Gói lnh tkz-tab.sty - Làm bng bin thiên (I) Nguyn Hu Đin Khoa Toán - Cơ - Tin hc ĐHKHTN Hà Ni, ĐHQGHN
1 Gii Gii thi thiuu gói gói lnh lnh Gn đay mt s bn dùng tkz-tab.sty đ v bng bin thiên. Gói lnh này nm trong b gói lnh tng quát tkz.sty ca Alain Matthes đa ch http://altermundus.com Nhưng đã có trên CTAN: http://www.ctan.org/tex-archive/macros/latex/contrib/tkz/tkz-tab MiKTeX đã có gói lnh này, bn np t chương trình qun lý gói lnh ca MiKTeX hay hơn. Bn Trn Anh Tun đi hc thương mi có vit mt bài v vn đ này http://mathviet.wordpress.com/ Nhưng bài ca Trn Anh Tun ch cn tkz-tab.sty nguyên bn là chy đưc, không cn gói lnh tkz-tab-vn.sty. Gói lnh quá ln tôi chia làm 2 bài. Ni dung hoàn toàn ly trong hưng dn gói lnh ca tác gi gói lnh.
2 Mt Mt s lnh lnh ca ca gói lnh lnh 1. Môi trưng đ làm bng bin thiên \begin{tikzpicture} ct> \end{tikzpicture}
2. Các lnh đnh dng mt bng có nhiu ví d \tkzTabIn \tkzTabInit[< it[]{< chn>]{<Đi Đi s hang>}{< hang>}{<Đi Đi s ct>} ct>} Lnh to ra hàng và
ct đu tiên ca bng. \tkzTabLine{<Đi \tkzTabLine{<Đi s>} Đi s các ct và ô trong mt hàng \tkzTa \tkzTabVa bVar[< r[] chn>]{<Đ {<Đi i s mũi tên, tên, đim đim cui>} cui>} Đ Đnh
tên,chéo, ngang,... \tkzTa \tkzTab[< b[] chn>]{<Đ {<Đi i s ct đu>}{ đu>}{<Đ <Đi i s dòng dòng đu>} đu>} {} bng>}{} tên>}
Tng hp các lnh trên. 1
dng
mũi
http://nhdien.wordpress.com http://nhdien.wordpress.com - Nguyn Hu Đin
2
2.1 Lnh Lnh thit thit lp hàng đu và ct đu bng \tkzTabIn \tkzTabInit[< it[]{< chn>]{<Đi Đi s hàng>}{< hàng>}{<Đi Đi s ct>} ct>}
• {<Đi {<Đi
s hàng>}={e1/h1,e2/h2,...,en hàng>}={e1/h1,e2/h2,...,en/hn} /hn} Mi hàng đưc cách bng du phy,
và en là biu thc nào đó còn hn là chiu cao dòng.
• {<Đi s ct>}={a ct>}={a1,a2, 1,a2,..., ...,an} an} Mi đu ct mt biu thc an. • chn> theo các đi s sau: Tùy chn chn espcl lgt delt deltac acll
Mc đnh Mc đnh 2 cm 2 cm 0.5 0.5 cm
lw noca nocadr dree color colorC colorL colorT colorV help help
0.4 pt false alse false white white white white ite false lse
ý nghĩ nghĩaa B rng ct Đ rng ct th nht đ rng rng ct ct mt mt và ct ct hai hai như như đ rng rng ct ct cui cui cùng vi ddưng k cui Nét k bng Khôn Khôngg có đưn đưngg k quanh uanh ngoà ngoàii bng bng Mu bng có hay không Mu ct th nht Mu hàng th nht Mu bên trong bng Mu ca các bin trong bng affic ffichhe les les nom noms des des points ints de constr nstruuction tion
deltacl = 0 , 5 cm = 2 cm lgt =
x
deltacl = 0 , 5 cm
espcl = 2 cm
a1
espcl = 2 cm
a3
a2
Ví d: 1. Bng vi hàng và ct
\begin{tikzpicture} \tkzTabInit {$x$/1,$f(x)$/1,$g(x)$/1} {$0$,$\E$,$+\infty$} \end{tikzpicture}
x
e
0
+
∞
f ( x) g( x)
2. Tùy chn lgt
\begin{tikzpicture} \tkzTabIn \tkzTabInit[l it[lgt=3] gt=3]{ { $x$ / 1} { $1$, $3$ } \end{tikzpicture}
x
1
3
http://nhdien.wordpress.com http://nhdien.wordpress.com - Nguyn Hu Đin
3
3. Tùy chn espcl
\begin{tikzpicture} \tkzTabInit[lgt=3,espcl=4]% { $x$ / 1} { $1$ , $4$} \end{tikzpicture}
x
1
4
4. Tùy chn deltacl
\begin{tikzpicture} \tkzTabInit[lgt=3,deltacl=1]% { $x$ / 1} { $1$ , $4$ } \end{tikzpicture}
5. Tùy chn lw
\begin{tikzpicture} \tkzTabIn \tkzTabInit[l it[lw=2pt w=2pt]{ ]{ / 1} { , } \end{tikzpicture}
6. Tùy chn nocadre
\begin{tikzpicture} \tkzTabInit[nocadre] { / 1, /1, /1}{ , } \end{tikzpicture}
2. Tùy chn mu
\begin{tikzpicture} \tkzTabInit[color, colorT colorT = yellow!20 yellow!20, , colorC colorC = orange!20 orange!20, , colorL colorL = green! green!20, 20, colorV colorV = lightgray lightgray!20] !20] { /1 , /1}{ , } \end{tikzpicture}
x
1
4
http://nhdien.wordpress.com http://nhdien.wordpress.com - Nguyn Hu Đin
\begin{tikzpicture} \tkzTabInit[color, colorT colorT = yellow!20 yellow!20, , colorC colorC = red!20 red!20, , colorL colorL = green! green!20, 20, colorV colorV = lightgray lightgray!20, !20, lgt= 1, espcl= espcl= 2.5]% 2.5]% {$t$/1,$a$/1,$b$/1,$c$/1,$d$/1}% {$\alpha$,$\beta$,$\gamma$}% \end{tikzpicture}
4
α
t
γ
β
a b c d
2.2 Đưa mt hàng vào vào bng \tkzTabLine{<Đi \tkzTabLine{<Đi s>} \tkzTabLine{ s1,...,si,...,s(2n-1)} s1,...,si,...,s(2n-1)} mi ô ca ct là biu thc si hoc đi s
Đi s hàng; z t d
ct đng xuyên qua s 0 Đưng đng đt đon K hai đưng đng \textvisiblespace Mt lnh nào đó h Tô đưn đưngg k ô + ô mang mang du du + - ô man mang du Mt lnh nào đó
Ví d: 1. Không đi s
\begin{tikzpicture} \tkzTabInit[espcl=1.5] {$x$ {$x$/ / 1 ,$f( ,$f(x) x)$ $ /1 }% {$v_1$ , $v_2$ , $v_3$ }% \tkzTabLine{ , , , , } \end{tikzpicture}
2. Đi s t
x f ( x)
v1
v2
v3
http://nhdien.wordpress.com http://nhdien.wordpress.com - Nguyn Hu Đin
\begin{tikzpicture} \tkzTabInit[espcl=1.5] {$x$ {$x$/ / 1 ,$f( ,$f(x) x)$ $ /1 }% {$v_1$ , $v_2$ , $v_3$ }% \tkzTabLine{ t, , t , ,t } \end{tikzpicture}
5
v1
v2
v3
x
v1
v2
v3
f ( x)
0
0
0
x
0
1
2
x f ( x)
3. Đi s z
\begin{tikzpicture} \tkzTabInit[espcl=1.5] {$x$ {$x$/ / 1 ,$f( ,$f(x) x)$ $ /1 }% {$v_1$ , $v_2$ , $v_3$ }% \tkzTabLine{ z, , z , ,z } \end{tikzpicture}
4. Đi s d
\begin{tikzpicture} \tkzTabInit[espcl=1.5]% {$x$ / 1,$g(x)$ / 1}% {$0$,$1$,$2$}% \tkzTabLine{d,+,0,-,d} \end{tikzpicture}
g( x)
+
−
0
5. Đi s d và + , -
\begin{tikzpicture} \tkzTabInit[lgt=1.5,espcl=1.75]% {$x$ / 1,$f’(x)$ / 1}% {$-\infty$,$0$,$+\infty$}% \tkzTabLine{,+,d,-,} \end{tikzpicture}
x
−∞
+
∞
0
f ( x)
+
−
6. Đi s h
\begin{tikzpicture} \tkzTabInit[color,espcl=1.5] {$x$ / 1,$g(x)$ / 1} {$0$,$1$,$2$,$3$}% \tkzTabLine{z, + , d , h , d , - , t} \end{tikzpicture}
x
0
g( x)
0
1 +
2
3
−
http://nhdien.wordpress.com http://nhdien.wordpress.com - Nguyn Hu Đin
6
2.3 Mt s ví ví d v bng bng kho kho sát du hàm s 1. Dùng kiu t đ có đưng chm chm đng
\begin{tikzpicture} \tikzs \tikzset{ et{t t style/ style/.st .style yle = {style {style = dashed dashed}} }} \tkzTabInit[espcl=1.5] {$x$ / 1 ,$f(x)$ /1 }% {$v_1$ , $v_2$ , $v_3$ }% \tkzTabLine{ t, , t , ,t } \end{tikzpicture}
v1
x
v2
v3
f ( x)
2. Dùng kiu z đ có o
\tikzset{ \tikzset{t t style/.st style/.style yle = {style {style = densel densely y dashed dashed}} }} \begin{tikzpicture} \tkzTabInit[espcl=1.5] {$x$ / 1 ,$f(x)$ /1 }% {$v_1$ , $v_2$ , $v_3$ }% \tkzTabLine{ z, , z , ,z } \end{tikzpicture}
x
v1
v2
v3
f ( x)
0
0
0
0
1
2
3. Tô màu mt ct
\begin{tikzpicture} x \tikzset{ \tikzset{h h style/.st style/.style yle = {fill=re {fill=red!50 d!50}} }} \tkzTabInit[color,espcl=1.5]% g( x) {$x$ / 1,$g(x)$ / 1}% {$0$,$1$,$2$,$3$}% \tkzTabLine{z,+,d,h,d,-,t} \end{tikzpicture}
0
+
3
−
4. Đưng k chéo
\begin{tikzpicture} \tikzset{ \tikzset{h h style/.st style/.style yle = {pattern= {pattern=nort north h west lines}} lines}} \tkzTabInit[color,espcl=1.5]% {$x$ / 1,$g(x)$ / 1}% {$0$,$1$,$2$,$3$}% \tkzTabLine{z,+,,h,d,-,t} \end{tikzpicture}
x
0
g( x)
0
1 +
3
2
−
http://nhdien.wordpress.com http://nhdien.wordpress.com - Nguyn Hu Đin
7
5.Hàm giá tr tuyt đi
\begin{tikzpicture} \tkzTabInit[lgt=2,espcl=1.75]% {$x$/1,$2 {$x$/1,$2-x$/ -x$/1, 1, $\vert $\vert 2-x \vert \vert $/1}% {$-\infty$,$2$,$+\infty$}% \tkzTabLine{ , + , z , - , } \tkz \tkzTa TabL bLin ine{ e{ , 2-x 2-x ,z, ,z, x-2, x-2, } \end{tikzpicture}
x
−∞
2
− x |2 − x|
+
∞
2
2
+
0
−
− x
0 x
−2
6. Bng xét du
\begin{tikzpicture} \tkzTabInit[lgt=3,espcl=1.5]% {$x$/1,$x^2-3x+2$/1, $(x-\E)\l $(x-\E)\ln n x$/1, $\dfrac{x^2-3x+2}{(x-\E)\ln $\dfrac{x^2-3x+2}{(x-\E)\ln x}$ /2} {$0$, {$0$, $1$, $2$, $\E$,$+\ $\E$,$+\infty infty$} $} \tkzTabLine{ t,+,z,-,z,+,t,+,} t,+,z,-,z,+,t,+,} \tkzTabLine{ d,+,z,-,t,-,z,+,} d,+,z,-,t,-,z,+,} \tkzTabLine{ d,+,d,+,z,-,d,+,} d,+,d,+,z,-,d,+,} \end{tikzpicture}
x x2
− 3 x + 2 ( x − e) ln x
x2
− 3 x + 2 ( x − e) ln x
0
1 +
0
+
0
+
a x 7. Nu ∆ ≥ 0 ta vit ax
2
+
e
2
− −
0
+
0
bx + c
+
−
= a
−
+
∞
+
0
+
+
−b − x−
√
b2
2a
− 4ac
−b + x −
\begin{tikzpicture} \tkzTabInit[color,lgt=5,espcl=3]% {$x$ {$x$ / .8,$\D .8,$\Delt elta>0 a>0$\\ $\\ Du ca\\ ca\\ $ax^2+ $ax^2+bx+ bx+c$ c$ /1.5}% /1.5}% {$-\infty$,$x_1$,$x_2$,$+\infty$}%
√
b2
2a
− 4ac
http://nhdien.wordpress.com http://nhdien.wordpress.com - Nguyn Hu Đin
8
\tkzTabL \tkzTabLine{ ine{ , \genfrac \genfrac{}{}{ {}{}{0pt} 0pt}{0}{\ {0}{\text text{du {du ca}}{a}, ca}}{a}, z , \genfrac \genfrac{}{}{ {}{}{0pt} 0pt}{0}{\ {0}{\text text{ngư {ngưc}}{ c}}{\text \text{du {du ca}\ ca}\ a}, z , \genfrac{}{ \genfrac{}{}{0p }{0pt}{0} t}{0}{\te {\text{d xt{du u ca}}{a}, ca}}{a}, } \end{tikzpicture}
x ∆
> 0
du ca
Du ca ax 2
+
bx
+
x1
−∞
a x 8. Nu ∆ < 0 khi đó ax
2
+
bx + c
= a
ngưc du ca a
0
a
c
x2
x+
b
2
0
+
∞
du ca a
b2
− 4−a4ac 2
2a
\begin{tikzpicture} \tkzTabInit[color,lgt=5,espcl=5]% {$x$/.8, {$x$/.8,$\Del $\Delta<0 ta<0$\\ $\\ Du ca\\ ca\\ $ax^2+bx $ax^2+bx+c$/2 +c$/2}% }% {$-\infty$,$+\infty$}% \tkzTabL \tkzTabLine{ ine{ , \genfrac \genfrac{}{}{ {}{}{0pt} 0pt}{0}{\ {0}{\text text{du {du ca}}{ ca}}{ a}, } \end{tikzpicture}
x ∆
+
−∞
∞
< 0
du ca
Du ca ax 2
+
bx
+
a
c
a x 9. Nu ∆ < 0 khi đó ax
2
+
bx + c
= a
x+
b 2a
2
b2
− 4−a4ac 2
\begin{tikzpicture} \tkzTabInit[color,lgt=5,espcl=5]% {$x$/.8, {$x$/.8,$\Del $\Delta<0 ta<0$\\ $\\ Du ca\\ ca\\ $ax^2+bx $ax^2+bx+c$/2 +c$/2}% }% {$-\infty$,$+\infty$}% \tkzTabL \tkzTabLine{ ine{ , \genfrac \genfrac{}{}{ {}{}{0pt} 0pt}{0}{\ {0}{\text text{du {du ca}}{ ca}}{ a}, } \end{tikzpicture}
x ∆
< 0
+
bx
+
∞
du ca
Du ca ax 2
+
−∞ c
a
http://nhdien.wordpress.com http://nhdien.wordpress.com - Nguyn Hu Đin
9
2.4 Lnh Lnh đưa đưa dòng có các chiu chiu mũi tên \tkzTa \tkzTabVa bVar[< r[] chn>]{<Đ {<Đi i s mũi tên, tên, đim đim cui>} cui>} \tkzTabVar[]{el(1),...,el(n)} chn>]{el(1),...,el(n)} C th là \tkzTabVar[
hoc biu thc. \newcommand*{\va}{\colorbox \newcommand*{\va}{\colorbox{red!50}{$\sc {red!50}{$\scriptscriptstyl riptscriptstyle e V_a$}} \newcommand*{\vb}{\colorbox \newcommand*{\vb}{\colorbox{blue!50}{$\s {blue!50}{$\scriptscriptsty criptscriptstyle le V_b$}} \newcommand*{\vbo}{\colorbo \newcommand*{\vbo}{\colorbox{blue!50}{$\ x{blue!50}{$\scriptscriptst scriptscriptstyle yle V_{b1}$}} \newcommand*{\vbt}{\colorbo \newcommand*{\vbt}{\colorbox{yellow!50}{ x{yellow!50}{$\scriptscript $\scriptscriptstyle style V_{b2}$}} \newcommand*{\vc}{\colorbox \newcommand*{\vc}{\colorbox{gray!50}{$\s {gray!50}{$\scriptscriptsty criptscriptstyle le V_c$}} \newcommand*{\vd}{\colorbox \newcommand*{\vd}{\colorbox{magenta!50}{ {magenta!50}{$\scriptscript $\scriptscriptstyle style V_d$}} \newcommand*{\ve}{\colorbox \newcommand*{\ve}{\colorbox{orange!50} {orange!50} {$\scriptscriptstyle {$\scriptscriptstyle V_e$}}
\begin{tikzpicture} \tkzTabInit[lgt=2,espcl=3]{ \tkzTabInit[lgt=2,espcl=3]{$x$/1,$f’(x)$ $x$/1,$f’(x)$/1,$f(x)$/3}{$ /1,$f(x)$/3}{$0$,$1$,$2$,$+ 0$,$1$,$2$,$+\infty$}% \infty$}% \tkzTabLine{t,-,d,-,z,+,}% \tkzTabVa \tkzTabVar{+/ r{+/\va \va , -D+/\vb/ -D+/\vb/\vc, \vc,-/\vd -/\vd, , +D/\ve}% +D/\ve}% \end{tikzpicture}
x
0
f ( x)
1
−
−
V a
+
∞
2 0
V c
+ V e
f ( x) V b
V d
1. Điu khin bng {+ /\va , -/\vb }
\begin{tikzpicture} \tkzTa \tkzTabIn bInit[ it[lgt lgt=1] =1]{ { /0.5,/ /0.5,/2 2 }{ a , b } \tkzTabVar% {+ /\va , -/\vb } \end{tikzpicture}
2. Điu khin bng {-/\va
,
+/\vb}
a
b
V a
V b
http://nhdien.wordpress.com http://nhdien.wordpress.com - Nguyn Hu Đin
\begin{tikzpicture} \tkzTa \tkzTabIn bInit[ it[lgt lgt=1] =1]{ { /0.5,/ /0.5,/2 2 }{ a , b } \tkzTabVar% {-/\va , +/\vb} \end{tikzpicture}
3. Điu khin bng {+/\va
,
,
a
b V b
V a
+/\vb}
\begin{tikzpicture} \tkzTa \tkzTabIn bInit[ it[lgt lgt=1] =1]{ { /0.5,/ /0.5,/2 2 }{ a , b } \tkzTabVar% {+/\va , +/\vb} \end{tikzpicture}
4. Điu khin bng {-/\va
10
a
b
V a
V b
a
b
V a
V b
a
b
-/\vb}
\begin{tikzpicture} \tkzTa \tkzTabIn bInit[ it[lgt lgt=1] =1]{ { /0.5,/ /0.5,/2 2 }{ a , b } \tkzTabVar% {-/\va , -/\vb} \end{tikzpicture}
5. Điu khin bng {+/\va , -C / \vb}
\begin{tikzpicture} \tkzTa \tkzTabIn bInit[ it[lgt lgt=1] =1]{ { /0.5,/ /0.5,/2 2 }{ a , b } \tkzTabVar% {+/\va , -C / \vb \vb} \end{tikzpicture}
V a
V b
6. Điu khin bng {-/\va , +C / \vb }
\begin{tikzpicture} \tkzTa \tkzTabIn bInit[ it[lgt lgt=1] =1]{ { /0.5,/ /0.5,/2 2 }{ a , b } \tkzTabVar% {-/\va , +C / \v \vb } \end{tikzpicture} \va , -C / \v \vb} 7. Điu khin bng {+C / \v
a
b V b
V a
http://nhdien.wordpress.com http://nhdien.wordpress.com - Nguyn Hu Đin
\begin{tikzpicture} \tkzTa \tkzTabIn bInit[ it[lgt lgt=1] =1]{ { /0.5,/ /0.5,/2 2 }{ a , b } \tkzTabVar% {+C / \v \va , -C / \vb } \end{tikzpicture}
11
a
b
V a
V b
{-C /\va /\va , +C /\v /\vb} 8. Điu khin bng {-C
\begin{tikzpicture} \tkzTa \tkzTabIn bInit[ it[lgt lgt=1] =1]{ { /0.5,/ /0.5,/2 2 }{ a , b } \tkzTabVar% {-C /\ /\va , +C /\ /\vb} vb} \end{tikzpicture}
a
b V b
V a
9. Điu khin bng { D+ /\va , -/\vb}
\begin{tikzpicture} \tkzTa \tkzTabIn bInit[ it[lgt lgt=1] =1]{ { /0.5,/ /0.5,/2 2 }{ a , b } \tkzTabVar% { D+ /\va , -/\vb} \end{tikzpicture}
a
b V a
V b
10. Điu khin bng { DD- /\va , +/\vb}
\begin{tikzpicture} \tkzTa \tkzTabIn bInit[ it[lgt lgt=1] =1]{ { /0.5,/ /0.5,/2 2 }{ a , b } \tkzTabVar { D- /\va , +/\vb} \end{tikzpicture}
a
b V b
V a
11. Điu khin bng {+/\va , -D / \vb}
\begin{tikzpicture} \tkzTa \tkzTabIn bInit[ it[lgt lgt=1] =1]{ { /0.5,/ /0.5,/2 2 }{ a , b } \tkzTabVar% {+/\va , -D / \vb \vb} \end{tikzpicture}
12. Điu khin bng {-/\va , +D / \vb }
a
b
V a
V b
http://nhdien.wordpress.com http://nhdien.wordpress.com - Nguyn Hu Đin
12
\begin{tikzpicture} \tkzTa \tkzTabIn bInit[ it[lgt lgt=1] =1]{ { /0.5,/ /0.5,/2 2 }{ a , b } \tkzTabVar% {-/\va , +D / \v \vb } \end{tikzpicture}
a
b V b
V a
13. Điu khin bng {D+ / \va , -D / \vb }
\begin{tikzpicture} \tkzTa \tkzTabIn bInit[ it[lgt lgt=1] =1]{ { /0.5,/ /0.5,/2 2 }{ a , b } \tkzTabVar% {D+ / \v \va , -D / \vb } \end{tikzpicture}
a
b V a
V b
14. Điu khin bng {D- /\va , +D /\vb}
\begin{tikzpicture} \tkzTa \tkzTabIn bInit[ it[lgt lgt=1] =1]{ { /0.5,/ /0.5,/2 2 }{ a , b } \tkzTabVar% {D- /\ /\va , +D /\ /\vb} vb} \end{tikzpicture}
a
b V b
V a
15. Điu khin bng {+/ \va , -/ \vb , +/ \vc}
\begin{tikzpicture} \tkzTabInit[lgt=1,espcl=2.5] { /0.5,/2 }{ a , b , c } \tkzTabVar {+/ \v \va , -/ -/ \vb ,+ ,+/ \vc} \end{tikzpicture}
a
b
V a
c V c
V b
16. Điu khin bng {+/ \va ,-C/ \vb , +/ \vc/ }
\begin{tikzpicture} \tkzTabInit[lgt=1,espcl=2.5] { /0.5,/2 }{ a , b , c } \tkzTabVar {+/ \v \va ,-C/ \v \vb , +/ \vc/ } \end{tikzpicture}
a
b
V a
c V c
V b
http://nhdien.wordpress.com http://nhdien.wordpress.com - Nguyn Hu Đin
13
17. Điu khin bng {- /\va , R , +/\vc}
\begin{tikzpicture} \tkzTabInit[lgt=1,espcl=2.5] { /0.5,/2 }{ a , b , c } \tkzTabVar% {- /\va , R, +/\vc} \end{tikzpicture}
a
b
c V c
V a
18. Điu khin bng {- /\va , R , +/\vc}
\begin{tikzpicture} \tkzTabInit[lgt=1,espcl=2.5] { /0.5,/2}{ a , b , c } \tkzTabVar% {- /\va , R , +/\vc} \end{tikzpicture}
a
b
c V c
V a
{D-/\v \va a , +DH/ +DH/\v \vbo bo/ / , } 19. Điu khin bng {D-/
\begin{tikzpicture} \tkzTabInit[lgt=1,espcl=2.5] { /0.5,/2 }{ a , b , c } \tkzTabVar% {D-/\va , +DH/\vbo/ , } \end{tikzpicture}
a
b
c
b
c
V b1
V a
{D-/\v \va a , -DH/\ -DH/\va va/\ /\vb vb , D+/} D+/} 20. Điu khin bng {D-/
\begin{tikzpicture} \tkzTabInit[lgt=1,espcl=2.5] { /0.5,/2 }{ a , b , c } \tkzTabVar% {D-/\va , -DH/\vbo , D+/} \end{tikzpicture}
a
V a
{D-/\va a , +D-/\v +D-/\vbo/ bo/\vb \vbt t , +D/\vc +D/\vc} } 21. Điu khin bng {D-/\v
V b1
http://nhdien.wordpress.com http://nhdien.wordpress.com - Nguyn Hu Đin
\begin{tikzpicture} \tkzTabInit[lgt=1,espcl=2.5] { /0.5,/2 }{ a , b , c } \tkzTabVar% {D-/ {D-/\v \va a , +D-/ +D-/\v \vbo bo/\ /\vb vbt t , +D/ +D/\v \vc} c} \end{tikzpicture}
14
a
c
b V b1
V c
V b2
V a
{D-/\va a , +D-/\v +D-/\vbo/ bo/\vb \vbt t , +D/\vc +D/\vc} } 22. Điu khin bng {D-/\v
\begin{tikzpicture} \tkzTabInit[lgt=1,espcl=2.5] { /0.5,/2 }{ a , b , c } \tkzTabVar% {D-/ {D-/\v \va a , -D-/ -D-/\v \vbo bo/\ /\vb vbt t , +D/ +D/\v \vc} c} \end{tikzpicture}
a
c
b V c
V a
V b1
V b2
23. Điu khin bng {+/\va , -D- / \vbo/\vbt , +/\vc}
\begin{tikzpicture} \tkzTabInit[lgt=1,espcl=2.5] { /0.5,/2 }{ a , b , c } \tkzTabVar {+/ {+/ \va , -D-D- /\vbo/ /\vbo/\v \vbt bt,+ ,+/\ /\vc vc } \end{tikzpicture}
a
c
b
V a
V c
V b1
V b2
/\va,-DC- /\vbo/\v /\vbo/\vbt,+ bt,+ /\vc} /\vc} 24. Điu khin bng {+ /\va,-DC-
\beg \begin in{t {tik ikzp zpic ictu ture re}\ }\ti tikz kzse set{ t{lo low/ w/.s .sty tyle le \tkzTabInit[lgt=1,espcl=2.5] { /0.5,/2 }{ a , b , c } \tkzTabVar {+ /\va /\va ,-DC-DC- /\vb /\vbo/ o/\v \vbt bt ,+ /\ /\vc} vc} \end{tikzpicture}
= {abo {a ve = a bove
15pt 15bpt}} }}
V a
25. Điu khin bng {D-/\v {D-/\va, a, +DC-/\vbo +DC-/\vbo/\vbt /\vbt, , +D/\vc} +D/\vc}
c V c
V b2 V b1
http://nhdien.wordpress.com http://nhdien.wordpress.com - Nguyn Hu Đin
\begin{tikzpicture} \tkzTabInit[lgt=1,espcl=2.5] { /0.5,/2 }{ a , b , c } \tkzTabVar% {D-/ {D-/\v \va a , +DC+DC-/\ /\vb vbo/ o/\v \vbt bt ,+D ,+D/\ /\vc vc} } \end{tikzpicture}
15
a
c
b V b1
V c
V b2
V a
26. Điu khin bng {D+/\v {D+/\va a , +DC-/\ +DC-/\vbo vbo/\v /\vbt bt , +D/\vc +D/\vc} }
\begin{tikzpicture} \tkzTabInit[lgt=1,espcl=2.5] { /0.5,/2 }{ a , b , c } \tkzTabVar% {D+/ {D+/\v \va a , +DC+DC-/\ /\vb vbo/ o/\v \vbt bt ,+D ,+D/\ /\vc vc} } \end{tikzpicture}
a
c
b V a
V b1
V c
V b2
{D-/\va a , +CD-/\ +CD-/\vbo vbo/\v /\vbt bt , +D/\vc +D/\vc} } 27. Điu khin bng {D-/\v
\begin{tikzpicture} \tkzTabInit[lgt=1,espcl=2.5] { /0.5,/2 }{ a , b , c } \tkzTabVar% {D-/ {D-/\v \va a , +CD+CD-/\ /\vb vbo/ o/\v \vbt bt , +D/\ +D/\vc vc} } \end{tikzpicture}
a
c
b V b1
V c
V b2
V a
{D-/\va , +CD-/\vb +CD-/\vbo/\vb o/\vbt t ,+D/\vc} ,+D/\vc} 28. Điu khin bng {D-/\va
\begin{tikzpicture} \tkzTabInit[lgt=1,espcl=2.5] { /0.5,/2 }{ a , b , c } \tkzTabVar% {D+/\v {D+/\va a , +CD-/\ +CD-/\vbo vbo/\v /\vbt bt , +D/\vc +D/\vc} } \end{tikzpicture}
a
c
b V a
V b1
V c
V b2
{+/\va, , -DC+ -DC+ /\vbo/ /\vbo/\vb \vbt, t, - /\vc} /\vc} 29. Điu khin bng {+/\va
\begin{tikzpicture} \tkzTabInit[lgt=1,espcl=2.5] { /0.5,/2 }{ a , b , c } \tkzTabVar {+ /\va /\va ,-DC+ ,-DC+ /\vbo/ /\vbo/\vb \vbt t , -/\vc} -/\vc} \end{tikzpicture}
a
b
V a
V b2
V b1
c
V c
http://nhdien.wordpress.com http://nhdien.wordpress.com - Nguyn Hu Đin
16
/\va, -DC- /\vbo/\v /\vbo/\vbt,+ bt,+D/\vc D/\vc} } 30. Điu khin bng {D- /\va,
\begin{tikzpicture}\tikzset{low/.style \tkzTabInit[lgt=1,espcl=2.5] { /0.5,/2 }{ a , b , c } \tkzTabVar% {D{D- /\va /\va , -DC-DC- /\vbo /\vbo/\ /\vb vbt t , +D/\ +D/\vc vc} } \end{tikzpicture}
= {abovbe
a
= c15pt}} V c
V b2 V a
V b1
{+/\va va , -CH -CH /\vb /\vbo/ o/\v \vbt bt , D+/} D+/} 31. Điu khin bng {+/\
\begin{tikzpicture} \tkzTabInit[lgt=1,espcl=2.5] { /0.5,/2 }{ a , b , c } \tkzTabVar% {+/\ {+/\va va , -CH -CH /\vb /\vbo/ o/\v \vbt bt , D+/} D+/} \end{tikzpicture}
a
c
b
V a
V b1
-CH/\vb, //} 32. Điu khin bng {+ /\va , -C
\begin{tikzpicture} \tkzTabInit[lgt=1,espcl=2.5] { /0.5,/2 }{ a , b , c } \tkzTabVar% {+ /\va , -CH/\vb, //} \end{tikzpicture}
a
c
b
V a
V b
33. Điu khin bng {+/\va , -V- /\vbo /\vbt, +/\vc}
\begin{tikzpicture} \tkzTabInit[lgt=1,espcl=2.5] { /0.5,/2 }{ a , b , c } \tkzTabVar {+/\va,-V {+/\va,-V- /\vbo /\vbt, /\vbt, +/\vc} +/\vc} \end{tikzpicture}
a
c
b
V a
34. Điu khin bng {+/ \va ,-V+ / \vbo/ \vbt ,-/ \vc}
V c
V b1
V b2
http://nhdien.wordpress.com http://nhdien.wordpress.com - Nguyn Hu Đin
\begin{tikzpicture} \tkzTabInit[lgt=1,espcl=2.5] { /0.5,/2 }{ a , b , c } \tkzTabVar {+/ \va ,-V+ / \vbo/ \vbt ,-/ \vc} \end{tikzpicture}
17
a
c
b
V a
V b2
V b1
V c
{+/ \va \va ,+V,+V- /\vb /\vbo/ o/ \vbt \vbt , -/\v -/\vc} c} 35. Điu khin bng {+/
\begin{tikzpicture} \tkzTabInit[lgt=1,espcl=2.5] { /0.5,/2 }{ a , b , c } \tkzTabVar {+/ \va ,+V- / \vbo/ \vbt , -/\vc} \end{tikzpicture}
a
c
b
V a
V b1
V b2
V c
36. Điu khin bng {-/ \va, +V+ / \vbo/\vbt, -/\vc}
\begin{tikzpicture} \tkzTabInit[lgt=1,espcl=2.5] { /0.5,/2 }{ a , b , c } \tkzTabVar {-/ \va ,+V+ / \vbo / \vbt, -/\vc} \end{tikzpicture}
a V b1
V a
\begin{tikzpicture} \tkz \tkzTa TabI bIni nit[ t[lg lgt= t=1, 1,es espc pcl= l=3] 3]{ { /0.5 /0.5,/ ,/2 2 }{ a , b , c , d } \tkz \tkzTa TabV bVar ar {-/ {-/ \va \va ,+H/ ,+H/\v \vb, b,-/ -/\v \vc, c, +/ \vd} \vd} \end{tikzpicture}
b
c
V b
V a
d V d
V c
V b2
V c
,+H/\vb,b,-/\v /\vc, c, +/ \vd} \vd} 37. Điu khin bng {-/ \va ,+H/\v
a
c
b
http://nhdien.wordpress.com http://nhdien.wordpress.com - Nguyn Hu Đin
18
{+/ \va \va ,-H/ ,-H/\v \vb, b,-/ -/\ \vc, vc, +/ +/ \vd \vd} 38. Điu khin bng {+/
\begin{tikzpicture} \tkz \tkzTa TabI bIni nit[ t[lg lgt= t=1, 1,es espc pcl= l=3] 3]{ { /0.5 /0.5,/ ,/2 2 }{ a , b , c , d } \tkz \tkzTa TabV bVar ar {+/ {+/ \va \va ,-H/ ,-H/\v \vb, b,-/ -/\v \vc, c, +/ \vd} \vd} \end{tikzpicture}
a
c
b
V a
d V d
V b
V c
39. Điu khin bng {-/ \va , R , R , R , +/ \ve} \begin{tikzpicture} \tkz \tkzTa TabI bIni nit[ t[lg lgt= t=1, 1,es espc pcl= l=3] 3]{ { /0.5 /0.5,/ ,/2 2 }{ a , b , c , d , e} \tkzTabVar {-/ \va ,R,R,R, +/ \ve} \end{tikzpicture}
a
c
b
d
e V e
V a
40. Điu khin bng {-/ \va , +/\vb , -DH/\vc , -/\vd , +/ \ve} \begin{tikzpicture} \tkz \tkzTa TabI bIni nit[ t[lg lgt= t=1, 1,es espc pcl= l=3] 3]{ { /0.5 /0.5,/ ,/2 2 }{ a , b , c , d , e} \tkz \tkzTa TabV bVar ar {-/ {-/ \va ,+/\ ,+/\vb vb ,-DH/ ,-DH/\v \vc, c,-/ -/\v \vd, d, +/ \ve} \ve} \end{tikzpicture}
a
c
b
d
V b
V a
e V e
V c
V d
http://nhdien.wordpress.com http://nhdien.wordpress.com - Nguyn Hu Đin
19
{D-/ \va \va , +DH/ +DH/\v \vb/ b/ , D-/\ D-/\vc vc , +/\v +/\vd d , +D/\ +D/\ve ve} } 41. Điu khin bng {D-/
\begin{tikzpicture} \tkz \tkzTa TabI bIni nit[ t[lg lgt= t=1, 1,es espc pcl= l=3] 3]{ { /0.5 /0.5,/ ,/2 2 }{ a , b , c , d , e} \tkzTa \tkzTabVa bVar r {D-/ {D-/ \va ,+DH ,+DH/\v /\vb/, b/,D-/ D-/\vc \vc,+/ ,+/\vd \vd, , -D/ \ve} \ve} \end{tikzpicture}
a
c
b
e
d
V b
V d
V a
V c
V e
2.5 Đnh Đnh dng li phong phong cách cách \tikzset{h et{h style/.s style/.style tyle = {fill=gr {fill=gray,o ay,opacit pacity=0. y=0.4}} 4}} 1. Đt li \tikzs và mng ct tô màu.
\begin{tikzpicture} \tikzset{ \tikzset{h h style/.st style/.style yle = {fill=re {fill=red!50 d!50}} }} \tkzTabInit[lgt=1,espcl=2]{ \tkzTabInit[lgt=1,espcl=2]{$x$ $x$ /1, $f$ /2}{$0$,$1$,$2$,$3$}% /2}{$0$,$1$,$2$,$3$}% \tkzTabVar{+/ $1$ / , -CH/ $-2$ / , +C/ $5$, -/ $0$ / } \end{tikzpicture}
x
0
1
1
2
3
5
f
−2
0
2. Đt gch chéo khác
\verb!\ti \verb!\tikzse kzset{h t{h style/.s style/.style tyle = {pattern {pattern=nort =north h west lines}}! lines}}! \begin{tikzpicture} \tikzset{ \tikzset{h h style/.st style/.style yle = {pattern {pattern=nor =north th west lines}} lines}} \tkzTabInit[lgt=1,espcl=2]{ \tkzTabInit[lgt=1,espcl=2]{$x$ $x$ /1,$f$ /2}{$0$,$1$,$2$,$3$}% /2}{$0$,$1$,$2$,$3$}% \tkzTabVar{+/ $1$ / , -CH/ $-2$ / , +C/ $5$, -/ $0$ / } \end{tikzpicture}
http://nhdien.wordpress.com http://nhdien.wordpress.com - Nguyn Hu Đin
20
\tikzset{ \tikzset{h h style/.st style/.style yle = {pattern {pattern=nor =north th west lines}} lines}} x
0
1
2
1
3
5
f 0
−2 3. Đnh nghĩa li mũi tên
\begin{tikzpicture} \tikzs \tikzset{ et{arr arrow ow style/ style/.st .style yle
= {blue, {blue, ->, > = latex’, shorten > = 6pt, shorten < = 6pt}} \tkzTa \tkzTabIn bInit[ it[esp espcl= cl=5]{ 5]{$x$ $x$ /1, $\ln $\ln x +1$ /1.5, /1.5, $x \ln x$ /2}% /2}% {$0$ {$0$ ,$1/\E ,$1/\E$ $ , $+\inf $+\infty$ ty$}% }% \tkzTabLine{d,-,z,+,} \tkzTabVar% { D+/ / $0$ ,% -/ \colorbox{black}{\textcol \colorbox{black}{\textcolor{white}{$\df or{white}{$\dfrac{-1}{e}$}} rac{-1}{e}$}}/ / ,% +/ $+\infty$ / }% \end{tikzpicture}
x
1/e
0
−
ln x + 1
0
∞
+ +
0
x ln x
+
−1
∞
e
4. Khoanh đim cui
\begin{tikzpicture} \tikzset{ \tikzset{node node style/.a style/.append ppend style style = {draw,circle,fill=red!40,op {draw,circle,fill=red!40,opacity=.4}} acity=.4}} \tkzTa \tkzTabIn bInit[ it[esp espcl= cl=5]{ 5]{$x$ $x$ /1, $\ln $\ln x +1$ /1.5, /1.5, $x \ln x$ /2}% /2}%
http://nhdien.wordpress.com http://nhdien.wordpress.com - Nguyn Hu Đin
21
{$0$ {$0$ ,$1/\E ,$1/\E$ $ , $+\inf $+\infty$ ty$}% }% \tkzTabLine{d,-,z,+,} \tkzTabVar { D+/ / $0$ ,% -/ \colorbox{black}{\textcolo \colorbox{black}{\textcolor{white}{$\df r{white}{$\dfrac{-1}{e}$}}/ rac{-1}{e}$}}/ ,% +/ $+\i $+\inf nfty ty$ $ / }% \end{tikzpicture}
x
1/e
0
−
ln x + 1
+
∞
+
0
x ln x
2.6 2.6 Ví d kt hp hp 2.6.1 2.6.1 Hàm ngưc ngưc Xét hàm ngưc i
: x
−→
1 x
trên ] − ∞ ;
0[ ]0 ;
∪
+
∞[
\begin{tikzpicture} \tkzTabIn \tkzTabInit[lg it[lgt=1. t=1.5,es 5,espcl=6 pcl=6.5]{ .5]{$x$ $x$ /1,$i’(x) /1,$i’(x)$ $ /1,$i$ /1,$i$ /3} {$-\infty$,$0$,$+\infty$}% \tkzTabLine{,-,d,-,} \tkz \tkzTa TabV bVar ar{+ {+/ / $0$ $0$ / ,-D+ ,-D+/ / $-\i $-\inf nfty ty$ $ / $+\i $+\inf nfty ty$ $ , -/ $0$ $0$ /} /} \end{tikzpicture}
x
−∞
i ( x)
+
∞
0
−
− +
∞
0
i
−∞
0
http://nhdien.wordpress.com http://nhdien.wordpress.com - Nguyn Hu Đin
22
2.6.2 Hàm tăng t âm vô cùng đn dương vô cùng
\begin{tikzpicture} \tkzTabI \tkzTabInit[ nit[espcl espcl=4]{ =4]{$x$ $x$ /1,$f’(x) /1,$f’(x)$ $ {$0$ {$0$ , $1$ ,$2$, ,$2$, \tkzTabLine {d,+ , z,+ , z,+ \tkz \tkzTa TabV bVar ar{D {D-/ -/ / $-\i $-\inf nfty ty$, $,R/ R/ /,R/ /,R/ \end{tikzpicture}
x
0
/1,$f(x)$ /1,$f(x)$ /2} $+\inf $+\infty$ ty$}% }% , } /,+/ /,+/ $+\i $+\inf nfty ty$ $
1
f ( x)
+
/}% /}%
+
∞
2 +
0
0
+ +
∞
f ( x)
−∞ 2.6.3 2.6.3 Min Min gián gián đon đon
\begin{tikzpicture} \tkzTabI \tkzTabInit[ nit[lgt=1 lgt=1,esp ,espcl=2] cl=2]{$x$ {$x$ /1, $f$ /2}{$0$, /2}{$0$,$1$,$ $1$,$2$,$ 2$,$3$}% 3$}% \tkzTabVar{+/ $1 $1$ / ,-DH/ $$-\infty$ / ,D+/ / $+ $+\infty$, -/ -/ $2 $2$ / } \end{tikzpicture}
x
0
1
2
3 +
∞
1
f
−∞
2
2.6.4 2.6.4 Min gián đon và gim liên t
\begin{tikzpicture} \tkzTabI \tkzTabInit[ nit[lgt=1 lgt=1,esp ,espcl=2] cl=2]{$x$ {$x$ /1, $f$ /2}{$0$, /2}{$0$,$1$,$ $1$,$2$,$ 2$,$3$}% 3$}% \tkz \tkzTa TabV bVar ar{+ {+/ / $1$ $1$ / ,-CH ,-CH/ / $-2$ $-2$ /, D+/ / $+\i $+\inf nfty ty$, $,-/ -/ $2$ $2$ / } \end{tikzpicture}
http://nhdien.wordpress.com http://nhdien.wordpress.com - Nguyn Hu Đin
x
0
1
2
23
3 +
∞
1
f
−2
2
2.6.5 2.6.5 Min gián đon và hai khong khong xác xác đnh đnh
\begin{tikzpicture} \tkzTabI \tkzTabInit[ nit[lgt=1 lgt=1,esp ,espcl=2] cl=2]{$x$ {$x$ /1, $f$ /2}{$0$, /2}{$0$,$1$,$ $1$,$2$,$ 2$,$3$}% 3$}% \tkzTabVar{+/ $1 $1$ / , -C -CH/ $$-2$ / , +C +C/ $5$, -/ -/ $0 $0$ / } \end{tikzpicture}
x
0
1
1
2
3
5
f
−2
0
2.6.6 2.6.6 Hàm có hng trên đon
\begin{tikzpicture} \tkzTab[nocadre,lgt=3,espcl=4] {$x$ /1, Du \\ ca $f’(x)$ /1.5, Bin Bin thiên\ thiên\\ \ ca\\ ca\\ $f$ /2} {$-\infty$, $-2$,$\dfrac{1}{\E}$,$\E$} $-2$,$\dfrac{1}{\E}$,$\E$}% % {z, <--<--- 0 --->,d --->,d, , -, d, \genfr \genfrac{ ac{}{} }{}{0p {0pt}{ t}{0}{ 0}{\te \text{ xt{du du ca}}{ ca}}{ a}, d} {+/ $\dfrac{ $\dfrac{2}{3 2}{3}$, }$, +/ $\dfrac{ $\dfrac{2}{3} 2}{3}$, $, -D-/ -D-/ $-\inf $-\infty$ ty$ / $-\inf $-\infty$ ty$,+D ,+D/ / $+\inf $+\infty$ ty$ } \end{tikzpicture}
http://nhdien.wordpress.com http://nhdien.wordpress.com - Nguyn Hu Đin
x
−∞
Du ca f ( x)
0
Bin thiên ca
24
1
−2
du ca
−
− − −0 − −− >
<
2
2
3
3
e
e a +
∞
f
−∞ −∞
2.6.7 2.6.7 Bin Bin thiên thiên hai hai hàm
\begin{tikzpicture} \tkzTabInit[espcl=6] {$x$ {$x$ /1, /1, $f’’ $f’’{x {x}$ }$ /1, /1,$f $f’( ’(x) x)$ $ /2, /2, $f(x $f(x)$ )$ /2} /2}% % {$0$ , $1$ , $+\infty$ }% \tkzTabLine{d,+,z,-, \tkzTabLine{d,+,z,-, }% \tkz \tkzTa TabV bVar ar {D-/ {D-/ /$1$ /$1$,+ ,+/ / $\E $\E$ $ /,/,-/ / $0$ $0$ /}% /}% \tkzTabVar {D-/ /$-\infty$ ,R/ $0$ /, +/ $+8$ /} \end{tikzpicture}
x
0
+
∞
1
f x
+
0
−
e f ( x) 1
0 +8
f ( x)
−∞
3 Lnh Lnh làm bng bng bin bin thiên thiên tng tng quát quát \tkzTab[< \tkzTab[]{]{}{}{} tien>} {} hàng>}{<Đ {<Đnh nh dng dng mũi tên>} tên>}
Nghĩa là không phi vit lnh mi hàng mà là các du ngoc nhn thôi. Nghĩa là,
http://nhdien.wordpress.com http://nhdien.wordpress.com - Nguyn Hu Đin
25
\tkzTab{ e(1) / h(1) , ... , e(p) / h(p)} { v(1), ... ,v(n) } { a(1),...,a(2n-1)} a(1),...,a(2n-1)} { s(1) / eg(1) / ed(1), ... ,s(n) / eg(n) / ed(n)}
3.1 3.1 Ví d 1 \begin{tikzpicture} \tkzTab[lgt=3,espcl=5]{ $x$ / 1, $f’(x)$ / 1, Bin thiên ca \\$f$ / 2} { $-5$ , $0$ ,$7$} { ,-,z,+,} ,-,z,+,} { +/$ +/$25$ , -/$ -/$0$ , +/ $4 $49$}% \end{tikzpicture}
x
−5
f ( x)
0
−
0
+
49
25
Bin thiên ca
7
f 0
3.2 3.2 Ví d 2 Xét hàm s f
−→ x ln x trên ]0 ; + ∞]
: x
\begin{tikzpicture} \tkzTa \tkzTab[e b[espc spcl=5 l=5,lg ,lgt=3 t=3]{$ ]{$x$ x$ / 1, Du ca \\$\ln \\$\ln x +1$ / 1.5,% 1.5,% Bin thiên \\$f$ / 3}% {$0$ ,$1/\E$ ,$1/\E$ , $+\infty$ $+\infty$}{d, }{d,-,z,+ -,z,+,} ,} {D+/ $0$,% $0$,% -/ \colorbox \colorbox{bla {black}{ ck}{\text \textcolo color{whi r{white}{ te}{$\dfr $\dfrac{ac{-1}{e} 1}{e}$}} $}} ,% +/ $+\inf $+\infty$ ty$ }% \end{tikzpicture}
http://nhdien.wordpress.com http://nhdien.wordpress.com - Nguyn Hu Đin
x
1/e
0
Du ca ln x
+
26
−
1
+
∞
+
0
+
∞
0
Bin thiên f
−1 e
3.3 3.3 Ví d 3 Xét hàm s f
:
√
→ x2 − 1 trên ] − ∞ ; x−
− 1] ∪ [1 ; + ∞[
\begin{tikzpicture} \tkzTab{ $x$ / 1, $f’(x)$ / 1, $f$ / 2}% { $-\inf $-\infty$ ty$, , $-1$ $-1$ ,$1$, ,$1$, $+\inf $+\infty$ ty$} } { ,-,d,h ,-,d,h,d, ,d,+, +, } { +/$+ +/$+\ \inft infty$ y$ , -H/ -H/$0$, $0$, -/ -/$0$ $0$ , +/ $+\ $+\inft infty y$ \end{tikzpicture}
x
−∞
f ( x)
−1
+
∞
1 +
− +
f
}%
+
∞
∞
0
0
3.4 3.4 Ví d 4 Xét hàm s f
:
2
→ t 2t −1 trên [0 ; t−
+
∞[
\begin{tikzpicture} \tkzTab{ $t$ / 1, Du ca\\ $f’(t)$ / 2, Bin thiên ca \\$f$ / 2}% { $0$, $0$, $1$, $1$, $+\inf $+\infty$ ty$} }
http://nhdien.wordpress.com http://nhdien.wordpress.com - Nguyn Hu Đin
27
{ z , - , d , - , } { +/$0$ +/$0$ , -D+/$ -D+/$-\ -\in inft fty$ y$/$ /$+\ +\in inft fty$ y$, , -/ $1$ $1$ \end{tikzpicture}
t
0
Du ca f (t )
0
Bin thiên ca f
+
∞
1
−
− +
∞
0
−∞
1
}%