RESISTENCIAS El objetivo de una resistencia es producir una caída de tensión que es proporcional a la corriente que la atraviesa; por la ley de Ohm tenemos que V = IR. Idealmente, en un mund mundo o perf perfec ecto to,, el valo valorr de tal tal resi resist sten enci cia a debe deberí ría a ser ser cons consta tant nte e independien independientemen temente te del tiempo, temperatura, temperatura, corriente corriente y tensión tensión a la que está sometida la resistencia. Pero esto no es así. Las resistencias actuales, se aproximan mejo mejorr a la resi resist sten enci cia a "ide "ideal al", ", pero pero insi insist sto, o, una una cosa cosa es la teor teoría ía y otra otra muy muy diferente la vida real, en la que los fenómenos físicos son mucho más complejos e intrincados como para poder describirlos completamente con una expresión del tipo de la Ley de Ohm. Esta nos proporciona una aproximación muy razonable, y válida para la gran mayoría de circuitos que se diseñan. Por su composición, podemos distinguir varios tipos de resistencias: • • • • • •
De hilo bobinado (wirewound) Carbón prensado (carbon composition) Película de carbón (carbon film) Película óxido metálico (metal oxide film) Película metálica (metal film) Metal vidriado (metal glaze)
Por su modo de funcionamiento, podemos distinguir: • •
Dependientes de la temperatura (PTC y NTC) Resistencias variables, potenciómetros y reóstatos
Resistencias de hilo bobinado.- Fueron de los primeros tipos en fabricarse, y aún se utilizan cuando se requieren potencias algo elevadas de disipación. Están constituidas por un hilo conductor bobinado en forma de hélice o espiral (a modo de rosca de tornillo) sobre un sustrato cerámico.
Las aleaciones empleadas son las que se dan en la tabla, y se procura la mayor independencia posible de la temperatura, es decir, que se mantenga el valor en ohmios independientemente de la temperatura. metal
resistividad relativa (Cu = 1)
Coef. Temperatura a (20° C)
Aluminio
1.63
+ 0.004
Cobre
1.00
+ 0.0039
Constantan
28.45
± 0.0000022
Karma
77.10
± 0.0000002
Manganina
26.20
± 0.0000002
Cromo-Níquel 65.00
± 0.0004
Plata
+ 0.0038
0.94
La resistencia de un conductor es proporcional a su longitud, a su resistividad específica (rho) e inversamente proporcional a la sección recta del mismo. Su expresión es:
En el sistema internacional (SI) rho viene en ohmios-metro, L en metros y el área de la sección recta en metros cuadrados. Dado que el cobre, aluminio y la plata tienen unas resistividades muy bajas, o lo que es lo mismo, son buenos conductores, no se emplearán estos metales a no ser que se requieran unas resistencias de valores muy bajos. La dependencia del valor de resistencia que ofrece un metal con respecto a la temperatura a la que está sometido, lo indica el coeficiente de temperatura, y viene expresado en grado centígrado elevado a la menos uno. Podemos calcular la resistencia de un material a una temperatura dada si conocemos la resistencia que tiene a otra temperatura de referencia con la expresión:
Los coeficientes de temperatura de las resistencias bobinadas son extremadamente pequeños. Las resistencias típicas de carbón tienen un coeficiente de temperatura del orden de decenas de veces mayor, lo que ocasiona que las resistencias bobinadas sean empleadas cuando se requiere estabilidad térmica. Un inconveniente de este tipo de resistencias es que al estar constituida de un arrollamiento de hilo conductor, forma una bobina, y por tanto tiene cierta inducción, aunque su valor puede ser muy pequeño, pero hay que tenerlo en cuenta si se trabaja con frecuencias elevadas de señal. Resistencias de carbón prensado.- Estas fueron también de las primeras en fabricarse en los albores de la electrónica. Están constituidas en su mayor parte por grafito en polvo, el cual se prensa hasta formar un tubo como el de la figura.
Las patas de conexión se implementaban con hilo enrollado en los extremos del tubo de grafito, y posteriormente se mejoró el sistema mediante un tubo hueco cerámico (figura inferior) en el que se prensaba el grafito en el interior y finalmente se disponían unas bornas a presión con patillas de conexión. Las resistencias de este tipo son muy inestables con la temperatura, tienen unas tolerancias de fabricación muy elevadas, en el mejor de los casos se consigue un 10% de tolerancia, incluso su valor óhmico puede variar por el mero hecho de la soldadura, en el que se somete a elevadas temperaturas al componente. Además tienen ruido térmico también elevado, lo que las hace poco apropiadas para aplicaciones donde el ruido es un factor crítico, tales como amplificadores de micrófono, fono o donde exista mucha ganancia. Estas resistencias son también muy sensibles al paso del tiempo, y variarán ostensiblemente su valor con el transcurso del mismo. Resistencias de película de carbón.- Este tipo es muy habitual hoy día, y es utilizado para valores de hasta 2 watts. Se utiliza un tubo cerámico como sustrato sobre el que se deposita una película de carbón tal como se aprecia en la figura.
Para obtener una resistencia más elevada se practica una hendidura hasta el sustrato en forma de espiral, tal como muestra (b) con lo que se logra aumentar la longitud del camino eléctrico, lo que equivale a aumentar la longitud del elemento resistivo. Resistencias de película de óxido metálico.- Son muy similares a las de película de carbón en cuanto a su modo de fabricación, pero son más parecidas, eléctricamente hablando a las de película metálica. Se hacen igual que las de película de carbón, pero sustituyendo el carbón por una fina capa de óxido metálico
(estaño o latón). Estas resistencias son más caras que las de película metálica, y no son muy habituales. Se utilizan en aplicaciones militares (muy exigentes) o donde se requiera gran fiabilidad, porque la capa de óxido es muy resistente a daños mecánicos y a la corrosión en ambientes húmedos.
Resistencias de película metálica.- Este tipo de resistencia es el que mayoritariamente se fabrica hoy día, con unas características de ruido y estabilidad mejoradas con respecto a todas las anteriores. Tienen un coeficiente de temperatura muy pequeño, del orden de 50 ppm/°C (partes por millón y grado Centígrado). También soportan mejor el paso del tiempo, permaneciendo su valor en ohmios durante un mayor período de tiempo. Se fabrican este tipo de resistencias de hasta 2 watts de potencia, y con tolerancias del 1% como tipo estándar.
Resistencias de metal vidriado.- Son similares a las de película metálica, pero sustituyendo la película metálica por otra compuesta por vidrio con polvo metálico. Como principal característica cabe destacar su mejor comportamiento ante sobrecargas de corriente, que puede soportar mejor por su inercia térmica que le confiere el vidrio que contiene su composición. Como contrapartida, tiene un coeficiente térmico peor, del orden de 150 a 250 ppm/°C. Se dispone de potencias de hasta 3 watts. Se dispone de estas resistencias encapsuladas en chips tipo DIL (dual in line) o SIL (single in line).
Resistencias dependientes de la temperatura.- Aunque todas las resistencias, en mayor o menor grado, dependen de la temperatura, existen unos dispositivos específicos que se fabrican expresamente para ello, de modo que su valor en ohmios dependa "fuertemente" de la temperatura. Se les denomina termistores y como cabía esperar, poseen unos coeficientes de temperatura muy elevados, ya sean positivos o negativos. Coeficientes negativos implican que la resistencia del elemento disminuye según sube la temperatura, y coeficientes positivos al contrario, aumentan su resistencia con el aumento de la temperatura. El silicio, un material semiconductor, posee un coeficiente de temperatura negativo. A mayor temperatura, menor resistencia. Esto ocasiona problemas, como el conocido efecto de "avalancha térmica" que sufren algunos dispositivos semiconductores cuando se eleva su temperatura lo suficiente, y que puede destruir el componente al aumentar su corriente hasta sobrepasar la corriente máxima que puede soportar.
• •
NTC (negative temperature coefficient). PTC (positive temperature coefficient).
Una aplicación típica de un NTC es la protección de los filamentos de válvula, que son muy sensibles al "golpe" de encendido o turn-on. Conectando un NTC en serie protege del golpe de encendido, puesto que cuando el NTC está a temperatura ambiente (frío, mayor resistencia) limita la corriente máxima y va aumentando la misma según aumenta la temperatura del NTC, que a su vez disminuye su resistencia hasta la resistencia de régimen a la que haya sido diseñado. Hay que elegir correctamente la corriente del dispositivo y la resistencia de régimen, así como la tensión que caerá en sus bornes para que el diseño funcione correctamente.
NTC CODIGO DE COLORES
PTC
CONDENSADORES O CAPACITORES Tipos de Condensadores Condensadores de aire. Se trata de condensadores, normalmente de placas paralelas, con dieléctrico de aire y encapsulados en vidrio. Como la permitividad eléctrica relativa es la unidad, sólo permite valores de capacidad muy pequeños. Se utilizó en radio y radar, pues carecen de pérdidas y polarización en el dieléctrico, funcionando bien a frecuencias elevadas. Condensadores de mica. La mica posee varias propiedades que la hacen adecuada para dieléctrico de condensadores: bajas pérdidas, exfoliación en láminas finas, soporta altas temperaturas y no se degrada por oxidación o con la humedad. Sobre una cara de la lámina de mica se deposita aluminio, que forma una armadura. Se apilan varias de estas láminas, soldando los extremos alternativamente a cada uno de los terminales. Estos condensadores funcionan bien en altas frecuencias y soportan tensiones elevadas, pero son caros y se ven gradualmente sustituidos por otros tipos. Condensadores de papel. El dieléctrico es papel parafinado, bakelizado o sometido a algún otro tratamiento que reduce su higroscopia y aumenta el aislamiento. Se apilan dos cintas de papel, una de aluminio, otras dos de papel y otra de aluminio y se enrollan en espiral. Las cintas de aluminio constituyen las dos armaduras, que se conectan a sendos terminales. Se utilizan dos cintas de papel para evitar los poros que pueden presentar. Condensadores autorregenerables. Los condensadores de papel tienen aplicaciones en ambientes industriales. Los condensadores autorregenerables son condensadores de papel, pero la armadura se realiza depositando aluminio sobre el papel. Ante una situación de sobrecarga que supere la rigidez dieléctrica del dieléctrico, el papel se rompe en algún punto, produciéndose un cortocircuito entre las armaduras, pero este corto provoca una alta densidad de corriente por las armaduras en la zona de la rotura. Esta corriente funde la fina capa de aluminio que rodea al cortocircuito, restableciendo el aislamiento entre l as armaduras. Condensadores electrolíticos. Es un tipo de condensador que utiliza un electrolito, como su primera armadura, la cual actúa comocátodo. Con la tensión adecuada, el electrolito deposita una capa aislante (la cual es en general una capa muy fina de óxido de aluminio) sobre la segunda armadura o cuba (ánodo), consiguiendo así capacidades muy elevadas. Son inadecuados para funcionar con corriente alterna. La polarización inversa destruye el óxido, produciendo un corto entre el electrolito y la cuba, aumentando la temperatura,
y por tanto, arde o estalla el condensador consecuentemente. Existen varios tipos, según su segunda armadura y electrolito empleados: Condensadores de aluminio. Es el tipo normal. La cuba es de aluminio y el electrolito una disolución de ácido bórico. Funciona bien a bajas frecuencias, pero presenta pérdidas grandes a frecuencias medias y altas. Se emplea en fuentes de alimentación y equipos de audio. Muy utilizado en fuentes de alimentación conmutadas. Condensadores de tantalio (tántalos). Es otro condensador electrolítico, pero emplea tantalio en lugar de aluminio. Consigue corrientes de pérdidas bajas, mucho menores que en los condensadores de aluminio. Suelen tener mejor relación capacidad/volumen. Condensadores bipolares (para corriente alterna). Están formados por dos condensadores electrolíticos en serie inversa, utilizados en caso de que la corriente pueda invertirse. Son inservibles para altas frecuencias. Condensadores de poliéster o Mylar. Está formado por láminas delgadas de poliéster sobre las que se deposita aluminio, que forma las armaduras. Se apilan estas láminas y se conectan por los extremos. Del mismo modo, también se encuentran condensadores depolicarbonato y polipropileno. Condensadores de poliestireno también conocidos comúnmente como Styroflex(marca registrada de Siemens). Otro tipo de condensadores de plástico, muy utilizado en radio, por disponer de coeficiente de temperatura inverso a las bobinas de sintonía, logrando de este modo estabilidad en los circuito resonantes. Condensadores cerámicos. Utiliza cerámicas de varios tipos para formar el dieléctrico. Existen diferentes tipos formados por una sola lámina de dieléctrico, pero también los hay formados por láminas apiladas. Dependiendo del tipo, funcionan a distintas frecuencias, llegando hasta las microondas. Condensadores síncronos. Es un motor síncrono que se comporta como un condensador. Dieléctrico variable. Este tipo de condensador tiene una armadura móvil que gira en torno a un eje, permitiendo que se introduzca más o menos dentro de la otra. El perfil de la armadura suele ser tal que la variación de capacidad es proporcional al logaritmo del ángulo que gira el eje. Condensadores de ajuste. Son tipos especiales de condensadores variables. Las armaduras son semicirculares, pudiendo girar una de ellas en torno al centro, variando así la capacidad. Otro tipo se basa en acercar las armaduras, mediante un tornillo que las aprieta.
CODIGO DE LOS CONDENSADORES Determinar el valor de un capacitor por medio del código de colores no es difícil y se rea se realiza sin problemas.
Al igual que en los resistores este código permite de manera fácil establecer su valor:
El código 101 de los capacitores: El código 101 es muy utilizado en capacitores cerámicos. Muchos de ellos que tienen su valor impreso, como los de valores de 1 uF o más. Donde: uF = microfaradio Ejemplo: 47 uF, 100 uF, 22 uF, etc.
Para capacitores de menos de 1 uF, la unidad de medida es el pF (picoFaradio) y se expresa con una cifra de 3 números. Los dos primeros números expresan su significado por si mismos, pero el tercero expresa el valor multiplicador de los dos primeros. Ver la siguiente tabla. Ejemplo:
Un capacitor que tenga impreso el número 103 significa que su valor es 10 + 1000 pF = 10,000 pF. Ver que 1000 tiene 3 ceros (el tercer número impreso). En otras palabras 10 más 3 ceros = 10,000 pF El significado del tercer número se muestra en la tabla siguiente.
Después del tercer número aparece muchas veces una letra que indica la tolerancia del capacitor expresada en porcentaje (algo parecido a la tolerancia en las resistores). Ver el párrafo siguiente Tabla de tolerancia del código 101 de los capacitores La siguiente tabla nos muestra las distintas letras y su significado (porcentaje) Ejemplo: Un capacitor tiene impreso lo siguiente: 104H 104 significa 10 + 4 H = +/- 3% de tolerancia. 474J 474 significa 47 + 4 J = +/- 5% de tolerancia.
ceros
ceros
=
=
10,000
470,000
Pf
pF,
470.000pF = 470nF = 0.47µF Algunos capacitores tiene impreso directamente sobre ellos el valor de 0.1 o 0.01, lo que sindica 0.1 uF o 0.01 Uf
BOBINAS Son componentes pasivos de dos terminales que generan un flujo magnético cuando se hacen circular por ellas una corriente eléctrica. Se fabrican arrollando un hilo conductor sobre un núcleo de material ferromagnético o al aire. Su unidad de medida es el Henrio (H) en el Sistema Internacional pero se suelen emplear los submúltiplos mH y mH. Sus símbolos normalizados son los siguientes:
Existen bobinas de diversos tipos según su núcleo y según tipo de arrollamiento. Su aplicación principal es como filtro en un circuito electrónico, denominándose comúnmente, choques. CARACTERíSTICAS 1. Permeabilidad magnética (m).- Es una característica que tiene gran influencia sobre el núcleo de las bobinas respecto del valor de l a inductancia de las mismas. Los materiales ferromagnéticos son muy sensibles a los campos magnéticos y producen unos valores altos de inductancia, sin embargo otros materiales presentan menos sensibilidad a los campos magnéticos. El factor que determina la mayor o menor sensibilidad a esos campos magnéticos se llama permeabilidad magnética. Cuando este factor es grande el valor de la inductancia también lo es. 2. Factor de calidad (Q).- Relaciona la inductancia con el valor óhmico del hilo de la bobina. La bobina será buena si la inductancia es mayor que el valor óhmico debido al hilo de la misma. TIPOS DE BOBINAS 1. FIJAS Con núcleo de aire El conductor se arrolla sobre un soporte hueco y posteriormente se retira este quedando con un aspecto parecido al de un muelle. Se utiliza en frecuencias elevadas. Una variante de la bobina anterior se denomina solenoide y difiere en el aislamiento de las espiras y la presencia de un soporte que no necesariamente tiene que ser cilíndrico. Se utiliza cuando se precisan muchas espiras. Estas bobinas pueden tener tomas intermedias, en este caso se pueden considerar como 2 o más bobinas arrolladas sobre un mismo soporte y conectadas en serie. Igualmente se utilizan para frecuencias elevadas.
Con núcleo sólido Poseen valores de inductancia más altos que l os anteriores debido a su nivel elevado de permeabilidad magnética. El núcleo suele ser de un material ferromagnético. Los más usados son la ferrita y el ferroxcube. Cuando se manejan
potencias considerables y las frecuencias que se desean eliminar son bajas se utilizan núcleos parecidos a los de los transformadores (en fuentes de alimentación sobre todo). Así nos encontraremos con las configuraciones propias de estos últimos. Las secciones de los núcleos pueden tener forma de EI, M, UI y L.
Las bobinas de nido de abeja se utilizan en los circuitos sintonizadores de aparatos de radio en las gamas de onda media y larga. Gracias a la forma del bobinado se consiguen altos valores inductivos en un volumen mínimo. Las bobinas de núcleo toroidal se caracterizan por que el flujo generado no se dispersa hacia el exterior ya que por su forma se crea un flujo magnético cerrado, dotándolas de un gran rendimiento y precisión. La bobinas de ferrita arrolladas sobre núcleo de ferrita, normalmente cilíndricos, con aplicaciones en radio es muy interesante desde el punto de vista practico ya que, permite emplear el conjunto como antena colocándola directamente en el receptor.
Las bobinas grabadas sobre el cobre , en un circuito impreso tienen la ventaja de su mínimo coste pero son difícilmente ajustables mediante núcleo. 2. VARIABLES También se fabrican bobinas ajustables. Normalmente la variación de inductancia se produce por desplazamiento del núcleo. Las bobinas blindadas pueden ser variables o fijas, consisten encerrar la bobina dentro de una cubierta metálica cilíndrica o cuadrada, cuya misión es limitar el flujo electromagnético creado por la propia bobina y que puede afectar negativamente a los componentes cercanos a la misma.
MICRON
Un micrómetro (American ortografía: micrómetro, símbolo micras) es una unidad SI de longitud igual a una millonésima de un metro, o equivalente, una milésima de milímetro. También es conocida como una micra. Un micrómetro equivale a una milésima de milímetro: 1 µm = 0,001 mm = 1 × 10-3 mm. 1 mm = 1000 µm. Un micrómetro equivale a una mill onésima de metro: 1 µm = 0,000 001 m = 1 × 10-6 m. 1 m = 1 000 000 µm. Un micrómetro equivale a mil nanómetros: 1 µm = 1000 nm. 1 nm = 0,001 µm. 1 heit = 0,01 µm. Si se trata de alambre de nicrom, es una marca de níquel-cromo alambre de la resistencia , una aleación no magnética de níquel y cromo. Una aleación común es de 80% de níquel y 20% de cromo, pero hay muchos otros para dar cabida a varios usos. Es de color gris plateado en el color, es resistente a la corrosión y tiene un alto punto de fusión de unos 1400 ° C. Debido a su alta resistencia relativamente y la resistencia a la oxidación a altas temperaturas, es ampliamente utilizado en los elementos de calefacción , como por ejemplo en los secadores de pelo, hornos y tostadores eléctricos. Por lo general, nicrom se enrolla en las bobinas de cable a una cierta resistencia eléctrica , y la corriente pasa a través de la producción de calor.