UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA FACULTAD DE ODONTOLOGIA
A mis padres, docentes y comunidad universitaria.
RADIOLOGIA ORAL Y MAXILOFACIALPágina 1
UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA FACULTAD DE ODONTOLOGIA
I.
MARCO TEÓRICO RADIACIONES IONIZANTES: EFECTOS EN LA SALUD Y MEDIDAS DE PROTECCIÓN
La radiación ionizante es un tipo de energía liberada por los átomos en forma de ondas electromagnéticas o partículas. Las personas están expuestas a fuentes naturales de radiación ionizante, como el suelo, el agua o la vegetación, así como a fuentes artificiales, tales como los rayos X y algunos dispositivos médicos.
Las radiaciones ionizantes tienen muchas aplicaciones beneficiosas en la medicina, la industria, la agricultura y la investigación.
A medida que aumenta el uso de las radiaciones ionizantes también lo hacen los posibles peligros peligros para la salud salud si no se utilizan utilizan o contienen contienen adecuadamente. adecuadamente.
Cuando las dosis de radiación superan determinados niveles pueden tener efectos agudos en la salud, tales como quemaduras cutáneas o síndrome de irradiación aguda.
Las dosis bajas de radiación ionizante pueden aumentar el riesgo de efectos a largo plazo, tales como el cáncer
RADIOLOGIA ORAL Y MAXILOFACIALPágina 2
UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA FACULTAD DE ODONTOLOGIA
¿QUÉ ES LA RADIACIÓN IONIZANTE?
La radiación ionizante es un tipo de energía liberada por los átomos en forma de ondas electromagnéticas (rayos gamma o rayos X) o partículas (partículas alfa y beta o neutrones). La desintegración espontánea de los átomos se denomina radiactividad, y la energía excedente emitida es una forma de radiación ionizante. Los elementos inestables que se desintegran y emiten radiación ionizante se denominan radionúclidos. Cada radionúclido se caracteriza por el tipo de radiación que emite, la energía ener gía de la radiación y su semivida. La actividad, utilizada como medida de la cantidad de un radionúclido, se expresa en una unidad llamada becquerel (Bq): un becquerel corresponde a una desintegración por segundo. La semivida es el tiempo necesario para que la actividad de un radionúclido disminuya por la desintegración a la mitad de su valor inicial. La semivida de un elemento radiactivo es el tiempo que tarda la mitad de sus átomos en desintegrarse, y puede variar desde una fracción de segundo a millones de años (por ejemplo, el yodo 131 tiene una semivida de 8 días mientras que el carbono 14 tiene una semivida de 5730 años). FUENTES DE RADIACIÓN Las personas están expuestas a diario tanto a la radiación de origen natural o humano. La radiación natural proviene de muchas fuentes, como los más de 60 materiales radiactivos naturales presentes en el suelo, el agua y el aire. El radón es un gas natural que emana de las
RADIOLOGIA ORAL Y MAXILOFACIALPágina 3
UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA FACULTAD DE ODONTOLOGIA
rocas y la tierra y es la principal fuente de radiación natural. Diariamente inhalamos e ingerimos radionúclidos presentes en el aire, los alimentos y el agua.
Asimismo,
estamos expuestos a la
radiación
natural de los rayos
cósmicos, especialmente a gran altura. Por término medio, el 80% de la dosis anual de radiación de fondo que recibe una persona procede de fuentes de radiación natural, terrestre y cósmica. Los niveles de la radiación de fondo varían geográficamente debido a diferencias geológicas. En determinadas zonas la exposición puede ser más de 200 veces mayor que la media mundial. La exposición humana a la radiación proviene también de fuentes artificiales que van desde la generación de energía nuclear hasta el uso médico de la radiación para fines diagnósticos o terapéuticos. Hoy día, las fuentes artificiales más comunes de radiación ionizante son los dispositivos médicos, como los aparatos de rayos X. TIPOS DE RADIACIÓN IONIZANTE.Tipos de radiación ionizante Partículas alfa Una partícula alfa es un conjunto de dos protones y dos neutrones estrechamente unidos. Es idéntica a un núcleo de helio 4 (4He). De hecho, su destino último después de haber perdido la mayoría de su energía cinética es capturar dos electrones y convertirse en un átomo de helio. Los radionucleidos emisores de partículas alfa son en general núcleos relativamente pesados. Casi todos los emisores alfa tienen números atómicos iguales o superiores al del plomo ( 82Pb). Cuando un núcleo se desintegra y emite una partícula alfa, su número atómico (el número de protones) y su número de neutrones
RADIOLOGIA ORAL Y MAXILOFACIALPágina 4
UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA FACULTAD DE ODONTOLOGIA
disminuyen en dos, mientras que su número másico se reduce en cuatro. Por ejemplo, la desintegración alfa del uranio 238 (238U) a torio 234 (234Th) se representa por:
El superíndice de la izquierda es el número másico (número de protones más neutrones), el subíndice de la izquierda es el número atómico (número de protones) y el subíndice de la derecha es el número de neutrones. Los emisores alfa corrientes emiten partículas alfa con energías cinéticas entre unos 4 y 5,5 MeV. El alcance de estas partículas alfa en el aire no sobrepasa los 5 cm (véase la Figura 1). Se necesitan partículas alfa con una energía de 7,5 MeV para penetrar la epidermis (capa protectora de la piel, de 0,07 mm de espesor). Los emisores alfa no plantean por lo general ningún peligro de radiación externa. Sólo son peligrosos si se captan al interior del cuerpo. Como depositan su energía a corta distancia, las partículas alfa constituyen una radiación de alta transferencia lineal de energía (TLE) y tienen un factor de
Figura 1 • Relación entre alcance y energía de partículas alfa lentas en el aire a 15 y 760 mm
ponderación radiológica elevado, cuyo valor típico es wR = 20.
RADIOLOGIA ORAL Y MAXILOFACIALPágina 5
UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA FACULTAD DE ODONTOLOGIA
PARTÍCULAS BETA Una partícula beta es un electrón o positrón muy energético. (El positrón es la antipartícula del electrón. Tiene la misma masa y la mayoría de las demás propiedades del electrón, salvo su carga, cuya magnitud es exactamente la misma que la del electrón, pero de signo positivo.) Los radionucleidos emisores beta pueden ser de peso atómico alto o bajo. Los radionucleidos que tienen exceso de protones en comparación con nucleidos estables de número másico similar al suyo pueden desintegrarse cuando un protón del núcleo se convierte en neutrón. Cuando así sucede, el núcleo emite un positrón y una partícula extraordinariamente ligera y que muy rara vez interactúa llamada neutrino. (El neutrino y su antipartícula carecen de interés en protección radiológica.) Cuando ha cedido la mayoría de su energía cinética, el positrón termina por colisionar con un electrón, con lo que se aniquilan ambos. La radiación de aniquilación producida es casi siempre la de dos fotones de 0,511 keV (kiloelectronvoltios) que se desplazan en sentidos separados por 180 grados. La desintegración típica con emisión de un positrón se representa por:
donde el positrón está representado por β+ y el neutrino por ν. Obsérvese que el nucleido
resultante tiene el mismo número másico que el nucleido padre y un número atómico (de protones) menor en una unidad y un número de neutrones mayor en una unidad que los del nucleido original. En la desintegración, la captura de un electrón compite con la pérdida de un positrón. En la desintegración con captura de electrón, el núcleo absorbe un electrón orbital y emite un neutrino. Una desintegración típica con captura de electrón viene dada por:
RADIOLOGIA ORAL Y MAXILOFACIALPágina 6
UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA FACULTAD DE ODONTOLOGIA
La captura de un electrón es posible siempre que el núcleo resultante tenga una energía total menor que la del núcleo inicial. En cambio, la desintegración con positrón exige que la energía total del átomo inicial sea mayor que la del átomo resultante en más de 1,02 MeV (dos veces la energía másica residual del positrón). De manera similar a la desintegración con positrón y con captura de electrón, la desintegración con negatrón (β – ) ocurre en núcleos
que tengan exceso de neutrones en comparación con núcleos estables del mismo número másico. En este caso, el núcleo emite un negatrón (electrón energético) y un antineutrino. Una desintegración típica con negatrón se representa por:
donde el negatrón se representa por β– y el antineutrino por ν – . Aquí, el núcleo resultante
gana un protón a expensas de un neutrón, pero tampoco cambia su número másico. La desintegración alfa es una reacción de dos cuerpos, de manera que las partículas se emiten con energías cinéticas discretas. En cambio, la desintegración beta es una reacción de tres cuerpos, de forma que las partículas beta se emiten en un espectro de energías. La energía máxima del espectro depende del radionucleido que se desintegra. La energía beta media del espectro es de alrededor de un tercio de la energía máxima (véase la Figura 2). Las energías beta máximas típicas oscilan desde 18,6 keV para el tritio (3H) a 1,71 MeV para el fósforo 32 (32P). El alcance de las partículas beta en el aire es de unos 3,65 m por MeV de energía cinética. Se necesitan partículas beta de 70 keV de energía como mínimo para atravesar la epidermis. Las partículas beta son radiación de baja TLE.
RADIOLOGIA ORAL Y MAXILOFACIALPágina 7
UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA FACULTAD DE ODONTOLOGIA
Figura 2 • Espectro de energía de negatrones emitidos por el 32P
Radiación gamma La radiación gamma es radiación electromagnética emitida por un núcleo cuando experimenta una transición de un estado de energía más alta a un estado energético más bajo. El número de protones y neutrones del núcleo no varía en estas transiciones. El núcleo puede haber quedado en el estado de más energía después de una desintegración alfa o beta anterior. Es decir, los rayos gamma se emiten a menudo inmediatamente después de una desintegración alfa o beta. Los rayos gamma también pueden ser el resultado de la captura de un neutrón y de la dispersión inelástica de partículas subatómicas por núcleos. Los rayos gamma más energéticos se han observado en los rayos cósmicos.
RAYOS X Los rayos X son una radiación electromagnética y, en ese sentido, son idénticos a los rayos gamma. La distinción entre rayos X y rayos gamma radica en su origen. Mientras que los rayos gamma se originan en el núcleo atómico, los rayos X resultan de interacciones entre electrones. Aunque a menudo los rayos X tienen energía inferior a la de los rayos gamma, éste no es el criterio que los diferencia. Se pueden producir rayos X con energías mucho más elevadas que las de los rayos gamma procedentes de la desintegración radiactiva. La conversión interna antes explicada es uno de los métodos de producción de rayos X. En este caso, los rayos X resultantes tienen energías discretas iguales a la diferencia de los niveles de energía entre los que saltan los electrones orbitales. Las partículas cargadas emiten radiación electromagnética siempre que son aceleradas o frenadas. La cantidad de radiación emitida es inversamente proporcional a la cuarta potencia de la masa de la partícula. Por consiguiente, los electrones emiten mucha más radiación X que partículas más pesadas, como los protones, si todas las demás condiciones son iguales. Los sistemas de rayos X producen
RADIOLOGIA ORAL Y MAXILOFACIALPágina 8
UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA FACULTAD DE ODONTOLOGIA
rayos X mediante la aceleración de electrones que circulan a través de una gran diferencia de potencial eléctrico, de muchos kV o MV. Los electrones son después frenados rápidamente en un material denso y resistente al calor, como el tungsteno (W). Los rayos X emitidos desde estos sistemas tienen energías que se extienden en un espectro que va desde alrededor de cero hasta la
energía cinética máxima adquirida
por
los
electrones antes de la deceleración.
A
menudo, a este espectro continuo se superponen rayos X de energía discreta, que se producen cuando los electrones frenados ionizan el material del blanco o anticátodo. Como otros electrones orbitales saltan para llenar los huecos dejados tras la ionización, emiten rayos X de energías discretas similares a los rayos X que se emiten después de la conversión interna. Reciben el nombre de rayos X característicos porque son característicos del material del blanco (anticátodo). Véase en la Figura 48.15 un espectro típico de rayos X. En la Figura 48.16 se ofrece un esquema de un tubo de rayos X típico. Los rayos X interactúan con la materia de igual manera que los rayos gamma, pero una simple ecuación de atenuación exponencial no describe con precisión la atenuación de rayos X con una gama continua de energía. Sin embargo, como los rayos X de energía más baja son eliminados del haz a medida que atraviesan el material con más rapidez que los de mayor energía, la descripción de la atenuación se aproxima a una función exponencial.
RAYOS CÓSMICOS La radiación cósmica se compone de partículas energéticas de origen extraterrestre que inciden en la atmósfera de la Tierra (fundamentalmente partículas y en su mayor parte protones). También incluye partículas secundarias, casi todas fotones, neutrones y muones RADIOLOGIA ORAL Y MAXILOFACIALPágina 9
UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA FACULTAD DE ODONTOLOGIA
generados por las interacciones de las partículas primarias con gases de la atmósfera. En virtud de estas interacciones, la atmósfera sirve de escudo contra la radiación cósmica, y cuanto más delgado sea este escudo, mayor será la tasa de dosis efectiva. Es decir, la tasa de dosis efectiva de rayos cósmicos aumenta con la altitud. Por ejemplo, la tasa de dosis a 1.800 metros de altura es alrededor del doble que al nivel del mar. Como la radiación cósmica primaria consta esencialmente de partículas cargadas, recibe la influencia del campo magnético terrestre. Así, los habitantes de latitudes altas reciben dosis eficaces de radiación cósmica mayores que los que se encuentran más cerca del Ecuador. La variación debida a este efecto es del orden del 10 %. Por último, la tasa de dosis efectiva de rayos cósmicos varía con la modulación de la salida de rayos cósmicos desde el Sol. En promedio, los rayos cósmicos contribuyen en alrededor de 0,3 mSv a la dosis efectiva de radiación de fondo en todo el cuerpo.
RADIONUCLEIDOS COSMÓGENOS Los rayos cósmicos producen radionucleidos cosmógenos en la atmósfera. Los más destacados de éstos son el tritio (3H), el berilio 7 (7Be), el carbono 14 (14C) y el sodio 22 (22Na). Son producidos por rayos cósmicos que interactúan con gases atmosféricos. Los
RADIOLOGIA ORAL Y MAXILOFACIALPágina 10
UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA FACULTAD DE ODONTOLOGIA
radionucleidos
cosmógenos
entregan una dosis efectiva anual de unos 0,01 mSv, que en su mayor parte procede del 14C.
LLUVIA
RADIACTIVA Desde el decenio de 1940 hasta el de 1960, se realizaron numerosas pruebas de armas nucleares sobre la superficie terrestre. Estas pruebas produjeron grandes cantidades de materiales radiactivos y los distribuyeron al medio ambiente de todo el mundo en forma de lluvia radiactiva. Aunque muchos de estos desechos se han transformado desde entonces en isótopos estables, las pequeñas cantidades que permanecen serán todavía una fuente de exposición durante muchos años. Además, las naciones que siguen realizando pruebas ocasionales de armas nucleares en la atmósfera añaden radiactividad a las existencias mundiales. Los contribuyentes principales de la lluvia radiactiva a la dosis efectiva son en la actualidad el estroncio 90 (90Sr) y el cesio 137 ( 137Cs), los dos con períodos de semidesintegración de alrededor de 30 años. La dosis efectiva media anual debida a la lluvia radiactiva es de unos 0,05 mSv.
RADIOLOGIA ORAL Y MAXILOFACIALPágina 11
UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA FACULTAD DE ODONTOLOGIA
MATERIAL RADIACTIVO EN EL ORGANISMO La acumulación de radionucleidos naturales en el cuerpo humano es sobre todo resultado de la inhalación e ingestión de estos materiales del aire, los alimentos y el agua. Entre estos nucleidos se encuentran radioisótopos de Pb, Po, Bi, Ra, K (potasio), C, H, U y Th. De ellos, el 40K es el contribuyente máximo. Los radionucleidos naturales depositados en el cuerpo contribuyen en unos 0,3 mSv a la dosis efectiva anual.
RADIACIÓN PRODUCIDA POR MÁQUINAS La íutilización de rayos X en las artes curativas es la mayor fuente de exposición a la radiación producida por máquinas. Millones de sistemas de rayos X médicos están en uso en todo el mundo. La exposición media a estos sistemas de rayos X médicos depende en gran medida del acceso de una población a los servicios sanitarios. En los países desarrollados, la dosis efectiva media anual debida a radiación de rayos X por prescripción médica y a material radiactivo para diagnóstico y tratamiento es del orden de 1 mSv. Los rayos X son un subproducto de la mayoría de los aceleradores de partículas en la física de altas energías, sobre todo los que aceleran electrones y positrones. Sin embargo, un blindaje y unas medidas de seguridad adecuadas, más la escasa población en riesgo, convierten a esta fuente de exposición a la radiación en menos importante que las fuentes anteriores.
RADIOLOGIA ORAL Y MAXILOFACIALPágina 12
UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA FACULTAD DE ODONTOLOGIA
RADIONUCLEIDOS PRODUCIDOS POR MÁQUINAS Los aceleradores de partículas pueden producir una gran variedad de radionucleidos en cantidades variables mediante reacciones nucleares. Las partículas aceleradas son protones, deuterones (núcleos de 2H), partículas alfa, mesones cargados, iones pesados y otros. Los materiales que hacen de blanco pueden ser de casi cualquier isótopo. Los aceleradores de partículas son prácticamente la única fuente de radioisótopos emisores de positrones. (Los reactores nucleares tienden a producir radioisótopos ricos en neutrones que se desintegran por emisión de negatrones.) También se utilizan cada vez más para producir isótopos de vida corta destinados a aplicaciones médicas, en especial para tomografía por emisión de positrones (TEP). Materiales y productos de consumo de tecnología avanzada En gran número de actividades de la vida moderna aparecen rayos X y materiales radiactivos, unos deseados y otros indeseables. En la Tabla 48.10 se enumeran estas fuentes de radiación. EXPOSICIÓN A LA RADIACIÓN IONIZANTE La exposición a la radiación puede ser interna o externa y puede tener lugar por diferentes vías.La exposición interna a la radiación ionizante se produce cuando un radionúclido es inhalado, ingerido o entra de algún otro modo en el torrente sanguíneo (por ejemplo, inyecciones o heridas). La exposición interna cesa cuando el radionúclido se elimina del cuerpo, ya sea espontáneamente (por ejemplo, en los excrementos) o gracias a un tratamiento. La exposición externa se puede producir cuando el material radiactivo presente en el aire (polvo, líquidos o aerosoles) se deposita sobre la piel o la ropa. Generalmente, este tipo de material radiactivo puede eliminarse del organismo por simple lavado. La exposición a la radiación ionizante también puede resultar de la irradiación de origen externo (por ejemplo, la exposición médica a los rayos X). La irradiación externa se detiene cuando la fuente de radiación está blindada o la persona sale del campo de irradiación. Las personas pueden estar expuestas a la radiación ionizante en circunstancias diferentes, en casa o en lugares públicos (exposiciones públicas), en el trabajo (exposiciones profesionales) o en un entorno médico (como los pacientes, cuidadores y voluntarios). RADIOLOGIA ORAL Y MAXILOFACIALPágina 13
UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA FACULTAD DE ODONTOLOGIA
Las situaciones de exposición a la radiación ionizante pueden clasificarse en tres categorías. La primera, la exposición planificada, es el resultado de la introducción y funcionamiento deliberados de fuentes de radiación con fines concretos, como en el caso de la utilización médica de la radiación con fines diagnósticos o terapéuticos, o de su uso en la industria o la investigación. La segunda, la exposición existente, se produce cuando ya hay una exposición a la radiación y hay que tomar una decisión sobre su control, como en el caso de la exposición al radón en el hogar o en el lugar de trabajo, o de la exposición a la radiación natural de fondo existente en el medio ambiente. La tercera categoría, la exposición en situaciones de emergencia, tiene lugar cuando un acontecimiento inesperado requiere una respuesta rápida, como en el caso de los accidentes nucleares o los actos criminales. El uso médico de la radiación representa el 98% de la dosis poblacional con origen en fuentes artificiales y el 20% de la exposición total de la población. Cada año se realizan en el mundo más de 3600 millones de pruebas diagnósticas radiológicas, 37 millones de pruebas de medicina nuclear y 7,5 millones de tratamientos con radioterapia. EFECTOS DE LAS RADIACIONES IONIZANTES EN LA SALUD El daño que causa la radiación en los órganos y tejidos depende de la dosis recibida, o dosis absorbida, que se expresa en una unidad llamada gray (Gy). El daño que puede producir una dosis absorbida depende del tipo de radiación y de la sensibilidad de los diferentes órganos y tejidos. Para medir la radiación ionizante en términos de su potencial para causar daños se utiliza la dosis efectiva. La unidad para medirla es el sievert (Sv), que toma en consideración el tipo de radiación y la sensibilidad de los órganos y tejidos. Es una manera de medir la radiación ionizante en términos de su potencial para causar daño. El sievert tiene en cuenta el tipo de radiación y la sensibilidad de los tejidos y órganos. El sievert es una unidad muy grande, por lo que resulta más práctico utilizar unidades menores, como el milisievert (mSv) o el microsievert (μSv). Hay 1000 μSv en 1 mSv, y 1000 mSv en
1 Sv. Además de utilizarse para medir la cantidad de radiación (dosis), también es útil para RADIOLOGIA ORAL Y MAXILOFACIALPágina 14
UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA FACULTAD DE ODONTOLOGIA
expresar la velocidad a la que se entrega esta dosis (tasa de dosis), por ejemplo en microsievert por hora (μSv/hora) o milisievert al año (mSv/año).
Más allá de ciertos umbrales, la radiación puede afectar el funcionamiento de órganos y tejidos, y producir efectos agudos tales como enrojecimiento de la piel, caída del cabello, quemaduras por radiación o síndrome de irradiación aguda. Estos efectos son más intensos con dosis más altas y mayores tasas de dosis. Por ejemplo, la dosis liminar para el síndrome de irradiación aguda es de aproximadamente 1 Sv (1000 mSv).
Si la dosis de radiación es baja o la exposición a ella tiene lugar durante un periodo prolongado (baja tasa de dosis), el riesgo es considerablemente menor porque hay más probabilidades de que se reparen los daños. No obstante, sigue existiendo un riesgo de efectos a largo plazo, como el cáncer, que pueden tardar años, o incluso decenios, en aparecer. No siempre aparecen efectos de este tipo, pero la probabilidad de que se produzcan es proporcional a la dosis de radiación. El riesgo es mayor para los niños y adolescentes, pues son mucho más sensibles a la radiación que los adultos. Los estudios epidemiológicos realizados en poblaciones expuestas a la radiación, como los supervivientes de la bomba atómica o los pacientes sometidos a radioterapia, han mostrado un aumento significativo del riesgo de cáncer con dosis superiores a 100 mSv. Estudios epidemiológicos más recientes efectuados en pacientes expuestos por motivos médicos durante la infancia (TC pediátrica) indican que el riesgo de cáncer puede aumentar incluso con dosis más bajas (entre 50 y 100 mSv).
RADIOLOGIA ORAL Y MAXILOFACIALPágina 15
UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA FACULTAD DE ODONTOLOGIA
DAÑO BIOLÓGICO POR RADIACIONES Para los agentes farmacológicos en general es válida la regla de que, para obtener un efecto biológico dado, se requiere dar una determinada dosis mayor que la dosis umbral. La dosis umbral es aquella que marca el límite arriba del cual se presenta un efecto, y debajo del cual no hay efecto. Algunos de los efectos de la radiación caen en este caso, los no estocásticos. Otras sustancias no tienen una respuesta de este tipo, es decir no tienen umbral, por lo tanto no hay una dosis mínima para producir un efecto. Consecuentemente, cualquier dosis dada produce un efecto; para obtener un efecto cero se requiere una dosis cero. Los efectos estocásticos de la radiación se comportan de esta manera. La rapidez con la cual se absorbe la radiación es importante en la determinación de los efectos. Una dosis dada producirá menos efecto si se suministra fraccionada, en un lapso mayor, que si se aplica en una sola exposición. Esto se debe al poder de restauración del organismo; sin embargo hay que tomar en cuenta que esta recuperación no es total y siempre queda un daño acumulativo. El lapso entre el instante de radiación y la manifestación de los efectos se conoce como periodo latente. Con base en esto se pueden clasificar los daños biológicos como agudos (a corto plazo), que aparecen en unos minutos, días o semanas, y diferidos (largo plazo), que aparecen después de años, décadas y a veces en generaciones posteriores. El daño biológico tendrá diferentes manifestaciones en función de la dosis. A bajas dosis (menos de 100 mSv o 10 rem) no se espera observar ninguna respuesta clínica. Al aumentar a dosis mayores, el organismo va presentando diferentes manifestaciones hasta llegar a la muerte. La dosis letal media, aquella a la cual 50% de los individuos irradiados mueren, es de 4 Sv (400 rem). Ordinariamente, cuando se hace referencia a dosis equivalentes, se quiere indicar una dosis promedio al cuerpo total. Esto es importante ya que en ocasiones pueden aplicarse grandes
RADIOLOGIA ORAL Y MAXILOFACIALPágina 16
UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA FACULTAD DE ODONTOLOGIA
dosis de radiación a áreas limitadas (como en radioterapia) con un daño local. Si estas mismas dosis se aplican a todo el cuerpo pueden ser letales. Por ejemplo, una persona podría recibir 10 Sv (l 000 rem) en un brazo y experimentar una lesión local, pero esa misma dosis a cuerpo entero le causaría inexorablemente la muerte. EFECTOS DE LA RADIACIÓN EN LAS CÉLULAS Cuando la radiación ionizante incide sobre un organismo vivo, la interacción a nivel celular se puede llevar a cabo en las membranas, el citoplasma, y el núcleo. Si la interacción sucede en alguna de las membranas se producen alteraciones de permeabilidad, lo que hace que puedan intercambiar fluidos en cantidades mayores que las normales. En ambos casos la célula no muere, pero sus funciones de multiplicación no se llevan a cabo. En el caso en que el daño es generalizado la célula puede morir. En el caso en que la interacción sucede en el citoplasma, cuya principal sustancia es el agua, al ser ésta ionizada se forman radicales químicamente inestables. Algunos de estos radicales tenderán a unirse para formar moléculas de agua y moléculas de hidrógeno (H), las cuales no son nocivas para el citoplasma. Otros se combinan para formar peróxido de hidrógeno (H202), el cual sí produce alteraciones en el funcionamiento de las células. La situación más crítica se presenta cuando se forma el hidronio (HO), el cual produce envenenamiento. Cuando la radiación ionizante llega hasta el núcleo de la célula, puede producir alteraciones de los genes e inclusive rompimiento de los cromosomas, provocando que cuando la célula se divida lo haga con características diferentes a la célula original. Esto se conoce como daño genético de la radiación ionizante, que si se lleva a cabo en una célula germinal (espermatozoide u óvulo) podrá manifestarse en individuos de futuras generaciones. Por lo expuesto, vemos que la radiación ionizante puede producir en las células: aumento o disminución de volumen, muerte, un estado latente, y mutaciones genéticas.
RADIOLOGIA ORAL Y MAXILOFACIALPágina 17
UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA FACULTAD DE ODONTOLOGIA
Vale la pena mencionar que estas propiedades destructivas de la radiación se pueden transformar en un beneficio. La radioterapia busca eliminar tejidos malignos en el cuerpo aplicándoles altas dosis de radiación. Sin embargo, por la naturaleza de la radiación, es inevitable afectar otros órganos sanos cercanos. En un buen tratamiento de radioterapia se proporciona la dosis letal al tumor, tratando de que sea mínima la exposición de otras partes del cuerpo. CLASIFICACIÓN DE LOS EFECTOS BIOLÓGICOS Se han venido mencionando ya algunas maneras de clasificar los efectos biológicos producidos por las radiaciones. Por su importancia conviene reiterar y resaltar los criterios en que se fundamentan las diferentes clasificaciones. Recientemente la CIPR ha introducido un nuevo concepto en la clasificación de los efectos, basado en la probabilidad de ocurrencia: los efectos estocásticos y los no estocásticos. Los efectos estocásticos son aquéllos cuya probabilidad de ocurrencia se incrementa con la dosis recibida, así como con el tiempo de exposición. No tienen una dosis umbral para manifestarse. Pueden ocurrir o no ocurrir; no hay un estado intermedio. La inducción de un cáncer en particular es un efecto estocástico. Su probabilidad de ocurrir depende de la dosis recibida; sin embargo, no se puede asegurar que el cáncer se presente, menos aún determinar una dosis. La protección radiológica trata de limitar en lo posible los efectos estocásticos, manteniendo las dosis lo más bajas posible. En los efectos no estocásticos la severidad aumenta con la dosis, y se produce a partir de una dosis umbral. Para dosis pequeñas no habrá efectos clínicamente detectables. Al incrementar la dosis se llega a niveles en que empiezan a evidenciarse, hasta llegar a situaciones de gravedad. Para estos casos la protección consiste en prevenir los efectos, no excediendo los umbrales definidos en cada caso. Las quemaduras caen en esta categoría. El daño biológico por radiación puede manifestarse directamente en el individuo que recibe la radiación o en su progenie. En el caso en que el daño se manifieste en el individuo irradiado se trata de un daño somático, es decir, el daño se ha circunscrito a sus células somáticas. Por RADIOLOGIA ORAL Y MAXILOFACIALPágina 18
UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA FACULTAD DE ODONTOLOGIA
otro lado, el daño a las células germinales resultará en daño a la descendencia del individuo. Se pueden clasificar los efectos biológicos en el hombre como somáticos y hereditarios. El daño a los genes de una célula somática puede producir daño a la célula hija, pero sería un efecto somático no hereditario. El término "daño genético" se refiere a efectos causados por mutación en un cromosoma o un gen; esto lleva a un efecto hereditario solamente cuando el daño afecta a una línea germinal. Síndrome de irradiación aguda es el conjunto de síntomas por la exposición de cuerpo total o una gran porción de él a la radiación. Consiste en náusea, vómito, anorexia (inapetencia), pérdida de peso, fiebre y hemorragia intestinal. Según su periodo de latencia, los efectos se han clasificado en agudos (a corto plazo) y diferidos (a largo plazo). Los efectos agudos pueden ser generales o locales. Los generales presentan la sintomatología que se resume en el cuadro 8. Los locales pueden ser eritema o necrosis de la piel, caída del cabello, necrosis de tejidos internos, la esterilidad temporal o permanente, la reproducción anormal de tejidos como el epitelio del tracto gastrointestinal, el funcionamiento anormal de los órganos hematopoyéticos (médula ósea roja y bazo), o alteraciones funcionales del sistema nervioso y de otros sistemas. Los efectos diferidos pueden ser la consecuencia de una sola exposición intensa o de una exposición por largo tiempo. Entre éstos han de considerarse: las cicatrices atróficas locales o procesos distróficos de órganos y tejidos fuertemente irradiados, las cataratas del cristalino, el cáncer de los huesos debido a la irradiación del tejido óseo, el cáncer pulmonar, las anemias plásticas ocasionadas por radiolesiones de la médula ósea, y la leucemia.
Enfermedades ocasionadas por la radiación 1.- Enfermedad por radiación Enfermedad causada por la exposición del organismo o de una parte de éste a dosis altas de radiación ionizante (radiación que altera los átomos sobre los que incide).
RADIOLOGIA ORAL Y MAXILOFACIALPágina 19
UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA FACULTAD DE ODONTOLOGIA
Los síntomas aparecen por lo general debido a la exposición intensa a una radiación externa, como la producida por los rayos X o los rayos gamma, pero también pueden originarse por la absorción interna de materiales radiactivos (como el radiocesio) o por ambas causas. La enfermedad por radiación se caracteriza por una sensación súbita de anorexia (pérdida de apetito) o náuseas a las que sigue, en un periodo de tiempo corto, vómitos y, en ocasiones, diarrea. La enfermedad progresa apareciendo síntomas por lesiones más graves debido a la afectación de otros tejidos, como la médula ósea, que provoca una disminución progresiva del número de células sanguíneas, lo que conduce a un aumento de la susceptibilidad del organismo a las infecciones. Las dosis elevadas de radiación pueden producir también esterilidad permanente como consecuencia de la lesión de los órganos reproductores, lesiones graves en otros órganos, e incluso la muerte con o sin tratamiento médico. También
pueden
existir otros síntomas
dependiendo de la dosis, de la frecuencia de exposición, y del área del organismo sometida a la radiación. Éstos pueden consistir, a corto plazo, en caída del cabello, quemaduras cutáneas o hemorragias, y, a largo plazo, en un aumento del riesgo de desarrollar cáncer.
RADIOLOGIA ORAL Y MAXILOFACIALPágina 20
UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA FACULTAD DE ODONTOLOGIA
Enfermedad por radiación aguda En una exposición aguda (durante segundos, minutos, horas) se puede producir la muerte. El efecto biológico principal es la lesión celular, cuya intensidad depende del tipo de tejido afectado. Las células pluripotenciales de recubrimiento del sistema gastrointestinal, que son muy sensibles, en particular las del estómago e intestino delgado, liberan serotonina (5hidroxitriptamina, 5HT3) en el torrente sanguíneo. Esta sustancia estimula el centro del vómito localizado en el cerebro y otros receptores para la 5HT3 presentes en otras partes del organismo. Se acompaña de un aumento de la motilidad intestinal (movimiento) que puede estar producido por la acción de las sales biliares sobre la mucosa lesionada. Estos síntomas pueden variar dependiendo de la susceptibilidad individual y de que en la mayoría de las situaciones no controladas la dosis de radiación recibida por las diferentes personas afectadas no es la misma. En la radioterapia, en la que las exposiciones son controladas y repartidas en varias sesiones para permitir que los tejidos normales sensibles se recuperen, las náuseas y vómitos se presentan de manera habitual sólo cuando se realiza una irradiación corporal total a dosis elevadas, por ejemplo, tras la extirpación (extracción quirúrgica) de la médula ósea para un trasplante ulterior de médula ósea. Es normal la administración de fármacos antieméticos, como el ondansetrón, el cual contrarresta los efectos de la 5HT3, reduciendo estos efectos colaterales de la radioterapia. Todos estos efectos pueden aumentar en intensidad por la lesión debida a la radiación de otras líneas celulares, en especial las de la médula ósea. El gray (Gy) es la unidad de dosis absorbida, cuando la energía por unidad de masa aplicada a la materia por la radiación ionizante es de 1 julio por kilogramo. La unidad que se utilizaba antes, el rad, es equivalente a 10-2 Gy. Con dosis superiores a 1 Gy se produce una reducción significativa del número de células sanguíneas como consecuencia de la disminución de la médula ósea, lo que conduce a un aumento de la susceptibilidad a las infecciones, la presencia de hemorragias y anemia. En las zonas en las que existe una exposición directa intensa o una
RADIOLOGIA ORAL Y MAXILOFACIALPágina 21
UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA FACULTAD DE ODONTOLOGIA
contaminación superficial con materiales radiactivos, pueden aparecer quemaduras cutáneas, lo que incrementa la pérdida de líquidos corporales y el riesgo de infección. A veces, los síntomas agudos aparecen de forma simultánea y se conocen como síndrome de radiación aguda. Las lesiones combinadas tienen un pronóstico peor, lo que se debe tener en cuenta para el tratamiento médico. Una dosis aguda de aproximadamente 4 Gy producirá la muerte de manera probable en el 50% de las personas en un periodo de 60 días si no reciben tratamiento médico. Las dosis superiores a 10 Gy pueden producir la muerte de manera más temprana, incluso con tratamiento médico. Dosis similares recibidas durante un periodo de tiempo más prolongado (días, semanas) pueden producir diferentes síntomas, pero la muerte es menos probable, ya que las células y los tejidos tienen tiempo para reparar las lesiones. La experiencia obtenida tras las explosiones de las bombas atómicas en Hiroshima y Nagasaki, y tras otros accidentes con fuentes radiactivas, pruebas con armas nucleares y plantas que emplean energía nuclear, ha permitido obtener conclusiones importantes. En la actualidad se pueden calcular el tiempo que transcurre desde la exposición hasta la aparición de los síntomas, el porcentaje de población afectada y la duración de la enfermedad por radiación. Sin embargo, en la mayoría de los casos resulta extremadamente complicado calcular la dosis de radiación con precisión. Las cifras que se aportan a continuación son orientativas en el caso de los adultos. Puede aparecer anorexia en el 5% de las personas expuestas a 0,4 Gy y en el 95% si la dosis recibida es de 3 Gy; náuseas en el 5% con 0,5 Gy y en el 95% con 4,5 Gy; vómitos en el 5% con 0,6 Gy y 100% con 7 Gy, y diarrea en el 5% con dosis de 1 Gy y por encima del 20% con 8 Gy. Si el tiempo transcurrido entre la exposición y la aparición de cualquiera de los síntomas mencionados es inferior a una hora, es probable que la dosis recibida sea superior a 3 Gy; si es superior a 3 horas, menos de 1 Gy, y si es superior a 24 horas, es probable que la dosis haya sido inferior a 0,6 Gy. Estas referencias generales pueden ser útiles para el personal sanitario a la hora de hacer la selección de los pacientes (priorizar el tratamiento según el grado de afectación) antes de poder llevar a cabo estimaciones más precisas.
RADIOLOGIA ORAL Y MAXILOFACIALPágina 22
UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA FACULTAD DE ODONTOLOGIA
Los efectos de una prueba de explosión termonuclear realizada por Estados Unidos en las islas Marshall en 1954, afectaron a la población local, que recibió una dosis corporal total estimada de 1,75 Gy. No se produjeron fallecimientos, pero aparecieron alteraciones de diferente intensidad, con enfermedad de inicio temprano y diarrea en cerca del 10% de la población y un descenso del número de células sanguíneas. La contaminación superficial del organismo por el accidente originó quemaduras y ulceraciones cutáneas en el 20% de los afectados. En el desastre nuclear de la planta de Chernobil en Ucrania en 1986, un total de 203 personas afectadas por el accidente presentaron una enfermedad aguda por radiación. En el grupo con mayor exposición (6 a 16 Gy) el primer síntoma fueron los vómitos, que aparecieron entre 15 y 30 minutos después de la exposición, seguidos de una diarrea intensa. Este grupo, que incluía bomberos, también se vio afectado de forma aguda por la inhalación de materiales radiactivos y sustancias tóxicas, así como por otras lesiones convencionales. A pesar de un tratamiento intensivo en centros especializados, 20 de los 22 componentes de este grupo fallecieron. También contribuyeron a estas muertes los efectos de la radiación sobre la médula ósea y las quemaduras por la radiación externa por contaminación con isótopos radiactivos que emiten radiación beta. Al disminuir la dosis, los signos y síntomas eran menos graves. En las personas que habían recibido dosis entre 1 y 2 Gy los vómitos aparecieron más tarde y, aunque algunas personas también presentaron contaminación cutánea, ninguna de ellas falleció.
Enfermedad por radiación crónica En los casos de exposición crónica (medida en días, semanas o meses) a la radiación, los síntomas suelen ser menos llamativos. Un hallazgo habitual es la sensación de malestar general, con síntomas similares a la gripe, fiebre y, en ocasiones, diarrea y vómitos. Es muy difícil diagnosticar estos casos que se han producido por exposición inadvertida a una fuente de radiación industrial o a un equipo de tratamiento médico, en ocasiones obtenido o manipulado de manera ilegal. En un caso ocurrido en Estonia, donde la fuente de radiación
RADIOLOGIA ORAL Y MAXILOFACIALPágina 23
UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA FACULTAD DE ODONTOLOGIA
se había trasladado a una casa, el diagnóstico de exposición a la radiación se realizó después de que un miembro anciano de la familia falleció y otros comenzaron a presentar malestar general.
Efectos biológicos de la radiación Consecuencias de la acción de una radiación ionizante sobre los tejidos de los organismos vivos. La radiación transfiere energía a las moléculas de las células de estos tejidos. Como resultado de esta interacción las funciones de las células pueden deteriorarse de forma temporal o permanente y ocasionar incluso la muerte de las mismas. La gravedad de la lesión depende del tipo de radiación, de la dosis absorbida, de la velocidad de absorción y de la sensibilidad del tejido frente a la radiación. Los efectos de la radiación son los mismos, tanto si ésta procede del exterior, como si procede de un material radiactivo situado en el interior del cuerpo. Los efectos biológicos de una misma dosis de radiación varían de forma considerable según el tiempo de exposición. Los efectos que aparecen tras una irradiación rápida se deben a la muerte de las células y pueden hacerse visibles pasadas horas, días o semanas. Una exposición prolongada se tolera mejor y es más fácil de reparar, aunque la dosis radiactiva sea elevada. No obstante, si la cantidad es suficiente para causar trastornos graves, la recuperación será lenta e incluso imposible. La irradiación en pequeña cantidad, aunque no mate a las células, puede producir alteraciones a largo plazo.
Trastornos graves Dosis altas de radiación sobre todo el cuerpo, producen lesiones características. La radiación absorbida se mide en grays (1 gray equivale a 1 julio de energía absorbido por kilogramo de material; su símbolo es Gy). Una cantidad de radiación superior a 40 Gy produce un deterioro
RADIOLOGIA ORAL Y MAXILOFACIALPágina 24
UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA FACULTAD DE ODONTOLOGIA
severo en el sistema vascular humano, que desemboca en edema cerebral, trastornos neurológicos y coma profundo. El individuo muere en las 48 horas siguientes. Cuando el organismo absorbe entre 10 y 40 Gy de radiación, los trastornos vasculares son menos serios, pero se produce la pérdida de fluidos y electrolitos que pasan a los espacios intercelulares y al tracto gastrointestinal. El individuo muere en los diez días siguientes a consecuencia del desequilibrio osmótico, del deterioro de la médula ósea y de la infección terminal. Si la cantidad absorbida oscila entre 1,5 y 10 Gy, se destruye la médula ósea provocando infección y hemorragia. La persona puede morir cuatro o cinco semanas después de la exposición. Los efectos de estas radiaciones poco intensas, son los que pueden tratarse de forma eficaz. La mitad de las personas que han recibido una radiación de 3 a 3,25 Gy y que no hayan recibido tratamiento, pierden la médula ósea. La irradiación de zonas concretas del cuerpo (radiaciones accidentales) produce daños locales en los tejidos. Se lesionan los vasos sanguíneos de las zonas expuestas alterando las funciones de los órganos. Cantidades más elevadas, desembocan en necrosis (zonas de tejido muerto) y gangrena. No es probable que una irradiación interna, cause trastornos graves sino más bien algunos fenómenos retardados, que dependerán del órgano en cuestión y de su vida media, de las características de la radiación y del comportamiento bioquímico de la fuente de radiación. El tejido irradiado puede degenerar o destruirse e incluso desarrollar un cáncer.
Efectos retardados Las consecuencias menos graves de una radiación ionizante se manifiestan en muchos órganos, en concreto en la médula ósea, riñones, pulmones y el cristalino de los ojos, debido al deterioro de los vasos sanguíneos. Como consecuencias secundarias aparecen cambios degenerativos y funciones alteradas.
RADIOLOGIA ORAL Y MAXILOFACIALPágina 25
UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA FACULTAD DE ODONTOLOGIA
No obstante, el efecto retardado más importante comparándolo con personas no irradiadas, es el aumento de la incidencia de casos de cáncer y leucemia. El aumento estadístico de leucemia y cáncer de tiroides, pulmón y mama, es significativo en poblaciones expuestas a cantidades de radiación relativamente altas (más de 1 Gy). En animales de experimentación se ha observado una reducción del tiempo de vida, aún no se ha demostrado en seres humanos.
Radiación no ionizante La frecuencia de radiación de redes o tendidos eléctricos, radares, canales o redes de comunicación y hornos de microondas, no es ionizante. Durante mucho tiempo se ha creído que este tipo de radiación era perjudicial sólo en cantidad elevada, y que producía quemaduras, cataratas, esterilidad temporal, etc. Con la proliferación de este tipo de mecanismos, comienzan a ser materia de investigación científica las posibles consecuencias de una exposición prolongada a pequeñas cantidades de radiaciones no ionizantes. Aunque se han observado algunas consecuencias biológicas poco importantes, se desconoce por el momento qué repercusión tienen sobre la salud. CARACTERÍSTICAS BÁSICAS DEL DISEÑO DE LAS INSTALACIONES RADIOLÓGICAS
Los peligros que entrañan la manipulación y el uso de fuentes de radiación exigen características especiales de diseño y construcción de estas instalaciones que no se requieren en laboratorios o áreas de trabajo normales. Estas características especiales de diseño se incorporan de tal forma que los trabajadores no soporten incomodidades pero tengan la seguridad de que no están expuestos a peligros radiológicos externos o internos excesivos. El acceso a todas las zonas en las que pueda producirse exposición a fuentes de radiación o RADIOLOGIA ORAL Y MAXILOFACIALPágina 26
UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA FACULTAD DE ODONTOLOGIA
a materiales radiactivos deberá estar controlado, y no sólo en relación con los trabajadores de la instalación a quienes se puede permitir la entrada en dichas áreas de trabajo, sino también con respecto al tipo de ropa o equipo protector que deben llevar y a las precauciones que deben adoptar en las zonas controladas. En la administración de estas medidas de control, sirve de gran ayuda clasificar las zonas de trabajo en función de que exista o no radiación ionizante, contaminación radiactiva o ambas. La introducción de estos conceptos clasificatorios de las zonas de trabajo en las primeras fases de la planificación permitirá que la instalación posea después todas las características necesarias para hacer menos peligrosas las operaciones con fuentes de radiación.
EMPLAZAMIENTO DE UNA INSTALACIÓN RADIOLÓGICA EN UN EDIFICIO Cuando una instalación radiológica forma parte de un edificio grande, se deben aplicar los criterios siguientes en el momento de decidir su emplazamiento: • La instalación radiológica de be situarse en una parte poco frecuentada del edificio, de
manera que el acceso a la zona pueda controlarse con facilidad. • El riesgo de incendio debe ser mínimo en la zona elegida. • El emplazamiento de la instalación radiológica y de la calefacción y ventilación deben ser
tales que sean mínimas las posibilidades de difusión superficial y aérea de la contaminación radiactiva. • El emplazamiento de la instalación radiológica debe elegirse con buen juicio, de manera
que con un gasto mínimo en blindaje, los niveles de radiación puedan mantenerse dentro de los límites establecidos en la proximidad inmediata.
PLANIFICACIÓN DE INSTALACIONES RADIOLÓGICAS Cuando se prevea una gradación de niveles de actividad, el laboratorio deberá estar situado de manera que el acceso a las zonas donde existan niveles elevados de radiación o de contaminación radiactiva tenga que ser gradual; es decir, que se entre primero a una zona sin radiación, después a otra de baja actividad, a continuación a otra de actividad media, etc. RADIOLOGIA ORAL Y MAXILOFACIALPágina 27
UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA FACULTAD DE ODONTOLOGIA
Puede evitarse la necesidad de controles de ventilación complejos en laboratorios pequeños si se utilizan campanas o cajas con guantes para manipular fuentes no selladas de material radiactivo. Pero el sistema de ventilación debe diseñarse de manera que facilite la circulación del aire en una dirección, de forma que el material radiactivo que pueda quedar suspendido en el aire se aleje del trabajador expuesto. La circulación del aire debe ser siempre desde una zona no contaminada hacia otra contaminada o que pueda estarlo. Para la manipulación de fuentes no selladas de radiactividad baja o media, la velocidad media del aire por la abertura de la campana deberá ser de unos 0,5 ms – 1. Si la radiotoxicidad es elevada o el nivel de radiactividad alto, la velocidad del aire por la abertura deberá aumentarse hasta una media de 0,6 a 1,0 ms – 1. Ahora bien, se tendrá en cuenta que una velocidad excesiva del aire puede extraer materiales radiactivos de contenedores abiertos y contaminar toda la zona de la campana. La colocación de la campana en relación con las corrientes de aire que crucen el laboratorio es importante. En general, una campana debe situarse lejos de los pasos por donde entra el suministro o la renovación del aire. Si se emplean ventiladores de dos velocidades podrán funcionar a velocidad más alta mientras la campana se utiliceyamenor velocidad cuando esté cerrada. La finalidad de todo sistema de ventilación debe ser: • proporcionar condiciones de trabajo confortables; • proporcionar renovaciones continuas de aire (de tres a cinco renovaciones por hora) para
eliminar y diluir los contaminantes indeseables del aire, • reducir al mínimo la contaminación de otras zonas del edificio y del entorno.
En el diseño de instalaciones radiológicas, los requisitos de blindaje grueso pueden reducirse al mínimo mediante la adopción de ciertas medidas sencillas. Por ejemplo, en al caso de instalaciones de radioterapia, aceleradores, generadores de neutrones o fuentes de radiación panorámicas, un laberinto puede reducir la necesidad de montar una puerta con capa gruesa de plomo. El adelgazamiento gradual de la barrera protectora primaria en áreas que no se
RADIOLOGIA ORAL Y MAXILOFACIALPágina 28
UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA FACULTAD DE ODONTOLOGIA
encuentran en el camino del haz útil o el enterramiento total o parcial de la instalación pueden reducir bastante la cantidad de blindaje necesario. Es preciso conceder la máxima atención a la colocación adecuada de las ventanas de observación, de los cables de los conductos subterráneos y de los deflectores del sistema de ventilación. La ventana de observación sólo debe interceptar la radiación dispersada. Mejor aún es un circuito cerrado de televisión, que además puede mejorar la eficiencia.
ACABADOS SUPERFICIALES DENTRO DE UNA ZONA DE TRABAJO Todas las superficies rugosas, como las de yeso, hormigón, madera, etc., se deben sellar con un material adecuado. La elección del material debe hacerse teniendo en cuenta las consideraciones siguientes: • conseguir una superficie lisa y químicamente inerte; • las condiciones ambientales de temperatura, humedad y desgaste mecánico a las que pueden
estar expuestas las superficies; • compatibilidad con los campos de radiación a los que se expone la superficie, • la necesidad de una reparación fácil en caso de deterioro. No se recomiendan pinturas,
barnices y lacas corrientes para recubrir superficies de desgaste. La aplicación de una material de revestimiento que se pueda eliminar con facilidad puede ser de ayuda si se produce contaminación y se precisa descontaminación. Sin embargo, la eliminación de esos materiales puede ser a veces difícil y engorrosa.
FONTANERÍA Los desagües, pilas de lavar y sumideros del suelo deben estar marcados. Las pilas donde puedan lavarse las manos contaminadas deben tener grifos accionados con la rodilla o el pie. Puede ser económico reducir el mantenimiento instalando tuberías que se descontaminen o sustituyan con facilidad si es preciso. En algunos casos es recomendable instalar depósitos RADIOLOGIA ORAL Y MAXILOFACIALPágina 29
UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA FACULTAD DE ODONTOLOGIA
subterráneos donde guardar o almacenar materiales radiactivos líquidos para controlar su eliminación posterior.
DISEÑO DE BLINDAJES CONTRA LA RADIACIÓN El blindaje es importante para disminuir la exposición radiológica de los trabajadores de la instalación y del público en general. Los requisitos del blindaje dependen de varios factores, incluidos el tiempo que los trabajadores de la instalación radiológica o el público en general están expuestos a las fuentes de radiación y el tipo y la energía de la fuentes de radiación y sus campos radiológicos. En el diseño de blindajes radiológicos, el material absorbente debe colocarse lo más cerca posible de la fuente de radiación. Para cada tipo de radiación es preciso considerar por separado el blindaje que será necesario aplicar. El diseño del blindaje puede ser una tarea compleja. Por ejemplo, el empleo de ordenadores para encontrar el modelo de blindaje de aceleradores, reactores y otras fuentes de radiación de alta energía escapa al ámbito de este artículo. En el diseño de blindajes complejos se debe consultar siempre a expertos calificados.
BLINDAJE DE FUENTES GAMMA La atenuación de la radiación gamma difiere cualitativamente de la de las radiaciones alfa o beta. Estos dos tipos de radiación tienen un alcance definido en la materia y son absorbidos por completo, mientras que es posible reducir la intensidad de la radiación gamma mediante material absorbente cada vez más grueso, pero no puede absorberse por completo. Si la atenuación de los rayos gamma monoenergéticos se mide en condiciones de buena geometría (es decir, si la radiación está bien colimada en un haz estrecho), los datos de la intensidad, cuando se registran en papel semilogarítmico frente al espesor del absorbente, se encontrarán en una recta cuya pendiente será igual al coeficiente de atenuación, µ. La intensidad, o tasa de dosis absorbida transmitida a través de un absorbente, puede calcularse del modo siguiente:
RADIOLOGIA ORAL Y MAXILOFACIALPágina 30
UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA FACULTAD DE ODONTOLOGIA
donde I(t) es la intensidad de los rayos gamma o la tasa de dosis absorbida transmitida por un absorbente de espesor t. Las unidades de µ y t son recíprocas entre sí. Si el espesor del absorbente t se mide en cm, entonces µ es el coeficiente de atenuación lineal y se mide en cm – 1. Si t tiene unidades de densidad superficial (g/cm2), entonces µ es el coeficiente de atenuación por unidad de masa µm y se mide en cm2/g. Como aproximación de primer orden basada en la densidad superficial, todos los materiales tienen aproximadamente las mismas propiedades de atenuación para fotones con energías entre alrededor de 0,75 y 5,0 MeV (megaelectronvoltios). Dentro de este intervalo de energías, las propiedades del blindaje contra rayos gamma son aproximadamente proporcionales a la densidad del material de blindaje. Si
las energías
de
los
fotones son
menores o
mayores, los
materiales
absorbentes
de número
atómico más
alto un blindaje
suministran más
eficaz
que los de número atómico más bajo para una densidad superficial dada. En condiciones de geometría imperfecta (por ejemplo, si el haz es ancho o el blindaje grueso), la ecuación anterior subestimará en grado notable el espesor de blindaje necesario, porque supone que todo fotón que interactúa con el blindaje será eliminado del haz y no será detectado. Un número importante de fotones pueden ser dispersados por el blindaje hacia el detector, o fotones que se hayan dispersado del haz pueden volver dispersados hacia él tras una segunda interacción. El espesor del blindaje para condiciones de geometría imperfecta puede estimarse mediante el factor de acumulación B, cuyo valor puede calcularse del modo siguiente:
RADIOLOGIA ORAL Y MAXILOFACIALPágina 31
UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA FACULTAD DE ODONTOLOGIA
El factor de acumulación es siempre mayor que uno, y puede definirse como la relación entre la intensidad de la radiación fotónica en cualquier punto del haz, incluidas la radiación primaria y la dispersada, y la intensidad del haz primario únicamente en ese punto. El factor de acumulación puede aplicarse al flujo de radiación o a la tasa de dosis absorbida. Se han calculado factores de acumulación para distintas energías de fotones y diversos absorbentes. Muchas de las gráficas o tablas indican el espesor del blindaje en longitudes de relajación. Una longitud de relajación es el espesor de un blindaje que atenúa un haz estrecho hasta 1/e (en torno al 37 %) de su intensidad original. Por consiguiente, una longitud de relajación viene dada por el valor numérico recíproco del coeficiente de atenuación lineal (es decir, 1/µ). El espesor de un absorbente que, cuando se introduce en el haz de fotones primarios, reduce a la mitad la tasa de dosis absorbida se llamada capa de hemirreducción (HVL) o espesor de hemirreducción (HVT). La HVL puede calcularse como sigue:
BLINDAJE DE APARATOS DE RAYOS X MÉDICOS Y NO MÉDICOS El blindaje de aparatos de rayos X se considera bajo dos aspectos diferentes, blindaje de la fuente y blindaje estructural. El blindaje de la fuente suele ser efectuado por el fabricante o proveedor de la carcasa del tubo de rayos X. Los reglamentos de seguridad especifican un tipo de carcasa protectora del tubo en las instalaciones de rayos X para diagnostico médico, y otro para las instalaciones de rayos X terapéuticos. Para aparatos de rayos X no médicos,
RADIOLOGIA ORAL Y MAXILOFACIALPágina 32
UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA FACULTAD DE ODONTOLOGIA
la carcasa del tubo y otras partes del aparato de rayos X, como el transformador, se blindan para reducir la fuga de la radiación X a niveles aceptables. Todas las máquinas de rayos X, médicas y no médicas, tienen carcasas protectoras del tubo diseñadas para limitar la radiación de fuga. La radiación de fuga, tal como se utiliza en estas especificaciones de carcasas para tubos, significa toda la radiación procedente de la carcasa del tubo menos la del haz útil. El blindaje estructural de una instalación de rayos X proporciona protección contra el haz de rayos X útil o primario, la radiación de fuga y la radiación dispersada. Abarca tanto el aparato de rayos X como el objeto que se irradia. La cantidad de radiación dispersada depende del tamaño del campo de rayos X, de la energía del haz útil, del número atómico efectivo del medio de dispersión y del ángulo que forman el haz útil entrante y la dirección de dispersión. Un parámetro clave del diseño es la carga de trabajo de la instalación (W): donde W es la carga de trabajo semanal, que por lo general se da en mA-min por semana; E es la corriente del tubo multiplicada por el tiempo de exposición por proyección, que se suele dar en mA s; Nv es el número de proyecciones por paciente u objeto irradiado; Np es el número de pacientes u objetos por semana y k es un factor de conversión (1 min dividido por 60 s). Otro parámetro clave del diseño es el factor de uso Un de una pared (o suelo o techo) n. La pared puede proteger cualquier zona ocupada, como una sala de control, oficina o sala de espera. El factor de uso viene dado por:
donde, Nv,n es el número de proyecciones para las que el haz de rayos X primario es dirigido hacia la pared n. Las necesidades de blindaje estructural de una instalación dada de rayos X se determinan teniendo en cuenta los datos siguientes: • el potencial máximo del tubo, en kilovoltios-pico (kVp), al que funciona el tubo de rayos X; • la corriente máxima del haz, en mA, con que funciona el sistema de rayos X; • la carga de trabajo (W), que mide en unidades adecuadas (por lo general, mA-min por
semana) la cantidad de uso del sistema de rayos X; RADIOLOGIA ORAL Y MAXILOFACIALPágina 33
UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA FACULTAD DE ODONTOLOGIA
• el factor de uso (U), que es la fracción de la carga de trabajo durante la cual el haz útil está
dirigido en la dirección de interés; • el factor de ocupación (T), o factor por el que se debe multiplicar la carga de trabajo para
introducir la corrección por el grado o tipo de ocupación de la zona a proteger; • la tasa de dosis equivalente máxima permisible (P) para una persona en zonas controladas
y no controladas (los límites de dosis absorbida típicos son de 1 mGy para una zona controlada en una semana y 0,1 mGy para una zona no controlada en una semana), • tipo del material de blindaje (por ejemplo, plomo u hormigón), • la distancia (d) desde la fuente hasta el emplazamiento protegido
REPUESTA DE LA OMS La OMS ha establecido un programa sobre las radiaciones para proteger a los pacientes, los trabajadores y la población contra los riesgos para la salud de la exposición planificada, existente o de emergencia a la radiación. El programa se centra en los aspectos de salud pública de la protección contra la radiación y abarca actividades relacionadas con la evaluación, la gestión y la comunicación de los riesgos. De conformidad con su función básica de “establecer normas y promover y seguir de cerca su aplicación en la práctica”, la OMS ha cooperado con otras siete organizaciones
internacionales en la revisión y actualización de las normas internacionales básicas de seguridad de la radiación. La OMS adoptó las nuevas normas en 2012 y en la actualidad está prestando apoyo a su aplicación en los Estados Miembros de la Organización.
RADIOLOGIA ORAL Y MAXILOFACIALPágina 34
UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA FACULTAD DE ODONTOLOGIA
BIBLIOGRAFÍA http://www.who.int/es/news-room/fact-sheets/detail/ionizing-radiation-health-effects-and protective-measures http://www.insht.es/InshtWeb/Contenidos/Documentacion/TextosOnline/EnciclopediaOIT/ tomo2/48.pdf
RADIOLOGIA ORAL Y MAXILOFACIALPágina 35
UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA FACULTAD DE ODONTOLOGIA
ANEXOS
RADIOLOGIA ORAL Y MAXILOFACIALPágina 36