"#$%&'()$* $& +)&,-$%*). /0 %' 12'3$-' +'*$*
"#
$%&'( )* +,-./ %01 2%3/ 4* 4%,(-0
5&6($*. $& +#'7&879:32$-% +;-%)*.-.< 9:32$-% = ! (This version August 17, 2014)
567&7,'1 17(,37"8,7-09 >&% "#.$%()$&%. ?#6@* :0(;'3( ,- %<< -11=08&"'3'1 -11=08&"'3'1 >8'(,7-0( %3' ?3-@71'1 ?3-@71'1 ,- (,81'0,( -0 ,A' ,'B,"--/ ;'"(7,'* CD #-8 D701 D701 '33-3( 70 ,A' (-<8,7-0(E ?<'%(' ?%(( ,A'& %<-0F ,- 8( %, &;%,(-0G?370.',-0*'18 &;%,(-0G?370.',-0*'18**
©2015 Pearson Education, Inc.
Stock/Watson - Introduction to Econometrics - 3rd Updated Edition - Answers to Exercises: Chapter 2 1 ____________________________________ ____________________________________ _____________________________
2.1. (a) Probability distribution function for Y Outcome (number of heads) Probability
Y=0 0.25
(b) Cumulative probability distribution function for Y Outcome (number of Y<0 0 ! Y < 1 heads) Probability 0 0.25
(c) µ Y = E (Y ) = (0 ! 0.25) + (1! 0.5 0.50) + (2! 0.2 0.25) = 1.00 Using Key Concept 2.3: var(Y )
=
E (Y
2
) ! [ E (Y )] 2 ,
and 2
E (Y
) = (02 ! 0.25) + (12 ! 0.50) + (22 ! 0.25) = 1.50
so that
var(Y )
=
E(Y
2
) ! [ E(Y )] 2 1.50 ! (1.00) 2 =
=
0.50.
©2015 Pearson Education, Inc.
Y = = 1 0.50
Y = = 2 0.25
1 ! Y < 2
Y " 2
0.75
1.0
Stock/Watson - Introduction to Econometrics - 3rd Updated Edition - Answers to Exercises: Chapter 2 2 ____________________________________ ____________________________________ _____________________________
2.2. We know from Table 2.2 that Pr (Y = 0) = 0.22, Pr (Y = 1) = 0.78, Pr ( X = 0) = 0.30, Pr ( X = 1) = 0.70. So (a) µ Y
( ) = 0 ! Pr (Y
= E Y =
µ X
=
0 ! 0.22 + 1! 0.78 = 0. 78, ( ) = 0 ! Pr ( X
= E X =
0) + 1! Pr (Y = 1)
=
0) + 1! Pr ( X = 1)
0 ! 0.30 + 1! 0.70 = 0. 70.
(b) 2 !
X
= E[( X " µ X ) = (0 " 0.70) = ( "0 .70)
2
2
#
2
#
] Pr ( X
0) + (1" 0.70)2 # Pr (X = 1)
=
0. 30 + 0. 302 # 0. 70 = 0. 21,
2 ! = E
[(Y " µ Y )2 ]
Y
=
(0 " 0.78)2 # Pr (Y
=
0) + (1" 0.78)2 # Pr (Y = 1)
( 0 78)2 # 0. 22 + 0. 222 # 0. 78 = 0. 1716.
= " .
(c) ! XY
=
cov ( X , Y ) = E[( X
=
(0 " 0.70)(0 " 0.78) Pr( X
"
µ X )(Y " µ Y )] = 0, Y = 0)
+ (0 " 0.70)(1 " 0 .78) Pr ( X = 0 , Y = 1) + (1 " 0 .70)(0 " 0 .78) Pr ( X = 1, Y = 0) + (1 " 0.70)(1 " 0 .78) Pr ( X = 1, Y = 1) =
( "0.70) # ( "0.78) # 0 .15 + ( "0 .70) # 0 .22 # 0 .15 + 0.30 # ( "0 .78) # 0 .07 + 0 .30 # 0.22 # 0.63
=
0.084,
corr ( X , Y ) =
! XY ! X ! Y
=
0.084 0.21# 0.1716
©2015 Pearson Education, Inc.
= 0 .4425 .
Stock/Watson - Introduction to Econometrics - 3rd Updated Edition - Answers to Exercises: Chapter 2 3 ____________________________________ ____________________________________ _____________________________
2.3. For the two new random variables W
=
3 + 6 X
and
V
=
20 ! 7Y , we have:
(a) E (V ) = E (20 ! 7Y ) =
20 ! 7E (Y ) = 20 ! 7 " 0. 78 = 14. 54,
E (W ) = E (3 + 6 X ) = 3 + 6 E ( X ) = 3 + 6 " 0.70 =
7.2.
(b) !
2
W
!
2
V
=
2 = 36 " 0.21 = 7.56, var(3 + 6 X ) = 62! X
=
var(20 # 7Y ) = (#7) 2 $ ! Y 2 = 49 " 0.1716 = 8.4084.
(c) !
WV
=
cov(3 + 6 X , 20 " 7Y ) = 6("7)cov( X , Y ) = "42 # 0.084 = "3.52
corr(W , V ) =
3.528
!
WV
! ! W
V
" =
=
7.56 # 8.4084
©2015 Pearson Education, Inc.
0.4425.
"
Stock/Watson - Introduction to Econometrics - 3rd Updated Edition - Answers to Exercises: Chapter 2 4 ____________________________________ ____________________________________ _____________________________
2.4. (a) E ( X 3 ) = 03 ! (1 " p) + 13 ! p = p (b) E ( X k ) = 0k ! (1 " p) +1k ! p = p (c)
E ( X )
=
var ( X ) Thus,
0.3 =
E( X
! =
2
) ![ E ( X )] 2
0.21
=
=
0.3 !0.09
=
0.21
0.46.
To compute the skewness, use the formula from exercise 2.21: E ( X
Alternatively,
)3
! µ
E ( X ! µ )
Thus, skewness
=
3
3
) ! 3[ E( X 2 )][ E( X )] + 2[ E( X )]3
=
E( X
=
0.3 ! 3 " 0.32 + 2 " 0.33
=
0.084
= [(1 ! 0.3)3 " 0.3] + [(0 ! 0.3)3 " 0.7] = 0.084
E ( X " µ )
3
/! 3
=
.084/0.463
=
0.87.
To compute the kurtosis, use the formula from exercise 2.21: E ( X
)4
! µ
Alternatively,
) ! 4[ E( X )][ E( X 3)] + 6[ E( X)] 2[ E( X 2)] !3[ E( X )] 4
E( X
=
0.3 ! 4 " 0.32 + 6 " 0.33 ! 3 " 0.34
E ( X ! µ )
Thus, kurtosis is
4
=
4
=
0.0777
= [(1 ! 0.3) 4 " 0.3] + [(0 ! 0.3) 4 " 0.7] = 0.0777
E ( X " µ )
4
/! 4 = .0777/0.464
=
1.76
©2015 Pearson Education, Inc.
Stock/Watson - Introduction to Econometrics - 3rd Updated Edition - Answers to Exercises: Chapter 2 5 ____________________________________ ____________________________________ _____________________________
2.5.
Let X denote temperature in F and Y denote temperature in C. Recall that Y = 0 °
°
when X = 32 and Y =100 when X = 212. This implies
Y = (100/180) ! ( X
"
32) or Y
17.78 + (5/9) ! X.
="
o
Using Key Concept 2.3, µ X = 70 F implies that µ Y o
and ! X = 7 F implies
!
Y
=
(5/9) " 7 = 3.89°C.
©2015 Pearson Education, Inc.
= !17.78 + (5/9) " 70 = 21.11°C,
Stock/Watson - Introduction to Econometrics - 3rd Updated Edition - Answers to Exercises: Chapter 2 6 ____________________________________ ____________________________________ _____________________________
2.6.The table shows that Pr ( X = 0, Y = 0) = 0.053, Pr ( X = 0, Y = 1) = 0.586, Pr ( X = 1, Y = 0) = 0.015, Pr( X = 1, Y = 1) = 0.346, Pr ( X = 0) = 0.639, Pr ( X = 1) = 0.361, Pr (Y = 0) = 0.068, Pr (Y = 1) = 0.932. (a) E (Y ) = µ Y = =
0 ! Pr(Y = 0) + 1 ! Pr(Y = 1)
0 ! 0.068 + 1 ! 0.932 = 0.932.
(b)
Unemployment Rate = =
# (unemployed) # (labor
force)
Pr(Y = 0) = 1 ! Pr(Y = 1) = 1 ! E (Y ) = 1 ! 0.932 = 0.068.
(c) Calculate the conditional probabilities first:
Pr (Y = 0| X = 0) =
Pr (Y = 1| X = 0) =
Pr (Y = 0| X = 1) =
Pr (Y = 1| X = 1) =
Pr ( X = 0, Y = 0)
0.053 =
Pr ( X = 0) Pr ( X = 0, Y = 1)
0.586 =
Pr ( X = 0) Pr ( X = 1, Y = 0)
Pr( X = 1)
0.917,
=
0.639 0.015 =
Pr ( X = 1) Pr ( X = 1, Y = 1)
0.083,
=
0.639
0.042,
=
0.361 0.346 =
0.958.
=
0.361
The conditional expectations are E (Y |X = 1) = =
0 ! 0.042 + 1 ! 0.958 = 0.958,
E (Y |X = 0) = =
0 ! Pr (Y = 0| X = 1) + 1 ! Pr (Y = 1| X = 1)
0 ! Pr (Y = 0| X = 0) + 1 ! Pr (Y = 1| X = 0) 0 ! 0.083 + 1 ! 0.917 = 0.917.
©2015 Pearson Education, Inc.
Stock/Watson - Introduction to Econometrics - 3rd Updated Edition - Answers to Exercises: Chapter 2 7 ____________________________________ ____________________________________ _____________________________
(d) Use the solution to part (b), Unemployment rate for college graduates = 1 – E (Y |X =1) = 1!0.958 = 0.042 Unemployment rate for non-college graduates = 1 – E (Y |X =0) = 1!0.917 = 0.083
(e) The probability that a randomly selected worker who is reported being unemployed is a college graduate is
Pr ( X = 1|Y = 0) =
Pr ( X = 1, Y = 0)
0.015 =
Pr (Y = 0)
0.221.
=
0.068
The probability that this worker is a non-college graduate is Pr ( X = 0|Y = 0) = 1 ! Pr ( X = 1|Y = 0) = 1 ! 0.221 = 0.778.
(f) Educational achievement and employment status are not independent because they do not satisfy that, for all values of x and y,
Pr ( X
=
For example, from part (e) Pr ( X Pr( X = 0) = 0.639.
x|Y = y) = Pr ( X =
=
x).
0|Y 0) = 0.778, while from the table =
©2015 Pearson Education, Inc.
Stock/Watson - Introduction to Econometrics - 3rd Updated Edition - Answers to Exercises: Chapter 2 8 ____________________________________ ____________________________________ _____________________________
2.7. Using obvious notation, 2 2 2 ! C = ! M + ! F +
(a) µ C
=
2 cov (M ,
C
=
M
+
F ). This
F ; thus µC
=
+
µM
µ F and
implies
40 + 45 = $85,000 per year.
(b) corr( M , F )
=
cov( M , F ) !
!
M F
, so that cov ( M,
F)
=
!
M
!
corr ( M, F ). Thus
F
cov( M , F ) 12 !18 ! 0.80 172.80, where the units are squared thousands of =
=
dollars per year.
(c)
2 2 2 ! C = ! M + ! F +
! C
=
813.60
2 cov (M , F ), so that
=
28.524 thousand
2
! C =
12
2
2
+ 18 +
2 " 172.80 = 813.60, and
dollars per year.
(d) First you need to look up the current Euro/dollar exchange rate in the Wall Street Journal, the Federal Reserve web page, or other financial data outlet. Suppose that this exchange rate is e (say e = 0.75 Euros per Dollar or 1/e = 1.33 Dollars per Euro); each 1 Eollar is therefore with e Euros. The mean is therefore e! µ C (in units of thousands of euros per year), and the standard deviation is e!! C (in units of thousands of euros per year). The correlation is unit-free, and is unchanged.
©2015 Pearson Education, Inc.
Stock/Watson - Introduction to Econometrics - 3rd Updated Edition - Answers to Exercises: Chapter 2 9 ____________________________________ ____________________________________ _____________________________
2.8. µ Y
=
E (Y )
=
1,
2 ! Y
=
var (Y )
µ Z
=
2 ! Z
=
=
4. With
Z
=
1 2
(Y ! 1),
" 1 (Y $ 1) # 1 ( µ $1) 1 (1 $1) %2 & 2 2 ' ( "1 # 1 ! 2 1 ) 4 1 var % (Y $ 1) & 4 '2 ( 4
E
=
=
Y
=
Y
=
©2015 Pearson Education, Inc.
=
.
=
0,
Stock/Watson - Introduction to Econometrics - 3rd Updated Edition - Answers to Exercises: Chapter 2 10 ____________________________________ ____________________________________ _____________________________
H*I* Value of Y
Value of X
1 5 8 Probability distribution of Y
14 0.02 0.17 0.02 0.21
22 0.05 0.15 0.03 0.23
30 0.10 0.05 0.15 0.30
40 0.03 0.02 0.10 0.15
Probability Distribution 65 of X 0.01 0.21 0.01 0.40 0.09 0.39 0.11 1.00
(a) The probability distribution is given in the table above. E (Y ) = 14 ! 0.21 + 22 ! 0.23 + 30 ! 0.30 + 40 ! 0.15 + 65 ! 0.11 = 30.15 2
E (Y
) = 142 ! 0.21 + 222 ! 0.23 + 302 ! 0.30 + 402 ! 0.15 + 652 ! 0.11 = 1127.23
var(Y ) = E (Y 2 ) " [ E (Y )]2 = 218.21 #
=
Y
14.77
J"K LA' .-017,7-0%< ?3-"%"7<7,# -D ! M " N O 7( F7@'0 70 ,A' ,%"<' "'<-; Value of Y 14 22 30 40 0.02/0.39 0.03/0.39 0.15/0.39 0.10/0.39 E (Y |X = 8) = 14 ! (0.02/0.39) + 22 ! (0.03/0.39) + 30 ! (0.15/0.39) +
E (Y
40 ! (0.10/0.39) + 65! (0.09/0.39) = 39.21
2
| X = 8) = 142 ! (0.02/0.39) + 22 2 ! (0.03/0.39) + 30 2 !(0.15/0.39) +
402 ! (0.10/0.39) + 652 ! (0.09/0.39) = 1778.7
var(Y ) = 1778.7 " 39.212 = 241.65 ! Y | X =8
= 15.54
J.K E ( XY ) = (1!14 ! 0.02) + (1! 22: 0.05) + !
cov( X , Y ) corr( X, Y )
=
=
(8 ! 65 ! 0.09) =171.7 E ( XY ) ! E ( X ) E (Y ) 171.7 ! 5.33" 30.15 11.0 =
cov( X, Y )/(! X ! Y )
=
11.0 / (2.60 "14.77)
©2015 Pearson Education, Inc.
=
=
0.286
65 0.09/0.39
Stock/Watson - Introduction to Econometrics - 3rd Updated Edition - Answers to Exercises: Chapter 2 11 ____________________________________ ____________________________________ _____________________________
2.10. Using the fact that if
Y
!
Y " µ Y 2 # " N $ µ Y , ! Y % then & ' !
~ N (0,1) and Appendix Table 1,
Y
we have
" Y ! 1 $ 3 ! 1 # % (1) ' 2 2
(a) Pr (Y $ 3) = Pr &
=
=
0.8413.
(b)
Pr(Y
>
0) = 1 ! Pr(Y " 0)
=
1 ! Pr &
# Y ! 3 " 0 ! 3 $ = 1 ! %( !1) = %(1) = 0 .8413 . ' 3 ) ( 3
(c)
" 40 ! 50 $ Y ! 50 $ 52 ! 50 # & 5 5 ( ' 5 = ) (0.4) ! ) ( !2) = ) (0.4) ! [1 ! ) (2)] = 0.6554 ! 1 + 0.9772 = 0.6326 .
Pr (40 $ Y $ 52) = Pr %
(d)
" 6 ! 5 $ Y ! 5 $ 8 ! 5 # & 2 2 ( ' 2 ) (2 1213) ! ) (0 7071) 0 9831! 0 7602 0 2229
Pr (6 $ Y $ 8) = Pr % =
=
.
.
.
.
©2015 Pearson Education, Inc.
=
.
.
Stock/Watson - Introduction to Econometrics - 3rd Updated Edition - Answers to Exercises: Chapter 2 12 ____________________________________ ____________________________________ _____________________________
2.11. (a) 0.90 (b) 0.05 (c) 0.05 (d) When
Y
(e)
2
Y
=
Z
2
~ ! 10 , then
Y /10
~
F 10,
!
.
, where Z ~ N(0,1), thus Pr (Y
! 1)
=
Pr ("1 ! Z ! 1)
©2015 Pearson Education, Inc.
=
0.32.
Stock/Watson - Introduction to Econometrics - 3rd Updated Edition - Answers to Exercises: Chapter 2 13 ____________________________________ ____________________________________ _____________________________
2.12. (a) 0.05 (b) 0.950 (c) 0.953 (d) The t df distribution and N(0, 1) are approximately the same when df is large. (e) 0.10 (f) 0.01
©2015 Pearson Education, Inc.
Stock/Watson - Introduction to Econometrics - 3rd Updated Edition - Answers to Exercises: Chapter 2 14 ____________________________________ ____________________________________ _____________________________
2.13. (a) E (Y 2 ) = Var (Y ) + µY2
=
1 + 0 = 1; E(W 2 ) = Var (W ) + µ W 2 = 100 + 0 = 100.
(b) Y and W are symmetric around 0, thus skewness is equal to 0; because their mean is zero, this means that the third moment is zero.
(c) The kurtosis of the normal is 3, so 3
E (Y " µ Y )
=
4
4 ! Y
; solving yields E(Y 4 )
=
3; a
similar calculation yields the results for W .
(d) First, condition on E ( S |X
=
0)
=
X
=
0; E (S 2|X
0, so that =
S
=
W :
0) 100, E ( S 3| X =
=
0)
=
0, E ( S 4|X
=
0) 3 !100 2. =
Similarly, E (S |X
=
1) 0; E (S 2| X =
=
1) 1, E (S 3|X =
=
1) 0, E (S 4|X 1) 3. =
=
=
From the large of iterated expectations E (S )
=
E (S |X
=
0) ! Pr (X = 0) + E (S |X
=
1) ! Pr( X = 1) = 0
E ( S
2
) = E ( S 2 |X
=
0) ! Pr (X = 0) + E( S 2| X
=
1) ! Pr( X = 1) =100 ! 0.01 +1 ! 0.99 =1.99
E (S
3
) = E (S 3 |X
=
0) ! Pr (X = 0) + E (S 3 |X
=
1) ! Pr( X = 1) = 0
E ( S
4
) = E (S 4 |X
=
0) ! Pr (X = 0) + E (S 4 |X
=
1) ! Pr( X = 1)
=
(e) µ S
=
3 !1002 ! 0.01 + 3!1! 0.99 = 302.97
E (S )
Similarly,
=
0, thus E ( S ! µ S )3
2 ! S
=
E ( S
" µ S ) 2
=
3
E ( S
2
E (S
Thus, kurtosis 302.97 / (1.992 ) =
=
=
)
=
0 from part (d). Thus skewness = 0.
) 1.99, and E (S ! µ S )4 =
76.5
©2015 Pearson Education, Inc.
=
4
E (S
)
=
302.97.
Stock/Watson - Introduction to Econometrics - 3rd Updated Edition - Answers to Exercises: Chapter 2 15 ____________________________________ ____________________________________ _____________________________
2.14. The central limit theorem suggests that when the sample size (n) is large, the distribution of the sample average (Y ) is approximately Given µ Y (a)
n
=
2
100,
=
100,
2
!
Y
! Y
=
2
=
! Y
n
=
43 = 100
=
165,
Pr (Y
>
2
!
Y
2
=
! Y
n
=
43 = 165
0.43
$
101# 100 " 0.43
( % & (1 525) .
n
=
64,
! '
98) = 1 # Pr (Y $ 98) = 1 # Pr %
2
!
Y
2
=
! Y
64
=
2 ! Y
n
.
43 = 64
=
0. 9364.
0.2606, and Y
# 100
0.2606
$
" & 0.2606 (
98 # 100
) 1 # * (#3.9178) = * (3.9178) = 1.000
(c)
Y
=
0.43, and
! Y # 100
n
2
!
43.0,
Pr (Y $ 101) = Pr '
(b)
2 # " N $ µ Y , ! Y % with & '
(rounded to four decimal places).
0.6719, and
! 101 # 100 Y #100 103 #100 " $ $ & ' 0 6719 0 6719 0 6719 ( ) * (3 6599) # * (1 2200) 0 9999 # 0 8888
Pr (101 $ Y $ 103) = Pr %
.
.
.
.
©2015 Pearson Education, Inc.
.
=
.
.
=
0.1111.
Stock/Watson - Introduction to Econometrics - 3rd Updated Edition - Answers to Exercises: Chapter 2 16 ____________________________________ ____________________________________ _____________________________
2.15. (a) Pr (9.6 ! Y ! 10.4)
=
=
" 9.6 $ 10 Y $ 10 10.4 $ 10 # ! ! & 4/n 4/n ( ' 4/n " 9.6 $ 10 ! ! 10.4 $ 10 # Pr % Z & 4/n ( ' 4/n
Pr %
where Z ~ N (0, 1). Thus,
# 9.6 "10
(i) n = 20; Pr %
4/n
! Z !
10.4 "10 $
&
=
4/n
Pr ("0.89 ! Z ! 0.89)
10.4 " 10 $ # 9.6 " 10 ! Z ! & 4/n ( ' 4/n
(ii) n = 100; Pr %
=
# 9.6 " 10 ! 10.4 "10 $ ! Z & 4/ n 4/n ( '
(iii)n = 1000; Pr %
=
Pr("2.00 ! Z ! 2.00)
=
0.63
=
0.954
Pr("6.32 ! Z ! 6.32) 1.000 =
(b) Pr (10 $ c ! Y
As n get large
c
4/
" $c Y $ 10 c # ! 10 + c) = Pr % ! ! & 4/n 4/n ( ' 4/n " $c ! ! c # . = Pr % 4/n Z 4/n & ' (
gets large, and the probability converges to 1. n
(c) This follows from (b) and the definition of convergence in probability given in Key Concept 2.6.
©2015 Pearson Education, Inc.
Stock/Watson - Introduction to Econometrics - 3rd Updated Edition - Answers to Exercises: Chapter 2 17 ____________________________________ ____________________________________ _____________________________
2.16. There are several ways to do this. Here is one way. Generate n draws of Y , Y 1, Y 2, … Y n. Let X i = 1 if Y i < 3.6, otherwise set X i = 0. Notice that X i is a Bernoulli random variables with µ X = Pr( X = 1) = Pr(Y < 3.6). Compute probability to µ X = Pr( X = 1) = Pr(Y < 3.6),
X will
X . Because X converges
in
be an accurate approximation if n
is large.
©2015 Pearson Education, Inc.
Stock/Watson - Introduction to Econometrics - 3rd Updated Edition - Answers to Exercises: Chapter 2 18 ____________________________________ ____________________________________ _____________________________
2.17. µ Y = 0.4 and (a) (i) P ( Y
2
! Y
=
" 0.43)
(ii) P ( Y
0.4 " 0.6
!
= Pr %
! 0.37)
Y
=
0.24
# 0.4
0.24/n
!
= Pr %
Y
$
# 0.4
0.24/n
# 0.4 " & 0.24/n
0.43
$
=
# 0.4 " & 0.24/ n
Pr
0.37
=
! %
Pr
Y
# 0.4
0.24/n
! %
Y
" $ 0.6124&
# 0.4
0.24/ n
" $ #1.22 &
=
=
0.27
0.11
b) We know Pr(!1.96 ! Z ! 1.96) = 0.95, thus we want n to satisfy 0.41 =
0.41! 0.4 0.24/n
>
!1.96 and
0.39 !0.4 0.24/n
<
!1.96. Solving these inequalities yields n "
9220.
©2015 Pearson Education, Inc.
Stock/Watson - Introduction to Econometrics - 3rd Updated Edition - Answers to Exercises: Chapter 2 19 ____________________________________ ____________________________________ _____________________________
2.18. Pr (Y
=
$0) = 0.95, Pr (Y
(a) The mean of
=
$20000)
0.05.
Y is
µ Y
The variance of
=
0 ! Pr (Y
(Y ( µ ) $&
Y
=
$0) + 20, 000 ! Pr (Y
=
$20000) = $1000.
Y is
" 2 ! = E $
2#
% %'
Y
=
(0 ( 1000)2 ) Pr (Y
=
((1000)2 ) 0.95 + 190002 ) 0. 05 = 1. 9) 107 ,
so the standard deviation of Y is
(b) (i) E (Y ) µ Y =
=
=
$1000,
2
!
Y
=
2 ! Y
n
=
0 ) + (20000 ( 1000)2 ) Pr (Y = 20000)
1
! Y
=
(1.9 "107 ) 2
7
=
1. 9"10 100
=
$4359.
5
=
1.9 "10 .
(ii) Using the central limit theorem,
Pr (Y
>
2000) = 1 ! Pr (Y " 2000)
# Y ! 1000 2, 000 ! 1, 000 $ ! Pr % " & 5 1.9 ' 105 ) ( 1.9 '10 * 1 ! + (2.2942) = 1 ! 0.9891 = 0.0109. =1
©2015 Pearson Education, Inc.
Stock/Watson - Introduction to Econometrics - 3rd Updated Edition - Answers to Exercises: Chapter 2 20 ____________________________________ ____________________________________ _____________________________
2.19. (a) l
Pr (Y
y j )
=
=
! Pr ( X
=
xi , Y
=
yj)
i 1 =
l
=
! Pr (Y
=
y j | X xi )Pr ( X xi ) =
=
i 1 =
(b) k
E (Y ) =
k
' y Pr (Y
=
j
' y ' Pr (Y
yj ) =
l
! # # ## %
=
y j |X
y j |X
=
xi ) Pr ( X
=
i=1
" $ $ $ &
k
'' i =1
j =1
y j Pr (Y
=
j
j =1
=
l
=
xi ) $ Pr ( X xi )
j =1
=
l
=
' E (Y | X
=
xi )Pr ( X = xi ).
i =1
(c) When
X and Y are
independent,
Pr ( X
=
xi , Y
=
y j ) = Pr (X
=
xi )Pr (Y
=
xi , Y y j )
=
y j ),
so ! XY
=
E[( X l
" µ X )(Y " µ Y )]
k
** ( x "
=
"
µ X )( y j µ Y ) Pr ( X
i
=
i 1 j 1 =
=
l
k
**( x "
=
i
"
µ X )( y j µ Y ) Pr ( X
=
xi ) Pr (Y y j ) =
i 1 j 1 =
=
=
# l ( x " µ ) Pr ( X x ) $ # k ( y " µ ) Pr (Y i & % * j Y %* i X 'i1 ( ' j 1 E ( X " µ X ) E (Y " µ Y ) 0 ) 0 0, =
=
=
=
=
cor (X , Y )
=
! XY ! X ! Y
=
0 =
=
! X ! Y
©2015 Pearson Education, Inc.
0.
=
yj
$ & (
xi )
Stock/Watson - Introduction to Econometrics - 3rd Updated Edition - Answers to Exercises: Chapter 2 21 ____________________________________ ____________________________________ _____________________________
l
2.20. (a) Pr (Y
=
yi )
=
m
!! Pr (Y
=
yi| X
xj , Z
=
=
zh ) Pr ( X
=
xj , Z
=
z h )
j 1 h 1 =
=
(b) k
E (Y )
=
' y Pr (Y i
=
yi ) Pr (Y
yi )
=
i 1 =
k
=
l
' '' Pr (Y i 1
=
=
l
yi | X
=
xj , Z
=
zh ) Pr ( X
=
xj , Z
=
z h )
=
! k '' # ' yi Pr (Y j 1 h 1 % i 1 l
=
=
j 1 h 1
=
=
m
yi
"
m
=
=
yi | X
=
xj , Z
=
zh ) $ Pr ( X
&
=
=
xj , Z
=
z h )
m
'' E (Y| X
=
x j , Z
=
zh ) Pr ( X
=
xj , Z
=
z h )
j 1 h 1 =
=
where the first line in the definition of the mean, the second uses (a), the third is a rearrangement, and the final line uses the definition of the conditional expectation.
©2015 Pearson Education, Inc.
Stock/Watson - Introduction to Econometrics - 3rd Updated Edition - Answers to Exercises: Chapter 2 22 ____________________________________ ____________________________________ _____________________________
2. 21. (a) E ( X
! µ )3 = E[( X ! µ )2 ( X ! µ )] = E [X 3 ! 2X 2 µ + X µ 2 ! X 2 µ + 2X µ2 ! µ 3 ] = E
( X 3 ) ! 3E ( X 2 ) µ + 3E (X )µ 2 ! µ 3
= E
( X 3 ) ! 3E ( X 2 )E ( X ) + 2E (X )3
=
E (X
3
) ! 3E (X 2 )E (X ) + 3E (X )[E (X )]2 ! [E (X
(b) E ( X
! µ )4
=
E[( X
3
! 3 X 2 µ + 3 X µ 2 ! µ 3 )( X ! µ )]
[ X 4 ! 3 X 3 µ + 3 X 2 µ 2 ! X µ 3 ! X 3µ + 3 X 2µ 2 ! 3 X µ 3 + µ 4]
= E = E
( X 4 ) ! 4 E( X 3 ) E( X ) + 6 E( X 2) E( X ) 2 ! 4 E( X ) E( X ) 3 + E( X ) 4
= E
( X 4 ) ! 4[ E( X )][ E( X 3)] + 6[ E( X)] 2[ E( X 2)] ! 3[ E( X )] 4
©2015 Pearson Education, Inc.
Stock/Watson - Introduction to Econometrics - 3rd Updated Edition - Answers to Exercises: Chapter 2 23 ____________________________________ ____________________________________ _____________________________
2. 22. The mean and variance of R are given by µ =
w"
0.08 + (1 # w) " 0.05
2 2 ! = w "
0.07 2 + (1 # w) 2 " 0.042 + 2 " w " (1 # w) " [0.07 " 0.04 " 0.25]
where 0.07 ! 0.04 ! 0.25 Cov ( R s , Rb ) follows from the definition of the correlation =
between R s and Rb.
(a) µ 0.065; ! =
=
(b) µ 0.0725; ! =
0.044
=
0.056
(c) w = 1 maximizes µ ; !
=
0.07 for this value of w.
(d) The derivative of ! 2 with respect to w is 2
d !
dw
= =
2 w " .072 # 2(1 # w) " 0.042 + (2 # 4w) " [0.07 " 0.04 " 0.25] 0.0102w # 0.0018
Solving for w yields w 18/ 102 0.18. (Notice that the second derivative is positive, so that this is the global minimum.) With w 0.18, ! R .038. =
=
=
©2015 Pearson Education, Inc.
=
Stock/Watson - Introduction to Econometrics - 3rd Updated Edition - Answers to Exercises: Chapter 2 24 ____________________________________ ____________________________________ _____________________________
2. 23. X and Z are two independently distributed standard normal random variables, so µ X
=
µ Z
2
0, ! X
=
=
2
!Z
=
1, ! XZ
(a) Because of the independence between X and and E ( Z |X ) E ( Z ) 0. Thus =
2
) = ! X2
E ( X
(c)
E ( XY ) = E ( X
0.
Pr ( Z
=
z|X
=
+
2
| ) = E( X 2| X ) + E( Z| X ) =
+Z X
=
Pr ( Z
=
z ),
2
µ X
3
=
1, and µY
+ ZX
(
= E X
2
+Z
2
2
X + 0 = X .
) = E ( X 2 ) + µ Z
=
1 + 0 = 1.
) = E( X 3 ) + E ( ZX ). Using the fact that the odd moments of
a standard normal random variable are all zero, we have E ( X 3 ) independence between X and E ( XY ) = E( X
x)
=
E (Y| X ) = E( X
(b)
Z ,
=
3
Z , we
have
E ( ZX )
=
µ Z µ X
=
0. Using the 0. Thus =
) + E( ZX ) = 0.
(d) cov ( XY ) = E[( X " µ X )(Y " µ Y )] = E[( X " 0)(Y "1)] = E =
corr ( X , Y ) =
( XY " X ) = E ( XY ) " E ( X )
0 " 0 = 0. 0
!
XY
!
X
!
Y
=
=
!
X
0.
! Y
©2015 Pearson Education, Inc.
Stock/Watson - Introduction to Econometrics - 3rd Updated Edition - Answers to Exercises: Chapter 2 25 ____________________________________ ____________________________________ _____________________________
2.24. (a) E (Y i 2 ) = ! 2 + µ 2
2 = !
and the result follows directly.
(b) (Y i/! ) is distributed i.i.d. N (0,1),
W
"
=
n i
1
=
(Y i /! ) 2 , and the result follows from the
definition of a ! 2 random variable. n
n
(c)
E (W )
=
E
Yi
2
n
2
Y i
" ! 2 " E ! 2 i
=
1
i
=
=
n.
1
=
(d) Write V
=
Y1 n
"i
=
2 Yi
2
=
Y 1 /! n
"i
2 (Y /! )
2
=
n #1
n #1
which follows from dividing the numerator and den ominator by ! . Y 1/! ~ N (0,1),
"
n i
=
2
(Y i /! ) 2 ~ ! "1 , and Y 1/! and 2 n
"
n i
=
2
(Y i /! ) 2 are independent. The result then
follows from the definition of the t distribution.
©2015 Pearson Education, Inc.
Stock/Watson - Introduction to Econometrics - 3rd Updated Edition - Answers to Exercises: Chapter 2 26 ____________________________________ ____________________________________ _____________________________
n
n
! ax
2.25. (a)
i
(
= ax1 + ax2 + ax3 + ! + axn
) = a ( x1 + x2 + x3 + !
+ xn
) = a ! xi
i =1
i =1
(b) n
! ( x
i +
yi ) = ( x1 + y1 + x2 + y2 + ! xn + yn )
i =1
=
( x1 + x2 + ! xn ) + ( y1 + y2 + ! yn ) n
=
! xi
n
+
i =1
!y
i
i =1
n
(c)
! a = (a + a + a + !
+a
) = na
i =1
(d) n
! (a + bxi
n
+
cyi ) 2
=
i =1
! (a
2
+
b2 xi2 + c2 yi2 + 2 abxi + 2 acyi + 2 bcxi yi )
i =1 n
=
na
2
+
b
2
!x
2 i +
i =1
n
c
2
!y
2 i +
n
n
n
i=1
i=1
i=1
2 ab! xi + 2 ac! yi + 2bc! xi yi
i =1
©2015 Pearson Education, Inc.
Stock/Watson - Introduction to Econometrics - 3rd Updated Edition - Answers to Exercises: Chapter 2 27 ____________________________________ ____________________________________ _____________________________
cov(Yi , Y j )
2.26. (a) corr(Y i,Y j) =
"Y "Y i
cov(Yi , Y j )
=
cov(Yi , Y j )
=
2
" Y" Y
j
"Y
! , where the first equality
=
uses the definition of correlation, the second uses the fact that Y i and Y j have the same variance (and standard deviation), the third equality uses the definition of standard deviation, and the fourth uses the correlation given in the problem. Solving for cov(Y i, Y j) from the last equality gives the desired result.
(b)
Y =
1 2
1
Y1 +
2
1
var( Y ) =
(c)
Y
=
1 n
4
Y 2 ,
so that E ( Y ) =
var(Y1 ) +
1
1 2
var(Y2 ) +
4
n
! Y , so that E (Y )
1
=
i
n
i 1 =
E (Y )1 +
2 4
E (Y 2 ) = µ Y
2
2
!Y
cov(Y1 , Y2 ) =
n
! E (Y ) i
i
1
=
1
=
1 n
2
2
+
"! Y
2
n
! µ
Y
i
=
µ Y
1
=
1 n % $ var(Y ) = var & * Y i ' ( n i 1 ) =
=
=
n
1 n
2
i
n
2
*
! Y
n
+
2
=
2 !Y +
i =1
2
=
+
i =1
1 n
* var(Y )
! Y
n
+
2
n(n # 1) n
2
n
2
n #1
n
* * cov(Y ,Y ) i
j
i =1 j = i+1
n #1
2 n
2
n
* * "!
2 Y
i =1 j = i+1
2
"! Y
$1 # 1 % "! 2 & n ' Y ( ) n !1
where the fourth line uses
n
" " a = a(1 + 2 + 3 + ! i =1 j =i +1
+
n !1) =
an(n ! 1)
2
variable a. 2
(d) When n is large
! Y
n
"
0 and
1 !
0,
and the result follows from (c).
n
©2015 Pearson Education, Inc.
for any
Stock/Watson - Introduction to Econometrics - 3rd Updated Edition - Answers to Exercises: Chapter 2 28 ____________________________________ ____________________________________ _____________________________
2.27
! )| Z ] = E [ E ( X |Z ) – E ( X |Z ) ] = 0. (a) E (W ) = E [ E (W |Z ) ] = E [ E ( X " X
(b) E (WZ ) = E [ E (WZ |Z ) ] = E [ ZE (W ) |Z ] = E [ Z !0] = 0
2
2
2
(c) Using the hint: V = W – h( Z ), so that E (V ) = E (W ) + E [h( Z ) ] – 2" E [W !h( Z )]. 2
2
Using an argument like that in (b), E [W !h( Z )] = 0. Thus, E (V ) = E (W ) + 2
2
E [h( Z ) ], and the result follows by recognizing that E [h( Z ) ] # 0 because h( z ) for any value of z .
©2015 Pearson Education, Inc.
2
# 0