Problemas de para el Final Alvaro M. Naupay Gusukuma 12 de enero de 2017
´Indice general
´Indice general
Prefacio
iii
1. Series
1
2. Soluciones
1
Bibliograf´ ıa
3
i
ii
´Indice general
Prefacio
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.
iii
iv
Prefacio
1 Series
1. Determine el valor de la suma
∞
ln
k =1
(k + 1) 2 k (k + 2)
A) ln2
B)
D ) ln5
E)
ln3 1
C)
ln4
Soluci´on. ∞
2. Si
n=1
1 =
n2
S
∈
A)
S
4 4S D) 3
determine el valor de
∞
convergencia de nos de
R,
S
n=1
B) E)
1 , en t´ermi(2n − 1)2 S
2
C)
3S 4
S
8 Soluci´on.
1
2
Cap´ıtulo 1. Series
2 Soluciones
1. Note que ln
(k + 1) 2 (k + 1) = ln k (k + 2) k = ln
k+1 k
×
(k + 1) = ln (k + 2) k+2
+ ln
−
k+1 k
1
= ln
k+1
+ ln
k+1 k
f (k )
k+1 k+2 −
ln
k+2 k+1
f (k +1)
luego podemos aplicar la propiedad telesc´opica para series infinitas ∞
ln (k + 1) 2 = ln 1 + 1 k (k + 2) 1 k =1
Rpt.- ln 2
∞
2. Tenemos que
S
=
n=1 ∞
1 n2
= 1+
−
ım l´ ln
k →∞
k+2 k+1
= l n 2 − ln 1 = ln 2 Problema.
1 1 1 1 1 1 1 1 1 + + + + + + + + 22 32 42 52 62 72 82 92 102
...
∞
1 1 S = , donde P es la suma de los t´erminos de orden n)2 n2 (2 4 4 n=1 n=1 par la serie S . Adem´as note que la serie I de los t´erminos de orden impar est´a dado por 1 I = , que es justo lo que nos piden. n − 1)2 (2 n=1 Observe que
P
=
1
=
∞
Luego tenemos que Rpt.-
S
= P + I , es decir
I
= S −P =S
S −
4
3S 4
1
=
3S 4
. Problema.
2
Cap´ıtulo 2. Soluciones
Bibliograf´ıa
[1] Adomian, G. and Adomian, G.E. , A Global Method for Solution of Complex Systems , Mathematical Modelling, Vol5, 1984, pp. 251-63. [2] Adomian, G. Rach, R. and Sarafyan, D. , On the Solution of Equations Containing Radicals by the Decomposition Method, Journal of Mathematical Analysis and Applications, Vol. III No. 2, 1985, pp. 423-26. [3] Adomian, G. and Rach, R. , Polynomials Non-linearities in Differential Equations , Journal of Mathematics Analysis and Applications, Vol. 109 No. 1, 1985. [4] Adomian, G. , Non-linear Stochastic Dynamica Systems in Physical Problems , Journal of Mathematical Analysis and Applications, vol. III No. I, 1985. [5] George Adomian , Solving Frontier Problems of Physics: The Decomposition Method , Kluwer Academic Publisher, 1994. [6] Yves Cherruault , Convergence of Adomian’s Method , Medimat, Universit´ e de Paris, 1988. [7] Abdul-Majid Wazwaz , Partial Differential Equations and Solitary Waves Theory , Springer, 2009.
3