Home
Add Document
Sign In
Register
RC2 - 3 - Panelled Beams.pdf
Home
RC2 - 3 - Panelled Beams.pdf
Full description...
Author:
Al7amdlellah
11 downloads
166 Views
2MB Size
Report
DOWNLOAD .PDF
Recommend Documents
rc2
rolemasterFull description
Report Rc2
report rc 2Full description
ABS-RC2
07- (Slabs) (4) Panelled Beams.
Full description
RC2 Lecture 3.1 - Design of Two-Way Floor Slab System
Design of two way slabsFull description
3
gugaDescripción completa
3
EVADescription complète
3
3
Descripción completa
3
no
3
Tgh
3
Descripción: gg
3
good
3
3
Descripción: método gráfico de programación entera
3
Descripción completa
3
5852
3
3
3
cxcx
3
3
3
tema oposicon esteticaDescripción completa
3
Descripción completa
..
# Panelled Beams
2016 03
Panelled Beams
Reinforced Concrete Design 2
2
)80-150(
Hollow Block Slab 2
Solid Slab
)Panelled Frames(
00
)4-3 (
Two Way Solid Slab b
a b
–7
=/ = / =1.4∗+. ∗+. +1.6. Ws
= \
780
Grashoff
. > / α = 1 +1 = 1 +
78.
2
3
M
. α=0. ≤ 50./ 15 = 0.35
–4
r
%20
0 +21 + +2 = 6 1+2 3 Moments Equation
By: Karim Sayed
1 = 24
2= 7
2
Panelled Beams
Reinforced Concrete Design 2
= ∗ = = ∗ → & → =
5
6
Design OF Panelled Beams
=
= =
–7
2
Grashoff Grashoff
++ = > + + ∗ =+ . ∗∗ . . ∗∗ + + ∗ + ∗∗ =+ )Ls×L(
m
n
Hollow Block
By: Karim Sayed
7
3
Panelled Beams
Reinforced Concrete Design 2
] = [1.1.4∗+. +∗+. +1. 6 .. ∗ ∗ +1. 4 ℎ ℎ 2 2 ( ) 1.1.4 ∗=/∗ =/ = /∗ Wrib
= \ = → α= 1 + & = 1 +1
–3
Reduction of Moment
–4
90 = \2 = ∗ 90
Design of Panelled Beams
6
)Simply Supported(
d
::
=40
ℎ 16+ = 5 + ∗ T - Section
=30
ℎ 6+ = 10 + L - Section
= ∗ → & → = ∗ 10 =0.24 4 / − =0.70 0 / = ∗ < < < > 5 8/ = 2 Check of Shear
Use Minimum Stirrups
Increase Dimensions
By: Karim Sayed
7
4
7
Panelled Beams
Reinforced Concrete Design 2
8
)
(
Design of Edge Beams 7
= 10
Simply Supported
= 12 = = 300 . =. ∗ [ ] ∗
Continuous
2
3
Panelled
Wavg )L * Ls(
Panelled
By: Karim Sayed
7
5
Reinforced Concrete Design 2
Panelled Beams
Sheet)The Given Plan Shows general layout of a Panelled Beams slab floor
Givens
== // // ..=/ = . /
Floor Height = 3.50m
Design The Shown Slab
1st : Design The Slabs
200045 =44 = 200040 =50 | = : == +. .. =. ∗∗ ∗. +. = / =. ∗+. ∗+. ∗. +. / ∵ , << . α=0.50.15 0.35 = → = \ = 0.0.776∗26∗2 =1 →α=0.35 & =0.35 1 – Assume Assume Concrete Thickness
2- Calculate Ws
3 – Calculate Calculate values of
&
→=\ =0.80.0.7∗2887∗27∗2 = 1 → α = 0.35 & = 0.35 → = \ = 0.76∗2 = 1.145 → α = 0.4225 & = 0.267
By: Karim Sayed
7
6
Panelled Beams
Reinforced Concrete Design 2
4 – Take Take Strips on both Directions and drawing B.M.D
Strip 1
Strip 2
4. 2 ∗2 1= 24 = 245.1∗2=1. 4 | 2= 24 1= 24 = 3.=1.224∗24 =1.1 | 2= 24 = 4.224∗2 = =1. 7 24 ++ 2114 + 2 ∗ 2 = 661.4+1.7 ++ 21214 + 2 ∗ 2 = 661.1.4+1.1 2
1 ∗ 2 + 22.4 +|2 ∗=. 2 = 6 1.4.+ 1.4 =. 1 ∗ 2 + 22.4 +|2 ∗=. 2 = 6 1.7.+ 1.7 =. Strip 3
Strip 4
. ∗ . ∗ = = =. =. | = = 1= 24 = 4.224∗2 =1.4 | 2= 24 = 5. 124∗2 ++ 2114 + 2 ∗ 2 = 661.4+1.1 1 =1.7
1 ∗2 +22 24 + 2 ∗ 2 = 6 1.1 + 1.1 =. . | = . By: Karim Sayed
++ 22114 + 2 ∗ 2 = 661.1.4+1.7 =. 1 ∗ 2 + 22.4 +|2 ∗=. 2 = 6 1.7.+ 1.7 7
Panelled Beams
Reinforced Concrete Design 2
=== = ==∗ . . ∗ = ∗ → = ∗ =. →=. . ∗ = = = ∗.∗ = / 5 – Design Design of Critical Sections
/\
2nd – Design Design of Panelled Beams
= | = = =≈ 1. 1 . 4 ∗∗ ∗+∗ ∗+∗ ∗ + ∗∗ =+ 1∗+∗ ∗+∗ ∗ 25 = 15.15.9 / =12+ 1.4∗0.25∗ 0.0.650.12∗10 /
1 – Assume Assume Beams Dimensions
2 – Calculate Calculate Average Loads W avg avg
3- Calculating
&
By: Karim Sayed
For Beams
7
8
= ∗ =. ∗ 1 = α = 1 + =. 1 + =. W=Wavg∗a∗α=15. 9 ∗2∗0. 6 75 = 21.456456 KN/m 21. 4 56∗10 = 8 = 8 = 268.8.26 5 ..
Panelled Beams
Reinforced Concrete Design 2
4- Design Panelled Beams For B1,B2,B3 (
= 2 & 2= 6→ = = 26 ∗90=30 =. ∗ = . . =65050=600 25 2 5 =2000 =0. 2 4 = 0.0. 98 9 8 / / 1.52525 = 1850 0 165++=2250 =0. 7 = 2.2. 85 8 5 / / − 1. 5 ∗10 =1 ∗1000 134. 1 34. 3 ∗10 600=1 25∗1850134.3 →1=11. 1 3 &=0. 8 26 107. 3 ∗1000 ∗10 = = 0.0. 715 7 1 5 / / = = = 360∗0.826∗600 = 753 600∗250 ∵ < / 0.225∗= 0.√ 225225∗5 √ ∗ = 360 ∗250∗600=469 Calculation of Reduction Factor For Moment FOR B1
Design For Moment
Design For Shear
Take
No Need For Stirrups , USE (
Check Minimum As
Stirrups Hungers :
By: Karim Sayed
7
9
Panelled Beams
Reinforced Concrete Design 2
= 4 & 2= 6→ = = 46 ∗90=60 =. ∗ = . . =65050=600 25 2 5 =2000 =0. 2 4 = 0.0. 98 9 8 / / 1. 5 = 1850 0 165++=2250 107.600∗250 3∗1000 = 0.0.715715 / = / ∵ < 232. 2 32. 5 ∗10 / 600=1 25∗1850 1=8. 4 6 & =0. 8 26 232. 5 ∗10 = = = 360∗0.826∗600 = 1303 1303 0.225∗= 0.√ 225225∗5 √ ∗ = 360 ∗250∗600=469 Calculation of Reduction Factor For Moment FOR B2
Design For Moment
Design For Shear
No Need For Stirrups , USE (
]
Take Check Minimum As
Stirrups Hungers = 0.2 As =
By: Karim Sayed
7
71
Panelled Beams
Reinforced Concrete Design 2
Calculation of Reduction Factor For Moment FOR B3 There is NO reduction factor for Beam B3 ,as it Located in the middle of Horizontal Beams
=65050=600 =2000 = 1850 0 165++=2250 268. 2 68. 5 ∗10 600=1 25∗1850 1=7. 8 7 & =0. 8 26 268. 5 ∗10 = = ==360∗0. 8 26∗600 1505 1505 0.225∗= 0.√ 225225∗5 √ ∗ = 360 ∗250∗600=469 Design For Moment
3∗1000 = 0.0.715715 / = 107.600∗250 / ∵ < /
Design For Shear
No Need For Stirrups , USE (
Take Check Minimum As
Stirrups Hungers = 0.2 As =
= ∗ ∗ = 15.9 ∗ 2 ∗ 0.325 = 10.4 / = 8 = 10.48∗12 = 187.7.18 2 .. = 2 & 2 = 5 → = = 25 ∗90=36 For B4,B5 (
Calculation of Reduction Factor For Moment FOR B4
By: Karim Sayed
7
77
=. ∗ = . . = 650 7=2000 0 = 580 25 2 5 =0. 2 4 = 0.0. 98 9 8 / / 1. 5 1 6 + = 1 8 5 0 0 5 +=2650 . . ∗10 580=1 25∗1850 →1=11. 9 &=0. 8 26 . ∗10 4∗1000 = 0.0.430430 / = = = 360∗0.826∗580 = 638 = 62.580∗250 / ∵ < / 0.225∗= 0.√ 225225∗5 √ ∗ = 360 ∗ 250 ∗ 580 = 4 53
Panelled Beams
Reinforced Concrete Design 2
Design For Moment
Design For Shear
Take
No Need For Stirrups , USE (
Check Minimum As
Stirrups Hungers :
= 4 & 2= 5→ = = 45 ∗90=72 =. ∗ = . . = 650 70 = 580
Calculation of Reduction Factor For Moment FOR B 5
Design For Moment
By: Karim Sayed
Design For Shear
=0.24 1.25255 = 0.0.9898 / / 7
72
=2000 = 1850 0 165++=2650 . . ∗10 580=1 25∗1850 →1=9. 3 5 & =0. 8 26 . ∗10 = = ==360∗0. 8 26∗580 1033 1033 0.225∗= 0.√ 225225∗5 √ ∗ = 360 ∗ 250 ∗ 580 = 453 Reinforced Concrete Design 2
4∗1000 = 0.0.430430 / = 62.580∗250 / ∵ < /
Panelled Beams
No Need For Stirrups , USE (
Take Check Minimum As
Stirrups Hungers :
3rd – Design Design of Edge Beams
= 300 & = 650 ] .= 1.4=1.∗ 0.34∗0∗.5[5] ∗ ∗ 25 = 5.8 / = .. / 1- Assume Beams Dimensions Dimensions
2- Calculate Loads action on Beams
Design of Beam B6
By: Karim Sayed
7
73
Panelled Beams
Reinforced Concrete Design 2
1=. +6∑+ 1 ∗ 1=5.8 + 2 6 ∗ 5 ∗ 15.5.9 = 52.2 // Load for Moment= Load for Shear
S.F.D Using Imperial Calculations
B.M.D Using Imperial Calculations
Design of Critical Sections 1- Design of L-Sec
= = ℎ & = . . & = / 6+=6∗100+300=900 = 10 + = 0.8∗6000 + 3 0 0 = 7 8 0 10 { =6000 . . ∗10 =1 ∗ => 600= 1 25∗780 1=6. 4 1 →=0. 8 26 . ∗10 = = = 360∗0.826∗600 =958 25∗360√ 2525 ∗ 250 ∗ 600 = 563 > = 0.225∗√ ∗ = 0.225∗√ ℎ= ∗18958⁄4 ~4 => => Check Minimum As
By: Karim Sayed
7
74
Panelled Beams
Reinforced Concrete Design 2
= =/ = & = . . & . . ∗10 =1 ∗ => 600= 1 25∗300 1=3. 6 →=0. 7 86 ∗10 =1230 = = = 360∗0..826∗600 25∗360√ 2525 ∗ 250 ∗ 600 = 563 = 0.225∗>√ ∗ = 0.225∗√ ℎ= ∗181230⁄4 ~5 => => = 188∗1000 = 1. 1 /2 / 2 >=0. >= 0. 9 8 / 2 600∗300 240 2∗50. 3 ∗ 2 ==8.7~9 : →0.691= 8/300∗1.15 = 115 → = 114.7 .
2- Design of R-Sec
Check Minimum As
Check Shear::
Nmumber of Stirrups =
------* ------ *------* ------ *------* ------ *------* ------ *------* ------ *------* ------ *------* ------ *------* ------ *------* ------ *------* ------ *------* ------ *------
Design of Beam B7
Load for Moment= Load for Shear
By: Karim Sayed
7
75
1=. +1∑ ∗ ∗5∗5 2 1=5.8 + 5 ∗ 15.5.9 = 45.5.6 / /
Panelled Beams
Reinforced Concrete Design 2
S.F.D Using Imperial Calculations
B.M.D Using Imperial Calculations
Design of Critical Sections 1- Design of L-Sec
= = ℎ & = . . & = / 6+=6∗100+300=900 = 10 + = 0.8∗5000 + 3 0 0 = 7 0 0 10 { =5000 103.103.6∗10 =1 ∗ => 600= 1 25∗700 1=7. 8 →=0. 8 26 103. 6 ∗10 = = = 360∗0.826∗600 =581 25∗360√ 2525 ∗ 250 ∗ 600 = 563 > = 0.225∗√ ∗ = 0.225∗√ ℎ= ∗16581⁄4 ~4 => => = =/ = & = . & 126. 1 26. 7 ∗10 =1 ∗ => 600= 1 25∗300 1=4. 6 2 →=0. 8 21 ∗10 =714 = = = 360∗0.126.8726∗600 Check Minimum As
2- Design of R-SEC
By: Karim Sayed
7
76
Panelled Beams
Reinforced Concrete Design 2
25∗360√ 2525 ∗ 250 ∗ 600 = 563 = 0.225∗>√ ∗ = 0.225∗√ ℎ= ∗16714⁄.4 ~4∗ => => = ∗ = 0.76/ 6/22 < <0.0.98 / :5 8/8/ Check Minimum As
Check Shear::
)2016
()
(
.
-
–
2007
-
– )
(
.
-
)engineer-underconstruction.blogspot.com/p/obour.html(
By: Karim Sayed
-
7
7
×
Report "RC2 - 3 - Panelled Beams.pdf"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
×
Sign In
Email
Password
Remember me
Forgot password?
Sign In
Our partners will collect data and use cookies for ad personalization and measurement.
Learn how we and our ad partner Google, collect and use data
.
Agree & close