Home
Add Document
Sign In
Register
Práctica 4 - Log
Home
Práctica 4 - Log
Ejercicios de Logaritmos...
Author:
CristhianPatrickTuctoLópez
82 downloads
278 Views
211KB Size
Report
DOWNLOAD .PDF
Recommend Documents
PRCTICA 03_AVR_
Descripción completa
4.Log Linear 2 Dimensi
Unit 4 TE Exponential and Log
Teachers edition for algebra 2 exponential and log
Log Lineal
econometria modelo log linealDescripción completa
Resistivity Log
Deskripsi lengkap
Log book
Log Cuantificacional
LOGICADescripción completa
Puerts Log
4. Log Book Perawat Ahli Pertama Rev
t
4. Log Book Perawat Ahli Pertama Rev
tDeskripsi lengkap
Hack Log
hackDescription complète
Log Equations
Full description
Resistivity Log
Deskripsi lengkap
Log Jam
a bit more than you ever wanted to know about shooting log
Key Log
Full description
Resistivity Log
Kata Log
zastava knic
Well Log
Prosedur Pengerjaan TubesDeskripsi lengkap
LOG BOOK
Log Book Kep Jiwa STIKI Immanuel
Muse Log
oDescrição completa
Wireline Log
wirelineFull description
wireline log
wireline log
SIU-LOG
Sample Ericsson SIU LOG FileDescrição completa
Neutron Log
logging
INGENIERÍA CIVIL
COMPLEMENTO MATEMÁTICO
PRÁCTICA N°4
1. Si: Loga 2 = x ; Loga 3 = y ; Log a 5 = 7. Calcular : Loga 2700
Log x2 !2x +2 100 11. Si Log3 7 Log5 3 = Log(4 ) 5 Log(7 ) 4
Calcular “x”
2. Si: Log7 4 = m , Log7 5 = n.
12. Si : 2x + 2-x = 4. Hallar una solución de “x” :
Hallar: Log7 980. 3. Si : Loga x = m ; Log a y = n ; Log a z = p. & $
Calcular : R = log a $ 3 $ %
#
x 2 y 5 ! ! z3 ! "
4. Indique la expresión correcta :
' *$ + (! ! n 13. Reducir : Logn &Logn + n . 1 ( # si : n > 1 n + (! ! n , )" %
14. Reducir : 1 + Log(2001)2002 1 + Log(2002)2001
+
1 ! Log(2001)2002 1 ! Log(2002)2001
a) Log0.25 256 = -3 b) Log256 0.0625 = -0.5 c) Log0.25 0.5 = +0.5 d) Log0.5 32 = 5 e) Log16 0.125 = -1.5
5. Log 2 = m , Log 3 = n , x = Log 36. Hallar “x” 6. Log 3 = a , Log 2 = b. Hallar : Log (5!)
&3 a # ! 7. Logab a = 4. Calcular : Logab $$ ! $ b ! % "
8. Si : Log14 28 = a. Hallar : Log 49 16 9. 10x = 18 ; 10 y = 12 entonces : Log Log 6 es :
10. Si : 3 Log3 a – 3 Log3 b = 6. Calcular : a/b
15. El logaritmo de “N” en base 5 es el mismo que el logaritmo de M en base 5 . Si : M + N =
3 4
. Hallar:
M N
INGENIERÍA CIVIL
16.El valor de :
a
Loga a 100 3 . Logbb10
COMPLEMENTO MATEMÁTICO
27.
Si : a > 0
S=
4 Log a
17. Si : a > 1 ! b > 1, reducir : E = ba
Log a
! +
+
a % 1, reducir : Log 3 a 3 Log a2
Log( a ) ( Log( b ) a )
28.
Con la condición : x y . y x = (xy)2
simplificar : E = 18. El equivalente de : E=
1 1 1 + + es: 1 + Log(3) (10e) 1 + Ln 30 1 + Log 3e
( )( 7 )
19. Calcular : E = Log
7
7
1 + Log(2) 3 1 + Log(3) 2
21.
Reducir:
22.
Indicar verdadero o falso en :
+
1 ! Log(2) 3 1 ! Log(3) 2
( (
) 2 Log x = Log x2 " x # R ) Logx x = 1 " x > 0
(
) Al resolver x Logx (x + 4) = 5
$
x=1
23.
Calcula: Log3 3 + Log3 9 + Log3 27 + ... Log3 310
24.
Reducir: & %
# 2 ! Logb (a ' 1 ) !"
& # 2 $$ 1 ' ! Logb (a + 1 ) !" %
donde a, b # R+ - {1}, además : a – b = 1
25.
Calcular
el
7b Loga 3 + 3 Loga b
26.
valor
de:
w
=
si : Loga b = Log3 2
Luego de efectuar :
Sugerencia usar : Logb a x = x Loga b Log( 2 )2 Log(3) 4 Log(2 ) 7 Log(2)5 Log(9 )16 4 49 25 4
se obtiene :
x % y,
y x + Log( y )x + 1 Log(x ) y + 1
Siendo : a + b > 0, reducir :
Log(3 ) [Log(9 ) ( a + b) 18 ] L= 1 + Log(9 ) [Log(3 ) ( a + b)]
7
20. Sabiendo “a” y “b” son raíces positivos de la ecuación : x2 – 4x + m2 = 0. Hallar : L = Logm ab + Logm aa + Logm bb + Logm ba
R = $$ 1 +
29.
!
30. Sabiendo: a = Loga b
b
c
x
. Hallar : E = x + Logc
×
Report "Práctica 4 - Log"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
×
Sign In
Email
Password
Remember me
Forgot password?
Sign In
Our partners will collect data and use cookies for ad personalization and measurement.
Learn how we and our ad partner Google, collect and use data
.
Agree & close