Problemas Resueltos de Topografía
José E. Meroño
Problema 1 Determinar las coordenadas planimétricas del vértice P levantado a través de observaciones angulares realizadas desde los vértices V1 y V2 de coordenadas conocidas. Datos de Partida: Vértice
X
Y
V1
50000
50000
V2
55000
45000
Datos de Campo: Vértice V1
V2
Punto Visado
Ang. Horiz.
V2
227.1210
P
106.6377
P
51.7244
V1
1.7244
1
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Problema 1 P
A la vista de la figura:
α = λ V V 12 − λ V P1 = 227.1210 − 106.6377 = 120.6377 g
γ
− 1.7244 = 50.0000 g β = λ V P 2 − λ V V 12 = 51.7244
γ = 200 − α − β = 29.5167 g θV1P
Determinación de los acimutes y las distancias. θ V V 21 = artan = artan
X V 1 − X V 2 Y V 1 − Y V 2
= artan
55000 − 50000 45000 − 50000
=
θV1V2
5000 = −50(2º Cuad ) = 150 g − 5000
α V1
θ V V 21 = θ V V 12 ± 200 g = 350 g V
DV 12 =
( −5000) 2 + 5000 = 7071.068
θV2P
Dv1v2
β
Aplicando el teorema del seno:
V
DV 12
sen γ
P
=
DV P1 =
P
DV 1
sen β
DV 2
=
7071.068 ⋅ sen 50 sen 29.5167
V2
= 11180 .340
θV2V1
sen α DV P2 =
7071 .068 ⋅ sen 120.4833 sen 29.5167
= 15000.000
Problema 1 P
Determinación de los acimutes: γ P V 1
V 2 V 1
θ = θ
− α = 150 − 120.4833 = 29.5167
g
θ V P2 = θ V V 21 + β = 350 + 50 = 400 g = 0 g θV1P
Cálculo de coordenadas relativas:
θV1V2
∆ X V P1 = DV P1 sen θ V P1 = 11180.34 sen 29.5167 = 5000 P V 1
P V 1
P V 1
∆Y = D cosθ = 11180.34 cos 29.5167 = 10000
∆ X V P2 = DV P2 sen θ V P2 = 15000sen 0 = 0
α V1
∆Y V P2 = DV P2 cosθ V P2 = 15000cos 0 = 15000 Siendo las coordenadas absolutas: X P = X V 1 + ∆ X V P1 = X V 2 + ∆ X V P2 = 55000 P
Dv1v2
θV2P β
P
Y P = Y V 1 + ∆Y V 1 = Y V 2 + ∆Y V 2 = 60000 V2
θV2V1
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Problema 2 Para la ejecución de un levantamiento topográfico se realiza un itinerario topográfico. A fin de dar coordenadas al trabajo, desde el primer vértice del Itinerario (V1), se realiza una trisección inversa a los vértices A, B y C de coordenadas conocidas. Se pide:
Determinar las coordenadas planimétricas del vértice V1. Determinar el acimut de partida para la resolución del Itinerario
Vértice
X
Y
A
10000
15000
B
13000
18000
C
16000
14000
V 4
θ
V 1
Datos de Campo:
Vértice V1
Alt. Inst. 1,75
Punto
Ang. Horiz.
Ang. Vert
Dist Nat.
Alt. Señal
A
8,5053
99,9897
1,2 1,2
B
38,8596
99,9678
C
80,8005
99,9805
V4
396,2156
102,3232
75,115
1,5
V2
102,3233
101,2785
83,214
1,5
1,2
Problema 2 A la vista de la figura se deduce que:
θBC B
α = λ BP − λ AP = 38,8596 - 8,5053 = 30,3543g β = λ C P − λ BP = 80,8005 - 38,8596 = 41,9409g
a
θB A
A
θ BC = a tan
3000
− 4000
= -40,9666 = (2º Cuad. + 200) = 159,0334 g α
λ
A P
A
C
B = θ B − θ B = 90,9666 g
β
λP B c λP V3
a=
b
( X A − X B ) 2 + (Y A − Y B ) 2 = 4242,641 m
( X
X )
2
B
A
− 3000 θ = a tan = 50,0000 = (3º Cuad. + 200) = 250,0000 g − 3000 A B
(Y
Y )
2
5000 000
P
b
C
C
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Problema 2
θBC B a
b
θB A
A
B
A
C
C
Resolución de la Trisección Inversa: α
M =
b ⋅ senα a ⋅ sen β
λ P A
= 0,883523002
λ
g g N = 400 − B − α − β = 236,7382 I = 1 + M ⋅ cos N = 0,25955657 5 J = M ⋅ senN = −0,482033639 J A = a tan = −68,5547 g (+200) = 131.4453 g I C = N − A = 105,2929 g
β B P c λP V3
P
B 4242,641
5000
90,9666 38,2004
A 131,4453
105,2929
C
30,3543
41,9409
V1
Problema 2 RESOLUCIÓN DE LA INTERSECCIÓN DIRECTA:
B
A la vista de la figura: 4242,641
B1 = 200 − α − A = 38,2004
g
5000
90,9666 38,2004
A
θ BV 1 = θ B A − B1 = 250,000 − 38 , 2004 = 211.7996 g
131,4453
105,2929
Aplicando el teorema del seno:
D BV 1 =
a senα
30,3543
senA = 8139,418m
41,9409
Las coordenadas relativas serán: ∆ X BV 1 = D BV 1 senθ BV 1 = −1499,999 ∆Y BV 1 = D BV 1 cos θ BV 1 = −8000,008
Y las coordenadas absolutas:
V1
V 1
X V 1 = X B + ∆X B = 11500,001 V 1 B
Y V 1 = Y B + ∆Y
= 9999,992
DETERMINACIÓN DEL ACIMUT DE PARTIDA. ω V 1 = θ V B1 − λ V B1 = 11,7996 − 38,8596 = −27,0600 + 400 = 372,9400
C
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Problema 3 Con objeto de realizar un levantamiento, se ha realizado un itinerario cerrado de cuatro estaciones, en el sentido V1, V2, V3 y V4, cuya libreta de campo figura a continuación: Estación
i
V1
Punto visado
1.56
V2
1.30
V3
1.50
V4
1.56
Ángulo horizontal
Distancia natural
Ángulo vertical
altura señal
V4
357.983
221.42
99.549
1, 5
V2
238.999
306.73
100.078
1, 5
V1
78.563
306.66
99.988
1 ,0
V3
24.626
228.07
99.620
1 ,0
V2
134.181
228.10
100.470
1, 5
V1
376.324
225.12
99.950
1,5
V3
179.615
225.25
100.051
1. 5
V1
110.331
221.58
100.477
1. 5
Los datos de partida son los siguientes: Coordenadas de V1 (X = 2.000,00 m, Y = 2.000,00 2.000,00 m, Z = 202,352 m )
V 4
θ
V 1
= 125,222 g
Resolver la planimetría y la altimetría del itinerario, calculando las coordenadas X, Y y Z de las estaciones, e indicar la corrección de orientación en las estaciones para resolver radiaciones desde ellas
Problema 3 Cálculo de acimutes, error de cierre angular, compensación y determinación de acimutes compensados en las visuales de frente
Estación
Punto visado
V1
V4
357.983
125.222
V2
238.999
6.238
V1
78.563
206.238
V3
24.626
152.301
V2
134.181
352.301
V1
376.324
194.444
V3
179.615
394.444
V1
110.331
325.160
V2
V3
V4
Ángulo horizontal
Acimutes calculados
Error angular 325,160-325,222 = -0,062g
Compensación
Acimutes compensados
+0,0155
6.2535
+0,031
152.332
+0,0465
194.4905
+0,062
325.222
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Problema 3 Cálculo de incrementos en X e Y, errores en X e Y y error planimétrico
Est.
Punto visado
V1
V4
221.41
V2
306.73
V1
306.66
V3
228.07
V2
228.09
V2
V3
V4
Distancias reducidas
V1
225.12
V3
225.25
V1
221.57
Distancias medias
Acimutes Compen.
∆X
∆Y
306.69
6.2535
30.08
305.22
228.08
152.332
155.26
-167.08
225.18
194.4905
19.46
-224.34
221.49
325.222
-204.34
85.48
Errores en X e Y Error planimétrico
0.46 m
-0.72 m
0.76 metros
Problema 3 Compensación de errores en X e Y, arrastre de coordenadas y determinación de las coordenadas de las estaciones
Est.
Punto visado
V1
V4
V2
V1
V3
V2
V4
V3
V2
V3
V1
V1
Compens. en X
Compens. en Y
∆X compensado
∆Y compensado
-0.036
0.28
30.04
305.50
2 0 3 0 .0 4
2 3 0 5 .5 0
V2
-0.181
0.157
155.08
-166.92
2185.13
2 1 3 8 .5 8
V3
-0.018
0.206
19.44
-224.13
2204.57
1 9 1 4 .4 4
V4
-0.235
0.077
-204.57
85.55
2000.00
2 0 0 0 .0 0
V1
Σ∆Xcomp=0,00 Σ∆Ycomp=0,00
X
Y
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Problema 3 Cálculo de incrementos de Z, tanto en visuales de espalda como de frente, determinación de ∆Z medios en visuales de frente, error altimétrico, compensación y arrastre de Z, determinación de la cota de las estaciones ∆Z= t + i - m =Dred*cotang =Dred*cotang∆ + altura altura instrumento - altura señal
Est.
Punto visado
V1
V4
V2
V3
V4
Distancias reducidas
∆Z
221.42
1.632
V2
306.73
-0.310
V1
306.66
0.364
V3
228.07
1.665
V2
228.10
-1.681
V1
225.12
0.180
V3
225.25
-0.117
V1
221.58
-1.597
∆Z
medios
Compens. en Z
∆Z compensado
-0.337
0.041
-0.296
202.056
V2
1.673
0.030
1.703
203.759
V3
0.149
0.029
0.178
203.937
V4
-1.614
0.029
-1.585
202.352
V1
Errores en Z -0.130 m Longitud del itinerario 981.45 m
Problema 3 Correcciones de orientación de las estaciones:
wV 1 =
wV 2 = w
V 2
θ
V 1 V 3
θ
V 2
V 4
V 2
− λ V 1 = 6.2535 − 238.999 = −232.745 = 167.2545 V 3
− λ V 2 = 152.332 − 24.626 = 127.706 V 4
Z
= θ − λ = 194 4905 − 376 324 = −181 8335 = 218 1665
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Problema 4 Determinar superficie agraria de la parcela delimitada por los puntos A, B y C, así como la pendiente del lado AC. Vértice
X
Y
Z
A
5000
5000
100
D
4000
5000
125
Datos de campo: Estación
Punto Visado
Angulo Horizontal
A
D
125.225
I=1.63
B
380.372
D
A
8.778
I=1.82
C
118.554
Angulo Vertical
Distancia Natural
Altura de señal.
102.437
2225.48
1.8
97.432
3125.45
1.8
Problema 4 Superficie de la parcela ABC. Se puede coger como base cualquier lado del triángulo y proyectar el vértice opuesto sobre él, para calcular la altura. Elegimos como base el lado AC.
C
Dr
A
C
θ
2
2
= ( X c − X A ) + (Y c − Y A ) = 3421.68m. arctg −1477 68
27 923(+200)
228 428
g
D
C
*h
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Problema 4 Como se observa en los datos de campo se han visado los puntos desde dos bases A y D, de coordenadas conocidas orientándose recíprocamente en ambas Los puntos A y D, tienen la misma co ordenada Y, Y, por tanto la recta que los une es paralela al eje d e las X. En primer lugar calculamos las coordenadas del punto B, visado desde A. D
= arctg −1000 = arctg − ∞ = 300g 0
θ
A
A D
w A = B
θ
A
D
D
A
A
θ − λ
= 300 − 125 .225 = 174 .775
B
= w A + λ A = 174.775 + 380.372 = 155.147 B
h
= 2225 .48 * sen102 .437 = 2223 .85
Dr
A
B
B
∆ x A = 2223.85 * sen155.147 = 1440.37 B
∆ y
A
= 2223.85 * cos155.147 = −1694.36
X = X + ∆ x B
A
B
Y = Y + ∆ y B
A
B
A
A
= 6440.37
= 3305.64
C
Problema 4 Calculamos las coordenadas del punto C, visado desde D. A
D
D
A
θ = θ w D =
A
− 200 = 100 g
A
A
D
D
θ − λ
D = 100 − 8.778 = 91 .222 g
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Problema 4
Superficie de la parcela ABC. Se puede coger como base cualquier lado del triángulo y proyectar el vértice opuesto sobre él, para calcular la altura. Elegimos como base el lado AC. A D C
Dr
A
C
θ
A
2
2
= ( X c − X A ) + (Y c − Y A ) = 3421 .68m.
= arctg C
−1477 .68 −3086 .16
= 27.923( +200) = 228.428 g
B
α = θ A −θ A = 228.428 − 155.147 = 73.281
h B
g
B
h = Dr A senα = 2223 .85 * sen73.281 = 2030 .84m C
S
=
DA * h 2
= 3474442m 2 C C
∆ Z
D
= t + i − m = Dr D cot g∆ + i − m = 3122.91* cot g 97, 432 + 1.82 − 1.8 = 126.06 m. C
Z C = Z D + ∆Z
D
C
C
∆ Z = Z − Z A
Pendiente
C
C
A
= 125 + 126.06 = 251.06m.
= 251.06 − 100 = 151.06m.
151.06 C
A
tg β =
3421.68
∆ Z
A C
Dr
A
=
151.06 3421.68
= 0.044
Pendiente = 4.4%
Problema 5 1.- Determinar las altitudes de los puntos 2-9 levantados a traves de un itinerario de nivelacion geometrica encuadrado
Datos de partida Punto 1 10
Altitud 817,222 818,223
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Problema 5 COMPENSACION
DESNIV. COMPENSA DOS
ALTITUD
PUNTO
1,4480
-0,0019
1,4461
818,6681
2
155,4000
1,2370
-0,0020
1,2350
819,9031
3
3 -4
154,6000
1,1230
-0,0020
1,1210
821,0241
4
4 -5
155,8000
-1,0100
-0,0020
-1,0120
820,0121
5
5 -6
160,2000
-1,7810
-0,0021
-1,7831
818,2290
6
6 -7
158,4000
1,1020
-0,0020
1,1000
819,3290
7
7 -8
156,2000
1,6790
-0,0020
1,6770
821,0060
8
8 -9
154,8000
-1,7460
-0,0020
-1,7480
819,2580
9
EJE
LONGITUD DEL EJE
DESNIVEL
1 -2
150,2000
2 -3
LONG. TOTAL
1399,8000 SUMA
1,0190
Zf-Zi
1,001
ERROR CIERRE
0,0180
FACTOR C CO OMP.
1,2859E-05
Problema 6 Se ha realizado un itinerario cerrado de cuatro estaciones, en el sentido V1, V2, V3 y V4, parte de cuyos datos una vez calculado y compensado figuran a continuación: Coordenadas de V1 (X = 5.000,00 m, Y = 5.000,00 m, Z = 268,369 m ) V 4
θ
V 1
= 268.369 g
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Problema 6 Desde las estaciones del itinerario, medidos a la vez que este, se han radiado puntos para realizar un levantamiento planimétrico de la zona. Calcular las coordenadas X e Y de los puntos 1 y 2, radiados desde V2 y del punto 3 radiado desde V4, deducidas de los datos de campo que figuran a continuación:
Estación V2
V4
Punto visado
Ángulo horizontal
Distancia natural
Ángulo vertical
1
129.325
174.41
96.292
2
354.236
239.32
94.812
3
158.7048
203.97
93.889