The Overseas Coastal Area Development Institute of Japan 3-2-4 Kasumigaseki, Chiyoda-ku, Tokyo, 100-0013, Japan
Copyright © 2002 by The Overseas Coastal Area Development Institute of Japan Printed by Daikousha Printing Co., Ltd. All rights reserved. No part of this publication may be reproduced, stored in a retrieval systems, transmitted in any form or by any means, electric, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher. Original Japanese language edition published by the Japan Ports and Harbours Association. Printed in Japan
PREFACE
Preface This book is a translation of the major portion of the Technical Standards and Commentaries of Port and Harbour Facilities in Japan (1999 edition) published by the Japan Port and Harbour Association, stipulated by the Ordinance of the Minister of Transport, which was issued in April 1999. The translation covers about two thirds of the Japanese edition. Japanese islands have a long extension of coastline, measuring about 34,000 km, for the total land area of some 380,000 square kilometers. Throughout her history, Japan has depended on the ports and harbors on daily living and prosperity of people there. Japan did not develop extensive inland canal systems as found in the European Continent because of its mountainous geography, but rather produced many harbors and havens along its coastline in the past. Today, the number of officially designated commercial ports and harbors amounts to about 1,100 and the number of fishing ports exceeds 3,000. After 220 years of isolation from the world civilization from the 17th to 19th centuries, Japan began to modernize its society and civilization rapidly after the Meiji revolution in 1868. Modern technology of port and harbor engineering has been introduced by distinguished engineers from abroad and learned by many ambitious and capable young engineers in Japan. Ports of Yokohama, Kobe, and others began to accommodate large ocean-going vessels in the late 19th century as the Japanese economy had shown a rapid growth. Japanese engineers had drafted an engineering manual on design and construction of port and harbor facilities as early as in 1943. The manual was revised in 1959 with inclusion of new technology such as those of coastal engineering and geotechnical engineering, which were developed during the Second World War or just before it. The Japanese economy that was utterly destroyed by the war had begun to rebuild itself rapidly after the 1950s. There were so many demands for the expansion of port and harbor facilities throughout Japan. Engineers were urged to design and construct facilities after facilities. Japan has built the breakwaters and the quays with the rate of about 20,000 meters each per year throughout the 1960s, 1970s, and 1980s. Such a feat of port development was made possible with provision of sound engineering manuals. The Ministry of Land, Infrastructure and Transport (formerly the Ministry of Transport up to January 2001) which was responsible for port development and operation, revised the basic law on ports and harbors in 1974 so as to take responsibility for provision of technical standards for design, construction, and maintenance of port and harbor facilities. The first official technical standards and commentaries for port and harbor facilities were issued in 1979, and published by the Japan Port and Harbour Association for general use. The technical standards were prepared by a technical committee composed of government engineers within the former Ministry of Transport, including members of the Port and Harbour Research Institute and several District Port Construction Bureaus that were responsible for design and construction in the field. Its English version was published by the Overseas Coastal Area Development Institute in 1980, but it introduced only the skeleton of the Japanese version without giving the details. The Technical Standards and Commentaries for Port and Harbor Facilities in Japan have been revised in 1988 and 1999, each time incorporating new technological developments. The present English translation endeavors to introduce the newest edition of 1999 to the port and harbor engineers overseas. It is a direct translation of essential parts of Japanese edition. Many phrases and expressions reflect the customary, regulatory writings in Japanese, which are often awkward in English. Some sentences after translation may not be fluent enough and give troubles for decipher. The editors in charge of translation request the readers for patience and generosity in their efforts for understanding Japanese technology in port and harbor engineering. With the globalization in every aspect of human activities, indigenous practices and customs are forced to comply with the world standards. Technology by definition is supposed to be universal. Nevertheless, each country has developed its own specialty to suit its local conditions. The overseas readers may find some of Japanese technical standards strange and difficult for adoption for their usage. Such conflicts in technology are the starting points for mutual understanding and further developments in the future. The editors wish wholeheartedly this English version of Japanese technical standards be welcomed by the overseas colleagues and serve for the advancement of port and harbor technology in the world. January 2002 Y. Goda, T. Tabata and S. Yamamoto Editors for translation version -i-
TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN
-ii-
CONTENTS
CONTENTS Preface Part I General Chapter 1 General Rules .................................................................................................................................................1 1.1 1.2 1.3
Scope of Application .............................................................................................................................1 Definitions ...............................................................................................................................................2 Usage of SI Units ...................................................................................................................................2
Chapter 2 Datum Level for Construction Work .........................................................................................................4 Chapter 3 Maintenance ....................................................................................................................................................5
Part II Design Conditions Chapter 1 General .............................................................................................................................................................7 Chapter 2 Vessels ..............................................................................................................................................................9 2.1 2.2
Dimensions of Target Vessel ...............................................................................................................9 External Forces Generated by Vessels ...........................................................................................16 2.2.1 2.2.2
2.2.3
2.2.4
General .....................................................................................................................................16 Berthing.....................................................................................................................................16 [1] Berthing Energy..................................................................................................................16 [2] Berthing Velocity ................................................................................................................17 [3] Eccentricity Factor..............................................................................................................20 [4] Virtual Mass Factor ............................................................................................................21 Moored Vessels .......................................................................................................................22 [1] Motions of Moored Vessel..................................................................................................22 [2] Waves Acting on Vessel.....................................................................................................22 [3] Wind Load Acting on Vessel ..............................................................................................23 [4] Current Forces Acting on Vessel........................................................................................24 [5] Load-Deflection Characteristics of Mooring System ..........................................................25 Tractive Force Acting on Mooring Post and Bollard..................................................................25
Chapter 3 Wind and Wind Pressure ..........................................................................................................................28 3.1 3.2 3.3
General..................................................................................................................................................28 Wind .......................................................................................................................................................29 Wind Pressure......................................................................................................................................30
Chapter 4 Waves ..............................................................................................................................................................32 4.1
General..................................................................................................................................................32 4.1.1 4.1.2 4.1.3
4.2 4.3
4.4 4.5
Procedure for Determining the Waves Used in Design.............................................................32 Waves to Be Used in Design ....................................................................................................32 Properties of Waves..................................................................................................................33 [1] Fundamental Properties of Waves .....................................................................................33 [2] Statistical Properties of Waves...........................................................................................37 [3] Wave Spectrum..................................................................................................................38 Method of Determining Wave Conditions to Be Used in Design .................................................40 4.2.1 Principles for Determining the Deepwater Waves Used in Design ...........................................40 4.2.2 Procedure for Obtaining the Parameters of Design Waves ......................................................41 Wave Hindcasting................................................................................................................................42 4.3.1 General .....................................................................................................................................42 4.3.2 Wave Hindcasting in Generating Area ......................................................................................42 4.3.3 Swell Hindcasting......................................................................................................................46 Statistical Processing of Wave Observation and Hindcasted Data .............................................47 Transformations of Waves .................................................................................................................49 4.5.1 General .....................................................................................................................................49 4.5.2 Wave Refraction........................................................................................................................49 4.5.3 Wave Diffraction........................................................................................................................52 [1] Diffraction ...........................................................................................................................52 [2] Combination of Diffraction and Refraction..........................................................................69 4.5.4 Wave Reflection ........................................................................................................................70 -iii-
TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN
4.6
4.7 4.8 4.9 4.10
[1] General .............................................................................................................................. 70 [2] Reflection Coefficient ......................................................................................................... 71 [3] Transformation of Waves at Concave Corners, near the Heads of Breakwaters, and around Detached Breakwaters ................................................................................... 72 4.5.5 Wave Shoaling.......................................................................................................................... 74 4.5.6 Wave Breaking ......................................................................................................................... 75 Wave Runup, Overtopping, and Transmission............................................................................... 80 4.6.1 Wave Runup ............................................................................................................................. 80 4.6.2 Wave Overtopping .................................................................................................................... 84 4.6.3 Wave Transmission .................................................................................................................. 90 Wave Setup and Surf Beat ................................................................................................................ 91 4.7.1 Wave Setup .............................................................................................................................. 91 4.7.2 Surf Beat................................................................................................................................... 92 Long-Period Waves and Seiche ....................................................................................................... 93 Waves inside Harbors ........................................................................................................................ 94 4.9.1 Calmness and Disturbances..................................................................................................... 94 4.9.2 Evaluation of Harbor Calmness ................................................................................................ 94 Ship Waves .......................................................................................................................................... 94
Chapter 5 Wave Force ................................................................................................................................................. 100 5.1 5.2
General ............................................................................................................................................... 100 Wave Force Acting on Upright Wall ............................................................................................... 100 5.2.1 5.2.2
5.3 5.4 5.5
General Considerations .......................................................................................................... 100 Wave Forces of Standing and Breaking Waves ..................................................................... 101 [1] Wave Force under Wave Crest........................................................................................ 101 [2] Wave Force under Wave Trough..................................................................................... 105 5.2.3 Impulsive Pressure Due to Breaking Waves .......................................................................... 106 5.2.4 Wave Force on Upright Wall Covered with Wave-Dissipating Concrete Blocks..................... 109 5.2.5 Effect of Alignment of Breakwater on Wave Force ................................................................. 110 5.2.6 Effect of Abrupt Change in Water Depth on Wave Force ....................................................... 110 5.2.7 Wave Force on Upright Wall near Shoreline or on Shore........................................................111 [1] Wave Force at the Seaward Side of Shoreline .................................................................111 [2] Wave Force at the Landward Side of Shoreline ...............................................................111 5.2.8 Wave Force on Upright Wave-Absorbing Caisson ..................................................................111 Mass of Armor Stones and Concrete Blocks ................................................................................ 112 5.3.1 Armor Units on Slope.............................................................................................................. 112 5.3.2 Armor Units on Foundation Mound of Composite Breakwater ............................................... 117 Wave Forces Acting on Cylindrical Members and Large Isolated Structures ......................... 119 5.4.1 Wave Force on Cylindrical Members...................................................................................... 119 5.4.2 Wave Force on Large Isolated Structure ................................................................................ 121 Wave Force Acting on Structure Located near the Still Water Level........................................ 122 5.5.1 Uplift Acting on Horizontal Plate near the Still Water Level .................................................... 122
Chapter 6 Tides and Abnormal Water Levels....................................................................................................... 127 6.1 6.2 6.3 6.4 6.5 6.6
Design Water Level........................................................................................................................... 127 Astronomical Tide ............................................................................................................................. 128 Storm Surge ....................................................................................................................................... 128 Tsunami .............................................................................................................................................. 130 Seiche ................................................................................................................................................. 133 Groundwater Level and Permeation .............................................................................................. 135
Chapter 7 Currents and Current Force ................................................................................................................... 138 7.1 7.2 7.3
General ............................................................................................................................................... 138 Current Forces Acting on Submerged Members and Structures .............................................. 138 Mass of Armor Stones and Concrete Blocks against Currents ................................................. 140
Chapter 8 External Forces Acting on Floating Body and Its Motions ........................................................... 142 8.1 8.2 8.3
General ............................................................................................................................................... 142 External Forces Acting on Floating Body ...................................................................................... 143 Motions of Floating Body and Mooring Force ............................................................................... 145
Chapter 9 Estuarine Hydraulics ................................................................................................................................ 148 9.1
General ............................................................................................................................................... 148
Chapter 10 Littoral Drift .................................................................................................................................................. 154 10.1 General ............................................................................................................................................... 154 10.2 Scouring around Structures ............................................................................................................. 161 10.3 Prediction of Beach Deformation .................................................................................................... 163 -iv-
CONTENTS
Chapter 11 Subsoil ...........................................................................................................................................................167 11.1 Method of Determining Geotechnical Conditions .........................................................................167 11.1.1 11.1.2 11.1.3
11.2
11.3
11.4 11.5 11.6
Principles.................................................................................................................................167 Selection of Soil Investigation Methods ..................................................................................168 Standard Penetration Test ......................................................................................................168 Physical Properties of Soils .............................................................................................................168 11.2.1 Unit Weight of Soil...................................................................................................................168 11.2.2 Classification of Soils ..............................................................................................................169 11.2.3 Coefficient of Permeability of Soil ...........................................................................................169 Mechanical Properties of Soils ........................................................................................................170 11.3.1 Elastic Constants ....................................................................................................................170 11.3.2 Consolidation Properties .........................................................................................................170 11.3.3 Shear Properties .....................................................................................................................173 Angle of Internal Friction by N-value ..............................................................................................175 Application of Soundings Other Than SPT....................................................................................176 Dynamic Properties of Soils .............................................................................................................178 11.6.1 Dynamic Modulus of Deformation ...........................................................................................178 11.6.2 Dynamic Strength Properties ..................................................................................................180
Chapter 12 Earthquakes and Seismic Force ...........................................................................................................182 12.1 12.2 12.3 12.4 12.5 12.6
General................................................................................................................................................182 Earthquake Resistance of Port and Harbor Facilities in Design ................................................182 Seismic Coefficient Method .............................................................................................................184 Design Seismic Coefficient ..............................................................................................................184 Seismic Response Analysis .............................................................................................................190 Seismic Deformation Method ..........................................................................................................192
Chapter 13 Liquefaction .................................................................................................................................................195 13.1 General................................................................................................................................................195 13.2 Prediction of Liquefaction .................................................................................................................195 13.3 Countermeasures against Liquefaction .........................................................................................199
Chapter 14 Earth Pressure and Water Pressure ...................................................................................................200 14.1 Earth Pressure ...................................................................................................................................200 14.2 Earth Pressure under Ordinary Conditions ...................................................................................200 14.2.1 14.2.2
Earth Pressure of Sandy Soil under Ordinary Conditions .......................................................200 Earth Pressure of Cohesive Soil under Ordinary Conditions ..................................................201 14.3 Earth Pressure during Earthquake .................................................................................................202 14.3.1 Earth Pressure of Sandy Soil during Earthquake....................................................................202 14.3.2 Earth Pressure of Cohesive Soil during Earthquake...............................................................204 14.3.3 Apparent Seismic Coefficient ..................................................................................................204 14.4 Water Pressure ..................................................................................................................................205 14.4.1 Residual Water Pressure ........................................................................................................205 14.4.2 Dynamic Water Pressure during Earthquake..........................................................................205
Chapter 15 Loads .............................................................................................................................................................207 15.1 General................................................................................................................................................207 15.2 Deadweight and Surcharge .............................................................................................................207 15.3 Static Load ..........................................................................................................................................207 15.3.1 15.3.2 15.3.3 15.3.4
Static Load under Ordinary Conditions ...................................................................................207 Static Load during Earthquake................................................................................................208 Unevenly Distributed Load ......................................................................................................208 Snow Load ..............................................................................................................................208 15.4 Live Load ............................................................................................................................................209 15.4.1 Train Load ...............................................................................................................................209 15.4.2 Vehicle Load ...........................................................................................................................209 15.4.3 Cargo Handling Equipment Load ............................................................................................209 15.4.4 Sidewalk Live Load .................................................................................................................209
Chapter 16 Coefficient of Friction ................................................................................................................................210 16.1 General................................................................................................................................................210
Part III Materials Chapter 1 General ......................................................................................................................................................... 211 1.1
Selection of Materials........................................................................................................................ 211 -v-
TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN
1.2
Safety of Structural Elements .......................................................................................................... 211
Chapter 2 Steel ............................................................................................................................................................... 212 2.1 2.2 2.3
Materials ............................................................................................................................................. 212 Steel Meterial Constants Used in Design Calculation ................................................................. 212 Allowable Stresses ............................................................................................................................ 212 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.3.7
2.4
General ................................................................................................................................... 212 Structural Steel ....................................................................................................................... 212 Steel Piles and Steel Pipe Sheet Piles ................................................................................... 213 Steel Sheet Piles .................................................................................................................... 214 Cast Steel and Forged Steel................................................................................................... 214 Allowable Stresses for Steel at Welded Zones and Spliced Sections .................................... 214 Increase of Allowable Stresses............................................................................................... 215 Corrosion Control .............................................................................................................................. 216 2.4.1 General ................................................................................................................................... 216 2.4.2 Corrosion Rates of Steel Materials ......................................................................................... 216 2.4.3 Corrosion Control Methods..................................................................................................... 217 2.4.4 Cathodic Protection Method ................................................................................................... 217 [1] Range of Application........................................................................................................ 217 [2] Protective Potential .......................................................................................................... 218 [3] Protective Current Density ............................................................................................... 219 2.4.5 Coating Method ...................................................................................................................... 220 [1] Extent of Application ........................................................................................................ 220 [2] Applicable Methods.......................................................................................................... 220 [3] Selection of Method ......................................................................................................... 220
Chapter 3 Concrete ....................................................................................................................................................... 221 3.1 3.2 3.3 3.4 3.5 3.6
General ............................................................................................................................................... 221 Basics of Design Based on the Limit State Design Method ....................................................... 221 Design Based on Allowable Stress Method .................................................................................. 223 Concrete Materials ............................................................................................................................ 224 Concrete Quality and Performance ................................................................................................ 225 Underwater Concrete ....................................................................................................................... 227
Chapter 4 Bituminous Materials ................................................................................................................................ 228 4.1 4.2
General ............................................................................................................................................... 228 Asphalt Mat ........................................................................................................................................ 228 4.2.1 4.2.2 4.2.3
4.3 4.4
General ................................................................................................................................... 228 Materials ................................................................................................................................. 228 Mix Proportioning.................................................................................................................... 229 Paving Materials ................................................................................................................................ 229 Sand Mastic Asphalt ......................................................................................................................... 229 4.4.1 General ................................................................................................................................... 229 4.4.2 Materials ................................................................................................................................. 230 4.4.3 Mix Proportioning.................................................................................................................... 230
Chapter 5 Stone ............................................................................................................................................................. 231 5.1 5.2 5.3 5.4
General ............................................................................................................................................... 231 Rubble for Foundation ...................................................................................................................... 231 Backfilling Materials .......................................................................................................................... 231 Base Course Materials of Pavement ............................................................................................. 232
Chapter 6 Timber ........................................................................................................................................................... 233 6.1
Quality of Timber ............................................................................................................................... 233 6.1.1 6.1.2
6.2 6.3 6.4 6.5
Structural Timber .................................................................................................................... 233 Timber Piles............................................................................................................................ 233 Allowable Stresses of Timber .......................................................................................................... 233 6.2.1 General ................................................................................................................................... 233 6.2.2 Allowable Stresses of Structural Timber ................................................................................. 233 Quality of Glued Laminated Timber ............................................................................................... 233 6.3.1 Allowable Stress for Glued Laminated Timber ....................................................................... 233 Joining of Timber ............................................................................................................................... 233 Maintenance of Timber..................................................................................................................... 233
Chapter 7 Other Materials ........................................................................................................................................... 234 7.1 7.2 7.3
Metals Other Than Steel .................................................................................................................. 234 Plastics and Rubbers ........................................................................................................................ 234 Coating Materials .............................................................................................................................. 236 -vi-
CONTENTS
7.4
Grouting Materials .............................................................................................................................237 7.4.1 7.4.2
General ...................................................................................................................................237 Properties of Grouting Materials .............................................................................................237
Chapter 8 Recyclable Resources .............................................................................................................................238 8.1 8.2 8.3 8.4
General................................................................................................................................................238 Slag ......................................................................................................................................................238 Coal Ash..............................................................................................................................................239 Crashed Concrete .............................................................................................................................240
Part IV Precast Concrete Units Chapter 1 Caissons .......................................................................................................................................................241 1.1 1.2 1.3 1.4
General................................................................................................................................................241 Determination of Dimensions ..........................................................................................................242 Floating Stability ................................................................................................................................242 Design External Forces ....................................................................................................................243 1.4.1 1.4.2 1.4.3 1.4.4 1.4.5
1.5
1.6
Combination of Loads and Load Factors ................................................................................243 External Forces during Fabrication .........................................................................................249 External Forces during Launching and Floating......................................................................249 External Forces during Installation..........................................................................................250 External Forces after Construction..........................................................................................250 [1] Outer Walls.......................................................................................................................250 [2] Bottom Slab......................................................................................................................251 [3] Partition Walls and Others................................................................................................253 Design of Members ...........................................................................................................................254 1.5.1 Outer Wall ...............................................................................................................................254 1.5.2 Partition Wall ...........................................................................................................................254 1.5.3 Bottom Slab.............................................................................................................................254 1.5.4 Others .....................................................................................................................................255 Design of Hooks for Suspension by Crane ...................................................................................255
Chapter 2 L-Shaped Blocks ........................................................................................................................................256 2.1 2.2 2.3
General................................................................................................................................................256 Determination of Dimensions ..........................................................................................................256 Loads Acting on Members ...............................................................................................................257 2.3.1 2.3.2 2.3.3
2.4
2.5
General ...................................................................................................................................257 Earth Pressure ........................................................................................................................258 Converted Loads for Design Calculation.................................................................................258 Design of Members ...........................................................................................................................259 2.4.1 Front Wall................................................................................................................................259 2.4.2 Footing ....................................................................................................................................259 2.4.3 Bottom Slab.............................................................................................................................259 2.4.4 Buttress ...................................................................................................................................260 Design of Hooks for Suspension by Crane ...................................................................................260
Chapter 3 Cellular Blocks ............................................................................................................................................261 3.1 3.2
General................................................................................................................................................261 Determination of Dimensions ..........................................................................................................261 3.2.1 3.2.2
3.3
3.4
Shape of Cellular Blocks .........................................................................................................261 Determination of Dimensions ..................................................................................................261 Loads Acting on Cellular Blocks......................................................................................................262 3.3.1 General ...................................................................................................................................262 3.3.2 Earth Pressure of Filling and Residual Water Pressure..........................................................262 3.3.3 Converted Loads for Design Calculation.................................................................................264 Design of Members ...........................................................................................................................264 3.4.1 Rectangular Cellular Blocks ....................................................................................................264 3.4.2 Other Types of Cellular Blocks................................................................................................265
Chapter 4 Upright Wave-Absorbing Caissons ......................................................................................................267 4.1 4.2 4.3
General................................................................................................................................................267 External Forces Acting on Members ..............................................................................................267 Design of Members ...........................................................................................................................269
Chapter 5 Hybrid Caissons .........................................................................................................................................270 5.1 5.2
General................................................................................................................................................270 Determination of Dimensions ..........................................................................................................270 -vii-
TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN
5.3 5.4
Design External Forces .................................................................................................................... 271 Design of Members ........................................................................................................................... 271 5.4.1 5.4.2 5.4.3 5.4.4 5.4.5 5.4.6
5.5
Section Force.......................................................................................................................... 271 Design of Composite Slabs .................................................................................................... 271 Design of SRC Members ........................................................................................................ 271 Design of Partitions................................................................................................................. 271 Design of Corners and Joints ................................................................................................. 271 Safety against Fatigue Failure ................................................................................................ 272 Corrosion Control .............................................................................................................................. 272
Part V Foundations Chapter 1 General ......................................................................................................................................................... 273 Chapter 2 Bearing Capacity of Shallow Foundations ........................................................................................ 274 2.1 2.2 2.3 2.4 2.5
General ............................................................................................................................................... 274 Bearing Capacity of Foundation on Sandy Ground ..................................................................... 274 Bearing Capacity of Foundation on Clayey Ground .................................................................... 275 Bearing Capacity of Multilayered Ground ..................................................................................... 276 Bearing Capacity for Eccentric and Inclined Loads ..................................................................... 277
Chapter 3 Bearing Capacity of Deep Foundations ............................................................................................. 280 3.1 3.2 3.3
General ............................................................................................................................................... 280 Vertical Bearing Capacity................................................................................................................. 280 Lateral Bearing Capacity .................................................................................................................. 281
Chapter 4 Bearing Capacity of Pile Foundations ................................................................................................ 284 4.1
Allowable Axial Bearing Capacity of Piles ..................................................................................... 284 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 4.1.8 4.1.9 4.1.10 4.1.11
4.2
4.3
4.4
4.5
General ................................................................................................................................... 284 Standard Allowable Axial Bearing Capacity............................................................................ 284 Ultimate Axial Bearing Capacity of Single Piles...................................................................... 285 Estimation of Ultimate Axial Bearing Capacity by Loading Tests ........................................... 285 Estimation of Ultimate Axial Bearing Capacity by Static Bearing Capacity Formulas ............ 286 Examination of Compressive Stress of Pile Materials ............................................................ 288 Decrease of Bearing Capacity Due to Joints .......................................................................... 288 Decrease of Bearing Capacity Due to Slenderness Ratio ...................................................... 288 Bearing Capacity of Pile Group .............................................................................................. 288 Examination of Negative Skin Friction .................................................................................... 290 Examination of Settlement of Piles ......................................................................................... 291 Allowable Pulling Resistance of Piles ............................................................................................ 291 4.2.1 General ................................................................................................................................... 291 4.2.2 Standard Allowable Pulling Resistance .................................................................................. 292 4.2.3 Maximum Pulling Resistance of Single Pile............................................................................ 292 4.2.4 Examination of Tensile Stress of Pile Materials...................................................................... 293 4.2.5 Matters to Be Considered for Obtaining Allowable Pulling Resistance of Piles...................... 293 Allowable Lateral Bearing Capacity of Piles ................................................................................. 293 4.3.1 General ................................................................................................................................... 293 4.3.2 Estimation of Allowable Lateral Bearing Capacity of Piles ..................................................... 295 4.3.3 Estimation of Pile Behavior Using Loading Tests ................................................................... 295 4.3.4 Estimation of Pile Behavior Using Analytical Methods ........................................................... 295 4.3.5 Consideration of Pile Group Action......................................................................................... 301 4.3.6 Lateral Bearing Capacity of Coupled Piles ............................................................................. 301 Pile Design in General ...................................................................................................................... 304 4.4.1 Load Sharing .......................................................................................................................... 304 4.4.2 Load Distribution..................................................................................................................... 305 4.4.3 Distance between Centers of Piles......................................................................................... 305 4.4.4 Allowable Stresses for Pile Materials...................................................................................... 305 Detailed Design ................................................................................................................................. 306 4.5.1 Examination of Loads during Construction ............................................................................. 306 4.5.2 Design of Joints between Piles and Structure ........................................................................ 307 4.5.3 Joints of Piles.......................................................................................................................... 308 4.5.4 Change of Plate Thickness or Materials of Steel Pipe Piles................................................... 308 4.5.5 Other Points for Caution in Design ......................................................................................... 308
Chapter 5 Settlement of Foundations ..................................................................................................................... 310 5.1 5.2
Stress in Soil Mass ........................................................................................................................... 310 Immediate Settlement....................................................................................................................... 310 -viii-
CONTENTS
5.3 5.4 5.5
Consolidation Settlement .................................................................................................................310 Lateral Displacement ........................................................................................................................312 Differential Settlements ....................................................................................................................312
Chapter 6 Stability of Slopes ......................................................................................................................................314 6.1 6.2
General................................................................................................................................................314 Stability Analysis ................................................................................................................................315 6.2.1 6.2.2
Stability Analysis Using Circular Slip Surface Method ............................................................315 Stability Analysis Assuming Slip Surfaces Other Than Circular Arc Slip Surface...................316
Chapter 7 Soil Improvement Methods .....................................................................................................................318 7.1 7.2 7.3
General................................................................................................................................................318 Replacement Method ........................................................................................................................318 Vertical Drain Method .......................................................................................................................318 7.3.1 7.3.2
Principle of Design ..................................................................................................................318 Determination of Height and Width of Fill................................................................................319 [1] Height and Width of Fill Required for Soil Improvement ..................................................319 [2] Height and Width of Fill Required for Stability of Fill Embankment ..................................319 7.3.3 Design of Drain Piles...............................................................................................................319 [1] Drain Piles and Sand Mat.................................................................................................319 [2] Interval of Drain Piles .......................................................................................................320 7.4 Deep Mixing Method .........................................................................................................................322 7.4.1 Principle of Design ..................................................................................................................322 [1] Scope of Application.........................................................................................................322 [2] Basic Concept ..................................................................................................................323 7.4.2 Assumptions for Dimensions of Stabilized Body.....................................................................323 [1] Mixture Design of Stabilized Soil......................................................................................323 [2] Allowable Stress of Stabilized Body .................................................................................324 7.4.3 Calculation of External Forces ................................................................................................325 7.5 Lightweight Treated Soil Method ....................................................................................................326 7.5.1 Outline of Lightweight Treated Soil Method ............................................................................326 7.5.2 Basic Design Concept.............................................................................................................326 7.5.3 Mixture Design of Treated Soil................................................................................................327 7.5.4 Examination of Area to Be Treated .........................................................................................328 7.5.5 Workability Verification Tests ..................................................................................................328 7.6 Replacement Method with Granulated Blast Furnace Slag ........................................................328 7.6.1 Principle of Design ..................................................................................................................328 7.6.2 Physical Properties of Granulated Blast Furnace Slag ...........................................................328 7.7 Premixing Method..............................................................................................................................329 7.7.1 Principle of Design ..................................................................................................................329 [1] Scope of Application.........................................................................................................329 [2] Consideration for Design..................................................................................................329 7.7.2 Preliminary Survey ..................................................................................................................329 7.7.3 Determination of Strength of Treated Soil...............................................................................330 7.7.4 Mixture Design of Treated Soil................................................................................................330 7.7.5 Examination of Area of Improvement......................................................................................331 7.8 Active Earth Pressure of Solidified Geotechnical Materials........................................................333 7.8.1 Scope of Application ...............................................................................................................333 7.8.2 Active Earth Pressure .............................................................................................................333 [1] Outline ..............................................................................................................................333 [2] Strength Parameters ........................................................................................................334 [3] Calculation of Active Earth Pressure................................................................................334 [4] Case of Limited Area of Subsoil Improvement .................................................................335 7.9 Sand Compaction Pile Method (for Sandy Subsoil) .....................................................................336 7.9.1 Principle of Design ..................................................................................................................336 7.9.2 Sand Volume to Be Supplied ..................................................................................................336 7.9.3 Design Based on Trial Execution ............................................................................................338 7.10 Sand Compaction Pile Method (for Cohesive Subsoil) ...............................................................339 7.10.1 Principle of Design ..................................................................................................................339 [1] Scope of Application.........................................................................................................339 [2] Basic Concept ..................................................................................................................339 7.10.2 Strength and Permeability of Sand Piles.................................................................................339 7.10.3 Shear Strength of Improved Subsoil .......................................................................................339 7.10.4 Stability Analysis .....................................................................................................................340 7.10.5 Examining Consolidation.........................................................................................................341
-ix-
TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN
Part VI Navigation Channels and Basins Chapter 1 General ......................................................................................................................................................... 345 Chapter 2 Navigation Channels ................................................................................................................................ 346 2.1 2.2 2.3 2.4 2.5 2.6
General ............................................................................................................................................... 346 Alignment of Navigation Channel .................................................................................................. 346 Width of Navigation Channel ........................................................................................................... 347 Depth of Navigation Channel .......................................................................................................... 348 Length of Navigation Channel at Harbor Entrance ...................................................................... 348 Calmness of Navigation Channel ................................................................................................... 348
Chapter 3 Navigation Channels outside Breakwaters ....................................................................................... 350 3.1 3.2 3.3
General ............................................................................................................................................... 350 Width of Navigation Channel ........................................................................................................... 350 Depth of Navigation Channel .......................................................................................................... 350
Chapter 4 Basins............................................................................................................................................................ 351 4.1 4.2
General ............................................................................................................................................... 351 Location and Area of Basin ............................................................................................................. 351 4.2.1 4.2.2 4.2.3
4.3 4.4 4.5
Location .................................................................................................................................. 351 Area of Basin Used for Anchorage or Mooring ....................................................................... 351 Area of Basin Used for Ship Maneuvering.............................................................................. 352 [1] Turning Basin................................................................................................................... 352 [2] Mooring / Unmooring Basin ............................................................................................. 353 Depth of Basin ................................................................................................................................... 353 Calmness of Basin ............................................................................................................................ 353 Timber Sorting Pond ......................................................................................................................... 354
Chapter 5 Small Craft Basins ..................................................................................................................................... 355 Chapter 6 Maintenance of Navigation Channels and Basins .......................................................................... 355 6.1
General ............................................................................................................................................... 355
Part VII Protective Facilities for Harbors Chapter 1 General ......................................................................................................................................................... 357 1.1 1.2
General Consideration ..................................................................................................................... 357 Maintenance....................................................................................................................................... 357
Chapter 2 Breakwaters ................................................................................................................................................ 358 2.1 2.2 2.3 2.4 2.5
General ............................................................................................................................................... 358 Layout of Breakwaters ...................................................................................................................... 358 Design Conditions of Breakwaters ................................................................................................. 359 Selection of Structural Types .......................................................................................................... 359 Determination of Cross Section ...................................................................................................... 362 2.5.1 2.5.2 2.5.3 2.5.4
2.6
2.7
2.8
Upright Breakwater ................................................................................................................. 362 Composite Breakwater ........................................................................................................... 363 Sloping Breakwater................................................................................................................. 363 Caisson Type Breakwater Covered with Wave-Dissipating Concrete Blocks ........................ 364 External Forces for Stability Calculation ........................................................................................ 364 2.6.1 General ................................................................................................................................... 364 2.6.2 Wave Forces........................................................................................................................... 365 2.6.3 Hydrostatic Pressure .............................................................................................................. 365 2.6.4 Buoyancy ................................................................................................................................ 365 2.6.5 Deadweight............................................................................................................................. 365 2.6.6 Stability during Earthuakes ..................................................................................................... 365 Stability Calculation........................................................................................................................... 365 2.7.1 Stability Calculation of Upright Section................................................................................... 365 2.7.2 Stability Calculation of Sloping Section .................................................................................. 369 2.7.3 Stability Calculation of Whole Section .................................................................................... 369 2.7.4 Stability Calculation for Head and Corner of Breakwater ....................................................... 369 Details of Structures ......................................................................................................................... 370 2.8.1 Upright Breakwater ................................................................................................................. 370 2.8.2 Composite Breakwater ........................................................................................................... 371 2.8.3 Sloping Breakwater................................................................................................................. 372 -x-
CONTENTS
2.8.4
Caisson Type Breakwater Covered with Wave-Dissipating Concrete Blocks.........................372
2.9 Detailed Design of Upright Section .................................................................................................372 2.10 Breakwaters for Timber-Handling Facilities ..................................................................................372 2.10.1 2.10.2
Breakwaters for Timber Storage Ponds and Timber Sorting Ponds .......................................372 Fences to Prevent Timber Drifting ..........................................................................................373 2.11 Storm Surge Protection Breakwater ...............................................................................................373 2.12 Tsunami Protection Breakwater ......................................................................................................373
Chapter 3 Other Types of Breakwaters ..................................................................................................................376 3.1 3.2
Selection of Structural Type .............................................................................................................376 Gravity Type Special Breakwaters..................................................................................................377 3.2.1 3.2.2
3.3
General ...................................................................................................................................377 Upright Wave-Absorbing Block Breakwater ............................................................................378 [1] General.............................................................................................................................378 [2] Crest Elevation .................................................................................................................378 [3] Wave Force ......................................................................................................................379 3.2.3 Wave-Absorbing Caisson Breakwater ....................................................................................379 [1] General.............................................................................................................................379 [2] Determination of Target Waves to Be Absorbed..............................................................380 [3] Determination of Dimensions for Wave-Absorbing Section .............................................380 [4] Wave Force for Examination of Structural Stability ..........................................................380 [5] Wave Force for Design of Structural Members ................................................................380 3.2.4 Sloping-Top Caisson Breakwater............................................................................................380 [1] General.............................................................................................................................380 [2] Wave Force ......................................................................................................................381 Non-Gravity Type Breakwaters .......................................................................................................382 3.3.1 Curtain Wall Breakwater .........................................................................................................382 [1] General.............................................................................................................................382 [2] Wave Force ......................................................................................................................384 [3] Design of Piles .................................................................................................................384 3.3.2 Floating Breakwater ................................................................................................................384 [1] General.............................................................................................................................384 [2] Selection of Design Conditions ........................................................................................385 [3] Design of Mooring System ...............................................................................................385 [4] Design of Floating Body Structure....................................................................................386
Chapter 4 Locks..............................................................................................................................................................388 4.1 4.2 4.3
Selection of Location .........................................................................................................................388 Size and Layout of Lock ...................................................................................................................388 Selection of Structural Type .............................................................................................................389 4.3.1 4.3.2
4.4 4.5 4.6
Gate ........................................................................................................................................389 Lock Chamber.........................................................................................................................389 External Forces and Loads Acting on Lock...................................................................................389 Pumping and Drainage System ......................................................................................................389 Auxiliary Facilities ..............................................................................................................................389
Chapter 5 Facilities to Prevent Shoaling and Siltation .......................................................................................390 5.1 5.2
General................................................................................................................................................390 Jetty .....................................................................................................................................................390 5.2.1 5.2.2
5.3 5.4
5.5 5.6
Layout of Jetty.........................................................................................................................390 Details of Jetty.........................................................................................................................391 Group of Groins .................................................................................................................................392 Training Jetties ...................................................................................................................................392 5.4.1 Layout of Training Jetties ........................................................................................................392 5.4.2 Water Depth at Tip of Training Jetty .......................................................................................393 5.4.3 Structure of Training Jetty .......................................................................................................393 Facilities to Trap Littoral Transport and Sediment Flowing out of Rivers .................................393 Countermeasures against Wind-Blown Sand ...............................................................................394 5.6.1 General ...................................................................................................................................394 5.6.2 Selection of Countermeasures................................................................................................394
Chapter 6 Revetments ..................................................................................................................................................396 6.1 6.2 6.3 6.4 6.5
Principle of Design ............................................................................................................................396 Design Conditions .............................................................................................................................396 Structural Stability..............................................................................................................................398 Determination of Cross Section ......................................................................................................398 Details..................................................................................................................................................398 -xi-
TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN
Part VIII Mooring Facilities Chapter 1 General ......................................................................................................................................................... 401 1.1 1.2
General Consideration ..................................................................................................................... 401 Maintenance of Mooring Facilities .................................................................................................. 401
Chapter 2 Dimensions of Mooring Facilities.......................................................................................................... 402 2.1 2.2 2.3 2.4 2.5 2.6
Length and Water Depth of Berths ................................................................................................. 402 Crown Heights of Mooring Facilities............................................................................................... 405 Ship Clearance for Mooring Facilities ............................................................................................ 405 Design Water Depth ......................................................................................................................... 405 Protection against Scouring............................................................................................................. 406 Ancillary Facilities .............................................................................................................................. 406
Chapter 3 Structural Types of Mooring Facilities ................................................................................................ 407 Chapter 4 Gravity Type Quaywalls .......................................................................................................................... 408 4.1 4.2 4.3
Principle of Design ............................................................................................................................ 408 External Forces and Loads Acting on Walls ................................................................................. 408 Stability Calculations......................................................................................................................... 410 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5
4.4 4.5 4.6
Items to Be Considered in Stability Calculations .................................................................... 410 Examination against Sliding of Wall........................................................................................ 410 Examination Concerning Bearing Capacity of Foundation ..................................................... 411 Examination Concerning Overturning of Wall......................................................................... 411 Examination on Soft Foundation............................................................................................. 411 Stability Calculations of Cellular Concrete Blocks ....................................................................... 412 Effects of Backfill ............................................................................................................................... 413 Detailed Design ................................................................................................................................. 414
Chapter 5 Sheet Pile Quaywalls ............................................................................................................................... 415 5.1 5.2
General ............................................................................................................................................... 415 External Forces Acting on Sheet Pile Wall ................................................................................... 415
5.3
Design of Sheet Pile Wall ................................................................................................................ 417
5.2.1
External Forces to Be Considered.......................................................................................... 415
5.3.1 5.3.2 5.3.3 5.3.4 5.3.5
5.4 5.5 5.6 5.7
5.8
5.9
Setting Level of Tie Rod ......................................................................................................... 417 Embedded Length of Sheet Piles ........................................................................................... 417 Bending Moment of Sheet Piles and Reaction at Tie Rod Setting Point ................................ 418 Cross Section of Sheet Piles .................................................................................................. 419 Consideration of the Effect of Section Rigidity of Sheet Piles ................................................ 419 Design of Tie Rods ........................................................................................................................... 424 5.4.1 Tension of Tie Rod ................................................................................................................. 424 5.4.2 Cross Section of Tie Rod........................................................................................................ 424 Design of Wale .................................................................................................................................. 425 Examination for Circular Slip ........................................................................................................... 425 Design of Anchorage Work .............................................................................................................. 426 5.7.1 Selection of Structural Type of Anchorage Work.................................................................... 426 5.7.2 Location of Anchorage Work .................................................................................................. 426 5.7.3 Design of Anchorage Work..................................................................................................... 427 Detailed Design ................................................................................................................................. 428 5.8.1 Coping .................................................................................................................................... 428 5.8.2 Fitting of Tie Rods and Wale to Sheet Piles ........................................................................... 429 5.8.3 Tie Rod ................................................................................................................................... 429 5.8.4 Fitting of Tie Rods to Anchorage Work................................................................................... 429 Special Notes for Design of Sheet Pile Wall on Soft Ground..................................................... 429
Chapter 6 Sheet Pile Quaywalls with Relieving Platform ................................................................................. 431 6.1 6.2 6.3 6.4 6.5
Scope of Application ......................................................................................................................... 431 Principles of Design .......................................................................................................................... 431 Determination of Height and Width of Relieving Platform .......................................................... 431 Earth Pressure and Residual Water Pressure Acting on Sheet Piles ...................................... 432 Design of Sheet Pile Wall ................................................................................................................ 432 6.5.1 6.5.2
6.6
Embedded Length of Sheet Piles ........................................................................................... 432 Cross Section of Sheet Piles .................................................................................................. 433 Design of Relieving Platform and Relieving Platform Piles ........................................................ 433 6.6.1 External Forces Acting on Relieving Platform ........................................................................ 433 6.6.2 Design of Relieving Platform .................................................................................................. 433 6.6.3 Design of Piles ........................................................................................................................ 434 -xii-
CONTENTS
6.7 6.8
Examination of Stability as Gravity Type Wall ..............................................................................434 Examination of Stability against Circular Slip................................................................................435
Chapter 7 Steel Sheet Pile Cellular-Bulkhead Quaywalls ................................................................................436 7.1 7.2 7.3
Principle of Design ............................................................................................................................436 External Forces Acting on Steel Sheet Pile Cellular-Bulkhead Quaywall ................................437 Examination of Wall Width against Shear Deformation ..............................................................438 7.3.1 7.3.2 7.3.3 7.3.4
General ...................................................................................................................................438 Equivalent Width of Wall .........................................................................................................439 Calculation of Deformation Moment........................................................................................439 Calculation of Resisting Moment.............................................................................................440 7.4 Examination of Stability of Wall Body as a Whole........................................................................443 7.4.1 General ...................................................................................................................................443 7.4.2 Modulus of Subgrade Reaction...............................................................................................443 7.4.3 Calculation of Subgrade Reaction and Wall Displacement.....................................................443 7.5 Examination of Bearing Capacity of the Ground ..........................................................................448 7.6 Examination against Sliding of Wall ...............................................................................................448 7.7 Examination of Displacement of Wall Top .....................................................................................448 7.8 Examination of Stability against Circular Slip................................................................................449 7.9 Layout of Cells and Arcs ..................................................................................................................449 7.10 Calculation of Hoop Tension............................................................................................................449 7.11 Design of T-Shaped Sheet Pile .......................................................................................................450 7.11.1 General ...................................................................................................................................450 7.11.2 Structure of T-Shaped Sheet Pile ...........................................................................................450 7.12 Detailed Design..................................................................................................................................451 7.12.1 Design of Pile to Support Coping ............................................................................................451 7.12.2 Design of Coping.....................................................................................................................451
Chapter 8 Steel Plate Cellular-Bulkhead Quaywalls ..........................................................................................452 8.1 8.2
Scope of Application .........................................................................................................................452 Placement-Type Steel Plate Cellular-Bulkhead Quaywalls ........................................................452 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5 8.2.6 8.2.7 8.2.8 8.2.9
8.3
Principle of Design ..................................................................................................................452 External Forces Acting on Steel Plate Cellular-Bulkhead .......................................................453 Examination of Wall Width against Shear Deformation ..........................................................453 Examination of Stability of Wall Body as a Whole...................................................................454 Examination of Bearing Capacity of the Ground .....................................................................455 Examination of Stability against Circular Slip..........................................................................455 Determination of Thickness of Steel Plate of Cell Shell ..........................................................455 Layout of Cells and Arcs .........................................................................................................456 Detailed Design.......................................................................................................................456 Embedded-Type Steel Plate Cellular-Bulkhead Quaywalls........................................................456 8.3.1 Principle of Design ..................................................................................................................456 8.3.2 External Forces Acting on Embedded-Type Steel Plate Celluler-Bulkhead............................457 8.3.3 Examination of Wall Width against Shear Deformation ..........................................................457 8.3.4 Examination of Stability of Wall Body as a Whole...................................................................458 8.3.5 Examination of Bearing Capacity of the Ground .....................................................................458 8.3.6 Examination against Sliding of Wall ........................................................................................458 8.3.7 Examination of Displacement of Wall Top ..............................................................................458 8.3.8 Examination of Stability against Circular Slip..........................................................................458 8.3.9 Layout of Cells and Arcs .........................................................................................................458 8.3.10 Determination of Plate Thickness of Cell Shell and Arc Section.............................................458 8.3.11 Joints and Stiffeners................................................................................................................459 8.3.12 Detailed Design.......................................................................................................................459
Chapter 9 Open-Type Wharves on Vertical Piles ................................................................................................460 9.1 9.2
Principle of Design ............................................................................................................................460 Layout and Dimensions ....................................................................................................................462 9.2.1 9.2.2 9.2.3
9.3 9.4 9.5
Size of Deck Block and Layout of Piles...................................................................................462 Dimensions of Superstructure.................................................................................................462 Arrangement of Fenders and Bollards ....................................................................................463 External Forces Acting on Open-Type Wharf ...............................................................................463 9.3.1 Design External Forces...........................................................................................................463 9.3.2 Calculation of Fender Reaction Force.....................................................................................464 Assumptions Concerning Sea Bottom Ground .............................................................................464 9.4.1 Determination of Slope Inclination ..........................................................................................464 9.4.2 Virtual Ground Surface............................................................................................................465 Design of Piles ...................................................................................................................................465 -xiii-
TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN
9.5.1 9.5.2 9.5.3 9.5.4 9.5.5 9.5.6 9.5.7 9.5.8 9.5.9
9.6
9.7 9.8 9.9
General ................................................................................................................................... 465 Coefficient of Horizontal Subgrade Reaction.......................................................................... 465 Virtual Fixed Point................................................................................................................... 466 Member Forces Acting on Individual Piles.............................................................................. 466 Cross-Sectional Stresses of Piles........................................................................................... 468 Examination of Embedded Length for Bearing Capacity ........................................................ 468 Examination of Embedded Length for Lateral Resistance...................................................... 468 Examination of Pile Joints....................................................................................................... 468 Change of Plate Thickness or Material of Steel Pipe Pile ...................................................... 468 Examination of Earthquake-Resistant Performance ................................................................... 469 9.6.1 Assumption of Cross Section for Earthquake-Resistant Performance Examination .............. 470 9.6.2 Examination Method of Earthquake-Resistant Performance.................................................. 470 9.6.3 Determination of Seismic Motion for Examination of Earthquake-Resistant Performance..... 471 9.6.4 Examination of Load Carrying Capacity Using Simplified Method.......................................... 473 9.6.5 Examination of Load Carrying Capacity Using Elasto-Plastic Analysis .................................. 475 Design of Earth-Retaining Section ................................................................................................. 477 Examination of Stability against Circular Slip ............................................................................... 477 Detailed Design ................................................................................................................................. 478 9.9.1 Load Combinations for Superstructure Design....................................................................... 478 9.9.2 Calculation of Reinforcing Bar Arrangement of Superstructure .............................................. 478 9.9.3 Design of Pile Head ................................................................................................................ 478
Chapter 10 Open-Type Wharves on Coupled Raking Piles ............................................................................... 480 10.1 Principle of Design ............................................................................................................................ 480 10.2 Layout and Dimensions .................................................................................................................... 481 10.2.1 10.2.2 10.2.3
Size of Deck Block and Layout of Piles .................................................................................. 481 Dimensions of Supersutructure .............................................................................................. 481 Arrangement of Fenders and Bollards.................................................................................... 481 10.3 External Forces Acting on Open-Type Wharf on Coupled Raking Piles .................................. 481 10.3.1 Design External Forces .......................................................................................................... 481 10.3.2 Calculation of Fender Reaction Force .................................................................................... 481 10.4 Assumptions Concerning Sea Bottom Ground............................................................................. 481 10.4.1 Determination of Slope Inclination .......................................................................................... 481 10.4.2 Virtual Ground Surface ........................................................................................................... 481 10.5 Determination of Forces Acting on Piles and Cross Sections of Piles ..................................... 481 10.5.1 Horizontal Force Transmitted to Heads of Coupled Raking Piles........................................... 481 10.5.2 Vertical Load Transmitted to Heads of Coupled Raking Piles ................................................ 483 10.5.3 Pushing-In and Pulling-Out Forces of Coupled Raking Piles ................................................. 483 10.5.4 Cross-Sectional Stresses of Piles........................................................................................... 483 10.6 Examination of Strength of Wharf in the Direction of Its Face Line .......................................... 484 10.7 Embedded Length of Raking Pile ................................................................................................... 484 10.8 Design of Earth-Retaining Section ................................................................................................. 484 10.9 Examination of Stability against Circular Slip ............................................................................... 484 10.10 Detailed Design ................................................................................................................................. 484
Chapter 11 Detached Pier ............................................................................................................................................. 485 11.1 Scope of Application ......................................................................................................................... 485 11.2 Principle of Design ............................................................................................................................ 485 11.3 Design of Detached Pier .................................................................................................................. 485 11.3.1 11.3.2 11.3.3 11.3.4
11.4 11.5
Layout and Dimensions .......................................................................................................... 485 External Forces and Loads..................................................................................................... 485 Design of Piers ....................................................................................................................... 486 Design of Girder...................................................................................................................... 486 Ancillary Equipment .......................................................................................................................... 486 Detailed Design ................................................................................................................................. 486 11.5.1 Superstructure ........................................................................................................................ 486 11.5.2 Gangways .............................................................................................................................. 486
Chapter 12 Floating Piers .............................................................................................................................................. 487 12.1 Scope of Application ......................................................................................................................... 487 12.2 Principle of Design ............................................................................................................................ 488 12.3 Design of Pontoon............................................................................................................................. 488 12.3.1 12.3.2 12.3.3 12.3.4
12.4
Dimensions of Pontoon........................................................................................................... 488 External Forces and Loads Acting on Pontoon ...................................................................... 488 Stability of Pontoon................................................................................................................. 488 Design of Individual Parts of Pontoon..................................................................................... 489 Design of Mooring System............................................................................................................... 490 -xiv-
CONTENTS
12.4.1 12.4.2
12.4.3
12.5 Design 12.5.1 12.5.2 12.5.3
Mooring Method ......................................................................................................................490 Design of Mooring Chain.........................................................................................................490 [1] Design External Forces ....................................................................................................490 [2] Setting of Chain................................................................................................................490 [3] Diameter of Chain ............................................................................................................490 Design of Mooring Anchor.......................................................................................................492 [1] Design External Forces ....................................................................................................492 [2] Design of Mooring Anchor................................................................................................492 of Access Bridge and Gangway ........................................................................................492 Dimensions and Inclination .....................................................................................................492 Design of Access Bridge and Gangway..................................................................................493 Adjusting Tower ......................................................................................................................493
Chapter 13 Dolphins ........................................................................................................................................................494 13.1 13.2 13.3 13.4 13.5 13.6
Principle of Design ............................................................................................................................494 Layout ..................................................................................................................................................494 External Forces Acting on Dolphins ...............................................................................................495 Pile Type Dolphins ............................................................................................................................495 Steel Cellular-Bulkhead Type Dolphins .........................................................................................495 Caisson Type Dolphins .....................................................................................................................496
Chapter 14 Slipways and Shallow Draft Quays ......................................................................................................497 14.1 Slipways ..............................................................................................................................................497 14.1.1 14.1.2 14.1.3
Principle of Design ..................................................................................................................497 Location of Slipway .................................................................................................................497 Dimensions of Individual Parts................................................................................................497 [1] Elevations of Individual Parts ...........................................................................................497 [2] Slipway Length and Background Space...........................................................................498 [3] Water Depth .....................................................................................................................498 [4] Gradient of Slipway ..........................................................................................................498 [5] Basin Area........................................................................................................................498 14.1.4 Front Wall and Pavement........................................................................................................499 [1] Front Wall .........................................................................................................................499 [2] Pavement .........................................................................................................................499 14.2 Shallow Draft Quay ...........................................................................................................................499
Chapter 15 Air-Cushion Vehicle Landing Facilities ...............................................................................................500 15.1 15.2 15.3 15.4
Principle of Design ............................................................................................................................500 Location ...............................................................................................................................................501 Air-Cushion Vehicle Landing Facilities ...........................................................................................501 Dimensions of Individual Parts ........................................................................................................501
Chapter 16 Mooring Buoys and Mooring Posts ......................................................................................................502 16.1 Mooring Buoys ...................................................................................................................................502 16.1.1 16.1.2 16.1.3
Principle of Design ..................................................................................................................502 Tractive Force Acting on Mooring Buoy ..................................................................................503 Design of Individual Parts of Mooring Buoy ............................................................................504 [1] Mooring Anchor ................................................................................................................504 [2] Sinker and Sinker Chain...................................................................................................504 [3] Ground Chain ...................................................................................................................505 [4] Main Chain .......................................................................................................................506 [5] Floating Body ...................................................................................................................507 16.2 Mooring Posts ....................................................................................................................................507
Chapter 17 Other Types of Mooring Facilities.........................................................................................................508 17.1 Quaywall of Wave-Absorbing Type ................................................................................................508 17.1.1 17.1.2
Principle of Design ..................................................................................................................508 Determination of Structural Form ............................................................................................508 17.2 Cantilever Sheet Pile Quaywall .......................................................................................................509 17.2.1 Principle of Design ..................................................................................................................509 17.2.2 External Forces Acting on Sheet Pile Wall..............................................................................510 17.2.3 Determination of Cross Section of Sheet Piles ....................................................................... 511 17.2.4 Determination of Embedded Length of Sheet Piles ................................................................ 511 17.2.5 Examination of Displacement of Sheet Pile Crown................................................................. 511 17.2.6 External Forces during Construction.......................................................................................512 17.2.7 Detailed Design.......................................................................................................................512 17.3 Sheet Pile Quaywall with Batter Anchor Piles ..............................................................................512 17.3.1 Principle of Design ..................................................................................................................512 -xv-
TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN
17.3.2 17.3.3 17.3.4 17.3.5 17.3.6
17.4
17.5
External Forces Acting on Sheet Pile Wall with Batter Anchor Piles ...................................... 513 Calculation of Horizontal and Vertical Forces Acting on Connecting Point ............................ 513 Determination of Cross Sections of Sheet Pile and Batter Anchor Pile.................................. 513 Determination of Embedded Lengths of Sheet Pile and Batter Anchor Pile........................... 513 Detailed Design ...................................................................................................................... 513 Sheet Pile Quaywall with Batter Piles in Front ............................................................................. 514 17.4.1 Principle of Design.................................................................................................................. 514 17.4.2 Layout and Dimensions .......................................................................................................... 515 17.4.3 Design of Sheet Pile Wall ....................................................................................................... 515 17.4.4 Design of Open-Type Superstructure ..................................................................................... 515 17.4.5 Embedded Length .................................................................................................................. 516 17.4.6 Detailed Design ...................................................................................................................... 516 Double Sheet Pile Quaywall ............................................................................................................ 516 17.5.1 Principle of Design.................................................................................................................. 516 17.5.2 External Forces Acting on Double Sheet Pile Quaywall ......................................................... 517 17.5.3 Design of Double Sheet Pile Quaywall ................................................................................... 517
Chapter 18 Transitional Parts of Quaywalls ............................................................................................................ 519 18.1 18.2 18.3 18.4
Principle of Design ............................................................................................................................ 519 Transitional Part Where Frontal Water Depth Varies .................................................................. 519 Transitional Part Where Quaywalls of Different Type Are Connected ..................................... 519 Outward Projecting Corner .............................................................................................................. 519
Chapter 19 Ancillary Facilities ...................................................................................................................................... 520 19.1 General ............................................................................................................................................... 520 19.2 Mooring Equipment ........................................................................................................................... 520 19.3 Mooring Posts, Bollards, and Mooring Rings ............................................................................... 520 19.3.1 19.3.2 19.3.3 19.3.4
General ................................................................................................................................... 520 Arrangement of Mooring Posts, Bollards and Mooring Rings................................................. 521 Tractive Force of Vessel ......................................................................................................... 521 Structure ................................................................................................................................. 522 19.4 Fender System .................................................................................................................................. 522 19.4.1 General ................................................................................................................................... 522 19.4.2 Arrangement of Fenders......................................................................................................... 523 19.4.3 Berthing Energy of Vessel ...................................................................................................... 523 19.4.4 Selection of Fender................................................................................................................. 523 19.5 Safety Facilities ................................................................................................................................. 525 19.5.1 General ................................................................................................................................... 525 19.5.2 Skirt Guard.............................................................................................................................. 525 19.5.3 Fence and Rope ..................................................................................................................... 525 19.5.4 Signs or Notices...................................................................................................................... 525 19.5.5 Curbing ................................................................................................................................... 525 19.5.6 Fire Fighting Equipment and Alarm Systems ......................................................................... 525 19.6 Service Facilities ............................................................................................................................... 525 19.6.1 General ................................................................................................................................... 525 19.6.2 Lighting Facilities .................................................................................................................... 525 19.6.3 Facilities for Passenger Embarkation and Disembarkation .................................................... 525 19.6.4 Vehicle Ramp ......................................................................................................................... 526 19.6.5 Water Supply Facilities ........................................................................................................... 526 19.6.6 Drainage Facilities .................................................................................................................. 526 19.6.7 Fueling and Electric Power Supply Facilities .......................................................................... 526 19.6.8 Signs or Notices...................................................................................................................... 527 19.7 Stairways and Ladders ..................................................................................................................... 527 19.8 Lifesaving Facilities ........................................................................................................................... 527 19.9 Curbing ............................................................................................................................................... 527 19.10 Vehicle Ramp..................................................................................................................................... 527 19.11 Signs, Notices and Protective Fences ........................................................................................... 527 19.11.1 General ................................................................................................................................... 527 19.11.2 Provision of Signs ................................................................................................................... 527 19.11.3 Types and Location of Signs .................................................................................................. 528 19.11.4 Position of Sign....................................................................................................................... 528 19.11.5 Structure of Sign ..................................................................................................................... 529 19.11.6 Materials ................................................................................................................................. 530 19.11.7 Maintenance and Management .............................................................................................. 530 19.11.8 Protective Fences ................................................................................................................... 530 19.11.9 Barricades............................................................................................................................... 531 -xvi-
CONTENTS
19.12 Lighting Facilities ...............................................................................................................................531 19.12.1 General ...................................................................................................................................531 19.12.2 Standard Intensity of Illumination ............................................................................................531 [1] Definition ..........................................................................................................................531 [2] Standard Intensity of Illumination for Outdoor Lighting ....................................................531 [3] Standard Intensity of Illumination for Indoor Lighting .......................................................532 19.12.3 Selection of Light Source ........................................................................................................532 19.12.4 Selection of Lighting Equipment..............................................................................................534 [1] Outdoor Lighting...............................................................................................................534 [2] Indoor Lighting..................................................................................................................534 19.12.5 Design of Lighting ...................................................................................................................535 19.12.6 Maintenance and Management...............................................................................................537 [1] Inspections .......................................................................................................................537 [2] Cleaning and Repair.........................................................................................................538
Chapter 20 Aprons ...........................................................................................................................................................540 20.1 Principle of Design ............................................................................................................................540 20.2 Type of Apron .....................................................................................................................................540 20.2.1 20.2.2 20.2.3
20.3 20.4 20.5
20.6
20.7
Width ......................................................................................................................................540 Gradient ..................................................................................................................................540 Type of Pavement ...................................................................................................................540 Countermeasures against Settlement of Apron............................................................................540 Load Conditions .................................................................................................................................541 Design of Concrete Pavement ........................................................................................................541 20.5.1 Design Conditions ...................................................................................................................541 20.5.2 Composition of Pavement .......................................................................................................542 20.5.3 Joints.......................................................................................................................................545 20.5.4 Tie-Bar and Slip-Bar................................................................................................................547 20.5.5 End Protection.........................................................................................................................547 Design of Asphalt Pavement ...........................................................................................................547 20.6.1 Design Conditions ...................................................................................................................547 20.6.2 Composition of Pavement .......................................................................................................548 20.6.3 End Protection.........................................................................................................................551 Design of Concrete Block Pavement..............................................................................................551 20.7.1 Design Conditions ...................................................................................................................551 20.7.2 Composition of Pavement .......................................................................................................552 20.7.3 Joints.......................................................................................................................................553
Chapter 21 Foundation for Cargo Handling Equipment .......................................................................................554 21.1 Principle of Design ............................................................................................................................554 21.2 External Forces Acting on Foundation ...........................................................................................554 21.3 Design of Foundation with Piles ......................................................................................................555 21.3.1 21.3.2
Concrete Beam .......................................................................................................................555 Bearing Capacity of Piles ........................................................................................................555 21.4 Design of Foundation without Piles ................................................................................................556 21.4.1 Examination of Effects on Wharf.............................................................................................556 21.4.2 Concrete Beam .......................................................................................................................556
Part IX Other Port Facilities Chapter 1 Port Traffic Facilities .................................................................................................................................559 1.1
General................................................................................................................................................559 1.1.1 1.1.2
1.2
1.3
Scope of Application ...............................................................................................................559 Operation and Maintenance of Facilities for Land Traffic........................................................559 Roads ..................................................................................................................................................559 1.2.1 General ...................................................................................................................................559 1.2.2 Design Vehicles ......................................................................................................................559 1.2.3 Roadways and Lanes..............................................................................................................559 1.2.4 Clearance Limit .......................................................................................................................560 1.2.5 Widening of Roads at Bends...................................................................................................561 1.2.6 Longitudinal Slope...................................................................................................................561 1.2.7 Level Crossings.......................................................................................................................562 1.2.8 Pavement ................................................................................................................................562 1.2.9 Signs .......................................................................................................................................563 Car Parks ............................................................................................................................................564 1.3.1 General ...................................................................................................................................564 -xvii-
TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN
1.3.2
1.4 1.5 1.6
Size and Location ................................................................................................................... 564
Railways ............................................................................................................................................. 567 Heliports .............................................................................................................................................. 567 Tunnels ............................................................................................................................................... 567 1.6.1 1.6.2 1.6.3 1.6.4 1.6.5 1.6.6 1.6.7 1.6.8 1.6.9 1.6.10
1.7
General ................................................................................................................................... 567 Principle of Planning and Design............................................................................................ 567 Depth of Immersion ................................................................................................................ 568 Structure and Length of Immersed Tunnel Elements ............................................................. 568 Ventilation Towers .................................................................................................................. 568 Access Roads ......................................................................................................................... 569 Calculation of Stability of Immersed Tunnel Section .............................................................. 569 Design of Immersed Tunnel Elements.................................................................................... 569 Joints ...................................................................................................................................... 570 Control and Operation Facilities ............................................................................................. 570 Bridges ................................................................................................................................................ 570 1.7.1 General ................................................................................................................................... 570 1.7.2 Design Requirements ............................................................................................................. 570 1.7.3 Structural Durability ................................................................................................................ 571 1.7.4 Fender System ....................................................................................................................... 571
Chapter 2 Cargo Sorting Facilities ........................................................................................................................... 573 2.1 2.2 2.3 2.4
General ............................................................................................................................................... 573 Cargo Sorting Areas ......................................................................................................................... 573 Quay Sheds ....................................................................................................................................... 573 Cargo Handling Equipment ............................................................................................................. 573 2.4.1 2.4.2 2.4.3
2.5 2.6 2.7
General ................................................................................................................................... 573 Oil Handling Equipment .......................................................................................................... 574 Operation and Maintenance of Cargo Handling Equipment ................................................... 574 Timber Sorting Areas ........................................................................................................................ 574 Sorting Facilities for Marine Products ............................................................................................ 575 Sorting Facilities for Hazardous Cargo .......................................................................................... 575
Chapter 3 Storage Facilities ....................................................................................................................................... 576 3.1 3.2 3.3
General ............................................................................................................................................... 576 Yards for Dangerous Cargo and Oil Storage Facilities ............................................................... 576 Other Storage Facilities .................................................................................................................... 576
Chapter 4 Facilities for Ship Services ..................................................................................................................... 577 4.1 4.2
General ............................................................................................................................................... 577 Water Supply Facilities ..................................................................................................................... 577
Chapter 5 Facilities for Passenger ........................................................................................................................... 578 5.1
Facilities for Passenger Boarding ................................................................................................... 578 5.1.1 5.1.2 5.1.3 5.1.4
5.2
General ................................................................................................................................... 578 Structural Types...................................................................................................................... 578 Design of Facilities for Passenger Boarding........................................................................... 578 Ancillary Facilities ................................................................................................................... 578 Passenger Building ........................................................................................................................... 579 5.2.1 General ................................................................................................................................... 579 5.2.2 Design of Passenger Buildings............................................................................................... 579 5.2.3 Ancillary Facilities ................................................................................................................... 579
Part X Special Purpose Wharves Chapter 1 Container Terminals ................................................................................................................................. 581 1.1 1.2
Principle of Design ............................................................................................................................ 581 Design of Mooring Facilities ............................................................................................................ 582 1.2.1 1.2.2 1.2.3
1.3
Length and Water Depth of Berths ......................................................................................... 582 Mooring Equipment................................................................................................................. 582 Fender System ....................................................................................................................... 583 Design of Land Facilities .................................................................................................................. 583 1.3.1 Apron ...................................................................................................................................... 583 1.3.2 Container Cranes.................................................................................................................... 583 1.3.3 Container Yard........................................................................................................................ 583 1.3.4 Container Freight Station........................................................................................................ 583 1.3.5 Maintenance Shop.................................................................................................................. 583 -xviii-
CONTENTS
1.3.6 1.3.7 1.3.8
Administration Building............................................................................................................583 Gates.......................................................................................................................................583 Ancillary Facilities....................................................................................................................583
Chapter 2 Ferry Terminals ..........................................................................................................................................584 2.1 2.2
Principle of Design ............................................................................................................................584 Design of Mooring Facilities .............................................................................................................585 2.2.1 2.2.2 2.2.3 2.2.4
2.3
2.4 2.5
Length and Water Depth of Berths..........................................................................................585 Mooring Equipment .................................................................................................................585 Fender System........................................................................................................................586 Protection Works against Scouring .........................................................................................586 Design of Vehicle Ramp ...................................................................................................................586 2.3.1 Width, Length, Gradient, and Radius of Curvature .................................................................586 2.3.2 Ancillary Facilities and Signs...................................................................................................586 2.3.3 Design of Moving Parts ...........................................................................................................586 Facilities for Passenger Boarding ...................................................................................................586 2.4.1 Width, Length, Gradient, and Ancillary Facilities.....................................................................587 2.4.2 Design of Moving Parts ...........................................................................................................587 Design of Other Facilities .................................................................................................................587 2.5.1 Roads......................................................................................................................................587 2.5.2 Passageways ..........................................................................................................................587 2.5.3 Car Parks ................................................................................................................................587 2.5.4 Passenger Terminals ..............................................................................................................588 2.5.5 Safety Equipment....................................................................................................................588
Part XI Marinas Chapter 1 Introduction ..................................................................................................................................................589 Chapter 2 Main Dimensions of Target Boats ........................................................................................................590 Chapter 3 Navigation Channels and Basins..........................................................................................................591 3.1 3.2 3.3
General................................................................................................................................................591 Navigation Channels .........................................................................................................................591 Mooring Basins ..................................................................................................................................591
Chapter 4 Protective Facilities ...................................................................................................................................592 Chapter 5 Mooring Facilities .......................................................................................................................................593 5.1 5.2 5.3
General................................................................................................................................................593 Design Conditions for Mooring Facilities .......................................................................................593 Floating Piers .....................................................................................................................................595 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 5.3.6
5.4 5.5
General ...................................................................................................................................595 Structure..................................................................................................................................595 Examination of Safety .............................................................................................................595 Structural Design.....................................................................................................................596 Mooring Method ......................................................................................................................596 Access Bridges .......................................................................................................................596 Ancillary Facilities ..............................................................................................................................597 Lifting / Lowering Frame Facilities ..................................................................................................597
Chapter 6 Facilities for Ship Services......................................................................................................................598 6.1 6.2
General................................................................................................................................................598 Land Storage Facilities .....................................................................................................................598
Chapter 7 Land Traffic Facilities................................................................................................................................599
INDEX
-xix-
TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN
-xx-
Part I General
PART I GENERAL
Part I General Chapter 1 General Rules 1.1 Scope of Application The Ministerial Ordinance stipulating the Technical Standards for Port and Harbour Facilities (Ministry of Transport Ordinance No. 30, 1974; hereafter referred to simply as the Ministerial Ordinance) and the Notification stipulating the Details of Technical Standards for Port and Harbour Facilities (Ministry of Transport Notification No. 181, 1999; hereafter referred to simply as the Notification), both of which have been issued in line with Article 56-2 of the “Port and Harbour Law”, shall be applied to the construction, improvement, and maintenance of port and harbor facilities. [Commentary] (1) The Ministerial Ordinance and the Notification (hereafter collectively referred to as the Technical Standards) apply not to the port and harbor facilities stipulated in Article 2 of the “Port and Harbour Law”, but rather to the port and harbor facilities stipulated in Article 19 of the Port and Harbour Law Enforcement Order. Accordingly the Technical Standards also apply to facilities like navigation channels, basins, protective facilities and mooring facilities of the marinas and privately owned ports, which are found in outside of the legally designated port areas. (2) Since the Technical Standards covers a wide rage of facilities, there will be cases where the items shown in the Technical Standards may be inadequate for dealing with planning, designing, constructing, maintaining or repairing of a particular individual structure of a port or harbor. There is also possibility that new items may be added in the future in line with technical developments or innovations. With regard to matters for which there are no stipulations in the Technical Standards, appropriate methods other than those mentioned in the Technical Standards may be adopted, after confirming the safety of a structure in consideration using appropriate methods such as model tests or trustworthy numerical calculations (following the main items of the Technical Standards). (3) Figure C- 1.1.1 shows the statutory structure of the Technical Standards. Port and Harbour Law [Article 56-2] (technical standards for port and harbour facilities)
Port and Harbour Law Enforcement Order [Article 19] (stipulation of facilities covered)
Port and Harbour Law Enforcement Regulations [Article 28] (stipulation of facilities excluded from coverage)
Port and Harbour Law Enforcement Regulations
Port and Harbour Law Enforcement Order
The Technical Standards The Ministerial Ordinance The Notification Fig. C- 1.1.1 Statutory Structure of the Technical Standards for Port and Harbour Facilities
(4) This document is intended to help individuals concerned with correct interpretation of the Technical Standards and to facilitate right application of the Ministerial Ordinance and the Notification. This document is made up of the main items, along with reference sections marked Commentary and Technical Notes, which supplement the main items. The texts in large letters are the main items that describe the parts of the Notification and the basic items that must be obeyed, regarding the items related to the Notification. The sections marked Commentary mainly give the background to and the basis for the Notification, etc. The sections marked Technical Notes provide investigation methods and/or standards that will be of reference value, when executing actual design works, specific examples of structures, and other related materials. (5) Design methods can be broadly classified into the methods that use the safety factors and the methods that use the indices based on probability theory, according to the way of judging the safety of structures. A safety factor is not an index that represents the degree of safety quantitatively. Rather, it is determined through experience to compensate for the uncertainty in a variety of factors. In this document, the safety factors indicate values that are considered by experience to be sufficiently safe under standard conditions. Depending on the conditions, it may be acceptable to lower the values of safety factors, but when doing so it is necessary to make a decision using prudent judgement based on sound reasoning. In the case that the probability distributions of loads and structure strengths can be adequately approximated, it is possible to use a reliability design method. Unlike the more traditional design methods in which safety factors are used, a reliability design method makes it possible to gain a quantitative understanding of the -1-
TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN
likelihood of the failure of structure in question and then to keep the likelihood below a certain allowable value. With a reliability design method, design is carried out by using the partial safety factors and reliability indices. Formally speaking, the limit state design method can be classified as one form of reliability design method.
1.2 Definitions The terms used in the Notification are based on the terminology used in the Ministerial Ordinance; in addition, the meanings of the following terms as stipulated in the law or notification are cited. (1) Dangerous articles: This term refers to those that are designated in the Notification stipulating the “Types of Hazardous Goods” for the “Port Regulation Law Enforcement Regulations” (Ministry of Transport Notification No. 547, 1979). (2) Datum level for construction work: This is the standard water level used when constructing, improving or maintaining port and harbor facilities, and is equal to the chart datum level (specifically the chart datum for which the height is determined based on the provisions of Article 9 (8) of the “Law for Hydrographic Activities” (Law No. 102, 1950)). However, in the case of port and harbor facilities in lakes and rivers for which there is little tidal influence, in order to ensure the safe use of the port or harbor in question, the datum level for construction work shall be determined while considering the conditions of extremely low water level that may occur during a drought season. [Commentary] In addition to the terms defined above, the meanings of the following terms are listed below. (1) Super-large vessel: A cargo ship with a deadweight tonnage of 100,000 t or more, except in the case of LPG carriers and LNG carriers, in which case the gross tonnage is 25,000 t or more. (2) Passenger ship: A vessel with a capacity of 13 or more passengers. (3) Pleasure boat: A yacht, motorboat or other vessel used for sport or recreation.
1.3 Usage of SI Units [Commentary] In line with the provisions in the “Measurement Law” (Law No. 51, May 20, 1992), with the aim of executing a smooth switchover to SI units, the Ministry of Agriculture, Forestry and Fisheries, the Ministry of Transport and the Ministry of Construction have concluded to use the International System of Units in their public work projects starting from April 1999.
-2-
PART I GENERAL
Table C- 1.3.1 Conversion Factors from Conventional Units to SI Units Number
Quantity
Non-SI units
SI units
Conversion factor
1
Length
µ
m
1µ = 1µm
2
Mass
kgf•s2/m
kg
1kgf•s2/m = 9.80665kg
3
Acceleration
Gal
m/s2
1Gal = 0.01m/s2
kgf
N
1kgf = 9.80665N
dyn
N
1dyn = 10µN
kgf•m
N•m
1kgf•m = 9.80665N•m
Pa
1kgf/cm2 = 9.80665 × 104Pa = 9.80665 × 10-2MPa 1kgf/cm2 = 9.80665 × 10-2N/mm2
4 5 6
7
Force Moment of a force
Pressure
8
9
10 11
kgf/cm2
N/mm2
mHg
Stress
Work (energy)
kgf/cm2
Pa
1mHg = 133.322kPa
Pa
1kgf/cm2 = 9.80665 × 104Pa = 9.80665 × 10-2MPa 1kgf/cm2 = 9.80665 × 10-2N/mm2
N/mm2
kgf•m
J
1kfg•m = 9.80665J
erg
J
1erg = 100nJ
12
Power
PS HP
W
1PS = 735.499W 1HP = 746.101W
13
Quantity of heat
cal
J W•s
1cal = 4.18605J 1cal = 4.18605W•s
14
Thermal conductivity
cal/(h•m•ºC)
W/(m•ºC)
1cal/(h•m•ºC) = 0.001163W/(m•ºC)
15
Heat conduction coefficient
cal/(h•m2•ºC)
W/(m2•ºC)
1cal/(h•m2•ºC) = 0.001163W/(m2•ºC)
16
Specific heat capacity
cal/(kg•ºC)
J/(kg•ºC)
1cal/(kg•ºC) = 4.18605J/(kg•ºC)
17
Sound pressure level
-
dB
1phon = 1dB
-3-
TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN
Chapter 2 Datum Level for Construction Work [Commentary]
The datum level for port and harbor construction work is the standard water level that shall form the basis for the planning, design, and construction of facilities. The chart datum level shall be used as the datum level for construction work. [Technical Notes] (1) Chart Datum Level The chart datum level is set as the level below the mean sea level by the amount equal to or approximately equivalent to the sum of the amplitueds of the four major tidal constituents (M2, S2, K1, and O1 tides), which are obtained from the harmonic analysis of tidal observation data. Here M2 is the principal lunar semi-diurnal tide, S2 is the principal solar semi-diurnal tide, K1 is the luni-solar diurnal tide, and O1 is the principal lunar diurnal tide. Note that the heights of rocks or land marks shown on the nautical charts are the elevation above the mean sea level, which is the long-term average of the hourly sea surface height at the place in question. (In the case that the observation period is short, however, corrections for seasonal fluctuations should be made when determining the mean sea level.) The difference in height between the chart datum level and the mean sea level is referred to as Z0. (2) International Marine Chart Datum The International Hydrographic Organization (IHO) has decided to adopt the Lowest Astronomical Tide (LAT) as the international marine chart datum, and issued a recommendation to this effect to the Hydrographic Departments in various countries throughout the world in June 1997. The LAT is defined as the lowest sea level that is assumed to occur under the combination of average weather conditions and generally conceivable astronomical conditions. In actual practice, tide levels for at least 19 years are calculated using harmonic constants obtained from at least one year’s worth of observations, and then the lowest water level is taken as the LAT. However, in the case of Japan, the chart datum level is obtained using the old method described in (1) above (approximate lowest water level). There will be no switchover to the LAT in the near future in Japan, but it is planned to meet the IHO recommendation by stating the difference between the LAT and the chart datum level in tide tables published by the Hydrographic Department of Maritime Safety Agency, Ministry of Land, Infrastructure, and Transport, Japan.
-4-
PART I GENERAL
Chapter 3 Maintenance In order to maintain the functions of port and harbor facilities at a satisfactory service level and to prevent deterioration in the safety of such facilities, comprehensive maintenance including inspections, evaluations, repairs, etc. shall be carried out, in line with the specific characteristics of the port or harbor in question. [Commentary] (1) “Maintenance” refers to a system consisting of a series of linked activities involving the efficient detection of changes in the state of serviceability of the facilities and the execution of effective measures such as rational evaluation, repair, and reinforcement. (2) Port and harbor facilities must generally remain in service for long periods of time, during which the functions demanded of the facilities must be maintained. It is thus essential not only to give due consideration when initially designing the structures in question, but also to carry out proper maintenance after the facilities have been put into service. (3) A whole variety of data concerning maintenance (specifically, inspections, checks, evaluations, repair, reinforcement work, etc.) must be recorded and stored in a standard format. Maintenance data kept in good systematic order is the basic information necessary for carrying out appropriate evaluation of the level of soundness of the facilities in question, and executing their maintenance and repairs. At the same time the maintenace data is useful when taking measures against the deterioration of the facilities as a whole and when investigating the possibility in the life cycle cost reduction of the facilities. (4) When designing a structure, it is necessary to give due consideration to the system of future maintenance and to select the types of structures and the materials used so that future maintenance will be easily executed, while reflecting this aspect in the detailed design.• [Technical Notes] (1) The concepts of the terms relating to maintenance are as follows: Inspection / checking: • • • •Activities to investigate the state of a structure, the situation regarding damage and the remaining level of function, along with related administrative work: mainly composed of periodic and special inspections
Maintenance
Evaluation: • • • • • • • • • • • • • • • Evaluation of the level of soundness based on the results of inspection / checking, and judgement of the necessity or otherwise of repairs etc. Maintenance: • • • • • • • • • • • • • Activities carried out with the aim of holding back the physical deterioration of a structure and keeping its function within acceptable levels. Repair / reinforcement: • • Activities in which a structure that has deteriorated physically and/ or functionally is partially reconstructed in order to restore the required function and/or structure.
(2) With regard to the procedure for maintenance, it is a good idea to draw up a maintenance plan for each structure while considering factors like the structural form, the tendency to deteriorate and the degree of importance, and then to implement maintenance work based on this plan. (3) For basic and common matters concerning maintenance, refer to the “Manual for Maintenance and Repair of Port and Harbor Structures”.
-5-
TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN
-6-
Part II Design Conditions
PART II DESIGN CONDITIONS
Part II Design Conditions Chapter 1 General In designing port and harbor facilities, the design conditions shall be chosen from the items listed below by taking into consideration the natural, service and construction conditions, the characteristics of materials, the environmental impacts, and the social requirements for the facilities. (1) Ship dimensions (2) External forces produced by ships (3) Winds and wind pressure (4) Waves and wave force (5) Tide and extraordinary sea levels (6) Currents and current force (7) External forces acting on floating structures and their motions (8) Estuarine hydraulics and littoral drift (9) Subsoil (10) Earthquakes and seismic force (11) Liquefaction (12) Earth pressure and water pressure (13) Deadweight and surcharge (14) Coefficient of friction (15) Other necessary design conditions [Commentary] The design conditions should be determined carefully, because they exercise great influence upon the safety, functions, and construction cost of the facilities. The design conditions listed above are just those that have a large influence on port and harbor facilities. They are generally determined according to the results of surveys and tests. Thus, the design conditions should be precisely determined upon full understanding of the methods and results of such investigations and tests. In the case of temporary structures, the design conditions may be determined while considering also the length of service life. [Technical Notes] (1) In designing port and harbor facilities, the following matters should be taken into consideration. (a) Functions of the facilities Since facilities often have multiple functions, care should be exercised so that all functions of the facilities will be exploited fully. (b) Importance of the facilities The degree of importance of the facilities should be considered in order to design the facilities by taking appropriate account of safety and broad economic implications. The design criteria influenced by importance of facilities are those of environmental conditions, design seismic coefficient, lifetime, loads, safety factor, etc. In determining the degree of importance of the facilities, the following criteria should be taken into consideration. • Influence upon human lives and property if the facilities are damaged. • Impact on society and its economy if the facilities are damaged. • Influence upon other facilities if the facilities are damaged. • Replaceability of the facilities. (c) Lifetime The length of lifetime should be taken into account in determining the structure and materials of the facilities and also in determining the necessity for and extent of the improvement of the existing facilities. Lifetime of the facilities should be determined by examinig the following: • Operational function of the facilities The number of years until the facilities can no longer be usable due to the occurrence of problems in terms of the function of the facilities, for example the water depth of a mooring basin becoming insufficient owing to the increase in vessel size. • Economic viewpoint of the facilities The number of years until the facilities become economically uncompetitive with other newer facilities (unless some kind of improvements are carried out). -7-
TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN
• Social function of the facilities The number of years until the functions of the facilities that constituted the original purpose become unnecessary or until different functions are called for the facilities due to new port planning etc. • Physical property of the facilities The number of years until it is no longer possible to maintain the strength of materials composing the structures at the specified level due to processes such as corrosion or weathering of these materials. (d) Encounter probability The encounter probability is intimately linked with the lifetime length. The encounter probability E1 is obtained using equation (1.1.1) 1) E1 = 1 ( 1 1 ¤ T 1 ) where L1: lifetime length T 1: return period
L1
(1.1.1)
(e) Environmental conditions Not only the wave, seismic, topographical and soil conditions, which have direct influences on the design of the facilities, but also the water quality, bottom material, animal and plant life, atmospheric conditions and rising sea level due to global warming should be taken into consideration. (f) Materials It is necessary to consider the physical external forces, deterioration, lifetime, structural type, construction works, cost, and influence on the environment and landscape when selecting the materials. It is most important to ensure the reguired quality. In recent years, in addition to more traditional materials, new materials such as stainless steels, titanium and new rubbers, and recycled materials such as slag, coal ash and dredged sediment have begun to be used. (g) Construction method In order to carry out design rationally, it is necessary to give sufficient consideration to the construction method. (h) Work accuracy It is necessary to carry out design considering the accuracy of construction works that can be maintained in actual projects. (i) Construction period In the case that the construction period is stipulated, it is necessary to give consideration both to the design and the construction method, in order that it will be possible to complete construction work within the stipulated period. The construction period is generally determined by things like the availability of the materials, the construction equipment, the degree of difficulty of construction, the opening date and the natural conditions. (j) Construction costs etc. Construction costs consist of the initial investment costs and maintenance costs. All of these costs must be considered in design and construction. When doing this, it is necessary to consider the early use of the facilities and to secure an early return on investment. There is also a design approach that the facilities are put into service step by step as the construction progresses, while ensuring the safety of service / construction. Note also that the initial investment costs mentioned here include compensation duties. When carrying out design etc., due consideration must be given to things like the structural type and the construction method, since the construction costs will depend on these things. [Reference] 1) Borgman, L. E.: “Risk criteria”, Proc. ASCE, Vol. 89, No. WW3, 1963, pp.1-35.
-8-
PART II DESIGN CONDITIONS
Chapter 2 Vessels 2.1 Dimensions of Target Vessel (Notification Article 21) The principal dimensions of the target vessel shall be set using the following method: (1) In the case that the target vessel can be identified, use the principal dimensions of that vessel. (2) In the case that the target vessel cannot be identified, use appropriate principal dimensions determined by statistical methods. [Technical Notes] (1) Article 1, Clause 2 of the Ministerial Ordinance stipulates that the “target vessel” is the vessel that has the largest gross tonnage out of those that are expected to use the port or harbor facilities in question. Accordingly, in the case that the target vessel can be identified, the principal dimensions of this vessel should be used. (2) In the case that the target vessel cannot be identified in advance, such as in the case of port and harbor facilities for public use, the principal dimensions of the target vessel may be determined by referring to Table T- 2.1.1. In this table, the tonnages (usually either gross or deadweight tonnage) are used as representative indicators. (3) Table T- 2.1.1 lists the “principal dimensions of vessels for the case that the target vessel cannot be identified” by tonnage level. These values have been obtained through methods such as statistical analysis 1),2), and they mainly represent the 75% cover ratio values for each tonnage of vessels. Accordingly, for any given tonnage, there will be some vessels that have principal dimensions that exceed the values in the table. There will also be vessels that have a tonnage greater than that of the target vessel listed in the table, but still have principal dimensions smaller than those of the target vessel. (4) Table T- 2.1.1 has been obtained using the data from “Lloyd’s Maritime Information June ’95” and “Nihon Senpaku Meisaisho” (“Detailed List of Japanese Vessels”; 1995 edition). The definitions of principal dimensions in the table are shown in Fig. T- 2.1.1. (5) Since the principal dimensions of long distance ferries that sail over 300km tend to have different characteristics from those of short-to-medium distance ferries, the principal dimensions are listed separately for “long distance ferries” and “short-to-medium distance ferries.” (6) Since the principal dimensions of Japanese passenger ships tend to have different characteristics from those of foreign passenger ships, the principal dimensions are listed separately for “Japanese passenger ships” and “foreign passenger ships”. (7) The mast height varies considerably even for vessels of the same type with the same tonnage, and so when designing facilities like bridges that pass over navigation routes, it is necessary to carry out a survey on the mast heights of the target vessels. (8) In the case that the target vessel is known to be a small cargo ship but it is not possible to identify precisely the demensions of the ship in advance, the principal dimensions of “small cargo ships” can be obtained by referring to Table T- 2.1.2. The values in Table T- 2.1.2 have been obtained using the same kind of procedure as those in Table T- 2.1.1, but in the case of such small vessels there are large variations in the principal dimensions and so particular care should be exercised when using Table T- 2.1.2. (9) Tonnage The definitions of the various types of tonnage are as follows: (a) Gross tonnage The measurement tonnage of sealed compartments of a vessel, as stipulated in the “Law Concerning the Measurement of the Tonnage of Ships”. The “gross tonnage” is used as an indicator that represents the size of a vessel in Japan’s maritime systems. Note however that there is also the “international gross tonnage”, which, in line with the provisions in treaties etc., is also used as an indicator that represents the size of a vessel, but mainly for vessels that make international sailings. The values of the “gross tonnage” and the “international gross tonnage” can differ from one another; the relationship between the two is stipulated in Article 35 of the “Enforcement Regulations for the Law Concerning the Measurement of the Tonnage of Ships” (Ministerial Ordinance No. 47, 1981). (b) Deadweight tonnage The maximum weight, expressed in tons, of cargo that can be loaded onto a vessel. (c) Displacement tonnage The amount of water, expressed in tons, displaced by a vessel when it is floating at rest. (10) For the sake of consistency, equation (2.1.1) shows the relationship between the deadweight tonnage (DWT) and the gross tonnage (GT) for the types of vessels that use the deadweight tonnage as the representative indicator 1). For each type of vessels, the equation may be applied if the tonnage is within the range shown in Table T- 2.1.1. -9-
TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN
GT = 0.541DWT GT = 0.880DWT GT = 0.553DWT GT = 0.808DWT
64748
Cargo ships: Container ships: Oil tankers: Roll-on/roll-off vessels:
(2.1.1)
where GT : gross tonnage DWT : deadweight tonnage (11) Tables T-2.1.3 to T-2.1.6 list the frequency distribution of the principal dimensions of general cargo ships, bulk cargo carriers, container ships, and oil tankers, which were analyzed by the Systems Laboratory of Port and Harbour Research Institute (PHRI) using the data from “Lloyd’s Maritime Informations Services (June ’98)”.
Length overall Load water line
Fore perpendicular
Full load draft
Moulded breadth
Moulded depth
After perpendicular
Length between perpendiculars
Fig. T- 2.1.1 Definitions of Principal Dimensions of Vessel Table T- 2.1.1 Principal Dimensions of Vessels for the Case That the Target Vessel Cannot Be Identified 1. Cargo ships Deadweight tonnage (DWT) 1,000 ton 2,000 3,000 5,000 10,000 12,000 18,000 30,000 40,000 55,000 70,000 90,000 100,000 150,000
Length overall (L)
Molded breadth (B) 10.9 m 13.1 14.6 16.8 19.9 21.0 23.6 27.5 29.9 32.3 32.3 38.1 39.3 44.3
67 m 83 94 109 137 144 161 185 200 218 233 249 256 286
Full load draft (d) 3.9 m 4.9 5.6 6.5 8.2 8.6 9.6 11.0 11.8 12.9 13.7 14.7 15.1 16.9
2. Container ships Deadweight tonnage (DWT) 30,000 ton 40,000 50,000 60,000
Length overall (L)
Molded breadth (B)
218 m 244 266 286
30.2 m 32.3 32.3 36.5
-10-
Full load draft (d) 11.1 m 12.2 13.0 13.8
PART II DESIGN CONDITIONS
3. Ferries 3-A Short-to-medium distance ferries (sailing distance less than 300km) Gross tonnage (GT) 400 ton 700 1,000 2,500 5,000 10,000
Length overall (L)
Molded breadth (B) 11.8 m 13.5 14.7 18.3 21.6 23.0
50 m 63 72 104 136 148
Full load draft (d) 3.0 m 3.4 3.7 4.6 5.3 5.7
3-B Long distance ferries (sailing distance 300km or more) Gross tonnage (GT) 6,000 ton 10,000 13,000 16,000 20,000 23,000
Length overall (L)
Molded breadth (B) 22.3 m 25.2 27.3 28.2 28.2 28.2
142 m 167 185 192 192 200
Full load draft (d) 6.0 m 6.4 6.8 6.8 6.8 7.2
4. Roll-on/roll-off vessels Deadweight tonnage (DWT) 400 ton 1,500 2,500 4,000 6,000 10,000
Length overall (L)
Molded breadth (B) 13.6 m 16.4 18.5 20.7 22.9 25.9
75 m 97 115 134 154 182
Full load draft (d) 11.1 m 4.7 5.5 6.3 7.0 7.4
5. Passenger ships 5-A Japanese passenger ships Gross tonnage (GT) 2,000 ton 4,000 7,000 10,000 20,000 30,000
Length overall (L)
Molded breadth (B) 15.6 m 18.5 21.2 23.2 27.5 30.4
83 m 107 130 147 188 217
Full load draft (d) 4.0 m 4.9 5.7 6.6 6.6 6.6
5-B Foreign passenger ships Gross tonnage (GT) 20,000 ton 30,000 50,000 70,000
Length overall (L)
Molded breadth (B) 25.7 m 28.4 32.3 35.2
180 m 207 248 278
Full load draft (d) 8.0 m 8.0 8.0 8.0
6. Pure car carriers Gross tonnage (GT) 500 ton 1,500 3,000 5,000 12,000 18,000 25,000
Length overall (L)
Molded breadth (B) 11.8 m 15.7 18.8 21.5 27.0 30.0 32.3
70 m 94 114 130 165 184 200
-11-
Full load draft (d) 3.8 m 5.0 5.8 6.6 8.0 8.8 9.5
TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN
7. Oil tankers Deadweight tonnage (DWT) 1,000 ton 2,000 3,000 5,000 10,000 15,000 20,000 30,000 50,000 70,000 90,000
Length overall (L)
Molded breadth (B)
Full load draft (d) 4.0 m 4.9 5.5 6.4 7.9 8.9 9.6 10.9 12.6 13.9 15.0
10.2 m 12.6 14.3 16.8 20.8 23.6 25.8 29.2 32.3 38.0 41.1
61 m 76 87 102 127 144 158 180 211 235 254
Table T- 2.1.2 Principal Dimensions of Small Cargo Ships Deadweight tonnage (DWT) 500 ton 700
Length overall (L)
Molded breadth (B)
51 m 57
Full load draft (d)
9.0 m 9.5
Table T-2.1.3 Frequency Distributions of Principal Dimensions of General Cargo Ships (a) DWT - Length overall L
(b) DWT - Breadth
B
(c) DWT - Full load draft d
-12-
3.3 m 3.4
PART II DESIGN CONDITIONS
Table T-2.1.4 Frequency Distributions of Principal Dimensions of Bulk Cargo Carriers (a) DWT - Length overall L
(b) DWT - Breadth
B
(c) DWT - Full load draft d
-13-
TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN
Table T-2.1.5 Frequency Distributions of Principal Dimensions of Container Ships (a) DWT - Length overall L
(b) DWT - Breadth
B
(c) DWT - Full load draft d
unknown unknown
(d) DWT - TEU
-14-
PART II DESIGN CONDITIONS
Table T-2.1.6 Frequency Distributions of Principal Dimensions of Oil Tankers (a) DWT - Length overall L
(b) DWT - Breadth
B
(c) DWT - Full load draft d
-15-
TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN
2.2 External Forces Generated by Vessels 2.2.1 General The external forces acting on the mooring facilities when a vessel is berthing or moored shall be determined using an appropriate method, considering the dimensions of the target vessel, the berthing method and the berthing velocity, the structure of the mooring facilities, the mooring method and the properties of the mooring system, along with the influence of things like the winds, waves and tidal currents. [Commentary] (1) The following loads acting on mooring facilities should be considered when a vessel is berthing or moored: a) Loads caused by berthing of a vessel b) Loads caused by motions of a moored vessel When designing mooring facilities, the berthing force must be considered first. Then the impact forces and tractive forces on the mooring facilities due to the motions of the moored vessel, which are caused by the wave force, wind force and current force, should be considered. In particular, for the cases of the mooring facilities in the ports and harbors that face out onto the open sea with long-period waves expected to come in, of those installed in the open sea or harbor entrances such as offshore terminals, and of those in the harbors where vessels seek refuge during storms, the influence of the wave force acting on a vessel is large and so due consideration must be given to the wave force. (2) As a general rule, the berthing forces acting on the mooring facilities should be calculated based on the berthing energy of the vessel and using the load-deflection characteristics of the fenders. (3) As a general rule, the tractive forces and impact forces generated by the motions of a moored vessel should be obtained by carrying out a numerical simulation of vessel motions taking into account the wave force acting on the vessel, the wind force, the current force, and the load-deflection characteristics of the mooring system.
2.2.2 Berthing [1] Berthing Energy (Notification Article 22, Clause 1) It shall be standard to calculate the external force generated by berthing of a vessel with the following equation: MsV2 (2.2.1) E f = æ -------------ö C e C m C s C c è 2 ø In this equation, E f , M s , V, C e , C m , C s , and C c represent the following: E f: berthing energy of vessel (kJ = kN•m) M s: mass of vessel (t) V: berthing velocity of vessel (m/s) C e: eccentricity factor C m: virtual mass factor C s: softness factor (standard value is 1.0) C c: berth configuration factor (standard value is 1.0) [Commentary] In addition to the kinetic energy method mentioned above, there are also other methods of estimating the berthing energy of a vessel: for example, statistical methods, methods using hydraulic model experiments, and methods using fluid dynamics models 3). However, with these alternative methods, the data necessary for design are insufficient and the values of the various constants used in the calculations may not be sufficiently well known. Thus, the kinetic energy method is generally used. [Technical Notes] (1) If it is assumed that a berthing vessel moves only in the abeam direction, then the kinetic energy E s is equal to ( M s V 2) ¤ 2 . However, when a vessel is berthing at a dolphin, a quaywall, or a berthing beam equipped with fenders, the energy absorbed by the fenders (i.e., the berthing energy E f of the vessel) will become E s ´ f considering the various influencing factors, where f = C e ´ C m ´ C s ´ C c . (2) The vessel mass M s is taken to be the displacement tonnage (DT) of the target vessel. In the case that the target vessel cannot be identified, equation (2.2.2) 1) may be used to give the relationship between the deadweight tonnage (DWT) or the gross tonnage (GT) and the displacement tonnage (DT). -16-
PART II DESIGN CONDITIONS
log (DT) = 0.550 + 0.899 log (DWT) log (DT) = 0.511 + 0.913 log (DWT) log (DT) = 0.365 + 0.953 log (DWT) log (DT) = 1.388 + 0.683 log (GT) log (DT) = 0.506 + 0.904 log (GT) log (DT) = 0.657 + 0.909 log (DWT) log (DT) = 0.026 + 0.981 log (GT) log (DT) = 0.341 + 0.891 log (GT) log (DT) = 1.915 + 0.588 log (GT) log (DT) = 0.332 + 0.956 log (DWT)
64444744448
Cargo ships (less than 10,000DWT): Cargo ships (10,000DWT or more): Container ships: Ferries (long distance): Ferries (short-to-medium distance): Roll-on/roll-off vessels: Passenger ships (Japanese): Passenger ships (foreign): Car carriers: Oil tankers:
(2.2.2)
where DT: displacement tonnage (amount of water, in tons, displaced by the vessel when fully loaded) GT: gross tonnage DWT: deadweight tonnage (3) The softness factor C s represents the ratio of the remaining amount of the berthing energy after energy absorption due to deformation of the shell plating of the vessel to the initial berthing energy. It is generally assumed that no energy is absorbed in this way and so the value of C s is often given as 1.0. (4) When a vessel berths, the mass of water between the vessel and the mooring facilities resists to move out and acts just as if a cushion is placed in this space. The energy that must be absorbed by the fenders is thus reduced. This effect is considered when determining the berth configuration factor C c . It is thought that the effect depends on things like the berthing angle, the shape of the vessel’s shell plating, the under-keel clearance, and the berthing velocity, but little research has been carried out to determine it.
[2] Berthing Velocity The berthing velocity of a vessel shall be determined based on the measurement in situ or past data of similar measurements, considering the type of the target vessel, the extent to which the vessel is loaded, the position and structure of the mooring facilities, weather and oceanographic conditions, and the availability or absence of tugboats and their sizes. [Technical Notes] (1) Observing the way in which large cargo ships and large oil tankers make berthing, one notices that such vessels come to a temporary standstill, lined up parallel to the quaywall at a certain distance away from it. They are then gently pushed by several tugboats until they come into contact with the quay. When there is a strong wind blowing toward the quay, such vessels may berth while actually being pulled outwards by the tugboats. When such a berthing method is adopted, it is common to set the berthing velocity to 10 ~ 15 cm/s based on past design examples. (2) Special vessels such as ferries, roll-on/roll-off vessels, and small cargo ships berth under their own power without assistance of tugboats. If there is a ramp at the bow or stern of such a vessel, the vessel may line up perpendicular to the quay. In these cases, a berthing method different from that for larger vessels described in (1) may be used. It is thus necessary to determine berthing velocities carefully based on actualy measured values, paying attention to the type of berthing method employed by the target vessel. (3) Figure T- 2.2.1 shows the relationship between the vessel handling conditions and berthing velocity by vessel size 4); it has been prepared based on the data collected through experience. This figure shows that the larger the vessel, the lower the berthing velocity becomes; moreover, the berthing velocity must be set high if the mooring facilities is not sheltered by breakwaters etc. (4) According to the results of surveys on berthing velocity 5),6), the berthing velocity is usually less than 10 cm/s for general cargo ships, but there are a few cases where it is over 10 cm/s (see Fig. T- 2.2.2). The berthing velocity only occasionally exceeds 10 cm/s for large oil tankers that use offshore terminals (see Fig. T- 2.2.3). Even for ferries which berth under their own power, the majority berth at the velocity of less than 10 cm/s. Nevertheless, there are a few cases in which the berthing velocity is over 15 cm/s and so due care must be taken when designing ferry quays (see Fig. T- 2.2.4). It was also clear from the above-mentioned survey results that the degree to which a vessel is loaded up has a considerable influence on the berthing velocity. In other words, if a vessel is fully loaded, meaning that the under-keel clearance is small, then the berthing velocity tends to be lower, whereas if it is lightly loaded, meaning that the under-keel clearance is large, then the berthing velocity tends to be higher.
-17-
TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN
Difficulty of handling vessel / mooring facilities being shelterd or not
Difficult
exposed Good berthing
exposed Easy berthing
exposed Difficult berthing
sheltered Good berthing
sheltered
Berthing velocity (cm/s) Fig. T- 2.2.1 Relationship between Vessel Handling Conditions and Berthing Velocity by Vessel Size 4)
Open type quay
Berthing velocity (cm/s)
Wall type quay (sheet pile, gravity types)
Displacement tonnage
DT (tons)
Berthing velocity (cm/s)
Fig. T- 2.2.2 Berthing Velocity and Displacement Tonnage for General Cargo Ships 5)
Displacement tonnage
DT (10,000 tons)
Fig. T- 2.2.3 Berthing Velocity and Displacement Tonnage for Large Oil Tankers 6)
Stern berthing
Berthing velocity (cm/s)
Bow berthing
Displacement tonnage
DT (tons)
Fig. T- 2.2.4 Berthing Velocity and Displacement Tonnage for Longitudinal Berthing of Ferries 5)
-18-
PART II DESIGN CONDITIONS
According to the survey by Moriya et al., the average berthing velocities for cargo ships, container ships, and pure car carriers are as listed in Table T- 2.2.1. The relationship between the deadweight tonnage and berthing velocity is shown in Fig. T- 2.2.5. This survey also shows that the larger the vessel, the lower the berthing velocity tends to be. The highest berthing velocities observed were about 15 cm/s for vessels under 10,000 DWT and about 10 cm/s for vessels of 10,000 DWT or over. Table T- 2.2.1 Deadweight Tonnage and Average Berthing Velocity Deadweight tonnage (DWT)
Berthing velocity (cm/s) Cargo ships
Container ships
Pure car carriers
All vessels
1,000 class 5,000 class 10,000 class 15,000 class 30,000 class 50,000 class
8.1 6.7 5.0 4.5 3.9 3.5
7.8 7.2 4.9 4.1 3.4
4.6 4.7 4.4 -
8.1 7.2 5.3 4.6 4.1 3.4
All vessels
5.2
5.0
4.6
5.0 N=738 Poisson distribution m = 3 Poisson distribution m = 4 Weibull distribution Normal distribution
N
V (cm/s)
Cargo ships Container ships Pure car carriers
V (cm/s)
Dead weight tonnage (DWT)
Fig. T- 2.2.5 Relationship between Deadweight Tonnage and Berthing Velocity
Fig. T- 2.2.6 Frequency Distribution of Berthing Velocity 10)
(5) Figure T- 2.2.6 shows a berthing velocity frequency distribution obtained from actual measurement records at offshore terminals used by large oil tankers of around 200,000 DWT. It can be seen that the highest measured berthing velocity was 13 cm/s. If the data are assumed to follow a Weibull distribution, then the probability of the berthing velocity below the value 13 cm/s would be 99.6%. The mean µ is 4.41 cm/s and the standard deviation s is 2.08 cm/s. Application of the Weibull distribution yields the probability density function f ( V ) as expressed in equation (2.2.3): V f ( V ) = ------- exp ( V 1.25 ) 0.8 where V: berthing velocity (cm/s)
(2.2.3)
From this equation, the probability of the berthing velocity exceeding 14.5 cm/s becomes 1/1000. The offshore terminals where the berthing velocity measurements were taken had a design berthing velocity of either 15 cm/s or 20 cm/s 7). (6) Small vessels such as small cargo ships and fishing boats come to berths by controlling their positions under their own power without assistance of tugboats. Consequently, the berthing velocity is generally higher than that for larger vessels, and in some cases it can even exceed 30 cm/s. For small vessels in particular, it is necessary to carefully determine the berthing velocity based on actually measured values etc. (7) In cases where cautious berthing methods such as those described in (1) are not used, or in the case of berthing of small or medium-sized vessels under influence of currents, it is necessary to determine the berthing velocity based on actual measurement data etc., considering the ship drift velocity by currents. (8) When designing mooring facilities that may be used by fishing boats, it is recommended to carry out design works based on the design standards for fishing port facilities and actual states of usage. -19-
TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN
[3] Eccentricity Factor (Notification Article 22, Clause 2) The eccentricity factor shall be calculated by the following: 1 C e = -------------------2l 1 + æ --ö è rø
(2.2.4)
where l and r represent the following: l: distance from the point where the vessel touches the mooring facilities to the center of gravity of the vessel as measured along the face line of the mooring facilities (m) r: radius of gyration around the vertical axis passing through the center of gravity of the vessel (m) [Technical Notes] (1) When a vessel is in the middle of berthing operation, it is not aligned perfectly along the face line of the berth. This means that after it comes into contact with the mooring facilities (fenders), it starts yawing and rolling. This results in some of the vessel’s kinetic energy being used up. The amount of energy used up by rolling is small compared with that by yawing and can be ignored. Equation (2.2.4) thus only considers the amount of energy used up by yawing. (2) The radious of gyration r relative to Lpp is a function of the block coefficient C b of the vessel and can be obtained from Fig. T- 2.2.7 8). Alternatively, one may use the linear approximation shown in equation (2.2.5) . (2.2.5) r = ( 0.19C b + 0.11 )L pp where r: radius of gyration; this is related to the moment of inertia I z around the vertical axis of the vessel by the relationship Iz = M s r 2 L pp: length between perpendiculars (m) C b: block coefficient; C b = Ñ /( L pp Bd) ( Ñ : Volume of water displaced by the vessel (m3), B: moulded breadth (m), d: draft (m)) (3) As sketched in Fig. T- 2.2.8, when a vessel comes into contact with the fenders F1 and F2 with the point of the vessel closest to the quaywall being the point P, the distance l from the point of contact to the center of gravity of the vessel as measured parallel to the mooring facilities is given by equation (2.2.6) or (2.2.7); l is taken to be L 1 when k < 0.5 and L 2 when k > 0.5. When k = 0.5, l is taken as whichever of L 1 or L 2 that gives the higher value of C e in equation (2.2.4).
F1
keLpp cos θ
F2
B
αLpp
Lpp
Length between perpendiculars (Lpp)
Radius of gyration in the longitudinal direction (r)
A
eLpp cos θ A
P
B
G
θ Q Block coefficient Cb
Fig. T- 2.2.7 Relationship between the Radius of Gyration around the Vertical Axis and the Block Coefficient (Myers, 1969) 7)
Fig. T- 2.2.8 Vessel Berthing
L 2 = 0.5 a + e ( 1 k ) L pp cos q
(2.2.6)
L 1 = ( 0.5a ek )L pp cos q
(2.2.7)
-20-
PART II DESIGN CONDITIONS
where L 1: distance from the point of contact to the center of gravity of the vessel as measured parallel to the mooring facilities when the vessel makes contact with fender F1 L 2: distance from the point of contact to the center of gravity of the vessel as measured parallel to the mooring facilities when the vessel makes contact with fender F2 q: berthing angle (the value of q is set as a design condition; it is usually set somewhere in the range 0 ~ 10º) e: ratio of the distance between the fenders, as measured in the longitudinal direction of the vessel, to the length between perpendiculars a: ratio of the length of the parallel side of the vessel at the height of the point of contact with the fender to the length between perpendiculars; this varies according to factors like the type of vessel, and the block coefficient etc., but is generally in the range 1/3 ~ 1/2. k: parameter that represents the relative location of the point where the vessel comes closest to the mooring facilities between the fenders F1 and F2 ; k varies between 0 and 1, but it is generally taken at k = 0.5.
[4] Virtual Mass Factor (Notification Article 22, Clause 3)
Ñ C b = --------------L pp Bd
64748
It shall be standard to calculate the virtual mass factor using the following equations: d p C m = 1 + --------- ´ --2C b B
(2.2.8)
where Cb,Ñ, Lpp, B, and d represent the following: C b: block coefficient Ñ: volume of water displaced by the vessel (m3) L pp: length between perpendiculars (m) B: moulded breadth (m) d: full load draft (m) [Technical Notes] (1) When a vessel berths, the vessel (which has mass M s ) and the water mass surrounding the vessel (which has mass M w ) both decelerate. Accordingly, the inertial force corresponding to the water mass is added to that of the vessel itself. The virtual coefficient is thus defined as in equation (2.2.9). Ms + M w C m = --------------------Ms where C m: virtual mass factor M s: mass of vessel (t) M w: mass of the water surrounding the vessel (added mass) (t)
(2.2.9)
Ueda 8) proposed equation (2.2.8) based on the results of model experiments and field observations. The second term in equation (2.2.8) corresponds to M w ¤ M s in equation (2.2.9). (2) As a general rule, the actual values of the target vessel are used for the length between perpendiculars ( L pp ), the moulded breadth (B), and the full load draft (d). But when one of the standard ship sizes is used, one may use the principal dimensions given in 2.1 Dimensions of the Target Vessel. Regression equations have been proposed for the relationships between the deadweight tonnage, the moulded breadth and the full load draft 1). It is also possible to use equations (2.2.10), which give the relationship between the deadweight tonnage (DWT) or the gross tonnage (GT) and the length between perpendiculars for different types of vessel 1).
-21-
64444744448
Cargo ships (less than 10,000 DWT): log (Lpp) = 0.867 + 0.310 log (DWT) Cargo ships (10,000 DWT or more): log (Lpp) = 0.964 + 0.285 log (DWT) Container ships: log (Lpp) = 0.516 + 0.401 log (DWT) Ferries (long distance, 13,000 GT or less): log (Lpp) = log (94.6 + 0.00596GT) Ferries (short-to-medium distance, 6,000 t or less): log (Lpp) = 0.613 + 0.401 log (GT) Roll-on/roll-off vessels: log (Lpp) = 0.840 + 0.349 log (DWT) Passenger ships (Japanese): log (Lpp) = 0.679 + 0.359 log (GT) Passenger ships (foreign): log (Lpp) = 0.787 + 0.330 log (GT) Car carriers: log (Lpp) = 1.046 + 0.280 log (GT) Oil tankers: log (Lpp) = 0.793 + 0.322 log (DWT)
(2.2.10)
TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN
(3) The volume of water displaced by the vessel Ñ is determined by dividing the displacement tonnage DT by the density of seawater (1.03 t/m3)
2.2.3 Moored Vessels [1] Motions of Moored Vessel (Notification Article 23) As a general rule, the external forces generated by the motions of a moored vessel shall be calculated by carrying out a numerical simulation of vessel motions, with the wave force acting on the vessel, the wind force, the current force due to water currents, etc. being set appropriately. [Commentary] (1) Vessels moored at mooring facilities situated in the open sea or near to harbor entrances, or at mooring facilities inside harbors for which long-period waves are expected to come in, along with vessels moored during stormy weather, are liable to be moved under the influence of loads due to waves, winds, currents, etc. In some cases, the kinetic energy due to such motions can exceed the berthing energy. In such cases, it is thus advisable to give full consideration to the tractive forces and impact forces caused by the motions of vessels when designing bollards and fenders 10). (2) As a general rule, the external forces generated by the motions of a vessel should be obtained by carrying out a numerical simulation of vessel motions, based on the factors such as the wave force acting on the vessel, the wind force, the current force due to currents, and the load-deflection characteristics of the mooring system. [Technical Notes] (1) As a general rule, the motions of a moored vessel should be analyzed through numerical simulation, with consideration given to the random variations of the loads and the nonlinearity of the load-deflection characteristics of the mooring system. However, when such a numerical simulation of vessel motions is not possible, or when the vessel is moored at a system that is considered to be more-or-less symmetrical, one may obtain the displacement of and loads on the mooring system either by using frequency response analysis for regular waves or by referring to results of an motion analysis on a floating body moored at a system that has load-deflection characteristics of bilinear nature 11). (2) The total wave force acting on the hull of a vessel is analyzed by dividing it into the wave exciting force due to incident waves and the radiation force that is generated as the vessel moves. The wave exciting force due to incident waves is the wave force calculated for the case that motions of the vessel are restrained. The radiation force is the wave force exerted on the hull when the vessel undergoes a motion of unit amplitude for each mode of motions. The radiation force can be expressed as the summation of a term that is proportional to the acceleration of the vessel and a term that is proportional to the velocity. Specifically, the former can be expressed as an added mass divided by acceleration, while the latter can be expressed as a damping coefficient divided by velocity 12). In addition, a nonlinear fluid dynamic force that is proportional to the square of the wave height acts on the vessel (see 8.2 External Forces Acting on Floating Body). (3) For vessels that have a block coefficient of 0.7 ~ 0.8 such as large oil tankers, the ship hull can be represented with an elliptical cylinder, allowing an approximate evaluation of the wave force 13). (4) For box-shaped vessels such as working craft, the wave force can be obtained by taking the vessel to be either a floating body with a rectangular cross section or a floating body of a rectangular prism.
[2] Waves Acting on Vessel The wave force acting on a moored vessel shall be calculated using an appropriate method, considering the type of vessel and the wave parameters. [Commentary] The wave force acting on a moored vessel is calculated using an appropriate method, for example the strip method, the source distribution technique, the boundary element method, or the finite element method; the most common method used for vessels is the strip method. [Technical Notes] (1) Wave Force by the Strip Method 11), 12) (a) Wave force of regular waves acting on the hull The wave force acting on the hull is taken to be the summation of the Froude-Kriloff force and the force by the waves that are reflected by the hull (diffraction force).
-22-
PART II DESIGN CONDITIONS
(b) Froude-Kriloff force The Froude-Kriloff force is the force derived by integrating the pressure of progressive waves around the circumference of the hull. In the case of a moored vessel in front of a quaywall, it is taken to be the summation of the force of the incident waves and the force of the reflected waves from the quaywall. (c) Diffraction force The diffraction force acting on a vessel is the force that is generated by the change in the pressure field when incident waves are scattered by the vessel’s hull. As an estimate, this change in the pressure field can be replaced by the radiation force (the wave making resistance when the vessel moves at a certain velocity through a calm fluid) for the case that the hull is moved relative to fluid. It is assumed that the velocity of the vessel in this case is equal to the velocity of the cross section of the hull relative to the water particles in the incident waves. This velocity is referred to as the “equivalent relative velocity”. (d) Total force acting on the hull as a whole The total wave force acting on the hull as a whole can be obtained by integrating the Froude-Kriloff force and the diffraction force acting on a cross section of the hull in the longitudinal direction from x = L pp ¤ 2 to x = L pp ¤ 2 . (2) Waves Forces by Diffraction Theory 13) In the case that the vessel in question is very fat (i.e., it has a block coefficient C b of 0.7 ~ 0.8), there are no reflecting structures such as quaywalls behind the vessel, and the motions of the vessel are considered to be very small, the vessel may be represented with an elliptical cylinder and the wave force may be calculated using an equation based on a diffraction theory 13).
[3] Wind Load Acting on Vessel The wind load acting on a moored vessel shall be determined using an appropriate calculation formula. [Commentary] It is desirable to determine the wind load acting on a moored vessel while considering the temporal fluctuation of the wind velocity and the characteristics of the drag coefficients, which depend on the cross-sectional form of the vessel. [Technical Notes] (1) The wind load acting on a vessel should be determined from equations (2.2.11) ~ (2.2.13), using the drag coefficients C X and C Y in the X and Y directions and the pressure moment coefficient C M about the midship. 1 R X = --- r a U 2 A T C X 2 1 R Y = --- r a U 2 A L C Y 2 1 R M = --- r a U 2 A L L pp C M 2 where C X: drag coefficient in the X direction (from the front of the vessel) C Y: drag coefficient in the Y direction (from the side of the vessel) C M: pressure moment coefficient about the midship R X: X component of the wind force (kN) R Y: Y component of the wind force (kN) R M: moment of the wind load about the midship (kN•m) r a: density of air; r a = 1.23 ´ 10 3 (t/m3) U: wind velocity (m/s) A T: front projected area above the water surface (m2) A L: side projected area above the water surface (m2) L pp: length between perpendiculars (m)
(2.2.11) (2.2.12) (2.2.13)
(2) It is desirable to determine the wind force coefficients C X , C Y , and C M through wind tunnel tests or water tank tests on a target vessel. Since such experiments require time and cost, it is acceptable to use the calculation equations for wind force coefficients 14),15) that are based on wind tunnel tests or water tank tests that have been carried out in the past. (3) The maximum wind velocity (10-minute average wind velocity) should be used as the wind velocity U. (4) For the front projected area above the water surface and the side projected area above the water surface, it is desirable to use the values for the target vessel. For standard vessel sizes, one may refer to regression equations 1). (5) Since the wind velocity varies both in time and in space, the wind velocity should be treated as fluctuating in the -23-
TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN analysis of the motions of a moored vessel. Davenport 16) and Hino have proposed the frequency spectra for the time fluctuations of the wind velocity. The frequency spectra proposed by Davenport and Hino are given by equations (2.2.14) and (2.2.15), respectively.
64748
X2 2 f S u ( f ) = 4K r U10 --------------------------(1 + X2 )4 ¤ 3 X = 1200f / U 10
5 ¤ 6
æ U 10 aö z 2m a 1 b = 1.169 ´ 10 3 ç -------------÷ æ ------ö è K r ø è 10ø
64748
2
K r U10 ì f 2ü S u ( f ) = 2.856 --------------- í 1 + æ ---ö ý è bø b î þ
(2.2.14)
(2.2.15)
where S u ( f ): frequency spectrum of wind velocity (m2•s) U 10: average wind velocity at the standard height 10 m (m/s) K r: friction coefficient for the surface defined with the wind velocity at the standard height; over the ocean, it is considered that K r = 0.003 is appropriate. a: exponent when the vertical profile of the wind velocity is expressed by a power law [ U µ ( z ¤ 10 ) a ] z: height above the surface of the ground or ocean (m) m: correction factor relating to the stability of the atmosphere; m is taken to be 2 in the case of a storm.
[4] Current Forces Acting on Vessel The flow pressure force due to tidal currents acting on a vessel shall be determined using an appropriate calculation formula. [Technical Notes] (1) Current Pressure Force Due to Currents Coming onto the Bow of Vessel The current pressure force on the vessel due to currents coming onto the bow of a vessel may be calculated using equation (2.2.16). (2.2.16) R f = 0.0014SV 2 where R f: current pressure force (kN) S: wetted surface area (m2) V: flow velocity (m/s) (2) Current Pressure Force Due to Currents Coming onto the Side of Vessel The current pressure force due to a current coming onto the side of a vessel may be calculated using equation (2.2.17). (2.2.17) R = 0.5r 0 CV 2 B where R: current pressure force (kN) r 0: density of seawater (t/m3) (standard value: r 0 = 1.03 t/m3) C: current pressure coefficient V: flow velocity (m/s) B: side projected area of hull below the waterline (m2) (3) The current pressure force due to tidal currents can in principle be divided into frictional resistance and pressure resistance. It is thought that the resistance to currents coming onto the bow of a vessel is predominantly frictional resistance, whereas the resistance to currents coming onto the side of a vessel is predominantly pressure resistance. However, in practice it is difficult to rigorously separate the two resistances and investigate them individually. Equation (2.2.16) is a simplification of the following Froude equation with r w = 1.03, t = 15ºC and l = 0.14: Rf where R f: rw: g: t: S:
= rw gl { 1 + 0.0043 ( 15 t ) }SV 1.825
(2.2.18)
current pressure force (N) specific gravity of seawater (standard value: rw = 1.03) gravitational acceleration (m/s2) temperature (ºC) wetted surface area (m2) -24-
PART II DESIGN CONDITIONS
V: flow velocity (m/s) l: coefficient (l = 0.14741 for a 30m-long vessel and l = 0.13783 for a 250m-long vessel) (4) The current pressure coefficient C in equation (2.2.17) varies according to the relative current direction q; the values obtained from Fig. T- 2.2.9 may be used for reference purposes.
Current pressure coefficient
C
(5) Regarding the wetted surface area S and the side projected area below the waterline B, one may use values obtained from a regression equations 3) that have been derived by statistical analysis.
Water depth draft
d
h = 1.1
1.5
7.0
Relative current direction
q(
)
Fig. T- 2.2.9 Current Pressure Coefficient C
[5] Load-Deflection Characteristics of Mooring System When performing a motion analysis of a moored vessel, the load-deflection characteristics of the mooring system (mooring ropes, fenders, etc.) shall be modeled appropriately. [Technical Notes] The load-deflection characteristics of a mooring system (mooring ropes, fenders, etc.) is generally nonlinear. Moreover, with regard to the load-deflection characteristics of a fender, they may show hysteresis, and so it is desirable to model these characteristics appropriately before carrying out the motion analysis of a moored vessel.
2.2.4 Tractive Force Acting on Mooring Post and Bollard (Notification Article 79) (1) It shall be standard to take the values listed in Table 2.2.1 as the tractive forces of vessels acting on mooring posts and bollards. (2) In the case of a mooring post, it shall be standard to assume that the tractive force stipulated in (1) acts horizontally and a tractive force equal to one half of this acts upwards simultaneously. (3) In the case of a bollard, it shall be standard to assume that the tractive force stipulated in (1) acts in all directions. Table 2.2.1 Tractive Forces of Vessels (Notification Article 79, Appended Table 12) Gross tonnage (GT) of vessel (tons)
Tractive force acting on a mooring post (kN)
Tractive force acting on a bollard (kN)
200 < GT ≦ 500
150
150
500 < GT ≦ 1,000
250
250
1,000 < GT ≦ 2,000
350
250
2,000 < GT ≦ 3,000
350
350
3,000 < GT ≦ 5,000
500
350
5,000 < GT ≦ 10,000
700
500
10,000 < GT ≦ 20,000
1,000
700
20,000 < GT ≦ 50,000
1,500
1,000
-25-
TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN
Gross tonnage (GT) of vessel (tons) 50,000 < GT ≦ 100,000
Tractive force acting on a mooring post (kN)
Tractive force acting on a bollard (kN)
2,000
1,000
[Commentary] (1) “Mooring posts” are installed away from the waterline, either on or near to the mooring facilities, close to the both ends of a berth so that they may be used for mooring a vessel in a storm. “Bollards”, on the other hand, are installed close to the waterline of the mooring facilities so that they may be used for mooring, berthing, or unberthing a vessel in normal conditions. (2) Regarding the layout and names of mooring ropes to moor a vessel, see Part Ⅷ , 2.1 Length and Water Depth of Berths. (3) Regarding the layout and structure of mooring posts and bollards, see Part Ⅷ , 19.3 Mooring Posts, Bollards, and Mooring Rings. [Technical Notes] (1) It is desirable to calculate the tractive force acting on a mooring post and a bollard based on the breaking strength of the mooring ropes possessed by a vessel arriving at the berth, the meteorological and oceanographic conditions at the place where the mooring facilities are installed, and the dimensions of vessels, and if necessary also considering the force due to a berthing vessel, the wind pressure on a moored vessel, and the force due to motions of a vessel 9), 11). Alternatively, it is also possible to determine the tractive force acting on a mooring post and a bollard in accordance with (2) ~ (6) below. (2) In the case that the gross tonnage of a vessel exceeds 5,000 tons and there is no risk of more than one mooring rope being attached to a bollard that is used for spring lines at the middle of mooring facilities for which the vessel’s berth is fixed, the tractive force acting on a bollard may be taken as one half of the value listed in Table 2.2.1. (3) The tractive force due to a vessel whose gross tonnage is no more than 200 tons or greater than 100,000 tons (i.e., a vessel that is not covered in Table 2.2.1) should be calculated by considering the meteorological and oceanographic conditions, the structure of the mooring facilities, past measurement data on tractive force, etc. The tractive force on mooring facilities at which vessels are moored even in rough weather or mooring facilities that are installed in waters with severe meteorological / oceanographic conditions should also be calculated by considering these conditions. (4) The tractive force acting on a mooring post has been determined based on the wind pressure acting on a vessel in such a way that a lightly loaded vessel should be able to moor safely even when the wind velocity is 25 ~ 30 m/s, with the assumption that the mooring posts are installed at the place away from the wharf waterline by the amount of vessel’s width and that the breast lines are pulled in a direction 45º to the vessel’s longitudinal axis 17),18). The tractive force so obtained corresponds to the breaking strength of one to two mooring ropes, where the breaking strength of a mooring rope is evaluated according to the “Steel Ship Regulations” by the Nippon Kaiji Kyokai. For a small vessel of gross tonnage up to 1,000 tons, the mooring posts can withstand the tractive force under the wind velocity of up to 35 m/s. The tractive force acting on a bollard has been determined based on the wind pressure acting on a vessel in such a way that even a lightly loaded vessel should be able to moor using only bollards in a wind of velocity up to 15 m/s, with the assumption that the ropes at the bow and stern are pulled in a direction at least 25º to the vessel’s axis. The tractive force so obtained corresponds to the breaking strength of one mooring rope for a vessel of gross tonnage up to 5,000 tons and two mooring ropes for a vessel of gross tonnage over 5,000 tons, where the breaking strength of a mooring rope is evaluated according to the “Steel Ship Regulations” by the Nippon Kaiji Kyokai. The tractive force for a bollard that is used for spring lines and is installed at the middle of a berth, for which the vessel’s berthing position is fixed, corresponds to the breaking strength of one mooring rope, where the breaking strength of a mooring rope is evaluated according to the “Steel Ship Regulations” by the Nippon Kaiji Kyokai. Note however that, although there are stipulations concerning synthetic fiber ropes in the “Steel Ship Regulations” by the Nippon Kaiji Kyokai with regard to nylon ropes and type B vinylon ropes (both of which are types of synthetic fiber rope), the required safety factor has been set large owing to the factors such that there is little data on the past usage of such ropes and their abrasion resistance is low, and so both the required rope diameter and the breaking strength are large. Accordingly, in the case of berths for which the mooring vessels use only nylon ropes or type B vinylon ropes, it is not possible to apply the stipulations in (2) above. In the above-mentioned tractive force calculations, in addition to the wind pressure, it has been assumed that there are tidal currents of 2 kt in the longitudinal direction and 0.6 kt in the transverse direction. (5) When determining the tractive force from a small vessel of gross tonnage no more than 200 tons, it is desirable to consider the type of vessel, the berthing situation, the structure of the mooring facilities, etc. During actual
-26-
PART II DESIGN CONDITIONS
design of mooring posts and bollards for vessels of gross tonnage no more than 200 tons, it is standard to take the tractive force acting on a mooring posts to be 150 kN and the tractive force acting on a bollard to be 50 kN. (6) When calculating the tractive force in the case of vessels such as ferries, container ships, or passenger ships, caution should be exercised in using Table 2.2.1, because the wind pressure-receiving areas of such vessels are large. [References] 1) Yasuhiro AKAKURA, Hironao TAKAHASHI, Takashi NAKAMOTO: “Statistical analysis of ship dimensions for the size of design ship”, Tech. Note of PHRI, No. 910, 1998 (in Japanese). 2) Yasuhiro AKAKURA and Hironao TAKAHASHI: “Ship dimensions of design ship under given confidence limits”, Technical Note of P.H.R.I., September 1998. 3) PIANC: “Report of the International Commission for Improving the Design of Fender Systems”, Supplement to Bulletine No. 45, 1984. 4) Baker, A. L. L.: “The impact of ships when berthing”, Proc. Int’l Navig. Congr. (PIANC), Rome, Sect II, Quest. 2, 1953, pp. 111-142. 5) Masahito MIZOGUCHI, Tanekiyo NAKAYAMA: “Studies on the berthing velocity, energy of the ships”, Tech. Note of PHRI, No. 170, 1973 (in Japanese). 6) Hirokane OTANI, Shigeru UEDA, Tatsuru ICHIKAWA, Kensei SUGIHARA: “A study on the berthing impact of the big tanker”, Tech. Note of PHRI, No. 176, 1974 (in Japanese). 7) Shigeru UEDA: “Study on berthing impact force of very large crude oil carriers”, Rept. of PHRI, Vol. 20, No. 2, 1981, pp. 169-209 (in Japanese). 8) Myers, J.: “Handbook of Ocean and Underwater Engineering”, McGraw-Hill, New York, 1969. 9) Shigeru UEDA, Eijiro OOI: “On the design of fending systems for mooring facilities in a port”, Tech. Note of PHRI, No. 596, 1987 (in Japanese). 10) Shigeru UEDA, Satoru SHIRAISHI: “On the design of fenders based on the ship oscillations moored to quaywalls”, Tech. Note of PHRI, No. 729, 1992 (in Japanese). 11) Shigeru UEDA: “Analytical method of motions moored to quaywalls and the applications”, Tech. Note of PHRI, No. 504, 1984 (in Japanese). 12) Shigeru UEDA, Satoru SHIRAISI: “Method and its evaluation for computation of moored ship’s motions”, Rept. of PHRI, Vol. 22, No. 4, 1983 pp. 181-218 (in Japanese). 13) Yoshimi GODA, Tomotsuka TAKAYAMA, Tadashi SASADA: “Theoretical and experimental investigation of wave forces on a fixed vessel approximated with an elliptic cylinder”, Rept of PHRI, Vol. 12, No. 4, 1994, pp. 23-74 (in Japanese). 14) R. M. Isherwood: “Wind resistance of merchant ships”, Bulliten of the Royal Inst. Naval Architects, 1972, pp. 327-338. 15) Shigeru UEDA, Satoru SHIRAISHI, Kouhei ASANO, Hiroyuki OSHIMA: “Proposal of equation of wind force coefficient and evaluation of the effect to motions of moored ships”, Tech. Note of PHRI, No. 760, 1993 (in Japanese). 16) Davenport, A. G.: “Gust loading factors”, Proc. of ASCE, ST3, 1967, pp. 11-34. 17) Hirofumi INAGAKI, Koichi YAMAGUCHI, Takeo KATAYAMA: “Standardization of mooring posts and bollards for wharf”, Tech. Note of PHRI, No. 102, 1970 (in Japanese). 18) Iaso FUKUDA, Tadahiko YAGYU: “Tractive force on mooring posts and bollards”, Tech. Note of PHRI, No. 427, 1982 (in Japanese).
-27-
TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN
Chapter 3 Wind and Wind Pressure 3.1 General When designing port and harbor facilities, meteorological factors such as winds, air pressure, fog, rainfall, snow depth, and air temperature should be considered. [Commentary] The effects that meteorological factors exert on the design of port and harbor facilities are as follows: (1) Air pressure and its distribution are the factors that govern the generations of winds and storm surge. (2) Wind is a factor that governs the generations of waves and storm surge, it exerts external forces on port and harbor facilities and moored vessels in the form of wind pressure, and it can disrupt port and harbor works such as cargo handling. (3) Rainfall is a factor that determines the required capacity of drainage facilities in ports and harbors, and rain can also disrupt port and harbor works such as cargo handling. (4) Fog is a factor that is an impediment to the navigation of vessels when they are entering or leaving a harbor, and also decreases the productivity of port and harbor facilities. (5) In some cases, snow load is considered as a static load acting on port and harbor facilities. (6) Air temperature affects the stress distribution within structures of port and harbor facilities and may lead to the occurrence of thermal stress in these structures. [Technical Notes] (1) In calculations concerning the generation of storm surge or waves due to a typhoon, it is common to assume that the air pressure distribution follows either Fujita’s equation (3.1.1) or Myers’ equation (3.1.2); the constants in the chosen equation are determined based on actual air pressure measurements in the region of typhoons. Dp p = p ¥ -------------------------------- (Fujita’ formula) 1 + (r ¤ r0 )2
(3.1.1)
r0 (3.1.2) p = p c + Dp exp æ ----ö (Myers’ formula) è rø where p: air pressure at a distance r from the center of typhoon (hPa) r: distance from the center of typhoon (km) p c: air pressure at the center of typhoon (hPa) r 0: estimated distance from the center of typhoon to the point where the wind velocity is maximum (km) Dp: air pressure drop at the center of typhoon (hPa); Dp = p ¥ p c p ¥: air pressure at r = ¥ (hPa); p ¥ = p c + Dp The size of a typhoon varies with time, and so r 0 and Dp must be determined as the functions of time. (2) With regard to wind, see 3.2 Wind. (3) Rain is generally divided into the rain of thunderstorms that have heavy rainfall in a short period of time and the rain that continues for a prolonged period of time (rain by a typhoon is a representative example of the latter). When designing drainage facilities, it is necessary to determine the intensity of rainfall both for the case where the amount of runoff increases very rapidly and for the case where the runoff continues for a prolonged period. In the case of sewage planning whereby the intensity of rainfall during a thunderstorm is a problem, Sherman’s formula or Talbot’s formula is used. a (Sherman’s formula) R = ---nt a (Talbot’s formula) R = ----------t+b where R: intensity of rainfall (mm/h) t: duration of rainfall (min) a, b, n: constants
(3.1.3) (3.1.4)
(4) With regard to snow load acting upon port and harbor facilities, see 15.3.4 Snow Load.
-28-
PART II DESIGN CONDITIONS
3.2 Wind (Notification Article 3, Clause 1) It shall be standard to set the wind characteristics for wave estimations and the wind characteristics as the cause of an external force on port and harbor facilities as stipulated in the following: (1) When calculating the wind velocity and wind direction used in estimations of waves and storm surges, either the actual wind measurements or the calculated values for gradient winds are to be used, with all necessary corrections having been made for the heights of measurements, etc. (2) The velocity of the wind acting on port and harbor facilities shall be set based on statistical data for an appropriate period in line with the characteristics of the facilities and structures. [Technical Notes] (1) Gradient Winds (a) The velocity of the gradient wind can be expressed as a function of pressure gradient, radius of curvature of isobars, latitude, and air density as in equation (3.2.1). æ ¶ p ¤ ¶r ö -÷ Vg = rw sin f ç 1 + 1 + ---------------------------r a rw 2 sin 2 fø è
(3.2.1)
where Vg : velocity of gradient wind (cm/s); in the case of an anticyclone, equation (3.2.1) gives a negative value and so the absolute value should be taken. ¶p -----: pressure gradient (taken to be positive for a cyclone, negative for an anticyclone) (g/cm2/s2) ¶r r: radius of curvature of isobars (cm) w: angular velocity of Earth's rotation ( s 1 ); w = 7.29 ´ 10 5 ¤ s f: latitude (º) ra: density of air (g/cm3) Before performing the calculation, measurement units should first be converted into the CGS units listed above. Note that 1º of latitude corresponds to a distance of approximately 1.11 × 10 7 cm, and an air pressure of 1.0 hPa is 10 3 g/cm/s2. (b) A gradient wind for which the isobars are straight lines (i.e., their radius of curvature in equation (3.2.1) is infinite) is called the geostrophic wind. In this case, the wind velocity is V = ( ¶ p ¤ ¶r ) ¤ ( 2r a rw sin f ) . (2) The actual sea surface wind velocity is generally lower than the value obtained from the gradient wind equation. Moreover, although the direction of a gradient wind is parallel to the isobars in theory, the sea surface wind blows at a certain angle a to the isobars as sketched in Fig. T- 3.2.2. In the northern hemisphere, the wind around a cyclone blows in a counterclockwise direction and inwards, whereas the wind around an anticyclone blows in a clockwise direction and outwards. It is known that the relationship between the velocity of gradient winds and that of the actual sea surface wind varies with the latitude. The relationship under the average conditions is summarized in Table T- 3.2.1. However, this is no more than a guideline; when estimating sea surface winds, it is necessary to make appropriate corrections by comparing estimations with actual measurements taken along the coast and values that have been reported by vessels out at sea (the latter are written on weather charts). Table T- 3.2.1 Relationship between Sea Surface Wind Speed and Gradient Wind Speed
Low
High
Latitude
10º
20º
30º
40º
50º
Angle a
24º
20º
18º
17º
15º
Velocity ratio V s ¤ V g
0.51
0.60
0.64
0.67
0.70
Fig. T- 3.2.2 Wind Direction for a Cyclone (Low) and an Anticyclone (High)
(3) When selecting the design wind velocity for the wind that acts directly on port and harbor facilities and moored vessels, one should estimate the extreme distribution of the wind velocity based on actual measurement data taken over a long period (at least 30 years as a general rule) and then use the wind velocity corresponding to the required return period. It is standard to take the wind parameters to be the direction and velocity, with the wind direction being represented using the sixteen-points bearing system and the wind velocity by the mean wind velocity over 10 minutes. -29-
TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN
In the Meteorological Agency’s Technical Observation Notes No. 34, the expected wind velocities with the return periods of 5, 10, 20, 50, 100 and 200 years for 141 government meteorological offices have been estimated from the ten-minute mean wind velocity data of about 35 years, under the assumption that wind velocity follows a double exponential distribution. For locations with topographical conditions different from that of the nearest among the above-mentioned meteorological offices, one should conduct observations for at least one year and then conduct a comparative investigation on topographical effects in order to make it possible to use the aforementioned estimation results. (4) Regarding the wind velocity used in estimating storm surges and waves, it is standard to use the value at a height of 10 m above sea level. The wind velocities obtained at government meteorological offices are the values for a height of approximately 10 m above the ground level. Accordingly, when attempting to use such observed values to estimate sea surface winds, in the case that the elevations of the structural members are considerably different from 10 m, it is necessary to correct the wind velocity with respect to the height. The vertical profile of the wind velocity is generally represented with a power law, and so in current design calculations for all kinds of structures, a power law is simply used: i.e., h n U h = U 0 æè -----öø h0
(3.2.2)
where U h: wind velocity at height h (m/s) U 0: wind velocity at height h 0 (m/s) The value of the exponent varies with the situation with regard to the roughness near to the surface of the ground and the stability of the atmosphere. In structural calculations on land, a value of n = 1/10 ~ 1/4 is used, and it is common to use a value of n ≧ 1/7 out to sea. Statistical data on wind velocity usually consider the ten-minute mean wind velocity. However, for some structures the mean wind velocity over a shorter time period or the maximum instantaneous wind velocity may be used, in which case it is necessary to gain an understanding of the relationship between the mean wind velocity over a certain time period and the maximum wind velocity, and also the characteristics of the gust factor.
3.3 Wind Pressure (Notification Article 3, Clause 2) The wind pressure shall be set appropriately, giving due consideration to the situation with regard to the structural types of the facilities and their locations. [Technical Notes] (1) When calculating the wind pressure acting on a moored vessel, one should refer to 2.2.3 [3] Wind Load Acting on a Vessel. (2) In the case that there are no statutory stipulations concerning the wind pressure acting on a structure, the wind pressure may be calculated using equation (3.3.1). p = cq where p: wind pressure (N/m2) q: velocity pressure (N/m2) c: wind pressure coefficient
(3.3.1)
Equation (3.3.1) expresses the wind pressure, i.e., the force due to the wind per unit area subjected to the wind force. The total force due to the wind acting on a member or structure is thus the wind pressure as given by equation (3.3.1) multiplied by the area of that member or structure affected by the wind in a plane perpendicular to the direction in which the wind acts. The velocity pressure q is defined as in equation (3.3.2). 1 (3.3.2) q = --- r a U 2 2 where q: velocity pressure (N/m2) r a: density of air (kg/m3) r a = 1.23 kg/m3 U: design wind velocity (m/s) The design wind velocity should be taken at 1.2 to 1.5 times the standard wind velocity (ten-minute mean wind velocity at a height of 10 m). This is because the maximum instantaneous wind velocity is about 1.2 to 1.5 times the ten-minute mean wind velocity. The wind pressure coefficient varies depending on the conditions such as the shape of the member or structure, the wind direction, and the Reynolds number. With the exception of cases where it is determined by means of the wind tunnel experiments, it may be set by referring to the Article 87 of the “Enforcement Order -30-
PART II DESIGN CONDITIONS
of the Building Standard Law” (Government Ordinance No. 338, 1950) or the “Crane Structure Standards” (Ministry of Labor Notification). With regard to wind direction, it is generally required to consider the wind direction that is most unfavorable to the structure, with the exception of cases where it has been verified that there exists an overwhelmingly prevailing direction of winds.
-31-
TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN
Chapter 4 Waves 4.1 General 4.1.1 Procedure for Determining the Waves Used in Design (Notification Article 4, Clause 1) The waves used in the investigation of the stability of protective harbor facilities and other port and harbor facilities, as well as the examination of the degree of calmness of navigation channels and basins shall be set using wave data obtained from either actual wave measurements or wave hindcasting. Wave characteristics shall be obtained by carrying out necessary statistical processing and by analyzing wave transformations owing to sea bottom topography and others. It shall be standard to carry out the wave hindcasting using a method that is based on an appropriate equation for representing the relationship between the wind velocity and the wave spectrum or the significant wave parameters. [Commentary] The size and structural form of facilities are determined by the factors such as the height and period of the waves that act on them. The setting of the wave conditions to be used in design should thus be carried out carefully. The setting of wave conditions should be carried out separately for “ordinary waves” (i.e., waves that occur in ordinary conditions: these are required when estimating the harbor calmness or the net working rate of cargo handling) and “storm waves” (i.e., waves that occur in storm conditions: these are required when estimating the wave force acting on structures). The waves that are obtained by statistically processing data based on either actual measurements or hindcasting are generally deepwater waves that are unaffected by the sea bottom topography. Deepwater waves propagate towards the coast, and once the waves reach to the water depth about one half the wavelength, they start to experience the effects of topography and transform with the result of wave height change. “Wave transformation” includes refraction, diffraction, reflection, shoaling, and breaking. In order to determine the wave conditions at the place where wave data is needed (for instance the place where a structure of interest is located), it is necessary to give appropriate consideration to such wave transformations by means of numerical calculations or model experiments. In the above-mentioned procedure for setting the wave conditions to be used in design, it is necessary to give sufficient consideration to the irregularity of the waves and to treat the waves as being of random nature as much as possible.
Wave data 1) Actual measurement data 2) Hindcasting values Statistical analysis 1) Ordinary waves
2) Storm waves
Wave occurrence rate of deepwater waves
Design deepwater waves
Wave transformation
Wave transformation
Wave occurrence rate at the place of interest
Parameters of design waves 1) Significant wave 2) Highest wave
1) Harbor calmness 2) Net working rate, number of working days 3) Transport energy of incoming waves 4) Others
1) Wave force acting on structures 2) Amount of waves overtopping at seawall and revetments 3) Others
Fig. T- 4.1.1 Procedure for Setting the Waves to Be Used in Design
[Technical Notes] A sample procedure for setting the wave conditions to be used in design is shown in Fig. T- 4.1.1.
4.1.2 Waves to Be Used in Design Significant waves, highest waves, deepwater waves, equivalent deepwater waves and others shall be used in the design of port and harbor facilities. [Commentary] The waves used in the design of structures are generally “significant waves”. The significant wave is a hypothetical wave that is a statistical indicator of an irregular wave group. Significant waves have the dimensions that are approximately equal to the values from visual wave observations, and so they are used in wave hindcasting. It is also known that the period of a significant wave is approximately equal to the period at the peak of the wave spectrum. Because of such advantages, significant waves have been commonly used to represent wave groups. Nevertheless, depending on the purpose, it may be necessary to convert significant waves into other waves such as highest waves and highest one-tenth waves. -32-
PART II DESIGN CONDITIONS
[Technical Notes] (1) Definitions of Wave Parameters (a) Significant wave (significant wave height H1/3 and significant wave period T1/3) The waves in a wave group are rearranged in the order of their heights and the highest one-third are selected; the significant wave is then the hypothetical wave whose height and period are the mean height and period of the selected waves. (b) Highest wave (highest wave height Hmax and highest wave period Tmax) The highest wave in a wave group. (c) Highest one-tenth wave (H1/10, T1/10) The wave whose height and period are equal to the mean height and period of the highest one-tenth of the waves in a wave group. (d) Mean wave (mean wave height H , mean period T ) The wave whose height and period are equal to the mean height and period of all of the waves in a wave group. (e) Deepwater waves (deepwater wave height H0 and deepwater wave period T0) The waves at a place where the water depth is at least one half of the wavelength; the wave parameters are expressed with those of the significant wave at this place. (f) Equivalent deepwater wave height (H0¢) A hypothetical wave height that has been corrected for the effects of planar topographic changes such as refraction and diffraction; it is expressed with the significant wave height. (2) Maximum Wave The largest significant wave within a series of significant wave data that was observed during a certain period (for example, one day, one month, or one year) is called the “maximum wave”. In order to clearly specify the length of the observation period, it is advisable to refer to the maximum wave such as the “maximum significant wave over a period of one day (or one month, one year, etc.)”. Moreover, when one wishes to clearly state that one is referring to the significant wave for the largest wave that occurred during a stormy weather, the term “peak wave” is used (see 4.4 Statistical Processing of Wave Observation and Hindcasted Data). The “maximum wave height” is the maximum value of the significant wave height during a certain period; this is different from the definition of the “highest wave height”. (3) Significance of Equivalent Deepwater Waves The wave height at a certain place in the field is determined as the result of transformations by shoaling and breaking, which depend on the water depth at that place, and those by diffraction and refraction, which depend on the planar topographical conditions at that place. However, in hydraulic model experiments on the transformation or overtopping of waves in a two-dimensional channel or in two-dimensional analysis by wave transformation theory, planar topographical changes are not taken into consideration. When applying the results of a two-dimensional model experiment or a theoretical calculation to the field, it is thus necessary to incorporate in advance the special conditions of the place in question, namely the effects of planar topographical changes (specifically the effects of diffraction and refraction), into the deepwater waves for the place in question, thus adjusting the deepwater waves into a form whereby they correspond to the deepwater incident wave height used for the experiment or theoretical calculation. The deepwater wave height obtained by correcting the effects of diffraction and refraction with their coefficients is called the “equivalent deepwater wave height”. The equivalent deepwater wave height at the place for which design is being carried out is given as follows: H0 ¢ = Kd Kr H0
(4.1.1)
where Kr: refraction coefficient for the place in question (see 4.5.2 Wave Refraction) Kd: diffraction coefficient for the place in question (see 4.5.3 Wave Diffraction)
4.1.3 Properties of Waves [1] Fundamental Properties of Waves Fundamental properties of waves such as the wavelength and velocity may be estimated by means of the small amplitude wave theory. However, the height of breaking waves and the runup height shall be estimated while considering the finite amplitude effects.
-33-
TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN
[Technical Notes] (1) Small Amplitude Wave Theory The fundamental properties of waves are expressed as the functions of the wave height, period, and water depth. Various characteristics of shallow water waves as obtained as a first approximation by small amplitude wave theory are listed below. Note that, with regard to the coordinates, the positive x direction is taken in the direction of wave travel and the positive z direction vertically upwards with z = 0 corresponding to the still water level. The water depth h is assumed to be constant and wave characteristics are assumed to be uniform in the transverse direction (y direction). (a) Surface elevation (displacement from still water level) (m) 2p 2p H h ( x ,t ) = ---- sin æ ------x ------tö èL 2 T ø where h: H: L: T:
(4.1.2)
surface elevation (m) wave height (m) wavelength (m) period (s)
(b) Wavelength (m) gT 2 2ph L = --------- tanh ---------2p L
(4.1.3)
where h: water depth (m) g: gravitational acceleration (m/s2) (c) Wave velocity (m/s) gT 2ph C = ------ tanh ---------- = 2p L
gL ------ tanh 2ph ---------2p L
(4.1.4)
(d) Water particle velocity (m/s)
644474448
(z + h) cosh 2p ----------------------2p 2p L pH u = ------- ----------------------------------- sin æ ------x ------tö èL T ø 2ph T sinh ---------L 2p ( z + h ) cosh ----------------------2p 2p L pH w = ------- ----------------------------------- cos æ ------x ------tö è T ø 2ph L T sinh ---------L where u: component of water particle velocity in the x direction (m/s) w: component of water particle velocity in the z direction (m/s)
(4.1.5)
(e) Water particle acceleration (m/s)
644474448
2p ( z + h ) cos h ----------------------2p 2p L 2p 2 H du ----------------------------------- cos æ ------x ------tö ------ = ------------2 è 2ph L T ø dt T sinh ---------L 2p ( z + h ) cos h ----------------------2p 2p L 2p 2 H dw ----------------------------------- sin æ ------x ------tö ------- = ------------2 è T ø L 2ph dt T sinh ---------L where du ------: component of water particle acceleration in the x direction (m/s2) dt dw -------: component of water particle acceleration in the z direction (m/s2) dt
-34-
(4.1.6)
PART II DESIGN CONDITIONS (f) Pressure in water when wave acts (N/m2) 2p ( z + h ) cosh ----------------------2p 2p 1 L p = --- r 0 gH ----------------------------------- sin æ ------x ------tö r 0 gz èL T ø 2ph 2 cosh ---------L
(4.1.7)
where r0: density of water (1.01~1.05 × 103 kg/m3 for seawater) (g) Mean energy of wave per unit area of water surface (J) 1 E = E k + E p = --- r 0 gH 2 8
(4.1.8)
where Ek and Ep are the kinetic and potential energy densities respectively, with Ek = Ep. (h) Mean rate of energy transported in the direction of wave travel per unit time per unit width of wave (N • m/m/s) W = CG E = nCE CG = nC
(4.1.9) (4.1.10)
where CG: group velocity of waves (m/s) 4ph ö æ ---------- ÷ 1ç L n = --- ç 1 + ---------------------÷ 2ç 4ph sinh ----------÷ è L ø
(4.1.11)
(2) Characteristics of Deepwater Waves and Wavelength (a) Deepwater waves Waves in water with the depth greater than one-half the wavelength (h/L > 1/2) are called the deepwater waves. Various characteristics of deepwater waves may be obtained from the equations of small amplitude wave theory by letting h/L ® ∞ . The wavelength L0, wave velocity C0, and group velocity CG for deepwater waves thus become as below. Note that the units of period T are seconds (s). L0 = 1.56T 2(m), C0 = 1.56T (m/s) CG= 0.78T (m/s) = 1.52T (kt) = 2.81T (km/h)
(4.1.12)
As expressed in equation (4.1.12), the wavelength, wave velocity, and group velocity for deepwater waves depend only on the period and are independent of the water depth. (b) Wavelength of long waves Waves for which the wavelength is extremely long compared with the water depth (h/L < 1/25) are called the long waves. Various characteristics of long waves may be obtained from the equations of small amplitude wave theory by taking h/L to be extremely small. The wavelength, wave velocity, and group velocity for long waves thus become as follows: L = T gh (m) C = CG =
(4.1.13)
gh (m/s)
(3) Consideration of Finite Amplitude Effects The equations shown in (1) are not always accurate for general shallow water waves having a large height, and so it is sometimes necessary to use equations for finite amplitude waves. When carrying out calculations using finite amplitude wave equations, one should refer to “Handbook of Hydraulic Formulas” published by the Japan Society of Civil Engineers. The amount of the errors in calculations that arise from the use of the small amplitude wave theory varies according to the wave steepness H/L and the ratio of water depth to wavelength h ¤ L . Nevertheless, the error in wave parameters is usually no more than 20 ~ 30% with the exception of the horizontal water particle velocity u. One of the finite amplitude effects of waves appears on the crest elevation hc relative to the wave height; the ratio increases as the wave height increases. The definition of the crest elevation hc is shown at the top of Fig. T4.1.2. This figure was drawn up based on wave profile records from the field. It shows the ratio of the highest crest elevation obtained from each observation record to the highest wave height Hmax in that record as the function of relative wave height H1/3/h. -35-
TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN
(4) Types of Finite Amplitude Wave Theory The finite amplitude wave theories include the Stokes wave theory, cnoidal wave theory, and others. In the former, the wave steepness is assumed to be relatively low, and the wave profile is represented as a series of (ηc)max Hmax trigonometric functions. A number of researchers have proposed several approximate series solutions. In this theory, however, convergence of the series becomes extremely poor as the water depth to wavelength ratio decreases. This means that the theory cannot be applied if the water depth to wavelength ratio is too small. On the Standard other hand, the cnoidel wave theory is obtained by a perdeviation Number of turbation expansion method with the water depth to data points wavelength ratio assumed to be extremely small, meanMean ing that it is valid when the water depth to wavelength ratio is small. Errors become large, however, when the water depth to wavelength ratio increases. In addition to these two theories, there are also the hyperbolic wave theory, in which a cnoidal wave is approximated as an H1/3 / h expansion of hyperbolic functions, and the solitary wave Fig. T- 4.1.2 Relationship between Maximum theory, which is the asymptotic case of the cnoidal wave Crest Elevation (hc)max/Hmax and theory when the wavelength approaches to infinity. With Relative Wave Height H1/3/h the exception of solitary wave theory, the equations in all of these finite amplitude wave theories are complicated, meaning that calculations are not easy. In particular, with the cnoidal wave theory, the equations contain elliptic integrals, making them very inconvenient to handle. If Dean’s stream function method 1), 2) is adopted, then the wave profile and water particle velocity can be obtained with good accuracy right up to the point where the wave breaks. (5) Application of Finite Amplitude Wave Theories to Structural Designs Nonlinear theories, which include finite amplitude wave theories, are applied to a wide variety of coastal engineering fields. However, there are still a large number of unknowns, and so, in the case of design at present, they are only applied to a limited number of fields such as those discussed below. (a) Maximum horizontal water particle velocity umax at each elevation below the wave crest This information is vital in the estimation of the wave force on a vertical structural member. The equations from the Stokes wave theory are used when the water depth to wavelength ratio is large, and the equations from solitary wave theory are used when the water depth to wavelength ratio is small. An approximate calculation may be carried out using the following empirical equation 3): H 1 ¤ 2 z + h 3 i cos h [ ( 2p ( z + h ) ) ¤ L ] pH u max ( z ) = ------- 1 + a æ ----ö æ -----------ö -----------------------------------------------------è hø è h ø T sinh [ ( 2ph ) ¤ L ]
(4.1.14)
where the coefficient a is given as listed in Table T- 4.1.2. Table T- 4.1.2 Coefficient a for Calculation of Maximum Horizontal Water Particle Velocity h/L
a
h/L
a
0.03 0.05 0.07 0.10 0.14
1.50 1.50 1.43 1.25 0.97
0.2 0.3 0.5 0.7
0.68 0.49 0.25 0.27
(b) Wave shoaling Wave shoaling, which occurs as the water depth decreases, may be calculated using a long wave theory that includes nonlinear terms. Alternatively, the cnoidal wave theory or hyperbolic wave theory may be applied to this phenomenon (see 4.5.5 Wave Shoaling). (c) Rise and drop of the mean water level The mean water level gradually drops as waves approach the breaking point and then rises within the breaker zone toward the shoreline, as can be calculated from the theory of nonlinear interference between waves and currents. This mean water level change is taken into account for the calculation of the wave height change due to random wave breaking (see 4.5.6 Wave Breaking).
-36-
PART II DESIGN CONDITIONS
(d) Air gap of offshore structures When determining the amount of air gap of offshore structures above the still water level, it is advisable to consider the relative increase in the wave crest elevation due to the finite amplitude effect such as exhibited in Fig. T-4.1.12.
[2] Statistical Properties of Waves In the design of port and harbor facilities, it shall be standard to consider the statistical properties of the waves with regard to wave heights and periods and to use the Rayleigh distribution for the wave heights of an irregular deepwater wave group. [Commentary] The assumption behind the theory of Rayleigh distribution is a precondition that the wave energy is concentrated in an extremely narrow band around a certain frequency. Problems thus remain with regard to its applicability to ocean waves for which the frequency band is broad. Nevertheless, it has been pointed out that, so long as the waves are defined by the zero-upcrossing method, the Rayleigh distribution can be applied to ocean waves as an acceptable approximation. [Technical Notes] (1) Expression of Rayleigh Distribution The Rayleigh distribution is given by the following equation: ì p H 2ü pH p ( H ¤ H ) = --- ----- exp í --- æ -----ö ý è ø 2H î 4 H þ
(4.1.15)
where p(H/H): probability density function of wave heights H : mean wave height (m) According to the Rayleigh distribution, the highest one-tenth wave height H1/10, the significant wave height H 1 ¤ 3 , and the mean wave height H are related to one another by the following equations:
678
H 1 ¤ 10 = 1.27H 1 ¤ 3 H 1 ¤ 3 = 1.60H
(4.1.16)
On average, these relationships agree well with the results of wave observations in situ. The highest wave height Hmax is difficult to determine precisely as will be discussed in (2) below, but in general it may be fixed as in the following relationship: H max = ( 1.6 ~ 2.0 )H 1 ¤ 3
(4.1.17)
The periods are related as follows: T max ≒ T 1 ¤ 3 = ( 1.1 ~ 1.3 )T
(4.1.18)
It should be noted however that as waves approach the coast, waves with the heights greater than the breaking limit begin to break and that their heights are reduced. Thus it is not possible to use the Rayleigh distribution for the wave heights within the breaker zone. (2) Occurrence Probability of the Highest Wave Height The highest wave height Hmax is a statistical quantity that cannot be determined precisely; it is only possible to give its occurrence probability. If the wave height is assumed to follow a Rayleigh distribution, then the expected value Hmax of Hmax , when a large number of samples each composed of N waves are ensembled, is given as follows: 0.5772 (4.1.20) H max = 0.706 æ l n N + ----------------ö H 1 ¤ 3 è 2 l n Nø It should be noted, however, that when Hmax is obtained for each of a large number of samples each containing N waves, there will be a considerable number of cases in which Hmax exceeds Hmax. Thus a simple use of Hmax as the design wave might place structures on a risky side. One can thus envisage the method in which a wave height (Hmax)m with m = 0.05 or 0.1 is used, where (Hmax)m is set such that the probability of the value of Hmax exceeding (Hmax)m is m (i.e., the significance level is m). The value of (Hmax)m for a given significance level m is given by the following equation: N ( H max ) m = 0.706H 1 ¤ 3 l n æ ----------------------------------ö è l n [ 1 ¤ ( 1 m ) ]ø
(4.1.21) -37-
TECHNICAL STANDARDS AND COMMENTARIES FOR PORT AND HARBOUR FACILITIES IN JAPAN
Table T- 4.1.4 lists the values obtained from this equation. Because Hmax is not a definite value but rather a probabilistic variable, the value of Hmax / H1/3 varies greatly with N and m. However, considering the facts that the wave height only approximately follows a Rayleigh distribution and that the wave pressure formula has been derived while containing a certain scatter of experimental data, it is appropriate to use Hmax = (1.6 ~ 2.0) H1/3 by neglecting the very small or large values in the table. Table T- 4.1.4 Relationship between Highest Wave Height Hmax and Significant Wave Height H1/3 Number of waves N
50% significance level (Hmax) 0.5
Mode (Hmax) mode 1.40H1/3 1.52H1/3 1.63H1/3 1.76H1/3 1.86H1/3 1.95H1/3 2.05H1/3 2.12H1/3
50 100 200 500 1,000 2,000 5,000 10,000
Mean (Hmax)
1.46H1/3 1.58H1/3 1.68H1/3 1.81H1/3 1.91H1/3 2.00H1/3 2.10H1/3 2.19H1/3
1.50H1/3 1.61H1/3 1.72H1/3 1.84H1/3 1.94H1/3 2.02H1/3 2.12H1/3 2.19H1/3
10% significance level (Hmax) 0.1 1.76H1/3 1.85H1/3 1.94H1/3 2.06H1/3 2.14H1/3 2.22H1/3 2.31H1/3 2.39H1/3
5% significance level (Hmax) 0.05 1.86H1/3 1.95H1/3 2.03H1/3 2.14H1/3 2.22H1/3 2.30H1/3 3.39H1/3 2.47H1/3
[3] Wave Spectrum In the design of port and harbor facilities, due consideration shall be given to the functional form of the wave spectrum and an appropriate expression shall be used. [Technical Notes] (1) General Form of Wave Spectrum The general form of the wave spectrum is usually represented as in the following equation: S ( f, q ) = S ( f )G ( f, q )
(4.1.22)
where f: frequency q: azimuth from the principal direction of the wave S(f,q): directional spectrum In the above, S(f) is a function that represents the distribution of the wave energy with respect to frequency; it is called the “frequency spectrum”. G(f,q) is a function that represents the distribution of the wave energy with respect to direction; it is called the “directional spreading function”. The functions expressed in the following equations may be used for S(f) and G(f,q). The frequency spectrum of equation (4.1.23) is called the Bretschneider-Mitsuyasu spectrum, while equation (4.1.24) is called the Mitsuyasu type spreading function. 2
4
4 5
S ( f ) = 0.257H 1 ¤ 3 T1 ¤ 3 f exp [ 1.03 ( T1 ¤ 3 f ) ] q G ( f, q ) = G 0 cos 2S --2 where G0 is a constant of proportionality that satisfies the following normalization condition: i
qmax
òq
G ( f, q ) dq = 1
(4.1.23) (4.1.24)
(4.1.25)
min
f S = S max æ -----ö è f mø
5
:
f ≦ fm
64748
where qmax and qmin are respectively the maximum and minimum angles of deviation from the principal direction. The term S in equation (4.1.24) is a parameter that represents the degree of directional spreading of wave energy. It is given by the following formulas: f 2.5 : f > fm S = S max æ -----ö è f mø (4.1.26)
where fm is the frequency at which the spectrum peak appears. It may be represented in terms of the significant wave period T1/3 as in the following equation: f m = 1 ¤ ( 1.05T 1 ¤ 3 )
(4.1.27)
If the units of H1/3 and T1/3 are meters and seconds respectively, then the units of S(f,q) are m2•s. -38-
PART II DESIGN CONDITIONS
S max
(2) Value of Directional Spreading Parameter It is standard to take a value of 10 for the maximum value Smax of the directional spreading parameter in the case of wind waves in deep water. In the case of swell considering the process of wave decay and others, it is appropriate to take a value of 20 or more. Figure T- 4.1.4 shows a graph of approximately estimated values of Smax against wave steepness. Judging by the value of wave steepness, it can be seen that Smax< 20 for wind waves. This graph may be used in order to set an approximate value for Smax. Goda and Suzuki 4) have proposed using as the standard values Smax = 10 for wind waves, Smax = 25 for swell during initial decay, and Smax = 75 for swell that has a long decay distance.
(αp)0
h/L0
Fig. T- 4.1.5 Graph Showing the Change in Smax Due to Refraction Fig. T- 4.1.4 Graph Showing Estimated Values of Smax against Wave Steepness
(3) Change in Smax Due to Refraction The form of the directional spreading function changes as waves undergo the refraction process. When a diffraction calculation on irregular waves is carried out using waves that have been refracted, it is thus very important to consider such changes in the directional spreading function. Figure T- 4.1.5 shows the values of Smax after waves have been refracted at a coastline with straight and parallel depth contour lines. In the figure, (ap)0 is the incident angle of the principal wave direction at the deepwater boundary, i.e., the angle between the principal wave direction and the line normal to the depth contours. (4) Improved Model for Frequency Spectrum If waves are generated in a laboratory flume using the Bretschneider-Mitsuyasu spectrum expressed by equation (4.1.23), the significant wave period of the generated waves often deviates from the target significant wave period. The reason for such a deviation is that the original equation (4.1.23) is given in terms of the peak frequency fm, but this is replaced with the significant wave period T1/3 by using equation (4.1.27). Goda 54) has thus proposed the following standard spectral form for which the significant wave period of the generated waves does not deviate from the target significant wave period. 2
4 5
4
S ( f ) = 0.205H 1 ¤ 3 T1 ¤ 3 f exp [ 0.75 (T1 ¤ 3 f ) ]
(4.1.28)
The peak frequency for equation (4.1.28) is about 8% lower than that for equation (4.1.23), the spectral density at the peak is about 18% higher, and overall the spectrum is shifted towards the low frequency side. At the very least, it is advisable to use the spectral form expressed by equation (4.1.28) for the target spectrum in hydraulic model experiments. (5) Relationship between Wave Spectrum and Typical Values of Wave Characteristics (a) Wave spectrum and typical value of wave height If the probability density function for the occurrence of a wave height H is assumed to follow the Rayleigh distribution, then the relationship between the mean wave height H and the zeroth moment of the wave -39-