Evolución convergente
a evolución convergente es el producto de la evolución independiente de uno o más caracteres similares que, partiendo de formas ancestrales distintas, se desarrollan en líneas evolutivas separadas (especies independientes) hasta converger con el tiempo en una forma única. Adaptación al vuelo Un ejemplo muy ilustrativo de evolución convergente es el desarrollo de alas en animales tan diferentes como un murciélago, un ave o un insecto. Todos partieron de formas ancestralmente distintas, pero el carácter que permitió el desarrollo de ese órgano terminó por converger en ellos, aflorando caracteres análogos (véase más abajo el apartado sobre los caracteres análogos y homólogos).
El desarrollo de alas como un murciélago, ilustra el concepto todos han desarrollado la misma función, la de volar.
en un de un
animales ave o evolución órgano
tan un
distintos insecto, convergente: que cumple
Determinados grupos de animales ya extinguidos (reptiles pterosaurios), también desarrollaron alas en su momento. La causa de esta evolución convergente en seres tan diferentes radica en la necesidad de adaptación a condiciones vitales similares, o a las condiciones ambientales. Igualmente, el ejemplo de las alas tiene su homología en otras formas adaptadas a la vida acuática, como peces y mamíferos marinos; en todos ellos se distingue un característica común, la de presentar cuerpos con formas hidrodinámicas, indicativo de su adaptación al medio físico en el que decidieron vivir; y en que algunos mamíferos, como los cetáceos, han ido perdiendo sus extremidades hasta quedar reducidos a simples vestigios. Adaptación a la alimentación
De la misma forma que se da la evolución convergente en órganos como las alas, también se aprecia este tipo de evolución en variadas adaptaciones a la alimentación. Así, determinados animales como los osos hormigueros, pangolines, equidnas, etc., unos de América del Sur, y otros de Australia, África o Asia, evolucionaron de forma independiente y desarrollaron estructuras perfectamente adaptadas para alimentarse de hormigas, tales como largos hocicos tubulares dotados de lenguas también muy largas y viscosas, con objeto de capturar los insectos dentro de sus nidos. Asimismo, también desarrollaron poderosas garras para romper los hormigueros y termiteros, y acceder más fácilmente al interior. Evolución convergente a nivel molecular Algunos ejemplos de convergencia son muy llamativos por su especialización, ya que pueden llegar a desarrollarse a nivel molecular. Determinados animales vegetarianos, como los langures (monos de la subfamilia Colobinos ) y los rumiantes, segregan en la saliva una enzima (la lisozima) que actúa en el estómago sobre las bacterias patógenas encargadas de la fermentación de los alimentos vegetales, destruyendo la pared celular de éstas y convirtiéndose en un agente no específico de la defensa del organismo. Los aminoácidos en Colobinos y rumiantes presentan similitudes únicas en su secuencia, convirtiéndose en un claro ejemplo de evolución convergente a nivel molecular. La fisiología y anatomía de la digestión en ambos también es ejemplo de otra forma de convergencia destacable. Evolución paralela
n ocasiones, la evolución convergente se distingue de la paralela. Como se ha dicho, en la evolución convergente uno o más caracteres parten de formas ancestrales diferentes, y evolucionan igualmente a lo largo de linajes separados hasta converger en una misma forma. Sin embargo, en la evolución paralela, aunque los caracteres pueden converger finalmente, en realidad parten de una misma forma ancestral.
Ejemplo
de
evolución
paralela:
el
oso
marsupial
(izquierda)
es fruto de una evolución aislada en la región de Australasia; por su parte, el oso hormiguero (derecha) evolucionó paralelamente en otros hábitats ocupados por placentados. Ambos parten de una misma forma marsupial ancestral. Estos conceptos son teóricos, pues aunque ambos tipos de evolución se dan en la naturaleza, esas diferencias son difíciles de identificar en casos reales, ya que generalmente se desconocen los estados ancestrales de los que parten los caracteres. Probablemente, determinadas especies de mariposas que comparten la misma coloración, como la virrey (comestible para sus depredadores) y monarca (no comestible), hayan seguido una evolución paralela. Otros ejemplos de evolución paralela podrían ser el oso marsupial y el oso hormiguero; la ardilla voladora y el marsupial volador; o el lobo de Tasmania (ya extinguido) y muchos cánidos que habitan en otros continentes. Aunque todos han derivado de un mismo ancestro marsupial, el aislamiento que han sufrido algunos de ellos en la región de Australasia les han forzado a una evolución paralela. Caracteres homólogos y análogos Los caracteres homólogos son aquellos correspondientes a estructuras similares que, partiendo de un ancestro común, se transmiten por herencia. Los caracteres análogos son aquellos que, partiendo de ancestros diferentes, finalizan en estructuras que realizan funciones similares. El anterior ejemplo respecto a la función de las alas en especies diferentes, sirve para ilustrar el concepto de caracteres homólogos y análogos.
Las son
estructuras 1 homólogas
(del ser humano) y parten de
y 2 (de un ave) un origen común;
las estructuras 2 (de un ave) son análogas y parten de un origen distinto.
y
3
(de
un
insecto)
El carácter que cumple con la función de volar puede evolucionar de forma independiente en dos especies (de forma paralela o convergente). Si la evolución es paralela, las dos especies conservan el carácter común de la especie ancestral; si la evolución es convergente, el carácter de la especie ancestral queda modificado. Así, las estructuras óseas del brazo de un humano y un ave, son similares y homólogas porque tienen un origen común; por su parte, las alas de un ave, un insecto, o un murciélago, son análogas porque aunque tienen un origen distinto cumplen y están diseñadas para la misma función, la de volar. Si examinamos con detalle los órganos de determinados animales, podemos observar la convergencia de caracteres. Así, las alas de las aves, murciélagos e insectos, aunque tienen un parecido funcional (son análogas) existen sin embargo grandes diferencias estructurales entre ellos. Por ejemplo, mientras que en los insectos esas estructuras están sujetas por unas nervaduras, en las aves y murciélagos son óseas. Igualmente, aves y murciélagos (que son homólogos) sujetan sus estructuras con huesos diferentes. Para establecer la diversificación evolutiva de las especies, o reconstruir su filogenia, es de suma importancia distinguir si los caracteres que se estudian son homólogos o análogos. Dos especies pueden tener un gran parecido, y por ello deduciremos enseguida que ambos tienen parentesco, pero sólo será así si ese parecido responde al concepto de homología; en otro caso estaremos hablando de analogía o convergencia. En definitiva, cuando un mismo carácter está presente en dos especies sólo puedes ser por una de dos razones: o fue adquirido por evolución convergente (analogía), o por herencia de un antepasado común (homología). La homología es el argumento que Charles Darwin esgrimió en 1859 para probar la teoría de que las especies partían de un origen común, y es fruto de sus observaciones en las islas Galápagos.
Evolución Divergente La radiación adaptativa o evolución divergente es un proceso que describe la rápida especiación de una o varias especies para llenar muchos nichos ecológicos. Este es un proceso de la evolución cuyas herramientas son la mutación y la selección natural. La radiación adaptativa ocurre con frecuencia cuando se introduce una especie en un nuevo ecosistema, o cuando hay especies que logran sobrevivir en un ambiente que le era hasta entonces inalcanzable. Por ejemplo, los pinzones de Darwin de las islas Galápagos se desarrollaron de una sola especie de pinzones que llegaron a la isla. Otros ejemplos incluyen la introducción por el hombre de mamíferos predadores en Australia, el desarrollo de las primeras aves que repentinamente tuvieron la capacidad de expandir su territorio por el aire, o el desarrollo del lungfish durante el Devónico, hace cerca de 300 millones de años.
La dinámica de la radiación adaptativa es tal que, dentro de un corto período de tiempo, muchas especies se derivan de una o varias especies ancestros. De este gran número de combinaciones genéticas, sólo unas pocas pueden sobrevivir con el pasar del tiempo. Tras el rápido desarrollo de muchas especies nuevas, muchas o la mayoría de ellas desaparecen tan rápidamente como aparecieron. Las especies sobrevivientes están casi completamente adaptadas al nuevo ambiente. El auge y caída de las nuevas especies está actualmente progresando muy lentamente, comparado con el brote inicial de especies.
Hay tres tipos básicos de radiación adaptativa. Estas son: 1. Adaptación general. general . Una especie que desarrolla una habilidad radicalmente nueva puede alcanzar nuevas partes de su ambiente. El vuelo de los pájaros es una de esas adaptaciones generales. 2. Cambio ambiental. ambiental. Una especie que puede, a diferencia de otras, sobrevivir en un ambiente radicalmente cambiado, probablemente se ramificará en nuevas
especies para cubrir los nichos ecológicos creados por el cambio ecológico. Un ejemplo de radiación adaptativa como resultado de un cambio ambiental fue la rápida expansión y desarrollo de los mamíferos después de la extinción de los dinosaurios. 3. Archipiélagos. Ecosistemas aislados tales como islas y zonas montañosas, pueden ser colonizados por nuevas especies las cuales al establecerse siguen un rápido proceso de evolución divergente. Los pinzones de Darwin son ejemplos de una radiación adaptativa que ocurrió en un archipiélago. COEVOLUCIÓN Podemos definir coevolución como cambio evolutivo recíproco que acontece en especies interactuantes y que está mediado por la selección natural . Una definición clara fue dada por Janzen en 1980, y reza: coevolución es aquel proceso por el cual dos o más organismos ejercen presión de selección mutua y sincrónica (en tiempo geológico) que resulta en adaptaciones específicas recíproca . Si no hay adaptación mutua, no puede hablarse de coevolución.
Condiciones para coevolución La coevolución requiere especificidad, especificidad, es decir, la evolución de cada rasgo en una especie es debida a presiones selectivas de otros rasgos de las otras especies del sistema, reciprocidad, reciprocidad, es decir, los rasgos en ambos participantes del sistema evolucionan conjuntamente, y simultaneidad, simultaneidad, los rasgos en ambos participantes del sistema evolucionan al mismo tiempo. El proceso coevolutivo puede generar coadaptación (ajuste microevolutivo recíprocos de unos organismos a otros) y coespeciación (cladogénesis recíproca como fruto de la interacción). Es decir, que la coevolución pueda tener consecuencias micro- y macroevolutivos. La coevolución se ve altamente beneficiada cuando los organismos interactuantes son especialistas, ya que asi se fuerza un efecto sobre la eficacia de los organismos contendientes.
Interacciones que participan de procesos coevolutivos En principio todas las interacciones pueden participar de procesos coevolutivos. Pero los resultados son diferentes. Así, en una interacción competitiva, el resultado esperable es que ambas especies se separen, por lo que no hay
usualmente constancia a escala temporal larga del proceso coevolutivo. Algunos autores sugieren que los fenómenos de desplazamiento de caracteres sería el resultado de procesos coevolutivos mediados por la competencia. Las interacciones antagónicas usualmente producen una vinculación temporal entre la presa y el depredador (u hospedador y parásito), aunque la tendencia de la presa es a escapar del depredador evolutivamente hablando. Las interacciones mutualistas, por el contrario, también producen una vinculación enter ambos organismos aunque en estos casos es esperable que la interacción sea duradera ya que ambos se benefician de la interacción.
Modelos coevolutivos Hay varias formas de ver el proceso coevolutivo
Modelos microevolutivos
1) Hipótesis de coevolución gen-a-gen, por pasos (Erhlich and Raven 1964). Supone un proceso de adaptación recíproco y por fases entre especies concretas. Un cambio en un gen que determina una defensa frente al depredador será fijado, y provocará un cambió en un gen del depredador que determina un uso más eficiente del hospedador. Hay una modificación secuencial. Este modelo se basa en que existe locis complementarios entre depredador y presas para la virulencia y la resistencia, respectivamente. En el caso de interacciones antagónicas, como planta-herbívoro o como parásito-hospedador, consiste en una carrera armamentística contínua. 2) Hipótesis de la coevolución difusa , que refiere a una coadaptación de grupos de especies, sin necesidad de especiación. Es un concepto difuso en sí mismo, que está cada vez más en desuso, aunque ha sido un fuerte revulsivo para acometer los estudios de coevolución de forma más rigurosa. Básicamente, postula que las especies no están aisladas en la naturaleza interaccionado con un única especie, y por tanto la coevolución apareada se ve limitada. Sin embargo, últimamente se esta rescatando la idea, aplicada como coevolución multiespecífica , suponiendo que una combinación de genes que actúan contra múltiples depredadores o múltiples mutualistas y que producen un paisaje adaptativo de eficacias. El resultado es una selección hacia defensas coordinadas frente a un conjunto multiespecífico de depredadores o mutualistas como fruto de la acción combinada de presiones selectivas apareadas. Requiere una covarianza débil o incluso
inexistente entre cada respuesta apareada, aunque también es posible una selección de compromiso.
Modelos macroevolutivos
1) Hipótesis de escape y radiación (Erhlich and Raven 1964). La coevolución por pasos o apareada estricta implica la mayoría de las veces, fenómenos de especiación más o menos sincrónica en ambos participantes del sistema. Ocurre em 5 pasos: 1) las presas producen defensas nuevas mediante mutación y recombinación, 2) las nuevas defensas reducen la incidencia de los depredadores, 3) presas con estas defensas nuevas radian en especies dentro de una nueva zona adaptativa libre de depredadores, 4) un nuevo mutante o recombinante aparece en la población de depredadores que es capaz de anular las defensas de las plantas, 5) los depredadores también radian por haber entrado en una zona zona adaptativa para ellos. El resultado es una congruencia filogenética entre ambos grupos de organismos. 2) Hipótesis de la coevolución diversificadora (Thopmson 1994). Según esta hipótesis, una población de una especie evoluciona para especializarse como resultado de la adaptación local recíproca, y los híbridos entre poblaciones especialistas están en desventajas, lo que favorece mecanismos de aislamiento reproductivo. Es una hipótesis que introduce la dimensión geográfica. Se diferencia de la anterior en que aquí la especiación ocurre con el concurso del organismo interactuante (polinizadores que son selección sexual), mientras que en la anterior la especiación ocurre cuando un organismo escapa al otro. El motor evolutivo es la especialización en un organismo determinado. 3) Hipótesis de evolución secuencial o rastreo filogénetico (Jermy 1976, 1984, 1993). Sugiere que los parásitos rastrean la especiación del hospedador, pero de una forma mucho más general. Esta hipótesis asume que los parásitos y sus hospedadores no están coevolucionando, no hay selección recíproca. 4) Hipótesis de la escalada (Vermeij 1994). Las defensas cada vez son más sofisticada porque el ambiente en general es más agresivo. Pero no hay coevolución, aunque el resultado aparentemente es como una carrera armamentística.
Varias razones limitan las probabilidades de coespeciaciaón paralela: 1) Ausencia de variación genética en algunas de las dos especies interactuantes, 2) distinta tasas de especiación o extinción después de la especiación (criba de linajes), 3)
una especie especia pero sigue en el mismo hospedador (duplicación), 4) colonizaciones de nuevos hospedadores no relacionados pero disponibles geográficamente (saltos) [la hipótesis de escape y radiación permite cambios a hospedadores relacionados filogenéticamente].