o& the sa:e &our nu:@ers 3.8 ( 13, A. X B. X C. X D. C-$$*& C-$$*& @( %(&(41#$( %(&(41#$(% % 04*1 #$0*41-*$ #$0*41-*$ >#($ >#($ 9. n is an inteer :ore than , 33.7 ( 1n ' n 3-.8 ( ! A. X B. X C. X D. C-$$* C-$$*&& @( %(&(41#$( %(&(41#$(% % 04*1 #$0*41 #$0*41-*$ -*$ >#($ >#($ . . X The iaonal o& a re9tanle 30. Dal& the peri:eter o& the sa:e re9tanle A. X B. X C. X D. C-$$*& C-$$*& @( %(&(41#$( %(&(41#$(% % 04*1 #$0*41-*$ #$0*41-*$ >#($ >#($ "7. ". x ' ( "x( A. X B. X C. X D. C-$$*& C-$$*& @( %(&(41#$( %(&(41#$(% % 04*1 #$0*41-*$ #$0*41-*$ >#($ >#($ *ith re9tanular 9oorinates F,)- . . X The istan9e @et*een the points *ith an F,)1, 32. The istan9e @et*een the points *ith *ith re9tanular 9oorinates F1)2 an F")- A. X B. X C. X D. C-$$*& C-$$*& @( %(&(41#$( %(&(41#$(% % 04*1 #$0*41-*$ #$0*41-*$ >#($ >#($ o& ! that are also :ultiples o& 6. 6. X The per9entae o& the :ultiples o& 3/. The per9entae o& the :ultiples o& - that are also :ultiples o& ! A. X B. X C. X D. C-$$*& C-$$*& @( %(&(41#$( %(&(41#$(% % 04*1 #$0*41-*$ #$0*41-*$ >#($ >#($
7. Hre is no* 1, ears oler than Geore *as - ears ao -,.7 ( HreIs ae - ears ao -1.8 ( GeoreIs ae no* A. X B. X C. X D. C-$$*& C-$$*& @( %(&(41#$( %(&(41#$(% % 04*1 #$0*41-*$ #$0*41-*$ >#($ >#($ 8. 8. X The su: o& the even nu:@ers &ro: ! to 1,, in9lusive 9. 9. 9 9 3 < A. X B. X C. X D. C-$$*& C-$$*& @( %(&(41#$( %(&(41#$(% % 04*1 #$0*41-*$ #$0*41-*$ >#($ >#($ . A is less than B -.7 ( A ' -3.8 ( B ' ! A. X B. X C. X D. C-$$*& C-$$*& @( %(&(41#$( %(&(41#$(% % 04*1 #$0*41-*$ #$0*41-*$ >#($ >#($ . &ro: "1, to 1! in9lusive. "<. "<. X The su: o& all the inteers &ro: 6. 6. 9 A. X B. X C. X $. C-$$*& @( %(&(41#$(% 04*1 #$0*41-*$ >#($