Mécanique des structures
Mécanique des structures
Tome 3
Tome 3
Thermique des structures Dynamique des structures
Thermique des structures Dynamique des structures
Serge L AROZE
Serge L AROZE
CÉPADUÈS-ÉDITIONS
CÉPADUÈS-ÉDITIONS
111, rue Nicolas-Vauquelin 31100 TOULOUSE – France Tél. : 05 61 40 57 36 – Fax : 05 61 41 79 89
111, rue Nicolas-Vauquelin 31100 TOULOUSE – France Tél. : 05 61 40 57 36 – Fax : 05 61 41 79 89
(de l’étranger ) + 33 5 61 40 57 36 – Fax : + 33 5 61 41 79 89
(de l’étranger ) + 33 5 61 40 57 36 – Fax : + 33 5 61 41 79 89
www.cepadues.com Courriel :
[email protected]
www.cepadues.com Courriel :
[email protected]
Mécanique des structures
Mécanique des structures
Tome 3
Tome 3
Thermique des structures Dynamique des structures
Thermique des structures Dynamique des structures
Serge L AROZE
Serge L AROZE
CÉPADUÈS-ÉDITIONS
CÉPADUÈS-ÉDITIONS
111, rue Nicolas-Vauquelin 31100 TOULOUSE – France Tél. : 05 61 40 57 36 – Fax : 05 61 41 79 89
111, rue Nicolas-Vauquelin 31100 TOULOUSE – France Tél. : 05 61 40 57 36 – Fax : 05 61 41 79 89
(de l’étranger ) + 33 5 61 40 57 36 – Fax : + 33 5 61 41 79 89
(de l’étranger ) + 33 5 61 40 57 36 – Fax : + 33 5 61 41 79 89
www.cepadues.com Courriel :
[email protected]
www.cepadues.com Courriel :
[email protected]
Chez le même éditeur Solides Elastiques / Plaques et Coques / Exercices �������������������������������������������������������������������������������������������������������������������������������������������� Barrau J�-J�, Laroze S� Tourbillons Instabilité Décollement ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� Béguier Cl� et al� Les Milieux continus multiphysiques �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� Borghi R� Thermo-mécanique et modélisation par systèmes ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������� Borghi R� Introduction à la Dynamique des Gaz Réactifs ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� Brun R� L ’Art de la formule expliqué aux scientifiques ������������������������������������������������������������������������������������������������������������������������������������������������������ Bruneau M�, Potel C� Turbulence en Mécanique des Fluides ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� Chassaing P� Mécanique des Fluides ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������Chassaing P� Combustion dans les moteurs fusées �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� CNES Maths/Méca. Que Savez-vous de l'Outil Mathématique? 6 fascicules ����������������������������������������������������������������������������������������������������������������������������������� Collectif Précis de Résistance des Matériaux ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� Datas J-M� Vibration des structures par analyse modale. Test modal et identification modale ��������������������������������������������������������������������������������� Diaby M'P� Introduction à la Dynamique des Structures ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� Gourinat Y� Mécanique Générale ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� Laroze S� Thermique et Dynamique des Structures ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� Laroze S� Poutres ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� Laroze S� Solides Elastiques / Plaques et Coques ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� Laroze S� Thermique et Dynamique des Structures / Exercices ��������������������������������������������������������������������������������������������������������������������������������������� Laroze S�, Lorrain M Poutres / Exercices ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ Laroze S�, Lorrain M Calculs thermomécaniques des structures par les éléments finis �������������������������������������������������������������������������������������������������������������������������������Marcelin J�-L� Optimisation des Structures et d'Éléments Mécaniques ����������������������������������������������������������������������������������������������������������������������������������������������������� Marcelin J�-L� Optimisation des Vibrations des Structures Mécaniques ���������������������������������������������������������������������������������������������������������������������������������������������������� Marcelin J�-L� Conception optimale des Engrenages Cylindriques ����������������������������������������������������������������������������������������������������������������������������������������������������������������Marcelin J�-L� Fuite et Rupture des Tubes endommagés ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� Pluvinage G� 120 exercices de Mécanique Élastoplastique ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� Pluvinage G� La Rupture du Bois et Composites ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� Pluvinage G� Mécanique Élastoplastique de la Rupture ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� Pluvinage G� Prévision statistique de la résistance ������������������������������������������������������������������������������������������������������������������������������������������������������������������ Pluvinage G�, Sapunov V�T� Résistance des Matériaux ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� Pluvinage G�, Sapunov V�T� Principes et applications de Mécanique Analytique ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� Potel C� Leçons sur les Grandes Déformations ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ Souchet R� Des Ondes et des Fluides ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� Thual O� Introduction à la Mécanique des Milieux Continus Déformables ������������������������������������������������������������������������������������������������������������������������������������������ Thual O� Contrôle des Décollements - Optimisation des performances et nouveaux actionneurs, GDR 2502�������������������������������������������������������� Collectif Contrôle des décollements - du développement des actionneurs à l'amélioration des performances, GDR 2502 ������������������������� Collectif © CEPAD 2005
ISBN : 2.85428.714.2
CHEZ LE MÊME ÉDITEUR Le GRAFCET ...............................................................................................................................................ADEPA/AFCET Optimisations en fabrication ............................................................................................................................. Agullo M. Robustesse et commande optimale ......................................................................................................... Alazard D. et al. Cours de mécanique générale ...............................................................................................................................Bellet D. Problèmes de mécanique rationnelle ...................................................................................................................Bellet D. Problèmes de mécanique des solides ....................................................................................................................Bellet D. Problèmes d’élasticité ............................................................................................................................................Bellet D. Cours d’élasticité ................................................................................................................................Bellet D., Barrau J.-J. Comprendre, maîtriser et appliquer le GRAFCET .......................................................................................Blanchard M. Tables de détente ou compression isentropique de choc m = 1,400 ...............................................Bonnet A., Luneau J. Vous avez dit « Résistance des matériaux ” ? Qu’en savez-vous ?..................................................Boudet R., Stephan P. Que faut-il savoir en mécanique ? .....................................................................................................Boudet R., Sudre M. La stratégie productique ............................................................................................. Brzakowski S., Delamalmaison R. Produits et analyse de la valeur ..................................................................................................................... Chevallier J. Conduite et gestion de projets...............................................................................................Chvidchenko I., Chevallier J. Elasticité linéaire .................................................................................................................................................Dartus D. Précis de résistance des matériaux .................................................................................................................. Datas J.-M. 7 facettes du GRAFCET .............................................................................................................................Gendreau et al. Introduction à la dynamique des structures .................................................................................................. Gourinat Y. Le GRAFCET : de nouveaux concepts .....................................................................................................GREPA (ADEPA) Concepts et outils pour les systèmes de production.............................................................................. Hennet J.-C. et al. Optimisation des vibrations des structures mécaniques............................................................................Marcelin J.-L.. Conception optimale des engrenages cylindriques ....................................................................................Marcelin J.-L.. Mécanique élastoplastique de la rupture...................................................................................................... Pluvinage G. 120 exercices de Mécanique élastoplastique de la rupture ........................................................................... Pluvinage G La rupture du bois et de ses composites ....................................................................................................... Pluvinage G.. Fuite et rupture des tubes endommagés.............................................................................. Pluvinage G.., Sapunov V.-T. Ingénierie & Ergonomie...........................................................................................Pomian J.-L., Pradère T., Gaillard I. Leçons sur les grandes déformations................................................................................................................Souchet R. Les Nouvelles rationalisations de la production .................................................................de Terssac G., Dubois P. et al.
© CEPAD 2005
1er
ISBN : 2.85428.714.2 1er
Le code de la propriété intellectuelle du juillet 1992 interdit expressément la photocopie à usage collectif sans autorisation des ayants-droit. Or, cette pratique en se généralisant provoquerait une baisse brutale des achats de livres, au point que la possibilité même pour les auteurs de créer des œuvres nouvelles et de les faire éditer correctement est aujourd’hui menacée.
Le code de la propriété intellectuelle du juillet 1992 interdit expressément la photocopie à usage collectif sans autorisation des ayants-droit. Or, cette pratique en se généralisant provoquerait une baisse brutale des achats de livres, au point que la possibilité même pour les auteurs de créer des œuvres nouvelles et de les faire éditer correctement est aujourd’hui menacée.
Nous rappelons donc que toute reproduction, partielle ou totale, du présent ouvrage est interdite sans autorisation de l’Éditeur ou du Centre français d’exploitation du droit de copie (CFC – 3, rue d’Hautefeuille – 75006 Paris).
Nous rappelons donc que toute reproduction, partielle ou totale, du présent ouvrage est interdite sans autorisation de l’Éditeur ou du Centre français d’exploitation du droit de copie (CFC – 3, rue d’Hautefeuille – 75006 Paris).
Dépôt légal : septembre 2005
N° éditeur : 714
Dépôt légal : septembre 2005
CHEZ LE MÊME ÉDITEUR
N° éditeur : 714
CHEZ LE MÊME ÉDITEUR
Le GRAFCET ...............................................................................................................................................ADEPA/AFCET Optimisations en fabrication ............................................................................................................................. Agullo M. Robustesse et commande optimale ......................................................................................................... Alazard D. et al. Cours de mécanique générale ...............................................................................................................................Bellet D. Problèmes de mécanique rationnelle ...................................................................................................................Bellet D. Problèmes de mécanique des solides ....................................................................................................................Bellet D. Problèmes d’élasticité ............................................................................................................................................Bellet D. Cours d’élasticité ................................................................................................................................Bellet D., Barrau J.-J. Comprendre, maîtriser et appliquer le GRAFCET .......................................................................................Blanchard M. Tables de détente ou compression isentropique de choc m = 1,400 ...............................................Bonnet A., Luneau J. Vous avez dit « Résistance des matériaux ” ? Qu’en savez-vous ?..................................................Boudet R., Stephan P. Que faut-il savoir en mécanique ? .....................................................................................................Boudet R., Sudre M. La stratégie productique ............................................................................................. Brzakowski S., Delamalmaison R. Produits et analyse de la valeur ..................................................................................................................... Chevallier J. Conduite et gestion de projets...............................................................................................Chvidchenko I., Chevallier J. Elasticité linéaire .................................................................................................................................................Dartus D. Précis de résistance des matériaux .................................................................................................................. Datas J.-M. 7 facettes du GRAFCET .............................................................................................................................Gendreau et al. Introduction à la dynamique des structures .................................................................................................. Gourinat Y. Le GRAFCET : de nouveaux concepts .....................................................................................................GREPA (ADEPA) Concepts et outils pour les systèmes de production.............................................................................. Hennet J.-C. et al. Optimisation des vibrations des structures mécaniques............................................................................Marcelin J.-L.. Conception optimale des engrenages cylindriques ....................................................................................Marcelin J.-L.. Mécanique élastoplastique de la rupture...................................................................................................... Pluvinage G. 120 exercices de Mécanique élastoplastique de la rupture ........................................................................... Pluvinage G La rupture du bois et de ses composites ....................................................................................................... Pluvinage G.. Fuite et rupture des tubes endommagés.............................................................................. Pluvinage G.., Sapunov V.-T. Ingénierie & Ergonomie...........................................................................................Pomian J.-L., Pradère T., Gaillard I. Leçons sur les grandes déformations................................................................................................................Souchet R. Les Nouvelles rationalisations de la production .................................................................de Terssac G., Dubois P. et al.
Le GRAFCET ...............................................................................................................................................ADEPA/AFCET Optimisations en fabrication ............................................................................................................................. Agullo M. Robustesse et commande optimale ......................................................................................................... Alazard D. et al. Cours de mécanique générale ...............................................................................................................................Bellet D. Problèmes de mécanique rationnelle ...................................................................................................................Bellet D. Problèmes de mécanique des solides ....................................................................................................................Bellet D. Problèmes d’élasticité ............................................................................................................................................Bellet D. Cours d’élasticité ................................................................................................................................Bellet D., Barrau J.-J. Comprendre, maîtriser et appliquer le GRAFCET .......................................................................................Blanchard M. Tables de détente ou compression isentropique de choc m = 1,400 ...............................................Bonnet A., Luneau J. Vous avez dit « Résistance des matériaux ” ? Qu’en savez-vous ?..................................................Boudet R., Stephan P. Que faut-il savoir en mécanique ? .....................................................................................................Boudet R., Sudre M. La stratégie productique ............................................................................................. Brzakowski S., Delamalmaison R. Produits et analyse de la valeur ..................................................................................................................... Chevallier J. Conduite et gestion de projets...............................................................................................Chvidchenko I., Chevallier J. Elasticité linéaire .................................................................................................................................................Dartus D. Précis de résistance des matériaux .................................................................................................................. Datas J.-M. 7 facettes du GRAFCET .............................................................................................................................Gendreau et al. Introduction à la dynamique des structures .................................................................................................. Gourinat Y. Le GRAFCET : de nouveaux concepts .....................................................................................................GREPA (ADEPA) Concepts et outils pour les systèmes de production.............................................................................. Hennet J.-C. et al. Optimisation des vibrations des structures mécaniques............................................................................Marcelin J.-L.. Conception optimale des engrenages cylindriques ....................................................................................Marcelin J.-L.. Mécanique élastoplastique de la rupture...................................................................................................... Pluvinage G. 120 exercices de Mécanique élastoplastique de la rupture ........................................................................... Pluvinage G La rupture du bois et de ses composites ....................................................................................................... Pluvinage G.. Fuite et rupture des tubes endommagés.............................................................................. Pluvinage G.., Sapunov V.-T. Ingénierie & Ergonomie...........................................................................................Pomian J.-L., Pradère T., Gaillard I. Leçons sur les grandes déformations................................................................................................................Souchet R. Les Nouvelles rationalisations de la production .................................................................de Terssac G., Dubois P. et al.
© CEPAD 2005
© CEPAD 2005
ISBN : 2.85428.714.2
ISBN : 2.85428.714.2
Le code de la propriété intellectuelle du 1er juillet 1992 interdit expressément la photocopie à usage collectif sans autorisation des ayants-droit. Or, cette pratique en se généralisant provoquerait une baisse brutale des achats de livres, au point que la possibilité même pour les auteurs de créer des œuvres nouvelles et de les faire éditer correctement est aujourd’hui menacée.
Le code de la propriété intellectuelle du 1er juillet 1992 interdit expressément la photocopie à usage collectif sans autorisation des ayants-droit. Or, cette pratique en se généralisant provoquerait une baisse brutale des achats de livres, au point que la possibilité même pour les auteurs de créer des œuvres nouvelles et de les faire éditer correctement est aujourd’hui menacée.
Nous rappelons donc que toute reproduction, partielle ou totale, du présent ouvrage est interdite sans autorisation de l’Éditeur ou du Centre français d’exploitation du droit de copie (CFC – 3, rue d’Hautefeuille – 75006 Paris).
Nous rappelons donc que toute reproduction, partielle ou totale, du présent ouvrage est interdite sans autorisation de l’Éditeur ou du Centre français d’exploitation du droit de copie (CFC – 3, rue d’Hautefeuille – 75006 Paris).
Dépôt légal : septembre 2005
N° éditeur : 714
Dépôt légal : septembre 2005
N° éditeur : 714
6200$,5(
6200$,5(
UH3$57,(±7+(50,48('(66758&785(6
UH3$57,(±7+(50,48('(66758&785(6
&+$3,75(35(0,(5
&+$3,75(35(0,(5
7+(50,48(
7+(50,48(
± &21'8&7,21'(&+$/(85'$16/(662/,'(6
± &21'8&7,21'(&+$/(85'$16/(662/,'(6
± ([SpULHQFHIRQGDPHQWDOH
± ([SpULHQFHIRQGDPHQWDOH
± /RLGH)RXUULHU
± /RLGH)RXUULHU
± (TXDWLRQGHODFRQGXFWLRQGHFKDOHXU
± (TXDWLRQGHODFRQGXFWLRQGHFKDOHXU
± 5pVLVWDQFHHWFRQGXFWDQFHWKHUPLTXHV
± 5pVLVWDQFHHWFRQGXFWDQFHWKHUPLTXHV
± 6ROLGHVHQFRQWDFW
± 6ROLGHVHQFRQWDFW
±75$16)(57'(&+$/(853$5&219(&7,21
±75$16)(57'(&+$/(853$5&219(&7,21
± &RQYHFWLRQQDWXUHOOH
± &RQYHFWLRQQDWXUHOOH
±&RQYHFWLRQIRUFpH
±&RQYHFWLRQIRUFpH
± 5$<211(0(17e/(&7520$*1e7,48(
± 5$<211(0(17e/(&7520$*1e7,48(
± &DUDFWpULVWLTXHVG¶XQIDLVFHDXF\OLQGULTXH
± &DUDFWpULVWLTXHVG¶XQIDLVFHDXF\OLQGULTXH
± ,QWHUDFWLRQDYHFXQVROLGH
± ,QWHUDFWLRQDYHFXQVROLGH
± 6ROLGHVLGpDX[
± 6ROLGHVLGpDX[
±/HVORLVGXFRUSVQRLU
±/HVORLVGXFRUSVQRLU
±$EVRUSWLRQHWpPLVVLRQG¶XQFRUSVUpHO
±$EVRUSWLRQHWpPLVVLRQG¶XQFRUSVUpHO
±352%/Ê0(6'¶,//8675$7,21
±352%/Ê0(6'¶,//8675$7,21
± 5pVLVWDQFHWKHUPLTXHUDGLDOHG¶XQWXEHF\OLQGULTXH
± 5pVLVWDQFHWKHUPLTXHUDGLDOHG¶XQWXEHF\OLQGULTXH
± 5pVLVWDQFHWKHUPLTXHUDGLDOHG¶XQHVSKqUHFUHXVH
± 5pVLVWDQFHWKHUPLTXHUDGLDOHG¶XQHVSKqUHFUHXVH
±7HPSpUDWXUHG¶pTXLOLEUHG¶XQHSODTXHH[SRVpHDXVROHLO
±7HPSpUDWXUHG¶pTXLOLEUHG¶XQHSODTXHH[SRVpHDXVROHLO
±7HPSpUDWXUHG¶pTXLOLEUHG¶XQHVSKqUHSRVpHDXVROHLO
±7HPSpUDWXUHG¶pTXLOLEUHG¶XQHVSKqUHSRVpHDXVROHLO
-3-
-3-
6200$,5(
6200$,5(
UH3$57,(±7+(50,48('(66758&785(6
UH3$57,(±7+(50,48('(66758&785(6
&+$3,75(35(0,(5
&+$3,75(35(0,(5
7+(50,48(
7+(50,48(
± &21'8&7,21'(&+$/(85'$16/(662/,'(6
± &21'8&7,21'(&+$/(85'$16/(662/,'(6
± ([SpULHQFHIRQGDPHQWDOH
± ([SpULHQFHIRQGDPHQWDOH
± /RLGH)RXUULHU
± /RLGH)RXUULHU
± (TXDWLRQGHODFRQGXFWLRQGHFKDOHXU
± (TXDWLRQGHODFRQGXFWLRQGHFKDOHXU
± 5pVLVWDQFHHWFRQGXFWDQFHWKHUPLTXHV
± 5pVLVWDQFHHWFRQGXFWDQFHWKHUPLTXHV
± 6ROLGHVHQFRQWDFW
± 6ROLGHVHQFRQWDFW
±75$16)(57'(&+$/(853$5&219(&7,21
±75$16)(57'(&+$/(853$5&219(&7,21
± &RQYHFWLRQQDWXUHOOH
± &RQYHFWLRQQDWXUHOOH
±&RQYHFWLRQIRUFpH
±&RQYHFWLRQIRUFpH
± 5$<211(0(17e/(&7520$*1e7,48(
± 5$<211(0(17e/(&7520$*1e7,48(
± &DUDFWpULVWLTXHVG¶XQIDLVFHDXF\OLQGULTXH
± &DUDFWpULVWLTXHVG¶XQIDLVFHDXF\OLQGULTXH
± ,QWHUDFWLRQDYHFXQVROLGH
± ,QWHUDFWLRQDYHFXQVROLGH
± 6ROLGHVLGpDX[
± 6ROLGHVLGpDX[
±/HVORLVGXFRUSVQRLU
±/HVORLVGXFRUSVQRLU
±$EVRUSWLRQHWpPLVVLRQG¶XQFRUSVUpHO
±$EVRUSWLRQHWpPLVVLRQG¶XQFRUSVUpHO
±352%/Ê0(6'¶,//8675$7,21
±352%/Ê0(6'¶,//8675$7,21
± 5pVLVWDQFHWKHUPLTXHUDGLDOHG¶XQWXEHF\OLQGULTXH
± 5pVLVWDQFHWKHUPLTXHUDGLDOHG¶XQWXEHF\OLQGULTXH
± 5pVLVWDQFHWKHUPLTXHUDGLDOHG¶XQHVSKqUHFUHXVH
± 5pVLVWDQFHWKHUPLTXHUDGLDOHG¶XQHVSKqUHFUHXVH
±7HPSpUDWXUHG¶pTXLOLEUHG¶XQHSODTXHH[SRVpHDXVROHLO
±7HPSpUDWXUHG¶pTXLOLEUHG¶XQHSODTXHH[SRVpHDXVROHLO
±7HPSpUDWXUHG¶pTXLOLEUHG¶XQHVSKqUHSRVpHDXVROHLO
±7HPSpUDWXUHG¶pTXLOLEUHG¶XQHVSKqUHSRVpHDXVROHLO
-3-
-3-
&+$3,75(,,
&+$3,75(,,
7+(502e/$67,&,7e
7+(502e/$67,&,7e
± e78'('(6'e)250$7,216
± e78'('(6'e)250$7,216
±e78'('(6&2175$,17(6
±e78'('(6&2175$,17(6
±5(/$7,216(175(&2175$,17(6(7'e)250$7,216
±5(/$7,216(175(&2175$,17(6(7'e)250$7,216
± /DORLGH+RRNH
± /DORLGH+RRNH
± /DORLGHODGLODWDWLRQWKHUPLTXH
± /DORLGHODGLODWDWLRQWKHUPLTXH
±/DORLGH+RRNH±'XKDPHO
±/DORLGH+RRNH±'XKDPHO
± /(352%/(0(*e1e5$/'(7+(502e/$67,&,7(
± /(352%/(0(*e1e5$/'(7+(502e/$67,&,7(
±'e)250$7,2163/$1('3
±'e)250$7,2163/$1('3
± &2175$,17(63/$1(6&3
± &2175$,17(63/$1(6&3
±e7$7$;,6<0e75,48(0e5,',(1
±e7$7$;,6<0e75,48(0e5,',(1
±6<0e75,(63+e5,48(
±6<0e75,(63+e5,48(
&+$3,75(,,,
&+$3,75(,,,
7+(50,48('(632875(6
7+(50,48('(632875(6
± ())2571250$/1(7e&+$8))(0(1781,)250(
± ())2571250$/1(7e&+$8))(0(1781,)250(
±020(17)/e&+,66$170=(7*5$',(17'(7(03e5$785($
±020(17)/e&+,66$170=(7*5$',(17'(7(03e5$785($
±020(17)/e&+,66$170<(7*5$',(17'(7(03e5$785(%
±020(17)/e&+,66$170<(7*5$',(17'(7(03e5$785(%
± 32875(&,5&8/$,5(¬3/$102<(1
± 32875(&,5&8/$,5(¬3/$102<(1
±)/(;,213/$1('¶81(32875(5(&7,/,*1(¬3/$102<(1
±)/(;,213/$1('¶81(32875(5(&7,/,*1(¬3/$102<(1
±62//,&,7$7,216&20%,1e(6
±62//,&,7$7,216&20%,1e(6
±&2175$,17(67+(50,48(6'$16/(675(,//,6
±&2175$,17(67+(50,48(6'$16/(675(,//,6
±)/$0%(0(177+(50,48(
±)/$0%(0(177+(50,48(
-4-
-4-
&+$3,75(,,
&+$3,75(,,
7+(502e/$67,&,7e
7+(502e/$67,&,7e
± e78'('(6'e)250$7,216
± e78'('(6'e)250$7,216
±e78'('(6&2175$,17(6
±e78'('(6&2175$,17(6
±5(/$7,216(175(&2175$,17(6(7'e)250$7,216
±5(/$7,216(175(&2175$,17(6(7'e)250$7,216
± /DORLGH+RRNH
± /DORLGH+RRNH
± /DORLGHODGLODWDWLRQWKHUPLTXH
± /DORLGHODGLODWDWLRQWKHUPLTXH
±/DORLGH+RRNH±'XKDPHO
±/DORLGH+RRNH±'XKDPHO
± /(352%/(0(*e1e5$/'(7+(502e/$67,&,7(
± /(352%/(0(*e1e5$/'(7+(502e/$67,&,7(
±'e)250$7,2163/$1('3
±'e)250$7,2163/$1('3
± &2175$,17(63/$1(6&3
± &2175$,17(63/$1(6&3
±e7$7$;,6<0e75,48(0e5,',(1
±e7$7$;,6<0e75,48(0e5,',(1
±6<0e75,(63+e5,48(
±6<0e75,(63+e5,48(
&+$3,75(,,,
&+$3,75(,,,
7+(50,48('(632875(6
7+(50,48('(632875(6
± ())2571250$/1(7e&+$8))(0(1781,)250(
± ())2571250$/1(7e&+$8))(0(1781,)250(
±020(17)/e&+,66$170=(7*5$',(17'(7(03e5$785($
±020(17)/e&+,66$170=(7*5$',(17'(7(03e5$785($
±020(17)/e&+,66$170<(7*5$',(17'(7(03e5$785(%
±020(17)/e&+,66$170<(7*5$',(17'(7(03e5$785(%
± 32875(&,5&8/$,5(¬3/$102<(1
± 32875(&,5&8/$,5(¬3/$102<(1
±)/(;,213/$1('¶81(32875(5(&7,/,*1(¬3/$102<(1
±)/(;,213/$1('¶81(32875(5(&7,/,*1(¬3/$102<(1
±62//,&,7$7,216&20%,1e(6
±62//,&,7$7,216&20%,1e(6
±&2175$,17(67+(50,48(6'$16/(675(,//,6
±&2175$,17(67+(50,48(6'$16/(675(,//,6
±)/$0%(0(177+(50,48(
±)/$0%(0(177+(50,48(
-4-
-4-
&+$3,75(,9
&+$3,75(,9
7+(50,48('(63/$48(6
7+(50,48('(63/$48(6
± 3/$48(&+$5*e('$166213/$1
± 3/$48(&+$5*e('$166213/$1
± &RQWUDLQWHVSODQHV
± &RQWUDLQWHVSODQHV
±&RQWUDLQWHVTXDVLSODQHV
±&RQWUDLQWHVTXDVLSODQHV
±3/$48(&+$5*e(75$169(56$/(0(17
±3/$48(&+$5*e(75$169(56$/(0(17
±)/(;,21$;,6<0e75,48('(6',648(6(7&285211(6
±)/(;,21$;,6<0e75,48('(6',648(6(7&285211(6
±)/(;,21&,1'5,48('(63/$48(65(&7$1*8/$,5(6
±)/(;,21&,1'5,48('(63/$48(65(&7$1*8/$,5(6
±)/$0%(0(177+(50,48(
±)/$0%(0(177+(50,48(
&+$3,75(9
&+$3,75(9
7+(50,48('(6&248(6
7+(50,48('(6&248(6
±+<327+Ê6(6'(6&248(60,1&(6
±+<327+Ê6(6'(6&248(60,1&(6
±7+e25,(48$'5$7,48(
±7+e25,(48$'5$7,48(
±7+e25,(/,1e$,5(
±7+e25,(/,1e$,5(
±7+e25,('(60(0%5$1(6
±7+e25,('(60(0%5$1(6
±(;(03/('(/$63+Ê5(&5(86(
±(;(03/('(/$63+Ê5(&5(86(
±352%/Ê0(6$;,6<0e75,48(60e5,',(16
±352%/Ê0(6$;,6<0e75,48(60e5,',(16
±7KpRULHTXDGUDWLTXH
±7KpRULHTXDGUDWLTXH
±7KpRULHOLQpDLUH
±7KpRULHOLQpDLUH
±7KpRULHGHVPHPEUDQHV
±7KpRULHGHVPHPEUDQHV
±$SSOLFDWLRQDXF\OLQGUH
±$SSOLFDWLRQDXF\OLQGUH
±([HPSOH
±([HPSOH
-5-
-5-
&+$3,75(,9
&+$3,75(,9
7+(50,48('(63/$48(6
7+(50,48('(63/$48(6
± 3/$48(&+$5*e('$166213/$1
± 3/$48(&+$5*e('$166213/$1
± &RQWUDLQWHVSODQHV
± &RQWUDLQWHVSODQHV
±&RQWUDLQWHVTXDVLSODQHV
±&RQWUDLQWHVTXDVLSODQHV
±3/$48(&+$5*e(75$169(56$/(0(17
±3/$48(&+$5*e(75$169(56$/(0(17
±)/(;,21$;,6<0e75,48('(6',648(6(7&285211(6
±)/(;,21$;,6<0e75,48('(6',648(6(7&285211(6
±)/(;,21&,1'5,48('(63/$48(65(&7$1*8/$,5(6
±)/(;,21&,1'5,48('(63/$48(65(&7$1*8/$,5(6
±)/$0%(0(177+(50,48(
±)/$0%(0(177+(50,48(
&+$3,75(9
&+$3,75(9
7+(50,48('(6&248(6
7+(50,48('(6&248(6
±+<327+Ê6(6'(6&248(60,1&(6
±+<327+Ê6(6'(6&248(60,1&(6
±7+e25,(48$'5$7,48(
±7+e25,(48$'5$7,48(
±7+e25,(/,1e$,5(
±7+e25,(/,1e$,5(
±7+e25,('(60(0%5$1(6
±7+e25,('(60(0%5$1(6
±(;(03/('(/$63+Ê5(&5(86(
±(;(03/('(/$63+Ê5(&5(86(
±352%/Ê0(6$;,6<0e75,48(60e5,',(16
±352%/Ê0(6$;,6<0e75,48(60e5,',(16
±7KpRULHTXDGUDWLTXH
±7KpRULHTXDGUDWLTXH
±7KpRULHOLQpDLUH
±7KpRULHOLQpDLUH
±7KpRULHGHVPHPEUDQHV
±7KpRULHGHVPHPEUDQHV
±$SSOLFDWLRQDXF\OLQGUH
±$SSOLFDWLRQDXF\OLQGUH
±([HPSOH
±([HPSOH
-5-
-5-
H3$57,(±'<1$0,48('(66758&785(6
H3$57,(±'<1$0,48('(66758&785(6
&+$3,75(9,
&+$3,75(9,
6758&785(6¬81'(*5e'(/,%(57e
6758&785(6¬81'(*5e'(/,%(57e
±&,1e0$7,48(
±&,1e0$7,48(
±2VFLOODWLRQKDUPRQLTXH
±2VFLOODWLRQKDUPRQLTXH
±6XSHUSRVLWLRQGHGHX[PRXYHPHQWVKDUPRQLTXHVGHPrPHIUpTXHQFH
±6XSHUSRVLWLRQGHGHX[PRXYHPHQWVKDUPRQLTXHVGHPrPHIUpTXHQFH
±0RXYHPHQWSpULRGLTXHQRQKDUPRQLTXH
±0RXYHPHQWSpULRGLTXHQRQKDUPRQLTXH
±%DWWHPHQWV
±%DWWHPHQWV
±6758&785(/,1e$,5(
±6758&785(/,1e$,5(
±6758&785(/,1e$,5(&216(59$7,9(/,%5(
±6758&785(/,1e$,5(&216(59$7,9(/,%5(
±6758&785(/,1e$,5(',66,3$7,9(/,%5(
±6758&785(/,1e$,5(',66,3$7,9(/,%5(
±6758&785(/,1e$,5(&216(59$7,9((;&,7e(
±6758&785(/,1e$,5(&216(59$7,9((;&,7e(
±5pSRQVHjXQHH[FLWDWLRQKDUPRQLTXH
±5pSRQVHjXQHH[FLWDWLRQKDUPRQLTXH
±5pSRQVHjXQHH[FLWDWLRQSpULRGLTXH
±5pSRQVHjXQHH[FLWDWLRQSpULRGLTXH
±5pSRQVHjXQHH[FLWDWLRQQRQSpULRGLTXH
±5pSRQVHjXQHH[FLWDWLRQQRQSpULRGLTXH
±6758&785(/,1e$,5(',66,3$7,9((;&,7e(
±6758&785(/,1e$,5(',66,3$7,9((;&,7e(
±5pSRQVHjXQHH[FLWDWLRQKDUPRQLTXH
±5pSRQVHjXQHH[FLWDWLRQKDUPRQLTXH
±5pSRQVHjXQHH[FLWDWLRQSpULRGLTXHQRQKDUPRQLTXH
±5pSRQVHjXQHH[FLWDWLRQSpULRGLTXHQRQKDUPRQLTXH
±5pSRQVHjXQHH[FLWDWLRQQRQSpULRGLTXH
±5pSRQVHjXQHH[FLWDWLRQQRQSpULRGLTXH
±6758&785(6121/,1e$,5(6
±6758&785(6121/,1e$,5(6
±*UDQGHVDPSOLWXGHV
±*UDQGHVDPSOLWXGHV
±'LVVLSDWLRQQRQYLVTXHXVH
±'LVVLSDWLRQQRQYLVTXHXVH
&+$3,75(9,,
&+$3,75(9,,
6758&785(6¬3/86,(856'(*5e6'(/,%(57e
6758&785(6¬3/86,(856'(*5e6'(/,%(57e
±/,$,6216
±/,$,6216
± /LDLVRQVELODWpUDOHVHWOLDLVRQVXQLODWpUDOHV
± /LDLVRQVELODWpUDOHVHWOLDLVRQVXQLODWpUDOHV
-6-
-6-
H3$57,(±'<1$0,48('(66758&785(6
H3$57,(±'<1$0,48('(66758&785(6
&+$3,75(9,
&+$3,75(9,
6758&785(6¬81'(*5e'(/,%(57e
6758&785(6¬81'(*5e'(/,%(57e
±&,1e0$7,48(
±&,1e0$7,48(
±2VFLOODWLRQKDUPRQLTXH
±2VFLOODWLRQKDUPRQLTXH
±6XSHUSRVLWLRQGHGHX[PRXYHPHQWVKDUPRQLTXHVGHPrPHIUpTXHQFH
±6XSHUSRVLWLRQGHGHX[PRXYHPHQWVKDUPRQLTXHVGHPrPHIUpTXHQFH
±0RXYHPHQWSpULRGLTXHQRQKDUPRQLTXH
±0RXYHPHQWSpULRGLTXHQRQKDUPRQLTXH
±%DWWHPHQWV
±%DWWHPHQWV
±6758&785(/,1e$,5(
±6758&785(/,1e$,5(
±6758&785(/,1e$,5(&216(59$7,9(/,%5(
±6758&785(/,1e$,5(&216(59$7,9(/,%5(
±6758&785(/,1e$,5(',66,3$7,9(/,%5(
±6758&785(/,1e$,5(',66,3$7,9(/,%5(
±6758&785(/,1e$,5(&216(59$7,9((;&,7e(
±6758&785(/,1e$,5(&216(59$7,9((;&,7e(
±5pSRQVHjXQHH[FLWDWLRQKDUPRQLTXH
±5pSRQVHjXQHH[FLWDWLRQKDUPRQLTXH
±5pSRQVHjXQHH[FLWDWLRQSpULRGLTXH
±5pSRQVHjXQHH[FLWDWLRQSpULRGLTXH
±5pSRQVHjXQHH[FLWDWLRQQRQSpULRGLTXH
±5pSRQVHjXQHH[FLWDWLRQQRQSpULRGLTXH
±6758&785(/,1e$,5(',66,3$7,9((;&,7e(
±6758&785(/,1e$,5(',66,3$7,9((;&,7e(
±5pSRQVHjXQHH[FLWDWLRQKDUPRQLTXH
±5pSRQVHjXQHH[FLWDWLRQKDUPRQLTXH
±5pSRQVHjXQHH[FLWDWLRQSpULRGLTXHQRQKDUPRQLTXH
±5pSRQVHjXQHH[FLWDWLRQSpULRGLTXHQRQKDUPRQLTXH
±5pSRQVHjXQHH[FLWDWLRQQRQSpULRGLTXH
±5pSRQVHjXQHH[FLWDWLRQQRQSpULRGLTXH
±6758&785(6121/,1e$,5(6
±6758&785(6121/,1e$,5(6
±*UDQGHVDPSOLWXGHV
±*UDQGHVDPSOLWXGHV
±'LVVLSDWLRQQRQYLVTXHXVH
±'LVVLSDWLRQQRQYLVTXHXVH
&+$3,75(9,,
&+$3,75(9,,
6758&785(6¬3/86,(856'(*5e6'(/,%(57e
6758&785(6¬3/86,(856'(*5e6'(/,%(57e
±/,$,6216
±/,$,6216
± /LDLVRQVELODWpUDOHVHWOLDLVRQVXQLODWpUDOHV
± /LDLVRQVELODWpUDOHVHWOLDLVRQVXQLODWpUDOHV
-6-
-6-
±/LDLVRQVKRORQRPHVHWOLDLVRQVQRQKRORQRPHV
±/LDLVRQVKRORQRPHVHWOLDLVRQVQRQKRORQRPHV
±/LDLVRQVVWDWLRQQDLUHVHWOLDLVRQVLQVWDWLRQQDLUHV
±/LDLVRQVVWDWLRQQDLUHVHWOLDLVRQVLQVWDWLRQQDLUHV
±/LDLVRQVSDVVLYHVHWOLDLVRQVDFWLYHV
±/LDLVRQVSDVVLYHVHWOLDLVRQVDFWLYHV
±/LDLVRQFRQVHUYDWULFHHWOLDLVRQGLVVLSDWLYH
±/LDLVRQFRQVHUYDWULFHHWOLDLVRQGLVVLSDWLYH
±e48$7,216'(/$*5$1*(
±e48$7,216'(/$*5$1*(
±/HWKpRUqPHGHVWUDYDX[YLUWXHOVHQG\QDPLTXH
±/HWKpRUqPHGHVWUDYDX[YLUWXHOVHQG\QDPLTXH
±(TXDWLRQVGH/DJUDQJHFDVJpQpUDO
±(TXDWLRQVGH/DJUDQJHFDVJpQpUDO
±/DJUDQJLHQG¶XQHVWUXFWXUH
±/DJUDQJLHQG¶XQHVWUXFWXUH
±)RQFWLRQGHGLVVLSDWLRQGH5D\OHLJK
±)RQFWLRQGHGLVVLSDWLRQGH5D\OHLJK
±8WLOLVDWLRQG¶XQUHSqUHQRQ*DOLOLHQ
±8WLOLVDWLRQG¶XQUHSqUHQRQ*DOLOLHQ
±$33/,&$7,216'(6e48$7,216'(/$*5$1*(
±$33/,&$7,216'(6e48$7,216'(/$*5$1*(
±3DUWLFXOHOLEUH
±3DUWLFXOHOLEUH
±3HQGXOHVLPSOHGDQVXQZDJRQ
±3HQGXOHVLPSOHGDQVXQZDJRQ
±&KDULRWVFRXSOHVSDUXQDPRUWLVVHXUYLVTXHX[
±&KDULRWVFRXSOHVSDUXQDPRUWLVVHXUYLVTXHX[
±/HSHQGXOHGH)RXFDXOW
±/HSHQGXOHGH)RXFDXOW
± 6758&785(6/,1e$,5(6¬1''/
± 6758&785(6/,1e$,5(6¬1''/
±6758&785(/,1e$,5(&216(59$75,&(/,%5(
±6758&785(/,1e$,5(&216(59$75,&(/,%5(
±&KDQJHPHQWGHEDVH
±&KDQJHPHQWGHEDVH
±9HFWHXUVSURSUHVHWYDOHXUVSURSUHV
±9HFWHXUVSURSUHVHWYDOHXUVSURSUHV
±)RUPHVSURSUHVHWPRGHVSURSUHV
±)RUPHVSURSUHVHWPRGHVSURSUHV
±6ROXWLRQJpQpUDOHGHO¶pTXDWLRQ
±6ROXWLRQJpQpUDOHGHO¶pTXDWLRQ
±(QHUJLHPpFDQLTXHGHODVWUXFWXUH
±(QHUJLHPpFDQLTXHGHODVWUXFWXUH
±6758&785(/,1e$,5(',66,3$7,9(/,%5(
±6758&785(/,1e$,5(',66,3$7,9(/,%5(
±&DVSDUWLFXOLHUGH%DVLOH
±&DVSDUWLFXOLHUGH%DVLOH
±&DVJpQpUDO
±&DVJpQpUDO
±6758&785(/,1e$,5(&216(59$75,&((;&,7e(
±6758&785(/,1e$,5(&216(59$75,&((;&,7e(
±6758&785(/,1e$,5(',66,3$7,9((;&,7e(
±6758&785(/,1e$,5(',66,3$7,9((;&,7e(
±/HFDVGH%DVLOH
±/HFDVGH%DVLOH
±/HFDVJpQpUDO
±/HFDVJpQpUDO
-7-
-7-
±/LDLVRQVKRORQRPHVHWOLDLVRQVQRQKRORQRPHV
±/LDLVRQVKRORQRPHVHWOLDLVRQVQRQKRORQRPHV
±/LDLVRQVVWDWLRQQDLUHVHWOLDLVRQVLQVWDWLRQQDLUHV
±/LDLVRQVVWDWLRQQDLUHVHWOLDLVRQVLQVWDWLRQQDLUHV
±/LDLVRQVSDVVLYHVHWOLDLVRQVDFWLYHV
±/LDLVRQVSDVVLYHVHWOLDLVRQVDFWLYHV
±/LDLVRQFRQVHUYDWULFHHWOLDLVRQGLVVLSDWLYH
±/LDLVRQFRQVHUYDWULFHHWOLDLVRQGLVVLSDWLYH
±e48$7,216'(/$*5$1*(
±e48$7,216'(/$*5$1*(
±/HWKpRUqPHGHVWUDYDX[YLUWXHOVHQG\QDPLTXH
±/HWKpRUqPHGHVWUDYDX[YLUWXHOVHQG\QDPLTXH
±(TXDWLRQVGH/DJUDQJHFDVJpQpUDO
±(TXDWLRQVGH/DJUDQJHFDVJpQpUDO
±/DJUDQJLHQG¶XQHVWUXFWXUH
±/DJUDQJLHQG¶XQHVWUXFWXUH
±)RQFWLRQGHGLVVLSDWLRQGH5D\OHLJK
±)RQFWLRQGHGLVVLSDWLRQGH5D\OHLJK
±8WLOLVDWLRQG¶XQUHSqUHQRQ*DOLOLHQ
±8WLOLVDWLRQG¶XQUHSqUHQRQ*DOLOLHQ
±$33/,&$7,216'(6e48$7,216'(/$*5$1*(
±$33/,&$7,216'(6e48$7,216'(/$*5$1*(
±3DUWLFXOHOLEUH
±3DUWLFXOHOLEUH
±3HQGXOHVLPSOHGDQVXQZDJRQ
±3HQGXOHVLPSOHGDQVXQZDJRQ
±&KDULRWVFRXSOHVSDUXQDPRUWLVVHXUYLVTXHX[
±&KDULRWVFRXSOHVSDUXQDPRUWLVVHXUYLVTXHX[
±/HSHQGXOHGH)RXFDXOW
±/HSHQGXOHGH)RXFDXOW
± 6758&785(6/,1e$,5(6¬1''/
± 6758&785(6/,1e$,5(6¬1''/
±6758&785(/,1e$,5(&216(59$75,&(/,%5(
±6758&785(/,1e$,5(&216(59$75,&(/,%5(
±&KDQJHPHQWGHEDVH
±&KDQJHPHQWGHEDVH
±9HFWHXUVSURSUHVHWYDOHXUVSURSUHV
±9HFWHXUVSURSUHVHWYDOHXUVSURSUHV
±)RUPHVSURSUHVHWPRGHVSURSUHV
±)RUPHVSURSUHVHWPRGHVSURSUHV
±6ROXWLRQJpQpUDOHGHO¶pTXDWLRQ
±6ROXWLRQJpQpUDOHGHO¶pTXDWLRQ
±(QHUJLHPpFDQLTXHGHODVWUXFWXUH
±(QHUJLHPpFDQLTXHGHODVWUXFWXUH
±6758&785(/,1e$,5(',66,3$7,9(/,%5(
±6758&785(/,1e$,5(',66,3$7,9(/,%5(
±&DVSDUWLFXOLHUGH%DVLOH
±&DVSDUWLFXOLHUGH%DVLOH
±&DVJpQpUDO
±&DVJpQpUDO
±6758&785(/,1e$,5(&216(59$75,&((;&,7e(
±6758&785(/,1e$,5(&216(59$75,&((;&,7e(
±6758&785(/,1e$,5(',66,3$7,9((;&,7e(
±6758&785(/,1e$,5(',66,3$7,9((;&,7e(
±/HFDVGH%DVLOH
±/HFDVGH%DVLOH
±/HFDVJpQpUDO
±/HFDVJpQpUDO
-7-
-7-
&+$3,75(9,,,
&+$3,75(9,,,
'<1$0,48('(60,/,(8;&217,18662/,'(6
'<1$0,48('(60,/,(8;&217,18662/,'(6
±'e3/$&(0(17(7'e)250$7,21'¶81'20$,1(e/e0(17$,5(
±'e3/$&(0(17(7'e)250$7,21'¶81'20$,1(e/e0(17$,5(
±&2175$,17(6(7)25&(6'(92/80(
±&2175$,17(6(7)25&(6'(92/80(
±e48$7,216'80289(0(17e/$67,48(
±e48$7,216'80289(0(17e/$67,48(
±21'(6e/$67,48(6
±21'(6e/$67,48(6
±&KDPSLUURWDWLRQQHORXODPHOODLUH
±&KDPSLUURWDWLRQQHORXODPHOODLUH
±&KDPSVDQVGLYHUJHQFHRXVROpQRwGDO
±&KDPSVDQVGLYHUJHQFHRXVROpQRwGDO
±21'(6(/$67,48(63/$1(6
±21'(6(/$67,48(63/$1(6
±21'(6&,1'5,48(6'(5e92/87,21
±21'(6&,1'5,48(6'(5e92/87,21
±/HVRQGHVF\OLQGULTXHVUDGLDOHV
±/HVRQGHVF\OLQGULTXHVUDGLDOHV
±/HVRQGHVF\OLQGULTXHVFLUFRQIpUHQWLHOOHV
±/HVRQGHVF\OLQGULTXHVFLUFRQIpUHQWLHOOHV
±/HVRQGHVF\OLQGULTXHVD[LDOHV
±/HVRQGHVF\OLQGULTXHVD[LDOHV
±21'(663+e5,48(6
±21'(663+e5,48(6
±)21&7,21'(%(66(/
±)21&7,21'(%(66(/
±9,6&2e/$67,&,7e/,1e$,5(
±9,6&2e/$67,&,7e/,1e$,5(
±7UDFWLRQFRPSUHVVLRQG\QDPLTXHG¶XQEDUUHDX
±7UDFWLRQFRPSUHVVLRQG\QDPLTXHG¶XQEDUUHDX
± 7RUVLRQG\QDPLTXHG¶XQWXEHPLQFHFLUFXODLUH
± 7RUVLRQG\QDPLTXHG¶XQWXEHPLQFHFLUFXODLUH
±21'(69,6&2e/$67,48(6
±21'(69,6&2e/$67,48(6
±38,66$1&(',66,3e(3$5$0257,66(0(179,648(8;
±38,66$1&(',66,3e(3$5$0257,66(0(179,648(8;
&+$3,75(,;
&+$3,75(,;
'<1$0,48('(632875(6
'<1$0,48('(632875(6
± 9,%5$7,216/21*,78',1$/(6'¶81(32875(35,60$7,48(
± 9,%5$7,216/21*,78',1$/(6'¶81(32875(35,60$7,48(
±9LEUDWLRQVQDWXUHOOHVQRQDPRUWLHV
±9LEUDWLRQVQDWXUHOOHVQRQDPRUWLHV
±9LEUDWLRQVQDWXUHOOHVDPRUWLHV
±9LEUDWLRQVQDWXUHOOHVDPRUWLHV
-8-
-8-
&+$3,75(9,,,
&+$3,75(9,,,
'<1$0,48('(60,/,(8;&217,18662/,'(6
'<1$0,48('(60,/,(8;&217,18662/,'(6
±'e3/$&(0(17(7'e)250$7,21'¶81'20$,1(e/e0(17$,5(
±'e3/$&(0(17(7'e)250$7,21'¶81'20$,1(e/e0(17$,5(
±&2175$,17(6(7)25&(6'(92/80(
±&2175$,17(6(7)25&(6'(92/80(
±e48$7,216'80289(0(17e/$67,48(
±e48$7,216'80289(0(17e/$67,48(
±21'(6e/$67,48(6
±21'(6e/$67,48(6
±&KDPSLUURWDWLRQQHORXODPHOODLUH
±&KDPSLUURWDWLRQQHORXODPHOODLUH
±&KDPSVDQVGLYHUJHQFHRXVROpQRwGDO
±&KDPSVDQVGLYHUJHQFHRXVROpQRwGDO
±21'(6(/$67,48(63/$1(6
±21'(6(/$67,48(63/$1(6
±21'(6&,1'5,48(6'(5e92/87,21
±21'(6&,1'5,48(6'(5e92/87,21
±/HVRQGHVF\OLQGULTXHVUDGLDOHV
±/HVRQGHVF\OLQGULTXHVUDGLDOHV
±/HVRQGHVF\OLQGULTXHVFLUFRQIpUHQWLHOOHV
±/HVRQGHVF\OLQGULTXHVFLUFRQIpUHQWLHOOHV
±/HVRQGHVF\OLQGULTXHVD[LDOHV
±/HVRQGHVF\OLQGULTXHVD[LDOHV
±21'(663+e5,48(6
±21'(663+e5,48(6
±)21&7,21'(%(66(/
±)21&7,21'(%(66(/
±9,6&2e/$67,&,7e/,1e$,5(
±9,6&2e/$67,&,7e/,1e$,5(
±7UDFWLRQFRPSUHVVLRQG\QDPLTXHG¶XQEDUUHDX
±7UDFWLRQFRPSUHVVLRQG\QDPLTXHG¶XQEDUUHDX
± 7RUVLRQG\QDPLTXHG¶XQWXEHPLQFHFLUFXODLUH
± 7RUVLRQG\QDPLTXHG¶XQWXEHPLQFHFLUFXODLUH
±21'(69,6&2e/$67,48(6
±21'(69,6&2e/$67,48(6
±38,66$1&(',66,3e(3$5$0257,66(0(179,648(8;
±38,66$1&(',66,3e(3$5$0257,66(0(179,648(8;
&+$3,75(,;
&+$3,75(,;
'<1$0,48('(632875(6
'<1$0,48('(632875(6
± 9,%5$7,216/21*,78',1$/(6'¶81(32875(35,60$7,48(
± 9,%5$7,216/21*,78',1$/(6'¶81(32875(35,60$7,48(
±9LEUDWLRQVQDWXUHOOHVQRQDPRUWLHV
±9LEUDWLRQVQDWXUHOOHVQRQDPRUWLHV
±9LEUDWLRQVQDWXUHOOHVDPRUWLHV
±9LEUDWLRQVQDWXUHOOHVDPRUWLHV
-8-
-8-
±9,%5$7,216'(7256,21'¶81(32875(35,60$7,48(
±9,%5$7,216'(7256,21'¶81(32875(35,60$7,48(
±9LEUDWLRQVQDWXUHOOHVQRQDPRUWLHV
±9LEUDWLRQVQDWXUHOOHVQRQDPRUWLHV
±9LEUDWLRQVQDWXUHOOHVDPRUWLHV
±9LEUDWLRQVQDWXUHOOHVDPRUWLHV
±9,%5$7,216'()/(;,21'¶81(32875(35,60$7,48(
±9,%5$7,216'()/(;,21'¶81(32875(35,60$7,48(
±9LEUDWLRQVQDWXUHOOHVQRQDPRUWLHV
±9LEUDWLRQVQDWXUHOOHVQRQDPRUWLHV
±9LEUDWLRQVQDWXUHOOHVDPRUWLHV
±9LEUDWLRQVQDWXUHOOHVDPRUWLHV
±9,%5$7,216'¶81(32875('()250(48(/&2148(
±9,%5$7,216'¶81(32875('()250(48(/&2148(
±7UDQVODWLRQVURWDWLRQVGpIRUPDWLRQV
±7UDQVODWLRQVURWDWLRQVGpIRUPDWLRQV
±(TXDWLRQVGHO¶pTXLOLEUHORFDO
±(TXDWLRQVGHO¶pTXLOLEUHORFDO
±0pWKRGHJpQpUDOHG¶DQDO\VHG\QDPLTXH
±0pWKRGHJpQpUDOHG¶DQDO\VHG\QDPLTXH
±35(0,Ê5($33/,&$7,21&25'(69,%5$17(6
±35(0,Ê5($33/,&$7,21&25'(69,%5$17(6
±'(8;,Ê0($33/,&$7,219,7(66(6&5,7,48(6'(527$7,21
±'(8;,Ê0($33/,&$7,219,7(66(6&5,7,48(6'(527$7,21
±752,6,Ê0($33/,&$7,219,%5$7,2163/$1(6'¶81$11($8
±752,6,Ê0($33/,&$7,219,%5$7,2163/$1(6'¶81$11($8
±)2508/('(5$(,*+(70e7+2'('(5,7=
±)2508/('(5$(,*+(70e7+2'('(5,7=
±)RUPXOHGH5D\OHLJK
±)RUPXOHGH5D\OHLJK
±0pWKRGHGH5LW]
±0pWKRGHGH5LW]
&+$3,75(;
&+$3,75(;
'<1$0,48('(63/$48(6
'<1$0,48('(63/$48(6
±9,%5$7,216'¶81(3/$48(©'$166213/$1ª
±9,%5$7,216'¶81(3/$48(©'$166213/$1ª
±9,%5$7,21675$169(56$/(6'(63/$48(6
±9,%5$7,21675$169(56$/(6'(63/$48(6
±)/(;,21&,1'5,48('(63/$48(65(&7$1*8/$,5(6
±)/(;,21&,1'5,48('(63/$48(65(&7$1*8/$,5(6
±9,%5$7,216$;,6<0e75,48(6'(6',648(6 (7&285211(6&,5&8/$,5(6
±9,%5$7,216$;,6<0e75,48(6'(6',648(6 (7&285211(6&,5&8/$,5(6
±0e7+2'('(5$(,*+5,7=
±0e7+2'('(5$(,*+5,7=
-9-
-9-
±9,%5$7,216'(7256,21'¶81(32875(35,60$7,48(
±9,%5$7,216'(7256,21'¶81(32875(35,60$7,48(
±9LEUDWLRQVQDWXUHOOHVQRQDPRUWLHV
±9LEUDWLRQVQDWXUHOOHVQRQDPRUWLHV
±9LEUDWLRQVQDWXUHOOHVDPRUWLHV
±9LEUDWLRQVQDWXUHOOHVDPRUWLHV
±9,%5$7,216'()/(;,21'¶81(32875(35,60$7,48(
±9,%5$7,216'()/(;,21'¶81(32875(35,60$7,48(
±9LEUDWLRQVQDWXUHOOHVQRQDPRUWLHV
±9LEUDWLRQVQDWXUHOOHVQRQDPRUWLHV
±9LEUDWLRQVQDWXUHOOHVDPRUWLHV
±9LEUDWLRQVQDWXUHOOHVDPRUWLHV
±9,%5$7,216'¶81(32875('()250(48(/&2148(
±9,%5$7,216'¶81(32875('()250(48(/&2148(
±7UDQVODWLRQVURWDWLRQVGpIRUPDWLRQV
±7UDQVODWLRQVURWDWLRQVGpIRUPDWLRQV
±(TXDWLRQVGHO¶pTXLOLEUHORFDO
±(TXDWLRQVGHO¶pTXLOLEUHORFDO
±0pWKRGHJpQpUDOHG¶DQDO\VHG\QDPLTXH
±0pWKRGHJpQpUDOHG¶DQDO\VHG\QDPLTXH
±35(0,Ê5($33/,&$7,21&25'(69,%5$17(6
±35(0,Ê5($33/,&$7,21&25'(69,%5$17(6
±'(8;,Ê0($33/,&$7,219,7(66(6&5,7,48(6'(527$7,21
±'(8;,Ê0($33/,&$7,219,7(66(6&5,7,48(6'(527$7,21
±752,6,Ê0($33/,&$7,219,%5$7,2163/$1(6'¶81$11($8
±752,6,Ê0($33/,&$7,219,%5$7,2163/$1(6'¶81$11($8
±)2508/('(5$(,*+(70e7+2'('(5,7=
±)2508/('(5$(,*+(70e7+2'('(5,7=
±)RUPXOHGH5D\OHLJK
±)RUPXOHGH5D\OHLJK
±0pWKRGHGH5LW]
±0pWKRGHGH5LW]
&+$3,75(;
&+$3,75(;
'<1$0,48('(63/$48(6
'<1$0,48('(63/$48(6
±9,%5$7,216'¶81(3/$48(©'$166213/$1ª
±9,%5$7,216'¶81(3/$48(©'$166213/$1ª
±9,%5$7,21675$169(56$/(6'(63/$48(6
±9,%5$7,21675$169(56$/(6'(63/$48(6
±)/(;,21&,1'5,48('(63/$48(65(&7$1*8/$,5(6
±)/(;,21&,1'5,48('(63/$48(65(&7$1*8/$,5(6
±9,%5$7,216$;,6<0e75,48(6'(6',648(6 (7&285211(6&,5&8/$,5(6
±9,%5$7,216$;,6<0e75,48(6'(6',648(6 (7&285211(6&,5&8/$,5(6
±0e7+2'('(5$(,*+5,7=
±0e7+2'('(5$(,*+5,7=
-9-
-9-
&+$3,75(;,
&+$3,75(;,
'<1$0,48('(6&248(6
'<1$0,48('(6&248(6
±7+e25,(/,1e$,5(
±7+e25,(/,1e$,5(
±7+e25,('(60(0%5$1(6
±7+e25,('(60(0%5$1(6
±352%/(0(6$;,6<0e75,48(60e5,',(16
±352%/(0(6$;,6<0e75,48(60e5,',(16
± UH$33/,&$7,219,%5$7,21675$169(56$/(6 '¶81(0(0%5$1(5(&7$1*8/$,5(3/$1(7(1'8(
± UH$33/,&$7,219,%5$7,21675$169(56$/(6 '¶81(0(0%5$1(5(&7$1*8/$,5(3/$1(7(1'8(
±H$33/,&$7,215e3216('¶81(0(0%5$1( 63+e5,48(¬81&+2&
±H$33/,&$7,215e3216('¶81(0(0%5$1( 63+e5,48(¬81&+2&
- 10 -
- 10 -
&+$3,75(;,
&+$3,75(;,
'<1$0,48('(6&248(6
'<1$0,48('(6&248(6
±7+e25,(/,1e$,5(
±7+e25,(/,1e$,5(
±7+e25,('(60(0%5$1(6
±7+e25,('(60(0%5$1(6
±352%/(0(6$;,6<0e75,48(60e5,',(16
±352%/(0(6$;,6<0e75,48(60e5,',(16
± UH$33/,&$7,219,%5$7,21675$169(56$/(6 '¶81(0(0%5$1(5(&7$1*8/$,5(3/$1(7(1'8(
± UH$33/,&$7,219,%5$7,21675$169(56$/(6 '¶81(0(0%5$1(5(&7$1*8/$,5(3/$1(7(1'8(
±H$33/,&$7,215e3216('¶81(0(0%5$1( 63+e5,48(¬81&+2&
±H$33/,&$7,215e3216('¶81(0(0%5$1( 63+e5,48(¬81&+2&
- 10 -
- 10 -
UH3$57,(
UH3$57,(
7+(50,48('(66758&785(6
7+(50,48('(66758&785(6
'DQV OHV WRPHV , HW ,, QRXV VXSSRVLRQV LPSOLFLWHPHQW TXH OD VWUXFWXUH pWXGLpH VH WURXYDLW j XQH WHPSpUDWXUH XQLIRUPH HW FRQVWDQWH 7 YRLVLQH GH OD WHPSpUDWXUH QRUPDOH & /HV SDUDPqWUHV TXH QRXV FDOFXOLRQV GpIRUPDWLRQV FRQWUDLQWHV GpSODFHPHQWV UpDFWLRQV GH OLDLVRQ UpVXOWDLHQW G¶XQ FKDUJHPHQW SXUHPHQW PpFDQLTXH F¶HVW j GLUH GH O¶DSSOLFDWLRQ GH IRUFHV
'DQV OHV WRPHV , HW ,, QRXV VXSSRVLRQV LPSOLFLWHPHQW TXH OD VWUXFWXUH pWXGLpH VH WURXYDLW j XQH WHPSpUDWXUH XQLIRUPH HW FRQVWDQWH 7 YRLVLQH GH OD WHPSpUDWXUH QRUPDOH & /HV SDUDPqWUHV TXH QRXV FDOFXOLRQV GpIRUPDWLRQV FRQWUDLQWHV GpSODFHPHQWV UpDFWLRQV GH OLDLVRQ UpVXOWDLHQW G¶XQ FKDUJHPHQW SXUHPHQW PpFDQLTXH F¶HVW j GLUH GH O¶DSSOLFDWLRQ GH IRUFHV
6LODVWUXFWXUHGHYLHQWOHVLqJHG¶XQFKDPSGHWHPSpUDWXUHGLIIpUHQWGXFKDPSXQLIRUPH 7 GHV FRQWUDLQWHV GpIRUPDWLRQV GpSODFHPHQWV UpDFWLRQV GH OLDLVRQ GLWV WKHUPLTXHV DSSDUDLVVHQWV¶DMRXWDQWDX[SUpFpGHQWV
6LODVWUXFWXUHGHYLHQWOHVLqJHG¶XQFKDPSGHWHPSpUDWXUHGLIIpUHQWGXFKDPSXQLIRUPH 7 GHV FRQWUDLQWHV GpIRUPDWLRQV GpSODFHPHQWV UpDFWLRQV GH OLDLVRQ GLWV WKHUPLTXHV DSSDUDLVVHQWV¶DMRXWDQWDX[SUpFpGHQWV
6LXQHUqJOHOLEUHGHVHGpIRUPHUDSRXUORQJXHXU / jODWHPSpUDWXUH 7 HWTX¶RQODSRUWHj
6LXQHUqJOHOLEUHGHVHGpIRUPHUDSRXUORQJXHXU / jODWHPSpUDWXUH 7 HWTX¶RQODSRUWHj
8QFKDPSGHWHPSpUDWXUHSHXWGRQFLQWURGXLUHGHVFRQWUDLQWHVHWGHVGpIRUPDWLRQVGDQVXQH VWUXFWXUH
8QFKDPSGHWHPSpUDWXUHSHXWGRQFLQWURGXLUHGHVFRQWUDLQWHVHWGHVGpIRUPDWLRQVGDQVXQH VWUXFWXUH
'DQV FH WRPH ,,, QRXV pWXGLHURQV OH FRPSRUWHPHQW GHV VWUXFWXUHV VRXV O¶DFWLRQ FRQMXJXpH G¶XQ FKDUJHPHQW PpFDQLTXH HW G¶XQ FKDUJHPHQW WKHUPLTXH &KDTXH VROLGH FRQVWLWXDQW VHUD VXSSRVpLVRWURSHHWOLQpDLUHPHQWpODVWLTXH
'DQV FH WRPH ,,, QRXV pWXGLHURQV OH FRPSRUWHPHQW GHV VWUXFWXUHV VRXV O¶DFWLRQ FRQMXJXpH G¶XQ FKDUJHPHQW PpFDQLTXH HW G¶XQ FKDUJHPHQW WKHUPLTXH &KDTXH VROLGH FRQVWLWXDQW VHUD VXSSRVpLVRWURSHHWOLQpDLUHPHQWpODVWLTXH
- 11 -
- 11 -
UH3$57,(
UH3$57,(
7+(50,48('(66758&785(6
7+(50,48('(66758&785(6
'DQV OHV WRPHV , HW ,, QRXV VXSSRVLRQV LPSOLFLWHPHQW TXH OD VWUXFWXUH pWXGLpH VH WURXYDLW j XQH WHPSpUDWXUH XQLIRUPH HW FRQVWDQWH 7 YRLVLQH GH OD WHPSpUDWXUH QRUPDOH & /HV SDUDPqWUHV TXH QRXV FDOFXOLRQV GpIRUPDWLRQV FRQWUDLQWHV GpSODFHPHQWV UpDFWLRQV GH OLDLVRQ UpVXOWDLHQW G¶XQ FKDUJHPHQW SXUHPHQW PpFDQLTXH F¶HVW j GLUH GH O¶DSSOLFDWLRQ GH IRUFHV
'DQV OHV WRPHV , HW ,, QRXV VXSSRVLRQV LPSOLFLWHPHQW TXH OD VWUXFWXUH pWXGLpH VH WURXYDLW j XQH WHPSpUDWXUH XQLIRUPH HW FRQVWDQWH 7 YRLVLQH GH OD WHPSpUDWXUH QRUPDOH & /HV SDUDPqWUHV TXH QRXV FDOFXOLRQV GpIRUPDWLRQV FRQWUDLQWHV GpSODFHPHQWV UpDFWLRQV GH OLDLVRQ UpVXOWDLHQW G¶XQ FKDUJHPHQW SXUHPHQW PpFDQLTXH F¶HVW j GLUH GH O¶DSSOLFDWLRQ GH IRUFHV
6LODVWUXFWXUHGHYLHQWOHVLqJHG¶XQFKDPSGHWHPSpUDWXUHGLIIpUHQWGXFKDPSXQLIRUPH 7 GHV FRQWUDLQWHV GpIRUPDWLRQV GpSODFHPHQWV UpDFWLRQV GH OLDLVRQ GLWV WKHUPLTXHV DSSDUDLVVHQWV¶DMRXWDQWDX[SUpFpGHQWV
6LODVWUXFWXUHGHYLHQWOHVLqJHG¶XQFKDPSGHWHPSpUDWXUHGLIIpUHQWGXFKDPSXQLIRUPH 7 GHV FRQWUDLQWHV GpIRUPDWLRQV GpSODFHPHQWV UpDFWLRQV GH OLDLVRQ GLWV WKHUPLTXHV DSSDUDLVVHQWV¶DMRXWDQWDX[SUpFpGHQWV
6LXQHUqJOHOLEUHGHVHGpIRUPHUDSRXUORQJXHXU / jODWHPSpUDWXUH 7 HWTX¶RQODSRUWHj
6LXQHUqJOHOLEUHGHVHGpIRUPHUDSRXUORQJXHXU / jODWHPSpUDWXUH 7 HWTX¶RQODSRUWHj
8QFKDPSGHWHPSpUDWXUHSHXWGRQFLQWURGXLUHGHVFRQWUDLQWHVHWGHVGpIRUPDWLRQVGDQVXQH VWUXFWXUH
8QFKDPSGHWHPSpUDWXUHSHXWGRQFLQWURGXLUHGHVFRQWUDLQWHVHWGHVGpIRUPDWLRQVGDQVXQH VWUXFWXUH
'DQV FH WRPH ,,, QRXV pWXGLHURQV OH FRPSRUWHPHQW GHV VWUXFWXUHV VRXV O¶DFWLRQ FRQMXJXpH G¶XQ FKDUJHPHQW PpFDQLTXH HW G¶XQ FKDUJHPHQW WKHUPLTXH &KDTXH VROLGH FRQVWLWXDQW VHUD VXSSRVpLVRWURSHHWOLQpDLUHPHQWpODVWLTXH
'DQV FH WRPH ,,, QRXV pWXGLHURQV OH FRPSRUWHPHQW GHV VWUXFWXUHV VRXV O¶DFWLRQ FRQMXJXpH G¶XQ FKDUJHPHQW PpFDQLTXH HW G¶XQ FKDUJHPHQW WKHUPLTXH &KDTXH VROLGH FRQVWLWXDQW VHUD VXSSRVpLVRWURSHHWOLQpDLUHPHQWpODVWLTXH
- 11 -
- 11 -
ODWHPSpUDWXUH 7 VDQRXYHOOHORQJXHXUHVW / = / [ + α (7 − 7 )]αGpVLJQHOHFRHIILFLHQW GH GLODWDWLRQ WKHUPLTXH OLQpLTXH GX PDWpULDX 7RXWHV OHV ILEUHV GH OD UqJOH ORQJLWXGLQDOHV δ/ = α (7 − 7 ) HWDXFXQH WUDQVYHUVDOHVREOLTXHV VXELVVHQWODPrPHGLODWDWLRQOLQpLTXH ε = / FRQWUDLQWH Q¶DSSDUDvW 6L O¶RQ SODFH FHWWH UqJOH HQWUH GHX[ PXUV TXH O¶RQ PDLQWLHQW ULJRXUHXVHPHQWjODGLVWDQFH / O¶XQGHO¶DXWUHHWTX¶RQODSRUWHjODWHPSpUDWXUH 7 > 7 VD GLODWDWLRQ ORQJLWXGLQDOH VHUD HPSrFKpH SDU O¶DSSDULWLRQ G¶XQH FRQWUDLQWH GH FRPSUHVVLRQ RX GHVHUUDJH σ = −α ( (7 − 7 ) OHVILEUHVWUDQVYHUVDOHVVHURQWOHVLqJHGHGpIRUPDWLRQVVDQV FRQWUDLQWHV
ODWHPSpUDWXUH 7 VDQRXYHOOHORQJXHXUHVW / = / [ + α (7 − 7 )]αGpVLJQHOHFRHIILFLHQW GH GLODWDWLRQ WKHUPLTXH OLQpLTXH GX PDWpULDX 7RXWHV OHV ILEUHV GH OD UqJOH ORQJLWXGLQDOHV δ/ = α (7 − 7 ) HWDXFXQH WUDQVYHUVDOHVREOLTXHV VXELVVHQWODPrPHGLODWDWLRQOLQpLTXH ε = / FRQWUDLQWH Q¶DSSDUDvW 6L O¶RQ SODFH FHWWH UqJOH HQWUH GHX[ PXUV TXH O¶RQ PDLQWLHQW ULJRXUHXVHPHQWjODGLVWDQFH / O¶XQGHO¶DXWUHHWTX¶RQODSRUWHjODWHPSpUDWXUH 7 > 7 VD GLODWDWLRQ ORQJLWXGLQDOH VHUD HPSrFKpH SDU O¶DSSDULWLRQ G¶XQH FRQWUDLQWH GH FRPSUHVVLRQ RX GHVHUUDJH σ = −α ( (7 − 7 ) OHVILEUHVWUDQVYHUVDOHVVHURQWOHVLqJHGHGpIRUPDWLRQVVDQV FRQWUDLQWHV
ODWHPSpUDWXUH 7 VDQRXYHOOHORQJXHXUHVW / = / [ + α (7 − 7 )]αGpVLJQHOHFRHIILFLHQW GH GLODWDWLRQ WKHUPLTXH OLQpLTXH GX PDWpULDX 7RXWHV OHV ILEUHV GH OD UqJOH ORQJLWXGLQDOHV δ/ = α (7 − 7 ) HWDXFXQH WUDQVYHUVDOHVREOLTXHV VXELVVHQWODPrPHGLODWDWLRQOLQpLTXH ε = / FRQWUDLQWH Q¶DSSDUDvW 6L O¶RQ SODFH FHWWH UqJOH HQWUH GHX[ PXUV TXH O¶RQ PDLQWLHQW ULJRXUHXVHPHQWjODGLVWDQFH / O¶XQGHO¶DXWUHHWTX¶RQODSRUWHjODWHPSpUDWXUH 7 > 7 VD GLODWDWLRQ ORQJLWXGLQDOH VHUD HPSrFKpH SDU O¶DSSDULWLRQ G¶XQH FRQWUDLQWH GH FRPSUHVVLRQ RX GHVHUUDJH σ = −α ( (7 − 7 ) OHVILEUHVWUDQVYHUVDOHVVHURQWOHVLqJHGHGpIRUPDWLRQVVDQV FRQWUDLQWHV
ODWHPSpUDWXUH 7 VDQRXYHOOHORQJXHXUHVW / = / [ + α (7 − 7 )]αGpVLJQHOHFRHIILFLHQW GH GLODWDWLRQ WKHUPLTXH OLQpLTXH GX PDWpULDX 7RXWHV OHV ILEUHV GH OD UqJOH ORQJLWXGLQDOHV δ/ = α (7 − 7 ) HWDXFXQH WUDQVYHUVDOHVREOLTXHV VXELVVHQWODPrPHGLODWDWLRQOLQpLTXH ε = / FRQWUDLQWH Q¶DSSDUDvW 6L O¶RQ SODFH FHWWH UqJOH HQWUH GHX[ PXUV TXH O¶RQ PDLQWLHQW ULJRXUHXVHPHQWjODGLVWDQFH / O¶XQGHO¶DXWUHHWTX¶RQODSRUWHjODWHPSpUDWXUH 7 > 7 VD GLODWDWLRQ ORQJLWXGLQDOH VHUD HPSrFKpH SDU O¶DSSDULWLRQ G¶XQH FRQWUDLQWH GH FRPSUHVVLRQ RX GHVHUUDJH σ = −α ( (7 − 7 ) OHVILEUHVWUDQVYHUVDOHVVHURQWOHVLqJHGHGpIRUPDWLRQVVDQV FRQWUDLQWHV
- 12 -
- 12 -
- 12 -
- 12 -
&+$3,75(35(0,(5
&+$3,75(35(0,(5
7+(50,48(
7+(50,48(
'DQV FH FKDSLWUH RQ VH SURSRVH G¶pWDEOLU OHV pTXDWLRQV HW GH GRQQHU OHV PpWKRGHV TXL SHUPHWWHQWGHGpWHUPLQHUODWHPSpUDWXUHHQFKDTXHSRLQWG¶XQHVWUXFWXUH
'DQV FH FKDSLWUH RQ VH SURSRVH G¶pWDEOLU OHV pTXDWLRQV HW GH GRQQHU OHV PpWKRGHV TXL SHUPHWWHQWGHGpWHUPLQHUODWHPSpUDWXUHHQFKDTXHSRLQWG¶XQHVWUXFWXUH
1RXVDSSHOOHURQV
1RXVDSSHOOHURQV
± pWDWR O¶pWDWGHUpIpUHQFHRVHWURXYHODVWUXFWXUHDXUHSRVjODWHPSpUDWXUHXQLIRUPH 7R
± pWDWR O¶pWDWGHUpIpUHQFHRVHWURXYHODVWUXFWXUHDXUHSRVjODWHPSpUDWXUHXQLIRUPH 7R
± 3ODSDUWLFXOHFRXUDQWHRXVDSRVLWLRQjO¶LQVWDQWW
± 3ODSDUWLFXOHFRXUDQWHRXVDSRVLWLRQjO¶LQVWDQWW
± 3R ODSRVLWLRQGHODSDUWLFXOH3GDQVO¶pWDWR
± 3R ODSRVLWLRQGHODSDUWLFXOH3GDQVO¶pWDWR
± 3R3 GpVLJQHGRQFOHYHFWHXUWUDQVODWLRQGHODSDUWLFXOH3jO¶LQVWDQWW
± 3R3 GpVLJQHGRQFOHYHFWHXUWUDQVODWLRQGHODSDUWLFXOH3jO¶LQVWDQWW
± {R [\]}OHUHSqUHRUWKRQRUPpOLpjODVWUXFWXUHGDQVOHTXHORQpFULUDOHVGLIIpUHQWHV pTXDWLRQV
± {R [\]}OHUHSqUHRUWKRQRUPpOLpjODVWUXFWXUHGDQVOHTXHORQpFULUDOHVGLIIpUHQWHV pTXDWLRQV
3DU GpILQLWLRQ OH UpJLPH VWDWLTXH RX VWDWLRQQDLUH HVW FHOXL R OH FKDUJHPHQW PpFDQLTXH HW WKHUPLTXHSDVVHSURJUHVVLYHPHQWGHVDYDOHXULQLWLDOHjVDYDOHXUILQDOHIDLVDQWDLQVLSDVVHUOD VWUXFWXUHGHODFRQILJXUDWLRQLQLWLDOHR jODFRQILJXUDWLRQILQDOH /HVSDUDPqWUHVFDOFXOpV VRQWUHODWLIVjO¶pWDWG¶pTXLOLEUHILQDO HWQHGpSHQGHQWSDUFRQVpTXHQWSDVGXWHPSV
3DU GpILQLWLRQ OH UpJLPH VWDWLTXH RX VWDWLRQQDLUH HVW FHOXL R OH FKDUJHPHQW PpFDQLTXH HW WKHUPLTXHSDVVHSURJUHVVLYHPHQWGHVDYDOHXULQLWLDOHjVDYDOHXUILQDOHIDLVDQWDLQVLSDVVHUOD VWUXFWXUHGHODFRQILJXUDWLRQLQLWLDOHR jODFRQILJXUDWLRQILQDOH /HVSDUDPqWUHVFDOFXOpV VRQWUHODWLIVjO¶pWDWG¶pTXLOLEUHILQDO HWQHGpSHQGHQWSDUFRQVpTXHQWSDVGXWHPSV
(Q UpJLPH TXDVLVWDWLTXH OH FKDUJHPHQW pYROXH GDQV OH WHPSV j SDUWLU GH VRQ pWDW R VDQV QpFHVVDLUHPHQWVHVWDELOLVHUGDQVXQpWDWILQDOFHWWHpYROXWLRQHVWVXSSRVpHOHQWHHWFRQWLQXH VL ELHQ TXH OHV YLWHVVHV HW DFFpOpUDWLRQV GHV SDUWLFXOHV 3 GDQV {R [\]} VRQW QpJOLJHDEOHV GH PrPH TXH O¶pQHUJLH FDORULILTXH SURGXLWH RX DEVRUEpH SDU OD GpIRUPDWLRQ /HV SDUDPqWUHV FRQVLGpUpV VRQW DORUV IRQFWLRQ GX WHPSV HW UHODWLIV j OD FRQILJXUDWLRQ LQVWDQWDQpH W GH OD VWUXFWXUH
(Q UpJLPH TXDVLVWDWLTXH OH FKDUJHPHQW pYROXH GDQV OH WHPSV j SDUWLU GH VRQ pWDW R VDQV QpFHVVDLUHPHQWVHVWDELOLVHUGDQVXQpWDWILQDOFHWWHpYROXWLRQHVWVXSSRVpHOHQWHHWFRQWLQXH VL ELHQ TXH OHV YLWHVVHV HW DFFpOpUDWLRQV GHV SDUWLFXOHV 3 GDQV {R [\]} VRQW QpJOLJHDEOHV GH PrPH TXH O¶pQHUJLH FDORULILTXH SURGXLWH RX DEVRUEpH SDU OD GpIRUPDWLRQ /HV SDUDPqWUHV FRQVLGpUpV VRQW DORUV IRQFWLRQ GX WHPSV HW UHODWLIV j OD FRQILJXUDWLRQ LQVWDQWDQpH W GH OD VWUXFWXUH
'DQVFHFRXUVQRXVQRXVOLPLWHURQVjO¶pWXGHGHVSUREOqPHVVWDWLTXHVHWTXDVLVWDWLTXHV
'DQVFHFRXUVQRXVQRXVOLPLWHURQVjO¶pWXGHGHVSUREOqPHVVWDWLTXHVHWTXDVLVWDWLTXHV
/D WKHUPLTXH D SRXU REMHW O¶pWXGH GH OD SURGXFWLRQ GH OD WUDQVPLVVLRQ HW GH O¶XWLOLVDWLRQ GH O¶pQHUJLH FDORULILTXH GDQV FH SUHPLHU FKDSLWUH QRXV QRXV LQWpUHVVHURQV j O¶DVSHFW WUDQVPLVVLRQGHFKDOHXUF¶HVWjGLUHDX[WUDQVIHUWVDX[pFKDQJHVjODFLUFXODWLRQGHVFDORULHV &HV WUDQVIHUWV GH FKDOHXU SHXYHQW V¶HIIHFWXHU VXLYDQW WURLV SURFpGpV OD FRQGXFWLRQ OD FRQYHFWLRQOHUD\RQQHPHQW
/D WKHUPLTXH D SRXU REMHW O¶pWXGH GH OD SURGXFWLRQ GH OD WUDQVPLVVLRQ HW GH O¶XWLOLVDWLRQ GH O¶pQHUJLH FDORULILTXH GDQV FH SUHPLHU FKDSLWUH QRXV QRXV LQWpUHVVHURQV j O¶DVSHFW WUDQVPLVVLRQGHFKDOHXUF¶HVWjGLUHDX[WUDQVIHUWVDX[pFKDQJHVjODFLUFXODWLRQGHVFDORULHV &HV WUDQVIHUWV GH FKDOHXU SHXYHQW V¶HIIHFWXHU VXLYDQW WURLV SURFpGpV OD FRQGXFWLRQ OD FRQYHFWLRQOHUD\RQQHPHQW
- 13 -
- 13 -
&+$3,75(35(0,(5
&+$3,75(35(0,(5
7+(50,48(
7+(50,48(
'DQV FH FKDSLWUH RQ VH SURSRVH G¶pWDEOLU OHV pTXDWLRQV HW GH GRQQHU OHV PpWKRGHV TXL SHUPHWWHQWGHGpWHUPLQHUODWHPSpUDWXUHHQFKDTXHSRLQWG¶XQHVWUXFWXUH
'DQV FH FKDSLWUH RQ VH SURSRVH G¶pWDEOLU OHV pTXDWLRQV HW GH GRQQHU OHV PpWKRGHV TXL SHUPHWWHQWGHGpWHUPLQHUODWHPSpUDWXUHHQFKDTXHSRLQWG¶XQHVWUXFWXUH
1RXVDSSHOOHURQV
1RXVDSSHOOHURQV
± pWDWR O¶pWDWGHUpIpUHQFHRVHWURXYHODVWUXFWXUHDXUHSRVjODWHPSpUDWXUHXQLIRUPH 7R
± pWDWR O¶pWDWGHUpIpUHQFHRVHWURXYHODVWUXFWXUHDXUHSRVjODWHPSpUDWXUHXQLIRUPH 7R
± 3ODSDUWLFXOHFRXUDQWHRXVDSRVLWLRQjO¶LQVWDQWW
± 3ODSDUWLFXOHFRXUDQWHRXVDSRVLWLRQjO¶LQVWDQWW
± 3R ODSRVLWLRQGHODSDUWLFXOH3GDQVO¶pWDWR
± 3R ODSRVLWLRQGHODSDUWLFXOH3GDQVO¶pWDWR
± 3R3 GpVLJQHGRQFOHYHFWHXUWUDQVODWLRQGHODSDUWLFXOH3jO¶LQVWDQWW
± 3R3 GpVLJQHGRQFOHYHFWHXUWUDQVODWLRQGHODSDUWLFXOH3jO¶LQVWDQWW
± {R [\]}OHUHSqUHRUWKRQRUPpOLpjODVWUXFWXUHGDQVOHTXHORQpFULUDOHVGLIIpUHQWHV pTXDWLRQV
± {R [\]}OHUHSqUHRUWKRQRUPpOLpjODVWUXFWXUHGDQVOHTXHORQpFULUDOHVGLIIpUHQWHV pTXDWLRQV
3DU GpILQLWLRQ OH UpJLPH VWDWLTXH RX VWDWLRQQDLUH HVW FHOXL R OH FKDUJHPHQW PpFDQLTXH HW WKHUPLTXHSDVVHSURJUHVVLYHPHQWGHVDYDOHXULQLWLDOHjVDYDOHXUILQDOHIDLVDQWDLQVLSDVVHUOD VWUXFWXUHGHODFRQILJXUDWLRQLQLWLDOHR jODFRQILJXUDWLRQILQDOH /HVSDUDPqWUHVFDOFXOpV VRQWUHODWLIVjO¶pWDWG¶pTXLOLEUHILQDO HWQHGpSHQGHQWSDUFRQVpTXHQWSDVGXWHPSV
3DU GpILQLWLRQ OH UpJLPH VWDWLTXH RX VWDWLRQQDLUH HVW FHOXL R OH FKDUJHPHQW PpFDQLTXH HW WKHUPLTXHSDVVHSURJUHVVLYHPHQWGHVDYDOHXULQLWLDOHjVDYDOHXUILQDOHIDLVDQWDLQVLSDVVHUOD VWUXFWXUHGHODFRQILJXUDWLRQLQLWLDOHR jODFRQILJXUDWLRQILQDOH /HVSDUDPqWUHVFDOFXOpV VRQWUHODWLIVjO¶pWDWG¶pTXLOLEUHILQDO HWQHGpSHQGHQWSDUFRQVpTXHQWSDVGXWHPSV
(Q UpJLPH TXDVLVWDWLTXH OH FKDUJHPHQW pYROXH GDQV OH WHPSV j SDUWLU GH VRQ pWDW R VDQV QpFHVVDLUHPHQWVHVWDELOLVHUGDQVXQpWDWILQDOFHWWHpYROXWLRQHVWVXSSRVpHOHQWHHWFRQWLQXH VL ELHQ TXH OHV YLWHVVHV HW DFFpOpUDWLRQV GHV SDUWLFXOHV 3 GDQV {R [\]} VRQW QpJOLJHDEOHV GH PrPH TXH O¶pQHUJLH FDORULILTXH SURGXLWH RX DEVRUEpH SDU OD GpIRUPDWLRQ /HV SDUDPqWUHV FRQVLGpUpV VRQW DORUV IRQFWLRQ GX WHPSV HW UHODWLIV j OD FRQILJXUDWLRQ LQVWDQWDQpH W GH OD VWUXFWXUH
(Q UpJLPH TXDVLVWDWLTXH OH FKDUJHPHQW pYROXH GDQV OH WHPSV j SDUWLU GH VRQ pWDW R VDQV QpFHVVDLUHPHQWVHVWDELOLVHUGDQVXQpWDWILQDOFHWWHpYROXWLRQHVWVXSSRVpHOHQWHHWFRQWLQXH VL ELHQ TXH OHV YLWHVVHV HW DFFpOpUDWLRQV GHV SDUWLFXOHV 3 GDQV {R [\]} VRQW QpJOLJHDEOHV GH PrPH TXH O¶pQHUJLH FDORULILTXH SURGXLWH RX DEVRUEpH SDU OD GpIRUPDWLRQ /HV SDUDPqWUHV FRQVLGpUpV VRQW DORUV IRQFWLRQ GX WHPSV HW UHODWLIV j OD FRQILJXUDWLRQ LQVWDQWDQpH W GH OD VWUXFWXUH
'DQVFHFRXUVQRXVQRXVOLPLWHURQVjO¶pWXGHGHVSUREOqPHVVWDWLTXHVHWTXDVLVWDWLTXHV
'DQVFHFRXUVQRXVQRXVOLPLWHURQVjO¶pWXGHGHVSUREOqPHVVWDWLTXHVHWTXDVLVWDWLTXHV
/D WKHUPLTXH D SRXU REMHW O¶pWXGH GH OD SURGXFWLRQ GH OD WUDQVPLVVLRQ HW GH O¶XWLOLVDWLRQ GH O¶pQHUJLH FDORULILTXH GDQV FH SUHPLHU FKDSLWUH QRXV QRXV LQWpUHVVHURQV j O¶DVSHFW WUDQVPLVVLRQGHFKDOHXUF¶HVWjGLUHDX[WUDQVIHUWVDX[pFKDQJHVjODFLUFXODWLRQGHVFDORULHV &HV WUDQVIHUWV GH FKDOHXU SHXYHQW V¶HIIHFWXHU VXLYDQW WURLV SURFpGpV OD FRQGXFWLRQ OD FRQYHFWLRQOHUD\RQQHPHQW
/D WKHUPLTXH D SRXU REMHW O¶pWXGH GH OD SURGXFWLRQ GH OD WUDQVPLVVLRQ HW GH O¶XWLOLVDWLRQ GH O¶pQHUJLH FDORULILTXH GDQV FH SUHPLHU FKDSLWUH QRXV QRXV LQWpUHVVHURQV j O¶DVSHFW WUDQVPLVVLRQGHFKDOHXUF¶HVWjGLUHDX[WUDQVIHUWVDX[pFKDQJHVjODFLUFXODWLRQGHVFDORULHV &HV WUDQVIHUWV GH FKDOHXU SHXYHQW V¶HIIHFWXHU VXLYDQW WURLV SURFpGpV OD FRQGXFWLRQ OD FRQYHFWLRQOHUD\RQQHPHQW
- 13 -
- 13 -
±&21'8&7,21'(&+$/(85'$16/(662/,'(6
±&21'8&7,21'(&+$/(85'$16/(662/,'(6
/DSURSDJDWLRQGHO¶pQHUJLHFDORULILTXHGDQVOHVVROLGHVV¶HIIHFWXHSDUFRQGXFWLRQ([DPLQRQV OHVORLVTXLUpJLVVHQWFHSURFHVVXV
/DSURSDJDWLRQGHO¶pQHUJLHFDORULILTXHGDQVOHVVROLGHVV¶HIIHFWXHSDUFRQGXFWLRQ([DPLQRQV OHVORLVTXLUpJLVVHQWFHSURFHVVXV
±([SpULHQFHIRQGDPHQWDOH
±([SpULHQFHIRQGDPHQWDOH
)LJXUH
)LJXUH
&RQVLGpURQV XQH SODTXH SODQH G¶pSDLVVHXU K XQLIRUPH SDU H[HPSOH XQ GLVTXH GH UD\RQ 5 JUDQG GHYDQW K UpDOLVp HQ XQ PDWpULDX KRPRJqQH LVRWURSH $SSHORQV [′[ O¶D[H GX GLVTXH π HW π OHVSODQVOLPLWpVG¶pTXDWLRQV [ = −K HW [ = K UHVS /HERUGGXGLVTXHHVW VXSSRVp UHFRXYHUW G¶XQ PDWpULDX LVRODQW F¶HVW j GLUH G¶XQ PDWpULDX QRQ FRQGXFWHXU GH OD FKDOHXUHWTXLHPSrFKHGHFHIDLWWRXWIOX[WKHUPLTXHjWUDYHUVFHERUG0DLQWHQRQVOHVSDURLV π HW π DX[WHPSpUDWXUHVXQLIRUPHVHWFRQVWDQWHV 7 HW 7 UHVS
&RQVLGpURQV XQH SODTXH SODQH G¶pSDLVVHXU K XQLIRUPH SDU H[HPSOH XQ GLVTXH GH UD\RQ 5 JUDQG GHYDQW K UpDOLVp HQ XQ PDWpULDX KRPRJqQH LVRWURSH $SSHORQV [′[ O¶D[H GX GLVTXH π HW π OHVSODQVOLPLWpVG¶pTXDWLRQV [ = −K HW [ = K UHVS /HERUGGXGLVTXHHVW VXSSRVp UHFRXYHUW G¶XQ PDWpULDX LVRODQW F¶HVW j GLUH G¶XQ PDWpULDX QRQ FRQGXFWHXU GH OD FKDOHXUHWTXLHPSrFKHGHFHIDLWWRXWIOX[WKHUPLTXHjWUDYHUVFHERUG0DLQWHQRQVOHVSDURLV π HW π DX[WHPSpUDWXUHVXQLIRUPHVHWFRQVWDQWHV 7 HW 7 UHVS
(QHIIHFWXDQWGHVPHVXUHVFDORULPpWULTXHVSRXUGLIIpUHQWHVYDOHXUVGH[[ HWSRXUGLIIpUHQWV PDWpULDX[ FRQGXFWHXUV RQ FRQVWDWH TXH OD SXLVVDQFH FDORULILTXH VXUIDFLTXH WUDYHUVDQW OD SODTXHGDQVOHVHQVGHO¶D[HGHV[F¶HVWjGLUHODTXDQWLWpGHFKDOHXUWUDYHUVDQWODSODTXHSDU XQLWpGHWHPSVHWSDUXQLWpGHVXUIDFHSHXWV¶pFULUH
(QHIIHFWXDQWGHVPHVXUHVFDORULPpWULTXHVSRXUGLIIpUHQWHVYDOHXUVGH[[ HWSRXUGLIIpUHQWV PDWpULDX[ FRQGXFWHXUV RQ FRQVWDWH TXH OD SXLVVDQFH FDORULILTXH VXUIDFLTXH WUDYHUVDQW OD SODTXHGDQVOHVHQVGHO¶D[HGHV[F¶HVWjGLUHODTXDQWLWpGHFKDOHXUWUDYHUVDQWODSODTXHSDU XQLWpGHWHPSVHWSDUXQLWpGHVXUIDFHSHXWV¶pFULUH
T = −N
7 − 7 [ − [
T = −N
7 − 7 [ − [
DYHF [ − [ = K
DYHF [ − [ = K
HW N GpVLJQDQW XQ FRHIILFLHQW SRVLWLI FDUDFWpULVWLTXH GX PDWpULDX DSSHOp FRQGXFWLYLWp RX FRQGXFWLELOLWp WKHUPLTXHRXFDORULILTXH
HW N GpVLJQDQW XQ FRHIILFLHQW SRVLWLI FDUDFWpULVWLTXH GX PDWpULDX DSSHOp FRQGXFWLYLWp RX FRQGXFWLELOLWp WKHUPLTXHRXFDORULILTXH
- 14 -
- 14 -
±&21'8&7,21'(&+$/(85'$16/(662/,'(6
±&21'8&7,21'(&+$/(85'$16/(662/,'(6
/DSURSDJDWLRQGHO¶pQHUJLHFDORULILTXHGDQVOHVVROLGHVV¶HIIHFWXHSDUFRQGXFWLRQ([DPLQRQV OHVORLVTXLUpJLVVHQWFHSURFHVVXV
/DSURSDJDWLRQGHO¶pQHUJLHFDORULILTXHGDQVOHVVROLGHVV¶HIIHFWXHSDUFRQGXFWLRQ([DPLQRQV OHVORLVTXLUpJLVVHQWFHSURFHVVXV
±([SpULHQFHIRQGDPHQWDOH
±([SpULHQFHIRQGDPHQWDOH
)LJXUH
)LJXUH
&RQVLGpURQV XQH SODTXH SODQH G¶pSDLVVHXU K XQLIRUPH SDU H[HPSOH XQ GLVTXH GH UD\RQ 5 JUDQG GHYDQW K UpDOLVp HQ XQ PDWpULDX KRPRJqQH LVRWURSH $SSHORQV [′[ O¶D[H GX GLVTXH π HW π OHVSODQVOLPLWpVG¶pTXDWLRQV [ = −K HW [ = K UHVS /HERUGGXGLVTXHHVW VXSSRVp UHFRXYHUW G¶XQ PDWpULDX LVRODQW F¶HVW j GLUH G¶XQ PDWpULDX QRQ FRQGXFWHXU GH OD FKDOHXUHWTXLHPSrFKHGHFHIDLWWRXWIOX[WKHUPLTXHjWUDYHUVFHERUG0DLQWHQRQVOHVSDURLV π HW π DX[WHPSpUDWXUHVXQLIRUPHVHWFRQVWDQWHV 7 HW 7 UHVS
&RQVLGpURQV XQH SODTXH SODQH G¶pSDLVVHXU K XQLIRUPH SDU H[HPSOH XQ GLVTXH GH UD\RQ 5 JUDQG GHYDQW K UpDOLVp HQ XQ PDWpULDX KRPRJqQH LVRWURSH $SSHORQV [′[ O¶D[H GX GLVTXH π HW π OHVSODQVOLPLWpVG¶pTXDWLRQV [ = −K HW [ = K UHVS /HERUGGXGLVTXHHVW VXSSRVp UHFRXYHUW G¶XQ PDWpULDX LVRODQW F¶HVW j GLUH G¶XQ PDWpULDX QRQ FRQGXFWHXU GH OD FKDOHXUHWTXLHPSrFKHGHFHIDLWWRXWIOX[WKHUPLTXHjWUDYHUVFHERUG0DLQWHQRQVOHVSDURLV π HW π DX[WHPSpUDWXUHVXQLIRUPHVHWFRQVWDQWHV 7 HW 7 UHVS
(QHIIHFWXDQWGHVPHVXUHVFDORULPpWULTXHVSRXUGLIIpUHQWHVYDOHXUVGH[[ HWSRXUGLIIpUHQWV PDWpULDX[ FRQGXFWHXUV RQ FRQVWDWH TXH OD SXLVVDQFH FDORULILTXH VXUIDFLTXH WUDYHUVDQW OD SODTXHGDQVOHVHQVGHO¶D[HGHV[F¶HVWjGLUHODTXDQWLWpGHFKDOHXUWUDYHUVDQWODSODTXHSDU XQLWpGHWHPSVHWSDUXQLWpGHVXUIDFHSHXWV¶pFULUH
(QHIIHFWXDQWGHVPHVXUHVFDORULPpWULTXHVSRXUGLIIpUHQWHVYDOHXUVGH[[ HWSRXUGLIIpUHQWV PDWpULDX[ FRQGXFWHXUV RQ FRQVWDWH TXH OD SXLVVDQFH FDORULILTXH VXUIDFLTXH WUDYHUVDQW OD SODTXHGDQVOHVHQVGHO¶D[HGHV[F¶HVWjGLUHODTXDQWLWpGHFKDOHXUWUDYHUVDQWODSODTXHSDU XQLWpGHWHPSVHWSDUXQLWpGHVXUIDFHSHXWV¶pFULUH
T = −N
7 − 7 [ − [
T = −N
7 − 7 [ − [
DYHF [ − [ = K
DYHF [ − [ = K
HW N GpVLJQDQW XQ FRHIILFLHQW SRVLWLI FDUDFWpULVWLTXH GX PDWpULDX DSSHOp FRQGXFWLYLWp RX FRQGXFWLELOLWp WKHUPLTXHRXFDORULILTXH
HW N GpVLJQDQW XQ FRHIILFLHQW SRVLWLI FDUDFWpULVWLTXH GX PDWpULDX DSSHOp FRQGXFWLYLWp RX FRQGXFWLELOLWp WKHUPLTXHRXFDORULILTXH
- 14 -
- 14 -
G G G $SSHODQW [ O¶XQLWDLUH GH O¶D[H GHV [ OH YHFWHXU T = T [ HVW DSSHOp YHFWHXU IOX[ GH FKDOHXU G 'DQVOHFDVGHO¶H[SpULHQFHOHYHFWHXU T HVWOHPrPHHQFKDTXHSRLQW3GHODSODTXH
G G G $SSHODQW [ O¶XQLWDLUH GH O¶D[H GHV [ OH YHFWHXU T = T [ HVW DSSHOp YHFWHXU IOX[ GH FKDOHXU G 'DQVOHFDVGHO¶H[SpULHQFHOHYHFWHXU T HVWOHPrPHHQFKDTXHSRLQW3GHODSODTXH
/DIRUPXOH SHXDORUVDXVVLV¶pFULUH
/DIRUPXOH SHXDORUVDXVVLV¶pFULUH G T = − N JUDG 7
G T = − N JUDG 7
±/RLGH)RXULHU
±/RLGH)RXULHU
/DORLH[SpULPHQWDOHTXHQRXVYHQRQVG¶pWDEOLUVHJpQpUDOLVHDLVpPHQWjXQFDVTXHOFRQTXH
/DORLH[SpULPHQWDOHTXHQRXVYHQRQVG¶pWDEOLUVHJpQpUDOLVHDLVpPHQWjXQFDVTXHOFRQTXH
&RQVLGpURQVjXQLQVWDQWWDXVHLQG¶XQVROLGHFRQGXFWHXUXQHQDSSHLVRWKHUPH 67 HWXQ WXEHGHFKDPSLQILQLPHQWGpOLpSDVVDQWSDUOHFRQWRXUG¶XQpOpPHQW G 67 GH 67 FRPPH OHPRQWUHODILJXUH
&RQVLGpURQVjXQLQVWDQWWDXVHLQG¶XQVROLGHFRQGXFWHXUXQHQDSSHLVRWKHUPH 67 HWXQ WXEHGHFKDPSLQILQLPHQWGpOLpSDVVDQWSDUOHFRQWRXUG¶XQpOpPHQW G 67 GH 67 FRPPH OHPRQWUHODILJXUH
)LJXUH
)LJXUH
)LJXUH
)LJXUH
&HVOLJQHVVRQWSDUGpILQLWLRQWDQJHQWHVHQFKDFXQGHOHXUVSRLQWVDXYHFWHXU JUDG 7 GHFH SRLQW HOOHV FRQVWLWXHQW GH SOXV OHV WUDMHFWRLUHV RUWKRJRQDOHV GHV VXUIDFHV LVRWKHUPHV /¶pOpPHQW G 67 GH OD QDSSH LQILQLPHQW PLQFH 67 VH WURXYH GDQV O¶pWDW G¶XQ pOpPHQW GH G G IHXLOOHW G6 GH O¶H[SpULHQFH SUpFpGHQWH T ⋅ Q ⋅ G 67 GpVLJQH GRQF OD SXLVVDQFH FDORULILTXH G G G WUDYHUVDQW G 67 jO¶LQVWDQWWGDQVOHVHQVGH Q DYHF T = − N JUDG 7 HW Q XQLWDLUHGHODOLJQH PR\HQQHGXWXEH
&HVOLJQHVVRQWSDUGpILQLWLRQWDQJHQWHVHQFKDFXQGHOHXUVSRLQWVDXYHFWHXU JUDG 7 GHFH SRLQW HOOHV FRQVWLWXHQW GH SOXV OHV WUDMHFWRLUHV RUWKRJRQDOHV GHV VXUIDFHV LVRWKHUPHV /¶pOpPHQW G 67 GH OD QDSSH LQILQLPHQW PLQFH 67 VH WURXYH GDQV O¶pWDW G¶XQ pOpPHQW GH G G IHXLOOHW G6 GH O¶H[SpULHQFH SUpFpGHQWH T ⋅ Q ⋅ G 67 GpVLJQH GRQF OD SXLVVDQFH FDORULILTXH G G G WUDYHUVDQW G 67 jO¶LQVWDQWWGDQVOHVHQVGH Q DYHF T = − N JUDG 7 HW Q XQLWDLUHGHODOLJQH PR\HQQHGXWXEH
- 15 -
- 15 -
G G G $SSHODQW [ O¶XQLWDLUH GH O¶D[H GHV [ OH YHFWHXU T = T [ HVW DSSHOp YHFWHXU IOX[ GH FKDOHXU G 'DQVOHFDVGHO¶H[SpULHQFHOHYHFWHXU T HVWOHPrPHHQFKDTXHSRLQW3GHODSODTXH
G G G $SSHODQW [ O¶XQLWDLUH GH O¶D[H GHV [ OH YHFWHXU T = T [ HVW DSSHOp YHFWHXU IOX[ GH FKDOHXU G 'DQVOHFDVGHO¶H[SpULHQFHOHYHFWHXU T HVWOHPrPHHQFKDTXHSRLQW3GHODSODTXH
/DIRUPXOH SHXDORUVDXVVLV¶pFULUH
/DIRUPXOH SHXDORUVDXVVLV¶pFULUH G T = − N JUDG 7
G T = − N JUDG 7
±/RLGH)RXULHU
±/RLGH)RXULHU
/DORLH[SpULPHQWDOHTXHQRXVYHQRQVG¶pWDEOLUVHJpQpUDOLVHDLVpPHQWjXQFDVTXHOFRQTXH
/DORLH[SpULPHQWDOHTXHQRXVYHQRQVG¶pWDEOLUVHJpQpUDOLVHDLVpPHQWjXQFDVTXHOFRQTXH
&RQVLGpURQVjXQLQVWDQWWDXVHLQG¶XQVROLGHFRQGXFWHXUXQHQDSSHLVRWKHUPH 67 HWXQ WXEHGHFKDPSLQILQLPHQWGpOLpSDVVDQWSDUOHFRQWRXUG¶XQpOpPHQW G 67 GH 67 FRPPH OHPRQWUHODILJXUH
&RQVLGpURQVjXQLQVWDQWWDXVHLQG¶XQVROLGHFRQGXFWHXUXQHQDSSHLVRWKHUPH 67 HWXQ WXEHGHFKDPSLQILQLPHQWGpOLpSDVVDQWSDUOHFRQWRXUG¶XQpOpPHQW G 67 GH 67 FRPPH OHPRQWUHODILJXUH
)LJXUH
)LJXUH
)LJXUH
)LJXUH
&HVOLJQHVVRQWSDUGpILQLWLRQWDQJHQWHVHQFKDFXQGHOHXUVSRLQWVDXYHFWHXU JUDG 7 GHFH SRLQW HOOHV FRQVWLWXHQW GH SOXV OHV WUDMHFWRLUHV RUWKRJRQDOHV GHV VXUIDFHV LVRWKHUPHV /¶pOpPHQW G 67 GH OD QDSSH LQILQLPHQW PLQFH 67 VH WURXYH GDQV O¶pWDW G¶XQ pOpPHQW GH G G IHXLOOHW G6 GH O¶H[SpULHQFH SUpFpGHQWH T ⋅ Q ⋅ G 67 GpVLJQH GRQF OD SXLVVDQFH FDORULILTXH G G G WUDYHUVDQW G 67 jO¶LQVWDQWWGDQVOHVHQVGH Q DYHF T = − N JUDG 7 HW Q XQLWDLUHGHODOLJQH PR\HQQHGXWXEH
&HVOLJQHVVRQWSDUGpILQLWLRQWDQJHQWHVHQFKDFXQGHOHXUVSRLQWVDXYHFWHXU JUDG 7 GHFH SRLQW HOOHV FRQVWLWXHQW GH SOXV OHV WUDMHFWRLUHV RUWKRJRQDOHV GHV VXUIDFHV LVRWKHUPHV /¶pOpPHQW G 67 GH OD QDSSH LQILQLPHQW PLQFH 67 VH WURXYH GDQV O¶pWDW G¶XQ pOpPHQW GH G G IHXLOOHW G6 GH O¶H[SpULHQFH SUpFpGHQWH T ⋅ Q ⋅ G 67 GpVLJQH GRQF OD SXLVVDQFH FDORULILTXH G G G WUDYHUVDQW G 67 jO¶LQVWDQWWGDQVOHVHQVGH Q DYHF T = − N JUDG 7 HW Q XQLWDLUHGHODOLJQH PR\HQQHGXWXEH
- 15 -
- 15 -
G 6LQRXVFRQVLGpURQVPDLQWHQDQWXQHVHFWLRQREOLTXHGXWXEHGHQRUPDOHXQLWDLUH Q HWG¶DLUH G G6ILJXUH QRXVSRXYRQVpFULUHODSXLVVDQFHFDORULILTXHWUDYHUVDQWG6GDQVOHVHQVGH Q j O¶LQVWDQWW G G G G P = T ⋅ Q G6 = − N Q ⋅ JUDG 7 ⋅ G6
G 6LQRXVFRQVLGpURQVPDLQWHQDQWXQHVHFWLRQREOLTXHGXWXEHGHQRUPDOHXQLWDLUH Q HWG¶DLUH G G6ILJXUH QRXVSRXYRQVpFULUHODSXLVVDQFHFDORULILTXHWUDYHUVDQWG6GDQVOHVHQVGH Q j O¶LQVWDQWW G G G G P = T ⋅ Q G6 = − N Q ⋅ JUDG 7 ⋅ G6
&HWWHIRUPXOHWUDGXLWODSUHPLqUHORLGH)RXULHU
&HWWHIRUPXOHWUDGXLWODSUHPLqUHORLGH)RXULHU
/HVYDOHXUVGHNSRXUXQFHUWDLQQRPEUHGHPDWpULDX[XVXHOVVRQWGRQQpHVDXWRPH,SDJH 3RXU OHV DFLHUV LO HVW YRLVLQ GH :DWWP GHJUp . SRXU OHV DOOLDJHV G¶DOXPLQLXP LO HVW YRLVLQGHSRXUOHFXLYUHGHSRXUOH39&GH
/HVYDOHXUVGHNSRXUXQFHUWDLQQRPEUHGHPDWpULDX[XVXHOVVRQWGRQQpHVDXWRPH,SDJH 3RXU OHV DFLHUV LO HVW YRLVLQ GH :DWWP GHJUp . SRXU OHV DOOLDJHV G¶DOXPLQLXP LO HVW YRLVLQGHSRXUOHFXLYUHGHSRXUOH39&GH
5HPDUTXH FHV YDOHXUV QXPpULTXHV FRUUHVSRQGHQW j OD WHPSpUDWXUH QRUPDOH N YDULH OpJqUHPHQWDYHFODWHPSpUDWXUH
5HPDUTXH FHV YDOHXUV QXPpULTXHV FRUUHVSRQGHQW j OD WHPSpUDWXUH QRUPDOH N YDULH OpJqUHPHQWDYHFODWHPSpUDWXUH
5HPDUTXH OHV IRUPXOHV HW PRQWUHQW TXH OHV FDORULHV FLUFXOHQW GDQV OH VHQV FRQWUDLUHGH JUDG 7 F¶HVWjGLUHGDQVOHVHQVGHVWHPSpUDWXUHVGpFURLVVDQWHVHQDFFRUGDYHFOH HSULQFLSHGHODWKHUPRG\QDPLTXH
5HPDUTXH OHV IRUPXOHV HW PRQWUHQW TXH OHV FDORULHV FLUFXOHQW GDQV OH VHQV FRQWUDLUHGH JUDG 7 F¶HVWjGLUHGDQVOHVHQVGHVWHPSpUDWXUHVGpFURLVVDQWHVHQDFFRUGDYHFOH HSULQFLSHGHODWKHUPRG\QDPLTXH
5HPDUTXHO¶LQYHUVHGHODFRQGXFWLYLWpVHQRPPHUpVLVWLYLWpWKHUPLTXHRXFDORULILTXH
5HPDUTXHO¶LQYHUVHGHODFRQGXFWLYLWpVHQRPPHUpVLVWLYLWpWKHUPLTXHRXFDORULILTXH
5HPDUTXH XQ PDWpULDX SDUIDLWHPHQW LVRODQW HVW FDUDFWpULVp SDU OD YDOHXU N = LO QH G FRQGXLWSDVODFKDOHXU T = SDVGHIOX[GHFKDOHXU ,OV¶DJLWOjG¶XQFDVOLPLWHTXLQ¶DSDV G¶H[LVWHQFH ULJRXUHXVH 2Q VDLW UpDOLVHU SDU FRQWUH GHV LVRODQWV SUHVTXH SDUIDLWV WHOV TXH OHV PRXVVHV GH SRO\VW\UqQH RX GH SRO\XUpWKDQQH SRXU OHVTXHOV OH FRHIILFLHQW N HVW YRLVLQ GH :P GHJUp
5HPDUTXH XQ PDWpULDX SDUIDLWHPHQW LVRODQW HVW FDUDFWpULVp SDU OD YDOHXU N = LO QH G FRQGXLWSDVODFKDOHXU T = SDVGHIOX[GHFKDOHXU ,OV¶DJLWOjG¶XQFDVOLPLWHTXLQ¶DSDV G¶H[LVWHQFH ULJRXUHXVH 2Q VDLW UpDOLVHU SDU FRQWUH GHV LVRODQWV SUHVTXH SDUIDLWV WHOV TXH OHV PRXVVHV GH SRO\VW\UqQH RX GH SRO\XUpWKDQQH SRXU OHVTXHOV OH FRHIILFLHQW N HVW YRLVLQ GH :P GHJUp
5HPDUTXH SRXU OHV PpWDX[ OH UDSSRUW HQWUH OD FRQGXFWLYLWp WKHUPLTXH HW FRQGXFWLYLWp :Ω pOHFWULTXHHVWjSHXSUqVFRQVWDQWHWYRLVLQGH ⋅ − GHJUp .
5HPDUTXH SRXU OHV PpWDX[ OH UDSSRUW HQWUH OD FRQGXFWLYLWp WKHUPLTXH HW FRQGXFWLYLWp :Ω pOHFWULTXHHVWjSHXSUqVFRQVWDQWHWYRLVLQGH ⋅ − GHJUp .
5HPDUTXHODTXDQWLWpGHFKDOHXUpWDQWXQHpQHUJLHV¶H[SULPHHQMRXOHVRQXWLOLVHDXVVL SDUIRLVODFDORULHFDO - RXODWKHUPLHWKHUPLH 0FDO 0-
5HPDUTXHODTXDQWLWpGHFKDOHXUpWDQWXQHpQHUJLHV¶H[SULPHHQMRXOHVRQXWLOLVHDXVVL SDUIRLVODFDORULHFDO - RXODWKHUPLHWKHUPLH 0FDO 0-
±(TXDWLRQGHODFRQGXFWLRQGHFKDOHXU
±(TXDWLRQGHODFRQGXFWLRQGHFKDOHXU
2QDSSHOOHFDSDFLWpFDORULILTXHYROXPLTXHG¶XQPDWpULDXODTXDQWLWpGHFKDOHXU&TX¶LOIDXW IRXUQLUjO¶XQLWpGHYROXPHGHFHPDWpULDXSRXUpOHYHUVDWHPSpUDWXUHGHXQGHJUp
2QDSSHOOHFDSDFLWpFDORULILTXHYROXPLTXHG¶XQPDWpULDXODTXDQWLWpGHFKDOHXU&TX¶LOIDXW IRXUQLUjO¶XQLWpGHYROXPHGHFHPDWpULDXSRXUpOHYHUVDWHPSpUDWXUHGHXQGHJUp
&HWWHGpILQLWLRQpWDQWGRQQpHH[SULPRQVGHGHX[IDoRQVGLIIpUHQWHVODSXLVVDQFHFDORULILTXH UHoXHjO¶LQVWDQWWSDUXQGRPDLQH D GHIURQWLqUH6 LVROpSDUODSHQVpHDXVHLQG¶XQVROLGH ILJXUH
&HWWHGpILQLWLRQpWDQWGRQQpHH[SULPRQVGHGHX[IDoRQVGLIIpUHQWHVODSXLVVDQFHFDORULILTXH UHoXHjO¶LQVWDQWWSDUXQGRPDLQH D GHIURQWLqUH6 LVROpSDUODSHQVpHDXVHLQG¶XQVROLGH ILJXUH
G Q GpVLJQDQW O¶XQLWDLUH QRUPDO VRUWDQW DX SRLQW FRXUDQW 3 GH 6 FHWWH SXLVVDQFH WKHUPLTXH V¶pFULW
G Q GpVLJQDQW O¶XQLWDLUH QRUPDO VRUWDQW DX SRLQW FRXUDQW 3 GH 6 FHWWH SXLVVDQFH WKHUPLTXH V¶pFULW
- 16 -
- 16 -
G 6LQRXVFRQVLGpURQVPDLQWHQDQWXQHVHFWLRQREOLTXHGXWXEHGHQRUPDOHXQLWDLUH Q HWG¶DLUH G G6ILJXUH QRXVSRXYRQVpFULUHODSXLVVDQFHFDORULILTXHWUDYHUVDQWG6GDQVOHVHQVGH Q j O¶LQVWDQWW G G G G P = T ⋅ Q G6 = − N Q ⋅ JUDG 7 ⋅ G6
G 6LQRXVFRQVLGpURQVPDLQWHQDQWXQHVHFWLRQREOLTXHGXWXEHGHQRUPDOHXQLWDLUH Q HWG¶DLUH G G6ILJXUH QRXVSRXYRQVpFULUHODSXLVVDQFHFDORULILTXHWUDYHUVDQWG6GDQVOHVHQVGH Q j O¶LQVWDQWW G G G G P = T ⋅ Q G6 = − N Q ⋅ JUDG 7 ⋅ G6
&HWWHIRUPXOHWUDGXLWODSUHPLqUHORLGH)RXULHU
&HWWHIRUPXOHWUDGXLWODSUHPLqUHORLGH)RXULHU
/HVYDOHXUVGHNSRXUXQFHUWDLQQRPEUHGHPDWpULDX[XVXHOVVRQWGRQQpHVDXWRPH,SDJH 3RXU OHV DFLHUV LO HVW YRLVLQ GH :DWWP GHJUp . SRXU OHV DOOLDJHV G¶DOXPLQLXP LO HVW YRLVLQGHSRXUOHFXLYUHGHSRXUOH39&GH
/HVYDOHXUVGHNSRXUXQFHUWDLQQRPEUHGHPDWpULDX[XVXHOVVRQWGRQQpHVDXWRPH,SDJH 3RXU OHV DFLHUV LO HVW YRLVLQ GH :DWWP GHJUp . SRXU OHV DOOLDJHV G¶DOXPLQLXP LO HVW YRLVLQGHSRXUOHFXLYUHGHSRXUOH39&GH
5HPDUTXH FHV YDOHXUV QXPpULTXHV FRUUHVSRQGHQW j OD WHPSpUDWXUH QRUPDOH N YDULH OpJqUHPHQWDYHFODWHPSpUDWXUH
5HPDUTXH FHV YDOHXUV QXPpULTXHV FRUUHVSRQGHQW j OD WHPSpUDWXUH QRUPDOH N YDULH OpJqUHPHQWDYHFODWHPSpUDWXUH
5HPDUTXH OHV IRUPXOHV HW PRQWUHQW TXH OHV FDORULHV FLUFXOHQW GDQV OH VHQV FRQWUDLUHGH JUDG 7 F¶HVWjGLUHGDQVOHVHQVGHVWHPSpUDWXUHVGpFURLVVDQWHVHQDFFRUGDYHFOH HSULQFLSHGHODWKHUPRG\QDPLTXH
5HPDUTXH OHV IRUPXOHV HW PRQWUHQW TXH OHV FDORULHV FLUFXOHQW GDQV OH VHQV FRQWUDLUHGH JUDG 7 F¶HVWjGLUHGDQVOHVHQVGHVWHPSpUDWXUHVGpFURLVVDQWHVHQDFFRUGDYHFOH HSULQFLSHGHODWKHUPRG\QDPLTXH
5HPDUTXHO¶LQYHUVHGHODFRQGXFWLYLWpVHQRPPHUpVLVWLYLWpWKHUPLTXHRXFDORULILTXH
5HPDUTXHO¶LQYHUVHGHODFRQGXFWLYLWpVHQRPPHUpVLVWLYLWpWKHUPLTXHRXFDORULILTXH
5HPDUTXH XQ PDWpULDX SDUIDLWHPHQW LVRODQW HVW FDUDFWpULVp SDU OD YDOHXU N = LO QH G FRQGXLWSDVODFKDOHXU T = SDVGHIOX[GHFKDOHXU ,OV¶DJLWOjG¶XQFDVOLPLWHTXLQ¶DSDV G¶H[LVWHQFH ULJRXUHXVH 2Q VDLW UpDOLVHU SDU FRQWUH GHV LVRODQWV SUHVTXH SDUIDLWV WHOV TXH OHV PRXVVHV GH SRO\VW\UqQH RX GH SRO\XUpWKDQQH SRXU OHVTXHOV OH FRHIILFLHQW N HVW YRLVLQ GH :P GHJUp
5HPDUTXH XQ PDWpULDX SDUIDLWHPHQW LVRODQW HVW FDUDFWpULVp SDU OD YDOHXU N = LO QH G FRQGXLWSDVODFKDOHXU T = SDVGHIOX[GHFKDOHXU ,OV¶DJLWOjG¶XQFDVOLPLWHTXLQ¶DSDV G¶H[LVWHQFH ULJRXUHXVH 2Q VDLW UpDOLVHU SDU FRQWUH GHV LVRODQWV SUHVTXH SDUIDLWV WHOV TXH OHV PRXVVHV GH SRO\VW\UqQH RX GH SRO\XUpWKDQQH SRXU OHVTXHOV OH FRHIILFLHQW N HVW YRLVLQ GH :P GHJUp
5HPDUTXH SRXU OHV PpWDX[ OH UDSSRUW HQWUH OD FRQGXFWLYLWp WKHUPLTXH HW FRQGXFWLYLWp :Ω pOHFWULTXHHVWjSHXSUqVFRQVWDQWHWYRLVLQGH ⋅ − GHJUp .
5HPDUTXH SRXU OHV PpWDX[ OH UDSSRUW HQWUH OD FRQGXFWLYLWp WKHUPLTXH HW FRQGXFWLYLWp :Ω pOHFWULTXHHVWjSHXSUqVFRQVWDQWHWYRLVLQGH ⋅ − GHJUp .
5HPDUTXHODTXDQWLWpGHFKDOHXUpWDQWXQHpQHUJLHV¶H[SULPHHQMRXOHVRQXWLOLVHDXVVL SDUIRLVODFDORULHFDO - RXODWKHUPLHWKHUPLH 0FDO 0-
5HPDUTXHODTXDQWLWpGHFKDOHXUpWDQWXQHpQHUJLHV¶H[SULPHHQMRXOHVRQXWLOLVHDXVVL SDUIRLVODFDORULHFDO - RXODWKHUPLHWKHUPLH 0FDO 0-
±(TXDWLRQGHODFRQGXFWLRQGHFKDOHXU
±(TXDWLRQGHODFRQGXFWLRQGHFKDOHXU
2QDSSHOOHFDSDFLWpFDORULILTXHYROXPLTXHG¶XQPDWpULDXODTXDQWLWpGHFKDOHXU&TX¶LOIDXW IRXUQLUjO¶XQLWpGHYROXPHGHFHPDWpULDXSRXUpOHYHUVDWHPSpUDWXUHGHXQGHJUp
2QDSSHOOHFDSDFLWpFDORULILTXHYROXPLTXHG¶XQPDWpULDXODTXDQWLWpGHFKDOHXU&TX¶LOIDXW IRXUQLUjO¶XQLWpGHYROXPHGHFHPDWpULDXSRXUpOHYHUVDWHPSpUDWXUHGHXQGHJUp
&HWWHGpILQLWLRQpWDQWGRQQpHH[SULPRQVGHGHX[IDoRQVGLIIpUHQWHVODSXLVVDQFHFDORULILTXH UHoXHjO¶LQVWDQWWSDUXQGRPDLQH D GHIURQWLqUH6 LVROpSDUODSHQVpHDXVHLQG¶XQVROLGH ILJXUH
&HWWHGpILQLWLRQpWDQWGRQQpHH[SULPRQVGHGHX[IDoRQVGLIIpUHQWHVODSXLVVDQFHFDORULILTXH UHoXHjO¶LQVWDQWWSDUXQGRPDLQH D GHIURQWLqUH6 LVROpSDUODSHQVpHDXVHLQG¶XQVROLGH ILJXUH
G Q GpVLJQDQW O¶XQLWDLUH QRUPDO VRUWDQW DX SRLQW FRXUDQW 3 GH 6 FHWWH SXLVVDQFH WKHUPLTXH V¶pFULW
G Q GpVLJQDQW O¶XQLWDLUH QRUPDO VRUWDQW DX SRLQW FRXUDQW 3 GH 6 FHWWH SXLVVDQFH WKHUPLTXH V¶pFULW
- 16 -
- 16 -
)LJXUH
)LJXUH
∫∫∫ & ∂ W G 9 HQDSSHODQWG9O¶pOpPHQWGHYROXPHGH D
∫∫∫ & ∂ W G 9 HQDSSHODQWG9O¶pOpPHQWGHYROXPHGH D
∂7
'
(OOHHVWODVRPPH ± GHODSXLVVDQFHFDORULILTXHHQWUDQWSDUFRQGXFWLRQGDQV D jWUDYHUV6 VRLW −
G G
(OOHHVWODVRPPH ± GHODSXLVVDQFHFDORULILTXHHQWUDQWSDUFRQGXFWLRQGDQV D jWUDYHUV6 VRLW
G
∫∫ T ⋅ Q GV = N ∫∫ JUDG 7 ⋅ Q GV V
−
V
RXHQFRUHHQDSSOLTXDQWODIRUPXOHG¶2VWURJUDGVNL N
∂7
'
N
'
± HW GH OD SXLVVDQFH FDORULILTXH HQJHQGUpH DX VHLQ PrPH GH D SDU GHV VRXUFHV GH OD SXLVVDQFHYROXPLTXH4VRLW
∫∫∫4 ⋅ G 9
V
∫∫∫ GLY JUDG 7 G 9 = N ∫∫∫∆7 ⋅ G 9 '
'
± HW GH OD SXLVVDQFH FDORULILTXH HQJHQGUpH DX VHLQ PrPH GH D SDU GHV VRXUFHV GH OD SXLVVDQFHYROXPLTXH4VRLW
'
2QREWLHQWDLQVL
G
V
RXHQFRUHHQDSSOLTXDQWODIRUPXOHG¶2VWURJUDGVNL
∫∫∫ GLY JUDG 7 G 9 = N ∫∫∫∆7 ⋅ G 9 '
G G
∫∫ T ⋅ Q GV = N ∫∫ JUDG 7 ⋅ Q GV
∫∫∫4 ⋅ G 9 '
⎛ ∂7 ⎞ ⎜⎜ N ∆7 + 4 − & ⎟ G9 = ∂ W ⎟⎠ '⎝
∫∫∫
2QREWLHQWDLQVL
⎛
∂7 ⎞
∫∫∫ ⎜⎜⎝ N ∆7 + 4 − & ∂ W ⎟⎟⎠ G 9 = '
&HWWHpJDOLWpGHYDQWrWUHYpULILpTXHOTXHVRLWOHGRPDLQH D RQHQGpGXLWO¶pTXDWLRQGHOD FKDOHXU ∂7 N ∆7 − & +4 = ∂W
&HWWHpJDOLWpGHYDQWrWUHYpULILpTXHOTXHVRLWOHGRPDLQH D RQHQGpGXLWO¶pTXDWLRQGHOD FKDOHXU ∂7 N ∆7 − & +4 = ∂W
TXLH[SULPHODVHFRQGHORLGH)RXULHU
TXLH[SULPHODVHFRQGHORLGH)RXULHU
/D UpVROXWLRQ GH FHWWH pTXDWLRQ GRQQH OH FKDPS GH WHPSpUDWXUH GDQV XQ VROLGH DYHF GHV FRQVWDQWHV G¶LQWpJUDWLRQ FDOFXODEOHV DX PR\HQ GHV FRQGLWLRQV DX[ OLPLWHV HW GHV FRQGLWLRQV LQLWLDOHV
/D UpVROXWLRQ GH FHWWH pTXDWLRQ GRQQH OH FKDPS GH WHPSpUDWXUH GDQV XQ VROLGH DYHF GHV FRQVWDQWHV G¶LQWpJUDWLRQ FDOFXODEOHV DX PR\HQ GHV FRQGLWLRQV DX[ OLPLWHV HW GHV FRQGLWLRQV LQLWLDOHV
- 17 -
- 17 -
)LJXUH
)LJXUH
∫∫∫ & ∂ W G 9 HQDSSHODQWG9O¶pOpPHQWGHYROXPHGH D
∫∫∫ & ∂ W G 9 HQDSSHODQWG9O¶pOpPHQWGHYROXPHGH D
∂7
'
(OOHHVWODVRPPH ± GHODSXLVVDQFHFDORULILTXHHQWUDQWSDUFRQGXFWLRQGDQV D jWUDYHUV6 VRLW −
G G
(OOHHVWODVRPPH ± GHODSXLVVDQFHFDORULILTXHHQWUDQWSDUFRQGXFWLRQGDQV D jWUDYHUV6 VRLW
G
V
'
G G
G
∫∫ T ⋅ Q GV = N ∫∫ JUDG 7 ⋅ Q GV V
V
RXHQFRUHHQDSSOLTXDQWODIRUPXOHG¶2VWURJUDGVNL '
± HW GH OD SXLVVDQFH FDORULILTXH HQJHQGUpH DX VHLQ PrPH GH D SDU GHV VRXUFHV GH OD
∫∫∫4 ⋅ G 9 '
2QREWLHQWDLQVL
−
V
∫∫∫ GLY JUDG 7 G 9 = N ∫∫∫∆7 ⋅ G 9
SXLVVDQFHYROXPLTXH4VRLW
'
∫∫ T ⋅ Q GV = N ∫∫ JUDG 7 ⋅ Q GV
RXHQFRUHHQDSSOLTXDQWODIRUPXOHG¶2VWURJUDGVNL N
∂7
⎛ ∂7 ⎞ ⎜⎜ N ∆7 + 4 − & ⎟ G9 = ∂ W ⎟⎠ '⎝
∫∫∫
N
∫∫∫ GLY JUDG 7 G 9 = N ∫∫∫∆7 ⋅ G 9 '
'
± HW GH OD SXLVVDQFH FDORULILTXH HQJHQGUpH DX VHLQ PrPH GH D SDU GHV VRXUFHV GH OD SXLVVDQFHYROXPLTXH4VRLW
∫∫∫4 ⋅ G 9 '
2QREWLHQWDLQVL
⎛
∂7 ⎞
∫∫∫ ⎜⎜⎝ N ∆7 + 4 − & ∂ W ⎟⎟⎠ G 9 = '
&HWWHpJDOLWpGHYDQWrWUHYpULILpTXHOTXHVRLWOHGRPDLQH D RQHQGpGXLWO¶pTXDWLRQGHOD FKDOHXU ∂7 N ∆7 − & +4 = ∂W
&HWWHpJDOLWpGHYDQWrWUHYpULILpTXHOTXHVRLWOHGRPDLQH D RQHQGpGXLWO¶pTXDWLRQGHOD FKDOHXU ∂7 N ∆7 − & +4 = ∂W
TXLH[SULPHODVHFRQGHORLGH)RXULHU
TXLH[SULPHODVHFRQGHORLGH)RXULHU
/D UpVROXWLRQ GH FHWWH pTXDWLRQ GRQQH OH FKDPS GH WHPSpUDWXUH GDQV XQ VROLGH DYHF GHV FRQVWDQWHV G¶LQWpJUDWLRQ FDOFXODEOHV DX PR\HQ GHV FRQGLWLRQV DX[ OLPLWHV HW GHV FRQGLWLRQV LQLWLDOHV
/D UpVROXWLRQ GH FHWWH pTXDWLRQ GRQQH OH FKDPS GH WHPSpUDWXUH GDQV XQ VROLGH DYHF GHV FRQVWDQWHV G¶LQWpJUDWLRQ FDOFXODEOHV DX PR\HQ GHV FRQGLWLRQV DX[ OLPLWHV HW GHV FRQGLWLRQV LQLWLDOHV
- 17 -
- 17 -
5HPDUTXH DpWppWDEOLHSDU)RXULHUjO¶DLGHG¶XQELODQG¶pQHUJLHSXUHPHQWWKHUPLTXH FRPPHQRXVO¶DYRQVPRQWUpF¶HVWjGLUHHQQpJOLJHDQWWRXWHFRQYHUVLRQG¶pQHUJLHWKHUPLTXH HQpQHUJLHPpFDQLTXH(QWRXWHULJXHXUHQYHUWXGXSUHPLHUSULQFLSHGHODWKHUPRG\QDPLTXH O¶pQHUJLH(IRXUQLHDXGRPDLQH D VHFRQYHUWLHHQpQHUJLHFDORULILTXH ( FDO pFKDXIIHPHQWGH D HWDXVVLpYHQWXHOOHPHQWHQpQHUJLHPpFDQLTXH ( PHF RQDDLQVL ( = ( FDO + ( PHF PDLVOH HWHUPHHVWWRXWjIDLWQpJOLJHDEOHGHYDQWOHHUFRPPHOHPRQWUHO¶H[HPSOHVXLYDQW
5HPDUTXH DpWppWDEOLHSDU)RXULHUjO¶DLGHG¶XQELODQG¶pQHUJLHSXUHPHQWWKHUPLTXH FRPPHQRXVO¶DYRQVPRQWUpF¶HVWjGLUHHQQpJOLJHDQWWRXWHFRQYHUVLRQG¶pQHUJLHWKHUPLTXH HQpQHUJLHPpFDQLTXH(QWRXWHULJXHXUHQYHUWXGXSUHPLHUSULQFLSHGHODWKHUPRG\QDPLTXH O¶pQHUJLH(IRXUQLHDXGRPDLQH D VHFRQYHUWLHHQpQHUJLHFDORULILTXH ( FDO pFKDXIIHPHQWGH D HWDXVVLpYHQWXHOOHPHQWHQpQHUJLHPpFDQLTXH ( PHF RQDDLQVL ( = ( FDO + ( PHF PDLVOH HWHUPHHVWWRXWjIDLWQpJOLJHDEOHGHYDQWOHHUFRPPHOHPRQWUHO¶H[HPSOHVXLYDQW
8Q FXEH SOHLQ HQ DFLHU G¶DUrWH D VH WURXYH SRVp VXU OH VRO G¶XQH SLqFH HW j OD WHPSpUDWXUH XQLIRUPH 7 RQ SRUWH O¶HQVHPEOH j OD WHPSpUDWXUH 7 > 7 /¶pQHUJLH WKHUPLTXH DLQVL IRXUQLHDXFXEHDXQGRXEOHHIIHW
8Q FXEH SOHLQ HQ DFLHU G¶DUrWH D VH WURXYH SRVp VXU OH VRO G¶XQH SLqFH HW j OD WHPSpUDWXUH XQLIRUPH 7 RQ SRUWH O¶HQVHPEOH j OD WHPSpUDWXUH 7 > 7 /¶pQHUJLH WKHUPLTXH DLQVL IRXUQLHDXFXEHDXQGRXEOHHIIHW
±FDORULILTXHpFKDXIIHPHQWGXFXEHpQHUJLH ( FDO = & D (7 − 7 )
±FDORULILTXHpFKDXIIHPHQWGXFXEHpQHUJLH ( FDO = & D (7 − 7 )
±PpFDQLTXHpOpYDWLRQGXFHQWUH*pQHUJLH ( PHF = 0J α 2QDLFL
D (7 − 7 )
( PHF ρJα D = ( FDO F
±PpFDQLTXHpOpYDWLRQGXFHQWUH*pQHUJLH ( PHF = 0J α 2QDLFL
D (7 − 7 )
( PHF ρJα D = ( FDO F
$SSOLFDWLRQQXPpULTXH
$SSOLFDWLRQQXPpULTXH
ρ = ⋅ NJ P PDVVHYROXPLTXH
ρ = ⋅ NJ P PDVVHYROXPLTXH
J = P V DFFpOpUDWLRQGHODSHVDQWHXU
J = P V DFFpOpUDWLRQGHODSHVDQWHXU
α = ⋅ − . − FRHIILFLHQWGHGLODWDWLRQWKHUPLTXHOLQpLTXH
α = ⋅ − . − FRHIILFLHQWGHGLODWDWLRQWKHUPLTXHOLQpLTXH
D = P DUrWHGXFXEH
D = P DUrWHGXFXEH
F = ⋅ - P ⋅ GHJUp N FDSDFLWpFDORULILTXHYROXPLTXH
F = ⋅ - P ⋅ GHJUp N FDSDFLWpFDORULILTXHYROXPLTXH
2QDGDQVFHFDV
( PHF = ⋅ − = − ( FDO
2QDGDQVFHFDV
( PHF = ⋅ − = − ( FDO
3RXUODPrPHUDLVRQRQSHXWFRQIRQGUHOHVGLIIpUHQWHVFDSDFLWpVFDORULILTXHV&SjSUHVVLRQ FRQVWDQWH & Y jYROXPHFRQVWDQW HWF
3RXUODPrPHUDLVRQRQSHXWFRQIRQGUHOHVGLIIpUHQWHVFDSDFLWpVFDORULILTXHV&SjSUHVVLRQ FRQVWDQWH & Y jYROXPHFRQVWDQW HWF
5HPDUTXH OD SXLVVDQFH WKHUPLTXH YROXPLTXH 43 JpQpUpH DX VHLQ GX PDWpULDX DX YRLVLQDJHGXSRLQWFRXUDQW3SHXWrWUHGXHjO¶HIIHW-RXOHORUVTXHFHPDWpULDXHVWSDUFRXUXSDU XQ FRXUDQW pOHFWULTXH LO SHXW rWUH G DXVVL j GHV UpDFWLRQV GH ILVVLRQ RX HQFRUH j XQH LUUDGLDWLRQ SDU PLFURRQGHV 7RXWHIRLV GDQV OD PDMRULWp GHV SUREOqPHV RQ D 43 ≡ HW O¶pTXDWLRQ SHXWV¶pFULUHDORUV ∂7 ∆7 − = χ ∂W
5HPDUTXH OD SXLVVDQFH WKHUPLTXH YROXPLTXH 43 JpQpUpH DX VHLQ GX PDWpULDX DX YRLVLQDJHGXSRLQWFRXUDQW3SHXWrWUHGXHjO¶HIIHW-RXOHORUVTXHFHPDWpULDXHVWSDUFRXUXSDU XQ FRXUDQW pOHFWULTXH LO SHXW rWUH G DXVVL j GHV UpDFWLRQV GH ILVVLRQ RX HQFRUH j XQH LUUDGLDWLRQ SDU PLFURRQGHV 7RXWHIRLV GDQV OD PDMRULWp GHV SUREOqPHV RQ D 43 ≡ HW O¶pTXDWLRQ SHXWV¶pFULUHDORUV ∂7 ∆7 − = χ ∂W
/HFRHIILFLHQW χ =
N VHQRPPHGLIIXVLYLWpWKHUPLTXH &
/HFRHIILFLHQW χ =
N VHQRPPHGLIIXVLYLWpWKHUPLTXH &
- 18 -
- 18 -
5HPDUTXH DpWppWDEOLHSDU)RXULHUjO¶DLGHG¶XQELODQG¶pQHUJLHSXUHPHQWWKHUPLTXH FRPPHQRXVO¶DYRQVPRQWUpF¶HVWjGLUHHQQpJOLJHDQWWRXWHFRQYHUVLRQG¶pQHUJLHWKHUPLTXH HQpQHUJLHPpFDQLTXH(QWRXWHULJXHXUHQYHUWXGXSUHPLHUSULQFLSHGHODWKHUPRG\QDPLTXH O¶pQHUJLH(IRXUQLHDXGRPDLQH D VHFRQYHUWLHHQpQHUJLHFDORULILTXH ( FDO pFKDXIIHPHQWGH D HWDXVVLpYHQWXHOOHPHQWHQpQHUJLHPpFDQLTXH ( PHF RQDDLQVL ( = ( FDO + ( PHF PDLVOH HWHUPHHVWWRXWjIDLWQpJOLJHDEOHGHYDQWOHHUFRPPHOHPRQWUHO¶H[HPSOHVXLYDQW
5HPDUTXH DpWppWDEOLHSDU)RXULHUjO¶DLGHG¶XQELODQG¶pQHUJLHSXUHPHQWWKHUPLTXH FRPPHQRXVO¶DYRQVPRQWUpF¶HVWjGLUHHQQpJOLJHDQWWRXWHFRQYHUVLRQG¶pQHUJLHWKHUPLTXH HQpQHUJLHPpFDQLTXH(QWRXWHULJXHXUHQYHUWXGXSUHPLHUSULQFLSHGHODWKHUPRG\QDPLTXH O¶pQHUJLH(IRXUQLHDXGRPDLQH D VHFRQYHUWLHHQpQHUJLHFDORULILTXH ( FDO pFKDXIIHPHQWGH D HWDXVVLpYHQWXHOOHPHQWHQpQHUJLHPpFDQLTXH ( PHF RQDDLQVL ( = ( FDO + ( PHF PDLVOH HWHUPHHVWWRXWjIDLWQpJOLJHDEOHGHYDQWOHHUFRPPHOHPRQWUHO¶H[HPSOHVXLYDQW
8Q FXEH SOHLQ HQ DFLHU G¶DUrWH D VH WURXYH SRVp VXU OH VRO G¶XQH SLqFH HW j OD WHPSpUDWXUH XQLIRUPH 7 RQ SRUWH O¶HQVHPEOH j OD WHPSpUDWXUH 7 > 7 /¶pQHUJLH WKHUPLTXH DLQVL IRXUQLHDXFXEHDXQGRXEOHHIIHW
8Q FXEH SOHLQ HQ DFLHU G¶DUrWH D VH WURXYH SRVp VXU OH VRO G¶XQH SLqFH HW j OD WHPSpUDWXUH XQLIRUPH 7 RQ SRUWH O¶HQVHPEOH j OD WHPSpUDWXUH 7 > 7 /¶pQHUJLH WKHUPLTXH DLQVL IRXUQLHDXFXEHDXQGRXEOHHIIHW
±FDORULILTXHpFKDXIIHPHQWGXFXEHpQHUJLH ( FDO = & D (7 − 7 )
±FDORULILTXHpFKDXIIHPHQWGXFXEHpQHUJLH ( FDO = & D (7 − 7 )
±PpFDQLTXHpOpYDWLRQGXFHQWUH*pQHUJLH ( PHF = 0J α 2QDLFL
D (7 − 7 )
( PHF ρJα D = ( FDO F
±PpFDQLTXHpOpYDWLRQGXFHQWUH*pQHUJLH ( PHF = 0J α 2QDLFL
D (7 − 7 )
( PHF ρJα D = ( FDO F
$SSOLFDWLRQQXPpULTXH
$SSOLFDWLRQQXPpULTXH
ρ = ⋅ NJ P PDVVHYROXPLTXH
ρ = ⋅ NJ P PDVVHYROXPLTXH
J = P V DFFpOpUDWLRQGHODSHVDQWHXU
J = P V DFFpOpUDWLRQGHODSHVDQWHXU
α = ⋅ − . − FRHIILFLHQWGHGLODWDWLRQWKHUPLTXHOLQpLTXH
α = ⋅ − . − FRHIILFLHQWGHGLODWDWLRQWKHUPLTXHOLQpLTXH
D = P DUrWHGXFXEH
D = P DUrWHGXFXEH
F = ⋅ - P ⋅ GHJUp N FDSDFLWpFDORULILTXHYROXPLTXH 2QDGDQVFHFDV
( PHF = ⋅ − = − ( FDO
F = ⋅ - P ⋅ GHJUp N FDSDFLWpFDORULILTXHYROXPLTXH 2QDGDQVFHFDV
( PHF = ⋅ − = − ( FDO
3RXUODPrPHUDLVRQRQSHXWFRQIRQGUHOHVGLIIpUHQWHVFDSDFLWpVFDORULILTXHV&SjSUHVVLRQ FRQVWDQWH & Y jYROXPHFRQVWDQW HWF
3RXUODPrPHUDLVRQRQSHXWFRQIRQGUHOHVGLIIpUHQWHVFDSDFLWpVFDORULILTXHV&SjSUHVVLRQ FRQVWDQWH & Y jYROXPHFRQVWDQW HWF
5HPDUTXH OD SXLVVDQFH WKHUPLTXH YROXPLTXH 43 JpQpUpH DX VHLQ GX PDWpULDX DX YRLVLQDJHGXSRLQWFRXUDQW3SHXWrWUHGXHjO¶HIIHW-RXOHORUVTXHFHPDWpULDXHVWSDUFRXUXSDU XQ FRXUDQW pOHFWULTXH LO SHXW rWUH G DXVVL j GHV UpDFWLRQV GH ILVVLRQ RX HQFRUH j XQH LUUDGLDWLRQ SDU PLFURRQGHV 7RXWHIRLV GDQV OD PDMRULWp GHV SUREOqPHV RQ D 43 ≡ HW O¶pTXDWLRQ SHXWV¶pFULUHDORUV ∂7 ∆7 − = χ ∂W
5HPDUTXH OD SXLVVDQFH WKHUPLTXH YROXPLTXH 43 JpQpUpH DX VHLQ GX PDWpULDX DX YRLVLQDJHGXSRLQWFRXUDQW3SHXWrWUHGXHjO¶HIIHW-RXOHORUVTXHFHPDWpULDXHVWSDUFRXUXSDU XQ FRXUDQW pOHFWULTXH LO SHXW rWUH G DXVVL j GHV UpDFWLRQV GH ILVVLRQ RX HQFRUH j XQH LUUDGLDWLRQ SDU PLFURRQGHV 7RXWHIRLV GDQV OD PDMRULWp GHV SUREOqPHV RQ D 43 ≡ HW O¶pTXDWLRQ SHXWV¶pFULUHDORUV ∂7 ∆7 − = χ ∂W
/HFRHIILFLHQW χ =
N VHQRPPHGLIIXVLYLWpWKHUPLTXH & - 18 -
/HFRHIILFLHQW χ =
N VHQRPPHGLIIXVLYLWpWKHUPLTXH & - 18 -
5HPDUTXHOHVYDOHXUVGH&HWNSRXUTXHOTXHVPDWpULDX[XVXHOVVRQWGRQQpHVDXWRPH,j OD SDJH 2Q HQ GpGXLW OHV YDOHXUV GH χ '¶DXWUH SDUW RQ XWLOLVH SDUIRLV OD FDSDFLWp & FDORULILTXHPDVVLTXHTXLHVWpJDOHELHQHQWHQGXj ρ = PDVVHYROXPLTXH ρ 5HPDUTXHHQUpJLPHVWDWLRQQDLUHRQD W\SHGH3RLVVRQ
∆7 = pTXDWLRQGXW\SHGH/DSODFH
6LGHSOXVRQD4 HOOHV¶pFULW
5HPDUTXHHQUpJLPHVWDWLRQQDLUHRQD
∂7 = HWO¶pTXDWLRQ GHYLHQWXQHpTXDWLRQGX ∂W
W\SHGH3RLVVRQ
∆7 = − 4 N
∂7 = HWO¶pTXDWLRQ GHYLHQWXQHpTXDWLRQGX ∂W
5HPDUTXHOHVYDOHXUVGH&HWNSRXUTXHOTXHVPDWpULDX[XVXHOVVRQWGRQQpHVDXWRPH,j OD SDJH 2Q HQ GpGXLW OHV YDOHXUV GH χ '¶DXWUH SDUW RQ XWLOLVH SDUIRLV OD FDSDFLWp & FDORULILTXHPDVVLTXHTXLHVWpJDOHELHQHQWHQGXj ρ = PDVVHYROXPLTXH ρ
∆7 = −
6LGHSOXVRQD4 HOOHV¶pFULW
4 N
∆7 = pTXDWLRQGXW\SHGH/DSODFH
/DWHPSpUDWXUHLQGpSHQGDQWHGXWHPSVHVWDORUVXQHIRQFWLRQKDUPRQLTXHGDQVOHGRPDLQH VROLGHFRQVLGpUp
/DWHPSpUDWXUHLQGpSHQGDQWHGXWHPSVHVWDORUVXQHIRQFWLRQKDUPRQLTXHGDQVOHGRPDLQH VROLGHFRQVLGpUp
±5pVLVWDQFHHWFRQGXFWDQFHWKHUPLTXHV
±5pVLVWDQFHHWFRQGXFWDQFHWKHUPLTXHV
&RQVLGpURQV XQ FRQGXFWHXU F\OLQGULTXH RX SULVPDWLTXH HQUREp SDU XQ LVRODQW SDUIDLW FRQGXFWHXUGHORQJXHXU/GHVHFWLRQ6GHFRQGXFWLYLWp.ILJXUH
&RQVLGpURQV XQ FRQGXFWHXU F\OLQGULTXH RX SULVPDWLTXH HQUREp SDU XQ LVRODQW SDUIDLW FRQGXFWHXUGHORQJXHXU/GHVHFWLRQ6GHFRQGXFWLYLWp.ILJXUH
)LJXUH
)LJXUH
/DVHFWLRQRULJLQH 6 G¶DEVFLVVHHVWPDLQWHQXHjODWHPSpUDWXUH 7 HWODVHFWLRQH[WUpPLWp 6 G¶DEVFLVVH / j OD WHPSpUDWXUH 7 /H FKDPS GH WHPSpUDWXUH GDQV OH FRQGXFWHXU D SRXU 7 −7 H[SUHVVLRQ 7 = 7 + [ /
/DVHFWLRQRULJLQH 6 G¶DEVFLVVHHVWPDLQWHQXHjODWHPSpUDWXUH 7 HWODVHFWLRQH[WUpPLWp 6 G¶DEVFLVVH / j OD WHPSpUDWXUH 7 /H FKDPS GH WHPSpUDWXUH GDQV OH FRQGXFWHXU D SRXU 7 −7 H[SUHVVLRQ 7 = 7 + [ /
/DSXLVVDQFHWKHUPLTXHFLUFXODQWGDQVODGLUHFWLRQHWOHVHQVGH[V¶pFULW 6 P = N (7 − 7 ) = (7 − 7 ) / 5
/DSXLVVDQFHWKHUPLTXHFLUFXODQWGDQVODGLUHFWLRQHWOHVHQVGH[V¶pFULW 6 P = N (7 − 7 ) = (7 − 7 ) / 5
/ VHQRPPHUpVLVWDQFHWKHUPLTXHGXFRQGXFWHXUVRQLQYHUVH HVWODFRQGXFWDQFH 5 N 6 TXLV¶H[SULPHHQ:GHJUp
/ VHQRPPHUpVLVWDQFHWKHUPLTXHGXFRQGXFWHXUVRQLQYHUVH HVWODFRQGXFWDQFH 5 N 6 TXLV¶H[SULPHHQ:GHJUp
- 19 -
- 19 -
5HPDUTXHOHVYDOHXUVGH&HWNSRXUTXHOTXHVPDWpULDX[XVXHOVVRQWGRQQpHVDXWRPH,j OD SDJH 2Q HQ GpGXLW OHV YDOHXUV GH χ '¶DXWUH SDUW RQ XWLOLVH SDUIRLV OD FDSDFLWp & FDORULILTXHPDVVLTXHTXLHVWpJDOHELHQHQWHQGXj ρ = PDVVHYROXPLTXH ρ
5HPDUTXHOHVYDOHXUVGH&HWNSRXUTXHOTXHVPDWpULDX[XVXHOVVRQWGRQQpHVDXWRPH,j OD SDJH 2Q HQ GpGXLW OHV YDOHXUV GH χ '¶DXWUH SDUW RQ XWLOLVH SDUIRLV OD FDSDFLWp & FDORULILTXHPDVVLTXHTXLHVWpJDOHELHQHQWHQGXj ρ = PDVVHYROXPLTXH ρ
5=
5HPDUTXHHQUpJLPHVWDWLRQQDLUHRQD W\SHGH3RLVVRQ
∆7 = pTXDWLRQGXW\SHGH/DSODFH
6LGHSOXVRQD4 HOOHV¶pFULW
5HPDUTXHHQUpJLPHVWDWLRQQDLUHRQD
∂7 = HWO¶pTXDWLRQ GHYLHQWXQHpTXDWLRQGX ∂W
W\SHGH3RLVVRQ
∆7 = − 4 N
∂7 = HWO¶pTXDWLRQ GHYLHQWXQHpTXDWLRQGX ∂W
5=
∆7 = −
6LGHSOXVRQD4 HOOHV¶pFULW
4 N
∆7 = pTXDWLRQGXW\SHGH/DSODFH
/DWHPSpUDWXUHLQGpSHQGDQWHGXWHPSVHVWDORUVXQHIRQFWLRQKDUPRQLTXHGDQVOHGRPDLQH VROLGHFRQVLGpUp
/DWHPSpUDWXUHLQGpSHQGDQWHGXWHPSVHVWDORUVXQHIRQFWLRQKDUPRQLTXHGDQVOHGRPDLQH VROLGHFRQVLGpUp
±5pVLVWDQFHHWFRQGXFWDQFHWKHUPLTXHV
±5pVLVWDQFHHWFRQGXFWDQFHWKHUPLTXHV
&RQVLGpURQV XQ FRQGXFWHXU F\OLQGULTXH RX SULVPDWLTXH HQUREp SDU XQ LVRODQW SDUIDLW FRQGXFWHXUGHORQJXHXU/GHVHFWLRQ6GHFRQGXFWLYLWp.ILJXUH
&RQVLGpURQV XQ FRQGXFWHXU F\OLQGULTXH RX SULVPDWLTXH HQUREp SDU XQ LVRODQW SDUIDLW FRQGXFWHXUGHORQJXHXU/GHVHFWLRQ6GHFRQGXFWLYLWp.ILJXUH
)LJXUH
)LJXUH
/DVHFWLRQRULJLQH 6 G¶DEVFLVVHHVWPDLQWHQXHjODWHPSpUDWXUH 7 HWODVHFWLRQH[WUpPLWp 6 G¶DEVFLVVH / j OD WHPSpUDWXUH 7 /H FKDPS GH WHPSpUDWXUH GDQV OH FRQGXFWHXU D SRXU 7 −7 H[SUHVVLRQ 7 = 7 + [ /
/DVHFWLRQRULJLQH 6 G¶DEVFLVVHHVWPDLQWHQXHjODWHPSpUDWXUH 7 HWODVHFWLRQH[WUpPLWp 6 G¶DEVFLVVH / j OD WHPSpUDWXUH 7 /H FKDPS GH WHPSpUDWXUH GDQV OH FRQGXFWHXU D SRXU 7 −7 H[SUHVVLRQ 7 = 7 + [ /
/DSXLVVDQFHWKHUPLTXHFLUFXODQWGDQVODGLUHFWLRQHWOHVHQVGH[V¶pFULW 6 P = N (7 − 7 ) = (7 − 7 ) / 5
/DSXLVVDQFHWKHUPLTXHFLUFXODQWGDQVODGLUHFWLRQHWOHVHQVGH[V¶pFULW 6 P = N (7 − 7 ) = (7 − 7 ) / 5
/ VHQRPPHUpVLVWDQFHWKHUPLTXHGXFRQGXFWHXUVRQLQYHUVH HVWODFRQGXFWDQFH 5 N 6 TXLV¶H[SULPHHQ:GHJUp
/ VHQRPPHUpVLVWDQFHWKHUPLTXHGXFRQGXFWHXUVRQLQYHUVH HVWODFRQGXFWDQFH 5 N 6 TXLV¶H[SULPHHQ:GHJUp
- 19 -
- 19 -
5=
5=
$VVHPEODJHVHQVpULHHWHQSDUDOOqOH
$VVHPEODJHVHQVpULHHWHQSDUDOOqOH
6LO¶RQDVVHPEOH©HQVpULHªGHX[UpVLVWDQFHVWKHUPLTXHV 5 HW 5 RQREWLHQWXQHUpVLVWDQFH 5 = 5 + 5 SXLVTX¶RQSHXWpFULUHFRPPHOHPRQWUHODILJXUH
6LO¶RQDVVHPEOH©HQVpULHªGHX[UpVLVWDQFHVWKHUPLTXHV 5 HW 5 RQREWLHQWXQHUpVLVWDQFH 5 = 5 + 5 SXLVTX¶RQSHXWpFULUHFRPPHOHPRQWUHODILJXUH
7 − 7 = (7 − 7 ) + (7 − 7 )
7 − 7 = (7 − 7 ) + (7 − 7 )
5 P = 5 P + 5 P
F¶HVWjGLUH
5 P = 5 P + 5 P
F¶HVWjGLUH
)LJXUH
)LJXUH
3RXU XQ DVVHPEODJH ©HQ SDUDOOqOHª SDU H[HPSOH FRPPH OH PRQWUH OD ILJXUH HQ HPPDQFKDQWXQF\OLQGUHSOHLQGHUpVLVWDQFH 5 GDQVXQF\OLQGUHFUHX[GHUpVLVWDQFH 5 RQ REWLHQW XQH UpVLVWDQFH 5 WHOOH TXH FH VRQW GRQF OHV FRQGXFWDQFHV TXL = + 5 5 5 V¶DMRXWHQW (Q DSSHODQW HQ HIIHW P HW P OHV SXLVVDQFHV WKHUPLTXHV SDVVDQW GDQV OHV GHX[
3RXU XQ DVVHPEODJH ©HQ SDUDOOqOHª SDU H[HPSOH FRPPH OH PRQWUH OD ILJXUH HQ HPPDQFKDQWXQF\OLQGUHSOHLQGHUpVLVWDQFH 5 GDQVXQF\OLQGUHFUHX[GHUpVLVWDQFH 5 RQ REWLHQW XQH UpVLVWDQFH 5 WHOOH TXH FH VRQW GRQF OHV FRQGXFWDQFHV TXL = + 5 5 5 V¶DMRXWHQW (Q DSSHODQW HQ HIIHW P HW P OHV SXLVVDQFHV WKHUPLTXHV SDVVDQW GDQV OHV GHX[
FRQGXFWHXUVUHVS HW P OHXUVRPPHRQSHXWpFULUH
FRQGXFWHXUVUHVS HW P OHXUVRPPHRQSHXWpFULUH
7 − 7 = 5 P = 5 P = 5 P
G¶R
P=
7 − 7 7 −7 7 −7 = P + P = + 5 5 5
)LJXUH
7 − 7 = 5 P = 5 P = 5 P
G¶R
P=
7 − 7 7 −7 7 −7 = P + P = + 5 5 5
)LJXUH
([HPSOHUpVLVWDQFHHWFRQGXFWDQFHWKHUPLTXHVVXUIDFLTXHVG¶XQPXUSODQ©PXOWLFRXFKHVª 8QPXUHVWXQHSODTXHGHQRUPDOH [′[ FRQVWLWXpHGHFRXFKHVG¶pSDLVVHXUV H H H HWGH UpVLVWDQFHWKHUPLTXHVSDUXQLWpGHVXUIDFH 5 5 5 /DUpVLVWDQFHWKHUPLTXHSDUXQLWpGH H VXUIDFH GH OD SDURL FRPSOqWH HVW 5 = 5 + 5 + 5 DYHF 5 L = L N L = FRQGXFWLYLWp GX NL PDWpULDXGHODFRXFKHQL
([HPSOHUpVLVWDQFHHWFRQGXFWDQFHWKHUPLTXHVVXUIDFLTXHVG¶XQPXUSODQ©PXOWLFRXFKHVª 8QPXUHVWXQHSODTXHGHQRUPDOH [′[ FRQVWLWXpHGHFRXFKHVG¶pSDLVVHXUV H H H HWGH UpVLVWDQFHWKHUPLTXHVSDUXQLWpGHVXUIDFH 5 5 5 /DUpVLVWDQFHWKHUPLTXHSDUXQLWpGH H VXUIDFH GH OD SDURL FRPSOqWH HVW 5 = 5 + 5 + 5 DYHF 5 L = L N L = FRQGXFWLYLWp GX NL PDWpULDXGHODFRXFKHQL
6XSSRVRQV OHV FRXFKHV HW LGHQWLTXHV HQ EpWRQ DYHF H = H = P HW N = N = : P ⋅ GHJ OD FRXFKH FHQWUDOH HQ PRXVVH GH SRO\VW\UqQH DYHF H = P HW N = : P ⋅ GHJUp
6XSSRVRQV OHV FRXFKHV HW LGHQWLTXHV HQ EpWRQ DYHF H = H = P HW N = N = : P ⋅ GHJ OD FRXFKH FHQWUDOH HQ PRXVVH GH SRO\VW\UqQH DYHF H = P HW N = : P ⋅ GHJUp
- 20 -
- 20 -
$VVHPEODJHVHQVpULHHWHQSDUDOOqOH
$VVHPEODJHVHQVpULHHWHQSDUDOOqOH
6LO¶RQDVVHPEOH©HQVpULHªGHX[UpVLVWDQFHVWKHUPLTXHV 5 HW 5 RQREWLHQWXQHUpVLVWDQFH 5 = 5 + 5 SXLVTX¶RQSHXWpFULUHFRPPHOHPRQWUHODILJXUH
6LO¶RQDVVHPEOH©HQVpULHªGHX[UpVLVWDQFHVWKHUPLTXHV 5 HW 5 RQREWLHQWXQHUpVLVWDQFH 5 = 5 + 5 SXLVTX¶RQSHXWpFULUHFRPPHOHPRQWUHODILJXUH
7 − 7 = (7 − 7 ) + (7 − 7 )
7 − 7 = (7 − 7 ) + (7 − 7 )
5 P = 5 P + 5 P
F¶HVWjGLUH
5 P = 5 P + 5 P
F¶HVWjGLUH
)LJXUH
)LJXUH
3RXU XQ DVVHPEODJH ©HQ SDUDOOqOHª SDU H[HPSOH FRPPH OH PRQWUH OD ILJXUH HQ HPPDQFKDQWXQF\OLQGUHSOHLQGHUpVLVWDQFH 5 GDQVXQF\OLQGUHFUHX[GHUpVLVWDQFH 5 RQ REWLHQW XQH UpVLVWDQFH 5 WHOOH TXH FH VRQW GRQF OHV FRQGXFWDQFHV TXL = + 5 5 5 V¶DMRXWHQW (Q DSSHODQW HQ HIIHW P HW P OHV SXLVVDQFHV WKHUPLTXHV SDVVDQW GDQV OHV GHX[
3RXU XQ DVVHPEODJH ©HQ SDUDOOqOHª SDU H[HPSOH FRPPH OH PRQWUH OD ILJXUH HQ HPPDQFKDQWXQF\OLQGUHSOHLQGHUpVLVWDQFH 5 GDQVXQF\OLQGUHFUHX[GHUpVLVWDQFH 5 RQ REWLHQW XQH UpVLVWDQFH 5 WHOOH TXH FH VRQW GRQF OHV FRQGXFWDQFHV TXL = + 5 5 5 V¶DMRXWHQW (Q DSSHODQW HQ HIIHW P HW P OHV SXLVVDQFHV WKHUPLTXHV SDVVDQW GDQV OHV GHX[
FRQGXFWHXUVUHVS HW P OHXUVRPPHRQSHXWpFULUH
FRQGXFWHXUVUHVS HW P OHXUVRPPHRQSHXWpFULUH
7 − 7 = 5 P = 5 P = 5 P
G¶R
P=
7 − 7 7 −7 7 −7 = P + P = + 5 5 5
)LJXUH
7 − 7 = 5 P = 5 P = 5 P
G¶R
P=
7 − 7 7 −7 7 −7 = P + P = + 5 5 5
)LJXUH
([HPSOHUpVLVWDQFHHWFRQGXFWDQFHWKHUPLTXHVVXUIDFLTXHVG¶XQPXUSODQ©PXOWLFRXFKHVª 8QPXUHVWXQHSODTXHGHQRUPDOH [′[ FRQVWLWXpHGHFRXFKHVG¶pSDLVVHXUV H H H HWGH UpVLVWDQFHWKHUPLTXHVSDUXQLWpGHVXUIDFH 5 5 5 /DUpVLVWDQFHWKHUPLTXHSDUXQLWpGH H VXUIDFH GH OD SDURL FRPSOqWH HVW 5 = 5 + 5 + 5 DYHF 5 L = L N L = FRQGXFWLYLWp GX NL PDWpULDXGHODFRXFKHQL
([HPSOHUpVLVWDQFHHWFRQGXFWDQFHWKHUPLTXHVVXUIDFLTXHVG¶XQPXUSODQ©PXOWLFRXFKHVª 8QPXUHVWXQHSODTXHGHQRUPDOH [′[ FRQVWLWXpHGHFRXFKHVG¶pSDLVVHXUV H H H HWGH UpVLVWDQFHWKHUPLTXHVSDUXQLWpGHVXUIDFH 5 5 5 /DUpVLVWDQFHWKHUPLTXHSDUXQLWpGH H VXUIDFH GH OD SDURL FRPSOqWH HVW 5 = 5 + 5 + 5 DYHF 5 L = L N L = FRQGXFWLYLWp GX NL PDWpULDXGHODFRXFKHQL
6XSSRVRQV OHV FRXFKHV HW LGHQWLTXHV HQ EpWRQ DYHF H = H = P HW N = N = : P ⋅ GHJ OD FRXFKH FHQWUDOH HQ PRXVVH GH SRO\VW\UqQH DYHF H = P HW N = : P ⋅ GHJUp
6XSSRVRQV OHV FRXFKHV HW LGHQWLTXHV HQ EpWRQ DYHF H = H = P HW N = N = : P ⋅ GHJ OD FRXFKH FHQWUDOH HQ PRXVVH GH SRO\VW\UqQH DYHF H = P HW N = : P ⋅ GHJUp
- 20 -
- 20 -
2QDGDQVFHFDV
)LJXUH
P ⋅ GHJ : 5 = ⋅ HW = + = :DWW 5 P ⋅ GHJ
)LJXUH
2QDGDQVFHFDV
5 = ⋅
P ⋅ GHJ : HW = + = :DWW 5 P ⋅ GHJ
3RXU 7L − 7H = F¶HVW j GLUH SRXU GHJUp G¶pFDUW HQWUH WHPSpUDWXUHV LQWpULHXUH 7L HW FDO H[WpULHXUH 7H OHIOX[WKHUPLTXHSDUPGHPXUpJDOH:DWW V
3RXU 7L − 7H = F¶HVW j GLUH SRXU GHJUp G¶pFDUW HQWUH WHPSpUDWXUHV LQWpULHXUH 7L HW FDO H[WpULHXUH 7H OHIOX[WKHUPLTXHSDUPGHPXUpJDOH:DWW V
±6ROLGHVHQFRQWDFW
±6ROLGHVHQFRQWDFW
'HX[ VROLGHV HW GH FDUDFWpULVWLTXHV WKHUPLTXHV GLIIpUHQWHV VRQW HQ FRQWDFW VXLYDQW G O¶LQWHUIDFH6GHSRLQWFRXUDQW3QRWRQV Q O¶XQLWDLUHQRUPDOHQ3j6VRUWDQWGH
'HX[ VROLGHV HW GH FDUDFWpULVWLTXHV WKHUPLTXHV GLIIpUHQWHV VRQW HQ FRQWDFW VXLYDQW G O¶LQWHUIDFH6GHSRLQWFRXUDQW3QRWRQV Q O¶XQLWDLUHQRUPDOHQ3j6VRUWDQWGH
)LJXUH
)LJXUH
2QSHXWpFULUHjFKDTXHLQVWDQWHQWRXWSRLQW3 ± OD FRQWLQXLWp GH 7 j OD WUDYHUVpH GH 6 VRLW 7 3 = 7 3 TXL WUDGXLW O¶XQLFLWp GH OD WHPSpUDWXUHHQWRXWSRLQW G G ± OD FRQWLQXLWp GX IOX[ GH FKDOHXU j OD WUDYHUVpH GH 6 VRLW T 3 ⋅ Q = T 3 ⋅ Q TXL WUDGXLW OD FRQVHUYDWLRQ GH O¶pQHUJLH VRLW HQFRUH G¶DSUqV OD SUHPLqUH ORL GH )RXULHU G G N ⋅ JUDG 7 ⋅ Q = N ⋅ JUDG 7 ⋅ Q
2QSHXWpFULUHjFKDTXHLQVWDQWHQWRXWSRLQW3 ± OD FRQWLQXLWp GH 7 j OD WUDYHUVpH GH 6 VRLW 7 3 = 7 3 TXL WUDGXLW O¶XQLFLWp GH OD WHPSpUDWXUHHQWRXWSRLQW G G ± OD FRQWLQXLWp GX IOX[ GH FKDOHXU j OD WUDYHUVpH GH 6 VRLW T 3 ⋅ Q = T 3 ⋅ Q TXL WUDGXLW OD FRQVHUYDWLRQ GH O¶pQHUJLH VRLW HQFRUH G¶DSUqV OD SUHPLqUH ORL GH )RXULHU G G N ⋅ JUDG 7 ⋅ Q = N ⋅ JUDG 7 ⋅ Q
- 21 -
- 21 -
)LJXUH
2QDGDQVFHFDV
5 = ⋅
)LJXUH
2QDGDQVFHFDV
P ⋅ GHJ : HW = + = :DWW 5 P ⋅ GHJ
5 = ⋅
P ⋅ GHJ : HW = + = :DWW 5 P ⋅ GHJ
3RXU 7L − 7H = F¶HVW j GLUH SRXU GHJUp G¶pFDUW HQWUH WHPSpUDWXUHV LQWpULHXUH 7L HW FDO H[WpULHXUH 7H OHIOX[WKHUPLTXHSDUPGHPXUpJDOH:DWW V
3RXU 7L − 7H = F¶HVW j GLUH SRXU GHJUp G¶pFDUW HQWUH WHPSpUDWXUHV LQWpULHXUH 7L HW FDO H[WpULHXUH 7H OHIOX[WKHUPLTXHSDUPGHPXUpJDOH:DWW V
±6ROLGHVHQFRQWDFW
±6ROLGHVHQFRQWDFW
'HX[ VROLGHV HW GH FDUDFWpULVWLTXHV WKHUPLTXHV GLIIpUHQWHV VRQW HQ FRQWDFW VXLYDQW G O¶LQWHUIDFH6GHSRLQWFRXUDQW3QRWRQV Q O¶XQLWDLUHQRUPDOHQ3j6VRUWDQWGH
'HX[ VROLGHV HW GH FDUDFWpULVWLTXHV WKHUPLTXHV GLIIpUHQWHV VRQW HQ FRQWDFW VXLYDQW G O¶LQWHUIDFH6GHSRLQWFRXUDQW3QRWRQV Q O¶XQLWDLUHQRUPDOHQ3j6VRUWDQWGH
)LJXUH
)LJXUH
2QSHXWpFULUHjFKDTXHLQVWDQWHQWRXWSRLQW3 ± OD FRQWLQXLWp GH 7 j OD WUDYHUVpH GH 6 VRLW 7 3 = 7 3 TXL WUDGXLW O¶XQLFLWp GH OD WHPSpUDWXUHHQWRXWSRLQW G G ± OD FRQWLQXLWp GX IOX[ GH FKDOHXU j OD WUDYHUVpH GH 6 VRLW T 3 ⋅ Q = T 3 ⋅ Q TXL WUDGXLW OD FRQVHUYDWLRQ GH O¶pQHUJLH VRLW HQFRUH G¶DSUqV OD SUHPLqUH ORL GH )RXULHU G G N ⋅ JUDG 7 ⋅ Q = N ⋅ JUDG 7 ⋅ Q
2QSHXWpFULUHjFKDTXHLQVWDQWHQWRXWSRLQW3 ± OD FRQWLQXLWp GH 7 j OD WUDYHUVpH GH 6 VRLW 7 3 = 7 3 TXL WUDGXLW O¶XQLFLWp GH OD WHPSpUDWXUHHQWRXWSRLQW G G ± OD FRQWLQXLWp GX IOX[ GH FKDOHXU j OD WUDYHUVpH GH 6 VRLW T 3 ⋅ Q = T 3 ⋅ Q TXL WUDGXLW OD FRQVHUYDWLRQ GH O¶pQHUJLH VRLW HQFRUH G¶DSUqV OD SUHPLqUH ORL GH )RXULHU G G N ⋅ JUDG 7 ⋅ Q = N ⋅ JUDG 7 ⋅ Q
- 21 -
- 21 -
)LJXUH
)LJXUH
5HPDUTXHODFRQWLQXLWpGXFKDPSGHWHPSpUDWXUHjWUDYHUV6Q¶HVWDVVXUpHULJRXUHXVHPHQW TXHGDQVOHFDVG¶XQFRQWDFWSDUIDLW(FDVGHFRQWDFWLPSDUIDLWHQWUHOHVVROLGHV HW GDX[LUUpJXODULWpVGHVVXUIDFHVHQFRQWDFWFRPPHOHPRQWUHODILJXUHRQFRQVLGqUHOHV VXUIDFHVLGpDOHV 6 HW 6 SDUDOOqOHVj6YRLVLQHVHWGLVWDQWHVGH ε VLWXpHVHQWLqUHPHQWGDQV OHVROLGH SRXU 6 HWGDQVOHVROLGH SRXU 6 2QpFULWDORUVDXYRLVLQDJHGH3
5HPDUTXHODFRQWLQXLWpGXFKDPSGHWHPSpUDWXUHjWUDYHUV6Q¶HVWDVVXUpHULJRXUHXVHPHQW TXHGDQVOHFDVG¶XQFRQWDFWSDUIDLW(FDVGHFRQWDFWLPSDUIDLWHQWUHOHVVROLGHV HW GDX[LUUpJXODULWpVGHVVXUIDFHVHQFRQWDFWFRPPHOHPRQWUHODILJXUHRQFRQVLGqUHOHV VXUIDFHVLGpDOHV 6 HW 6 SDUDOOqOHVj6YRLVLQHVHWGLVWDQWHVGH ε VLWXpHVHQWLqUHPHQWGDQV OHVROLGH SRXU 6 HWGDQVOHVROLGH SRXU 6 2QpFULWDORUVDXYRLVLQDJHGH3
7 − 7 = U ⋅
GP G6
7 − 7 = U ⋅
GP G6
± UVHQRPPHUpVLVWDQFHGHFRQWDFWHQ3SDUXQLWpGHVXUIDFH GP ± GpVLJQHODSXLVVDQFHWKHUPLTXHSDVVDQWGH j HQ3SDUXQLWpGHVXUIDFHRQD G6 GRQF G G GP = N ⋅ JUDG 7 ⋅ Q = N ⋅ JUDG 7 ⋅ Q G6
± UVHQRPPHUpVLVWDQFHGHFRQWDFWHQ3SDUXQLWpGHVXUIDFH GP ± GpVLJQHODSXLVVDQFHWKHUPLTXHSDVVDQWGH j HQ3SDUXQLWpGHVXUIDFHRQD G6 GRQF G G GP = N ⋅ JUDG 7 ⋅ Q = N ⋅ JUDG 7 ⋅ Q G6
,,±75$16)(576'(&+$/(853$5&219(&7,21
,,±75$16)(576'(&+$/(853$5&219(&7,21
/RUVTX¶XQIOXLGHJD]RXOLTXLGH jXQHWHPSpUDWXUH 7I YLHQWOpFKHUODSDURLG¶XQVROLGHGH WHPSpUDWXUH 7S LO\DWUDQVIHUWGHFKDOHXUHQWUHOHVROLGHHWOHIOXLGHF¶HVWOHSKpQRPqQHGH
/RUVTX¶XQIOXLGHJD]RXOLTXLGH jXQHWHPSpUDWXUH 7I YLHQWOpFKHUODSDURLG¶XQVROLGHGH WHPSpUDWXUH 7S LO\DWUDQVIHUWGHFKDOHXUHQWUHOHVROLGHHWOHIOXLGHF¶HVWOHSKpQRPqQHGH
FRQYHFWLRQ
FRQYHFWLRQ
)LJXUH
)LJXUH
- 22 -
- 22 -
)LJXUH
)LJXUH
5HPDUTXHODFRQWLQXLWpGXFKDPSGHWHPSpUDWXUHjWUDYHUV6Q¶HVWDVVXUpHULJRXUHXVHPHQW TXHGDQVOHFDVG¶XQFRQWDFWSDUIDLW(FDVGHFRQWDFWLPSDUIDLWHQWUHOHVVROLGHV HW GDX[LUUpJXODULWpVGHVVXUIDFHVHQFRQWDFWFRPPHOHPRQWUHODILJXUHRQFRQVLGqUHOHV VXUIDFHVLGpDOHV 6 HW 6 SDUDOOqOHVj6YRLVLQHVHWGLVWDQWHVGH ε VLWXpHVHQWLqUHPHQWGDQV OHVROLGH SRXU 6 HWGDQVOHVROLGH SRXU 6 2QpFULWDORUVDXYRLVLQDJHGH3
5HPDUTXHODFRQWLQXLWpGXFKDPSGHWHPSpUDWXUHjWUDYHUV6Q¶HVWDVVXUpHULJRXUHXVHPHQW TXHGDQVOHFDVG¶XQFRQWDFWSDUIDLW(FDVGHFRQWDFWLPSDUIDLWHQWUHOHVVROLGHV HW GDX[LUUpJXODULWpVGHVVXUIDFHVHQFRQWDFWFRPPHOHPRQWUHODILJXUHRQFRQVLGqUHOHV VXUIDFHVLGpDOHV 6 HW 6 SDUDOOqOHVj6YRLVLQHVHWGLVWDQWHVGH ε VLWXpHVHQWLqUHPHQWGDQV OHVROLGH SRXU 6 HWGDQVOHVROLGH SRXU 6 2QpFULWDORUVDXYRLVLQDJHGH3
7 − 7 = U ⋅
GP G6
7 − 7 = U ⋅
GP G6
± UVHQRPPHUpVLVWDQFHGHFRQWDFWHQ3SDUXQLWpGHVXUIDFH GP ± GpVLJQHODSXLVVDQFHWKHUPLTXHSDVVDQWGH j HQ3SDUXQLWpGHVXUIDFHRQD G6 GRQF G G GP = N ⋅ JUDG 7 ⋅ Q = N ⋅ JUDG 7 ⋅ Q G6
± UVHQRPPHUpVLVWDQFHGHFRQWDFWHQ3SDUXQLWpGHVXUIDFH GP ± GpVLJQHODSXLVVDQFHWKHUPLTXHSDVVDQWGH j HQ3SDUXQLWpGHVXUIDFHRQD G6 GRQF G G GP = N ⋅ JUDG 7 ⋅ Q = N ⋅ JUDG 7 ⋅ Q G6
,,±75$16)(576'(&+$/(853$5&219(&7,21
,,±75$16)(576'(&+$/(853$5&219(&7,21
/RUVTX¶XQIOXLGHJD]RXOLTXLGH jXQHWHPSpUDWXUH 7I YLHQWOpFKHUODSDURLG¶XQVROLGHGH WHPSpUDWXUH 7S LO\DWUDQVIHUWGHFKDOHXUHQWUHOHVROLGHHWOHIOXLGHF¶HVWOHSKpQRPqQHGH
/RUVTX¶XQIOXLGHJD]RXOLTXLGH jXQHWHPSpUDWXUH 7I YLHQWOpFKHUODSDURLG¶XQVROLGHGH WHPSpUDWXUH 7S LO\DWUDQVIHUWGHFKDOHXUHQWUHOHVROLGHHWOHIOXLGHF¶HVWOHSKpQRPqQHGH
FRQYHFWLRQ
FRQYHFWLRQ
)LJXUH
)LJXUH
- 22 -
- 22 -
G '¶XQHIDoRQJpQpUDOHHQXQSRLQW3GHODSDURL6 GXVROLGHGHQRUPDOHXQLWDLUHVRUWDQWH Q OHIOX[GHFKDOHXUGXVROLGHYHUVOHIOXLGHSHXWWRXMRXUVV¶pFULUH
(
)
G G GP = K 7S − 7I = T ⋅ Q = T G6
G '¶XQHIDoRQJpQpUDOHHQXQSRLQW3GHODSDURL6 GXVROLGHGHQRUPDOHXQLWDLUHVRUWDQWH Q OHIOX[GHFKDOHXUGXVROLGHYHUVOHIOXLGHSHXWWRXMRXUVV¶pFULUH
(
)
G G GP = K 7S − 7I = T ⋅ Q = T G6
GP GpVLJQHODSXLVVDQFHWKHUPLTXHSDUXQLWpGHVXUIDFH G6
GP GpVLJQHODSXLVVDQFHWKHUPLTXHSDUXQLWpGHVXUIDFH G6
K VH QRPPH FRHIILFLHQW GH FRQYHFWLRQ LO HVW KRPRJqQH j XQH FRQGXFWDQFH SDU XQLWp GH VXUIDFH
K VH QRPPH FRHIILFLHQW GH FRQYHFWLRQ LO HVW KRPRJqQH j XQH FRQGXFWDQFH SDU XQLWp GH VXUIDFH
G T = −N ⋅ JUDG 7 GpVLJQHOHYHFWHXUIOX[GHFKDOHXUGDQVOHVROLGHHQ3
G T = − N ⋅ JUDG 7 GpVLJQHOHYHFWHXUIOX[GHFKDOHXUGDQVOHVROLGHHQ3
/DFRQGLWLRQDX[OLPLWHVGDQVFDVG¶XQHFRQYHFWLRQSXUHV¶pFULWGRQF
/DFRQGLWLRQDX[OLPLWHVGDQVFDVG¶XQHFRQYHFWLRQSXUHV¶pFULWGRQF
⎛ ∂7 ⎞ ⎟⎟ = K 7S − 7I − N ⎜⎜ ⎝ ∂Q ⎠S
(
)
⎛ ∂7 ⎞ ⎟⎟ = K 7S − 7I − N ⎜⎜ ⎝ ∂Q ⎠S
(
)
0DOJUp OD JUDQGH VLPSOLFLWp GHV IRUPXOHV HW OH SUREOqPH GH OD FRQYHFWLRQ HVW WUqV FRPSOH[HFDUSRXUGpWHUPLQHUULJRXUHXVHPHQWOHVYDOHXUGHK 7S HW 7I HQFKDTXHSRLQW3GH
0DOJUp OD JUDQGH VLPSOLFLWp GHV IRUPXOHV HW OH SUREOqPH GH OD FRQYHFWLRQ HVW WUqV FRPSOH[HFDUSRXUGpWHUPLQHUULJRXUHXVHPHQWOHVYDOHXUGHK 7S HW 7I HQFKDTXHSRLQW3GH
OD SDURL LO HVW QpFHVVDLUH GH UpVRXGUH O¶pTXDWLRQ GH OD FKDOHXU GDQV OH VROLGH DLQVL TXH OHV pTXDWLRQV GH O¶pFRXOHPHQW IOXLGH DYHF GHV FRQGLWLRQV DX[ OLPLWHV F¶HVW j GLUH VXU OD SDURL FRXSOpHV
OD SDURL LO HVW QpFHVVDLUH GH UpVRXGUH O¶pTXDWLRQ GH OD FKDOHXU GDQV OH VROLGH DLQVL TXH OHV pTXDWLRQV GH O¶pFRXOHPHQW IOXLGH DYHF GHV FRQGLWLRQV DX[ OLPLWHV F¶HVW j GLUH VXU OD SDURL FRXSOpHV
&RPPH QRXV QRXV LQWpUHVVRQV XQLTXHPHQW DX FKDPS GH WHPSpUDWXUH GDQV OH VROLGH LO HVW VRXKDLWDEOHGHGpFRXSOHUOHVGHX[SUREOqPHVVROLGHHWIOXLGH
&RPPH QRXV QRXV LQWpUHVVRQV XQLTXHPHQW DX FKDPS GH WHPSpUDWXUH GDQV OH VROLGH LO HVW VRXKDLWDEOHGHGpFRXSOHUOHVGHX[SUREOqPHVVROLGHHWIOXLGH
'DQV OH FDV JpQpUDO K GpSHQG GH OD SRVLWLRQ GH 3 VXU OD SDURL GH OD GLVWULEXWLRQ GHV WHPSpUDWXUHVVXUFHWWHSDURLGXWHPSVHWGHVFDUDFWpULVWLTXHVGHO¶pFRXOHPHQWFRXFKHOLPLWH ODPLQDLUHRXWXUEXOHQWHQRPEUHGH5H\QROGVFKDPSGHYLWHVVH«
'DQV OH FDV JpQpUDO K GpSHQG GH OD SRVLWLRQ GH 3 VXU OD SDURL GH OD GLVWULEXWLRQ GHV WHPSpUDWXUHVVXUFHWWHSDURLGXWHPSVHWGHVFDUDFWpULVWLTXHVGHO¶pFRXOHPHQWFRXFKHOLPLWH ODPLQDLUHRXWXUEXOHQWHQRPEUHGH5H\QROGVFKDPSGHYLWHVVH«
/HGpFRXSODJHHVWDVVXUpVLO¶RQSHXWVHGRQQHUOHVYDOHXUGHKHW 7I SRXUFHODRQGLVWLQJXH GHX[FDVFHOXLGHODFRQYHFWLRQQDWXUHOOHRXOLEUH HWFHOXLGHODFRQYHFWLRQIRUFpH
/HGpFRXSODJHHVWDVVXUpVLO¶RQSHXWVHGRQQHUOHVYDOHXUGHKHW 7I SRXUFHODRQGLVWLQJXH GHX[FDVFHOXLGHODFRQYHFWLRQQDWXUHOOHRXOLEUH HWFHOXLGHODFRQYHFWLRQIRUFpH
±&RQYHFWLRQQDWXUHOOH
±&RQYHFWLRQQDWXUHOOH
'DQVFHFDVO¶pFRXOHPHQWGXIOXLGHQ¶HVWSDVLPSRVpLOQ¶DOLHXTXHSDUFHTXHOHVSDUWLFXOHV IOXLGHVUHoRLYHQWGHODFKDOHXUDXFRQWDFWGHODSDURLHWGHFHIDLWVXELVVHQWGHVYDULDWLRQVGH PDVVH YROXPLTXH TXL HQWUDvQHQW OHXUV GpSODFHPHQWV GDQV OH FKDPS GH OD SHVDQWHXU /D GpWHUPLQDWLRQ GH K SDU OH FDOFXO HVW WUqV GLIILFLOH HW O¶RQ D HQ JpQpUDO UHFRXUV j GHV YDOHXUV H[SpULPHQWDOHV 7I GpVLJQH DORUV OD WHPSpUDWXUH GX IOXLGH HQ GHKRUV GH OD FRXFKH OLPLWH WKHUPLTXHGpILQLHFRPPHpWDQWOHGRPDLQHIOXLGHYRLVLQGHODSDURLjO¶LQWpULHXUGXTXHORQD XQJUDGLHQWGHWHPSpUDWXUH
'DQVFHFDVO¶pFRXOHPHQWGXIOXLGHQ¶HVWSDVLPSRVpLOQ¶DOLHXTXHSDUFHTXHOHVSDUWLFXOHV IOXLGHVUHoRLYHQWGHODFKDOHXUDXFRQWDFWGHODSDURLHWGHFHIDLWVXELVVHQWGHVYDULDWLRQVGH PDVVH YROXPLTXH TXL HQWUDvQHQW OHXUV GpSODFHPHQWV GDQV OH FKDPS GH OD SHVDQWHXU /D GpWHUPLQDWLRQ GH K SDU OH FDOFXO HVW WUqV GLIILFLOH HW O¶RQ D HQ JpQpUDO UHFRXUV j GHV YDOHXUV H[SpULPHQWDOHV 7I GpVLJQH DORUV OD WHPSpUDWXUH GX IOXLGH HQ GHKRUV GH OD FRXFKH OLPLWH WKHUPLTXHGpILQLHFRPPHpWDQWOHGRPDLQHIOXLGHYRLVLQGHODSDURLjO¶LQWpULHXUGXTXHORQD XQJUDGLHQWGHWHPSpUDWXUH
- 23 -
- 23 -
G '¶XQHIDoRQJpQpUDOHHQXQSRLQW3GHODSDURL6 GXVROLGHGHQRUPDOHXQLWDLUHVRUWDQWH Q OHIOX[GHFKDOHXUGXVROLGHYHUVOHIOXLGHSHXWWRXMRXUVV¶pFULUH
G '¶XQHIDoRQJpQpUDOHHQXQSRLQW3GHODSDURL6 GXVROLGHGHQRUPDOHXQLWDLUHVRUWDQWH Q OHIOX[GHFKDOHXUGXVROLGHYHUVOHIOXLGHSHXWWRXMRXUVV¶pFULUH
(
)
G G GP = K 7S − 7I = T ⋅ Q = T G6
(
)
G G GP = K 7S − 7I = T ⋅ Q = T G6
GP GpVLJQHODSXLVVDQFHWKHUPLTXHSDUXQLWpGHVXUIDFH G6
GP GpVLJQHODSXLVVDQFHWKHUPLTXHSDUXQLWpGHVXUIDFH G6
K VH QRPPH FRHIILFLHQW GH FRQYHFWLRQ LO HVW KRPRJqQH j XQH FRQGXFWDQFH SDU XQLWp GH VXUIDFH
K VH QRPPH FRHIILFLHQW GH FRQYHFWLRQ LO HVW KRPRJqQH j XQH FRQGXFWDQFH SDU XQLWp GH VXUIDFH
G T = −N ⋅ JUDG 7 GpVLJQHOHYHFWHXUIOX[GHFKDOHXUGDQVOHVROLGHHQ3
G T = − N ⋅ JUDG 7 GpVLJQHOHYHFWHXUIOX[GHFKDOHXUGDQVOHVROLGHHQ3
/DFRQGLWLRQDX[OLPLWHVGDQVFDVG¶XQHFRQYHFWLRQSXUHV¶pFULWGRQF
/DFRQGLWLRQDX[OLPLWHVGDQVFDVG¶XQHFRQYHFWLRQSXUHV¶pFULWGRQF
⎛ ∂7 ⎞ ⎟⎟ = K 7S − 7I − N ⎜⎜ ⎝ ∂Q ⎠S
(
)
⎛ ∂7 ⎞ ⎟⎟ = K 7S − 7I − N ⎜⎜ ⎝ ∂Q ⎠S
(
)
0DOJUp OD JUDQGH VLPSOLFLWp GHV IRUPXOHV HW OH SUREOqPH GH OD FRQYHFWLRQ HVW WUqV FRPSOH[HFDUSRXUGpWHUPLQHUULJRXUHXVHPHQWOHVYDOHXUGHK 7S HW 7I HQFKDTXHSRLQW3GH
0DOJUp OD JUDQGH VLPSOLFLWp GHV IRUPXOHV HW OH SUREOqPH GH OD FRQYHFWLRQ HVW WUqV FRPSOH[HFDUSRXUGpWHUPLQHUULJRXUHXVHPHQWOHVYDOHXUGHK 7S HW 7I HQFKDTXHSRLQW3GH
OD SDURL LO HVW QpFHVVDLUH GH UpVRXGUH O¶pTXDWLRQ GH OD FKDOHXU GDQV OH VROLGH DLQVL TXH OHV pTXDWLRQV GH O¶pFRXOHPHQW IOXLGH DYHF GHV FRQGLWLRQV DX[ OLPLWHV F¶HVW j GLUH VXU OD SDURL FRXSOpHV
OD SDURL LO HVW QpFHVVDLUH GH UpVRXGUH O¶pTXDWLRQ GH OD FKDOHXU GDQV OH VROLGH DLQVL TXH OHV pTXDWLRQV GH O¶pFRXOHPHQW IOXLGH DYHF GHV FRQGLWLRQV DX[ OLPLWHV F¶HVW j GLUH VXU OD SDURL FRXSOpHV
&RPPH QRXV QRXV LQWpUHVVRQV XQLTXHPHQW DX FKDPS GH WHPSpUDWXUH GDQV OH VROLGH LO HVW VRXKDLWDEOHGHGpFRXSOHUOHVGHX[SUREOqPHVVROLGHHWIOXLGH
&RPPH QRXV QRXV LQWpUHVVRQV XQLTXHPHQW DX FKDPS GH WHPSpUDWXUH GDQV OH VROLGH LO HVW VRXKDLWDEOHGHGpFRXSOHUOHVGHX[SUREOqPHVVROLGHHWIOXLGH
'DQV OH FDV JpQpUDO K GpSHQG GH OD SRVLWLRQ GH 3 VXU OD SDURL GH OD GLVWULEXWLRQ GHV WHPSpUDWXUHVVXUFHWWHSDURLGXWHPSVHWGHVFDUDFWpULVWLTXHVGHO¶pFRXOHPHQWFRXFKHOLPLWH ODPLQDLUHRXWXUEXOHQWHQRPEUHGH5H\QROGVFKDPSGHYLWHVVH«
'DQV OH FDV JpQpUDO K GpSHQG GH OD SRVLWLRQ GH 3 VXU OD SDURL GH OD GLVWULEXWLRQ GHV WHPSpUDWXUHVVXUFHWWHSDURLGXWHPSVHWGHVFDUDFWpULVWLTXHVGHO¶pFRXOHPHQWFRXFKHOLPLWH ODPLQDLUHRXWXUEXOHQWHQRPEUHGH5H\QROGVFKDPSGHYLWHVVH«
/HGpFRXSODJHHVWDVVXUpVLO¶RQSHXWVHGRQQHUOHVYDOHXUGHKHW 7I SRXUFHODRQGLVWLQJXH GHX[FDVFHOXLGHODFRQYHFWLRQQDWXUHOOHRXOLEUH HWFHOXLGHODFRQYHFWLRQIRUFpH
/HGpFRXSODJHHVWDVVXUpVLO¶RQSHXWVHGRQQHUOHVYDOHXUGHKHW 7I SRXUFHODRQGLVWLQJXH GHX[FDVFHOXLGHODFRQYHFWLRQQDWXUHOOHRXOLEUH HWFHOXLGHODFRQYHFWLRQIRUFpH
±&RQYHFWLRQQDWXUHOOH
±&RQYHFWLRQQDWXUHOOH
'DQVFHFDVO¶pFRXOHPHQWGXIOXLGHQ¶HVWSDVLPSRVpLOQ¶DOLHXTXHSDUFHTXHOHVSDUWLFXOHV IOXLGHVUHoRLYHQWGHODFKDOHXUDXFRQWDFWGHODSDURLHWGHFHIDLWVXELVVHQWGHVYDULDWLRQVGH PDVVH YROXPLTXH TXL HQWUDvQHQW OHXUV GpSODFHPHQWV GDQV OH FKDPS GH OD SHVDQWHXU /D GpWHUPLQDWLRQ GH K SDU OH FDOFXO HVW WUqV GLIILFLOH HW O¶RQ D HQ JpQpUDO UHFRXUV j GHV YDOHXUV H[SpULPHQWDOHV 7I GpVLJQH DORUV OD WHPSpUDWXUH GX IOXLGH HQ GHKRUV GH OD FRXFKH OLPLWH WKHUPLTXHGpILQLHFRPPHpWDQWOHGRPDLQHIOXLGHYRLVLQGHODSDURLjO¶LQWpULHXUGXTXHORQD XQJUDGLHQWGHWHPSpUDWXUH
'DQVFHFDVO¶pFRXOHPHQWGXIOXLGHQ¶HVWSDVLPSRVpLOQ¶DOLHXTXHSDUFHTXHOHVSDUWLFXOHV IOXLGHVUHoRLYHQWGHODFKDOHXUDXFRQWDFWGHODSDURLHWGHFHIDLWVXELVVHQWGHVYDULDWLRQVGH PDVVH YROXPLTXH TXL HQWUDvQHQW OHXUV GpSODFHPHQWV GDQV OH FKDPS GH OD SHVDQWHXU /D GpWHUPLQDWLRQ GH K SDU OH FDOFXO HVW WUqV GLIILFLOH HW O¶RQ D HQ JpQpUDO UHFRXUV j GHV YDOHXUV H[SpULPHQWDOHV 7I GpVLJQH DORUV OD WHPSpUDWXUH GX IOXLGH HQ GHKRUV GH OD FRXFKH OLPLWH WKHUPLTXHGpILQLHFRPPHpWDQWOHGRPDLQHIOXLGHYRLVLQGHODSDURLjO¶LQWpULHXUGXTXHORQD XQJUDGLHQWGHWHPSpUDWXUH
- 23 -
- 23 -
±&RQYHFWLRQIRUFpH
±&RQYHFWLRQIRUFpH
'DQV FH FDV OD VWUXFWXUH SRVVqGH XQ GpSODFHPHQW FRQQX SDU UDSSRUW DX IOXLGH HW LPSRVp GH O¶H[WpULHXUDYLRQHQYRORXPDTXHWWHGDQVXQHVRXIIOHULHSDUH[HPSOH
'DQV FH FDV OD VWUXFWXUH SRVVqGH XQ GpSODFHPHQW FRQQX SDU UDSSRUW DX IOXLGH HW LPSRVp GH O¶H[WpULHXUDYLRQHQYRORXPDTXHWWHGDQVXQHVRXIIOHULHSDUH[HPSOH
7I GpVLJQH DORUV OD WHPSpUDWXUH GH IURWWHPHQW RX WHPSpUDWXUH GH UpFXSpUDWLRQ GpILQLH FRPPH pWDQW OD WHPSpUDWXUH TX¶DXUDLW OH IOXLGH DX SRLQW 3 GH OD SDURL VL FHOOHFL pWDLW DWKHUPDQH3RXUXQpFRXOHPHQWJD]HX[RQGpPRQWUHHQ$pURG\QDPLTXHODIRUPXOH
7I GpVLJQH DORUV OD WHPSpUDWXUH GH IURWWHPHQW RX WHPSpUDWXUH GH UpFXSpUDWLRQ GpILQLH FRPPH pWDQW OD WHPSpUDWXUH TX¶DXUDLW OH IOXLGH DX SRLQW 3 GH OD SDURL VL FHOOHFL pWDLW DWKHUPDQH3RXUXQpFRXOHPHQWJD]HX[RQGpPRQWUHHQ$pURG\QDPLTXHODIRUPXOH
γ − ⎞ ⎛ 7I = 7H ⎜ + U 0H ⎟ ⎝ ⎠
'DQV FHWWH pTXDWLRQ 7H HW 0 H GpVLJQHQW OD WHPSpUDWXUH .HOYLQ HW OH QRPEUH GH 0DWFK GH O¶pFRXOHPHQWjO¶H[WpULHXUGHODFRXFKHOLPLWHVXUODQRUPDOHHQ3jODSDURL γ HVWOHUDSSRUW &S GHVFKDOHXUVVSpFLILTXHVGXIOXLGHjSUHVVLRQFRQVWDQWHHWjYROXPHFRQVWDQWUGpVLJQHOH &Y FRHIILFLHQWGHUpFXSpUDWLRQHWDSRXUH[SUHVVLRQ U=
γ − ⎞ ⎛ 7I = 7H ⎜ + U 0H ⎟ ⎝ ⎠
'DQV FHWWH pTXDWLRQ 7H HW 0 H GpVLJQHQW OD WHPSpUDWXUH .HOYLQ HW OH QRPEUH GH 0DWFK GH O¶pFRXOHPHQWjO¶H[WpULHXUGHODFRXFKHOLPLWHVXUODQRUPDOHHQ3jODSDURL γ HVWOHUDSSRUW &S GHVFKDOHXUVVSpFLILTXHVGXIOXLGHjSUHVVLRQFRQVWDQWHHWjYROXPHFRQVWDQWUGpVLJQHOH &Y FRHIILFLHQWGHUpFXSpUDWLRQHWDSRXUH[SUHVVLRQ
7I − 7H 7LH − 7H
U=
7I − 7H 7LH − 7H
7LH pWDQW OD WHPSpUDWXUH G¶DUUrW j O¶H[WpULHXU GH OD FRXFKH OLPLWH VXU OD QRUPDOH HQ 3 j OD SDURL/DYDOHXUGHUHVWSUDWLTXHPHQWFRQVWDQWHpJDOHjGDQVOHFDVG¶XQHFRXFKHOLPLWH ODPLQDLUHHWGDQVFHOXLG¶XQHFRXFKHOLPLWHWXUEXOHQWHSRXUO¶DLU
7LH pWDQW OD WHPSpUDWXUH G¶DUUrW j O¶H[WpULHXU GH OD FRXFKH OLPLWH VXU OD QRUPDOH HQ 3 j OD SDURL/DYDOHXUGHUHVWSUDWLTXHPHQWFRQVWDQWHpJDOHjGDQVOHFDVG¶XQHFRXFKHOLPLWH ODPLQDLUHHWGDQVFHOXLG¶XQHFRXFKHOLPLWHWXUEXOHQWHSRXUO¶DLU
/HFRHIILFLHQWGHFRQYHFWLRQKDSRXUH[SUHVVLRQ
/HFRHIILFLHQWGHFRQYHFWLRQKDSRXUH[SUHVVLRQ
K = & K ρ H 9H & S DYHF
K = & K ρ H 9H & S DYHF
& K = FRHIILFLHQWGHIOX[GHFKDOHXURXQRPEUHGH0DUJRXOLVRXHQFRUHQRPEUHGH6WDQWRQ VDQVGLPHQVLRQ
& K = FRHIILFLHQWGHIOX[GHFKDOHXURXQRPEUHGH0DUJRXOLVRXHQFRUHQRPEUHGH6WDQWRQ VDQVGLPHQVLRQ
ρ H 9H = PDVVH YROXPLTXH HW YLWHVVH GX IOXLGH j O¶H[WpULHXU GH OD FRXFKH OLPLWH VXU OD QRUPDOHHQ3jODSDURL
ρ H 9H = PDVVH YROXPLTXH HW YLWHVVH GX IOXLGH j O¶H[WpULHXU GH OD FRXFKH OLPLWH VXU OD QRUPDOHHQ3jODSDURL
& S = FKDOHXUPDVVLTXHGXIOXLGHjSUHVVLRQFRQVWDQWH
& S = FKDOHXUPDVVLTXHGXIOXLGHjSUHVVLRQFRQVWDQWH
5HPDUTXHpFKDXIIHPHQWFLQpWLTXHpFRXOHPHQWK\SHUVRQLTXH 'DQVOHFDVG¶XQpFRXOHPHQWJD]HX[jWUqVJUDQGHYLWHVVH 0 H > XQHLPSRUWDQWHTXDQWLWp GH FKDOHXU HVW SURGXLWH DX YRLVLQDJH GH OD SDURL j FDXVH GX IURWWHPHQW GHV PROpFXOHV JD]HXVHVRQDDORUVGHVSKpQRPqQHVSK\VLFRFKLPLTXHVFRPSOH[HVWHOVTXHGLVVRFLDWLRQGHV PROpFXOHV LRQLVDWLRQ DYHF PRGLILFDWLRQV GHV SURSULpWpV PpFDQLTXHV HW SK\VLTXHV GX IOXLGH 'DQVFHFDVOHVIRUPXOHV HW pWDEOLHVHQVXSSRVDQWQRWDPPHQW & S HW γ LQGpSHQGDQWV
5HPDUTXHpFKDXIIHPHQWFLQpWLTXHpFRXOHPHQWK\SHUVRQLTXH 'DQVOHFDVG¶XQpFRXOHPHQWJD]HX[jWUqVJUDQGHYLWHVVH 0 H > XQHLPSRUWDQWHTXDQWLWp GH FKDOHXU HVW SURGXLWH DX YRLVLQDJH GH OD SDURL j FDXVH GX IURWWHPHQW GHV PROpFXOHV JD]HXVHVRQDDORUVGHVSKpQRPqQHVSK\VLFRFKLPLTXHVFRPSOH[HVWHOVTXHGLVVRFLDWLRQGHV PROpFXOHV LRQLVDWLRQ DYHF PRGLILFDWLRQV GHV SURSULpWpV PpFDQLTXHV HW SK\VLTXHV GX IOXLGH 'DQVFHFDVOHVIRUPXOHV HW pWDEOLHVHQVXSSRVDQWQRWDPPHQW & S HW γ LQGpSHQGDQWV
- 24 -
- 24 -
±&RQYHFWLRQIRUFpH
±&RQYHFWLRQIRUFpH
'DQV FH FDV OD VWUXFWXUH SRVVqGH XQ GpSODFHPHQW FRQQX SDU UDSSRUW DX IOXLGH HW LPSRVp GH O¶H[WpULHXUDYLRQHQYRORXPDTXHWWHGDQVXQHVRXIIOHULHSDUH[HPSOH
'DQV FH FDV OD VWUXFWXUH SRVVqGH XQ GpSODFHPHQW FRQQX SDU UDSSRUW DX IOXLGH HW LPSRVp GH O¶H[WpULHXUDYLRQHQYRORXPDTXHWWHGDQVXQHVRXIIOHULHSDUH[HPSOH
7I GpVLJQH DORUV OD WHPSpUDWXUH GH IURWWHPHQW RX WHPSpUDWXUH GH UpFXSpUDWLRQ GpILQLH FRPPH pWDQW OD WHPSpUDWXUH TX¶DXUDLW OH IOXLGH DX SRLQW 3 GH OD SDURL VL FHOOHFL pWDLW DWKHUPDQH3RXUXQpFRXOHPHQWJD]HX[RQGpPRQWUHHQ$pURG\QDPLTXHODIRUPXOH
7I GpVLJQH DORUV OD WHPSpUDWXUH GH IURWWHPHQW RX WHPSpUDWXUH GH UpFXSpUDWLRQ GpILQLH FRPPH pWDQW OD WHPSpUDWXUH TX¶DXUDLW OH IOXLGH DX SRLQW 3 GH OD SDURL VL FHOOHFL pWDLW DWKHUPDQH3RXUXQpFRXOHPHQWJD]HX[RQGpPRQWUHHQ$pURG\QDPLTXHODIRUPXOH
γ − ⎞ ⎛ 7I = 7H ⎜ + U 0H ⎟ ⎝ ⎠
'DQV FHWWH pTXDWLRQ 7H HW 0 H GpVLJQHQW OD WHPSpUDWXUH .HOYLQ HW OH QRPEUH GH 0DWFK GH O¶pFRXOHPHQWjO¶H[WpULHXUGHODFRXFKHOLPLWHVXUODQRUPDOHHQ3jODSDURL γ HVWOHUDSSRUW &S GHVFKDOHXUVVSpFLILTXHVGXIOXLGHjSUHVVLRQFRQVWDQWHHWjYROXPHFRQVWDQWUGpVLJQHOH &Y FRHIILFLHQWGHUpFXSpUDWLRQHWDSRXUH[SUHVVLRQ U=
γ − ⎞ ⎛ 7I = 7H ⎜ + U 0H ⎟ ⎝ ⎠
'DQV FHWWH pTXDWLRQ 7H HW 0 H GpVLJQHQW OD WHPSpUDWXUH .HOYLQ HW OH QRPEUH GH 0DWFK GH O¶pFRXOHPHQWjO¶H[WpULHXUGHODFRXFKHOLPLWHVXUODQRUPDOHHQ3jODSDURL γ HVWOHUDSSRUW &S GHVFKDOHXUVVSpFLILTXHVGXIOXLGHjSUHVVLRQFRQVWDQWHHWjYROXPHFRQVWDQWUGpVLJQHOH &Y FRHIILFLHQWGHUpFXSpUDWLRQHWDSRXUH[SUHVVLRQ
7I − 7H 7LH − 7H
U=
7I − 7H 7LH − 7H
7LH pWDQW OD WHPSpUDWXUH G¶DUUrW j O¶H[WpULHXU GH OD FRXFKH OLPLWH VXU OD QRUPDOH HQ 3 j OD SDURL/DYDOHXUGHUHVWSUDWLTXHPHQWFRQVWDQWHpJDOHjGDQVOHFDVG¶XQHFRXFKHOLPLWH ODPLQDLUHHWGDQVFHOXLG¶XQHFRXFKHOLPLWHWXUEXOHQWHSRXUO¶DLU
7LH pWDQW OD WHPSpUDWXUH G¶DUUrW j O¶H[WpULHXU GH OD FRXFKH OLPLWH VXU OD QRUPDOH HQ 3 j OD SDURL/DYDOHXUGHUHVWSUDWLTXHPHQWFRQVWDQWHpJDOHjGDQVOHFDVG¶XQHFRXFKHOLPLWH ODPLQDLUHHWGDQVFHOXLG¶XQHFRXFKHOLPLWHWXUEXOHQWHSRXUO¶DLU
/HFRHIILFLHQWGHFRQYHFWLRQKDSRXUH[SUHVVLRQ
/HFRHIILFLHQWGHFRQYHFWLRQKDSRXUH[SUHVVLRQ
K = & K ρ H 9H & S DYHF
K = & K ρ H 9H & S DYHF
& K = FRHIILFLHQWGHIOX[GHFKDOHXURXQRPEUHGH0DUJRXOLVRXHQFRUHQRPEUHGH6WDQWRQ VDQVGLPHQVLRQ
& K = FRHIILFLHQWGHIOX[GHFKDOHXURXQRPEUHGH0DUJRXOLVRXHQFRUHQRPEUHGH6WDQWRQ VDQVGLPHQVLRQ
ρ H 9H = PDVVH YROXPLTXH HW YLWHVVH GX IOXLGH j O¶H[WpULHXU GH OD FRXFKH OLPLWH VXU OD QRUPDOHHQ3jODSDURL
ρ H 9H = PDVVH YROXPLTXH HW YLWHVVH GX IOXLGH j O¶H[WpULHXU GH OD FRXFKH OLPLWH VXU OD QRUPDOHHQ3jODSDURL
& S = FKDOHXUPDVVLTXHGXIOXLGHjSUHVVLRQFRQVWDQWH
& S = FKDOHXUPDVVLTXHGXIOXLGHjSUHVVLRQFRQVWDQWH
5HPDUTXHpFKDXIIHPHQWFLQpWLTXHpFRXOHPHQWK\SHUVRQLTXH 'DQVOHFDVG¶XQpFRXOHPHQWJD]HX[jWUqVJUDQGHYLWHVVH 0 H > XQHLPSRUWDQWHTXDQWLWp GH FKDOHXU HVW SURGXLWH DX YRLVLQDJH GH OD SDURL j FDXVH GX IURWWHPHQW GHV PROpFXOHV JD]HXVHVRQDDORUVGHVSKpQRPqQHVSK\VLFRFKLPLTXHVFRPSOH[HVWHOVTXHGLVVRFLDWLRQGHV PROpFXOHV LRQLVDWLRQ DYHF PRGLILFDWLRQV GHV SURSULpWpV PpFDQLTXHV HW SK\VLTXHV GX IOXLGH 'DQVFHFDVOHVIRUPXOHV HW pWDEOLHVHQVXSSRVDQWQRWDPPHQW & S HW γ LQGpSHQGDQWV
5HPDUTXHpFKDXIIHPHQWFLQpWLTXHpFRXOHPHQWK\SHUVRQLTXH 'DQVOHFDVG¶XQpFRXOHPHQWJD]HX[jWUqVJUDQGHYLWHVVH 0 H > XQHLPSRUWDQWHTXDQWLWp GH FKDOHXU HVW SURGXLWH DX YRLVLQDJH GH OD SDURL j FDXVH GX IURWWHPHQW GHV PROpFXOHV JD]HXVHVRQDDORUVGHVSKpQRPqQHVSK\VLFRFKLPLTXHVFRPSOH[HVWHOVTXHGLVVRFLDWLRQGHV PROpFXOHV LRQLVDWLRQ DYHF PRGLILFDWLRQV GHV SURSULpWpV PpFDQLTXHV HW SK\VLTXHV GX IOXLGH 'DQVFHFDVOHVIRUPXOHV HW pWDEOLHVHQVXSSRVDQWQRWDPPHQW & S HW γ LQGpSHQGDQWV
- 24 -
- 24 -
GHODWHPSpUDWXUHQHVRQWSOXVYDODEOHVSRXUFDOFXOHUKHW 7I /DIRUPXOHGHFRQYHFWLRQ UHVWH FHSHQGDQW YDODEOH SRXU FDOFXOHU OH IOX[ WKHUPLTXH SDULpWDO PDLV K HW 7I GRLYHQW rWUH FDOFXOpV SDU OHV PpWKRGHV GH O¶$pURG\QDPLTXH +\SHUVRQLTXH TXL VRUWHQW GX FDGUH GH QRWUH pWXGH
GHODWHPSpUDWXUHQHVRQWSOXVYDODEOHVSRXUFDOFXOHUKHW 7I /DIRUPXOHGHFRQYHFWLRQ UHVWH FHSHQGDQW YDODEOH SRXU FDOFXOHU OH IOX[ WKHUPLTXH SDULpWDO PDLV K HW 7I GRLYHQW rWUH FDOFXOpV SDU OHV PpWKRGHV GH O¶$pURG\QDPLTXH +\SHUVRQLTXH TXL VRUWHQW GX FDGUH GH QRWUH pWXGH
&RQFOXVLRQ O¶pWXGH ULJRXUHXVH GH OD FRQYHFWLRQ FRQVWLWXH XQ SUREOqPH FRPSOH[H OLWp j OD 0pFDQLTXHGHV)OXLGHVSRXUVRQDSSOLFDWLRQjOD7KHUPLTXHGHV6WUXFWXUHVQRXVUHWLHQGURQV TXH OHV IRUPXOHV HW GX IOX[ SDULpWDO VRQW WRXMRXUV YpULILpHV OHV FRHIILFLHQWV K HW 7I GHYDQWrWUHGpWHUPLQpVSDUOHVPpWKRGHVGHOD0pFDQLTXHGHV)OXLGHV
&RQFOXVLRQ O¶pWXGH ULJRXUHXVH GH OD FRQYHFWLRQ FRQVWLWXH XQ SUREOqPH FRPSOH[H OLWp j OD 0pFDQLTXHGHV)OXLGHVSRXUVRQDSSOLFDWLRQjOD7KHUPLTXHGHV6WUXFWXUHVQRXVUHWLHQGURQV TXH OHV IRUPXOHV HW GX IOX[ SDULpWDO VRQW WRXMRXUV YpULILpHV OHV FRHIILFLHQWV K HW 7I GHYDQWrWUHGpWHUPLQpVSDUOHVPpWKRGHVGHOD0pFDQLTXHGHV)OXLGHV
'DQV OH FDV UHODWLYHPHQW FRXUDQW G¶XQ pFRXOHPHQW j EDVVH YLWHVVH RQ D SUDWLTXHPHQW 7I = 7H
'DQV OH FDV UHODWLYHPHQW FRXUDQW G¶XQ pFRXOHPHQW j EDVVH YLWHVVH RQ D SUDWLTXHPHQW 7I = 7H
,,,±5$<211(0(17e/(&7520$*1e7,48(
,,,±5$<211(0(17e/(&7520$*1e7,48(
/RUVTXH GHX[ VROLGHV VRQW VpSDUpV SDU OH YLGH LOV QH SHXYHQW pFKDQJHU GH O¶pQHUJLH TXH SDU UD\RQQHPHQW&¶HVWDLQVLTXHODWHUUHUHoRLWGXVROHLOVDFKDOHXU&HUD\RQQHPHQWV¶HIIHFWXH SDURQGHVpOHFWURPDJQpWLTXHVVHGpSODoDQWGDQVOHYLGHDYHFODFpOpULWp & = ⋅ P V
/RUVTXH GHX[ VROLGHV VRQW VpSDUpV SDU OH YLGH LOV QH SHXYHQW pFKDQJHU GH O¶pQHUJLH TXH SDU UD\RQQHPHQW&¶HVWDLQVLTXHODWHUUHUHoRLWGXVROHLOVDFKDOHXU&HUD\RQQHPHQWV¶HIIHFWXH SDURQGHVpOHFWURPDJQpWLTXHVVHGpSODoDQWGDQVOHYLGHDYHFODFpOpULWp & = ⋅ P V
±&DUDFWpULVWLTXHVG¶XQIDLVFHDXF\OLQGULTXH
±&DUDFWpULVWLTXHVG¶XQIDLVFHDXF\OLQGULTXH
8Q UD\RQQHPHQW HVW PRQRFKURPDWLTXH VL WRXV VHV SKRWRQV RQW PrPH pQHUJLH GRQF PrPH IUpTXHQFH υ HWPrPHORQJXHXUG¶RQGH λ RQQRWHDORUVTODSXLVVDQFHSDUXQLWpGHVHFWLRQ GURLWHGXIDLVFHDXQRPPpHDXVVLIOX[
8Q UD\RQQHPHQW HVW PRQRFKURPDWLTXH VL WRXV VHV SKRWRQV RQW PrPH pQHUJLH GRQF PrPH IUpTXHQFH υ HWPrPHORQJXHXUG¶RQGH λ RQQRWHDORUVTODSXLVVDQFHSDUXQLWpGHVHFWLRQ GURLWHGXIDLVFHDXQRPPpHDXVVLIOX[
8Q UD\RQQHPHQW SHXW rWUH FRPSRVp GH Q UD\RQQHPHQWV PRQRFKURPDWLTXHV GH ORQJXHXUV G¶RQGHV λ λ λ Q GH SXLVVDQFHV VXUIDFLTXHV T T T Q UHVSHFWLYHPHQW OD SXLVVDQFH VXUIDFLTXHGXUD\RQQHPHQWUpVXOWDQWHVWDORUV T = T + T + + T Q FHUD\RQQHPHQWSUpVHQWH XQVSHFWUHGLVFRQWLQXRXVSHFWUHGHUDLHV
8Q UD\RQQHPHQW SHXW rWUH FRPSRVp GH Q UD\RQQHPHQWV PRQRFKURPDWLTXHV GH ORQJXHXUV G¶RQGHV λ λ λ Q GH SXLVVDQFHV VXUIDFLTXHV T T T Q UHVSHFWLYHPHQW OD SXLVVDQFH VXUIDFLTXHGXUD\RQQHPHQWUpVXOWDQWHVWDORUV T = T + T + + T Q FHUD\RQQHPHQWSUpVHQWH XQVSHFWUHGLVFRQWLQXRXVSHFWUHGHUDLHV
6RXYHQW XQ UD\RQQHPHQW FRPSRUWH WRXWHV OHV ORQJXHXUV G¶RQGHV HQWUH λ HW λ SUpVHQWDQW DLQVLXQVSHFWUHFRQWLQXODSXLVVDQFHVXUIDFLTXHGHVHVRQGHVGHORQJXHXUVFRPSULVHVHQWUH λ HW λ + Gλ VH QRWH T ′(λ ) Gλ T ′(λ ) VH QRPPH GHQVLWp VSHFWUDOH GH IOX[ RX SXLVVDQFH VXUIDFLTXHVSHFWUDOH SRXUODORQJXHXUG¶RQGH λ /HIOX[UpVXOWDQWDDORUVSRXUH[SUHVVLRQ
6RXYHQW XQ UD\RQQHPHQW FRPSRUWH WRXWHV OHV ORQJXHXUV G¶RQGHV HQWUH λ HW λ SUpVHQWDQW DLQVLXQVSHFWUHFRQWLQXODSXLVVDQFHVXUIDFLTXHGHVHVRQGHVGHORQJXHXUVFRPSULVHVHQWUH λ HW λ + Gλ VH QRWH T ′(λ ) Gλ T ′(λ ) VH QRPPH GHQVLWp VSHFWUDOH GH IOX[ RX SXLVVDQFH VXUIDFLTXHVSHFWUDOH SRXUODORQJXHXUG¶RQGH λ /HIOX[UpVXOWDQWDDORUVSRXUH[SUHVVLRQ
λ
T=
∫ T′λ ⋅ Gλ
λ
T=
λ
∫ T′λ ⋅ Gλ
λ
(QJpQpUDOXQUD\RQQHPHQWQDWXUHOVHFRPSRVHGHSKRWRQVGHWRXWHVOHVpQHUJLHVF¶HVWOHFDV GXUD\RQQHPHQWVRODLUHGRQWODSXLVVDQFHVXUIDFLTXHDYDQWDWWpQXDWLRQSDUO¶DWPRVSKqUH HVW
(QJpQpUDOXQUD\RQQHPHQWQDWXUHOVHFRPSRVHGHSKRWRQVGHWRXWHVOHVpQHUJLHVF¶HVWOHFDV GXUD\RQQHPHQWVRODLUHGRQWODSXLVVDQFHVXUIDFLTXHDYDQWDWWpQXDWLRQSDUO¶DWPRVSKqUH HVW
- 25 -
- 25 -
GHODWHPSpUDWXUHQHVRQWSOXVYDODEOHVSRXUFDOFXOHUKHW 7I /DIRUPXOHGHFRQYHFWLRQ UHVWH FHSHQGDQW YDODEOH SRXU FDOFXOHU OH IOX[ WKHUPLTXH SDULpWDO PDLV K HW 7I GRLYHQW rWUH FDOFXOpV SDU OHV PpWKRGHV GH O¶$pURG\QDPLTXH +\SHUVRQLTXH TXL VRUWHQW GX FDGUH GH QRWUH pWXGH
GHODWHPSpUDWXUHQHVRQWSOXVYDODEOHVSRXUFDOFXOHUKHW 7I /DIRUPXOHGHFRQYHFWLRQ UHVWH FHSHQGDQW YDODEOH SRXU FDOFXOHU OH IOX[ WKHUPLTXH SDULpWDO PDLV K HW 7I GRLYHQW rWUH FDOFXOpV SDU OHV PpWKRGHV GH O¶$pURG\QDPLTXH +\SHUVRQLTXH TXL VRUWHQW GX FDGUH GH QRWUH pWXGH
&RQFOXVLRQ O¶pWXGH ULJRXUHXVH GH OD FRQYHFWLRQ FRQVWLWXH XQ SUREOqPH FRPSOH[H OLWp j OD 0pFDQLTXHGHV)OXLGHVSRXUVRQDSSOLFDWLRQjOD7KHUPLTXHGHV6WUXFWXUHVQRXVUHWLHQGURQV TXH OHV IRUPXOHV HW GX IOX[ SDULpWDO VRQW WRXMRXUV YpULILpHV OHV FRHIILFLHQWV K HW 7I GHYDQWrWUHGpWHUPLQpVSDUOHVPpWKRGHVGHOD0pFDQLTXHGHV)OXLGHV
&RQFOXVLRQ O¶pWXGH ULJRXUHXVH GH OD FRQYHFWLRQ FRQVWLWXH XQ SUREOqPH FRPSOH[H OLWp j OD 0pFDQLTXHGHV)OXLGHVSRXUVRQDSSOLFDWLRQjOD7KHUPLTXHGHV6WUXFWXUHVQRXVUHWLHQGURQV TXH OHV IRUPXOHV HW GX IOX[ SDULpWDO VRQW WRXMRXUV YpULILpHV OHV FRHIILFLHQWV K HW 7I GHYDQWrWUHGpWHUPLQpVSDUOHVPpWKRGHVGHOD0pFDQLTXHGHV)OXLGHV
'DQV OH FDV UHODWLYHPHQW FRXUDQW G¶XQ pFRXOHPHQW j EDVVH YLWHVVH RQ D SUDWLTXHPHQW 7I = 7H
'DQV OH FDV UHODWLYHPHQW FRXUDQW G¶XQ pFRXOHPHQW j EDVVH YLWHVVH RQ D SUDWLTXHPHQW 7I = 7H
,,,±5$<211(0(17e/(&7520$*1e7,48(
,,,±5$<211(0(17e/(&7520$*1e7,48(
/RUVTXH GHX[ VROLGHV VRQW VpSDUpV SDU OH YLGH LOV QH SHXYHQW pFKDQJHU GH O¶pQHUJLH TXH SDU UD\RQQHPHQW&¶HVWDLQVLTXHODWHUUHUHoRLWGXVROHLOVDFKDOHXU&HUD\RQQHPHQWV¶HIIHFWXH SDURQGHVpOHFWURPDJQpWLTXHVVHGpSODoDQWGDQVOHYLGHDYHFODFpOpULWp & = ⋅ P V
/RUVTXH GHX[ VROLGHV VRQW VpSDUpV SDU OH YLGH LOV QH SHXYHQW pFKDQJHU GH O¶pQHUJLH TXH SDU UD\RQQHPHQW&¶HVWDLQVLTXHODWHUUHUHoRLWGXVROHLOVDFKDOHXU&HUD\RQQHPHQWV¶HIIHFWXH SDURQGHVpOHFWURPDJQpWLTXHVVHGpSODoDQWGDQVOHYLGHDYHFODFpOpULWp & = ⋅ P V
±&DUDFWpULVWLTXHVG¶XQIDLVFHDXF\OLQGULTXH
±&DUDFWpULVWLTXHVG¶XQIDLVFHDXF\OLQGULTXH
8Q UD\RQQHPHQW HVW PRQRFKURPDWLTXH VL WRXV VHV SKRWRQV RQW PrPH pQHUJLH GRQF PrPH IUpTXHQFH υ HWPrPHORQJXHXUG¶RQGH λ RQQRWHDORUVTODSXLVVDQFHSDUXQLWpGHVHFWLRQ GURLWHGXIDLVFHDXQRPPpHDXVVLIOX[
8Q UD\RQQHPHQW HVW PRQRFKURPDWLTXH VL WRXV VHV SKRWRQV RQW PrPH pQHUJLH GRQF PrPH IUpTXHQFH υ HWPrPHORQJXHXUG¶RQGH λ RQQRWHDORUVTODSXLVVDQFHSDUXQLWpGHVHFWLRQ GURLWHGXIDLVFHDXQRPPpHDXVVLIOX[
8Q UD\RQQHPHQW SHXW rWUH FRPSRVp GH Q UD\RQQHPHQWV PRQRFKURPDWLTXHV GH ORQJXHXUV G¶RQGHV λ λ λ Q GH SXLVVDQFHV VXUIDFLTXHV T T T Q UHVSHFWLYHPHQW OD SXLVVDQFH VXUIDFLTXHGXUD\RQQHPHQWUpVXOWDQWHVWDORUV T = T + T + + T Q FHUD\RQQHPHQWSUpVHQWH XQVSHFWUHGLVFRQWLQXRXVSHFWUHGHUDLHV
8Q UD\RQQHPHQW SHXW rWUH FRPSRVp GH Q UD\RQQHPHQWV PRQRFKURPDWLTXHV GH ORQJXHXUV G¶RQGHV λ λ λ Q GH SXLVVDQFHV VXUIDFLTXHV T T T Q UHVSHFWLYHPHQW OD SXLVVDQFH VXUIDFLTXHGXUD\RQQHPHQWUpVXOWDQWHVWDORUV T = T + T + + T Q FHUD\RQQHPHQWSUpVHQWH XQVSHFWUHGLVFRQWLQXRXVSHFWUHGHUDLHV
6RXYHQW XQ UD\RQQHPHQW FRPSRUWH WRXWHV OHV ORQJXHXUV G¶RQGHV HQWUH λ HW λ SUpVHQWDQW DLQVLXQVSHFWUHFRQWLQXODSXLVVDQFHVXUIDFLTXHGHVHVRQGHVGHORQJXHXUVFRPSULVHVHQWUH λ HW λ + Gλ VH QRWH T ′(λ ) Gλ T ′(λ ) VH QRPPH GHQVLWp VSHFWUDOH GH IOX[ RX SXLVVDQFH VXUIDFLTXHVSHFWUDOH SRXUODORQJXHXUG¶RQGH λ /HIOX[UpVXOWDQWDDORUVSRXUH[SUHVVLRQ
6RXYHQW XQ UD\RQQHPHQW FRPSRUWH WRXWHV OHV ORQJXHXUV G¶RQGHV HQWUH λ HW λ SUpVHQWDQW DLQVLXQVSHFWUHFRQWLQXODSXLVVDQFHVXUIDFLTXHGHVHVRQGHVGHORQJXHXUVFRPSULVHVHQWUH λ HW λ + Gλ VH QRWH T ′(λ ) Gλ T ′(λ ) VH QRPPH GHQVLWp VSHFWUDOH GH IOX[ RX SXLVVDQFH VXUIDFLTXHVSHFWUDOH SRXUODORQJXHXUG¶RQGH λ /HIOX[UpVXOWDQWDDORUVSRXUH[SUHVVLRQ
λ
T=
∫ T′λ ⋅ Gλ
λ
λ
T=
∫ T′λ ⋅ Gλ
λ
(QJpQpUDOXQUD\RQQHPHQWQDWXUHOVHFRPSRVHGHSKRWRQVGHWRXWHVOHVpQHUJLHVF¶HVWOHFDV GXUD\RQQHPHQWVRODLUHGRQWODSXLVVDQFHVXUIDFLTXHDYDQWDWWpQXDWLRQSDUO¶DWPRVSKqUH HVW
(QJpQpUDOXQUD\RQQHPHQWQDWXUHOVHFRPSRVHGHSKRWRQVGHWRXWHVOHVpQHUJLHVF¶HVWOHFDV GXUD\RQQHPHQWVRODLUHGRQWODSXLVVDQFHVXUIDFLTXHDYDQWDWWpQXDWLRQSDUO¶DWPRVSKqUH HVW
- 25 -
- 25 -
∞
∞
∫
∫
T = T ′λ Gλ = N: P
T = T ′λ Gλ = N: P
DXQLYHDXGHODWHUUHF¶HVWjGLUHjHQYLURQ ⋅ NP GXVROHLO
DXQLYHDXGHODWHUUHF¶HVWjGLUHjHQYLURQ ⋅ NP GXVROHLO
/H VSHFWUH G¶XQ UD\RQQHPHQW FDUDFWpULVH OD UpSDUWLWLRQ GHV IOX[ TXL OH FRPSRVH HQ IRQFWLRQ GHVORQJXHXUVG¶RQGHVLOSHXWrWUHUHSUpVHQWpJUDSKLTXHPHQW
/H VSHFWUH G¶XQ UD\RQQHPHQW FDUDFWpULVH OD UpSDUWLWLRQ GHV IOX[ TXL OH FRPSRVH HQ IRQFWLRQ GHVORQJXHXUVG¶RQGHVLOSHXWrWUHUHSUpVHQWpJUDSKLTXHPHQW
)LJXUHD
)LJXUHE
)LJXUHD
)LJXUHE
/DILJXUHDUHSUpVHQWHOHVSHFWUHGLVFRQWLQXG¶XQUD\RQQHPHQWGHSXLVVDQFHVXUIDFLTXHT FRQVWLWXp GH TXDWUH UD\RQQHPHQWV PRQRFKURPDWLTXHV &HOXL GH ORQJXHXU G¶RQGH λ WUDQVSRUWHGHODSXLVVDQFHWRWDOHFHOXLGHORQJXHXUG¶RQGH λ OHVXLYDQWHWOH TXDWULqPH
/DILJXUHDUHSUpVHQWHOHVSHFWUHGLVFRQWLQXG¶XQUD\RQQHPHQWGHSXLVVDQFHVXUIDFLTXHT FRQVWLWXp GH TXDWUH UD\RQQHPHQWV PRQRFKURPDWLTXHV &HOXL GH ORQJXHXU G¶RQGH λ WUDQVSRUWHGHODSXLVVDQFHWRWDOHFHOXLGHORQJXHXUG¶RQGH λ OHVXLYDQWHWOH TXDWULqPH
/DILJXUHEGRQQHOHVSHFWUHFRQWLQX GXUD\RQQHPHQWVRODLUHKRUVDWPRVSKqUH O¶DLUHGX GRPDLQHVLWXpHQWUHODFRXUEHHWO¶D[HGHV λ HVWpJDOHjT
/DILJXUHEGRQQHOHVSHFWUHFRQWLQX GXUD\RQQHPHQWVRODLUHKRUVDWPRVSKqUH O¶DLUHGX GRPDLQHVLWXpHQWUHODFRXUEHHWO¶D[HGHV λ HVWpJDOHjT
'DQV FH FDV OD GHQVLWp VSHFWUDOH DWWHLQW XQH YDOHXU PD[LPDOH YRLVLQH GH *: P SRXU λ = µP ORQJXHXUG¶RQGHGHODFRXOHXUYHUWH
'DQV FH FDV OD GHQVLWp VSHFWUDOH DWWHLQW XQH YDOHXU PD[LPDOH YRLVLQH GH *: P SRXU λ = µP ORQJXHXUG¶RQGHGHODFRXOHXUYHUWH
±,QWHUDFWLRQDYHFXQVROLGH
±,QWHUDFWLRQDYHFXQVROLGH
&RQVLGpURQV XQH SODTXH G¶pSDLVVHXU K TXL UHoRLW XQ IDLVFHDX F\OLQGULTXH PRQRFKURPDWLTXH GHORQJXHXUG¶RQGH λ HWGHSXLVVDQFHVXUIDFLTXH T VRXVXQDQJOHG¶LQFLGHQFHLFRPPHOH
&RQVLGpURQV XQH SODTXH G¶pSDLVVHXU K TXL UHoRLW XQ IDLVFHDX F\OLQGULTXH PRQRFKURPDWLTXH GHORQJXHXUG¶RQGH λ HWGHSXLVVDQFHVXUIDFLTXH T VRXVXQDQJOHG¶LQFLGHQFHLFRPPHOH
PRQWUHODILJXUH'DQVOHFDVJpQpUDOXQHSDUWLH T U = ρ T GXIOX[LQFLGHQWHVWUpIOpFKLH XQH SDUWLH T D = α T HVW DEVRUEpH SDU OD SODTXH XQH SDUWLH T W = τ T WUDYHUVH OD SODTXH HW
PRQWUHODILJXUH'DQVOHFDVJpQpUDOXQHSDUWLH T U = ρ T GXIOX[LQFLGHQWHVWUpIOpFKLH XQH SDUWLH T D = α T HVW DEVRUEpH SDU OD SODTXH XQH SDUWLH T W = τ T WUDYHUVH OD SODTXH HW
- 26 -
- 26 -
T = T ′λ Gλ = N: P
T = T ′λ Gλ = N: P
O¶RQDSRXUVDWLVIDLUHjODFRQVHUYDWLRQGHO¶pQHUJLH T = T U + T D + T W VRLW ρ + α + τ =
O¶RQDSRXUVDWLVIDLUHjODFRQVHUYDWLRQGHO¶pQHUJLH T = T U + T D + T W VRLW ρ + α + τ =
∞
∞
∫
∫
DXQLYHDXGHODWHUUHF¶HVWjGLUHjHQYLURQ ⋅ NP GXVROHLO
DXQLYHDXGHODWHUUHF¶HVWjGLUHjHQYLURQ ⋅ NP GXVROHLO
/H VSHFWUH G¶XQ UD\RQQHPHQW FDUDFWpULVH OD UpSDUWLWLRQ GHV IOX[ TXL OH FRPSRVH HQ IRQFWLRQ GHVORQJXHXUVG¶RQGHVLOSHXWrWUHUHSUpVHQWpJUDSKLTXHPHQW
/H VSHFWUH G¶XQ UD\RQQHPHQW FDUDFWpULVH OD UpSDUWLWLRQ GHV IOX[ TXL OH FRPSRVH HQ IRQFWLRQ GHVORQJXHXUVG¶RQGHVLOSHXWrWUHUHSUpVHQWpJUDSKLTXHPHQW
)LJXUHD
)LJXUHE
)LJXUHD
)LJXUHE
/DILJXUHDUHSUpVHQWHOHVSHFWUHGLVFRQWLQXG¶XQUD\RQQHPHQWGHSXLVVDQFHVXUIDFLTXHT FRQVWLWXp GH TXDWUH UD\RQQHPHQWV PRQRFKURPDWLTXHV &HOXL GH ORQJXHXU G¶RQGH λ WUDQVSRUWHGHODSXLVVDQFHWRWDOHFHOXLGHORQJXHXUG¶RQGH λ OHVXLYDQWHWOH TXDWULqPH
/DILJXUHDUHSUpVHQWHOHVSHFWUHGLVFRQWLQXG¶XQUD\RQQHPHQWGHSXLVVDQFHVXUIDFLTXHT FRQVWLWXp GH TXDWUH UD\RQQHPHQWV PRQRFKURPDWLTXHV &HOXL GH ORQJXHXU G¶RQGH λ WUDQVSRUWHGHODSXLVVDQFHWRWDOHFHOXLGHORQJXHXUG¶RQGH λ OHVXLYDQWHWOH TXDWULqPH
/DILJXUHEGRQQHOHVSHFWUHFRQWLQX GXUD\RQQHPHQWVRODLUHKRUVDWPRVSKqUH O¶DLUHGX GRPDLQHVLWXpHQWUHODFRXUEHHWO¶D[HGHV λ HVWpJDOHjT
/DILJXUHEGRQQHOHVSHFWUHFRQWLQX GXUD\RQQHPHQWVRODLUHKRUVDWPRVSKqUH O¶DLUHGX GRPDLQHVLWXpHQWUHODFRXUEHHWO¶D[HGHV λ HVWpJDOHjT
'DQV FH FDV OD GHQVLWp VSHFWUDOH DWWHLQW XQH YDOHXU PD[LPDOH YRLVLQH GH *: P SRXU λ = µP ORQJXHXUG¶RQGHGHODFRXOHXUYHUWH
'DQV FH FDV OD GHQVLWp VSHFWUDOH DWWHLQW XQH YDOHXU PD[LPDOH YRLVLQH GH *: P SRXU λ = µP ORQJXHXUG¶RQGHGHODFRXOHXUYHUWH
±,QWHUDFWLRQDYHFXQVROLGH
±,QWHUDFWLRQDYHFXQVROLGH
&RQVLGpURQV XQH SODTXH G¶pSDLVVHXU K TXL UHoRLW XQ IDLVFHDX F\OLQGULTXH PRQRFKURPDWLTXH GHORQJXHXUG¶RQGH λ HWGHSXLVVDQFHVXUIDFLTXH T VRXVXQDQJOHG¶LQFLGHQFHLFRPPHOH
&RQVLGpURQV XQH SODTXH G¶pSDLVVHXU K TXL UHoRLW XQ IDLVFHDX F\OLQGULTXH PRQRFKURPDWLTXH GHORQJXHXUG¶RQGH λ HWGHSXLVVDQFHVXUIDFLTXH T VRXVXQDQJOHG¶LQFLGHQFHLFRPPHOH
PRQWUHODILJXUH'DQVOHFDVJpQpUDOXQHSDUWLH T U = ρ T GXIOX[LQFLGHQWHVWUpIOpFKLH XQH SDUWLH T D = α T HVW DEVRUEpH SDU OD SODTXH XQH SDUWLH T W = τ T WUDYHUVH OD SODTXH HW
PRQWUHODILJXUH'DQVOHFDVJpQpUDOXQHSDUWLH T U = ρ T GXIOX[LQFLGHQWHVWUpIOpFKLH XQH SDUWLH T D = α T HVW DEVRUEpH SDU OD SODTXH XQH SDUWLH T W = τ T WUDYHUVH OD SODTXH HW
- 26 -
- 26 -
O¶RQDSRXUVDWLVIDLUHjODFRQVHUYDWLRQGHO¶pQHUJLH T = T U + T D + T W VRLW ρ + α + τ =
O¶RQDSRXUVDWLVIDLUHjODFRQVHUYDWLRQGHO¶pQHUJLH T = T U + T D + T W VRLW ρ + α + τ =
)LJXUH
)LJXUH
/HV FRHIILFLHQWV ρ α τ FRPSULV HQWUH HW VH QRPPHQW UpIOH[LYLWp DEVRUSWLYLWp WUDQVPLVVLYLWp GH OD SODTXH UHVS /HXUV YDOHXUV GpSHQGHQW HQ JpQpUDO GX PDWpULDX GH O¶pSDLVVHXUGHO¶pWDWGHVXUIDFHGHODWHPSpUDWXUHGHO¶LQFLGHQFHLHWGHODORQJXHXUG¶RQGH λ
/HV FRHIILFLHQWV ρ α τ FRPSULV HQWUH HW VH QRPPHQW UpIOH[LYLWp DEVRUSWLYLWp WUDQVPLVVLYLWp GH OD SODTXH UHVS /HXUV YDOHXUV GpSHQGHQW HQ JpQpUDO GX PDWpULDX GH O¶pSDLVVHXUGHO¶pWDWGHVXUIDFHGHODWHPSpUDWXUHGHO¶LQFLGHQFHLHWGHODORQJXHXUG¶RQGH λ
'DQV OH FDV G¶XQ IDLVFHDX SRO\FKURPDWLTXH j VSHFWUH GH UDLHV ORQJXHXUV G¶RQGHV λ λ λ Q RQDSRXUOHIOX[ T L WUDQVSRUWpSDUODORQJXHXUG¶RQGH λ L
'DQV OH FDV G¶XQ IDLVFHDX SRO\FKURPDWLTXH j VSHFWUH GH UDLHV ORQJXHXUV G¶RQGHV λ λ λ Q RQDSRXUOHIOX[ T L WUDQVSRUWpSDUODORQJXHXUG¶RQGH λ L
T L = (ρL + α L + τL ) T L L = Q
T L = (ρL + α L + τL ) T L L = Q
/HIOX[UpVXOWDQWDSRXUH[SUHVVLRQV
/HIOX[UpVXOWDQWDSRXUH[SUHVVLRQV
⎧T = ρ T + α T + τ T ⎪ ⎨ ρL T L + αL TL + ⎪⎩T =
∑
∑
∑τ T L
⎧T = ρ T + α T + τ T ⎪ ⎨ ρL T L + αL TL + ⎪⎩T =
∑
L
HWSDUFRQVpTXHQWOHVROLGHSRVVqGHYLVjYLVGHFHIDLVFHDXLQFLGHQWSRO\FKURPDWLTXH ± XQHUpIOH[LYLWpUpVXOWDQWH ρ =
∑ρ T L
L
T
± XQHDEVRUSWLYLWpUpVXOWDQWH α =
∑α
TL
L
T
± XQHWUDQVPLVVLYLWpUpVXOWDQWH τ =
∑τ T L
L
T
∑ρ T L
∑α
L
L
TL
L
T
± XQHWUDQVPLVVLYLWpUpVXOWDQWH τ =
L
T
± XQHDEVRUSWLYLWpUpVXOWDQWH α =
∑τ T
HWSDUFRQVpTXHQWOHVROLGHSRVVqGHYLVjYLVGHFHIDLVFHDXLQFLGHQWSRO\FKURPDWLTXH ± XQHUpIOH[LYLWpUpVXOWDQWH ρ =
∑
∑τ T L
L
T
- 27 -
- 27 -
)LJXUH
)LJXUH
/HV FRHIILFLHQWV ρ α τ FRPSULV HQWUH HW VH QRPPHQW UpIOH[LYLWp DEVRUSWLYLWp WUDQVPLVVLYLWp GH OD SODTXH UHVS /HXUV YDOHXUV GpSHQGHQW HQ JpQpUDO GX PDWpULDX GH O¶pSDLVVHXUGHO¶pWDWGHVXUIDFHGHODWHPSpUDWXUHGHO¶LQFLGHQFHLHWGHODORQJXHXUG¶RQGH λ
/HV FRHIILFLHQWV ρ α τ FRPSULV HQWUH HW VH QRPPHQW UpIOH[LYLWp DEVRUSWLYLWp WUDQVPLVVLYLWp GH OD SODTXH UHVS /HXUV YDOHXUV GpSHQGHQW HQ JpQpUDO GX PDWpULDX GH O¶pSDLVVHXUGHO¶pWDWGHVXUIDFHGHODWHPSpUDWXUHGHO¶LQFLGHQFHLHWGHODORQJXHXUG¶RQGH λ
'DQV OH FDV G¶XQ IDLVFHDX SRO\FKURPDWLTXH j VSHFWUH GH UDLHV ORQJXHXUV G¶RQGHV λ λ λ Q RQDSRXUOHIOX[ T L WUDQVSRUWpSDUODORQJXHXUG¶RQGH λ L
'DQV OH FDV G¶XQ IDLVFHDX SRO\FKURPDWLTXH j VSHFWUH GH UDLHV ORQJXHXUV G¶RQGHV λ λ λ Q RQDSRXUOHIOX[ T L WUDQVSRUWpSDUODORQJXHXUG¶RQGH λ L
T L = (ρL + α L + τL ) T L L = Q
T L = (ρL + α L + τL ) T L L = Q
/HIOX[UpVXOWDQWDSRXUH[SUHVVLRQV
/HIOX[UpVXOWDQWDSRXUH[SUHVVLRQV
⎧T = ρ T + α T + τ T ⎪ ⎨ ρL T L + αL TL + ⎪⎩T =
∑
∑
∑τ T L
L
HWSDUFRQVpTXHQWOHVROLGHSRVVqGHYLVjYLVGHFHIDLVFHDXLQFLGHQWSRO\FKURPDWLTXH ± XQHUpIOH[LYLWpUpVXOWDQWH ρ =
∑ρ T
± XQHDEVRUSWLYLWpUpVXOWDQWH α =
L
TL
L
T
∑τ T L
T
∑
L
∑ρ T
± XQHDEVRUSWLYLWpUpVXOWDQWH α =
- 27 -
∑
∑τ T L
L
HWSDUFRQVpTXHQWOHVROLGHSRVVqGHYLVjYLVGHFHIDLVFHDXLQFLGHQWSRO\FKURPDWLTXH ± XQHUpIOH[LYLWpUpVXOWDQWH ρ =
T
∑α
± XQHWUDQVPLVVLYLWpUpVXOWDQWH τ =
L
⎧T = ρ T + α T + τ T ⎪ ⎨ ρL T L + αL TL + ⎪⎩T =
L
T
∑α
± XQHWUDQVPLVVLYLWpUpVXOWDQWH τ =
L
TL
L
T
∑τ T L
T
L
- 27 -
'DQV OH FDV G¶XQ IDLVFHDX j VSHFWUH FRQWLQX RQ REWLHQW VHPEODEOHPHQW OHV UpIOH[LYLWp DEVRUSWLYLWpHWWUDQVPLVVLYLWpUpVXOWDQWHV ρ=
T
λ
∫
T ′λ ρλ Gλ α =
λ
T
λ
∫
T ′λ αλ Gλ τ =
λ
T
'DQV OH FDV G¶XQ IDLVFHDX j VSHFWUH FRQWLQX RQ REWLHQW VHPEODEOHPHQW OHV UpIOH[LYLWp DEVRUSWLYLWpHWWUDQVPLVVLYLWpUpVXOWDQWHV
λ
∫
T ′λ τλ Gλ
λ
ρ=
T
λ
∫
T ′λ ρλ Gλ α =
λ
T
λ
∫
T ′λ αλ Gλ τ =
λ
T
λ
∫ T′λ τλ Gλ
λ
5HPDUTXH VL OH VROLGH TXL UHoRLW XQ IDLVFHDX Q¶HVW SDV XQH SODTXH G¶pSDLVVHXU FRQVWDQWH PDLV SRVVqGH XQH IRUPH TXHOFRQTXH pSDLVVHXU YDULDEOH IURQWLqUH FRXUEH OHV YDOHXUV GH ρ α τ YDULHQW VXU OD VXUIDFH UHFHYDQW OH WUDLQ G¶RQGHV SXLVTXH QRWDPPHQW O¶DQJOH G¶LQFLGHQFH L HW O¶pSDLVVHXU K \ YDULHQW O¶pSDLVVHXUWUDYHUVpH SDU XQSLQFHDX OXPLQHX[ SHXW PrPHGHYHQLULQILQLHFHTXLLPSOLTXHDXPRLQVORFDOHPHQWODQXOOLWpGH τ
5HPDUTXH VL OH VROLGH TXL UHoRLW XQ IDLVFHDX Q¶HVW SDV XQH SODTXH G¶pSDLVVHXU FRQVWDQWH PDLV SRVVqGH XQH IRUPH TXHOFRQTXH pSDLVVHXU YDULDEOH IURQWLqUH FRXUEH OHV YDOHXUV GH ρ α τ YDULHQW VXU OD VXUIDFH UHFHYDQW OH WUDLQ G¶RQGHV SXLVTXH QRWDPPHQW O¶DQJOH G¶LQFLGHQFH L HW O¶pSDLVVHXU K \ YDULHQW O¶pSDLVVHXUWUDYHUVpH SDU XQSLQFHDX OXPLQHX[ SHXW PrPHGHYHQLULQILQLHFHTXLLPSOLTXHDXPRLQVORFDOHPHQWODQXOOLWpGH τ
±6ROLGHVLGpDX[
±6ROLGHVLGpDX[
3DUUDSSRUWDX[WURLVSKpQRPqQHVUpIOH[LRQWUDQVPLVVLRQDEVRUSWLRQRQGpILQLHWURLVFRUSV LGpDX[FRQVWLWXDQWGHVFDVOLPLWHVHWTXLVHUYHQWWUqVXWLOHPHQWGHUpIpUHQFHV
3DUUDSSRUWDX[WURLVSKpQRPqQHVUpIOH[LRQWUDQVPLVVLRQDEVRUSWLRQRQGpILQLHWURLVFRUSV LGpDX[FRQVWLWXDQWGHVFDVOLPLWHVHWTXLVHUYHQWWUqVXWLOHPHQWGHUpIpUHQFHV
±/HFRUSVEODQFRXPLURLUSDUIDLWRXUpIOHFWHXUSDUIDLW
±/HFRUSVEODQFRXPLURLUSDUIDLWRXUpIOHFWHXUSDUIDLW
,OHVWGpILQLSDUOHVpJDOLWpV ρ = α = = τ 5HFHYDQWXQWUDLQG¶RQGHVpOHFWURPDJQpWLTXHVLOOHVUpIOpFKLWHQWRWDOLWp
,OHVWGpILQLSDUOHVpJDOLWpV ρ = α = = τ 5HFHYDQWXQWUDLQG¶RQGHVpOHFWURPDJQpWLTXHVLOOHVUpIOpFKLWHQWRWDOLWp
±/HFRUSVSDUIDLWHPHQWWUDQVSDUHQW
±/HFRUSVSDUIDLWHPHQWWUDQVSDUHQW
,OHVWFDUDFWpULVpSDUOHVpJDOLWpV τ = ρ = = α 5HFHYDQWXQWUDLQG¶RQGHVLOVHODLVVHHQWLqUHPHQWWUDYHUVHUSDUOXLVDQVSUpOHYHUO¶pQHUJLH
,OHVWFDUDFWpULVpSDUOHVpJDOLWpV τ = ρ = = α 5HFHYDQWXQWUDLQG¶RQGHVLOVHODLVVHHQWLqUHPHQWWUDYHUVHUSDUOXLVDQVSUpOHYHUO¶pQHUJLH
±/HFRUSVQRLURXDEVRUEDQWSDUIDLW
±/HFRUSVQRLURXDEVRUEDQWSDUIDLW
3RXU OXL RQ D α = HW ρ = = τ ,O DEVRUEH GRQF WRXWH O¶pQHUJLH GX IDLVFHDX LQFLGHQW OD WUDQVIRUPDQWHQFKDOHXU /HVFRUSVUpHOVSHXYHQWVHFRPSRUWHUFRPPHGHVFRUSVLGpDX[GDQVXQHJDPPHSDUWLFXOLqUH GH ORQJXHXUV G¶RQGHV FHUWDLQV PDWpULDX[ SDU H[HPSOH QH VRQW SDV WUDQVSDUHQWV SRXU OD < λ < $ OXPLqUHYLVLEOH µP < λ < µP PDLVOHVRQWSRXUOHVUD\RQV[ $ OD QHLJH SRXGUHXVH HW SURSUH HVW XQ FRUSV EODQF SRXU OHV SKRWRQV YLVLEOHV HW XQ FRUSV QRLU SRXU OHV LQIUDURXJHV µP < λ < µP QRWRQV pJDOHPHQW TX¶XQ PLOLHX PDWpULHO QH SHXW rWUH WUDQVSDUHQW DX GHOjG¶XQH FHUWDLQH pSDLVVHXU j P GH SURIRQGHXU GDQV O¶HDX OD SOXVSXUHLOIDLWWRWDOHPHQWQRLU
3RXU OXL RQ D α = HW ρ = = τ ,O DEVRUEH GRQF WRXWH O¶pQHUJLH GX IDLVFHDX LQFLGHQW OD WUDQVIRUPDQWHQFKDOHXU /HVFRUSVUpHOVSHXYHQWVHFRPSRUWHUFRPPHGHVFRUSVLGpDX[GDQVXQHJDPPHSDUWLFXOLqUH GH ORQJXHXUV G¶RQGHV FHUWDLQV PDWpULDX[ SDU H[HPSOH QH VRQW SDV WUDQVSDUHQWV SRXU OD < λ < $ OXPLqUHYLVLEOH µP < λ < µP PDLVOHVRQWSRXUOHVUD\RQV[ $ OD QHLJH SRXGUHXVH HW SURSUH HVW XQ FRUSV EODQF SRXU OHV SKRWRQV YLVLEOHV HW XQ FRUSV QRLU SRXU OHV LQIUDURXJHV µP < λ < µP QRWRQV pJDOHPHQW TX¶XQ PLOLHX PDWpULHO QH SHXW rWUH WUDQVSDUHQW DX GHOjG¶XQH FHUWDLQH pSDLVVHXU j P GH SURIRQGHXU GDQV O¶HDX OD SOXVSXUHLOIDLWWRWDOHPHQWQRLU
±/HVORLVGXFRUSVQRLU
±/HVORLVGXFRUSVQRLU
±/DORLGH3ODQFN
±/DORLGH3ODQFN
/RUVTX¶XQ FRUSV QRLU VH WURXYH j OD WHPSpUDWXUH DEVROXH 7 LO pPHW j WUDYHUV VD VXUIDFH IURQWLqUH XQ UD\RQQHPHQW pOHFWURPDJQpWLTXH GH VSHFWUH FRQWLQX < λ < ∞ DSSHOp UD\RQQHPHQW WKHUPLTXH /D SXLVVDQFH UD\RQQpH SDU XQLWp GH VXUIDFH WRXWHV IUpTXHQFHV HW GLUHFWLRQVFRQIRQGXHVDSSHOpHH[LWDQFHRXHQFRUHpPLWWDQFHV¶pFULW
/RUVTX¶XQ FRUSV QRLU VH WURXYH j OD WHPSpUDWXUH DEVROXH 7 LO pPHW j WUDYHUV VD VXUIDFH IURQWLqUH XQ UD\RQQHPHQW pOHFWURPDJQpWLTXH GH VSHFWUH FRQWLQX < λ < ∞ DSSHOp UD\RQQHPHQW WKHUPLTXH /D SXLVVDQFH UD\RQQpH SDU XQLWp GH VXUIDFH WRXWHV IUpTXHQFHV HW GLUHFWLRQVFRQIRQGXHVDSSHOpHH[LWDQFHRXHQFRUHpPLWWDQFHV¶pFULW
- 28 -
- 28 -
'DQV OH FDV G¶XQ IDLVFHDX j VSHFWUH FRQWLQX RQ REWLHQW VHPEODEOHPHQW OHV UpIOH[LYLWp DEVRUSWLYLWpHWWUDQVPLVVLYLWpUpVXOWDQWHV
'DQV OH FDV G¶XQ IDLVFHDX j VSHFWUH FRQWLQX RQ REWLHQW VHPEODEOHPHQW OHV UpIOH[LYLWp DEVRUSWLYLWpHWWUDQVPLVVLYLWpUpVXOWDQWHV
ρ= T
λ
∫
λ
T ′λ ρλ Gλ α = T
λ
∫
λ
T ′λ αλ Gλ τ = T
λ
∫ T′λ τλ Gλ
λ
ρ= T
λ
∫
λ
T ′λ ρλ Gλ α = T
λ
∫
λ
T ′λ αλ Gλ τ = T
λ
∫ T′λ τλ Gλ
λ
5HPDUTXH VL OH VROLGH TXL UHoRLW XQ IDLVFHDX Q¶HVW SDV XQH SODTXH G¶pSDLVVHXU FRQVWDQWH PDLV SRVVqGH XQH IRUPH TXHOFRQTXH pSDLVVHXU YDULDEOH IURQWLqUH FRXUEH OHV YDOHXUV GH ρ α τ YDULHQW VXU OD VXUIDFH UHFHYDQW OH WUDLQ G¶RQGHV SXLVTXH QRWDPPHQW O¶DQJOH G¶LQFLGHQFH L HW O¶pSDLVVHXU K \ YDULHQW O¶pSDLVVHXUWUDYHUVpH SDU XQSLQFHDX OXPLQHX[ SHXW PrPHGHYHQLULQILQLHFHTXLLPSOLTXHDXPRLQVORFDOHPHQWODQXOOLWpGH τ
5HPDUTXH VL OH VROLGH TXL UHoRLW XQ IDLVFHDX Q¶HVW SDV XQH SODTXH G¶pSDLVVHXU FRQVWDQWH PDLV SRVVqGH XQH IRUPH TXHOFRQTXH pSDLVVHXU YDULDEOH IURQWLqUH FRXUEH OHV YDOHXUV GH ρ α τ YDULHQW VXU OD VXUIDFH UHFHYDQW OH WUDLQ G¶RQGHV SXLVTXH QRWDPPHQW O¶DQJOH G¶LQFLGHQFH L HW O¶pSDLVVHXU K \ YDULHQW O¶pSDLVVHXUWUDYHUVpH SDU XQSLQFHDX OXPLQHX[ SHXW PrPHGHYHQLULQILQLHFHTXLLPSOLTXHDXPRLQVORFDOHPHQWODQXOOLWpGH τ
±6ROLGHVLGpDX[
±6ROLGHVLGpDX[
3DUUDSSRUWDX[WURLVSKpQRPqQHVUpIOH[LRQWUDQVPLVVLRQDEVRUSWLRQRQGpILQLHWURLVFRUSV LGpDX[FRQVWLWXDQWGHVFDVOLPLWHVHWTXLVHUYHQWWUqVXWLOHPHQWGHUpIpUHQFHV
3DUUDSSRUWDX[WURLVSKpQRPqQHVUpIOH[LRQWUDQVPLVVLRQDEVRUSWLRQRQGpILQLHWURLVFRUSV LGpDX[FRQVWLWXDQWGHVFDVOLPLWHVHWTXLVHUYHQWWUqVXWLOHPHQWGHUpIpUHQFHV
±/HFRUSVEODQFRXPLURLUSDUIDLWRXUpIOHFWHXUSDUIDLW
±/HFRUSVEODQFRXPLURLUSDUIDLWRXUpIOHFWHXUSDUIDLW
,OHVWGpILQLSDUOHVpJDOLWpV ρ = α = = τ 5HFHYDQWXQWUDLQG¶RQGHVpOHFWURPDJQpWLTXHVLOOHVUpIOpFKLWHQWRWDOLWp
,OHVWGpILQLSDUOHVpJDOLWpV ρ = α = = τ 5HFHYDQWXQWUDLQG¶RQGHVpOHFWURPDJQpWLTXHVLOOHVUpIOpFKLWHQWRWDOLWp
±/HFRUSVSDUIDLWHPHQWWUDQVSDUHQW
±/HFRUSVSDUIDLWHPHQWWUDQVSDUHQW
,OHVWFDUDFWpULVpSDUOHVpJDOLWpV τ = ρ = = α 5HFHYDQWXQWUDLQG¶RQGHVLOVHODLVVHHQWLqUHPHQWWUDYHUVHUSDUOXLVDQVSUpOHYHUO¶pQHUJLH
,OHVWFDUDFWpULVpSDUOHVpJDOLWpV τ = ρ = = α 5HFHYDQWXQWUDLQG¶RQGHVLOVHODLVVHHQWLqUHPHQWWUDYHUVHUSDUOXLVDQVSUpOHYHUO¶pQHUJLH
±/HFRUSVQRLURXDEVRUEDQWSDUIDLW
±/HFRUSVQRLURXDEVRUEDQWSDUIDLW
3RXU OXL RQ D α = HW ρ = = τ ,O DEVRUEH GRQF WRXWH O¶pQHUJLH GX IDLVFHDX LQFLGHQW OD WUDQVIRUPDQWHQFKDOHXU /HVFRUSVUpHOVSHXYHQWVHFRPSRUWHUFRPPHGHVFRUSVLGpDX[GDQVXQHJDPPHSDUWLFXOLqUH GH ORQJXHXUV G¶RQGHV FHUWDLQV PDWpULDX[ SDU H[HPSOH QH VRQW SDV WUDQVSDUHQWV SRXU OD < λ < $ OXPLqUHYLVLEOH µP < λ < µP PDLVOHVRQWSRXUOHVUD\RQV[ $ OD QHLJH SRXGUHXVH HW SURSUH HVW XQ FRUSV EODQF SRXU OHV SKRWRQV YLVLEOHV HW XQ FRUSV QRLU SRXU OHV LQIUDURXJHV µP < λ < µP QRWRQV pJDOHPHQW TX¶XQ PLOLHX PDWpULHO QH SHXW rWUH WUDQVSDUHQW DX GHOjG¶XQH FHUWDLQH pSDLVVHXU j P GH SURIRQGHXU GDQV O¶HDX OD SOXVSXUHLOIDLWWRWDOHPHQWQRLU
3RXU OXL RQ D α = HW ρ = = τ ,O DEVRUEH GRQF WRXWH O¶pQHUJLH GX IDLVFHDX LQFLGHQW OD WUDQVIRUPDQWHQFKDOHXU /HVFRUSVUpHOVSHXYHQWVHFRPSRUWHUFRPPHGHVFRUSVLGpDX[GDQVXQHJDPPHSDUWLFXOLqUH GH ORQJXHXUV G¶RQGHV FHUWDLQV PDWpULDX[ SDU H[HPSOH QH VRQW SDV WUDQVSDUHQWV SRXU OD < λ < $ OXPLqUHYLVLEOH µP < λ < µP PDLVOHVRQWSRXUOHVUD\RQV[ $ OD QHLJH SRXGUHXVH HW SURSUH HVW XQ FRUSV EODQF SRXU OHV SKRWRQV YLVLEOHV HW XQ FRUSV QRLU SRXU OHV LQIUDURXJHV µP < λ < µP QRWRQV pJDOHPHQW TX¶XQ PLOLHX PDWpULHO QH SHXW rWUH WUDQVSDUHQW DX GHOjG¶XQH FHUWDLQH pSDLVVHXU j P GH SURIRQGHXU GDQV O¶HDX OD SOXVSXUHLOIDLWWRWDOHPHQWQRLU
±/HVORLVGXFRUSVQRLU
±/HVORLVGXFRUSVQRLU
±/DORLGH3ODQFN
±/DORLGH3ODQFN
/RUVTX¶XQ FRUSV QRLU VH WURXYH j OD WHPSpUDWXUH DEVROXH 7 LO pPHW j WUDYHUV VD VXUIDFH IURQWLqUH XQ UD\RQQHPHQW pOHFWURPDJQpWLTXH GH VSHFWUH FRQWLQX < λ < ∞ DSSHOp UD\RQQHPHQW WKHUPLTXH /D SXLVVDQFH UD\RQQpH SDU XQLWp GH VXUIDFH WRXWHV IUpTXHQFHV HW GLUHFWLRQVFRQIRQGXHVDSSHOpHH[LWDQFHRXHQFRUHpPLWWDQFHV¶pFULW
/RUVTX¶XQ FRUSV QRLU VH WURXYH j OD WHPSpUDWXUH DEVROXH 7 LO pPHW j WUDYHUV VD VXUIDFH IURQWLqUH XQ UD\RQQHPHQW pOHFWURPDJQpWLTXH GH VSHFWUH FRQWLQX < λ < ∞ DSSHOp UD\RQQHPHQW WKHUPLTXH /D SXLVVDQFH UD\RQQpH SDU XQLWp GH VXUIDFH WRXWHV IUpTXHQFHV HW GLUHFWLRQVFRQIRQGXHVDSSHOpHH[LWDQFHRXHQFRUHpPLWWDQFHV¶pFULW
- 28 -
- 28 -
∞
∞
∫
T = T ′λ Gλ DYHF
∫
T = T ′λ Gλ DYHF
T ′λ =
π K F
λ
KF . H λ
−
⎧K = ⋅ − - ⋅ V FRQVWDQWHGH3ODQFN ⎪ 6RLWHQFRUHDYHF ⎨F = ⋅ PV FpOpULWpGHODOXPLqUH ⎪. = ⋅ − -GHJUp. FRQVWDQWHGH%ROW]PDQQ ⎩
T ′λ =
& λ
& Hλ
T ′λ =
π K F λ
KF . H λ
−
⎧K = ⋅ − - ⋅ V FRQVWDQWHGH3ODQFN ⎪ 6RLWHQFRUHDYHF ⎨F = ⋅ PV FpOpULWpGHODOXPLqUH ⎪. = ⋅ − -GHJUp. FRQVWDQWHGH%ROW]PDQQ ⎩
⎧& = π K F = ⋅ − : ⋅ P ⎪ KF ⎨ − ⎪⎩& = . = ⋅ P ⋅ °. −
T ′λ =
& λ
& Hλ
⎧& = π K F = ⋅ − : ⋅ P ⎪ KF ⎨ − ⎪⎩& = . = ⋅ P ⋅ °. −
&HVIRUPXOHV HW H[SULPHQWODORLGH3ODQFNSRXUOHUD\RQQHPHQWGXFRUSVQRLU2Q UDSSHOOH TXH OD FRQVWDQWH GH %ROW]PDQQ HVW OH TXRWLHQW GH OD FRQVWDQWH PRODLUH 5 GHV JD] SDUIDLWVSDUOHQRPEUH1G¶$YRJDGUR
&HVIRUPXOHV HW H[SULPHQWODORLGH3ODQFNSRXUOHUD\RQQHPHQWGXFRUSVQRLU2Q UDSSHOOH TXH OD FRQVWDQWH GH %ROW]PDQQ HVW OH TXRWLHQW GH OD FRQVWDQWH PRODLUH 5 GHV JD] SDUIDLWVSDUOHQRPEUH1G¶$YRJDGUR
/D ILJXUH UHSUpVHQWH OD GHQVLWp VSHFWUDOH T ′λ F¶HVW j GLUH OH VSHFWUH GH UD\RQQHPHQW WKHUPLTXHGXFRUSVQRLUSRXUTXHOTXHVYDOHXUVGHODWHPSpUDWXUH7
/D ILJXUH UHSUpVHQWH OD GHQVLWp VSHFWUDOH T ′λ F¶HVW j GLUH OH VSHFWUH GH UD\RQQHPHQW WKHUPLTXHGXFRUSVQRLUSRXUTXHOTXHVYDOHXUVGHODWHPSpUDWXUH7
)LJXUH±5pVHDXGHVFRXUEHVGH3ODQFN
)LJXUH±5pVHDXGHVFRXUEHVGH3ODQFN
- 29 -
- 29 -
∞
∞
∫
T = T ′λ Gλ DYHF
∫
T = T ′λ Gλ DYHF
T ′λ =
π K F
λ
KF H .λ
−
⎧K = ⋅ − - ⋅ V FRQVWDQWHGH3ODQFN ⎪ 6RLWHQFRUHDYHF ⎨F = ⋅ PV FpOpULWpGHODOXPLqUH ⎪. = ⋅ − -GHJUp. FRQVWDQWHGH%ROW]PDQQ ⎩
T ′λ =
& λ
& Hλ
T ′λ =
π K F
λ
KF H .λ
−
⎧K = ⋅ − - ⋅ V FRQVWDQWHGH3ODQFN ⎪ 6RLWHQFRUHDYHF ⎨F = ⋅ PV FpOpULWpGHODOXPLqUH ⎪. = ⋅ − -GHJUp. FRQVWDQWHGH%ROW]PDQQ ⎩
⎧& = π K F = ⋅ − : ⋅ P ⎪ KF ⎨ − ⎪⎩& = . = ⋅ P ⋅ °. −
T ′λ =
& λ
& Hλ
⎧& = π K F = ⋅ − : ⋅ P ⎪ KF ⎨ − ⎪⎩& = . = ⋅ P ⋅ °. −
&HVIRUPXOHV HW H[SULPHQWODORLGH3ODQFNSRXUOHUD\RQQHPHQWGXFRUSVQRLU2Q UDSSHOOH TXH OD FRQVWDQWH GH %ROW]PDQQ HVW OH TXRWLHQW GH OD FRQVWDQWH PRODLUH 5 GHV JD] SDUIDLWVSDUOHQRPEUH1G¶$YRJDGUR
&HVIRUPXOHV HW H[SULPHQWODORLGH3ODQFNSRXUOHUD\RQQHPHQWGXFRUSVQRLU2Q UDSSHOOH TXH OD FRQVWDQWH GH %ROW]PDQQ HVW OH TXRWLHQW GH OD FRQVWDQWH PRODLUH 5 GHV JD] SDUIDLWVSDUOHQRPEUH1G¶$YRJDGUR
/D ILJXUH UHSUpVHQWH OD GHQVLWp VSHFWUDOH T ′λ F¶HVW j GLUH OH VSHFWUH GH UD\RQQHPHQW WKHUPLTXHGXFRUSVQRLUSRXUTXHOTXHVYDOHXUVGHODWHPSpUDWXUH7
/D ILJXUH UHSUpVHQWH OD GHQVLWp VSHFWUDOH T ′λ F¶HVW j GLUH OH VSHFWUH GH UD\RQQHPHQW WKHUPLTXHGXFRUSVQRLUSRXUTXHOTXHVYDOHXUVGHODWHPSpUDWXUH7
)LJXUH±5pVHDXGHVFRXUEHVGH3ODQFN
)LJXUH±5pVHDXGHVFRXUEHVGH3ODQFN
- 29 -
- 29 -
/D ILJXUH E GRQQDLW OH VSHFWUH GH UD\RQQHPHQW WKHUPLTXH GX VROHLO TXL FRUUHVSRQG j XQH WHPSpUDWXUH7 .
/D ILJXUH E GRQQDLW OH VSHFWUH GH UD\RQQHPHQW WKHUPLTXH GX VROHLO TXL FRUUHVSRQG j XQH WHPSpUDWXUH7 .
3RXU WRXWHV OHV YDOHXUV GH 7 T′λ WHQG YHUV ]pUR ORUVTXH λ WHQG YHUV ]pUR HW ORUVTXH λ → ∞ HOOHSDVVHSDUXQPD[LPXPSRXUXQHORQJXHXUG¶RQGH λ P
3RXU WRXWHV OHV YDOHXUV GH 7 T′λ WHQG YHUV ]pUR ORUVTXH λ WHQG YHUV ]pUR HW ORUVTXH λ → ∞ HOOHSDVVHSDUXQPD[LPXPSRXUXQHORQJXHXUG¶RQGH λ P
±/DORLGH6WpIDQ
±/DORLGH6WpIDQ
6L O¶RQ FDOFXOH SRXU XQH WHPSpUDWXUH 7 HQ UHPSODoDQW T′λ SDU VRQ H[SUHVVLRQ O¶pPLWWDQFHTF¶HVWjGLUHO¶DLUHFRPSULVHHQWUHODFRXUEHGHODGHQVLWpVSHFWUDOH T′ HWO¶D[HGHV λ RQREWLHQWDSUqVLQWpJUDWLRQ
6L O¶RQ FDOFXOH SRXU XQH WHPSpUDWXUH 7 HQ UHPSODoDQW T′λ SDU VRQ H[SUHVVLRQ O¶pPLWWDQFHTF¶HVWjGLUHO¶DLUHFRPSULVHHQWUHODFRXUEHGHODGHQVLWpVSHFWUDOH T′ HWO¶D[HGHV λ RQREWLHQWDSUqVLQWpJUDWLRQ
T = ε 7 DYHF ε = ⋅ − : ⋅ P − ⋅ GHJ . −
T = ε 7 DYHF ε = ⋅ − : ⋅ P − ⋅ GHJ . −
&HUpVXOWDWFRQVWLWXHODORLGH6WpIDQ ε HVWODFRQVWDQWHGH6WpIDQ
&HUpVXOWDWFRQVWLWXHODORLGH6WpIDQ ε HVWODFRQVWDQWHGH6WpIDQ
±/DORLGH:LHQ
±/DORLGH:LHQ
6XUOHGLDJUDPPHGHODILJXUH VLO¶RQFKHUFKHO¶DEVFLVVH λ P UHQGDQW T′ PD[LPDOHSRXU 7GRQQpRQWURXYHHQDQQXODQWODGpULYpH T′′λ WLUpHGHODIRUPXOH
6XUOHGLDJUDPPHGHODILJXUH VLO¶RQFKHUFKHO¶DEVFLVVH λ P UHQGDQW T′ PD[LPDOHSRXU 7GRQQpRQWURXYHHQDQQXODQWODGpULYpH T′′λ WLUpHGHODIRUPXOH
λP =
µP × GHJUp. 7
λP =
µP × GHJUp. 7
&HUpVXOWDWFRQVWLWXHODORLGH:LHQGDQVOHUpVHDXGHVFRXUEHVGH3ODQFNOHVVRPPHWV GHVFRXUEHVVHWURXYHQWVXUO¶K\SHUEROHG¶pTXDWLRQ
&HUpVXOWDWFRQVWLWXHODORLGH:LHQGDQVOHUpVHDXGHVFRXUEHVGH3ODQFNOHVVRPPHWV GHVFRXUEHVVHWURXYHQWVXUO¶K\SHUEROHG¶pTXDWLRQ
(QSDUWLFXOLHUVLO¶RQSUHQG7 .FDVGXVROHLO RQWURXYH λ P = µP OXPLqUH YHUWHSURFKHGXEOHX
(QSDUWLFXOLHUVLO¶RQSUHQG7 .FDVGXVROHLO RQWURXYH λ P = µP OXPLqUH YHUWHSURFKHGXEOHX
±$EVRUSWLRQHWpPLVVLRQG¶XQFRUSVUpHO
±$EVRUSWLRQHWpPLVVLRQG¶XQFRUSVUpHO
1RXVDYRQVYXSOXVKDXWTXHVLXVROLGHLQWHUFHSWHXQIDLVFHDXGHSXLVVDQFHVXUIDFLTXH T LO DEVRUEHXQHSDUWLH α T GHFHWWHSXLVVDQFH/¶DEVRUSWLYLWp α DSRXUYDOHXUVOLPLWHFRUSV EODQFVHWFRUSVWUDQVSDUHQWV HWFRUSVQRLUV
1RXVDYRQVYXSOXVKDXWTXHVLXVROLGHLQWHUFHSWHXQIDLVFHDXGHSXLVVDQFHVXUIDFLTXH T LO DEVRUEHXQHSDUWLH α T GHFHWWHSXLVVDQFH/¶DEVRUSWLYLWp α DSRXUYDOHXUVOLPLWHFRUSV EODQFVHWFRUSVWUDQVSDUHQWV HWFRUSVQRLUV
6LFHVROLGHHVWjODWHPSpUDWXUH7LOpPHWSDUXQLWpGHVXUIDFHWRXWHVIUpTXHQFHVHWGLUHFWLRQV FRQIRQGXHV XQHSXLVVDQFH
6LFHVROLGHHVWjODWHPSpUDWXUH7LOpPHWSDUXQLWpGHVXUIDFHWRXWHVIUpTXHQFHVHWGLUHFWLRQV FRQIRQGXHV XQHSXLVVDQFH
∞
∞
∫
T = ελ T′λ Gλ = ε ⋅ ε 7
∫
T = ελ T′λ Gλ = ε ⋅ ε 7
T′λ HVWGRQQpSDUODORLGH3ODQFN /HVFRHIILFLHQWVVDQVGLPHQVLRQV ελ HW ε FRPSULV HQWUHHWVHQRPPHQWpPLVVLYLWpVSRXUODORQJXHXUG¶RQGH λ HWUpVXOWDQWHUHVS ,OVVRQW pJDX[jGDQVOHFDVGXFRUSVQRLU,OVVRQWpJDX[jGDQVOHFDVGHVFRUSVQRQDEVRUEDQWV FRUSVEODQF α = τ = HWFRUSVWUDQVSDUHQW α = ρ = G¶DSUqVOHVHFRQGSULQFLSHGHOD WKHUPRG\QDPLTXH (Q HIIHW HQIHUPRQV XQ WHO VROLGH QRQ DEVRUEDQW GDQV XQH FDYLWp YLGH IHUPpHGRQWODSDURLDWKHUPDQHHVWXQHFRTXHQRLUHjWHPSpUDWXUHSOXVpOHYpHTXHFHOOHGX
T′λ HVWGRQQpSDUODORLGH3ODQFN /HVFRHIILFLHQWVVDQVGLPHQVLRQV ελ HW ε FRPSULV HQWUHHWVHQRPPHQWpPLVVLYLWpVSRXUODORQJXHXUG¶RQGH λ HWUpVXOWDQWHUHVS ,OVVRQW pJDX[jGDQVOHFDVGXFRUSVQRLU,OVVRQWpJDX[jGDQVOHFDVGHVFRUSVQRQDEVRUEDQWV FRUSVEODQF α = τ = HWFRUSVWUDQVSDUHQW α = ρ = G¶DSUqVOHVHFRQGSULQFLSHGHOD WKHUPRG\QDPLTXH (Q HIIHW HQIHUPRQV XQ WHO VROLGH QRQ DEVRUEDQW GDQV XQH FDYLWp YLGH IHUPpHGRQWODSDURLDWKHUPDQHHVWXQHFRTXHQRLUHjWHPSpUDWXUHSOXVpOHYpHTXHFHOOHGX
- 30 -
- 30 -
/D ILJXUH E GRQQDLW OH VSHFWUH GH UD\RQQHPHQW WKHUPLTXH GX VROHLO TXL FRUUHVSRQG j XQH WHPSpUDWXUH7 .
/D ILJXUH E GRQQDLW OH VSHFWUH GH UD\RQQHPHQW WKHUPLTXH GX VROHLO TXL FRUUHVSRQG j XQH WHPSpUDWXUH7 .
3RXU WRXWHV OHV YDOHXUV GH 7 T′λ WHQG YHUV ]pUR ORUVTXH λ WHQG YHUV ]pUR HW ORUVTXH λ → ∞ HOOHSDVVHSDUXQPD[LPXPSRXUXQHORQJXHXUG¶RQGH λ P
3RXU WRXWHV OHV YDOHXUV GH 7 T′λ WHQG YHUV ]pUR ORUVTXH λ WHQG YHUV ]pUR HW ORUVTXH λ → ∞ HOOHSDVVHSDUXQPD[LPXPSRXUXQHORQJXHXUG¶RQGH λ P
±/DORLGH6WpIDQ
±/DORLGH6WpIDQ
6L O¶RQ FDOFXOH SRXU XQH WHPSpUDWXUH 7 HQ UHPSODoDQW T′λ SDU VRQ H[SUHVVLRQ O¶pPLWWDQFHTF¶HVWjGLUHO¶DLUHFRPSULVHHQWUHODFRXUEHGHODGHQVLWpVSHFWUDOH T′ HWO¶D[HGHV λ RQREWLHQWDSUqVLQWpJUDWLRQ
6L O¶RQ FDOFXOH SRXU XQH WHPSpUDWXUH 7 HQ UHPSODoDQW T′λ SDU VRQ H[SUHVVLRQ O¶pPLWWDQFHTF¶HVWjGLUHO¶DLUHFRPSULVHHQWUHODFRXUEHGHODGHQVLWpVSHFWUDOH T′ HWO¶D[HGHV λ RQREWLHQWDSUqVLQWpJUDWLRQ
T = ε 7 DYHF ε = ⋅ − : ⋅ P − ⋅ GHJ . −
T = ε 7 DYHF ε = ⋅ − : ⋅ P − ⋅ GHJ . −
&HUpVXOWDWFRQVWLWXHODORLGH6WpIDQ ε HVWODFRQVWDQWHGH6WpIDQ
&HUpVXOWDWFRQVWLWXHODORLGH6WpIDQ ε HVWODFRQVWDQWHGH6WpIDQ
±/DORLGH:LHQ
±/DORLGH:LHQ
6XUOHGLDJUDPPHGHODILJXUH VLO¶RQFKHUFKHO¶DEVFLVVH λ P UHQGDQW T′ PD[LPDOHSRXU 7GRQQpRQWURXYHHQDQQXODQWODGpULYpH T′′λ WLUpHGHODIRUPXOH
6XUOHGLDJUDPPHGHODILJXUH VLO¶RQFKHUFKHO¶DEVFLVVH λ P UHQGDQW T′ PD[LPDOHSRXU 7GRQQpRQWURXYHHQDQQXODQWODGpULYpH T′′λ WLUpHGHODIRUPXOH
λP =
µP × GHJUp. 7
λP =
µP × GHJUp. 7
&HUpVXOWDWFRQVWLWXHODORLGH:LHQGDQVOHUpVHDXGHVFRXUEHVGH3ODQFNOHVVRPPHWV GHVFRXUEHVVHWURXYHQWVXUO¶K\SHUEROHG¶pTXDWLRQ
&HUpVXOWDWFRQVWLWXHODORLGH:LHQGDQVOHUpVHDXGHVFRXUEHVGH3ODQFNOHVVRPPHWV GHVFRXUEHVVHWURXYHQWVXUO¶K\SHUEROHG¶pTXDWLRQ
(QSDUWLFXOLHUVLO¶RQSUHQG7 .FDVGXVROHLO RQWURXYH λ P = µP OXPLqUH YHUWHSURFKHGXEOHX
(QSDUWLFXOLHUVLO¶RQSUHQG7 .FDVGXVROHLO RQWURXYH λ P = µP OXPLqUH YHUWHSURFKHGXEOHX
±$EVRUSWLRQHWpPLVVLRQG¶XQFRUSVUpHO
±$EVRUSWLRQHWpPLVVLRQG¶XQFRUSVUpHO
1RXVDYRQVYXSOXVKDXWTXHVLXVROLGHLQWHUFHSWHXQIDLVFHDXGHSXLVVDQFHVXUIDFLTXH T LO DEVRUEHXQHSDUWLH α T GHFHWWHSXLVVDQFH/¶DEVRUSWLYLWp α DSRXUYDOHXUVOLPLWHFRUSV EODQFVHWFRUSVWUDQVSDUHQWV HWFRUSVQRLUV
1RXVDYRQVYXSOXVKDXWTXHVLXVROLGHLQWHUFHSWHXQIDLVFHDXGHSXLVVDQFHVXUIDFLTXH T LO DEVRUEHXQHSDUWLH α T GHFHWWHSXLVVDQFH/¶DEVRUSWLYLWp α DSRXUYDOHXUVOLPLWHFRUSV EODQFVHWFRUSVWUDQVSDUHQWV HWFRUSVQRLUV
6LFHVROLGHHVWjODWHPSpUDWXUH7LOpPHWSDUXQLWpGHVXUIDFHWRXWHVIUpTXHQFHVHWGLUHFWLRQV FRQIRQGXHV XQHSXLVVDQFH
6LFHVROLGHHVWjODWHPSpUDWXUH7LOpPHWSDUXQLWpGHVXUIDFHWRXWHVIUpTXHQFHVHWGLUHFWLRQV FRQIRQGXHV XQHSXLVVDQFH
∞
∞
∫
T = ελ T′λ Gλ = ε ⋅ ε 7
∫
T = ελ T′λ Gλ = ε ⋅ ε 7
T′λ HVWGRQQpSDUODORLGH3ODQFN /HVFRHIILFLHQWVVDQVGLPHQVLRQV ελ HW ε FRPSULV HQWUHHWVHQRPPHQWpPLVVLYLWpVSRXUODORQJXHXUG¶RQGH λ HWUpVXOWDQWHUHVS ,OVVRQW pJDX[jGDQVOHFDVGXFRUSVQRLU,OVVRQWpJDX[jGDQVOHFDVGHVFRUSVQRQDEVRUEDQWV FRUSVEODQF α = τ = HWFRUSVWUDQVSDUHQW α = ρ = G¶DSUqVOHVHFRQGSULQFLSHGHOD WKHUPRG\QDPLTXH (Q HIIHW HQIHUPRQV XQ WHO VROLGH QRQ DEVRUEDQW GDQV XQH FDYLWp YLGH IHUPpHGRQWODSDURLDWKHUPDQHHVWXQHFRTXHQRLUHjWHPSpUDWXUHSOXVpOHYpHTXHFHOOHGX
T′λ HVWGRQQpSDUODORLGH3ODQFN /HVFRHIILFLHQWVVDQVGLPHQVLRQV ελ HW ε FRPSULV HQWUHHWVHQRPPHQWpPLVVLYLWpVSRXUODORQJXHXUG¶RQGH λ HWUpVXOWDQWHUHVS ,OVVRQW pJDX[jGDQVOHFDVGXFRUSVQRLU,OVVRQWpJDX[jGDQVOHFDVGHVFRUSVQRQDEVRUEDQWV FRUSVEODQF α = τ = HWFRUSVWUDQVSDUHQW α = ρ = G¶DSUqVOHVHFRQGSULQFLSHGHOD WKHUPRG\QDPLTXH (Q HIIHW HQIHUPRQV XQ WHO VROLGH QRQ DEVRUEDQW GDQV XQH FDYLWp YLGH IHUPpHGRQWODSDURLDWKHUPDQHHVWXQHFRTXHQRLUHjWHPSpUDWXUHSOXVpOHYpHTXHFHOOHGX
- 30 -
- 30 -
FRUSVFRQVLGpUpVLFHGHUQLHUTXLQHUHoRLWGRQFDXFXQHpQHUJLHUD\RQQDLWYHUVODSDURLLO\ DXUDLWWUDQVIHUWGHFKDOHXUGXFRUSVIURLGYHUVOHFRUSVFKDXG
FRUSVFRQVLGpUpVLFHGHUQLHUTXLQHUHoRLWGRQFDXFXQHpQHUJLHUD\RQQDLWYHUVODSDURLLO\ DXUDLWWUDQVIHUWGHFKDOHXUGXFRUSVIURLGYHUVOHFRUSVFKDXG
,9±352%/Ê0(6'¶,//8675$7,21
,9±352%/Ê0(6'¶,//8675$7,21
±5pVLVWDQFHWKHUPLTXHUDGLDOHG¶XQWXEHF\OLQGULTXH
±5pVLVWDQFHWKHUPLTXHUDGLDOHG¶XQWXEHF\OLQGULTXH
)LJXUH
)LJXUH
8QWXEHF\OLQGULTXHLQILQLPHQWORQJGHUD\RQV 5 HW 5 DVHVSDURLVLQWpULHXUHHWH[WpULHXUH PDLQWHQXHV DX[ WHPSpUDWXUHV 7 HW 7 5HVS 2Q VH SURSRVH GH GpWHUPLQHU OH FKDPS GH WHPSpUDWXUH7U OHIOX[GHFKDOHXUjWUDYHUVOHWXEHHWVDUpVLVWDQFHWKHUPLTXHSDUXQLWpGH ORQJXHXU
8QWXEHF\OLQGULTXHLQILQLPHQWORQJGHUD\RQV 5 HW 5 DVHVSDURLVLQWpULHXUHHWH[WpULHXUH PDLQWHQXHV DX[ WHPSpUDWXUHV 7 HW 7 5HVS 2Q VH SURSRVH GH GpWHUPLQHU OH FKDPS GH WHPSpUDWXUH7U OHIOX[GHFKDOHXUjWUDYHUVOHWXEHHWVDUpVLVWDQFHWKHUPLTXHSDUXQLWpGH ORQJXHXU
/¶pTXDWLRQGHODFKDOHXU V¶pFULWLFLHQFRRUGRQQpHVF\OLQGULTXHV
/¶pTXDWLRQGHODFKDOHXU V¶pFULWLFLHQFRRUGRQQpHVF\OLQGULTXHV
∆7 =
G ⎛ G7 ⎞ ⎟ = ⎜U U GU ⎝ GU ⎠
∆7 =
2QHQGpGXLWSDULQWpJUDWLRQV
2QHQGpGXLWSDULQWpJUDWLRQV G7 $ = HW 7 = $ /RJ U + % GU U
G7 $ = HW 7 = $ /RJ U + % GU U
/HVFRQGLWLRQVDX[OLPLWHV 7 5 = 7 HW 75 = 7 GRQQHQW $=
G ⎛ G7 ⎞ ⎟ = ⎜U U GU ⎝ GU ⎠
/HVFRQGLWLRQVDX[OLPLWHV 7 5 = 7 HW 75 = 7 GRQQHQW
7 − 7 7 /RJ 5 − 7 /RJ 5 HW % = 5 5 /RJ /RJ 5 5
$=
7 − 7 7 /RJ 5 − 7 /RJ 5 HW % = 5 5 /RJ /RJ 5 5
- 31 -
- 31 -
FRUSVFRQVLGpUpVLFHGHUQLHUTXLQHUHoRLWGRQFDXFXQHpQHUJLHUD\RQQDLWYHUVODSDURLLO\ DXUDLWWUDQVIHUWGHFKDOHXUGXFRUSVIURLGYHUVOHFRUSVFKDXG
FRUSVFRQVLGpUpVLFHGHUQLHUTXLQHUHoRLWGRQFDXFXQHpQHUJLHUD\RQQDLWYHUVODSDURLLO\ DXUDLWWUDQVIHUWGHFKDOHXUGXFRUSVIURLGYHUVOHFRUSVFKDXG
,9±352%/Ê0(6'¶,//8675$7,21
,9±352%/Ê0(6'¶,//8675$7,21
±5pVLVWDQFHWKHUPLTXHUDGLDOHG¶XQWXEHF\OLQGULTXH
±5pVLVWDQFHWKHUPLTXHUDGLDOHG¶XQWXEHF\OLQGULTXH
)LJXUH
)LJXUH
8QWXEHF\OLQGULTXHLQILQLPHQWORQJGHUD\RQV 5 HW 5 DVHVSDURLVLQWpULHXUHHWH[WpULHXUH PDLQWHQXHV DX[ WHPSpUDWXUHV 7 HW 7 5HVS 2Q VH SURSRVH GH GpWHUPLQHU OH FKDPS GH WHPSpUDWXUH7U OHIOX[GHFKDOHXUjWUDYHUVOHWXEHHWVDUpVLVWDQFHWKHUPLTXHSDUXQLWpGH ORQJXHXU
8QWXEHF\OLQGULTXHLQILQLPHQWORQJGHUD\RQV 5 HW 5 DVHVSDURLVLQWpULHXUHHWH[WpULHXUH PDLQWHQXHV DX[ WHPSpUDWXUHV 7 HW 7 5HVS 2Q VH SURSRVH GH GpWHUPLQHU OH FKDPS GH WHPSpUDWXUH7U OHIOX[GHFKDOHXUjWUDYHUVOHWXEHHWVDUpVLVWDQFHWKHUPLTXHSDUXQLWpGH ORQJXHXU
/¶pTXDWLRQGHODFKDOHXU V¶pFULWLFLHQFRRUGRQQpHVF\OLQGULTXHV
/¶pTXDWLRQGHODFKDOHXU V¶pFULWLFLHQFRRUGRQQpHVF\OLQGULTXHV
∆7 =
G ⎛ G7 ⎞ ⎟ = ⎜U U GU ⎝ GU ⎠
2QHQGpGXLWSDULQWpJUDWLRQV
∆7 =
2QHQGpGXLWSDULQWpJUDWLRQV G7 $ = HW 7 = $ /RJ U + % GU U
/HVFRQGLWLRQVDX[OLPLWHV 7 5 = 7 HW 75 = 7 GRQQHQW $=
G ⎛ G7 ⎞ ⎟ = ⎜U U GU ⎝ GU ⎠
7 − 7 7 /RJ 5 − 7 /RJ 5 HW % = 5 5 /RJ /RJ 5 5
- 31 -
G7 $ = HW 7 = $ /RJ U + % GU U
/HVFRQGLWLRQVDX[OLPLWHV 7 5 = 7 HW 75 = 7 GRQQHQW $=
7 − 7 7 /RJ 5 − 7 /RJ 5 HW % = 5 5 /RJ /RJ 5 5
- 31 -
3RXUXQHORQJXHXUXQLWDLUHGXWXEHRQD
3RXUXQHORQJXHXUXQLWDLUHGXWXEHRQD
± OHIOX[GHFKDOHXUUDGLDO P = T U ⋅ π U = −N
± ODUpVLVWDQFHWKHUPLTXHUDGLDOH 5 =
G7 πN (7 − 7 ) ⋅ π U VRLW P = 5 GU /RJ 5
7 − 7 5 = /RJ 3 Nπ 5
± OHIOX[GHFKDOHXUUDGLDO P = T U ⋅ π U = −N
± ODUpVLVWDQFHWKHUPLTXHUDGLDOH 5 =
G7 πN (7 − 7 ) ⋅ π U VRLW P = 5 GU /RJ 5
7 − 7 5 = /RJ 3 Nπ 5
±5pVLVWDQFHWKHUPLTXHUDGLDOHG¶XQHVSKqUHFUHXVH
±5pVLVWDQFHWKHUPLTXHUDGLDOHG¶XQHVSKqUHFUHXVH
/HVSDURLVLQWpULHXUHHWH[WpULHXUHGHUD\RQV 5 HW 5 VRQWPDLQWHQXHVDX[WHPSpUDWXUHV 7 HW 7 2QYHXWGpWHUPLQHUOHFKDPSGHWHPSpUDWXUH7U OHIOX[GHFKDOHXU P HWODUpVLVWDQFH WKHUPLTXHUDGLDOH5
/HVSDURLVLQWpULHXUHHWH[WpULHXUHGHUD\RQV 5 HW 5 VRQWPDLQWHQXHVDX[WHPSpUDWXUHV 7 HW 7 2QYHXWGpWHUPLQHUOHFKDPSGHWHPSpUDWXUH7U OHIOX[GHFKDOHXU P HWODUpVLVWDQFH WKHUPLTXHUDGLDOH5
/¶pTXDWLRQGHODFKDOHXUV¶pFULWLFLHQFRRUGRQQpHVVSKpULTXHV
/¶pTXDWLRQGHODFKDOHXUV¶pFULWLFLHQFRRUGRQQpHVVSKpULTXHV
∆7 =
G ⎛ G7 ⎞ ⎟ = ⎜U U GU ⎝ GU ⎠
2QHQGpGXLWSDULQWpJUDWLRQV
∆7 =
2QHQGpGXLWSDULQWpJUDWLRQV $ G7 $ = HW 7 = % − U GU U
/HVFRQGLWLRQVDX[OLPLWHV 7 5 = 7 HW 75 = 7 GRQQHQW $ = (7 − 7 )
P = TU ⋅ π U = −N
P=Nπ
/HVFRQGLWLRQVDX[OLPLWHV 7 5 = 7 HW 75 = 7 GRQQHQW
G7 ⋅ π U GU
5 5 (7 − 7 ) 5 − 5
7 − 7
P
=
$ = (7 − 7 )
7 5 −7 5 5 5 HW % = 5 − 5 5 − 5
/HIOX[GHFKDOHXUjWUDYHUVODFRTXHVSKpULTXHHVW
/DUpVLVWDQFHWKHUPLTXHUDGLDOHDSRXUH[SUHVVLRQ 5=
$ G7 $ = HW 7 = % − U GU U
7 5 −7 5 5 5 HW % = 5 − 5 5 − 5
/HIOX[GHFKDOHXUjWUDYHUVODFRTXHVSKpULTXHHVW
VRLW
G ⎛ G7 ⎞ ⎟ = ⎜U U GU ⎝ GU ⎠
P = TU ⋅ π U = −N
P=Nπ
VRLW
5 5 (7 − 7 ) 5 − 5
/DUpVLVWDQFHWKHUPLTXHUDGLDOHDSRXUH[SUHVVLRQ
5 − 5 N π 5 5
5=
7 − 7
P
- 32 -
=
5 − 5 N π 5 5
- 32 -
3RXUXQHORQJXHXUXQLWDLUHGXWXEHRQD
3RXUXQHORQJXHXUXQLWDLUHGXWXEHRQD
± OHIOX[GHFKDOHXUUDGLDO P = T U ⋅ π U = −N
± ODUpVLVWDQFHWKHUPLTXHUDGLDOH 5 =
G7 ⋅ π U GU
G7 πN (7 − 7 ) ⋅ π U VRLW P = 5 GU /RJ 5
7 − 7 5 = /RJ 3 Nπ 5
± OHIOX[GHFKDOHXUUDGLDO P = T U ⋅ π U = −N
± ODUpVLVWDQFHWKHUPLTXHUDGLDOH 5 =
G7 πN (7 − 7 ) ⋅ π U VRLW P = 5 GU /RJ 5
7 − 7 5 = /RJ 3 Nπ 5
±5pVLVWDQFHWKHUPLTXHUDGLDOHG¶XQHVSKqUHFUHXVH
±5pVLVWDQFHWKHUPLTXHUDGLDOHG¶XQHVSKqUHFUHXVH
/HVSDURLVLQWpULHXUHHWH[WpULHXUHGHUD\RQV 5 HW 5 VRQWPDLQWHQXHVDX[WHPSpUDWXUHV 7 HW 7 2QYHXWGpWHUPLQHUOHFKDPSGHWHPSpUDWXUH7U OHIOX[GHFKDOHXU P HWODUpVLVWDQFH WKHUPLTXHUDGLDOH5
/HVSDURLVLQWpULHXUHHWH[WpULHXUHGHUD\RQV 5 HW 5 VRQWPDLQWHQXHVDX[WHPSpUDWXUHV 7 HW 7 2QYHXWGpWHUPLQHUOHFKDPSGHWHPSpUDWXUH7U OHIOX[GHFKDOHXU P HWODUpVLVWDQFH WKHUPLTXHUDGLDOH5
/¶pTXDWLRQGHODFKDOHXUV¶pFULWLFLHQFRRUGRQQpHVVSKpULTXHV
/¶pTXDWLRQGHODFKDOHXUV¶pFULWLFLHQFRRUGRQQpHVVSKpULTXHV
∆7 =
G ⎛ G7 ⎞ ⎟ = ⎜U U GU ⎝ GU ⎠
2QHQGpGXLWSDULQWpJUDWLRQV
∆7 =
2QHQGpGXLWSDULQWpJUDWLRQV $ G7 $ = HW 7 = % − U GU U
/HVFRQGLWLRQVDX[OLPLWHV 7 5 = 7 HW 75 = 7 GRQQHQW $ = (7 − 7 )
P = TU ⋅ π U = −N
P=Nπ
/HVFRQGLWLRQVDX[OLPLWHV 7 5 = 7 HW 75 = 7 GRQQHQW
G7 ⋅ π U GU
5 5 (7 − 7 ) 5 − 5
7 − 7
P
=
5 − 5 N π 5 5
- 32 -
$ = (7 − 7 )
7 5 −7 5 5 5 HW % = 5 − 5 5 − 5
/HIOX[GHFKDOHXUjWUDYHUVODFRTXHVSKpULTXHHVW
/DUpVLVWDQFHWKHUPLTXHUDGLDOHDSRXUH[SUHVVLRQ 5=
$ G7 $ = HW 7 = % − U GU U
7 5 −7 5 5 5 HW % = 5 − 5 5 − 5
/HIOX[GHFKDOHXUjWUDYHUVODFRTXHVSKpULTXHHVW
VRLW
G ⎛ G7 ⎞ ⎟ = ⎜U U GU ⎝ GU ⎠
P = TU ⋅ π U = −N VRLW
P=Nπ
G7 ⋅ π U GU
5 5 (7 − 7 ) 5 − 5
/DUpVLVWDQFHWKHUPLTXHUDGLDOHDSRXUH[SUHVVLRQ 5=
7 − 7
P
=
5 − 5 N π 5 5
- 32 -
6LODFRTXHHVWPLQFHG¶pSDLVVHXUHHWGHUD\RQPR\HQD
5=
6LODFRTXHHVWPLQFHG¶pSDLVVHXUHHWGHUD\RQPR\HQD
H H = 6 = π D π D N N6
5=
±7HPSpUDWXUHG¶pTXLOLEUHG¶XQHSODTXHH[SRVpHDXVROHLO
H H = 6 = π D π D N N6
±7HPSpUDWXUHG¶pTXLOLEUHG¶XQHSODTXHH[SRVpHDXVROHLO
)LJXUH
)LJXUH
2Q FRQVLGqUH XQH SODTXH LQILQLH G¶pSDLVVHXU H GRXEOpH G¶XQ LVRODQW SDUIDLW VXU VD IDFH LQIpULHXUH VLWXpH GDQV OH YLGH KRUV GH O¶DWPRVSKqUH HW UHFHYDQW SHUSHQGLFXODLUHPHQW OH UD\RQQHPHQWVRODLUH
2Q FRQVLGqUH XQH SODTXH LQILQLH G¶pSDLVVHXU H GRXEOpH G¶XQ LVRODQW SDUIDLW VXU VD IDFH LQIpULHXUH VLWXpH GDQV OH YLGH KRUV GH O¶DWPRVSKqUH HW UHFHYDQW SHUSHQGLFXODLUHPHQW OH UD\RQQHPHQWVRODLUH
/D ILJXUH UHSUpVHQWH XQ pOpPHQW G¶DLUH XQLWDLUH GH OD SODTXH 2Q VH SURSRVH GH FDOFXOHU OD G7 GDQV WHPSpUDWXUHG¶pTXLOLEUHGHODSODTXHjFDXVHGHO¶LVRODQWOHIOX[GHFKDOHXU T = −N G[ OD SODTXH HVW QXO OD WHPSpUDWXUH \ HVW GRQF XQLIRUPH $ O¶pTXLOLEUH OH IOX[ UHoX α T
/D ILJXUH UHSUpVHQWH XQ pOpPHQW G¶DLUH XQLWDLUH GH OD SODTXH 2Q VH SURSRVH GH FDOFXOHU OD G7 GDQV WHPSpUDWXUHG¶pTXLOLEUHGHODSODTXHjFDXVHGHO¶LVRODQWOHIOX[GHFKDOHXU T = −N G[ OD SODTXH HVW QXO OD WHPSpUDWXUH \ HVW GRQF XQLIRUPH $ O¶pTXLOLEUH OH IOX[ UHoX α T
DEVRUEp HVWpJDODXIOX[UD\RQQp ε ⋅ ε 7 RQDGRQFO¶pTXDWLRQ α T = ε ε 7
DEVRUEp HVWpJDODXIOX[UD\RQQp ε ⋅ ε 7 RQDGRQFO¶pTXDWLRQ α T = ε ε 7
2QHQGpGXLW 7 =
α T 'DQVOHVFDVR α = ε FDVGXFRUSVQRLUR α = = ε RQWURXYH ε ε 7
2QHQGpGXLW 7 =
α T 'DQVOHVFDVR α = ε FDVGXFRUSVQRLUR α = = ε RQWURXYH ε ε 7
7 . &SXLVTXH T = ⋅ Z P HW ε = ⋅ − Z ⋅ P − ⋅ . −
7 . &SXLVTXH T = ⋅ Z P HW ε = ⋅ − Z ⋅ P − ⋅ . −
$ FHWWH WHPSpUDWXUH OH IOX[ UD\RQQp T UHSUpVHQWH XQH GHQVLWp VSHFWUDOH PD[LPDOH SRXU OD ORQJXHXUG¶RQGH λ P = µP LQIUDURXJH G¶DSUqVODORLGH:LHQ
$ FHWWH WHPSpUDWXUH OH IOX[ UD\RQQp T UHSUpVHQWH XQH GHQVLWp VSHFWUDOH PD[LPDOH SRXU OD ORQJXHXUG¶RQGH λ P = µP LQIUDURXJH G¶DSUqVODORLGH:LHQ
- 33 -
- 33 -
6LODFRTXHHVWPLQFHG¶pSDLVVHXUHHWGHUD\RQPR\HQD
5=
6LODFRTXHHVWPLQFHG¶pSDLVVHXUHHWGHUD\RQPR\HQD
H H = 6 = π D π D N N6
5=
±7HPSpUDWXUHG¶pTXLOLEUHG¶XQHSODTXHH[SRVpHDXVROHLO
H H = 6 = π D π D N N6
±7HPSpUDWXUHG¶pTXLOLEUHG¶XQHSODTXHH[SRVpHDXVROHLO
)LJXUH
)LJXUH
2Q FRQVLGqUH XQH SODTXH LQILQLH G¶pSDLVVHXU H GRXEOpH G¶XQ LVRODQW SDUIDLW VXU VD IDFH LQIpULHXUH VLWXpH GDQV OH YLGH KRUV GH O¶DWPRVSKqUH HW UHFHYDQW SHUSHQGLFXODLUHPHQW OH UD\RQQHPHQWVRODLUH
2Q FRQVLGqUH XQH SODTXH LQILQLH G¶pSDLVVHXU H GRXEOpH G¶XQ LVRODQW SDUIDLW VXU VD IDFH LQIpULHXUH VLWXpH GDQV OH YLGH KRUV GH O¶DWPRVSKqUH HW UHFHYDQW SHUSHQGLFXODLUHPHQW OH UD\RQQHPHQWVRODLUH
/D ILJXUH UHSUpVHQWH XQ pOpPHQW G¶DLUH XQLWDLUH GH OD SODTXH 2Q VH SURSRVH GH FDOFXOHU OD G7 GDQV WHPSpUDWXUHG¶pTXLOLEUHGHODSODTXHjFDXVHGHO¶LVRODQWOHIOX[GHFKDOHXU T = −N G[ OD SODTXH HVW QXO OD WHPSpUDWXUH \ HVW GRQF XQLIRUPH $ O¶pTXLOLEUH OH IOX[ UHoX α T
/D ILJXUH UHSUpVHQWH XQ pOpPHQW G¶DLUH XQLWDLUH GH OD SODTXH 2Q VH SURSRVH GH FDOFXOHU OD G7 GDQV WHPSpUDWXUHG¶pTXLOLEUHGHODSODTXHjFDXVHGHO¶LVRODQWOHIOX[GHFKDOHXU T = −N G[ OD SODTXH HVW QXO OD WHPSpUDWXUH \ HVW GRQF XQLIRUPH $ O¶pTXLOLEUH OH IOX[ UHoX α T
DEVRUEp HVWpJDODXIOX[UD\RQQp ε ⋅ ε 7 RQDGRQFO¶pTXDWLRQ α T = ε ε 7
DEVRUEp HVWpJDODXIOX[UD\RQQp ε ⋅ ε 7 RQDGRQFO¶pTXDWLRQ α T = ε ε 7
2QHQGpGXLW 7 =
α T 'DQVOHVFDVR α = ε FDVGXFRUSVQRLUR α = = ε RQWURXYH ε ε 7
2QHQGpGXLW 7 =
α T 'DQVOHVFDVR α = ε FDVGXFRUSVQRLUR α = = ε RQWURXYH ε ε 7
7 . &SXLVTXH T = ⋅ Z P HW ε = ⋅ − Z ⋅ P − ⋅ . −
7 . &SXLVTXH T = ⋅ Z P HW ε = ⋅ − Z ⋅ P − ⋅ . −
$ FHWWH WHPSpUDWXUH OH IOX[ UD\RQQp T UHSUpVHQWH XQH GHQVLWp VSHFWUDOH PD[LPDOH SRXU OD ORQJXHXUG¶RQGH λ P = µP LQIUDURXJH G¶DSUqVODORLGH:LHQ
$ FHWWH WHPSpUDWXUH OH IOX[ UD\RQQp T UHSUpVHQWH XQH GHQVLWp VSHFWUDOH PD[LPDOH SRXU OD ORQJXHXUG¶RQGH λ P = µP LQIUDURXJH G¶DSUqVODORLGH:LHQ
- 33 -
- 33 -
±7HPSpUDWXUHG¶pTXLOLEUHG¶XQHVSKqUHH[SRVpHDXVROHLO
±7HPSpUDWXUHG¶pTXLOLEUHG¶XQHVSKqUHH[SRVpHDXVROHLO
)LJXUH
)LJXUH
2Q FRQVLGqUH XQH VSKqUH SOHLQH KRPRJqQH GH UD\RQ 5 TXL UHoRLW GDQV OH YLGH OH UD\RQQHPHQWVRODLUHGHIOX[ T 2QODVXSSRVHDQLPpHGHPRXYHPHQWVGHURWDWLRQVUDSLGHV WHOV TXH WRXWHV OHV SDUWLHV GH VD VXUIDFH UHoRLYHQW OD PrPH pQHUJLH 'H FH IDLW OH FKDPS GH WHPSpUDWXUHGDQVODVSKqUHSUpVHQWHODV\PpWULHVSKpULTXH7 7U
2Q FRQVLGqUH XQH VSKqUH SOHLQH KRPRJqQH GH UD\RQ 5 TXL UHoRLW GDQV OH YLGH OH UD\RQQHPHQWVRODLUHGHIOX[ T 2QODVXSSRVHDQLPpHGHPRXYHPHQWVGHURWDWLRQVUDSLGHV WHOV TXH WRXWHV OHV SDUWLHV GH VD VXUIDFH UHoRLYHQW OD PrPH pQHUJLH 'H FH IDLW OH FKDPS GH WHPSpUDWXUHGDQVODVSKqUHSUpVHQWHODV\PpWULHVSKpULTXH7 7U
$O¶pTXLOLEUHWKHUPLTXHFRPPHLOQ¶\DSDVGHVRXUFHLQWpULHXUHGHFKDOHXUOHIOX[ − N GDQVOHVROLGHHVWQXOHWODWHPSpUDWXUHHVWGRQFXQLIRUPH
G7 GU
/DSXLVVDQFHDEVRUEpH α T π 5 HVWGRQFpJDOHjODSXLVVDQFHpPLVH ε ε 7 π 5 G¶R O¶RQWLUH
7=
$O¶pTXLOLEUHWKHUPLTXHFRPPHLOQ¶\DSDVGHVRXUFHLQWpULHXUHGHFKDOHXUOHIOX[ − N GDQVOHVROLGHHVWQXOHWODWHPSpUDWXUHHVWGRQFXQLIRUPH
G7 GU
/DSXLVVDQFHDEVRUEpH α T π 5 HVWGRQFpJDOHjODSXLVVDQFHpPLVH ε ε 7 π 5 G¶R O¶RQWLUH
α T α ⋅ = ε ε ε ⋅ −
7=
α T α ⋅ = ε ε ε ⋅ −
'DQV OHV FDV R α = ε FRUSV QRLU QRWDPPHQW RQ D 7 . & &¶HVWjSHXSUqVODWHPSpUDWXUHPR\HQQHGXVROOXQDLUH
'DQV OHV FDV R α = ε FRUSV QRLU QRWDPPHQW RQ D 7 . & &¶HVWjSHXSUqVODWHPSpUDWXUHPR\HQQHGXVROOXQDLUH
- 34 -
- 34 -
±7HPSpUDWXUHG¶pTXLOLEUHG¶XQHVSKqUHH[SRVpHDXVROHLO
±7HPSpUDWXUHG¶pTXLOLEUHG¶XQHVSKqUHH[SRVpHDXVROHLO
)LJXUH
)LJXUH
2Q FRQVLGqUH XQH VSKqUH SOHLQH KRPRJqQH GH UD\RQ 5 TXL UHoRLW GDQV OH YLGH OH UD\RQQHPHQWVRODLUHGHIOX[ T 2QODVXSSRVHDQLPpHGHPRXYHPHQWVGHURWDWLRQVUDSLGHV WHOV TXH WRXWHV OHV SDUWLHV GH VD VXUIDFH UHoRLYHQW OD PrPH pQHUJLH 'H FH IDLW OH FKDPS GH WHPSpUDWXUHGDQVODVSKqUHSUpVHQWHODV\PpWULHVSKpULTXH7 7U
2Q FRQVLGqUH XQH VSKqUH SOHLQH KRPRJqQH GH UD\RQ 5 TXL UHoRLW GDQV OH YLGH OH UD\RQQHPHQWVRODLUHGHIOX[ T 2QODVXSSRVHDQLPpHGHPRXYHPHQWVGHURWDWLRQVUDSLGHV WHOV TXH WRXWHV OHV SDUWLHV GH VD VXUIDFH UHoRLYHQW OD PrPH pQHUJLH 'H FH IDLW OH FKDPS GH WHPSpUDWXUHGDQVODVSKqUHSUpVHQWHODV\PpWULHVSKpULTXH7 7U
$O¶pTXLOLEUHWKHUPLTXHFRPPHLOQ¶\DSDVGHVRXUFHLQWpULHXUHGHFKDOHXUOHIOX[ − N GDQVOHVROLGHHVWQXOHWODWHPSpUDWXUHHVWGRQFXQLIRUPH
G7 GU
/DSXLVVDQFHDEVRUEpH α T π 5 HVWGRQFpJDOHjODSXLVVDQFHpPLVH ε ε 7 π 5 G¶R O¶RQWLUH
7=
$O¶pTXLOLEUHWKHUPLTXHFRPPHLOQ¶\DSDVGHVRXUFHLQWpULHXUHGHFKDOHXUOHIOX[ − N GDQVOHVROLGHHVWQXOHWODWHPSpUDWXUHHVWGRQFXQLIRUPH
G7 GU
/DSXLVVDQFHDEVRUEpH α T π 5 HVWGRQFpJDOHjODSXLVVDQFHpPLVH ε ε 7 π 5 G¶R O¶RQWLUH
α T α ⋅ = ε ε ε ⋅ −
7=
α T α ⋅ = ε ε ε ⋅ −
'DQV OHV FDV R α = ε FRUSV QRLU QRWDPPHQW RQ D 7 . & &¶HVWjSHXSUqVODWHPSpUDWXUHPR\HQQHGXVROOXQDLUH
'DQV OHV FDV R α = ε FRUSV QRLU QRWDPPHQW RQ D 7 . & &¶HVWjSHXSUqVODWHPSpUDWXUHPR\HQQHGXVROOXQDLUH
- 34 -
- 34 -
&+$3,75(,,
&+$3,75(,,
7+(502e/$67,&,7e
7+(502e/$67,&,7e
'DQV FH FKDSLWUH RQ VH SURSRVH G¶pWXGLHU OHV FRQWUDLQWHV GpIRUPDWLRQV HW GpSODFHPHQWV TXL DSSDUDLVVHQWGDQVXQHVWUXFWXUHVRXVO¶DFWLRQG¶XQFKDUJHPHQWFRPELQpPpFDQLTXHIRUFHV HW WKHUPLTXH WHPSpUDWXUHV /H FKDPS GH WHPSpUDWXUH GDQV FKDTXH VROLGH HVW VXSSRVp FRQQX 1RXV VXSSRVRQV YpULILpHV OHV K\SRWKqVHV GX FKDSLWUH SUpFpGHQW QRWDPPHQW FHOOH GX UpJLPH TXDVLVWDWLTXHDLQVLTXHOHVK\SRWKqVHVFODVVLTXHVGHOD0pFDQLTXHGHV6WUXFWXUHVQRWDPPHQW FHOOHVGHSHWLWHVVHHWGHOLQpDULWpH[SRVpHVDXFKDSLWUH9GXWRPH,1RXVDGRSWHURQVOHSRLQW GHYXHGH/DJUDQJHFRQVLVWDQWjVXLYUHXQGRPDLQHpOpPHQWDLUHGDQVVRQpYROXWLRQGRPDLQH FRQVWLWXp WRXMRXUV GHV PrPHV SDUWLFXOHV HW FRPSWH WHQX GH OD SHWLWHVVH GHV YLWHVVHV HW GHV DFFpOpUDWLRQVQRXVSRXUURQVFRQIRQGUHGpULYpHSDUWLFXODLUHHWGpULYpHSDUWLHOOHSDUUDSSRUWDX WHPSV
'DQV FH FKDSLWUH RQ VH SURSRVH G¶pWXGLHU OHV FRQWUDLQWHV GpIRUPDWLRQV HW GpSODFHPHQWV TXL DSSDUDLVVHQWGDQVXQHVWUXFWXUHVRXVO¶DFWLRQG¶XQFKDUJHPHQWFRPELQpPpFDQLTXHIRUFHV HW WKHUPLTXH WHPSpUDWXUHV /H FKDPS GH WHPSpUDWXUH GDQV FKDTXH VROLGH HVW VXSSRVp FRQQX 1RXV VXSSRVRQV YpULILpHV OHV K\SRWKqVHV GX FKDSLWUH SUpFpGHQW QRWDPPHQW FHOOH GX UpJLPH TXDVLVWDWLTXHDLQVLTXHOHVK\SRWKqVHVFODVVLTXHVGHOD0pFDQLTXHGHV6WUXFWXUHVQRWDPPHQW FHOOHVGHSHWLWHVVHHWGHOLQpDULWpH[SRVpHVDXFKDSLWUH9GXWRPH,1RXVDGRSWHURQVOHSRLQW GHYXHGH/DJUDQJHFRQVLVWDQWjVXLYUHXQGRPDLQHpOpPHQWDLUHGDQVVRQpYROXWLRQGRPDLQH FRQVWLWXp WRXMRXUV GHV PrPHV SDUWLFXOHV HW FRPSWH WHQX GH OD SHWLWHVVH GHV YLWHVVHV HW GHV DFFpOpUDWLRQVQRXVSRXUURQVFRQIRQGUHGpULYpHSDUWLFXODLUHHWGpULYpHSDUWLHOOHSDUUDSSRUWDX WHPSV
±e78'('(6'e)250$7,216
±e78'('(6'e)250$7,216
&HOOHFLDpWpIDLWHDXFKDSLWUH,GXWRPH,VHVUpVXOWDWVVRQWYDODEOHVTXHOOHVTXHVRLHQWOHV FDXVHVGHFHVGpIRUPDWLRQVFKDUJHPHQWPpFDQLTXHWKHUPLTXHRXDXWUH5DSSHORQVOHV
&HOOHFLDpWpIDLWHDXFKDSLWUH,GXWRPH,VHVUpVXOWDWVVRQWYDODEOHVTXHOOHVTXHVRLHQWOHV FDXVHVGHFHVGpIRUPDWLRQVFKDUJHPHQWPpFDQLTXHWKHUPLTXHRXDXWUH5DSSHORQVOHV
6L O¶RQ LVROH SDU OD SHQVpH DX VHLQ G¶XQ VROLGH XQ GRPDLQH D GH FHQWUH 3 HW GH SDUWLFXOH FRXUDQWH4HWTX¶RQOHVXLWGDQVVRQpYROXWLRQRQQRWH
6L O¶RQ LVROH SDU OD SHQVpH DX VHLQ G¶XQ VROLGH XQ GRPDLQH D GH FHQWUH 3 HW GH SDUWLFXOH FRXUDQWH4HWTX¶RQOHVXLWGDQVVRQpYROXWLRQRQQRWH
)LJXUH
)LJXUH
± pWDW O¶pWDWGHUpIpUHQFHRVHWURXYHODVWUXFWXUHDXUHSRVjO¶pTXLOLEUHjODWHPSpUDWXUH XQLIRUPH 7 DYDQW O¶DSSOLFDWLRQ GX FKDUJHPHQW 'DQV FHW pWDW OD SDUWLFXOH 3 RFFXSH OD
± pWDW O¶pWDWGHUpIpUHQFHRVHWURXYHODVWUXFWXUHDXUHSRVjO¶pTXLOLEUHjODWHPSpUDWXUH XQLIRUPH 7 DYDQW O¶DSSOLFDWLRQ GX FKDUJHPHQW 'DQV FHW pWDW OD SDUWLFXOH 3 RFFXSH OD
- 35 -
- 35 -
&+$3,75(,,
&+$3,75(,,
7+(502e/$67,&,7e
7+(502e/$67,&,7e
'DQV FH FKDSLWUH RQ VH SURSRVH G¶pWXGLHU OHV FRQWUDLQWHV GpIRUPDWLRQV HW GpSODFHPHQWV TXL DSSDUDLVVHQWGDQVXQHVWUXFWXUHVRXVO¶DFWLRQG¶XQFKDUJHPHQWFRPELQpPpFDQLTXHIRUFHV HW WKHUPLTXH WHPSpUDWXUHV /H FKDPS GH WHPSpUDWXUH GDQV FKDTXH VROLGH HVW VXSSRVp FRQQX 1RXV VXSSRVRQV YpULILpHV OHV K\SRWKqVHV GX FKDSLWUH SUpFpGHQW QRWDPPHQW FHOOH GX UpJLPH TXDVLVWDWLTXHDLQVLTXHOHVK\SRWKqVHVFODVVLTXHVGHOD0pFDQLTXHGHV6WUXFWXUHVQRWDPPHQW FHOOHVGHSHWLWHVVHHWGHOLQpDULWpH[SRVpHVDXFKDSLWUH9GXWRPH,1RXVDGRSWHURQVOHSRLQW GHYXHGH/DJUDQJHFRQVLVWDQWjVXLYUHXQGRPDLQHpOpPHQWDLUHGDQVVRQpYROXWLRQGRPDLQH FRQVWLWXp WRXMRXUV GHV PrPHV SDUWLFXOHV HW FRPSWH WHQX GH OD SHWLWHVVH GHV YLWHVVHV HW GHV DFFpOpUDWLRQVQRXVSRXUURQVFRQIRQGUHGpULYpHSDUWLFXODLUHHWGpULYpHSDUWLHOOHSDUUDSSRUWDX WHPSV
'DQV FH FKDSLWUH RQ VH SURSRVH G¶pWXGLHU OHV FRQWUDLQWHV GpIRUPDWLRQV HW GpSODFHPHQWV TXL DSSDUDLVVHQWGDQVXQHVWUXFWXUHVRXVO¶DFWLRQG¶XQFKDUJHPHQWFRPELQpPpFDQLTXHIRUFHV HW WKHUPLTXH WHPSpUDWXUHV /H FKDPS GH WHPSpUDWXUH GDQV FKDTXH VROLGH HVW VXSSRVp FRQQX 1RXV VXSSRVRQV YpULILpHV OHV K\SRWKqVHV GX FKDSLWUH SUpFpGHQW QRWDPPHQW FHOOH GX UpJLPH TXDVLVWDWLTXHDLQVLTXHOHVK\SRWKqVHVFODVVLTXHVGHOD0pFDQLTXHGHV6WUXFWXUHVQRWDPPHQW FHOOHVGHSHWLWHVVHHWGHOLQpDULWpH[SRVpHVDXFKDSLWUH9GXWRPH,1RXVDGRSWHURQVOHSRLQW GHYXHGH/DJUDQJHFRQVLVWDQWjVXLYUHXQGRPDLQHpOpPHQWDLUHGDQVVRQpYROXWLRQGRPDLQH FRQVWLWXp WRXMRXUV GHV PrPHV SDUWLFXOHV HW FRPSWH WHQX GH OD SHWLWHVVH GHV YLWHVVHV HW GHV DFFpOpUDWLRQVQRXVSRXUURQVFRQIRQGUHGpULYpHSDUWLFXODLUHHWGpULYpHSDUWLHOOHSDUUDSSRUWDX WHPSV
±e78'('(6'e)250$7,216
±e78'('(6'e)250$7,216
&HOOHFLDpWpIDLWHDXFKDSLWUH,GXWRPH,VHVUpVXOWDWVVRQWYDODEOHVTXHOOHVTXHVRLHQWOHV FDXVHVGHFHVGpIRUPDWLRQVFKDUJHPHQWPpFDQLTXHWKHUPLTXHRXDXWUH5DSSHORQVOHV
&HOOHFLDpWpIDLWHDXFKDSLWUH,GXWRPH,VHVUpVXOWDWVVRQWYDODEOHVTXHOOHVTXHVRLHQWOHV FDXVHVGHFHVGpIRUPDWLRQVFKDUJHPHQWPpFDQLTXHWKHUPLTXHRXDXWUH5DSSHORQVOHV
6L O¶RQ LVROH SDU OD SHQVpH DX VHLQ G¶XQ VROLGH XQ GRPDLQH D GH FHQWUH 3 HW GH SDUWLFXOH FRXUDQWH4HWTX¶RQOHVXLWGDQVVRQpYROXWLRQRQQRWH
6L O¶RQ LVROH SDU OD SHQVpH DX VHLQ G¶XQ VROLGH XQ GRPDLQH D GH FHQWUH 3 HW GH SDUWLFXOH FRXUDQWH4HWTX¶RQOHVXLWGDQVVRQpYROXWLRQRQQRWH
)LJXUH
)LJXUH
± pWDW O¶pWDWGHUpIpUHQFHRVHWURXYHODVWUXFWXUHDXUHSRVjO¶pTXLOLEUHjODWHPSpUDWXUH XQLIRUPH 7 DYDQW O¶DSSOLFDWLRQ GX FKDUJHPHQW 'DQV FHW pWDW OD SDUWLFXOH 3 RFFXSH OD
± pWDW O¶pWDWGHUpIpUHQFHRVHWURXYHODVWUXFWXUHDXUHSRVjO¶pTXLOLEUHjODWHPSpUDWXUH XQLIRUPH 7 DYDQW O¶DSSOLFDWLRQ GX FKDUJHPHQW 'DQV FHW pWDW OD SDUWLFXOH 3 RFFXSH OD
- 35 -
- 35 -
SRVLWLRQ 3 [ \ ] VDYRLVLQH4ODSRVLWLRQ 4 [ + G[ \ + G\ ] + G] HW DOHGRPDLQH pOpPHQWDLUH D
SRVLWLRQ 3 [ \ ] VDYRLVLQH4ODSRVLWLRQ 4 [ + G[ \ + G\ ] + G] HW DOHGRPDLQH pOpPHQWDLUH D
± pWDW W O¶pWDW GLW ©DFWXHOª F¶HVW j GLUH j O¶LQVWDQW W OD SDUWLFXOH 3 D SRXU FRRUGRQQpHV [X\Y]Z HWVHWURXYHjODWHPSpUDWXUH7[\] GpVLJQHQWGRQFOHVFRRUGRQQpHV LQLWLDOHVGHODSDUWLFXOHHWVRQWLQGpSHQGDQWHVGXWHPSVXYZFRPSRVDQWHVGXYHFWHXU WUDQVODWLRQ 3 3 VRQWGHVIRQFWLRQVGH[\]HWW&RPSWHWHQXGHO¶K\SRWKqVHGHVSHWLWHV WUDQVODWLRQV RQ SHXW FRQIRQGUH pWDW LQLWLDO HW pWDW DFWXHO W SRXU pFULUH FHUWDLQHV pTXDWLRQV SDU H[HPSOH OHV pTXDWLRQV G¶pTXLOLEUH VDXI GDQV FHUWDLQV FDV GPHQW VLJQDOpV FRPPH FHX[ GH IODPEHPHQW (Q FDOFXODQW OHV FRPSRVDQWHV XGX ZGY ZGZ GX YHFWHXU 4 4 RQ GpPRQWUH WRPH , FKDSLWUH , TXH O¶RQ SDVVH GH D j D SDU OD
± pWDW W O¶pWDW GLW ©DFWXHOª F¶HVW j GLUH j O¶LQVWDQW W OD SDUWLFXOH 3 D SRXU FRRUGRQQpHV [X\Y]Z HWVHWURXYHjODWHPSpUDWXUH7[\] GpVLJQHQWGRQFOHVFRRUGRQQpHV LQLWLDOHVGHODSDUWLFXOHHWVRQWLQGpSHQGDQWHVGXWHPSVXYZFRPSRVDQWHVGXYHFWHXU WUDQVODWLRQ 3 3 VRQWGHVIRQFWLRQVGH[\]HWW&RPSWHWHQXGHO¶K\SRWKqVHGHVSHWLWHV WUDQVODWLRQV RQ SHXW FRQIRQGUH pWDW LQLWLDO HW pWDW DFWXHO W SRXU pFULUH FHUWDLQHV pTXDWLRQV SDU H[HPSOH OHV pTXDWLRQV G¶pTXLOLEUH VDXI GDQV FHUWDLQV FDV GPHQW VLJQDOpV FRPPH FHX[ GH IODPEHPHQW (Q FDOFXODQW OHV FRPSRVDQWHV XGX ZGY ZGZ GX YHFWHXU 4 4 RQ GpPRQWUH WRPH , FKDSLWUH , TXH O¶RQ SDVVH GH D j D SDU OD
FRPELQDLVRQGHWURLVWUDQVIRUPDWLRQVSRQFWXHOOHV
FRPELQDLVRQGHWURLVWUDQVIRUPDWLRQVSRQFWXHOOHV
± XQHWUDQVODWLRQGHYHFWHXU 3 3
± XQHWUDQVODWLRQGHYHFWHXU 3 3
± XQHURWDWLRQDXWRXUGH3GpILQLHSDUOHSVHXGRYHFWHXU
± XQHURWDWLRQDXWRXUGH3GpILQLHSDUOHSVHXGRYHFWHXU
± XQH GpIRUPDWLRQ SXUH FDUDFWpULVp SDU OH WHQVHXU V\PpWULTXH ( GpILQL SDU E = JUDG 3 3 + JUDG W 3 3
± XQH GpIRUPDWLRQ SXUH FDUDFWpULVp SDU OH WHQVHXU V\PpWULTXH ( GpILQL SDU E = JUDG 3 3 + JUDG W 3 3
2Q GpPRQWUH GH SOXV TXH FH WHQVHXU VDWLVIDLW j O¶pTXDWLRQ QpFHVVDLUH GH FRPSWDELOLWp RX G¶LQWpJUDELOLWp GHVGpIRUPDWLRQVTXLV¶pFULW URW ⋅ URW E =
2Q GpPRQWUH GH SOXV TXH FH WHQVHXU VDWLVIDLW j O¶pTXDWLRQ QpFHVVDLUH GH FRPSWDELOLWp RX G¶LQWpJUDELOLWp GHVGpIRUPDWLRQVTXLV¶pFULW URW ⋅ URW E =
±e78'('(6&2175$,17(6
±e78'('(6&2175$,17(6
1RXVDYRQVpWXGLpOHVFRQWUDLQWHVGDQVXQVROLGHDXFKDSLWUH,,GXWRPH,OHVUpVXOWDWVpWDEOLV VRQWWRXWjIDLWJpQpUDX[TXHFHVFRQWUDLQWHVVRLHQWG¶RULJLQHPpFDQLTXHGXHVjO¶DSSOLFDWLRQ GH IRUFHV RX G¶RULJLQH WKHUPLTXH GXHV j O¶DSSOLFDWLRQ GH IRUFHV RX G¶RULJLQH WKHUPLTXH GXHVjO¶DSSOLFDWLRQG¶XQFKDPSGHWHPSpUDWXUH RXOHVGHX[
1RXVDYRQVpWXGLpOHVFRQWUDLQWHVGDQVXQVROLGHDXFKDSLWUH,,GXWRPH,OHVUpVXOWDWVpWDEOLV VRQWWRXWjIDLWJpQpUDX[TXHFHVFRQWUDLQWHVVRLHQWG¶RULJLQHPpFDQLTXHGXHVjO¶DSSOLFDWLRQ GH IRUFHV RX G¶RULJLQH WKHUPLTXH GXHV j O¶DSSOLFDWLRQ GH IRUFHV RX G¶RULJLQH WKHUPLTXH GXHVjO¶DSSOLFDWLRQG¶XQFKDPSGHWHPSpUDWXUH RXOHVGHX[
G 1RXV DYRQV HQ SDUWLFXOLHU GpILQL OH YHFWHXU FRQWUDLQWH & GDQV XQ pOpPHQW GH ILEUH SXLV OD PDWULFH FRQWUDLQWH [Σ] HQ XQ SRLQW 3 G¶XQ VROLGH GDQV OHV D[HV {3 [\]} HW HQILQ OH WHQVHXU G G G FRQWUDLQWH Σ HQ3TXLSHUPHWSDUODIRUPXOH & = Σ Q GHFDOFXOHUOHYHFWHXU & DXFHQWUHG¶XQ G pOpPHQW GH ILEUH G¶XQLWDLUH Q 1RXV DYRQV GpPRQWUp OD V\PpWULH GX WHQVHXU Σ HQ pFULYDQW O¶pTXLOLEUH GHV PRPHQWV DSSOLTXpV j pOpPHQWDLUH 1RXV DYRQV HQILQ pWDEOL G XQ SDYp PDWpULHO G O¶pTXDWLRQ GH O¶pTXLOLEUH ORFDO I + GLY Σ = R HQ pFULYDQW SRXU XQ GRPDLQH PDWpULHO G TXHOFRQTXH DO¶pTXLOLEUHHQWUHOHVIRUFHVYROXPLTXHV I DSSOLTXpHVjWRXWHVOHVSDUWLFXOHVGH DHWOHVIRUFHVVXUIDFLTXHVF¶HVWjGLUHOHVFRQWUDLQWHVDSSOLTXpHVDX[SDUWLFXOHVFRQVWLWXDQWOD IURQWLqUHGH D
G 1RXV DYRQV HQ SDUWLFXOLHU GpILQL OH YHFWHXU FRQWUDLQWH & GDQV XQ pOpPHQW GH ILEUH SXLV OD PDWULFH FRQWUDLQWH [Σ] HQ XQ SRLQW 3 G¶XQ VROLGH GDQV OHV D[HV {3 [\]} HW HQILQ OH WHQVHXU G G G FRQWUDLQWH Σ HQ3TXLSHUPHWSDUODIRUPXOH & = Σ Q GHFDOFXOHUOHYHFWHXU & DXFHQWUHG¶XQ G pOpPHQW GH ILEUH G¶XQLWDLUH Q 1RXV DYRQV GpPRQWUp OD V\PpWULH GX WHQVHXU Σ HQ pFULYDQW O¶pTXLOLEUH GHV PRPHQWV DSSOLTXpV j pOpPHQWDLUH 1RXV DYRQV HQILQ pWDEOL G XQ SDYp PDWpULHO G O¶pTXDWLRQ GH O¶pTXLOLEUH ORFDO I + GLY Σ = R HQ pFULYDQW SRXU XQ GRPDLQH PDWpULHO G TXHOFRQTXH DO¶pTXLOLEUHHQWUHOHVIRUFHVYROXPLTXHV I DSSOLTXpHVjWRXWHVOHVSDUWLFXOHVGH DHWOHVIRUFHVVXUIDFLTXHVF¶HVWjGLUHOHVFRQWUDLQWHVDSSOLTXpHVDX[SDUWLFXOHVFRQVWLWXDQWOD IURQWLqUHGH D
&RPPH SRXU OHV GpIRUPDWLRQV RQ VH UHSRUWHUD GRQF DX WRPH , SRXU FH TXL FRQFHUQH OHV FRQWUDLQWHV
&RPPH SRXU OHV GpIRUPDWLRQV RQ VH UHSRUWHUD GRQF DX WRPH , SRXU FH TXL FRQFHUQH OHV FRQWUDLQWHV
- 36 -
- 36 -
SRVLWLRQ 3 [ \ ] VDYRLVLQH4ODSRVLWLRQ 4 [ + G[ \ + G\ ] + G] HW DOHGRPDLQH pOpPHQWDLUH D
SRVLWLRQ 3 [ \ ] VDYRLVLQH4ODSRVLWLRQ 4 [ + G[ \ + G\ ] + G] HW DOHGRPDLQH pOpPHQWDLUH D
± pWDW W O¶pWDW GLW ©DFWXHOª F¶HVW j GLUH j O¶LQVWDQW W OD SDUWLFXOH 3 D SRXU FRRUGRQQpHV [X\Y]Z HWVHWURXYHjODWHPSpUDWXUH7[\] GpVLJQHQWGRQFOHVFRRUGRQQpHV LQLWLDOHVGHODSDUWLFXOHHWVRQWLQGpSHQGDQWHVGXWHPSVXYZFRPSRVDQWHVGXYHFWHXU WUDQVODWLRQ 3 3 VRQWGHVIRQFWLRQVGH[\]HWW&RPSWHWHQXGHO¶K\SRWKqVHGHVSHWLWHV WUDQVODWLRQV RQ SHXW FRQIRQGUH pWDW LQLWLDO HW pWDW DFWXHO W SRXU pFULUH FHUWDLQHV pTXDWLRQV SDU H[HPSOH OHV pTXDWLRQV G¶pTXLOLEUH VDXI GDQV FHUWDLQV FDV GPHQW VLJQDOpV FRPPH FHX[ GH IODPEHPHQW (Q FDOFXODQW OHV FRPSRVDQWHV XGX ZGY ZGZ GX YHFWHXU 4 4 RQ GpPRQWUH WRPH , FKDSLWUH , TXH O¶RQ SDVVH GH D j D SDU OD
± pWDW W O¶pWDW GLW ©DFWXHOª F¶HVW j GLUH j O¶LQVWDQW W OD SDUWLFXOH 3 D SRXU FRRUGRQQpHV [X\Y]Z HWVHWURXYHjODWHPSpUDWXUH7[\] GpVLJQHQWGRQFOHVFRRUGRQQpHV LQLWLDOHVGHODSDUWLFXOHHWVRQWLQGpSHQGDQWHVGXWHPSVXYZFRPSRVDQWHVGXYHFWHXU WUDQVODWLRQ 3 3 VRQWGHVIRQFWLRQVGH[\]HWW&RPSWHWHQXGHO¶K\SRWKqVHGHVSHWLWHV WUDQVODWLRQV RQ SHXW FRQIRQGUH pWDW LQLWLDO HW pWDW DFWXHO W SRXU pFULUH FHUWDLQHV pTXDWLRQV SDU H[HPSOH OHV pTXDWLRQV G¶pTXLOLEUH VDXI GDQV FHUWDLQV FDV GPHQW VLJQDOpV FRPPH FHX[ GH IODPEHPHQW (Q FDOFXODQW OHV FRPSRVDQWHV XGX ZGY ZGZ GX YHFWHXU 4 4 RQ GpPRQWUH WRPH , FKDSLWUH , TXH O¶RQ SDVVH GH D j D SDU OD
FRPELQDLVRQGHWURLVWUDQVIRUPDWLRQVSRQFWXHOOHV
FRPELQDLVRQGHWURLVWUDQVIRUPDWLRQVSRQFWXHOOHV
± XQHWUDQVODWLRQGHYHFWHXU 3 3
± XQHWUDQVODWLRQGHYHFWHXU 3 3
± XQHURWDWLRQDXWRXUGH3GpILQLHSDUOHSVHXGRYHFWHXU
± XQHURWDWLRQDXWRXUGH3GpILQLHSDUOHSVHXGRYHFWHXU
± XQH GpIRUPDWLRQ SXUH FDUDFWpULVp SDU OH WHQVHXU V\PpWULTXH ( GpILQL SDU E = JUDG 3 3 + JUDG W 3 3
± XQH GpIRUPDWLRQ SXUH FDUDFWpULVp SDU OH WHQVHXU V\PpWULTXH ( GpILQL SDU E = JUDG 3 3 + JUDG W 3 3
2Q GpPRQWUH GH SOXV TXH FH WHQVHXU VDWLVIDLW j O¶pTXDWLRQ QpFHVVDLUH GH FRPSWDELOLWp RX G¶LQWpJUDELOLWp GHVGpIRUPDWLRQVTXLV¶pFULW URW ⋅ URW E =
2Q GpPRQWUH GH SOXV TXH FH WHQVHXU VDWLVIDLW j O¶pTXDWLRQ QpFHVVDLUH GH FRPSWDELOLWp RX G¶LQWpJUDELOLWp GHVGpIRUPDWLRQVTXLV¶pFULW URW ⋅ URW E =
±e78'('(6&2175$,17(6
±e78'('(6&2175$,17(6
1RXVDYRQVpWXGLpOHVFRQWUDLQWHVGDQVXQVROLGHDXFKDSLWUH,,GXWRPH,OHVUpVXOWDWVpWDEOLV VRQWWRXWjIDLWJpQpUDX[TXHFHVFRQWUDLQWHVVRLHQWG¶RULJLQHPpFDQLTXHGXHVjO¶DSSOLFDWLRQ GH IRUFHV RX G¶RULJLQH WKHUPLTXH GXHV j O¶DSSOLFDWLRQ GH IRUFHV RX G¶RULJLQH WKHUPLTXH GXHVjO¶DSSOLFDWLRQG¶XQFKDPSGHWHPSpUDWXUH RXOHVGHX[
1RXVDYRQVpWXGLpOHVFRQWUDLQWHVGDQVXQVROLGHDXFKDSLWUH,,GXWRPH,OHVUpVXOWDWVpWDEOLV VRQWWRXWjIDLWJpQpUDX[TXHFHVFRQWUDLQWHVVRLHQWG¶RULJLQHPpFDQLTXHGXHVjO¶DSSOLFDWLRQ GH IRUFHV RX G¶RULJLQH WKHUPLTXH GXHV j O¶DSSOLFDWLRQ GH IRUFHV RX G¶RULJLQH WKHUPLTXH GXHVjO¶DSSOLFDWLRQG¶XQFKDPSGHWHPSpUDWXUH RXOHVGHX[
G 1RXV DYRQV HQ SDUWLFXOLHU GpILQL OH YHFWHXU FRQWUDLQWH & GDQV XQ pOpPHQW GH ILEUH SXLV OD PDWULFH FRQWUDLQWH [Σ] HQ XQ SRLQW 3 G¶XQ VROLGH GDQV OHV D[HV {3 [\]} HW HQILQ OH WHQVHXU G G G FRQWUDLQWH Σ HQ3TXLSHUPHWSDUODIRUPXOH & = Σ Q GHFDOFXOHUOHYHFWHXU & DXFHQWUHG¶XQ G pOpPHQW GH ILEUH G¶XQLWDLUH Q 1RXV DYRQV GpPRQWUp OD V\PpWULH GX WHQVHXU Σ HQ pFULYDQW O¶pTXLOLEUH GHV PRPHQWV DSSOLTXpV j pOpPHQWDLUH 1RXV DYRQV HQILQ pWDEOL G XQ SDYp PDWpULHO G O¶pTXDWLRQ GH O¶pTXLOLEUH ORFDO I + GLY Σ = R HQ pFULYDQW SRXU XQ GRPDLQH PDWpULHO G TXHOFRQTXH DO¶pTXLOLEUHHQWUHOHVIRUFHVYROXPLTXHV I DSSOLTXpHVjWRXWHVOHVSDUWLFXOHVGH DHWOHVIRUFHVVXUIDFLTXHVF¶HVWjGLUHOHVFRQWUDLQWHVDSSOLTXpHVDX[SDUWLFXOHVFRQVWLWXDQWOD IURQWLqUHGH D
G 1RXV DYRQV HQ SDUWLFXOLHU GpILQL OH YHFWHXU FRQWUDLQWH & GDQV XQ pOpPHQW GH ILEUH SXLV OD PDWULFH FRQWUDLQWH [Σ] HQ XQ SRLQW 3 G¶XQ VROLGH GDQV OHV D[HV {3 [\]} HW HQILQ OH WHQVHXU G G G FRQWUDLQWH Σ HQ3TXLSHUPHWSDUODIRUPXOH & = Σ Q GHFDOFXOHUOHYHFWHXU & DXFHQWUHG¶XQ G pOpPHQW GH ILEUH G¶XQLWDLUH Q 1RXV DYRQV GpPRQWUp OD V\PpWULH GX WHQVHXU Σ HQ pFULYDQW O¶pTXLOLEUH GHV PRPHQWV DSSOLTXpV j pOpPHQWDLUH 1RXV DYRQV HQILQ pWDEOL G XQ SDYp PDWpULHO G O¶pTXDWLRQ GH O¶pTXLOLEUH ORFDO I + GLY Σ = R HQ pFULYDQW SRXU XQ GRPDLQH PDWpULHO G TXHOFRQTXH DO¶pTXLOLEUHHQWUHOHVIRUFHVYROXPLTXHV I DSSOLTXpHVjWRXWHVOHVSDUWLFXOHVGH DHWOHVIRUFHVVXUIDFLTXHVF¶HVWjGLUHOHVFRQWUDLQWHVDSSOLTXpHVDX[SDUWLFXOHVFRQVWLWXDQWOD IURQWLqUHGH D
&RPPH SRXU OHV GpIRUPDWLRQV RQ VH UHSRUWHUD GRQF DX WRPH , SRXU FH TXL FRQFHUQH OHV FRQWUDLQWHV
&RPPH SRXU OHV GpIRUPDWLRQV RQ VH UHSRUWHUD GRQF DX WRPH , SRXU FH TXL FRQFHUQH OHV FRQWUDLQWHV
- 36 -
- 36 -
±5(/$7,216(175(&2175$,17(6(7'e)250$7,216
±5(/$7,216(175(&2175$,17(6(7'e)250$7,216
3RXU pWDEOLU FHV ORLV GH FRPSRUWHPHQW RQ V¶DSSXLH VXU OHV GHX[ UpVXOWDWV H[SpULPHQWDX[ VXLYDQWV
3RXU pWDEOLU FHV ORLV GH FRPSRUWHPHQW RQ V¶DSSXLH VXU OHV GHX[ UpVXOWDWV H[SpULPHQWDX[ VXLYDQWV
±/DORLGH+RRNH
±/DORLGH+RRNH
(WDEOLHDXFKDSLWUH,,,GXWRPH,GDQVOHFDVLVRWKHUPH 7 = 7 HOOHV¶pFULW
(WDEOLHDXFKDSLWUH,,,GXWRPH,GDQVOHFDVLVRWKHUPH 7 = 7 HOOHV¶pFULW
E=
+ ν ν Σ − V , RX Σ = λ H , + µ E ( (
E=
+ ν ν Σ − V , RX Σ = λ H , + µ E ( (
DYHF ± ( = PRGXOHG¶
DYHF ± ( = PRGXOHG¶
/HVFRHIILFLHQWVGH/DPp λ HW µ V¶H[SULPHQWHQIRQFWLRQGH(HW ν SDUOHVIRUPXOHV
/HVFRHIILFLHQWVGH/DPp λ HW µ V¶H[SULPHQWHQIRQFWLRQGH(HW ν SDUOHVIRUPXOHV
λ=
(ν ( HW µ = * = ( + ν )( − ν ) ( + ν )
λ=
(ν ( HW µ = * = ( + ν )( − ν ) ( + ν )
* = µ V¶DSSHOOHDXVVLPRGXOHG¶pODVWLFLWpGHJOLVVHPHQWRXWUDQVYHUVDO
* = µ V¶DSSHOOHDXVVLPRGXOHG¶pODVWLFLWpGHJOLVVHPHQWRXWUDQVYHUVDO
HHWVGpVLJQHQWOHVWUDFHVGHVWHQVHXUV E HW Σ ,GpVLJQHOHWHQVHXUXQLWp
HHWVGpVLJQHQWOHVWUDFHVGHVWHQVHXUV E HW Σ ,GpVLJQHOHWHQVHXUXQLWp
±/DORLGHODGLODWDWLRQWKHUPLTXH
±/DORLGHODGLODWDWLRQWKHUPLTXH
/RUVTX¶XQVROLGHKRPRJqQHLVRWURSHHWOLEUHGHVHGpIRUPHUGRQFQRQK\SHUVWDWLTXH YRLWVD WHPSpUDWXUH SDVVHU GH VD YDOHXU XQLIRUPH 7 j OD YDOHXU XQLIRUPH 7 WRXWHV VHV GLVWDQFHV LQWHUSDUWLFXODLUHVVXELVVHQWODYDULDWLRQUHODWLYH α (7 − 7 ) /HFRHIILFLHQW α FDUDFWpULVWLTXH GXPDWpULDXVHQRPPHFRHIILFLHQWGHGLODWDWLRQWKHUPLTXHOLQpLTXH
/RUVTX¶XQVROLGHKRPRJqQHLVRWURSHHWOLEUHGHVHGpIRUPHUGRQFQRQK\SHUVWDWLTXH YRLWVD WHPSpUDWXUH SDVVHU GH VD YDOHXU XQLIRUPH 7 j OD YDOHXU XQLIRUPH 7 WRXWHV VHV GLVWDQFHV LQWHUSDUWLFXODLUHVVXELVVHQWODYDULDWLRQUHODWLYH α (7 − 7 ) /HFRHIILFLHQW α FDUDFWpULVWLTXH GXPDWpULDXVHQRPPHFRHIILFLHQWGHGLODWDWLRQWKHUPLTXHOLQpLTXH
/D WUDQVIRUPDWLRQ SRQFWXHOOH VXELH SDU OH VROLGH HVW GRQF XQH KRPRWKpWLH GH UDSSRUW [ + α (7 − 7 )]'HSOXVFHWWHYDULDWLRQGHWHPSpUDWXUHQ¶LQWURGXLWDXFXQHFRQWUDLQWH
/D WUDQVIRUPDWLRQ SRQFWXHOOH VXELH SDU OH VROLGH HVW GRQF XQH KRPRWKpWLH GH UDSSRUW [ + α (7 − 7 )]'HSOXVFHWWHYDULDWLRQGHWHPSpUDWXUHQ¶LQWURGXLWDXFXQHFRQWUDLQWH
7RXWHFKDvQHGHSDUWLFXOHVLVROpHDXVHLQGXVROLGHYRLWVDORQJXHXUSDVVHUGH A j A DYHF A − A ε= = α (7 − 7 ) /HWHQVHXUGHGpIRUPDWLRQDVVRFLpGLW©WKHUPLTXHªHWQRWp EWK HVW A GRQFXQLIRUPHHWVSKpULTXHLVRWURSH DYHF EWK = α (7 − 7 ) ,
7RXWHFKDvQHGHSDUWLFXOHVLVROpHDXVHLQGXVROLGHYRLWVDORQJXHXUSDVVHUGH A j A DYHF A − A ε= = α (7 − 7 ) /HWHQVHXUGHGpIRUPDWLRQDVVRFLpGLW©WKHUPLTXHªHWQRWp EWK HVW A GRQFXQLIRUPHHWVSKpULTXHLVRWURSH DYHF EWK = α (7 − 7 ) ,
/HVYDOHXUVGH α jODWHPSpUDWXUHGH&VRQWGRQQpHVSDUOHWDEOHDXGXFKDSLWUH,,,SDJH WRPH,
/HVYDOHXUVGH α jODWHPSpUDWXUHGH&VRQWGRQQpHVSDUOHWDEOHDXGXFKDSLWUH,,,SDJH WRPH,
- 37 -
- 37 -
±5(/$7,216(175(&2175$,17(6(7'e)250$7,216
±5(/$7,216(175(&2175$,17(6(7'e)250$7,216
3RXU pWDEOLU FHV ORLV GH FRPSRUWHPHQW RQ V¶DSSXLH VXU OHV GHX[ UpVXOWDWV H[SpULPHQWDX[ VXLYDQWV
3RXU pWDEOLU FHV ORLV GH FRPSRUWHPHQW RQ V¶DSSXLH VXU OHV GHX[ UpVXOWDWV H[SpULPHQWDX[ VXLYDQWV
±/DORLGH+RRNH
±/DORLGH+RRNH
(WDEOLHDXFKDSLWUH,,,GXWRPH,GDQVOHFDVLVRWKHUPH 7 = 7 HOOHV¶pFULW
(WDEOLHDXFKDSLWUH,,,GXWRPH,GDQVOHFDVLVRWKHUPH 7 = 7 HOOHV¶pFULW
E=
+ ν ν Σ − V , RX Σ = λ H , + µ E ( (
E=
+ ν ν Σ − V , RX Σ = λ H , + µ E ( (
DYHF ± ( = PRGXOHG¶
DYHF ± ( = PRGXOHG¶
/HVFRHIILFLHQWVGH/DPp λ HW µ V¶H[SULPHQWHQIRQFWLRQGH(HW ν SDUOHVIRUPXOHV
/HVFRHIILFLHQWVGH/DPp λ HW µ V¶H[SULPHQWHQIRQFWLRQGH(HW ν SDUOHVIRUPXOHV
λ=
(ν
( + ν )( − ν )
HW µ = * =
( ( + ν )
λ=
(ν
( + ν )( − ν )
HW µ = * =
( ( + ν )
* = µ V¶DSSHOOHDXVVLPRGXOHG¶pODVWLFLWpGHJOLVVHPHQWRXWUDQVYHUVDO
* = µ V¶DSSHOOHDXVVLPRGXOHG¶pODVWLFLWpGHJOLVVHPHQWRXWUDQVYHUVDO
HHWVGpVLJQHQWOHVWUDFHVGHVWHQVHXUV E HW Σ ,GpVLJQHOHWHQVHXUXQLWp
HHWVGpVLJQHQWOHVWUDFHVGHVWHQVHXUV E HW Σ ,GpVLJQHOHWHQVHXUXQLWp
±/DORLGHODGLODWDWLRQWKHUPLTXH
±/DORLGHODGLODWDWLRQWKHUPLTXH
/RUVTX¶XQVROLGHKRPRJqQHLVRWURSHHWOLEUHGHVHGpIRUPHUGRQFQRQK\SHUVWDWLTXH YRLWVD WHPSpUDWXUH SDVVHU GH VD YDOHXU XQLIRUPH 7 j OD YDOHXU XQLIRUPH 7 WRXWHV VHV GLVWDQFHV LQWHUSDUWLFXODLUHVVXELVVHQWODYDULDWLRQUHODWLYH α (7 − 7 ) /HFRHIILFLHQW α FDUDFWpULVWLTXH GXPDWpULDXVHQRPPHFRHIILFLHQWGHGLODWDWLRQWKHUPLTXHOLQpLTXH
/RUVTX¶XQVROLGHKRPRJqQHLVRWURSHHWOLEUHGHVHGpIRUPHUGRQFQRQK\SHUVWDWLTXH YRLWVD WHPSpUDWXUH SDVVHU GH VD YDOHXU XQLIRUPH 7 j OD YDOHXU XQLIRUPH 7 WRXWHV VHV GLVWDQFHV LQWHUSDUWLFXODLUHVVXELVVHQWODYDULDWLRQUHODWLYH α (7 − 7 ) /HFRHIILFLHQW α FDUDFWpULVWLTXH GXPDWpULDXVHQRPPHFRHIILFLHQWGHGLODWDWLRQWKHUPLTXHOLQpLTXH
/D WUDQVIRUPDWLRQ SRQFWXHOOH VXELH SDU OH VROLGH HVW GRQF XQH KRPRWKpWLH GH UDSSRUW [ + α (7 − 7 )]'HSOXVFHWWHYDULDWLRQGHWHPSpUDWXUHQ¶LQWURGXLWDXFXQHFRQWUDLQWH
/D WUDQVIRUPDWLRQ SRQFWXHOOH VXELH SDU OH VROLGH HVW GRQF XQH KRPRWKpWLH GH UDSSRUW [ + α (7 − 7 )]'HSOXVFHWWHYDULDWLRQGHWHPSpUDWXUHQ¶LQWURGXLWDXFXQHFRQWUDLQWH
7RXWHFKDvQHGHSDUWLFXOHVLVROpHDXVHLQGXVROLGHYRLWVDORQJXHXUSDVVHUGH A j A DYHF A − A ε= = α (7 − 7 ) /HWHQVHXUGHGpIRUPDWLRQDVVRFLpGLW©WKHUPLTXHªHWQRWp EWK HVW A GRQFXQLIRUPHHWVSKpULTXHLVRWURSH DYHF EWK = α (7 − 7 ) ,
7RXWHFKDvQHGHSDUWLFXOHVLVROpHDXVHLQGXVROLGHYRLWVDORQJXHXUSDVVHUGH A j A DYHF A − A ε= = α (7 − 7 ) /HWHQVHXUGHGpIRUPDWLRQDVVRFLpGLW©WKHUPLTXHªHWQRWp EWK HVW A GRQFXQLIRUPHHWVSKpULTXHLVRWURSH DYHF EWK = α (7 − 7 ) ,
/HVYDOHXUVGH α jODWHPSpUDWXUHGH&VRQWGRQQpHVSDUOHWDEOHDXGXFKDSLWUH,,,SDJH WRPH,
/HVYDOHXUVGH α jODWHPSpUDWXUHGH&VRQWGRQQpHVSDUOHWDEOHDXGXFKDSLWUH,,,SDJH WRPH,
- 37 -
- 37 -
7RXWH QDSSH GH SDUWLFXOHV GX VROLGH VXELW OD YDULDWLRQ UHODWLYH GH VXUIDFH 6 − 6 = α (7 − 7 )WRXWGRPDLQH DDXVHLQGXVROLGHVXELWODYDULDWLRQUHODWLYHGHYROXPH 6 RXGLODWDWLRQYROXPLTXHUHODWLYH 9 − 9 = α (7 − 7 ) 9
7RXWH QDSSH GH SDUWLFXOHV GX VROLGH VXELW OD YDULDWLRQ UHODWLYH GH VXUIDFH 6 − 6 = α (7 − 7 )WRXWGRPDLQH DDXVHLQGXVROLGHVXELWODYDULDWLRQUHODWLYHGHYROXPH 6 RXGLODWDWLRQYROXPLTXHUHODWLYH 9 − 9 = α (7 − 7 ) 9
±/DORLGH+RRNH±'XKDPHO
±/DORLGH+RRNH±'XKDPHO
3RXUpWDEOLUODORLGXFRPSRUWHPHQWWKHUPRpODVWLTXHOLQpDLUHLVRORQVDXVHLQG¶XQVROLGHXQ SDYppOpPHQWDLUHILJXUH
3RXUpWDEOLUODORLGXFRPSRUWHPHQWWKHUPRpODVWLTXHOLQpDLUHLVRORQVDXVHLQG¶XQVROLGHXQ SDYppOpPHQWDLUHILJXUH
± GDQVO¶pWDW LOHVWQRQGpIRUPp E = QRQFRQWUDLQW Σ = HWODWHPSpUDWXUH 7
± GDQVO¶pWDW LOHVWQRQGpIRUPp E = QRQFRQWUDLQW Σ = HWODWHPSpUDWXUH 7
± GDQV O¶pWDW ©DFWXHOª W VHV pWDWV GH GpIRUPDWLRQ HW FRQWUDLQWH VRQW FDUDFWpULVp SDU OHV WHQVHXUV E HW Σ VDWHPSpUDWXUHHVW7
± GDQV O¶pWDW ©DFWXHOª W VHV pWDWV GH GpIRUPDWLRQ HW FRQWUDLQWH VRQW FDUDFWpULVp SDU OHV WHQVHXUV E HW Σ VDWHPSpUDWXUHHVW7
7
Σ = = E
W 7 Σ E
L 7 Σ = E = EWK
7
Σ = = E
W 7 Σ E
L 7 Σ = E = EWK
)LJXUH
)LJXUH
3RXUSDVVHUGHO¶pWDW jO¶pWDWW SDVVRQVSDUXQpWDWLQWHUPpGLDLUHL GDQVOHTXHOOHSDYpVH WURXYHjODWHPSpUDWXUH7VDQVFRQWUDLQWHVVXUVHVIDFHWWHV
3RXUSDVVHUGHO¶pWDW jO¶pWDWW SDVVRQVSDUXQpWDWLQWHUPpGLDLUHL GDQVOHTXHOOHSDYpVH WURXYHjODWHPSpUDWXUH7VDQVFRQWUDLQWHVVXUVHVIDFHWWHV
(Q SDVVDQW GH j L RQ SDVVH GH 7 j 7 HW GH E = j EWK = α (7 − 7 ) , OHV FRQWUDLQWHV
(Q SDVVDQW GH j L RQ SDVVH GH 7 j 7 HW GH E = j EWK = α (7 − 7 ) , OHV FRQWUDLQWHV
UHVWDQWQXOOHV
UHVWDQWQXOOHV
(Q SDVVDQW GH L j W RQ DMRXWH j EWK OHV GpIRUPDWLRQV GXHV DX[ FRQWUDLQWHV F¶HVW j GLUH
(Q SDVVDQW GH L j W RQ DMRXWH j EWK OHV GpIRUPDWLRQV GXHV DX[ FRQWUDLQWHV F¶HVW j GLUH
+ ν ν Σ − V , GRQQpHVSDUODORLGH+RRNHVRLW ( (
GRQQpHVSDUODORLGH+RRNHVRLW
)LQDOHPHQWHQSDVVDQWGH jW RQLQWURGXLWODGpIRUPDWLRQ
)LQDOHPHQWHQSDVVDQWGH jW RQLQWURGXLWODGpIRUPDWLRQ
E=
+ ν ν Σ − V , + α (7 − 7 ) ,
( (
GpIRUPDWLRQV PpFDQLTXHV
+ ν ν Σ − V , ( (
E=
GpIRUPDWLRQV WKHUPLTXHV
+ ν ν Σ − V , + α (7 − 7 ) ,
( (
GpIRUPDWLRQV PpFDQLTXHV
GpIRUPDWLRQV WKHUPLTXHV
- 38 -
- 38 -
7RXWH QDSSH GH SDUWLFXOHV GX VROLGH VXELW OD YDULDWLRQ UHODWLYH GH VXUIDFH 6 − 6 = α (7 − 7 )WRXWGRPDLQH DDXVHLQGXVROLGHVXELWODYDULDWLRQUHODWLYHGHYROXPH 6 RXGLODWDWLRQYROXPLTXHUHODWLYH 9 − 9 = α (7 − 7 ) 9
7RXWH QDSSH GH SDUWLFXOHV GX VROLGH VXELW OD YDULDWLRQ UHODWLYH GH VXUIDFH 6 − 6 = α (7 − 7 )WRXWGRPDLQH DDXVHLQGXVROLGHVXELWODYDULDWLRQUHODWLYHGHYROXPH 6 RXGLODWDWLRQYROXPLTXHUHODWLYH 9 − 9 = α (7 − 7 ) 9
±/DORLGH+RRNH±'XKDPHO
±/DORLGH+RRNH±'XKDPHO
3RXUpWDEOLUODORLGXFRPSRUWHPHQWWKHUPRpODVWLTXHOLQpDLUHLVRORQVDXVHLQG¶XQVROLGHXQ SDYppOpPHQWDLUHILJXUH
3RXUpWDEOLUODORLGXFRPSRUWHPHQWWKHUPRpODVWLTXHOLQpDLUHLVRORQVDXVHLQG¶XQVROLGHXQ SDYppOpPHQWDLUHILJXUH
± GDQVO¶pWDW LOHVWQRQGpIRUPp E = QRQFRQWUDLQW Σ = HWODWHPSpUDWXUH 7
± GDQVO¶pWDW LOHVWQRQGpIRUPp E = QRQFRQWUDLQW Σ = HWODWHPSpUDWXUH 7
± GDQV O¶pWDW ©DFWXHOª W VHV pWDWV GH GpIRUPDWLRQ HW FRQWUDLQWH VRQW FDUDFWpULVp SDU OHV WHQVHXUV E HW Σ VDWHPSpUDWXUHHVW7
± GDQV O¶pWDW ©DFWXHOª W VHV pWDWV GH GpIRUPDWLRQ HW FRQWUDLQWH VRQW FDUDFWpULVp SDU OHV WHQVHXUV E HW Σ VDWHPSpUDWXUHHVW7
7
Σ = = E
W 7 Σ E
L 7 Σ = E = EWK
7
Σ = = E
W 7 Σ E
L 7 Σ = E = EWK
)LJXUH
)LJXUH
3RXUSDVVHUGHO¶pWDW jO¶pWDWW SDVVRQVSDUXQpWDWLQWHUPpGLDLUHL GDQVOHTXHOOHSDYpVH WURXYHjODWHPSpUDWXUH7VDQVFRQWUDLQWHVVXUVHVIDFHWWHV
3RXUSDVVHUGHO¶pWDW jO¶pWDWW SDVVRQVSDUXQpWDWLQWHUPpGLDLUHL GDQVOHTXHOOHSDYpVH WURXYHjODWHPSpUDWXUH7VDQVFRQWUDLQWHVVXUVHVIDFHWWHV
(Q SDVVDQW GH j L RQ SDVVH GH 7 j 7 HW GH E = j EWK = α (7 − 7 ) , OHV FRQWUDLQWHV
(Q SDVVDQW GH j L RQ SDVVH GH 7 j 7 HW GH E = j EWK = α (7 − 7 ) , OHV FRQWUDLQWHV
UHVWDQWQXOOHV
UHVWDQWQXOOHV
(Q SDVVDQW GH L j W RQ DMRXWH j EWK OHV GpIRUPDWLRQV GXHV DX[ FRQWUDLQWHV F¶HVW j GLUH
(Q SDVVDQW GH L j W RQ DMRXWH j EWK OHV GpIRUPDWLRQV GXHV DX[ FRQWUDLQWHV F¶HVW j GLUH
GRQQpHVSDUODORLGH+RRNHVRLW
+ ν ν Σ − V , ( (
GRQQpHVSDUODORLGH+RRNHVRLW
)LQDOHPHQWHQSDVVDQWGH jW RQLQWURGXLWODGpIRUPDWLRQ
E=
+ ν ν Σ − V , + α (7 − 7 ) ,
( (
GpIRUPDWLRQV PpFDQLTXHV
- 38 -
GpIRUPDWLRQV WKHUPLTXHV
+ ν ν Σ − V , ( (
)LQDOHPHQWHQSDVVDQWGH jW RQLQWURGXLWODGpIRUPDWLRQ
E=
+ ν ν Σ − V , + α (7 − 7 ) ,
( (
GpIRUPDWLRQV PpFDQLTXHV
- 38 -
GpIRUPDWLRQV WKHUPLTXHV
&HWWH IRUPXOH WUDGXLW OD ORL GH +RRNH'XKDPHO HOOH OLH HQ WRXW SRLQW 3 OH WHQVHXU GHV FRQWUDLQWHV Σ OH WHQVHXU GHV GpIRUPDWLRQV E HW OD WHPSpUDWXUH 7 DX PR\HQ GH WURLV FRHIILFLHQWFDUDFWpULVWLTXHVGXPDWpULDX ( ν α
&HWWH IRUPXOH WUDGXLW OD ORL GH +RRNH'XKDPHO HOOH OLH HQ WRXW SRLQW 3 OH WHQVHXU GHV FRQWUDLQWHV Σ OH WHQVHXU GHV GpIRUPDWLRQV E HW OD WHPSpUDWXUH 7 DX PR\HQ GH WURLV FRHIILFLHQWFDUDFWpULVWLTXHVGXPDWpULDX ( ν α
6LO¶RQLQYHUVHODIRUPXOH SRXUH[SULPHUOHVFRQWUDLQWHVHQIRQFWLRQGHVGpIRUPDWLRQVHWGH ODWHPSpUDWXUHRQWURXYH Σ = λ H , + µ E − . α (7 − 7 ) , ( FRHIILFLHQWGHFRPSUHVVLELOLWp DYHF . = λ + µ = − ν
6LO¶RQLQYHUVHODIRUPXOH SRXUH[SULPHUOHVFRQWUDLQWHVHQIRQFWLRQGHVGpIRUPDWLRQVHWGH ODWHPSpUDWXUHRQWURXYH Σ = λ H , + µ E − . α (7 − 7 ) , ( FRHIILFLHQWGHFRPSUHVVLELOLWp DYHF . = λ + µ = − ν
5HPDUTXHOHVUHODWLRQVHQWUHWUDFHVHHWVGH EHW Σ V¶pFULYHQW
5HPDUTXHOHVUHODWLRQVHQWUHWUDFHVHHWVGH EHW Σ V¶pFULYHQW
V = . [H − α (7 − 7 )]HW H =
V + α (7 − 7 ) .
V = . [H − α (7 − 7 )]HW H =
V + α (7 − 7 ) .
5HPDUTXHFRPPHWRXVOHVFRHIILFLHQWVFDUDFWpULVWLTXHVGHVPDWpULDX[RXSUHVTXHWRXV ( ν α GRQF λ µ . YDULHQWDYHFODWHPSpUDWXUH
5HPDUTXHFRPPHWRXVOHVFRHIILFLHQWVFDUDFWpULVWLTXHVGHVPDWpULDX[RXSUHVTXHWRXV ( ν α GRQF λ µ . YDULHQWDYHFODWHPSpUDWXUH
/H PRGXOH G¶
/H PRGXOH G¶
/HV FRHIILFLHQWV GH 3RLVVRQ GHV PDWpULDX[ XVXHOV YDULHQW WUqV SHX SRXU OHV DFLHUV LQR[\GDEOHV YRLVLQ GH j & Y SDVVH SDU XQ PD[LPXP GH YHUV SRXU GpFURvWUHHQVXLWH
/HV FRHIILFLHQWV GH 3RLVVRQ GHV PDWpULDX[ XVXHOV YDULHQW WUqV SHX SRXU OHV DFLHUV LQR[\GDEOHV YRLVLQ GH j & Y SDVVH SDU XQ PD[LPXP GH YHUV SRXU GpFURvWUHHQVXLWH
5HPDUTXHODORLGH+RRNH'XKDPHO V¶pFULWHQWHUPHVGHFRPSRVDQWHVFDUWpVLHQQHV
5HPDUTXHODORLGH+RRNH'XKDPHO V¶pFULWHQWHUPHVGHFRPSRVDQWHVFDUWpVLHQQHV
(
)
(
)
(
)
+ ν ⎧ ⎧ ⎪ε [ = H σ [ − ν σ \ + σ ] + α (7 − 7 ) ⎪ γ \] = H τ \] ⎪ ⎪ + ν ⎪ ⎪ τ][ ⎨ε \ = σ \ − ν σ ] + σ [ + α (7 − 7 ) ⎨ γ ][ = H H ⎪ ⎪ ⎪ ⎪ + ν τ [\ ⎪ε ] = σ ] − ν σ [ + σ \ + α (7 − 7 ) ⎪γ [\ = H H ⎩ ⎩
(
)
(
)
(
)
+ ν ⎧ ⎧ ⎪ε [ = H σ [ − ν σ \ + σ ] + α (7 − 7 ) ⎪ γ \] = H τ \] ⎪ ⎪ + ν ⎪ ⎪ τ][ ⎨ε \ = σ \ − ν σ ] + σ [ + α (7 − 7 ) ⎨ γ ][ = H H ⎪ ⎪ ⎪ ⎪ + ν τ [\ ⎪ε ] = σ ] − ν σ [ + σ \ + α (7 − 7 ) ⎪γ [\ = H H ⎩ ⎩
±/(352%/Ê0(*e1e5$/'(7+(502e/$67,&,7e
±/(352%/Ê0(*e1e5$/'(7+(502e/$67,&,7e
2QVHGRQQH ± ODJpRPpWULHGHVVROLGHVFRQVWLWXDQWODVWUXFWXUH ± OHVFDUDFWpULVWLTXHV ( ν α GHVPDWpULDX[
2QVHGRQQH ± ODJpRPpWULHGHVVROLGHVFRQVWLWXDQWODVWUXFWXUH ± OHVFDUDFWpULVWLTXHV ( ν α GHVPDWpULDX[
± OHVOLDLVRQVLQWHUQHVHWH[WHUQHV
± OHVOLDLVRQVLQWHUQHVHWH[WHUQHV
± OHVFKDUJHPHQWVPpFDQLTXHHWWKHUPLTXH
± OHVFKDUJHPHQWVPpFDQLTXHHWWKHUPLTXH
± OHVD[HV {R [\]}FKRLVLVOLpVjODVWUXFWXUH
± OHVD[HV {R [\]}FKRLVLVOLpVjODVWUXFWXUH
- 39 -
- 39 -
&HWWH IRUPXOH WUDGXLW OD ORL GH +RRNH'XKDPHO HOOH OLH HQ WRXW SRLQW 3 OH WHQVHXU GHV FRQWUDLQWHV Σ OH WHQVHXU GHV GpIRUPDWLRQV E HW OD WHPSpUDWXUH 7 DX PR\HQ GH WURLV FRHIILFLHQWFDUDFWpULVWLTXHVGXPDWpULDX ( ν α
&HWWH IRUPXOH WUDGXLW OD ORL GH +RRNH'XKDPHO HOOH OLH HQ WRXW SRLQW 3 OH WHQVHXU GHV FRQWUDLQWHV Σ OH WHQVHXU GHV GpIRUPDWLRQV E HW OD WHPSpUDWXUH 7 DX PR\HQ GH WURLV FRHIILFLHQWFDUDFWpULVWLTXHVGXPDWpULDX ( ν α
6LO¶RQLQYHUVHODIRUPXOH SRXUH[SULPHUOHVFRQWUDLQWHVHQIRQFWLRQGHVGpIRUPDWLRQVHWGH ODWHPSpUDWXUHRQWURXYH Σ = λ H , + µ E − . α (7 − 7 ) , ( FRHIILFLHQWGHFRPSUHVVLELOLWp DYHF . = λ + µ = − ν
6LO¶RQLQYHUVHODIRUPXOH SRXUH[SULPHUOHVFRQWUDLQWHVHQIRQFWLRQGHVGpIRUPDWLRQVHWGH ODWHPSpUDWXUHRQWURXYH Σ = λ H , + µ E − . α (7 − 7 ) , ( FRHIILFLHQWGHFRPSUHVVLELOLWp DYHF . = λ + µ = − ν
5HPDUTXHOHVUHODWLRQVHQWUHWUDFHVHHWVGH EHW Σ V¶pFULYHQW
5HPDUTXHOHVUHODWLRQVHQWUHWUDFHVHHWVGH EHW Σ V¶pFULYHQW
V = . [H − α (7 − 7 )]HW H =
V + α (7 − 7 ) .
V = . [H − α (7 − 7 )]HW H =
V + α (7 − 7 ) .
5HPDUTXHFRPPHWRXVOHVFRHIILFLHQWVFDUDFWpULVWLTXHVGHVPDWpULDX[RXSUHVTXHWRXV ( ν α GRQF λ µ . YDULHQWDYHFODWHPSpUDWXUH
5HPDUTXHFRPPHWRXVOHVFRHIILFLHQWVFDUDFWpULVWLTXHVGHVPDWpULDX[RXSUHVTXHWRXV ( ν α GRQF λ µ . YDULHQWDYHFODWHPSpUDWXUH
/H PRGXOH G¶
/H PRGXOH G¶
/HV FRHIILFLHQWV GH 3RLVVRQ GHV PDWpULDX[ XVXHOV YDULHQW WUqV SHX SRXU OHV DFLHUV LQR[\GDEOHV YRLVLQ GH j & Y SDVVH SDU XQ PD[LPXP GH YHUV SRXU GpFURvWUHHQVXLWH
/HV FRHIILFLHQWV GH 3RLVVRQ GHV PDWpULDX[ XVXHOV YDULHQW WUqV SHX SRXU OHV DFLHUV LQR[\GDEOHV YRLVLQ GH j & Y SDVVH SDU XQ PD[LPXP GH YHUV SRXU GpFURvWUHHQVXLWH
5HPDUTXHODORLGH+RRNH'XKDPHO V¶pFULWHQWHUPHVGHFRPSRVDQWHVFDUWpVLHQQHV
5HPDUTXHODORLGH+RRNH'XKDPHO V¶pFULWHQWHUPHVGHFRPSRVDQWHVFDUWpVLHQQHV
(
)
(
)
(
)
+ ν ⎧ ⎧ ⎪ε [ = H σ [ − ν σ \ + σ ] + α (7 − 7 ) ⎪ γ \] = H τ \] ⎪ ⎪ + ν ⎪ ⎪ τ][ ⎨ε \ = σ \ − ν σ ] + σ [ + α (7 − 7 ) ⎨ γ ][ = H H ⎪ ⎪ ⎪ ⎪ + ν τ [\ ⎪ε ] = σ ] − ν σ [ + σ \ + α (7 − 7 ) ⎪γ [\ = H H ⎩ ⎩
(
)
(
)
(
)
+ ν ⎧ ⎧ ⎪ε [ = H σ [ − ν σ \ + σ ] + α (7 − 7 ) ⎪ γ \] = H τ \] ⎪ ⎪ + ν ⎪ ⎪ τ][ ⎨ε \ = σ \ − ν σ ] + σ [ + α (7 − 7 ) ⎨ γ ][ = H H ⎪ ⎪ ⎪ ⎪ + ν τ [\ ⎪ε ] = σ ] − ν σ [ + σ \ + α (7 − 7 ) ⎪γ [\ = H H ⎩ ⎩
±/(352%/Ê0(*e1e5$/'(7+(502e/$67,&,7e
±/(352%/Ê0(*e1e5$/'(7+(502e/$67,&,7e
2QVHGRQQH ± ODJpRPpWULHGHVVROLGHVFRQVWLWXDQWODVWUXFWXUH ± OHVFDUDFWpULVWLTXHV ( ν α GHVPDWpULDX[
2QVHGRQQH ± ODJpRPpWULHGHVVROLGHVFRQVWLWXDQWODVWUXFWXUH ± OHVFDUDFWpULVWLTXHV ( ν α GHVPDWpULDX[
± OHVOLDLVRQVLQWHUQHVHWH[WHUQHV
± OHVOLDLVRQVLQWHUQHVHWH[WHUQHV
± OHVFKDUJHPHQWVPpFDQLTXHHWWKHUPLTXH
± OHVFKDUJHPHQWVPpFDQLTXHHWWKHUPLTXH
± OHVD[HV {R [\]}FKRLVLVOLpVjODVWUXFWXUH
- 39 -
± OHVD[HV {R [\]}FKRLVLVOLpVjODVWUXFWXUH
- 39 -
2QYHXWFDOFXOHUHQFKDTXHSRLQW3GHODVWUXFWXUH
2QYHXWFDOFXOHUHQFKDTXHSRLQW3GHODVWUXFWXUH
±OHVFRPSRVDQWVGXYHFWHXUWUDQVODWLRQ 3R3
±OHVFRPSRVDQWVGXYHFWHXUWUDQVODWLRQ 3R3
± OHVFRPSRVDQWVGXSVHXGRYHFWHXUURWDWLRQ ± OHVVL[FRPSRVDQWHVGXWHQVHXUGpIRUPDWLRQ E ± OHVVL[FRPSRVDQWHVGXWHQVHXUFRQWUDLQWH Σ
± OHVFRPSRVDQWVGXSVHXGRYHFWHXUURWDWLRQ ± OHVVL[FRPSRVDQWHVGXWHQVHXUGpIRUPDWLRQ E ± OHVVL[FRPSRVDQWHVGXWHQVHXUFRQWUDLQWH Σ
VRLWIRQFWLRQVGH[\]HWW
VRLWIRQFWLRQVGH[\]HWW
/DWHPSpUDWXUH7[\]W D\DQWpWpGpWHUPLQpHSUpDODEOHPHQWRQGLVSRVHSRXUFHFDOFXOGH pTXDWLRQVLQGpSHQGDQWHVOLDQWFHVSDUDPqWUHVjVDYRLU
/DWHPSpUDWXUH7[\]W D\DQWpWpGpWHUPLQpHSUpDODEOHPHQWRQGLVSRVHSRXUFHFDOFXOGH pTXDWLRQVLQGpSHQGDQWHVOLDQWFHVSDUDPqWUHVjVDYRLU
±OHVUHODWLRQVHQWUHURWDWLRQVHWWUDQVODWLRQVVRLW
±OHVUHODWLRQVHQWUHURWDWLRQVHWWUDQVODWLRQVVRLW
±OHVUHODWLRQVHQWUHGpIRUPDWLRQVHWWUDQVODWLRQVVRLW
±OHVUHODWLRQVHQWUHGpIRUPDWLRQVHWWUDQVODWLRQVVRLW
E = JUDG 3R3 + JUDG W 3R3 pTXDWLRQVVFDODLUHV RXOHVpTXDWLRQVGHFRPSDWLELOLWp URW ⋅ URW E =
E = JUDG 3R3 + JUDG W 3R3 pTXDWLRQVVFDODLUHV RXOHVpTXDWLRQVGHFRPSDWLELOLWp URW ⋅ URW E =
±OHVpTXDWLRQVGHO¶pTXLOLEUHORFDOVRLW G G I + GLY Σ = R pTXDWLRQVVFDODLUHV
±OHVpTXDWLRQVGHO¶pTXLOLEUHORFDOVRLW G G I + GLY Σ = R pTXDWLRQVVFDODLUHV
±OHVUHODWLRQVGH+RRNHHW'XKDPHOVRLW + ν ν E= Σ − V , + α (7 − 7 ) , pTXDWLRQVVFDODLUHV ( (
±OHVUHODWLRQVGH+RRNHHW'XKDPHOVRLW + ν ν E= Σ − V , + α (7 − 7 ) , pTXDWLRQVVFDODLUHV ( (
UHPpWKRGHGHUpVROXWLRQPpWKRGHGHVGpSODFHPHQWV
UHPpWKRGHGHUpVROXWLRQPpWKRGHGHVGpSODFHPHQWV
(OOH FRQVLVWH j SUHQGUH FRPPH LQFRQQXHV SULYLOpJLpHV OHV WURLV FRPSRVDQWHV GX YHFWHXU WUDQVODWLRQ 3R3 QRWpHVXYZ2QREWLHQWWURLVpTXDWLRQVOLDQWFHVWURLVIRQFWLRQVLQFRQQXHV G G HQ UHPSODoDQW GH O¶pTXLOLEUH ORFDO I + GLY Σ = R Σ SDU λ GLY 3R3 , + µ JUDG 3R3
(OOH FRQVLVWH j SUHQGUH FRPPH LQFRQQXHV SULYLOpJLpHV OHV WURLV FRPSRVDQWHV GX YHFWHXU WUDQVODWLRQ 3R3 QRWpHVXYZ2QREWLHQWWURLVpTXDWLRQVOLDQWFHVWURLVIRQFWLRQVLQFRQQXHV G G HQ UHPSODoDQW GH O¶pTXLOLEUH ORFDO I + GLY Σ = R Σ SDU λ GLY 3R3 , + µ JUDG 3R3
+ JUDG W 3R3 − . α 7 − 7 , HQYHUWXGHODORLGH+RRNH'XKDPHOVDFKDQWTXH H = GLY 3R3
+ JUDG W 3R3 − . α 7 − 7 , HQYHUWXGHODORLGH+RRNH'XKDPHOVDFKDQWTXH H = GLY 3R3
HW E = JUDG 3R3 + JUDG W 3R3 2QREWLHQWWRXVFDOFXOVIDLWVO¶pTXDWLRQYHFWRULHOOHGH1DYLHU 'XKDPHO G λ + µ JUDG ⋅ GLY 3R3 + µ ∆ 3R3 = λ + µ α JUDG 7 − I
HW E = JUDG 3R3 + JUDG W 3R3 2QREWLHQWWRXVFDOFXOVIDLWVO¶pTXDWLRQYHFWRULHOOHGH1DYLHU 'XKDPHO G λ + µ JUDG ⋅ GLY 3R3 + µ ∆ 3R3 = λ + µ α JUDG 7 − I
TXH O¶RQ SURMHWWH HQVXLWH VL EHVRLQ HVW VXU OHV WURLV D[HV FH TXL GRQQH WURLV pTXDWLRQV VFDODLUHV DX[ GpULYpHV SDUWLHOOHV VHFRQGHV /¶LQWpJUDWLRQ GRQQH OH YHFWHXU WUDQVODWLRQ 3R3 DYHFGHVFRQVWDQWHVG¶LQWpJUDWLRQ
TXH O¶RQ SURMHWWH HQVXLWH VL EHVRLQ HVW VXU OHV WURLV D[HV FH TXL GRQQH WURLV pTXDWLRQV VFDODLUHV DX[ GpULYpHV SDUWLHOOHV VHFRQGHV /¶LQWpJUDWLRQ GRQQH OH YHFWHXU WUDQVODWLRQ 3R3 DYHFGHVFRQVWDQWHVG¶LQWpJUDWLRQ
3DUGpULYDWLRQRQFDOFXOHHQVXLWH SXLV E HWHQILQDXPR\HQGHODORLGH+RRNH'XKDPHO Σ
3DUGpULYDWLRQRQFDOFXOHHQVXLWH SXLV E HWHQILQDXPR\HQGHODORLGH+RRNH'XKDPHO Σ
/HVFRQVWDQWHVG¶LQWpJUDWLRQVHGpWHUPLQHQWJUkFHDX[FRQGLWLRQVDX[OLPLWHVHWGDQVOHVFDV QRQVWDWLRQQDLUHVJUkFHDX[FRQGLWLRQVLQLWLDOHV
/HVFRQVWDQWHVG¶LQWpJUDWLRQVHGpWHUPLQHQWJUkFHDX[FRQGLWLRQVDX[OLPLWHVHWGDQVOHVFDV QRQVWDWLRQQDLUHVJUkFHDX[FRQGLWLRQVLQLWLDOHV
- 40 -
- 40 -
2QYHXWFDOFXOHUHQFKDTXHSRLQW3GHODVWUXFWXUH
2QYHXWFDOFXOHUHQFKDTXHSRLQW3GHODVWUXFWXUH
±OHVFRPSRVDQWVGXYHFWHXUWUDQVODWLRQ 3R3
±OHVFRPSRVDQWVGXYHFWHXUWUDQVODWLRQ 3R3
± OHVFRPSRVDQWVGXSVHXGRYHFWHXUURWDWLRQ ± OHVVL[FRPSRVDQWHVGXWHQVHXUGpIRUPDWLRQ E ± OHVVL[FRPSRVDQWHVGXWHQVHXUFRQWUDLQWH Σ
± OHVFRPSRVDQWVGXSVHXGRYHFWHXUURWDWLRQ ± OHVVL[FRPSRVDQWHVGXWHQVHXUGpIRUPDWLRQ E ± OHVVL[FRPSRVDQWHVGXWHQVHXUFRQWUDLQWH Σ
VRLWIRQFWLRQVGH[\]HWW
VRLWIRQFWLRQVGH[\]HWW
/DWHPSpUDWXUH7[\]W D\DQWpWpGpWHUPLQpHSUpDODEOHPHQWRQGLVSRVHSRXUFHFDOFXOGH pTXDWLRQVLQGpSHQGDQWHVOLDQWFHVSDUDPqWUHVjVDYRLU
/DWHPSpUDWXUH7[\]W D\DQWpWpGpWHUPLQpHSUpDODEOHPHQWRQGLVSRVHSRXUFHFDOFXOGH pTXDWLRQVLQGpSHQGDQWHVOLDQWFHVSDUDPqWUHVjVDYRLU
±OHVUHODWLRQVHQWUHURWDWLRQVHWWUDQVODWLRQVVRLW
±OHVUHODWLRQVHQWUHURWDWLRQVHWWUDQVODWLRQVVRLW
±OHVUHODWLRQVHQWUHGpIRUPDWLRQVHWWUDQVODWLRQVVRLW
±OHVUHODWLRQVHQWUHGpIRUPDWLRQVHWWUDQVODWLRQVVRLW
E = JUDG 3R3 + JUDG W 3R3 pTXDWLRQVVFDODLUHV RXOHVpTXDWLRQVGHFRPSDWLELOLWp URW ⋅ URW E =
E = JUDG 3R3 + JUDG W 3R3 pTXDWLRQVVFDODLUHV RXOHVpTXDWLRQVGHFRPSDWLELOLWp URW ⋅ URW E =
±OHVpTXDWLRQVGHO¶pTXLOLEUHORFDOVRLW G G I + GLY Σ = R pTXDWLRQVVFDODLUHV
±OHVpTXDWLRQVGHO¶pTXLOLEUHORFDOVRLW G G I + GLY Σ = R pTXDWLRQVVFDODLUHV
±OHVUHODWLRQVGH+RRNHHW'XKDPHOVRLW + ν ν E= Σ − V , + α (7 − 7 ) , pTXDWLRQVVFDODLUHV ( (
±OHVUHODWLRQVGH+RRNHHW'XKDPHOVRLW + ν ν E= Σ − V , + α (7 − 7 ) , pTXDWLRQVVFDODLUHV ( (
UHPpWKRGHGHUpVROXWLRQPpWKRGHGHVGpSODFHPHQWV
UHPpWKRGHGHUpVROXWLRQPpWKRGHGHVGpSODFHPHQWV
(OOH FRQVLVWH j SUHQGUH FRPPH LQFRQQXHV SULYLOpJLpHV OHV WURLV FRPSRVDQWHV GX YHFWHXU WUDQVODWLRQ 3R3 QRWpHVXYZ2QREWLHQWWURLVpTXDWLRQVOLDQWFHVWURLVIRQFWLRQVLQFRQQXHV G G HQ UHPSODoDQW GH O¶pTXLOLEUH ORFDO I + GLY Σ = R Σ SDU λ GLY 3R3 , + µ JUDG 3R3
(OOH FRQVLVWH j SUHQGUH FRPPH LQFRQQXHV SULYLOpJLpHV OHV WURLV FRPSRVDQWHV GX YHFWHXU WUDQVODWLRQ 3R3 QRWpHVXYZ2QREWLHQWWURLVpTXDWLRQVOLDQWFHVWURLVIRQFWLRQVLQFRQQXHV G G HQ UHPSODoDQW GH O¶pTXLOLEUH ORFDO I + GLY Σ = R Σ SDU λ GLY 3R3 , + µ JUDG 3R3
+ JUDG W 3R3 − . α 7 − 7 , HQYHUWXGHODORLGH+RRNH'XKDPHOVDFKDQWTXH H = GLY 3R3
+ JUDG W 3R3 − . α 7 − 7 , HQYHUWXGHODORLGH+RRNH'XKDPHOVDFKDQWTXH H = GLY 3R3
HW E = JUDG 3R3 + JUDG W 3R3 2QREWLHQWWRXVFDOFXOVIDLWVO¶pTXDWLRQYHFWRULHOOHGH1DYLHU 'XKDPHO G λ + µ JUDG ⋅ GLY 3R3 + µ ∆ 3R3 = λ + µ α JUDG 7 − I
HW E = JUDG 3R3 + JUDG W 3R3 2QREWLHQWWRXVFDOFXOVIDLWVO¶pTXDWLRQYHFWRULHOOHGH1DYLHU 'XKDPHO G λ + µ JUDG ⋅ GLY 3R3 + µ ∆ 3R3 = λ + µ α JUDG 7 − I
TXH O¶RQ SURMHWWH HQVXLWH VL EHVRLQ HVW VXU OHV WURLV D[HV FH TXL GRQQH WURLV pTXDWLRQV VFDODLUHV DX[ GpULYpHV SDUWLHOOHV VHFRQGHV /¶LQWpJUDWLRQ GRQQH OH YHFWHXU WUDQVODWLRQ 3R3 DYHFGHVFRQVWDQWHVG¶LQWpJUDWLRQ
TXH O¶RQ SURMHWWH HQVXLWH VL EHVRLQ HVW VXU OHV WURLV D[HV FH TXL GRQQH WURLV pTXDWLRQV VFDODLUHV DX[ GpULYpHV SDUWLHOOHV VHFRQGHV /¶LQWpJUDWLRQ GRQQH OH YHFWHXU WUDQVODWLRQ 3R3 DYHFGHVFRQVWDQWHVG¶LQWpJUDWLRQ
3DUGpULYDWLRQRQFDOFXOHHQVXLWH SXLV E HWHQILQDXPR\HQGHODORLGH+RRNH'XKDPHO Σ
3DUGpULYDWLRQRQFDOFXOHHQVXLWH SXLV E HWHQILQDXPR\HQGHODORLGH+RRNH'XKDPHO Σ
/HVFRQVWDQWHVG¶LQWpJUDWLRQVHGpWHUPLQHQWJUkFHDX[FRQGLWLRQVDX[OLPLWHVHWGDQVOHVFDV QRQVWDWLRQQDLUHVJUkFHDX[FRQGLWLRQVLQLWLDOHV
/HVFRQVWDQWHVG¶LQWpJUDWLRQVHGpWHUPLQHQWJUkFHDX[FRQGLWLRQVDX[OLPLWHVHWGDQVOHVFDV QRQVWDWLRQQDLUHVJUkFHDX[FRQGLWLRQVLQLWLDOHV
- 40 -
- 40 -
5HPDUTXHXQHIRLVOHFKDPSGHWHPSpUDWXUH7GpWHUPLQpOHSUREOqPHHVWIRUPHOOHPHQW LGHQWLTXH j VRQ KRPRORJXH GG¶pODVWLFLWp LVRWKHUPH H[SRVp DX FKDSLWUH ,9 GX WRPH , RQ G UHPSODFHODIRUFHYROXPLTXH I SDU I − λ + µ α JUDG 7 /HVLQGLFDWLRQVSUDWLTXHVGRQQpHV jFHWWHRFFDVLRQUHVWHQWGRQFYDODEOHVLFL
5HPDUTXHXQHIRLVOHFKDPSGHWHPSpUDWXUH7GpWHUPLQpOHSUREOqPHHVWIRUPHOOHPHQW LGHQWLTXH j VRQ KRPRORJXH GG¶pODVWLFLWp LVRWKHUPH H[SRVp DX FKDSLWUH ,9 GX WRPH , RQ G UHPSODFHODIRUFHYROXPLTXH I SDU I − λ + µ α JUDG 7 /HVLQGLFDWLRQVSUDWLTXHVGRQQpHV jFHWWHRFFDVLRQUHVWHQWGRQFYDODEOHVLFL
G 5HPDUTXHFRPSWHWHQXGHO¶LGHQWLWpHQWUHRSpUDWHXUV ∆ = JUDG ⋅ GLY − GH1DYLHU'XKDPHODO¶H[SUHVVLRQpTXLYDOHQWHVXLYDQWH
G 5HPDUTXHFRPSWHWHQXGHO¶LGHQWLWpHQWUHRSpUDWHXUV ∆ = JUDG ⋅ GLY − GH1DYLHU'XKDPHODO¶H[SUHVVLRQpTXLYDOHQWHVXLYDQWH
λ + µ JUDG ⋅ GLY 3R3 − µ
G ⋅ 3R3 = λ + µ α JUDG 7 − I
O¶pTXDWLRQ
λ + µ JUDG ⋅ GLY 3R3 − µ
G ⋅ 3R3 = λ + µ α JUDG 7 − I
O¶pTXDWLRQ
5HPDUTXHODVROXWLRQJpQpUDOHGHO¶pTXDWLRQGH1DYLHU'XKDPHO RX HVWODVRPPH GHODVROXWLRQJpQpUDOHGHO¶pTXDWLRQVDQVVHFRQGPHPEUHHWG¶XQHVROXWLRQSDUWLFXOLqUH TXHOFRQTXHGHO¶pTXDWLRQFRPSOqWH
5HPDUTXHODVROXWLRQJpQpUDOHGHO¶pTXDWLRQGH1DYLHU'XKDPHO RX HVWODVRPPH GHODVROXWLRQJpQpUDOHGHO¶pTXDWLRQVDQVVHFRQGPHPEUHHWG¶XQHVROXWLRQSDUWLFXOLqUH TXHOFRQTXHGHO¶pTXDWLRQFRPSOqWH
5HPDUTXH OH YHFWHXU WUDQVODWLRQ 3R3 FRPPH WRXW FKDPS GH YHFWHXUV SHXW G¶DSUqV OH WKpRUqPHGH&OHEVFKrWUHFRQVLGpUpFRPPHODVRPPHGHGHX[FKDPSVVRLW
5HPDUTXH OH YHFWHXU WUDQVODWLRQ 3R3 FRPPH WRXW FKDPS GH YHFWHXUV SHXW G¶DSUqV OH WKpRUqPHGH&OHEVFKrWUHFRQVLGpUpFRPPHODVRPPHGHGHX[FKDPSVVRLW
3R3 = 8 [ \ ] W + 8 [ \ ] W
3R3 = 8 [ \ ] W + 8 [ \ ] W
R 8 GpULYHG¶XQSRWHQWLHOVFDODLUHG¶R
8 = HW 8 GpULYHG¶XQSRWHQWLHOYHFWHXU
G¶R GLY 8 =
R 8 GpULYHG¶XQSRWHQWLHOVFDODLUHG¶R
8 = HW 8 GpULYHG¶XQSRWHQWLHOYHFWHXU
G¶R GLY 8 =
2QSHXWDLQVLWRXMRXUVFKHUFKHUVpSDUpPHQWOHVGHX[FKDPSVYHFWRULHOV 8 HW 8 LOVXIILW
2QSHXWDLQVLWRXMRXUVFKHUFKHUVpSDUpPHQWOHVGHX[FKDPSVYHFWRULHOV 8 HW 8 LOVXIILW
TXHOHFKDPS 3R3 VRLWGHFODVVH &
TXHOHFKDPS 3R3 VRLWGHFODVVH &
5HPDUTXH HQ DSSOLTXDQW O¶RSpUDWHXU GLYHUJHQFH DX[ GHX[ PHPEUHV GH O¶pTXDWLRQ REWLHQW G λ + µ ∆ H = λ + µ α ∆ 7 − GLY I
5HPDUTXH HQ DSSOLTXDQW O¶RSpUDWHXU GLYHUJHQFH DX[ GHX[ PHPEUHV GH O¶pTXDWLRQ REWLHQW G λ + µ ∆ H = λ + µ α ∆ 7 − GLY I
'HPrPHHQDSSOLTXDQWj O¶RSpUDWHXUURWDWLRQQHORQREWLHQW
'HPrPHHQDSSOLTXDQWj O¶RSpUDWHXUURWDWLRQQHORQREWLHQW
HPpWKRGHGHUpVROXWLRQPpWKRGHGHVFRQWUDLQWHV
HPpWKRGHGHUpVROXWLRQPpWKRGHGHVFRQWUDLQWHV
2QSUHQGDORUVFRPPHLQFRQQXHVSULYLOpJLpHVOHVVL[FRPSRVDQWHVGXWHQVHXUFRQWUDLQWH Σ 2Q REWLHQW XQ V\VWqPH GH pTXDWLRQV OLDQW FHV IRQFWLRQV LQFRQQXHV HQ UHPSODoDQW GDQV E = E SDU VRQ H[SUHVVLRQ HQ IRQFWLRQ GHV O¶pTXDWLRQ GH FRPSDWLELOLWp FRQWUDLQWHV ORL GH +RRNH'XKDPHO G RQ REWLHQW WRXV FDOFXOV IDLWV HW FRPSWH WHQX GH O¶pTXDWLRQG¶pTXLOLEUHORFDO GLY Σ = − I O¶pTXDWLRQWHQVRULHOOHGH%HOWUDPL'XKDPHO
2QSUHQGDORUVFRPPHLQFRQQXHVSULYLOpJLpHVOHVVL[FRPSRVDQWHVGXWHQVHXUFRQWUDLQWH Σ 2Q REWLHQW XQ V\VWqPH GH pTXDWLRQV OLDQW FHV IRQFWLRQV LQFRQQXHV HQ UHPSODoDQW GDQV E = E SDU VRQ H[SUHVVLRQ HQ IRQFWLRQ GHV O¶pTXDWLRQ GH FRPSDWLELOLWp FRQWUDLQWHV ORL GH +RRNH'XKDPHO G RQ REWLHQW WRXV FDOFXOV IDLWV HW FRPSWH WHQX GH O¶pTXDWLRQG¶pTXLOLEUHORFDO GLY Σ = − I O¶pTXDWLRQWHQVRULHOOHGH%HOWUDPL'XKDPHO
∆Σ +
+
G G JUDG ⋅ JUDG V = − ⎡⎢JUDG I + JUDG W I + ν ⎣
G ν (α (α ⎤ GLY I ⋅ , + ⋅ ∆7 ⋅ , + JUDG ⋅ JUDG 7 ⎥ + ν − ν + ν ⎦
∆Σ +
+
G G JUDG ⋅ JUDG V = − ⎡⎢JUDG I + JUDG W I + ν ⎣
G ν (α (α ⎤ GLY I ⋅ , + ⋅ ∆7 ⋅ , + JUDG ⋅ JUDG 7 ⎥ + ν − ν + ν ⎦
- 41 -
- 41 -
5HPDUTXHXQHIRLVOHFKDPSGHWHPSpUDWXUH7GpWHUPLQpOHSUREOqPHHVWIRUPHOOHPHQW LGHQWLTXH j VRQ KRPRORJXH GG¶pODVWLFLWp LVRWKHUPH H[SRVp DX FKDSLWUH ,9 GX WRPH , RQ G UHPSODFHODIRUFHYROXPLTXH I SDU I − λ + µ α JUDG 7 /HVLQGLFDWLRQVSUDWLTXHVGRQQpHV jFHWWHRFFDVLRQUHVWHQWGRQFYDODEOHVLFL
5HPDUTXHXQHIRLVOHFKDPSGHWHPSpUDWXUH7GpWHUPLQpOHSUREOqPHHVWIRUPHOOHPHQW LGHQWLTXH j VRQ KRPRORJXH GG¶pODVWLFLWp LVRWKHUPH H[SRVp DX FKDSLWUH ,9 GX WRPH , RQ G UHPSODFHODIRUFHYROXPLTXH I SDU I − λ + µ α JUDG 7 /HVLQGLFDWLRQVSUDWLTXHVGRQQpHV jFHWWHRFFDVLRQUHVWHQWGRQFYDODEOHVLFL
G 5HPDUTXHFRPSWHWHQXGHO¶LGHQWLWpHQWUHRSpUDWHXUV ∆ = JUDG ⋅ GLY − GH1DYLHU'XKDPHODO¶H[SUHVVLRQpTXLYDOHQWHVXLYDQWH
G 5HPDUTXHFRPSWHWHQXGHO¶LGHQWLWpHQWUHRSpUDWHXUV ∆ = JUDG ⋅ GLY − GH1DYLHU'XKDPHODO¶H[SUHVVLRQpTXLYDOHQWHVXLYDQWH
λ + µ JUDG ⋅ GLY 3R3 − µ
G ⋅ 3R3 = λ + µ α JUDG 7 − I
O¶pTXDWLRQ
λ + µ JUDG ⋅ GLY 3R3 − µ
G ⋅ 3R3 = λ + µ α JUDG 7 − I
O¶pTXDWLRQ
5HPDUTXHODVROXWLRQJpQpUDOHGHO¶pTXDWLRQGH1DYLHU'XKDPHO RX HVWODVRPPH GHODVROXWLRQJpQpUDOHGHO¶pTXDWLRQVDQVVHFRQGPHPEUHHWG¶XQHVROXWLRQSDUWLFXOLqUH TXHOFRQTXHGHO¶pTXDWLRQFRPSOqWH
5HPDUTXHODVROXWLRQJpQpUDOHGHO¶pTXDWLRQGH1DYLHU'XKDPHO RX HVWODVRPPH GHODVROXWLRQJpQpUDOHGHO¶pTXDWLRQVDQVVHFRQGPHPEUHHWG¶XQHVROXWLRQSDUWLFXOLqUH TXHOFRQTXHGHO¶pTXDWLRQFRPSOqWH
5HPDUTXH OH YHFWHXU WUDQVODWLRQ 3R3 FRPPH WRXW FKDPS GH YHFWHXUV SHXW G¶DSUqV OH WKpRUqPHGH&OHEVFKrWUHFRQVLGpUpFRPPHODVRPPHGHGHX[FKDPSVVRLW
5HPDUTXH OH YHFWHXU WUDQVODWLRQ 3R3 FRPPH WRXW FKDPS GH YHFWHXUV SHXW G¶DSUqV OH WKpRUqPHGH&OHEVFKrWUHFRQVLGpUpFRPPHODVRPPHGHGHX[FKDPSVVRLW
3R3 = 8 [ \ ] W + 8 [ \ ] W
3R3 = 8 [ \ ] W + 8 [ \ ] W
R 8 GpULYHG¶XQSRWHQWLHOVFDODLUHG¶R
8 = HW 8 GpULYHG¶XQSRWHQWLHOYHFWHXU
G¶R GLY 8 =
R 8 GpULYHG¶XQSRWHQWLHOVFDODLUHG¶R
8 = HW 8 GpULYHG¶XQSRWHQWLHOYHFWHXU
G¶R GLY 8 =
2QSHXWDLQVLWRXMRXUVFKHUFKHUVpSDUpPHQWOHVGHX[FKDPSVYHFWRULHOV 8 HW 8 LOVXIILW
2QSHXWDLQVLWRXMRXUVFKHUFKHUVpSDUpPHQWOHVGHX[FKDPSVYHFWRULHOV 8 HW 8 LOVXIILW
TXHOHFKDPS 3R3 VRLWGHFODVVH &
TXHOHFKDPS 3R3 VRLWGHFODVVH &
5HPDUTXH HQ DSSOLTXDQW O¶RSpUDWHXU GLYHUJHQFH DX[ GHX[ PHPEUHV GH O¶pTXDWLRQ REWLHQW G λ + µ ∆ H = λ + µ α ∆ 7 − GLY I
5HPDUTXH HQ DSSOLTXDQW O¶RSpUDWHXU GLYHUJHQFH DX[ GHX[ PHPEUHV GH O¶pTXDWLRQ REWLHQW G λ + µ ∆ H = λ + µ α ∆ 7 − GLY I
'HPrPHHQDSSOLTXDQWj O¶RSpUDWHXUURWDWLRQQHORQREWLHQW
'HPrPHHQDSSOLTXDQWj O¶RSpUDWHXUURWDWLRQQHORQREWLHQW
HPpWKRGHGHUpVROXWLRQPpWKRGHGHVFRQWUDLQWHV
HPpWKRGHGHUpVROXWLRQPpWKRGHGHVFRQWUDLQWHV
2QSUHQGDORUVFRPPHLQFRQQXHVSULYLOpJLpHVOHVVL[FRPSRVDQWHVGXWHQVHXUFRQWUDLQWH Σ 2Q REWLHQW XQ V\VWqPH GH pTXDWLRQV OLDQW FHV IRQFWLRQV LQFRQQXHV HQ UHPSODoDQW GDQV E = E SDU VRQ H[SUHVVLRQ HQ IRQFWLRQ GHV O¶pTXDWLRQ GH FRPSDWLELOLWp FRQWUDLQWHV ORL GH +RRNH'XKDPHO G RQ REWLHQW WRXV FDOFXOV IDLWV HW FRPSWH WHQX GH O¶pTXDWLRQG¶pTXLOLEUHORFDO GLY Σ = − I O¶pTXDWLRQWHQVRULHOOHGH%HOWUDPL'XKDPHO
2QSUHQGDORUVFRPPHLQFRQQXHVSULYLOpJLpHVOHVVL[FRPSRVDQWHVGXWHQVHXUFRQWUDLQWH Σ 2Q REWLHQW XQ V\VWqPH GH pTXDWLRQV OLDQW FHV IRQFWLRQV LQFRQQXHV HQ UHPSODoDQW GDQV E = E SDU VRQ H[SUHVVLRQ HQ IRQFWLRQ GHV O¶pTXDWLRQ GH FRPSDWLELOLWp FRQWUDLQWHV ORL GH +RRNH'XKDPHO G RQ REWLHQW WRXV FDOFXOV IDLWV HW FRPSWH WHQX GH O¶pTXDWLRQG¶pTXLOLEUHORFDO GLY Σ = − I O¶pTXDWLRQWHQVRULHOOHGH%HOWUDPL'XKDPHO
∆Σ +
+
G G JUDG ⋅ JUDG V = − ⎡⎢JUDG I + JUDG W I + ν ⎣
G ν (α (α ⎤ GLY I ⋅ , + ⋅ ∆7 ⋅ , + JUDG ⋅ JUDG 7 ⎥ + ν − ν + ν ⎦
- 41 -
∆Σ +
+
G G JUDG ⋅ JUDG V = − ⎡⎢JUDG I + JUDG W I + ν ⎣
G ν (α (α ⎤ GLY I ⋅ , + ⋅ ∆7 ⋅ , + JUDG ⋅ JUDG 7 ⎥ + ν − ν + ν ⎦
- 41 -
&HWWHpTXDWLRQWHQVRULHOOHpTXLYDXWjVL[pTXDWLRQVVFDODLUHVDX[GpULYpHVSDUWLHOOHVVHFRQGHV /¶LQWpJUDWLRQGRQQHOHVFRQWUDLQWHVDYHFGHVFRQVWDQWHVG¶LQWpJUDWLRQ
&HWWHpTXDWLRQWHQVRULHOOHpTXLYDXWjVL[pTXDWLRQVVFDODLUHVDX[GpULYpHVSDUWLHOOHVVHFRQGHV /¶LQWpJUDWLRQGRQQHOHVFRQWUDLQWHVDYHFGHVFRQVWDQWHVG¶LQWpJUDWLRQ
2Q HQ GpGXLW HQVXLWH OHV GpIRUPDWLRQV DX PR\HQ GH OD ORL GH +RRNH'XKDPHO SXLV SDU GH QRXYHOOHV LQWpJUDWLRQV GHV UHODWLRQV HQWUH GpIRUPDWLRQV HW WUDQVODWLRQV OH YHFWHXU WUDQVODWLRQ 3R3 G¶ROHSVHXGRYHFWHXUURWDWLRQ
2Q HQ GpGXLW HQVXLWH OHV GpIRUPDWLRQV DX PR\HQ GH OD ORL GH +RRNH'XKDPHO SXLV SDU GH QRXYHOOHV LQWpJUDWLRQV GHV UHODWLRQV HQWUH GpIRUPDWLRQV HW WUDQVODWLRQV OH YHFWHXU WUDQVODWLRQ 3R3 G¶ROHSVHXGRYHFWHXUURWDWLRQ
/HV FRQVWDQWHV G¶LQWpJUDWLRQ VH GpWHUPLQHQW SDU OHV FRQGLWLRQV DX[ OLPLWHV HW OHV FRQGLWLRQV LQLWLDOHV
/HV FRQVWDQWHV G¶LQWpJUDWLRQ VH GpWHUPLQHQW SDU OHV FRQGLWLRQV DX[ OLPLWHV HW OHV FRQGLWLRQV LQLWLDOHV
5HPDUTXHXQHIRLVGpWHUPLQpOHFKDPSGHWHPSpUDWXUH7OHSUREOqPHHVWIRUPHOOHPHQW LGHQWLTXH DX SUREOqPH KRPRORJXH G¶pODVWLFLWp LVRWKHUPH H[SRVp DX WRPH , FKDSLWUH ,9 OHV JUDGLHQWVGHWHPSpUDWXUHDJLVVDQWFRPPHGHVIRUFHVGHYROXPH
5HPDUTXHXQHIRLVGpWHUPLQpOHFKDPSGHWHPSpUDWXUH7OHSUREOqPHHVWIRUPHOOHPHQW LGHQWLTXH DX SUREOqPH KRPRORJXH G¶pODVWLFLWp LVRWKHUPH H[SRVp DX WRPH , FKDSLWUH ,9 OHV JUDGLHQWVGHWHPSpUDWXUHDJLVVDQWFRPPHGHVIRUFHVGHYROXPH
5HPDUTXH OD VROXWLRQ JpQpUDOH GH O¶pTXDWLRQ GH %HOWUDPL'XKDPHO HVW OD VRPPH GH OD VROXWLRQJpQpUDOHGHO¶pTXDWLRQVDQVVHFRQGPHPEUHHWG¶XQHVROXWLRQSDUWLFXOLqUHTXHOFRQTXH GHO¶pTXDWLRQFRPSOqWH
5HPDUTXH OD VROXWLRQ JpQpUDOH GH O¶pTXDWLRQ GH %HOWUDPL'XKDPHO HVW OD VRPPH GH OD VROXWLRQJpQpUDOHGHO¶pTXDWLRQVDQVVHFRQGPHPEUHHWG¶XQHVROXWLRQSDUWLFXOLqUHTXHOFRQTXH GHO¶pTXDWLRQFRPSOqWH
5HPDUTXHHQpJDODQWOHVWUDFHVGHVGHX[PHPEUHVGH RQREWLHQWO¶pTXDWLRQ G (α + ν ∆7 GLY I ⋅ − ∆V = − − ν − ν
5HPDUTXHHQpJDODQWOHVWUDFHVGHVGHX[PHPEUHVGH RQREWLHQWO¶pTXDWLRQ G (α + ν ∆7 GLY I ⋅ − ∆V = − − ν − ν
HPpWKRGHGHUpVROXWLRQPpWKRGHGHV©HVVDLVª
HPpWKRGHGHUpVROXWLRQPpWKRGHGHV©HVVDLVª
/HV pTXDWLRQV GH 1DYLHU'XKDPHO FRPPH FHOOHV GH %HOWUDPL'XKDPHO VRQW FRPSOH[HV HW LO Q¶H[LVWHSDVO¶DOJRULWKPHSRXUOHVLQWpJUHUGDQVOHFDVJpQpUDOELHQpYLGHPPHQW2QQHVDLWHQ WURXYHUOHVVROXWLRQVJpQpUDOHVTXHGDQVTXHOTXHVFDVUHODWLYHPHQWVLPSOHVTXHQRXVYHUURQV HQH[HUFLFHV
/HV pTXDWLRQV GH 1DYLHU'XKDPHO FRPPH FHOOHV GH %HOWUDPL'XKDPHO VRQW FRPSOH[HV HW LO Q¶H[LVWHSDVO¶DOJRULWKPHSRXUOHVLQWpJUHUGDQVOHFDVJpQpUDOELHQpYLGHPPHQW2QQHVDLWHQ WURXYHUOHVVROXWLRQVJpQpUDOHVTXHGDQVTXHOTXHVFDVUHODWLYHPHQWVLPSOHVTXHQRXVYHUURQV HQH[HUFLFHV
3RXUFHVUDLVRQVODPpWKRGHODSOXVHPSOR\pHSUDWLTXHPHQWFRQVLVWHjHVVD\HUHWDMXVWHUGHV VROXWLRQVIRQFWLRQVSRO\QRPLDOHVWULJRQRPpWULTXHV FKRLVLHVFRPSWHWHQXGHODJpRPpWULH GHODVWUXFWXUHGXFKDUJHPHQWGHVFRQGLWLRQVDX[OLPLWHVGHVpYHQWXHOOHVV\PpWULH
3RXUFHVUDLVRQVODPpWKRGHODSOXVHPSOR\pHSUDWLTXHPHQWFRQVLVWHjHVVD\HUHWDMXVWHUGHV VROXWLRQVIRQFWLRQVSRO\QRPLDOHVWULJRQRPpWULTXHV FKRLVLHVFRPSWHWHQXGHODJpRPpWULH GHODVWUXFWXUHGXFKDUJHPHQWGHVFRQGLWLRQVDX[OLPLWHVGHVpYHQWXHOOHVV\PpWULH
(WDQW GRQQp O¶XQLFLWp GH OD VROXWLRQ GX SUREOqPH HW OH FKDPS GH WHPSpUDWXUH D\DQW pWp GpWHUPLQpRQSHXWpQRQFHUOHWKpRUqPHIRQGDPHQWDO
(WDQW GRQQp O¶XQLFLWp GH OD VROXWLRQ GX SUREOqPH HW OH FKDPS GH WHPSpUDWXUH D\DQW pWp GpWHUPLQpRQSHXWpQRQFHUOHWKpRUqPHIRQGDPHQWDO
8Q HQVHPEOH GH IRQFWLRQV UHSUpVHQWDQW OHV FRPSRVDQWHV GX YHFWHXU WUDQVODWLRQ GX SVHXGRYHFWHXUURWDWLRQ GXWHQVHXUGpIRUPDWLRQ HWGHWHQVHXUFRQWUDLQWH FRQVWLWXH ODVROXWLRQGXSUREOqPHGHWKHUPRpODVWLFLWpVLHWVHXOHPHQWVLLOYpULILH ± OHVUHODWLRQVGpIRUPDWLRQVWUDQVODWLRQV
8Q HQVHPEOH GH IRQFWLRQV UHSUpVHQWDQW OHV FRPSRVDQWHV GX YHFWHXU WUDQVODWLRQ GX SVHXGRYHFWHXUURWDWLRQ GXWHQVHXUGpIRUPDWLRQ HWGHWHQVHXUFRQWUDLQWH FRQVWLWXH ODVROXWLRQGXSUREOqPHGHWKHUPRpODVWLFLWpVLHWVHXOHPHQWVLLOYpULILH ± OHVUHODWLRQVGpIRUPDWLRQVWUDQVODWLRQV
E = JUDG 3R3 + JUDG W 3R3
E = JUDG 3R3 + JUDG W 3R3
± OHVUHODWLRQVURWDWLRQVWUDQVODWLRQV
± OHVUHODWLRQVURWDWLRQVWUDQVODWLRQV
- 42 -
- 42 -
&HWWHpTXDWLRQWHQVRULHOOHpTXLYDXWjVL[pTXDWLRQVVFDODLUHVDX[GpULYpHVSDUWLHOOHVVHFRQGHV /¶LQWpJUDWLRQGRQQHOHVFRQWUDLQWHVDYHFGHVFRQVWDQWHVG¶LQWpJUDWLRQ
&HWWHpTXDWLRQWHQVRULHOOHpTXLYDXWjVL[pTXDWLRQVVFDODLUHVDX[GpULYpHVSDUWLHOOHVVHFRQGHV /¶LQWpJUDWLRQGRQQHOHVFRQWUDLQWHVDYHFGHVFRQVWDQWHVG¶LQWpJUDWLRQ
2Q HQ GpGXLW HQVXLWH OHV GpIRUPDWLRQV DX PR\HQ GH OD ORL GH +RRNH'XKDPHO SXLV SDU GH QRXYHOOHV LQWpJUDWLRQV GHV UHODWLRQV HQWUH GpIRUPDWLRQV HW WUDQVODWLRQV OH YHFWHXU WUDQVODWLRQ 3R3 G¶ROHSVHXGRYHFWHXUURWDWLRQ
2Q HQ GpGXLW HQVXLWH OHV GpIRUPDWLRQV DX PR\HQ GH OD ORL GH +RRNH'XKDPHO SXLV SDU GH QRXYHOOHV LQWpJUDWLRQV GHV UHODWLRQV HQWUH GpIRUPDWLRQV HW WUDQVODWLRQV OH YHFWHXU WUDQVODWLRQ 3R3 G¶ROHSVHXGRYHFWHXUURWDWLRQ
/HV FRQVWDQWHV G¶LQWpJUDWLRQ VH GpWHUPLQHQW SDU OHV FRQGLWLRQV DX[ OLPLWHV HW OHV FRQGLWLRQV LQLWLDOHV
/HV FRQVWDQWHV G¶LQWpJUDWLRQ VH GpWHUPLQHQW SDU OHV FRQGLWLRQV DX[ OLPLWHV HW OHV FRQGLWLRQV LQLWLDOHV
5HPDUTXHXQHIRLVGpWHUPLQpOHFKDPSGHWHPSpUDWXUH7OHSUREOqPHHVWIRUPHOOHPHQW LGHQWLTXH DX SUREOqPH KRPRORJXH G¶pODVWLFLWp LVRWKHUPH H[SRVp DX WRPH , FKDSLWUH ,9 OHV JUDGLHQWVGHWHPSpUDWXUHDJLVVDQWFRPPHGHVIRUFHVGHYROXPH
5HPDUTXHXQHIRLVGpWHUPLQpOHFKDPSGHWHPSpUDWXUH7OHSUREOqPHHVWIRUPHOOHPHQW LGHQWLTXH DX SUREOqPH KRPRORJXH G¶pODVWLFLWp LVRWKHUPH H[SRVp DX WRPH , FKDSLWUH ,9 OHV JUDGLHQWVGHWHPSpUDWXUHDJLVVDQWFRPPHGHVIRUFHVGHYROXPH
5HPDUTXH OD VROXWLRQ JpQpUDOH GH O¶pTXDWLRQ GH %HOWUDPL'XKDPHO HVW OD VRPPH GH OD VROXWLRQJpQpUDOHGHO¶pTXDWLRQVDQVVHFRQGPHPEUHHWG¶XQHVROXWLRQSDUWLFXOLqUHTXHOFRQTXH GHO¶pTXDWLRQFRPSOqWH
5HPDUTXH OD VROXWLRQ JpQpUDOH GH O¶pTXDWLRQ GH %HOWUDPL'XKDPHO HVW OD VRPPH GH OD VROXWLRQJpQpUDOHGHO¶pTXDWLRQVDQVVHFRQGPHPEUHHWG¶XQHVROXWLRQSDUWLFXOLqUHTXHOFRQTXH GHO¶pTXDWLRQFRPSOqWH
5HPDUTXHHQpJDODQWOHVWUDFHVGHVGHX[PHPEUHVGH RQREWLHQWO¶pTXDWLRQ G (α + ν ∆7 GLY I ⋅ − ∆V = − − ν − ν
5HPDUTXHHQpJDODQWOHVWUDFHVGHVGHX[PHPEUHVGH RQREWLHQWO¶pTXDWLRQ G (α + ν ∆7 GLY I ⋅ − ∆V = − − ν − ν
HPpWKRGHGHUpVROXWLRQPpWKRGHGHV©HVVDLVª
HPpWKRGHGHUpVROXWLRQPpWKRGHGHV©HVVDLVª
/HV pTXDWLRQV GH 1DYLHU'XKDPHO FRPPH FHOOHV GH %HOWUDPL'XKDPHO VRQW FRPSOH[HV HW LO Q¶H[LVWHSDVO¶DOJRULWKPHSRXUOHVLQWpJUHUGDQVOHFDVJpQpUDOELHQpYLGHPPHQW2QQHVDLWHQ WURXYHUOHVVROXWLRQVJpQpUDOHVTXHGDQVTXHOTXHVFDVUHODWLYHPHQWVLPSOHVTXHQRXVYHUURQV HQH[HUFLFHV
/HV pTXDWLRQV GH 1DYLHU'XKDPHO FRPPH FHOOHV GH %HOWUDPL'XKDPHO VRQW FRPSOH[HV HW LO Q¶H[LVWHSDVO¶DOJRULWKPHSRXUOHVLQWpJUHUGDQVOHFDVJpQpUDOELHQpYLGHPPHQW2QQHVDLWHQ WURXYHUOHVVROXWLRQVJpQpUDOHVTXHGDQVTXHOTXHVFDVUHODWLYHPHQWVLPSOHVTXHQRXVYHUURQV HQH[HUFLFHV
3RXUFHVUDLVRQVODPpWKRGHODSOXVHPSOR\pHSUDWLTXHPHQWFRQVLVWHjHVVD\HUHWDMXVWHUGHV VROXWLRQVIRQFWLRQVSRO\QRPLDOHVWULJRQRPpWULTXHV FKRLVLHVFRPSWHWHQXGHODJpRPpWULH GHODVWUXFWXUHGXFKDUJHPHQWGHVFRQGLWLRQVDX[OLPLWHVGHVpYHQWXHOOHVV\PpWULH
3RXUFHVUDLVRQVODPpWKRGHODSOXVHPSOR\pHSUDWLTXHPHQWFRQVLVWHjHVVD\HUHWDMXVWHUGHV VROXWLRQVIRQFWLRQVSRO\QRPLDOHVWULJRQRPpWULTXHV FKRLVLHVFRPSWHWHQXGHODJpRPpWULH GHODVWUXFWXUHGXFKDUJHPHQWGHVFRQGLWLRQVDX[OLPLWHVGHVpYHQWXHOOHVV\PpWULH
(WDQW GRQQp O¶XQLFLWp GH OD VROXWLRQ GX SUREOqPH HW OH FKDPS GH WHPSpUDWXUH D\DQW pWp GpWHUPLQpRQSHXWpQRQFHUOHWKpRUqPHIRQGDPHQWDO
(WDQW GRQQp O¶XQLFLWp GH OD VROXWLRQ GX SUREOqPH HW OH FKDPS GH WHPSpUDWXUH D\DQW pWp GpWHUPLQpRQSHXWpQRQFHUOHWKpRUqPHIRQGDPHQWDO
8Q HQVHPEOH GH IRQFWLRQV UHSUpVHQWDQW OHV FRPSRVDQWHV GX YHFWHXU WUDQVODWLRQ GX SVHXGRYHFWHXUURWDWLRQ GXWHQVHXUGpIRUPDWLRQ HWGHWHQVHXUFRQWUDLQWH FRQVWLWXH ODVROXWLRQGXSUREOqPHGHWKHUPRpODVWLFLWpVLHWVHXOHPHQWVLLOYpULILH ± OHVUHODWLRQVGpIRUPDWLRQVWUDQVODWLRQV
8Q HQVHPEOH GH IRQFWLRQV UHSUpVHQWDQW OHV FRPSRVDQWHV GX YHFWHXU WUDQVODWLRQ GX SVHXGRYHFWHXUURWDWLRQ GXWHQVHXUGpIRUPDWLRQ HWGHWHQVHXUFRQWUDLQWH FRQVWLWXH ODVROXWLRQGXSUREOqPHGHWKHUPRpODVWLFLWpVLHWVHXOHPHQWVLLOYpULILH ± OHVUHODWLRQVGpIRUPDWLRQVWUDQVODWLRQV
E = JUDG 3R3 + JUDG W 3R3
E = JUDG 3R3 + JUDG W 3R3
± OHVUHODWLRQVURWDWLRQVWUDQVODWLRQV
± OHVUHODWLRQVURWDWLRQVWUDQVODWLRQV
- 42 -
- 42 -
± OHVpTXDWLRQVGHO¶pTXLOLEUHORFDO G G I + GLY Σ =
± OHVpTXDWLRQVGHO¶pTXLOLEUHORFDO G G I + GLY Σ =
± ODORLGH+RRNH'XKDPHO
± ODORLGH+RRNH'XKDPHO
+ ν ν Σ = λ H , + µ E − . α 7 − 7 , RX E = Σ − V , + α 7 − 7 , ( ( ± OHVFRQGLWLRQVDX[OLPLWHVHWOHVFRQGLWLRQLQLWLDOHV
+ ν ν Σ − V , + α 7 − 7 , ( ( ± OHVFRQGLWLRQVDX[OLPLWHVHWOHVFRQGLWLRQLQLWLDOHV
Σ = λ H , + µ E − . α 7 − 7 , RX E =
$SSOLFDWLRQLPSRUWDQWHFKDPSVGHWHPSpUDWXUHVDQVFRQWUDLQWHV
$SSOLFDWLRQLPSRUWDQWHFKDPSVGHWHPSpUDWXUHVDQVFRQWUDLQWHV
/DORLGHODGLODWDWLRQWKHUPLTXHH[SRVpHDXDIILUPHTXHVLO¶RQVRXPHWjXQHYDULDWLRQ XQLIRUPHGHWHPSpUDWXUHXQVROLGHKRPRJqQHLVRWURSHHWOLEUHGHVHGpIRUPHURQQ¶LQWURGXLW DXFXQHFRQWUDLQWH Σ =
/DORLGHODGLODWDWLRQWKHUPLTXHH[SRVpHDXDIILUPHTXHVLO¶RQVRXPHWjXQHYDULDWLRQ XQLIRUPHGHWHPSpUDWXUHXQVROLGHKRPRJqQHLVRWURSHHWOLEUHGHVHGpIRUPHURQQ¶LQWURGXLW DXFXQHFRQWUDLQWH Σ =
2Q LQWURGXLW SDU FRQWUH XQ FKDPS GH GpIRUPDWLRQ XQLIRUPH HW LVRWURSH EWK = α 7 − 7 ,
2Q LQWURGXLW SDU FRQWUH XQ FKDPS GH GpIRUPDWLRQ XQLIRUPH HW LVRWURSH EWK = α 7 − 7 ,
3DULQWpJUDWLRQRQREWLHQWOHYHFWHXUWUDQVODWLRQ
3DULQWpJUDWLRQRQREWLHQWOHYHFWHXUWUDQVODWLRQ
⎧ X = α 7 − 7 [ + $ ⎪ ⎪⎪ 3R3 ⎨ Y = α 7 − 7 \ + % G¶R ⎪ ⎪ ⎪⎩Z = α 7 − 7 ] + &
⎧ X = α 7 − 7 [ + $ ⎪ ⎪⎪ 3R3 ⎨ Y = α 7 − 7 \ + % G¶R ⎪ ⎪ ⎪⎩Z = α 7 − 7 ] + &
/HVFRQVWDQWHVG¶LQWpJUDWLRQ$%&VRQWQXOOHVVLO¶RQFRQVLGqUHFRPPHIL[HODSDUWLFXOH RULJLQHGXUHSqUH { [\]}
/HVFRQVWDQWHVG¶LQWpJUDWLRQ$%&VRQWQXOOHVVLO¶RQFRQVLGqUHFRPPHIL[HODSDUWLFXOH RULJLQHGXUHSqUH { [\]}
([LVWHWLOG¶DXWUHVFKDPSVGHWHPSpUDWXUHTXLGDQVOHVPrPHVFRQGLWLRQVQ¶LQWURGXLVHQWSDV GHFRQWUDLQWHV"/DUpSRQVHHVWGRQQpHSDUXQWKpRUqPHLPSRUWDQWTXHQRXVDOORQVGpPRQWUHU PDLQWHQDQWHQVXSSRVDQWOHUpJLPHSHUPDQHQW
([LVWHWLOG¶DXWUHVFKDPSVGHWHPSpUDWXUHTXLGDQVOHVPrPHVFRQGLWLRQVQ¶LQWURGXLVHQWSDV GHFRQWUDLQWHV"/DUpSRQVHHVWGRQQpHSDUXQWKpRUqPHLPSRUWDQWTXHQRXVDOORQVGpPRQWUHU PDLQWHQDQWHQVXSSRVDQWOHUpJLPHSHUPDQHQW
7KpRUqPH pWDQW GRQQp XQ VROLGH KRPRJqQH LVRWURSH HW OLEUH GH VH GpIRUPHU SRXU TX¶XQ FKDUJHPHQW WKHUPLTXH Q¶LQWURGXLVH DXFXQH FRQWUDLQWH LO IDXW HW LO VXIILW TXH FH FKDPS GH WHPSpUDWXUHVRLWOLQpDLUHF¶HVWjGLUHGHODIRUPH 7 − 7 = D[ + E\ + F] + G
7KpRUqPH pWDQW GRQQp XQ VROLGH KRPRJqQH LVRWURSH HW OLEUH GH VH GpIRUPHU SRXU TX¶XQ FKDUJHPHQW WKHUPLTXH Q¶LQWURGXLVH DXFXQH FRQWUDLQWH LO IDXW HW LO VXIILW TXH FH FKDPS GH WHPSpUDWXUHVRLWOLQpDLUHF¶HVWjGLUHGHODIRUPH 7 − 7 = D[ + E\ + F] + G
7KpRUqPHGLUHFWVLOHFKDPSGHWHPSpUDWXUHQ¶LQWURGXLWDXFXQHFRQWUDLQWHO¶pTXDWLRQ VH UpGXLWj JUDG ⋅ JUDG 7 = F¶HVWjGLUHjODQXOOLWpGHVVL[GpULYpHVSDUWLHOOHVVHFRQGHVGH7 SXLVTX¶RQDDORUV ⎧Σ = V = SDVGHFRQWUDLQWHV ⎪ ⎪⎪G ⎨I = SDVGHFKDUJHPHQWPpFDQLTXH ⎪ ⎪ ⎪⎩∆ 7 = HQYHUWXGHOpTXDWLRQ
7KpRUqPHGLUHFWVLOHFKDPSGHWHPSpUDWXUHQ¶LQWURGXLWDXFXQHFRQWUDLQWHO¶pTXDWLRQ VH UpGXLWj JUDG ⋅ JUDG 7 = F¶HVWjGLUHjODQXOOLWpGHVVL[GpULYpHVSDUWLHOOHVVHFRQGHVGH7 SXLVTX¶RQDDORUV ⎧Σ = V = SDVGHFRQWUDLQWHV ⎪ ⎪⎪G ⎨I = SDVGHFKDUJHPHQWPpFDQLTXH ⎪ ⎪ ⎪⎩∆ 7 = HQYHUWXGHOpTXDWLRQ
/D QXOOLWp GH FHV GpULYpHV LPSOLTXH TXH OD WHPSpUDWXUH 7 HQ 3 HVW XQH IRQFWLRQ OLQpDLUH GHV FRRUGRQQpHVGH3
/D QXOOLWp GH FHV GpULYpHV LPSOLTXH TXH OD WHPSpUDWXUH 7 HQ 3 HVW XQH IRQFWLRQ OLQpDLUH GHV FRRUGRQQpHVGH3
- 43 -
- 43 -
± OHVpTXDWLRQVGHO¶pTXLOLEUHORFDO G G I + GLY Σ =
± OHVpTXDWLRQVGHO¶pTXLOLEUHORFDO G G I + GLY Σ =
± ODORLGH+RRNH'XKDPHO
± ODORLGH+RRNH'XKDPHO
+ ν ν Σ = λ H , + µ E − . α 7 − 7 , RX E = Σ − V , + α 7 − 7 , ( ( ± OHVFRQGLWLRQVDX[OLPLWHVHWOHVFRQGLWLRQLQLWLDOHV
+ ν ν Σ − V , + α 7 − 7 , ( ( ± OHVFRQGLWLRQVDX[OLPLWHVHWOHVFRQGLWLRQLQLWLDOHV
Σ = λ H , + µ E − . α 7 − 7 , RX E =
$SSOLFDWLRQLPSRUWDQWHFKDPSVGHWHPSpUDWXUHVDQVFRQWUDLQWHV
$SSOLFDWLRQLPSRUWDQWHFKDPSVGHWHPSpUDWXUHVDQVFRQWUDLQWHV
/DORLGHODGLODWDWLRQWKHUPLTXHH[SRVpHDXDIILUPHTXHVLO¶RQVRXPHWjXQHYDULDWLRQ XQLIRUPHGHWHPSpUDWXUHXQVROLGHKRPRJqQHLVRWURSHHWOLEUHGHVHGpIRUPHURQQ¶LQWURGXLW DXFXQHFRQWUDLQWH Σ =
/DORLGHODGLODWDWLRQWKHUPLTXHH[SRVpHDXDIILUPHTXHVLO¶RQVRXPHWjXQHYDULDWLRQ XQLIRUPHGHWHPSpUDWXUHXQVROLGHKRPRJqQHLVRWURSHHWOLEUHGHVHGpIRUPHURQQ¶LQWURGXLW DXFXQHFRQWUDLQWH Σ =
2Q LQWURGXLW SDU FRQWUH XQ FKDPS GH GpIRUPDWLRQ XQLIRUPH HW LVRWURSH EWK = α 7 − 7 ,
2Q LQWURGXLW SDU FRQWUH XQ FKDPS GH GpIRUPDWLRQ XQLIRUPH HW LVRWURSH EWK = α 7 − 7 ,
3DULQWpJUDWLRQRQREWLHQWOHYHFWHXUWUDQVODWLRQ
3DULQWpJUDWLRQRQREWLHQWOHYHFWHXUWUDQVODWLRQ
⎧ X = α 7 − 7 [ + $ ⎪ ⎪⎪ 3R3 ⎨ Y = α 7 − 7 \ + % G¶R ⎪ ⎪ ⎩⎪Z = α 7 − 7 ] + &
⎧ X = α 7 − 7 [ + $ ⎪ ⎪⎪ 3R3 ⎨ Y = α 7 − 7 \ + % G¶R ⎪ ⎪ ⎩⎪Z = α 7 − 7 ] + &
/HVFRQVWDQWHVG¶LQWpJUDWLRQ$%&VRQWQXOOHVVLO¶RQFRQVLGqUHFRPPHIL[HODSDUWLFXOH RULJLQHGXUHSqUH { [\]}
/HVFRQVWDQWHVG¶LQWpJUDWLRQ$%&VRQWQXOOHVVLO¶RQFRQVLGqUHFRPPHIL[HODSDUWLFXOH RULJLQHGXUHSqUH { [\]}
([LVWHWLOG¶DXWUHVFKDPSVGHWHPSpUDWXUHTXLGDQVOHVPrPHVFRQGLWLRQVQ¶LQWURGXLVHQWSDV GHFRQWUDLQWHV"/DUpSRQVHHVWGRQQpHSDUXQWKpRUqPHLPSRUWDQWTXHQRXVDOORQVGpPRQWUHU PDLQWHQDQWHQVXSSRVDQWOHUpJLPHSHUPDQHQW
([LVWHWLOG¶DXWUHVFKDPSVGHWHPSpUDWXUHTXLGDQVOHVPrPHVFRQGLWLRQVQ¶LQWURGXLVHQWSDV GHFRQWUDLQWHV"/DUpSRQVHHVWGRQQpHSDUXQWKpRUqPHLPSRUWDQWTXHQRXVDOORQVGpPRQWUHU PDLQWHQDQWHQVXSSRVDQWOHUpJLPHSHUPDQHQW
7KpRUqPH pWDQW GRQQp XQ VROLGH KRPRJqQH LVRWURSH HW OLEUH GH VH GpIRUPHU SRXU TX¶XQ FKDUJHPHQW WKHUPLTXH Q¶LQWURGXLVH DXFXQH FRQWUDLQWH LO IDXW HW LO VXIILW TXH FH FKDPS GH WHPSpUDWXUHVRLWOLQpDLUHF¶HVWjGLUHGHODIRUPH 7 − 7 = D[ + E\ + F] + G
7KpRUqPH pWDQW GRQQp XQ VROLGH KRPRJqQH LVRWURSH HW OLEUH GH VH GpIRUPHU SRXU TX¶XQ FKDUJHPHQW WKHUPLTXH Q¶LQWURGXLVH DXFXQH FRQWUDLQWH LO IDXW HW LO VXIILW TXH FH FKDPS GH WHPSpUDWXUHVRLWOLQpDLUHF¶HVWjGLUHGHODIRUPH 7 − 7 = D[ + E\ + F] + G
7KpRUqPHGLUHFWVLOHFKDPSGHWHPSpUDWXUHQ¶LQWURGXLWDXFXQHFRQWUDLQWHO¶pTXDWLRQ VH UpGXLWj JUDG ⋅ JUDG 7 = F¶HVWjGLUHjODQXOOLWpGHVVL[GpULYpHVSDUWLHOOHVVHFRQGHVGH7 SXLVTX¶RQDDORUV ⎧Σ = V = SDVGHFRQWUDLQWHV ⎪ ⎪⎪G ⎨I = SDVGHFKDUJHPHQWPpFDQLTXH ⎪ ⎪ ⎩⎪∆ 7 = HQYHUWXGHOpTXDWLRQ
7KpRUqPHGLUHFWVLOHFKDPSGHWHPSpUDWXUHQ¶LQWURGXLWDXFXQHFRQWUDLQWHO¶pTXDWLRQ VH UpGXLWj JUDG ⋅ JUDG 7 = F¶HVWjGLUHjODQXOOLWpGHVVL[GpULYpHVSDUWLHOOHVVHFRQGHVGH7 SXLVTX¶RQDDORUV ⎧Σ = V = SDVGHFRQWUDLQWHV ⎪ ⎪⎪G ⎨I = SDVGHFKDUJHPHQWPpFDQLTXH ⎪ ⎪ ⎩⎪∆ 7 = HQYHUWXGHOpTXDWLRQ
/D QXOOLWp GH FHV GpULYpHV LPSOLTXH TXH OD WHPSpUDWXUH 7 HQ 3 HVW XQH IRQFWLRQ OLQpDLUH GHV FRRUGRQQpHVGH3
/D QXOOLWp GH FHV GpULYpHV LPSOLTXH TXH OD WHPSpUDWXUH 7 HQ 3 HVW XQH IRQFWLRQ OLQpDLUH GHV FRRUGRQQpHVGH3
- 43 -
- 43 -
/HWHQVHXUGHVGpIRUPDWLRQVSXUHPHQWWKHUPLTXHHVWLVRWURSHHWV¶pFULW E = EWK = α 7 − 7 ,
/HWHQVHXUGHVGpIRUPDWLRQVSXUHPHQWWKHUPLTXHHVWLVRWURSHHWV¶pFULW E = EWK = α 7 − 7 ,
DYHF 7 − 7 = D[ + E\ + F] + G
DYHF 7 − 7 = D[ + E\ + F] + G
/¶LQWpJUDWLRQGHVUHODWLRQVGpIRUPDWLRQVWUDQVODWLRQVGRQQHDORUVOHYHFWHXUWUDQVODWLRQ
/¶LQWpJUDWLRQGHVUHODWLRQVGpIRUPDWLRQVWUDQVODWLRQVGRQQHDORUVOHYHFWHXUWUDQVODWLRQ
⎧ ⎪ X = α D [ − \ − ] + α E\ + F] + G [ + $ ⎪ ⎪ 3R3 ⎨ Y = α E \ − ] − [ + α F] + D[ + G \ + % ⎪ ⎪ ⎪Z = α F ] − [ − \ + α D[ + E\ + G ] + & ⎩
2QFDOFXOHHQILQOHSVHXGRYHFWHXUURWDWLRQ
⎧ω[ = α E] − F\ ⎪ ⎪⎪ ⎨ω\ = α F[ − D] ⎪ ⎪ ⎪⎩ω] = α D\ − E[
⎧ ⎪ X = α D [ − \ − ] + α E\ + F] + G [ + $ ⎪ ⎪ 3R3 ⎨ Y = α E \ − ] − [ + α F] + D[ + G \ + % ⎪ ⎪ ⎪Z = α F ] − [ − \ + α D[ + E\ + G ] + & ⎩
2QFDOFXOHHQILQOHSVHXGRYHFWHXUURWDWLRQ
⎧ω[ = α E] − F\ ⎪ ⎪⎪ ⎨ω\ = α F[ − D] ⎪ ⎪ ⎪⎩ω] = α D\ − E[
7KpRUqPH UpFLSURTXH VL OD YDULDWLRQ GH WHPSpUDWXUH HQ 3[\] HVW GH OD IRUPH 7 − 7 = D[ + E\ + F] + G RQYpULILHDLVpPHQWTXHODVROXWLRQHVWHIIHFWLYHPHQWFRQVWLWXpHSDU OHVGL[KXLWIRQFWLRQVVXLYDQWHV ± OHVWURLVIRQFWLRQV SRXUOHVWUDQVODWLRQV ± OHVWURLVIRQFWLRQV SRXUOHVURWDWLRQV
7KpRUqPH UpFLSURTXH VL OD YDULDWLRQ GH WHPSpUDWXUH HQ 3[\] HVW GH OD IRUPH 7 − 7 = D[ + E\ + F] + G RQYpULILHDLVpPHQWTXHODVROXWLRQHVWHIIHFWLYHPHQWFRQVWLWXpHSDU OHVGL[KXLWIRQFWLRQVVXLYDQWHV ± OHVWURLVIRQFWLRQV SRXUOHVWUDQVODWLRQV ± OHVWURLVIRQFWLRQV SRXUOHVURWDWLRQV
± ε [ = ε \ = ε ] = α 7 − 7 γ \] = γ ][ = γ [\ = SRXUOHVGpIRUPDWLRQV
± ε [ = ε \ = ε ] = α 7 − 7 γ \] = γ ][ = γ [\ = SRXUOHVGpIRUPDWLRQV
± σ [ = σ \ = σ ] = τ \] = τ][ = τ [\ = SRXUOHVFRQWUDLQWHV
± σ [ = σ \ = σ ] = τ \] = τ][ = τ [\ = SRXUOHVFRQWUDLQWHV
/HVFRQVWDQWHVG¶LQWpJUDWLRQ$%&VRQWQXOOHVVLO¶RQFRQVLGqUHFRPPHQXOOHGpSODFHPHQW GHODSDUWLFXOHRULJLQHGXUHSqUHF¶HVWjGLUHVLO¶RQFRQVLGqUHTX¶HOOHUHVWHRULJLQHGXUHSqUH DXFRXUVGHODGpIRUPDWLRQ
/HVFRQVWDQWHVG¶LQWpJUDWLRQ$%&VRQWQXOOHVVLO¶RQFRQVLGqUHFRPPHQXOOHGpSODFHPHQW GHODSDUWLFXOHRULJLQHGXUHSqUHF¶HVWjGLUHVLO¶RQFRQVLGqUHTX¶HOOHUHVWHRULJLQHGXUHSqUH DXFRXUVGHODGpIRUPDWLRQ
(WXGLRQVPDLQWHQDQWOHVWURLVSULQFLSDX[SUREOqPHVGHWKHUPRpODVWLFLWpELGLPHQVLRQQHOOH
(WXGLRQVPDLQWHQDQWOHVWURLVSULQFLSDX[SUREOqPHVGHWKHUPRpODVWLFLWpELGLPHQVLRQQHOOH
±'e)250$7,2163/$1(6±'3
±'e)250$7,2163/$1(6±'3
8QVROLGHVHWURXYHHQpWDWGHGpIRUPDWLRQSODQHV¶LOH[LVWHXQUHSqUHRUWKRQRUPpOLpDXVROLGH SDUUDSSRUWDXTXHOOHYHFWHXUWUDQVODWLRQDGHVFRPSRVDQWHVGHODIRUPH
8QVROLGHVHWURXYHHQpWDWGHGpIRUPDWLRQSODQHV¶LOH[LVWHXQUHSqUHRUWKRQRUPpOLpDXVROLGH SDUUDSSRUWDXTXHOOHYHFWHXUWUDQVODWLRQDGHVFRPSRVDQWHVGHODIRUPH
⎧X = X [ \ W ⎪⎪ 3R3 ⎨ Y = Y [ \ WR&W GpVLJQHXQHIRQFWLRQGHWGRQQpH ⎪ ⎪⎩ Z = & W ⋅ ]
⎧X = X [ \ W ⎪⎪ 3R3 ⎨ Y = Y [ \ WR&W GpVLJQHXQHIRQFWLRQGHWGRQQpH ⎪ ⎪⎩ Z = & W ⋅ ]
- 44 -
- 44 -
/HWHQVHXUGHVGpIRUPDWLRQVSXUHPHQWWKHUPLTXHHVWLVRWURSHHWV¶pFULW E = EWK = α 7 − 7 ,
/HWHQVHXUGHVGpIRUPDWLRQVSXUHPHQWWKHUPLTXHHVWLVRWURSHHWV¶pFULW E = EWK = α 7 − 7 ,
DYHF 7 − 7 = D[ + E\ + F] + G
DYHF 7 − 7 = D[ + E\ + F] + G
/¶LQWpJUDWLRQGHVUHODWLRQVGpIRUPDWLRQVWUDQVODWLRQVGRQQHDORUVOHYHFWHXUWUDQVODWLRQ
/¶LQWpJUDWLRQGHVUHODWLRQVGpIRUPDWLRQVWUDQVODWLRQVGRQQHDORUVOHYHFWHXUWUDQVODWLRQ
⎧ ⎪ X = α D [ − \ − ] + α E\ + F] + G [ + $ ⎪ ⎪ 3R3 ⎨ Y = α E \ − ] − [ + α F] + D[ + G \ + % ⎪ ⎪ ⎪Z = α F ] − [ − \ + α D[ + E\ + G ] + & ⎩
2QFDOFXOHHQILQOHSVHXGRYHFWHXUURWDWLRQ
⎧ω[ = α E] − F\ ⎪ ⎪⎪ ⎨ω\ = α F[ − D] ⎪ ⎪ ⎩⎪ω] = α D\ − E[
⎧ ⎪ X = α D [ − \ − ] + α E\ + F] + G [ + $ ⎪ ⎪ 3R3 ⎨ Y = α E \ − ] − [ + α F] + D[ + G \ + % ⎪ ⎪ ⎪Z = α F ] − [ − \ + α D[ + E\ + G ] + & ⎩
2QFDOFXOHHQILQOHSVHXGRYHFWHXUURWDWLRQ
⎧ω[ = α E] − F\ ⎪ ⎪⎪ ⎨ω\ = α F[ − D] ⎪ ⎪ ⎩⎪ω] = α D\ − E[
7KpRUqPH UpFLSURTXH VL OD YDULDWLRQ GH WHPSpUDWXUH HQ 3[\] HVW GH OD IRUPH 7 − 7 = D[ + E\ + F] + G RQYpULILHDLVpPHQWTXHODVROXWLRQHVWHIIHFWLYHPHQWFRQVWLWXpHSDU OHVGL[KXLWIRQFWLRQVVXLYDQWHV ± OHVWURLVIRQFWLRQV SRXUOHVWUDQVODWLRQV ± OHVWURLVIRQFWLRQV SRXUOHVURWDWLRQV
7KpRUqPH UpFLSURTXH VL OD YDULDWLRQ GH WHPSpUDWXUH HQ 3[\] HVW GH OD IRUPH 7 − 7 = D[ + E\ + F] + G RQYpULILHDLVpPHQWTXHODVROXWLRQHVWHIIHFWLYHPHQWFRQVWLWXpHSDU OHVGL[KXLWIRQFWLRQVVXLYDQWHV ± OHVWURLVIRQFWLRQV SRXUOHVWUDQVODWLRQV ± OHVWURLVIRQFWLRQV SRXUOHVURWDWLRQV
± ε [ = ε \ = ε ] = α 7 − 7 γ \] = γ ][ = γ [\ = SRXUOHVGpIRUPDWLRQV
± ε [ = ε \ = ε ] = α 7 − 7 γ \] = γ ][ = γ [\ = SRXUOHVGpIRUPDWLRQV
± σ [ = σ \ = σ ] = τ \] = τ][ = τ [\ = SRXUOHVFRQWUDLQWHV
± σ [ = σ \ = σ ] = τ \] = τ][ = τ [\ = SRXUOHVFRQWUDLQWHV
/HVFRQVWDQWHVG¶LQWpJUDWLRQ$%&VRQWQXOOHVVLO¶RQFRQVLGqUHFRPPHQXOOHGpSODFHPHQW GHODSDUWLFXOHRULJLQHGXUHSqUHF¶HVWjGLUHVLO¶RQFRQVLGqUHTX¶HOOHUHVWHRULJLQHGXUHSqUH DXFRXUVGHODGpIRUPDWLRQ
/HVFRQVWDQWHVG¶LQWpJUDWLRQ$%&VRQWQXOOHVVLO¶RQFRQVLGqUHFRPPHQXOOHGpSODFHPHQW GHODSDUWLFXOHRULJLQHGXUHSqUHF¶HVWjGLUHVLO¶RQFRQVLGqUHTX¶HOOHUHVWHRULJLQHGXUHSqUH DXFRXUVGHODGpIRUPDWLRQ
(WXGLRQVPDLQWHQDQWOHVWURLVSULQFLSDX[SUREOqPHVGHWKHUPRpODVWLFLWpELGLPHQVLRQQHOOH
(WXGLRQVPDLQWHQDQWOHVWURLVSULQFLSDX[SUREOqPHVGHWKHUPRpODVWLFLWpELGLPHQVLRQQHOOH
±'e)250$7,2163/$1(6±'3
±'e)250$7,2163/$1(6±'3
8QVROLGHVHWURXYHHQpWDWGHGpIRUPDWLRQSODQHV¶LOH[LVWHXQUHSqUHRUWKRQRUPpOLpDXVROLGH SDUUDSSRUWDXTXHOOHYHFWHXUWUDQVODWLRQDGHVFRPSRVDQWHVGHODIRUPH
8QVROLGHVHWURXYHHQpWDWGHGpIRUPDWLRQSODQHV¶LOH[LVWHXQUHSqUHRUWKRQRUPpOLpDXVROLGH SDUUDSSRUWDXTXHOOHYHFWHXUWUDQVODWLRQDGHVFRPSRVDQWHVGHODIRUPH
⎧X = X [ \ W ⎪⎪ 3R3 ⎨ Y = Y [ \ WR&W GpVLJQHXQHIRQFWLRQGHWGRQQpH ⎪ ⎪⎩ Z = & W ⋅ ]
⎧X = X [ \ W ⎪⎪ 3R3 ⎨ Y = Y [ \ WR&W GpVLJQHXQHIRQFWLRQGHWGRQQpH ⎪ ⎪⎩ Z = & W ⋅ ]
- 44 -
- 44 -
2QHQGpGXLWOHVFRPSRVDQWHVGXSVHXGRYHFWHXUURWDWLRQ HWFHOOHVGXWHQVHXUGpIRUPDWLRQ E WRXWHVLQGpSHQGDQWHVGH]
2QHQGpGXLWOHVFRPSRVDQWHVGXSVHXGRYHFWHXUURWDWLRQ HWFHOOHVGXWHQVHXUGpIRUPDWLRQ E WRXWHVLQGpSHQGDQWHVGH]
⎧ ⎧ ⎧ ∂X ⎪ω[ = ⎪τ \] = ⎪ε [ = ∂ [ ⎪ ⎪ ⎪ ⎪ ⎪ ∂Y ⎪ ⎨ω\ = E ⎨ε \ = ⎨τ][ = ∂ \ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ε = & ⎛ ∂Y ∂X ⎞ ⎛ ∂X ∂Y ⎞ ⎟⎟ ⎟ − + ⎪ω] = ⎜⎜ ⎪ ] ⎪τ [\ = ⎜⎜ ⎩ ⎝∂[ ∂\⎠ ⎝ ∂ \ ∂ [ ⎟⎠ ⎩ ⎩
⎧ ⎧ ⎧ ∂X ⎪ω[ = ⎪τ \] = ⎪ε [ = ∂ [ ⎪ ⎪ ⎪ ⎪ ⎪ ∂Y ⎪ ⎨ω\ = E ⎨ε \ = ⎨τ][ = ∂ \ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ε = & ⎛ ∂Y ∂X ⎞ ⎛ ∂X ∂Y ⎞ ⎟⎟ ⎟ − + ⎪ω] = ⎜⎜ ⎪ ] ⎪τ [\ = ⎜⎜ ⎩ ⎝∂[ ∂\⎠ ⎝ ∂ \ ∂ [ ⎟⎠ ⎩ ⎩
8QHVHXOHpTXDWLRQGHFRPSWDELOLWpQ¶HVWSDVLGHQWLTXHPHQWYpULILpHHOOHV¶pFULW
8QHVHXOHpTXDWLRQGHFRPSWDELOLWpQ¶HVWSDVLGHQWLTXHPHQWYpULILpHHOOHV¶pFULW
∂ γ [\ ∂[ ∂\
=
∂ ε\ ∂ [
+
∂ ε[ ∂ \
/DORLGH+RRNH'XKDPHOGRQQHHQVXLWHOHVUHODWLRQV
SXLV
RXHQFRUH
]
[
]
+ ν ⎧ ⎪ε [ = ( − ν σ [ − ν σ \ − ν & + + ν α 7 − 7 ⎪ + ν ⎪ − ν σ \ − ν σ [ − ν & + + ν α 7 − 7 ⎨ε \ = ( ⎪ ⎪ + ν τ [\ ⎪γ [\ = ( ⎩
[
]
[
]
( ⎧ ⎪σ [ = + ν − ν − ν ε [ + ν ε \ + F − ( α 7 − 7 ⎪ ( ⎪σ = ⎪⎪ \ + ν − ν − ν ε \ + ν ε [ + F − ( α 7 − 7 ⎨ ( (α ⎪σ ] = ν ε [ + ε \ + − ν & − 7 − 7 ⎪ + ν − ν − ν ⎪ ⎪τ [\ = ( γ [\ ⎪⎩ + ν
[
∂ ε\ ∂ [
+
∂ ε[ ∂ \
]
σ ] = (& + ν σ [ + σ \ − ( α 7 − 7
'HSOXVODUHODWLRQ GHYLHQW
∂[ ∂\
=
/DORLGH+RRNH'XKDPHOGRQQHHQVXLWHOHVUHODWLRQV
σ ] = (& + ν σ [ + σ \ − ( α 7 − 7
[
∂ γ [\
SXLV
RXHQFRUH
[
]
[
]
+ ν ⎧ ⎪ε [ = ( − ν σ [ − ν σ \ − ν & + + ν α 7 − 7 ⎪ + ν ⎪ − ν σ \ − ν σ [ − ν & + + ν α 7 − 7 ⎨ε \ = ( ⎪ ⎪ + ν τ [\ ⎪γ [\ = ( ⎩
[
]
[
]
( ⎧ ⎪σ [ = + ν − ν − ν ε [ + ν ε \ + F − ( α 7 − 7 ⎪ ( ⎪σ = ⎪⎪ \ + ν − ν − ν ε \ + ν ε [ + F − ( α 7 − 7 ⎨ ( (α ⎪σ ] = ν ε [ + ε \ + − ν & − 7 − 7 ⎪ + ν − ν − ν ⎪ ⎪τ [\ = ( γ [\ ⎪⎩ + ν
[
]
'HSOXVODUHODWLRQ GHYLHQW
∆ σ [ + σ \ = −
G GLY I + ( α ∆ 7 − ν
∆ σ [ + σ \ = −
G GLY I + ( α ∆ 7 − ν
- 45 -
- 45 -
2QHQGpGXLWOHVFRPSRVDQWHVGXSVHXGRYHFWHXUURWDWLRQ HWFHOOHVGXWHQVHXUGpIRUPDWLRQ E WRXWHVLQGpSHQGDQWHVGH]
2QHQGpGXLWOHVFRPSRVDQWHVGXSVHXGRYHFWHXUURWDWLRQ HWFHOOHVGXWHQVHXUGpIRUPDWLRQ E WRXWHVLQGpSHQGDQWHVGH]
⎧ ⎧ ⎧ ∂X ⎪ω[ = ⎪τ \] = ⎪ε [ = ∂ [ ⎪ ⎪ ⎪ ⎪ ⎪ ∂Y ⎪ ⎨ω\ = E ⎨ε \ = ⎨τ][ = ∂\ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ε = & ⎛ ∂Y ∂X ⎞ ⎛ ∂X ∂Y ⎞ ⎟⎟ ⎟ − + ⎪ω] = ⎜⎜ ⎪ ] ⎪τ [\ = ⎜⎜ ⎩ ⎝∂[ ∂\⎠ ⎝ ∂ \ ∂ [ ⎟⎠ ⎩ ⎩
⎧ ⎧ ⎧ ∂X ⎪ω[ = ⎪τ \] = ⎪ε [ = ∂ [ ⎪ ⎪ ⎪ ⎪ ⎪ ∂Y ⎪ ⎨ω\ = E ⎨ε \ = ⎨τ][ = ∂\ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ε = & ⎛ ∂Y ∂X ⎞ ⎛ ∂X ∂Y ⎞ ⎟⎟ ⎟ − + ⎪ω] = ⎜⎜ ⎪ ] ⎪τ [\ = ⎜⎜ ⎩ ⎝∂[ ∂\⎠ ⎝ ∂ \ ∂ [ ⎟⎠ ⎩ ⎩
8QHVHXOHpTXDWLRQGHFRPSWDELOLWpQ¶HVWSDVLGHQWLTXHPHQWYpULILpHHOOHV¶pFULW
8QHVHXOHpTXDWLRQGHFRPSWDELOLWpQ¶HVWSDVLGHQWLTXHPHQWYpULILpHHOOHV¶pFULW
∂ γ [\ ∂[ ∂\
=
∂ ε\ ∂ [
+
∂ ε[ ∂ \
/DORLGH+RRNH'XKDPHOGRQQHHQVXLWHOHVUHODWLRQV
SXLV
RXHQFRUH
]
[
]
+ ν ⎧ ⎪ε [ = ( − ν σ [ − ν σ \ − ν & + + ν α 7 − 7 ⎪ + ν ⎪ − ν σ \ − ν σ [ − ν & + + ν α 7 − 7 ⎨ε \ = ( ⎪ ⎪ + ν τ [\ ⎪γ [\ = ( ⎩
[
]
[
]
[
]
( ⎧ ⎪σ [ = + ν − ν − ν ε [ + ν ε \ + F − ( α 7 − 7 ⎪ ( ⎪σ = ⎪⎪ \ + ν − ν − ν ε \ + ν ε [ + F − ( α 7 − 7 ⎨ ( (α ⎪σ ] = ν ε [ + ε \ + − ν & − 7 − 7 ⎪ + ν − ν − ν ⎪ ⎪τ [\ = ( γ [\ + ν ⎩⎪
∆ σ [ + σ \ = −
∂ ε\ ∂ [
+
∂ ε[ ∂ \
σ ] = (& + ν σ [ + σ \ − ( α 7 − 7
'HSOXVODUHODWLRQ GHYLHQW
∂[ ∂\
=
/DORLGH+RRNH'XKDPHOGRQQHHQVXLWHOHVUHODWLRQV
σ ] = (& + ν σ [ + σ \ − ( α 7 − 7
[
∂ γ [\
SXLV
RXHQFRUH
[
]
[
]
+ ν ⎧ ⎪ε [ = ( − ν σ [ − ν σ \ − ν & + + ν α 7 − 7 ⎪ + ν ⎪ − ν σ \ − ν σ [ − ν & + + ν α 7 − 7 ⎨ε \ = ( ⎪ ⎪ + ν τ [\ ⎪γ [\ = ( ⎩
[
]
[
]
[
]
( ⎧ ⎪σ [ = + ν − ν − ν ε [ + ν ε \ + F − ( α 7 − 7 ⎪ ( ⎪σ = ⎪⎪ \ + ν − ν − ν ε \ + ν ε [ + F − ( α 7 − 7 ⎨ ( (α ⎪σ ] = ν ε [ + ε \ + − ν & − 7 − 7 ⎪ + ν − ν − ν ⎪ ⎪τ [\ = ( γ [\ + ν ⎩⎪
'HSOXVODUHODWLRQ GHYLHQW G GLY I + ( α ∆ 7 − ν
- 45 -
∆ σ [ + σ \ = −
G GLY I + ( α ∆ 7 − ν
- 45 -
5pVROXWLRQG¶XQSUREOqPHGHGpIRUPDWLRQVSODQHV UHPpWKRGHPpWKRGHGHVGpSODFHPHQWV
5pVROXWLRQG¶XQSUREOqPHGHGpIRUPDWLRQVSODQHV UHPpWKRGHPpWKRGHGHVGpSODFHPHQWV
/HV pTXDWLRQV GH 1DYLHU'XKDPHO VRQW DX QRPEUH GH GHX[ HOOHV WUDGXLVHQW HQ WHUPHV GH WUDQVODWLRQVO¶pTXLOLEUHORFDOVXLYDQWOHVGLUHFWLRQV[HW\HWV¶pFULYHQW
/HV pTXDWLRQV GH 1DYLHU'XKDPHO VRQW DX QRPEUH GH GHX[ HOOHV WUDGXLVHQW HQ WHUPHV GH WUDQVODWLRQVO¶pTXLOLEUHORFDOVXLYDQWOHVGLUHFWLRQV[HW\HWV¶pFULYHQW
⎧ ⎪λ + µ ⎪ ⎨ ⎪ ⎪λ + µ ⎩
∂ ∂[
⎛ ∂X ∂Y ⎞ ∂ ⎛ ∂Y ∂X ⎞ ∂7 ⎜⎜ ⎟⎟ − µ ⎜⎜ ⎟⎟ = λ + µ α + − − I[ ∂\ ⎝∂[ ∂\⎠ ∂[ ⎝∂[ ∂\⎠
∂7 ∂ ⎛ ∂X ∂Y ⎞ ∂ ⎛ ∂X ∂Y ⎞ ⎜ ⎟ = λ + µ α ⎜ ⎟−µ − I\ − + ∂\ ∂ [ ⎜⎝ ∂ \ ∂ \ ⎟⎠ ∂ \ ⎜⎝ ∂ [ ∂ \ ⎟⎠
⎧ ⎪λ + µ ⎪ ⎨ ⎪ ⎪λ + µ ⎩
∂ ∂[
⎛ ∂X ∂Y ⎞ ∂ ⎛ ∂Y ∂X ⎞ ∂7 ⎜⎜ ⎟⎟ − µ ⎜⎜ ⎟⎟ = λ + µ α + − − I[ ∂\ ⎝∂[ ∂\⎠ ∂[ ⎝∂[ ∂\⎠
∂7 ∂ ⎛ ∂X ∂Y ⎞ ∂ ⎛ ∂X ∂Y ⎞ ⎜ ⎟ = λ + µ α ⎜ ⎟−µ − I\ − + ∂\ ∂ [ ⎜⎝ ∂ \ ∂ \ ⎟⎠ ∂ \ ⎜⎝ ∂ [ ∂ \ ⎟⎠
HPpWKRGHPpWKRGHGHVFRQWUDLQWHV
HPpWKRGHPpWKRGHGHVFRQWUDLQWHV
2QSHXWGpWHUPLQHUOHVWURLVFRQWUDLQWHV σ [ σ [ τ [\ SDULQWpJUDWLRQGXV\VWqPH G ∂ τ [\ ∂ σ \ ∂ σ [ ∂ τ [\ GLY I + ( α ∆ 7 + = − I [ = − I \ ∆ σ [ + σ \ = − + ∂[ ∂\ − ν ∂\ ∂[
2QSHXWGpWHUPLQHUOHVWURLVFRQWUDLQWHV σ [ σ [ τ [\ SDULQWpJUDWLRQGXV\VWqPH G ∂ τ [\ ∂ σ \ ∂ σ [ ∂ τ [\ GLY I + ( α ∆ 7 + = − I [ = − I \ ∆ σ [ + σ \ = − + ∂[ ∂\ − ν ∂\ ∂[
HPpWKRGHPpWKRGHGHODIRQFWLRQG¶$LU\
HPpWKRGHPpWKRGHGHODIRQFWLRQG¶$LU\
G ,O V¶DJLW G¶XQH YDULDQWH GH OD SUpFpGHQWH GDQV OH FDV R I = JUDG 9 SUDWLTXHPHQW WRXMRXUV G G G UpDOLVpSXLVTXHOHVIRUFHVYROXPLTXHV I VRQWGHVIRUFHVGHSHVDQWHXU ρ J RXG¶LQHUWLH − ρ Γ 2QSRVHDORUV ∂ φ ∂ φ ∂ φ − 9 τ [\ = − σ[ = − 9 σ \ = ∂[ ∂\ ∂[ ∂\
G ,O V¶DJLW G¶XQH YDULDQWH GH OD SUpFpGHQWH GDQV OH FDV R I = JUDG 9 SUDWLTXHPHQW WRXMRXUV G G G UpDOLVpSXLVTXHOHVIRUFHVYROXPLTXHV I VRQWGHVIRUFHVGHSHVDQWHXU ρ J RXG¶LQHUWLH − ρ Γ 2QSRVHDORUV ∂ φ ∂ φ ∂ φ − 9 τ [\ = − σ[ = − 9 σ \ = ∂[ ∂\ ∂[ ∂\
/D IRQFWLRQ GH FRQWUDLQWH φ [ \ RX IRQFWLRQ G¶$LU\ VDWLVIDLW DXWRPDWLTXHPHQW DX[ GHX[ SUHPLqUHVpTXDWLRQV pTXLOLEUHORFDO ODWURLVLqPHV¶pFULW
/D IRQFWLRQ GH FRQWUDLQWH φ [ \ RX IRQFWLRQ G¶$LU\ VDWLVIDLW DXWRPDWLTXHPHQW DX[ GHX[ SUHPLqUHVpTXDWLRQV pTXLOLEUHORFDO ODWURLVLqPHV¶pFULW
∆ ∆ φ =
− ν ∆ 9 − ( α ∆ 7 − ν
∆ ∆ φ =
− ν ∆ 9 − ( α ∆ 7 − ν
5HPDUTXH OHV GpIRUPDWLRQV SODQHV VH UHQFRQWUHQW GDQV OHV F\OLQGUHV RX SULVPHV ORQJV VRXPLVjGHVHIIRUWVSHUSHQGLFXODLUHVjO¶D[H]GLUHFWLRQGHVJpQpUDWULFHV HWLQGpSHQGDQWHVGH ]DLQVLTX¶jXQFKDPSGHWHPSpUDWXUHLQGpSHQGDQWGH]
5HPDUTXH OHV GpIRUPDWLRQV SODQHV VH UHQFRQWUHQW GDQV OHV F\OLQGUHV RX SULVPHV ORQJV VRXPLVjGHVHIIRUWVSHUSHQGLFXODLUHVjO¶D[H]GLUHFWLRQGHVJpQpUDWULFHV HWLQGpSHQGDQWHVGH ]DLQVLTX¶jXQFKDPSGHWHPSpUDWXUHLQGpSHQGDQWGH]
)RUPXODLUHHQFRRUGRQQpHVF\OLQGULTXHV U θ ]
)RUPXODLUHHQFRRUGRQQpHVF\OLQGULTXHV U θ ]
⎧X = X U θ W UDGLDO ⎪⎪ 3R3 ⎨Y = Y U θ W FLUFRQIpUHQWLHO ⎪ ⎩⎪Z = & W ⋅ ]D[LDO
⎧ ⎪ωU = ⎪⎪ ⎨ωθ = ⎪ ⎛ Y ∂Y ∂X ⎞ ⎟ − ⎪ω] = ⎜⎜ + ⎝ U ∂ U U ∂ θ ⎟⎠ ⎩⎪
⎧X = X U θ W UDGLDO ⎪⎪ 3R3 ⎨Y = Y U θ W FLUFRQIpUHQWLHO ⎪ ⎩⎪Z = & W ⋅ ]D[LDO
- 46 -
⎧ ⎪ωU = ⎪⎪ ⎨ωθ = ⎪ ⎛ Y ∂Y ∂X ⎞ ⎟ − ⎪ω] = ⎜⎜ + ⎝ U ∂ U U ∂ θ ⎟⎠ ⎩⎪
- 46 -
5pVROXWLRQG¶XQSUREOqPHGHGpIRUPDWLRQVSODQHV UHPpWKRGHPpWKRGHGHVGpSODFHPHQWV
5pVROXWLRQG¶XQSUREOqPHGHGpIRUPDWLRQVSODQHV UHPpWKRGHPpWKRGHGHVGpSODFHPHQWV
/HV pTXDWLRQV GH 1DYLHU'XKDPHO VRQW DX QRPEUH GH GHX[ HOOHV WUDGXLVHQW HQ WHUPHV GH WUDQVODWLRQVO¶pTXLOLEUHORFDOVXLYDQWOHVGLUHFWLRQV[HW\HWV¶pFULYHQW
/HV pTXDWLRQV GH 1DYLHU'XKDPHO VRQW DX QRPEUH GH GHX[ HOOHV WUDGXLVHQW HQ WHUPHV GH WUDQVODWLRQVO¶pTXLOLEUHORFDOVXLYDQWOHVGLUHFWLRQV[HW\HWV¶pFULYHQW
⎧ ⎪λ + µ ⎪ ⎨ ⎪ ⎪λ + µ ⎩
∂ ∂[
⎛ ∂X ∂Y ⎞ ∂ ⎛ ∂Y ∂X ⎞ ∂7 ⎜⎜ ⎟⎟ − µ ⎜⎜ ⎟⎟ = λ + µ α + − − I[ [ \ \ [ \ ∂ ∂ ∂ ∂ ∂ ∂[ ⎝ ⎠ ⎝ ⎠
∂7 ∂ ⎛ ∂X ∂Y ⎞ ∂ ⎛ ∂X ∂Y ⎞ ⎜ ⎟ = λ + µ α ⎜⎜ ⎟⎟ − µ − I\ − + ∂\ ∂ [ ⎜⎝ ∂ \ ∂ \ ⎟⎠ ∂\ ⎝∂[ ∂\⎠
⎧ ⎪λ + µ ⎪ ⎨ ⎪ ⎪λ + µ ⎩
∂ ∂[
⎛ ∂X ∂Y ⎞ ∂ ⎛ ∂Y ∂X ⎞ ∂7 ⎜⎜ ⎟⎟ − µ ⎜⎜ ⎟⎟ = λ + µ α + − − I[ [ \ \ [ \ ∂ ∂ ∂ ∂ ∂ ∂[ ⎝ ⎠ ⎝ ⎠
∂7 ∂ ⎛ ∂X ∂Y ⎞ ∂ ⎛ ∂X ∂Y ⎞ ⎜ ⎟ = λ + µ α ⎜⎜ ⎟⎟ − µ − I\ − + ∂\ ∂ [ ⎜⎝ ∂ \ ∂ \ ⎟⎠ ∂\ ⎝∂[ ∂\⎠
HPpWKRGHPpWKRGHGHVFRQWUDLQWHV
HPpWKRGHPpWKRGHGHVFRQWUDLQWHV
2QSHXWGpWHUPLQHUOHVWURLVFRQWUDLQWHV σ [ σ [ τ [\ SDULQWpJUDWLRQGXV\VWqPH G ∂ τ [\ ∂ σ \ ∂ σ [ ∂ τ [\ GLY I + ( α ∆ 7 + = − I [ = − I \ ∆ σ [ + σ \ = − + ∂[ ∂\ − ν ∂\ ∂[
2QSHXWGpWHUPLQHUOHVWURLVFRQWUDLQWHV σ [ σ [ τ [\ SDULQWpJUDWLRQGXV\VWqPH G ∂ τ [\ ∂ σ \ ∂ σ [ ∂ τ [\ GLY I + ( α ∆ 7 + = − I [ = − I \ ∆ σ [ + σ \ = − + ∂[ ∂\ − ν ∂\ ∂[
HPpWKRGHPpWKRGHGHODIRQFWLRQG¶$LU\
HPpWKRGHPpWKRGHGHODIRQFWLRQG¶$LU\
G ,O V¶DJLW G¶XQH YDULDQWH GH OD SUpFpGHQWH GDQV OH FDV R I = JUDG 9 SUDWLTXHPHQW WRXMRXUV G G G UpDOLVpSXLVTXHOHVIRUFHVYROXPLTXHV I VRQWGHVIRUFHVGHSHVDQWHXU ρ J RXG¶LQHUWLH − ρ Γ 2QSRVHDORUV ∂ φ ∂ φ ∂ φ − 9 τ [\ = − σ[ = − 9 σ \ = ∂[ ∂\ ∂[ ∂\
G ,O V¶DJLW G¶XQH YDULDQWH GH OD SUpFpGHQWH GDQV OH FDV R I = JUDG 9 SUDWLTXHPHQW WRXMRXUV G G G UpDOLVpSXLVTXHOHVIRUFHVYROXPLTXHV I VRQWGHVIRUFHVGHSHVDQWHXU ρ J RXG¶LQHUWLH − ρ Γ 2QSRVHDORUV ∂ φ ∂ φ ∂ φ − 9 τ [\ = − σ[ = − 9 σ \ = ∂[ ∂\ ∂[ ∂\
/D IRQFWLRQ GH FRQWUDLQWH φ [ \ RX IRQFWLRQ G¶$LU\ VDWLVIDLW DXWRPDWLTXHPHQW DX[ GHX[ SUHPLqUHVpTXDWLRQV pTXLOLEUHORFDO ODWURLVLqPHV¶pFULW
/D IRQFWLRQ GH FRQWUDLQWH φ [ \ RX IRQFWLRQ G¶$LU\ VDWLVIDLW DXWRPDWLTXHPHQW DX[ GHX[ SUHPLqUHVpTXDWLRQV pTXLOLEUHORFDO ODWURLVLqPHV¶pFULW
∆ ∆ φ =
− ν ∆ 9 − ( α ∆ 7 − ν
∆ ∆ φ =
− ν ∆ 9 − ( α ∆ 7 − ν
5HPDUTXH OHV GpIRUPDWLRQV SODQHV VH UHQFRQWUHQW GDQV OHV F\OLQGUHV RX SULVPHV ORQJV VRXPLVjGHVHIIRUWVSHUSHQGLFXODLUHVjO¶D[H]GLUHFWLRQGHVJpQpUDWULFHV HWLQGpSHQGDQWHVGH ]DLQVLTX¶jXQFKDPSGHWHPSpUDWXUHLQGpSHQGDQWGH]
5HPDUTXH OHV GpIRUPDWLRQV SODQHV VH UHQFRQWUHQW GDQV OHV F\OLQGUHV RX SULVPHV ORQJV VRXPLVjGHVHIIRUWVSHUSHQGLFXODLUHVjO¶D[H]GLUHFWLRQGHVJpQpUDWULFHV HWLQGpSHQGDQWHVGH ]DLQVLTX¶jXQFKDPSGHWHPSpUDWXUHLQGpSHQGDQWGH]
)RUPXODLUHHQFRRUGRQQpHVF\OLQGULTXHV U θ ]
)RUPXODLUHHQFRRUGRQQpHVF\OLQGULTXHV U θ ]
⎧X = X U θ W UDGLDO ⎪⎪ 3R3 ⎨Y = Y U θ W FLUFRQIpUHQWLHO ⎪ ⎪⎩Z = & W ⋅ ]D[LDO
- 46 -
⎧ ⎪ωU = ⎪⎪ ⎨ωθ = ⎪ ⎛ Y ∂Y ∂X ⎞ ⎟ − ⎪ω] = ⎜⎜ + ⎝ U ∂ U U ∂ θ ⎟⎠ ⎪⎩
⎧X = X U θ W UDGLDO ⎪⎪ 3R3 ⎨Y = Y U θ W FLUFRQIpUHQWLHO ⎪ ⎪⎩Z = & W ⋅ ]D[LDO
- 46 -
⎧ ⎪ωU = ⎪⎪ ⎨ωθ = ⎪ ⎛ Y ∂Y ∂X ⎞ ⎟ − ⎪ω] = ⎜⎜ + ⎝ U ∂ U U ∂ θ ⎟⎠ ⎪⎩
⎧ ⎪γ θ ] = ⎪ ⎪ ⎪ ⎨γ ] U = ⎪ ⎪ ⎪γ = ⎛⎜ ∂ X − Y + ∂ Y ⎞⎟ ⎪ Uθ ⎜ U ∂θ U ∂ U ⎟ ⎝ ⎠ ⎩
⎧ ∂X ⎪ε U = ∂ U ⎪ ⎪ X ∂Y ⎪ ⎨εθ = + U U ∂θ ⎪ ⎪ ⎪ε = & W ⎪ ] ⎩
⎧ ∂X X ∂Y + + +& ⎪H = GLY 3R3 = WU E = ∂U U U ∂θ ⎪ ⎨ ⎪ ∂ ∂ ⎛ ∂ ⎞ ∂ + ⎪∆ = U ∂ U ⎜⎜ U ∂ U ⎟⎟ + ∂] ⎝ ⎠ U ∂θ ⎩
(TXDWLRQVGH1DYLHU
⎧ ∂X X ∂Y + + +& ⎪H = GLY 3R3 = WU E = ∂U U U ∂θ ⎪ ⎨ ⎪ ∂ ∂ ⎛ ∂ ⎞ ∂ + ⎪∆ = U ∂ U ⎜⎜ U ∂ U ⎟⎟ + ∂] ⎝ ⎠ U ∂θ ⎩
(TXDWLRQVGH1DYLHU
∂H ∂7 ∂ ω] ⎧ ⎪λ + µ ∂ U − µ U ∂ θ = λ + µ α ∂ U − I U ⎪ ⎨ ∂ ω] ∂H ∂7 ⎪ ⎪λ + µ U ∂ θ + µ ∂ U = λ + µ α U ∂ θ − I θ ⎩
(TXDWLRQGHFRPSDWLELOLWp
∂ εθ ∂ ε U ∂ γ U θ ∂ ε U ∂ εθ ∂ γ U θ + − − + − = ∂ U U ∂ θ U ∂ U ∂ θ U ∂ U U ∂ U U ∂θ
(TXDWLRQVDX[FRQWUDLQWHV ⎧ ∂ σ U σ U − σθ ∂ τU θ + + = − IU ⎪ U U ∂θ ⎪ ∂U ⎪ ∂ σθ ⎪ ∂ τU θ + τU θ + = − Iθ ⎨ ∂ U U U ∂θ ⎪ G ⎪ ⎪∆ σ + σ = − GLY I + ( α ∆ 7 U θ ⎪ − ν ⎩
)RQFWLRQG¶$LU\
⎧ ∂ σ U σ U − σθ ∂ τU θ + + = − IU ⎪ U U ∂θ ⎪ ∂U ⎪ ∂ σθ ⎪ ∂ τU θ + τU θ + = − Iθ ⎨ ∂ U U U ∂θ ⎪ G ⎪ ⎪∆ σ + σ = − GLY I + ( α ∆ 7 U θ ⎪ − ν ⎩
σU =
∂ φ ∂ φ ∂ ⎛ ∂φ⎞ ∂ φ ⎜ ⎟ + − 9 σθ = − 9 τU θ = − ∂ U ⎜⎝ U ∂ θ ⎟⎠ U ∂U U ∂θ ∂U
- 47 -
- 47 -
⎧ ⎪γ θ ] = ⎪ ⎪ ⎪ ⎨γ ] U = ⎪ ⎪ ⎪γ = ⎛⎜ ∂ X − Y + ∂ Y ⎞⎟ ⎪ Uθ ⎜ U ∂θ U ∂ U ⎟ ⎝ ⎠ ⎩
⎧ ∂X ⎪ε U = ∂ U ⎪ ⎪ X ∂Y ⎪ ⎨εθ = + U U ∂θ ⎪ ⎪ ⎪ε = & W ⎪ ] ⎩
⎧ ∂X X ∂Y + + +& ⎪H = GLY 3R3 = WU E = ∂U U U ∂θ ⎪ ⎨ ⎪ ∂ ∂ ⎛ ∂ ⎞ ∂ + ⎪∆ = U ∂ U ⎜⎜ U ∂ U ⎟⎟ + ∂] ⎝ ⎠ U ∂θ ⎩
(TXDWLRQVGH1DYLHU
(TXDWLRQGHFRPSDWLELOLWp
⎧ ∂X X ∂Y + + +& ⎪H = GLY 3R3 = WU E = ∂U U U ∂θ ⎪ ⎨ ⎪ ∂ ∂ ⎛ ∂ ⎞ ∂ + ⎪∆ = U ∂ U ⎜⎜ U ∂ U ⎟⎟ + ∂] ⎝ ⎠ U ∂θ ⎩
∂H ∂7 ∂ ω] ⎧ ⎪λ + µ ∂ U − µ U ∂ θ = λ + µ α ∂ U − I U ⎪ ⎨ ∂ ω] ∂H ∂7 ⎪ ⎪λ + µ U ∂ θ + µ ∂ U = λ + µ α U ∂ θ − I θ ⎩
(TXDWLRQGHFRPSDWLELOLWp
∂ εθ ∂ ε U ∂ γ U θ ∂ ε U ∂ εθ ∂ γ U θ + − − + − = ∂ U U ∂ θ U ∂ U ∂ θ U ∂ U U ∂ U U ∂θ
∂ εθ ∂ ε U ∂ γ U θ ∂ ε U ∂ εθ ∂ γ U θ + − − + − = ∂ U U ∂ θ U ∂ U ∂ θ U ∂ U U ∂ U U ∂θ
(TXDWLRQVDX[FRQWUDLQWHV
(TXDWLRQVDX[FRQWUDLQWHV ⎧ ∂ σ U σ U − σθ ∂ τU θ + + = − IU ⎪ U U ∂θ ⎪ ∂U ⎪ ∂ σθ ⎪ ∂ τU θ + τU θ + = − Iθ ⎨ ∂ U U U ∂θ ⎪ G ⎪ ⎪∆ σ + σ = − GLY I + ( α ∆ 7 U θ ⎪ − ν ⎩
)RQFWLRQG¶$LU\
σU =
⎧ ⎪γ θ ] = ⎪ ⎪ ⎪ ⎨γ ] U = ⎪ ⎪ ⎪γ = ⎛⎜ ∂ X − Y + ∂ Y ⎞⎟ ⎪ Uθ ⎜ U ∂θ U ∂ U ⎟ ⎝ ⎠ ⎩
⎧ ∂X ⎪ε U = ∂ U ⎪ ⎪ X ∂Y ⎪ ⎨εθ = + U U ∂θ ⎪ ⎪ ⎪ε = & W ⎪ ] ⎩
(TXDWLRQVGH1DYLHU
∂H ∂7 ∂ ω] ⎧ ⎪λ + µ ∂ U − µ U ∂ θ = λ + µ α ∂ U − I U ⎪ ⎨ ∂ ω] ∂H ∂7 ⎪ ⎪λ + µ U ∂ θ + µ ∂ U = λ + µ α U ∂ θ − I θ ⎩
)RQFWLRQG¶$LU\
∂ φ ∂ φ ∂ ⎛ ∂φ⎞ ∂ φ ⎜ ⎟ + − 9 σθ = − 9 τU θ = − ∂ U ⎜⎝ U ∂ θ ⎟⎠ U ∂U U ∂θ ∂U
(TXDWLRQGHFRPSDWLELOLWp
(TXDWLRQVDX[FRQWUDLQWHV
σU =
∂H ∂7 ∂ ω] ⎧ ⎪λ + µ ∂ U − µ U ∂ θ = λ + µ α ∂ U − I U ⎪ ⎨ ∂ ω] ∂H ∂7 ⎪ ⎪λ + µ U ∂ θ + µ ∂ U = λ + µ α U ∂ θ − I θ ⎩
∂ εθ ∂ ε U ∂ γ U θ ∂ ε U ∂ εθ ∂ γ U θ + − − + − = ∂ U U ∂ θ U ∂ U ∂ θ U ∂ U U ∂ U U ∂θ
⎧ ⎪γ θ ] = ⎪ ⎪ ⎪ ⎨γ ] U = ⎪ ⎪ ⎪γ = ⎛⎜ ∂ X − Y + ∂ Y ⎞⎟ ⎪ Uθ ⎜ U ∂θ U ∂ U ⎟ ⎝ ⎠ ⎩
⎧ ∂X ⎪ε U = ∂ U ⎪ ⎪ X ∂Y ⎪ ⎨εθ = + U U ∂θ ⎪ ⎪ ⎪ε = & W ⎪ ] ⎩
⎧ ∂ σ U σ U − σθ ∂ τU θ + + = − IU ⎪ U U ∂θ ⎪ ∂U ⎪ ∂ σθ ⎪ ∂ τU θ + τU θ + = − Iθ ⎨ ∂ U U U ∂θ ⎪ G ⎪ ⎪∆ σ + σ = − GLY I + ( α ∆ 7 U θ ⎪ − ν ⎩
)RQFWLRQG¶$LU\
∂ φ ∂ φ ∂ ⎛ ∂φ⎞ ∂ φ ⎜ ⎟ σ = − 9 τU θ = − + − 9 θ ∂ U ⎜⎝ U ∂ θ ⎟⎠ U ∂U U ∂θ ∂U
- 47 -
σU =
∂ φ ∂ φ ∂ ⎛ ∂φ⎞ ∂ φ ⎜ ⎟ σ = − 9 τU θ = − + − 9 θ ∂ U ⎜⎝ U ∂ θ ⎟⎠ U ∂U U ∂θ ∂U
- 47 -
([HPSOH
([HPSOH
&RQGXLWH F\OLQGULTXH G¶XQ IOXLGH FKDXG 2Q QRWH 5 HW 5 OHV UD\RQV LQWpULHXUV HW H[WpULHXU OHVSDURLVLQWHUQHHWH[WHUQHVRQWVXSSRVpHVPDLQWHQXHVDX[WHPSpUDWXUHV 7 HW 7 UHVSHFWLYHPHQW/HVVHFWLRQVH[WUrPHVVRQWPDLQWHQXHVjODGLVWDQFHFRQVWDQWH/
&RQGXLWH F\OLQGULTXH G¶XQ IOXLGH FKDXG 2Q QRWH 5 HW 5 OHV UD\RQV LQWpULHXUV HW H[WpULHXU OHVSDURLVLQWHUQHHWH[WHUQHVRQWVXSSRVpHVPDLQWHQXHVDX[WHPSpUDWXUHV 7 HW 7 UHVSHFWLYHPHQW/HVVHFWLRQVH[WUrPHVVRQWPDLQWHQXHVjODGLVWDQFHFRQVWDQWH/
,O V¶DJLW G¶XQ SUREOqPH GH GpIRUPDWLRQ SODQH D[LV\PpWULTXH DYHF ε ] = TXH QRXV DOORQV UpVRXGUHHQFRRUGRQQpHVF\OLQGULTXHVG¶D[H]D[HGHODFRTXH
,O V¶DJLW G¶XQ SUREOqPH GH GpIRUPDWLRQ SODQH D[LV\PpWULTXH DYHF ε ] = TXH QRXV DOORQV UpVRXGUHHQFRRUGRQQpHVF\OLQGULTXHVG¶D[H]D[HGHODFRTXH
/HFKDPSGHWHPSpUDWXUHDpWpFDOFXOpDXFKDSLWUHSUHPLHU
/HFKDPSGHWHPSpUDWXUHDpWpFDOFXOpDXFKDSLWUHSUHPLHU
2QDWURXYp
2QDWURXYp
7 = $ /RJ U + % DYHF $ =
7 − 7 7 /RJ 5 − 7 /RJ 5 HW % = /RJ 5 − /RJ 5 /RJ 5 − /RJ 5
7 = $ /RJ U + % DYHF $ =
7 − 7 7 /RJ 5 − 7 /RJ 5 HW % = /RJ 5 − /RJ 5 /RJ 5 − /RJ 5
)LJXUH
)LJXUH
/DSUHPLqUHpTXDWLRQGH1DYLHUV¶pFULW
G GU
/DSUHPLqUHpTXDWLRQGH1DYLHUV¶pFULW
⎛ GX X ⎞ + ν G7 ⎜⎜ + ⎟⎟ = α ⎝ GU U ⎠ − ν GU
G GU
⎛ GX X ⎞ + ν G7 ⎜⎜ + ⎟⎟ = α ⎝ GU U ⎠ − ν GU
2XU GpVLJQHOHGpSODFHPHQWGH3SXUHPHQWUDGLDO
2XU GpVLJQHOHGpSODFHPHQWGH3SXUHPHQWUDGLDO
8QHSUHPLqUHLQWpJUDWLRQGRQQH
8QHSUHPLqUHLQWpJUDWLRQGRQQH
GX X + ν + ν + = α 7 + & = α $ /RJ U + % + & GU U − ν − ν
GX X + ν + ν + = α 7 + & = α $ /RJ U + % + & GU U − ν − ν
8QHVHFRQGHLQWpJUDWLRQGRQQH X=
8QHVHFRQGHLQWpJUDWLRQGRQQH
+ ν ⎡$ ⎛ $⎞ '⎤ α ⎢ U /RJ U + ⎜ % + & − ⎟ U + ⎥ − ν ⎣ ⎝ ⎠ U⎦
X=
+ ν ⎡$ ⎛ $⎞ '⎤ α ⎢ U /RJ U + ⎜ % + & − ⎟ U + ⎥ − ν ⎣ ⎝ ⎠ U⎦
- 48 -
- 48 -
([HPSOH
([HPSOH
&RQGXLWH F\OLQGULTXH G¶XQ IOXLGH FKDXG 2Q QRWH 5 HW 5 OHV UD\RQV LQWpULHXUV HW H[WpULHXU OHVSDURLVLQWHUQHHWH[WHUQHVRQWVXSSRVpHVPDLQWHQXHVDX[WHPSpUDWXUHV 7 HW 7 UHVSHFWLYHPHQW/HVVHFWLRQVH[WUrPHVVRQWPDLQWHQXHVjODGLVWDQFHFRQVWDQWH/
&RQGXLWH F\OLQGULTXH G¶XQ IOXLGH FKDXG 2Q QRWH 5 HW 5 OHV UD\RQV LQWpULHXUV HW H[WpULHXU OHVSDURLVLQWHUQHHWH[WHUQHVRQWVXSSRVpHVPDLQWHQXHVDX[WHPSpUDWXUHV 7 HW 7 UHVSHFWLYHPHQW/HVVHFWLRQVH[WUrPHVVRQWPDLQWHQXHVjODGLVWDQFHFRQVWDQWH/
,O V¶DJLW G¶XQ SUREOqPH GH GpIRUPDWLRQ SODQH D[LV\PpWULTXH DYHF ε ] = TXH QRXV DOORQV UpVRXGUHHQFRRUGRQQpHVF\OLQGULTXHVG¶D[H]D[HGHODFRTXH
,O V¶DJLW G¶XQ SUREOqPH GH GpIRUPDWLRQ SODQH D[LV\PpWULTXH DYHF ε ] = TXH QRXV DOORQV UpVRXGUHHQFRRUGRQQpHVF\OLQGULTXHVG¶D[H]D[HGHODFRTXH
/HFKDPSGHWHPSpUDWXUHDpWpFDOFXOpDXFKDSLWUHSUHPLHU
/HFKDPSGHWHPSpUDWXUHDpWpFDOFXOpDXFKDSLWUHSUHPLHU
2QDWURXYp
2QDWURXYp
7 = $ /RJ U + % DYHF $ =
7 − 7 7 /RJ 5 − 7 /RJ 5 HW % = /RJ 5 − /RJ 5 /RJ 5 − /RJ 5
7 = $ /RJ U + % DYHF $ =
7 − 7 7 /RJ 5 − 7 /RJ 5 HW % = /RJ 5 − /RJ 5 /RJ 5 − /RJ 5
)LJXUH
/DSUHPLqUHpTXDWLRQGH1DYLHUV¶pFULW
G GU
)LJXUH
/DSUHPLqUHpTXDWLRQGH1DYLHUV¶pFULW
⎛ GX X ⎞ + ν G7 ⎜⎜ + ⎟⎟ = α ⎝ GU U ⎠ − ν GU
G GU
⎛ GX X ⎞ + ν G7 ⎜⎜ + ⎟⎟ = α ⎝ GU U ⎠ − ν GU
2XU GpVLJQHOHGpSODFHPHQWGH3SXUHPHQWUDGLDO
2XU GpVLJQHOHGpSODFHPHQWGH3SXUHPHQWUDGLDO
8QHSUHPLqUHLQWpJUDWLRQGRQQH
8QHSUHPLqUHLQWpJUDWLRQGRQQH
GX X + ν + ν + = α 7 + & = α $ /RJ U + % + & GU U − ν − ν
8QHVHFRQGHLQWpJUDWLRQGRQQH X=
GX X + ν + ν + = α 7 + & = α $ /RJ U + % + & GU U − ν − ν
8QHVHFRQGHLQWpJUDWLRQGRQQH
+ ν ⎡$ ⎛ $⎞ '⎤ α U /RJ U + ⎜ % + & − ⎟ U + ⎥ − ν ⎢⎣ ⎝ ⎠ U⎦
- 48 -
X=
+ ν ⎡$ ⎛ $⎞ '⎤ α U /RJ U + ⎜ % + & − ⎟ U + ⎥ − ν ⎢⎣ ⎝ ⎠ U⎦
- 48 -
2QHQGpGXLW
2QHQGpGXLW ⎧ GX + ν ⎡$ ⎛ $⎞ '⎤ /RJ U + ⎜ % + & + ⎟ − ⎥ = α ⎪ε U = G U − ν ⎢⎣ ⎝ ⎠ U ⎦ ⎪ ⎨ ⎪ε = X = + ν α ⎡ $ /RJ U + ⎛⎜ % + & − $ ⎞⎟ + ' ⎤ ⎪⎩ θ U − ν ⎢⎣ ⎝ ⎠ U ⎥⎦
⎧ GX + ν ⎡$ ⎛ $⎞ '⎤ /RJ U + ⎜ % + & + ⎟ − ⎥ = α ⎪ε U = G U − ν ⎢⎣ ⎝ ⎠ U ⎦ ⎪ ⎨ ⎪ε = X = + ν α ⎡ $ /RJ U + ⎛⎜ % + & − $ ⎞⎟ + ' ⎤ ⎪⎩ θ U − ν ⎢⎣ ⎝ ⎠ U ⎥⎦
SXLVSDUOHVUHODWLRQV GH+RRNH'XKDPHO
SXLVSDUOHVUHODWLRQV GH+RRNH'XKDPHO
⎧ (α ⎡$ ' (α ⎤ ⎪⎪σ U = − ν ⎢ − − (7 + & )⎥ + − ν (7 + & ) U ⎣ ⎦ ⎨ ⎪σθ = ( α ⎡− $ + ' − (7 + & )⎤ + ( α (7 + & ) ⎥⎦ − ν − ν ⎢⎣ U ⎩⎪
⎧ (α ⎡$ ' (α ⎤ ⎪⎪σ U = − ν ⎢ − − (7 + & )⎥ + − ν (7 + & ) U ⎣ ⎦ ⎨ ⎪σθ = ( α ⎡− $ + ' − (7 + & )⎤ + ( α (7 + & ) ⎥⎦ − ν − ν ⎢⎣ U ⎩⎪
/HV FRQGLWLRQV DX[ OLPLWHV σ U = SRXU U = 5 HW U = 5 GRQQHQW OHV FRQVWDQWHV G¶LQWpJUDWLRQ ⎧ 7 5 − 7 5 $ − − ν − − ν 7 ⎪& = − ν 5 − 5 ⎪ ⎨ ⎪' = 5 5 (7 − 7 ) ⎪ 5 − 5 ⎩
/HV FRQGLWLRQV DX[ OLPLWHV σ U = SRXU U = 5 HW U = 5 GRQQHQW OHV FRQVWDQWHV G¶LQWpJUDWLRQ ⎧ 7 5 − 7 5 $ − − ν − − ν 7 ⎪& = − ν 5 − 5 ⎪ ⎨ ⎪' = 5 5 (7 − 7 ) ⎪ 5 − 5 ⎩
±&2175$,17(63/$1(6&3
±&2175$,17(63/$1(6&3
8QVROLGHVHWURXYHHQpWDWGHFRQWUDLQWHSODQHV¶LOH[LVWHXQUHSqUHRUWKRQRUPpOLpjFHVROLGH SDUUDSSRUWDXTXHO ± G¶XQHSDUWODWHPSpUDWXUH7[\W QHGpSHQGSDVGH] ± G¶DXWUHSDUWODPDWULFHGHVFRQWUDLQWHVLQGpSHQGDQWHGH]HVWGHODIRUPH
8QVROLGHVHWURXYHHQpWDWGHFRQWUDLQWHSODQHV¶LOH[LVWHXQUHSqUHRUWKRQRUPpOLpjFHVROLGH SDUUDSSRUWDXTXHO ± G¶XQHSDUWODWHPSpUDWXUH7[\W QHGpSHQGSDVGH] ± G¶DXWUHSDUWODPDWULFHGHVFRQWUDLQWHVLQGpSHQGDQWHGH]HVWGHODIRUPH
⎡ σ[ ⎢ [Σ] = ⎢τ[\ ⎢ ⎢⎣
τ [\ σ\
⎤ ⎥ ⎥ ⎥ ⎥⎦
⎡ σ[ ⎢ [Σ] = ⎢τ[\ ⎢ ⎢⎣
τ [\ σ\
⎤ ⎥ ⎥ ⎥ ⎥⎦
G ,O HQ UpVXOWH G¶DSUqV OHV pTXDWLRQV GH O¶pTXLOLEUH ORFDO TXH OHV IRUFHV YROXPLTXHV I VRQW LQGpSHQGDQWHV GH ] HW QRUPDOHV j O¶D[H ]′] ,O HQ UpVXOWH DXVVL TXH OD PDWULFH GpIRUPDWLRQ LQGpSHQGDQWHGH]HVWGHODIRUPH ⎧ ⎪ε [ = ( σ [ − νσ \ + α 7 − 7 ⎪ ⎡ ε [ γ [\ ⎤ ⎪ε = σ − νσ + α 7 − 7 ⎢ ⎥ [ ⎪ \ ( \ [E] = ⎢⎢γ [\ ε \ ⎥⎥ DYHF ⎪⎨ ⎪ε = ν σ + σ + α 7 − 7 ⎢ ⎥ \ ⎪ ] ( [ ⎢⎣ ε ] ⎥⎦ ⎪ ⎪τ [\ = ( γ [\ + ν ⎩⎪
G ,O HQ UpVXOWH G¶DSUqV OHV pTXDWLRQV GH O¶pTXLOLEUH ORFDO TXH OHV IRUFHV YROXPLTXHV I VRQW LQGpSHQGDQWHV GH ] HW QRUPDOHV j O¶D[H ]′] ,O HQ UpVXOWH DXVVL TXH OD PDWULFH GpIRUPDWLRQ LQGpSHQGDQWHGH]HVWGHODIRUPH ⎧ ⎪ε [ = ( σ [ − νσ \ + α 7 − 7 ⎪ ⎡ ε [ γ [\ ⎤ ⎪ε = σ − νσ + α 7 − 7 ⎢ ⎥ [ ⎪ \ ( \ [E] = ⎢⎢γ [\ ε \ ⎥⎥ DYHF ⎪⎨ ⎪ε = ν σ + σ + α 7 − 7 ⎢ ⎥ \ ⎪ ] ( [ ⎢⎣ ε ] ⎥⎦ ⎪ ⎪τ [\ = ( γ [\ + ν ⎩⎪
- 49 -
- 49 -
2QHQGpGXLW
2QHQGpGXLW ⎧ GX + ν ⎡$ ⎛ $⎞ '⎤ /RJ U + ⎜ % + & + ⎟ − ⎥ = α ⎪ε U = G U − ν ⎢⎣ ⎝ ⎠ U ⎦ ⎪ ⎨ ⎡ X $ $ + ν ⎛ ⎞ '⎤ ⎪ε = = /RJ U + ⎜ % + & − ⎟ + ⎥ α ⎪⎩ θ U − ν ⎢⎣ ⎝ ⎠ U ⎦
⎧ GX + ν ⎡$ ⎛ $⎞ '⎤ /RJ U + ⎜ % + & + ⎟ − ⎥ = α ⎪ε U = G U − ν ⎢⎣ ⎝ ⎠ U ⎦ ⎪ ⎨ ⎡ X $ $ + ν ⎛ ⎞ '⎤ ⎪ε = = /RJ U + ⎜ % + & − ⎟ + ⎥ α ⎪⎩ θ U − ν ⎢⎣ ⎝ ⎠ U ⎦
SXLVSDUOHVUHODWLRQV GH+RRNH'XKDPHO
SXLVSDUOHVUHODWLRQV GH+RRNH'XKDPHO
⎧ (α ⎡$ ' (α ⎤ ⎪⎪σ U = − ν ⎢ − − (7 + & )⎥ + − ν (7 + & ) U ⎣ ⎦ ⎨ ⎪σθ = ( α ⎡− $ + ' − (7 + & )⎤ + ( α (7 + & ) ⎥⎦ − ν ⎪⎩ − ν ⎢⎣ U
⎧ (α ⎡$ ' (α ⎤ ⎪⎪σ U = − ν ⎢ − − (7 + & )⎥ + − ν (7 + & ) U ⎣ ⎦ ⎨ ⎪σθ = ( α ⎡− $ + ' − (7 + & )⎤ + ( α (7 + & ) ⎥⎦ − ν ⎪⎩ − ν ⎢⎣ U
/HV FRQGLWLRQV DX[ OLPLWHV σ U = SRXU U = 5 HW U = 5 GRQQHQW OHV FRQVWDQWHV G¶LQWpJUDWLRQ ⎧ 7 5 − 7 5 $ − − ν − − ν 7 ⎪& = − ν 5 − 5 ⎪ ⎨ ⎪' = 5 5 (7 − 7 ) ⎪ 5 − 5 ⎩
/HV FRQGLWLRQV DX[ OLPLWHV σ U = SRXU U = 5 HW U = 5 GRQQHQW OHV FRQVWDQWHV G¶LQWpJUDWLRQ ⎧ 7 5 − 7 5 $ − − ν − − ν 7 ⎪& = − ν 5 − 5 ⎪ ⎨ ⎪' = 5 5 (7 − 7 ) ⎪ 5 − 5 ⎩
±&2175$,17(63/$1(6&3
±&2175$,17(63/$1(6&3
8QVROLGHVHWURXYHHQpWDWGHFRQWUDLQWHSODQHV¶LOH[LVWHXQUHSqUHRUWKRQRUPpOLpjFHVROLGH SDUUDSSRUWDXTXHO ± G¶XQHSDUWODWHPSpUDWXUH7[\W QHGpSHQGSDVGH] ± G¶DXWUHSDUWODPDWULFHGHVFRQWUDLQWHVLQGpSHQGDQWHGH]HVWGHODIRUPH
8QVROLGHVHWURXYHHQpWDWGHFRQWUDLQWHSODQHV¶LOH[LVWHXQUHSqUHRUWKRQRUPpOLpjFHVROLGH SDUUDSSRUWDXTXHO ± G¶XQHSDUWODWHPSpUDWXUH7[\W QHGpSHQGSDVGH] ± G¶DXWUHSDUWODPDWULFHGHVFRQWUDLQWHVLQGpSHQGDQWHGH]HVWGHODIRUPH
⎡ σ[ ⎢ [Σ] = ⎢τ[\ ⎢ ⎣⎢
τ [\ σ\
⎤ ⎥ ⎥ ⎥ ⎦⎥
⎡ σ[ ⎢ [Σ] = ⎢τ[\ ⎢ ⎣⎢
τ [\ σ\
⎤ ⎥ ⎥ ⎥ ⎦⎥
G ,O HQ UpVXOWH G¶DSUqV OHV pTXDWLRQV GH O¶pTXLOLEUH ORFDO TXH OHV IRUFHV YROXPLTXHV I VRQW LQGpSHQGDQWHV GH ] HW QRUPDOHV j O¶D[H ]′] ,O HQ UpVXOWH DXVVL TXH OD PDWULFH GpIRUPDWLRQ LQGpSHQGDQWHGH]HVWGHODIRUPH ⎧ ⎪ε [ = ( σ [ − νσ \ + α 7 − 7 ⎪ ⎡ ε [ γ [\ ⎤ ⎪ε = σ − νσ + α 7 − 7 ⎢ ⎥ [ ⎪ \ ( \ [E] = ⎢⎢γ [\ ε \ ⎥⎥ DYHF ⎪⎨ ⎪ε = ν σ + σ + α 7 − 7 ⎢ ⎥ \ ⎪ ] ( [ ε ] ⎦⎥ ⎣⎢ ⎪ ⎪τ [\ = ( γ [\ ⎪⎩ + ν
G ,O HQ UpVXOWH G¶DSUqV OHV pTXDWLRQV GH O¶pTXLOLEUH ORFDO TXH OHV IRUFHV YROXPLTXHV I VRQW LQGpSHQGDQWHV GH ] HW QRUPDOHV j O¶D[H ]′] ,O HQ UpVXOWH DXVVL TXH OD PDWULFH GpIRUPDWLRQ LQGpSHQGDQWHGH]HVWGHODIRUPH ⎧ ⎪ε [ = ( σ [ − νσ \ + α 7 − 7 ⎪ ⎡ ε [ γ [\ ⎤ ⎪ε = σ − νσ + α 7 − 7 ⎢ ⎥ [ ⎪ \ ( \ [E] = ⎢⎢γ [\ ε \ ⎥⎥ DYHF ⎪⎨ ⎪ε = ν σ + σ + α 7 − 7 ⎢ ⎥ \ ⎪ ] ( [ ε ] ⎦⎥ ⎣⎢ ⎪ ⎪τ [\ = ( γ [\ ⎪⎩ + ν
- 49 -
- 49 -
RXLQYHUVHPHQW
RXLQYHUVHPHQW
( (α ⎧ ⎪σ [ = − ν ε [ + νε \ − − ν 7 − 7 ⎪ ( (α ⎪ ε \ + νε [ − 7 − 7 ⎨σ \ = −ν − ν ⎪ ⎪ ( γ [\ ⎪τ [\ = + ν ⎩
DYHF
ε] = −
+ ν ν ε [ + ε \ + α 7 − 7 − ν − ν
( (α ⎧ ⎪σ [ = − ν ε [ + νε \ − − ν 7 − 7 ⎪ ( (α ⎪ ε \ + νε [ − 7 − 7 ⎨σ \ = −ν − ν ⎪ ⎪ ( γ [\ ⎪τ [\ = + ν ⎩
DYHF
ε] = −
+ ν ν ε [ + ε \ + α 7 − 7 − ν − ν
5HPDUTXHVOHVFRQWUDLQWHVSODQHVVHUHQFRQWUHQWGDQVOHVSODTXHVPLQFHVSHUSHQGLFXODLUHVj O¶D[H ] VRXPLVHV j GHV HIIRUWV SHUSHQGLFXODLUHV j ] HW LQGpSHQGDQWV GH ] DLQVL TX¶j GHV FKDPSVGHWHPSpUDWXUHLQGpSHQGDQWVGH]O¶pTXDWLRQ SRXUL M GRQQH G ν GLY I + ( α ∆ 7 =
5HPDUTXHVOHVFRQWUDLQWHVSODQHVVHUHQFRQWUHQWGDQVOHVSODTXHVPLQFHVSHUSHQGLFXODLUHVj O¶D[H ] VRXPLVHV j GHV HIIRUWV SHUSHQGLFXODLUHV j ] HW LQGpSHQGDQWV GH ] DLQVL TX¶j GHV FKDPSVGHWHPSpUDWXUHLQGpSHQGDQWVGH]O¶pTXDWLRQ SRXUL M GRQQH G ν GLY I + ( α ∆ 7 =
8Q VROLGH QH SHXWGGRQF VH WURXYHU ULJRXUHXVHPHQW HQ pWDW GH FRQWUDLQWHV SODQHV TXH VL OHV IRUFHVYROXPLTXHV I HWOHVWHPSpUDWXUHV7VDWLVIRQWjFHWWHUHODWLRQ
8Q VROLGH QH SHXWGGRQF VH WURXYHU ULJRXUHXVHPHQW HQ pWDW GH FRQWUDLQWHV SODQHV TXH VL OHV IRUFHVYROXPLTXHV I HWOHVWHPSpUDWXUHV7VDWLVIRQWjFHWWHUHODWLRQ
1RXVSUHQGURQVWRXMRXUV[\ GDQVOHSODQPR\HQGHODSODTXH
1RXVSUHQGURQVWRXMRXUV[\ GDQVOHSODQPR\HQGHODSODTXH
5pVROXWLRQVG¶XQSUREOqPHGHFRQWUDLQWHVSODQHV UHPpWKRGHPpWKRGHGHVGpSODFHPHQWV
5pVROXWLRQVG¶XQSUREOqPHGHFRQWUDLQWHVSODQHV UHPpWKRGHPpWKRGHGHVGpSODFHPHQWV
⎧X = X [ \ ] W ⎪⎪ 3R3 ⎨Y = Y [ \ ] W ⎪ ⎩⎪Z = ] ⋅ ε [ [ \ W
H = GLY 3R3 = WU E = ε [ + ε \ + ε ] =
⎧ ⎛∂Z ∂Y⎞ ⎟ − ⎪ω[ = ⎜⎜ ⎝ ∂ \ ∂ ] ⎟⎠ ⎪ ⎪ ⎛ ∂X ∂Z ⎞ ⎪ ⎟ − ⎨ω\ = ⎜⎜ ⎝ ∂ ] ∂ [ ⎟⎠ ⎪ ⎪ ⎪ω = ⎛⎜ ∂ Y − ∂ X ⎞⎟ ⎪ ] ⎜∂[ ∂\⎟ ⎝ ⎠ ⎩
⎧X = X [ \ ] W ⎪⎪ 3R3 ⎨Y = Y [ \ ] W ⎪ ⎩⎪Z = ] ⋅ ε [ [ \ W
− ν + ν ε [ + ε \ + α 7 − 7 − ν − ν
H = GLY 3R3 = WU E = ε [ + ε \ + ε ] =
/HVpTXDWLRQVGH1DYLHU'XKDPHOV¶pFULYHQWVXUOHVD[HV[HW\ ⎧ ∂ ⎪ ⎪∂ [ ⎨ ⎪ ∂ ⎪∂ \ ⎩
⎛ ∂X ∂Y ⎞ ∂7 − ν ⎜⎜ ⎟⎟ + − ν ∆ X = + ν α + − I[ ∂[ ( ⎝∂[ ∂\⎠ ⎛ ∂X ∂Y ⎞ ∂7 − ν ⎜⎜ ⎟⎟ + − ν ∆ X = + ν α + − I\ ∂\ ( ⎝∂[ ∂\⎠
⎧ ⎛∂Z ∂Y⎞ ⎟ − ⎪ω[ = ⎜⎜ ⎝ ∂ \ ∂ ] ⎟⎠ ⎪ ⎪ ⎛ ∂X ∂Z ⎞ ⎪ ⎟ − ⎨ω\ = ⎜⎜ ⎝ ∂ ] ∂ [ ⎟⎠ ⎪ ⎪ ⎪ω = ⎛⎜ ∂ Y − ∂ X ⎞⎟ ⎪ ] ⎜∂[ ∂\⎟ ⎝ ⎠ ⎩
− ν + ν ε [ + ε \ + α 7 − 7 − ν − ν
/HVpTXDWLRQVGH1DYLHU'XKDPHOV¶pFULYHQWVXUOHVD[HV[HW\
⎧ ∂ ⎪ ⎪∂ [ ⎨ ⎪ ∂ ⎪∂ \ ⎩
⎛ ∂X ∂Y ⎞ ∂7 − ν ⎜⎜ ⎟⎟ + − ν ∆ X = + ν α + − I[ ∂[ ( ⎝∂[ ∂\⎠ ⎛ ∂X ∂Y ⎞ ∂7 − ν ⎜⎜ ⎟⎟ + − ν ∆ X = + ν α + − I\ ∂\ ( ⎝∂[ ∂\⎠
- 50 -
- 50 -
RXLQYHUVHPHQW
RXLQYHUVHPHQW
( (α ⎧ ⎪σ [ = − ν ε [ + νε \ − − ν 7 − 7 ⎪ ( (α ⎪ ε \ + νε [ − 7 − 7 ⎨σ \ = −ν − ν ⎪ ⎪ ( γ [\ ⎪τ [\ = + ν ⎩
DYHF
ε] = −
+ ν ν ε [ + ε \ + α 7 − 7 − ν − ν
( (α ⎧ ⎪σ [ = − ν ε [ + νε \ − − ν 7 − 7 ⎪ ( (α ⎪ ε \ + νε [ − 7 − 7 ⎨σ \ = −ν − ν ⎪ ⎪ ( γ [\ ⎪τ [\ = + ν ⎩
DYHF
ε] = −
+ ν ν ε [ + ε \ + α 7 − 7 − ν − ν
5HPDUTXHVOHVFRQWUDLQWHVSODQHVVHUHQFRQWUHQWGDQVOHVSODTXHVPLQFHVSHUSHQGLFXODLUHVj O¶D[H ] VRXPLVHV j GHV HIIRUWV SHUSHQGLFXODLUHV j ] HW LQGpSHQGDQWV GH ] DLQVL TX¶j GHV FKDPSVGHWHPSpUDWXUHLQGpSHQGDQWVGH]O¶pTXDWLRQ SRXUL M GRQQH G ν GLY I + ( α ∆ 7 =
5HPDUTXHVOHVFRQWUDLQWHVSODQHVVHUHQFRQWUHQWGDQVOHVSODTXHVPLQFHVSHUSHQGLFXODLUHVj O¶D[H ] VRXPLVHV j GHV HIIRUWV SHUSHQGLFXODLUHV j ] HW LQGpSHQGDQWV GH ] DLQVL TX¶j GHV FKDPSVGHWHPSpUDWXUHLQGpSHQGDQWVGH]O¶pTXDWLRQ SRXUL M GRQQH G ν GLY I + ( α ∆ 7 =
8Q VROLGH QH SHXWGGRQF VH WURXYHU ULJRXUHXVHPHQW HQ pWDW GH FRQWUDLQWHV SODQHV TXH VL OHV IRUFHVYROXPLTXHV I HWOHVWHPSpUDWXUHV7VDWLVIRQWjFHWWHUHODWLRQ
8Q VROLGH QH SHXWGGRQF VH WURXYHU ULJRXUHXVHPHQW HQ pWDW GH FRQWUDLQWHV SODQHV TXH VL OHV IRUFHVYROXPLTXHV I HWOHVWHPSpUDWXUHV7VDWLVIRQWjFHWWHUHODWLRQ
1RXVSUHQGURQVWRXMRXUV[\ GDQVOHSODQPR\HQGHODSODTXH
1RXVSUHQGURQVWRXMRXUV[\ GDQVOHSODQPR\HQGHODSODTXH
5pVROXWLRQVG¶XQSUREOqPHGHFRQWUDLQWHVSODQHV UHPpWKRGHPpWKRGHGHVGpSODFHPHQWV
5pVROXWLRQVG¶XQSUREOqPHGHFRQWUDLQWHVSODQHV UHPpWKRGHPpWKRGHGHVGpSODFHPHQWV
⎧X = X [ \ ] W ⎪⎪ 3R3 ⎨Y = Y [ \ ] W ⎪ ⎪⎩Z = ] ⋅ ε [ [ \ W
H = GLY 3R3 = WU E = ε [ + ε \ + ε ] =
⎧ ⎛∂Z ∂Y⎞ ⎟ − ⎪ω[ = ⎜⎜ ⎝ ∂ \ ∂ ] ⎟⎠ ⎪ ⎪ ⎛ ∂X ∂Z ⎞ ⎪ ⎟ − ⎨ω\ = ⎜⎜ ⎝ ∂ ] ∂ [ ⎟⎠ ⎪ ⎪ ⎪ω = ⎛⎜ ∂ Y − ∂ X ⎞⎟ ⎪ ] ⎜∂[ ∂\⎟ ⎝ ⎠ ⎩
⎧X = X [ \ ] W ⎪⎪ 3R3 ⎨Y = Y [ \ ] W ⎪ ⎪⎩Z = ] ⋅ ε [ [ \ W
− ν + ν ε [ + ε \ + α 7 − 7 − ν − ν
H = GLY 3R3 = WU E = ε [ + ε \ + ε ] =
/HVpTXDWLRQVGH1DYLHU'XKDPHOV¶pFULYHQWVXUOHVD[HV[HW\
⎧ ∂ ⎪ ⎪∂ [ ⎨ ⎪ ∂ ⎪∂ \ ⎩
⎛ ∂X ∂Y ⎞ ∂7 − ν ⎜⎜ ⎟⎟ + − ν ∆ X = + ν α + − I[ ∂[ ( ⎝∂[ ∂\⎠ ⎛ ∂X ∂Y ⎞ ∂7 − ν ⎜⎜ ⎟⎟ + − ν ∆ X = + ν α + − I\ ∂\ ( ⎝∂[ ∂\⎠
- 50 -
⎧ ⎛∂Z ∂Y⎞ ⎟ − ⎪ω[ = ⎜⎜ ⎝ ∂ \ ∂ ] ⎟⎠ ⎪ ⎪ ⎛ ∂X ∂Z ⎞ ⎪ ⎟ − ⎨ω\ = ⎜⎜ ⎝ ∂ ] ∂ [ ⎟⎠ ⎪ ⎪ ⎪ω = ⎛⎜ ∂ Y − ∂ X ⎞⎟ ⎪ ] ⎜∂[ ∂\⎟ ⎝ ⎠ ⎩
− ν + ν ε [ + ε \ + α 7 − 7 − ν − ν
/HVpTXDWLRQVGH1DYLHU'XKDPHOV¶pFULYHQWVXUOHVD[HV[HW\
⎧ ∂ ⎪ ⎪∂ [ ⎨ ⎪ ∂ ⎪∂ \ ⎩
⎛ ∂X ∂Y ⎞ ∂7 − ν ⎜⎜ ⎟⎟ + − ν ∆ X = + ν α + − I[ ∂[ ( ⎝∂[ ∂\⎠ ⎛ ∂X ∂Y ⎞ ∂7 − ν ⎜⎜ ⎟⎟ + − ν ∆ X = + ν α + − I\ ∂\ ( ⎝∂[ ∂\⎠
- 50 -
HPpWKRGHPpWKRGHGHVFRQWUDLQWHV
HPpWKRGHPpWKRGHGHVFRQWUDLQWHV
/HV WURLV FRQWUDLQWHV LQFRQQXHV σ [ σ [ τ [\ SHXYHQW rWUH GpWHUPLQpHV SDU LQWpJUDWLRQ GX
/HV WURLV FRQWUDLQWHV LQFRQQXHV σ [ σ [ τ [\ SHXYHQW rWUH GpWHUPLQpHV SDU LQWpJUDWLRQ GX
V\VWqPH
V\VWqPH ∂ τ [\ ∂ σ \ ⎧ ∂ σ [ ∂ τ [\ + = − I[ + = − I\ ⎪ ∂ ∂ ∂[ ∂\ [ \ ⎪ ⎨ G ⎪ + ν GLY I + ( α ∆ 7 ⎪∆ σ [ + σ \ = − − ν ⎩
∂ τ [\ ∂ σ \ ⎧ ∂ σ [ ∂ τ [\ + = − I[ + = − I\ ⎪ ∂ ∂ ∂[ ∂\ [ \ ⎪ ⎨ G ⎪ + ν GLY I + ( α ∆ 7 ⎪∆ σ [ + σ \ = − − ν ⎩
HPpWKRGHPpWKRGHG¶$LU\
HPpWKRGHPpWKRGHG¶$LU\
G 3RXU I = JUDG 9 RQSRVH
G 3RXU I = JUDG 9 RQSRVH
σ[ =
−∂ φ ∂ φ ∂ φ − 9 σ = − 9 τ = [\ \ ∂[ ∂\ ∂ \ ∂ [
σ[ =
/D IRQFWLRQ GH FRQWUDLQWH φ [ \ RX IRQFWLRQ G¶$LU\ VDWLVIDLW DXWRPDWLTXHPHQW DX[ GHX[ SUHPLqUHVpTXDWLRQV pTXLOLEUHORFDO ODWURLVLqPHGHYLHQW ∆ ∆ φ =
− ν ∆ 9 − ( α ∆ 7 − ν
)RUPXODLUHHQFRRUGRQQpHVF\OLQGULTXHV
/D IRQFWLRQ GH FRQWUDLQWH φ [ \ RX IRQFWLRQ G¶$LU\ VDWLVIDLW DXWRPDWLTXHPHQW DX[ GHX[ SUHPLqUHVpTXDWLRQV pTXLOLEUHORFDO ODWURLVLqPHGHYLHQW ∆ ∆ φ =
− ν ∆ 9 − ( α ∆ 7 − ν
)RUPXODLUHHQFRRUGRQQpHVF\OLQGULTXHV
⎧X = U θ ] W ⎪⎪ 3R3 ⎨Y = U θ ] W ⎪ ⎩⎪Z = ] ⋅ ε ] U θ W
−∂ φ ∂ φ ∂ φ − 9 σ = − 9 τ = [\ \ ∂[ ∂\ ∂ \ ∂ [
⎧ ⎛ ∂Z ∂Y ⎞ ⎟ − ⎪ωU = ⎜⎜ ⎝ U ∂ θ ∂ ] ⎟⎠ ⎪ ⎪ ⎛∂X ∂Z ⎞ ⎪ ⎟ − ⎨ωθ = ⎜⎜ ⎝ ∂ ] ∂ U ⎟⎠ ⎪ ⎪ ⎪ω = ⎛⎜ ∂ Y + Y − ∂ X ⎞⎟ ⎪ ] ⎜ ∂U U U ∂θ ⎟ ⎝ ⎠ ⎩
⎧ ∂X ⎪ε U = ∂ U ⎪ ⎪ X ∂Y ⎪ + ⎨ε θ = U U ∂θ ⎪ ⎪ ⎪ε = − ν ε + ε + + ν α 7 − 7 [ \ ⎪ ] − ν − ν ⎩
⎧X = U θ ] W ⎪⎪ 3R3 ⎨Y = U θ ] W ⎪ ⎩⎪Z = ] ⋅ ε ] U θ W
⎧ ⎪γ θ ] = ⎪ ⎪ ⎪ ⎨γ ] U = ⎪ ⎪ ⎪γ = ⎛⎜ ∂ Y + Y − ∂ X ⎞⎟ ⎪ Uθ ⎜ ∂ U U U ∂θ ⎟ ⎝ ⎠ ⎩
⎧ ⎛ ∂Z ∂Y ⎞ ⎟ − ⎪ωU = ⎜⎜ ⎝ U ∂ θ ∂ ] ⎟⎠ ⎪ ⎪ ⎛∂X ∂Z ⎞ ⎪ ⎟ − ⎨ωθ = ⎜⎜ ⎝ ∂ ] ∂ U ⎟⎠ ⎪ ⎪ ⎪ω = ⎛⎜ ∂ Y + Y − ∂ X ⎞⎟ ⎪ ] ⎜ ∂U U U ∂θ ⎟ ⎝ ⎠ ⎩
⎧ ∂X ⎪ε U = ∂ U ⎪ ⎪ X ∂Y ⎪ + ⎨ε θ = U U ∂θ ⎪ ⎪ ⎪ε = − ν ε + ε + + ν α 7 − 7 [ \ ⎪ ] − ν − ν ⎩
- 51 -
⎧ ⎪γ θ ] = ⎪ ⎪ ⎪ ⎨γ ] U = ⎪ ⎪ ⎪γ = ⎛⎜ ∂ Y + Y − ∂ X ⎞⎟ ⎪ Uθ ⎜ ∂ U U U ∂θ ⎟ ⎝ ⎠ ⎩
- 51 -
HPpWKRGHPpWKRGHGHVFRQWUDLQWHV
HPpWKRGHPpWKRGHGHVFRQWUDLQWHV
/HV WURLV FRQWUDLQWHV LQFRQQXHV σ [ σ [ τ [\ SHXYHQW rWUH GpWHUPLQpHV SDU LQWpJUDWLRQ GX
/HV WURLV FRQWUDLQWHV LQFRQQXHV σ [ σ [ τ [\ SHXYHQW rWUH GpWHUPLQpHV SDU LQWpJUDWLRQ GX
V\VWqPH
V\VWqPH ∂ τ [\ ∂ σ \ ⎧ ∂ σ [ ∂ τ [\ + = − I[ + = − I\ ⎪ ∂\ ∂[ ∂\ ⎪ ∂[ ⎨ G ⎪ + ν GLY I + ( α ∆ 7 ⎪∆ σ [ + σ \ = − − ν ⎩
∂ τ [\ ∂ σ \ ⎧ ∂ σ [ ∂ τ [\ + = − I[ + = − I\ ⎪ ∂\ ∂[ ∂\ ⎪ ∂[ ⎨ G ⎪ + ν GLY I + ( α ∆ 7 ⎪∆ σ [ + σ \ = − − ν ⎩
HPpWKRGHPpWKRGHG¶$LU\
HPpWKRGHPpWKRGHG¶$LU\
G 3RXU I = JUDG 9 RQSRVH
G 3RXU I = JUDG 9 RQSRVH
σ[ =
−∂ φ ∂ φ ∂ φ − 9 σ = − 9 τ = [\ \ ∂[ ∂\ ∂ \ ∂ [
σ[ =
/D IRQFWLRQ GH FRQWUDLQWH φ [ \ RX IRQFWLRQ G¶$LU\ VDWLVIDLW DXWRPDWLTXHPHQW DX[ GHX[ SUHPLqUHVpTXDWLRQV pTXLOLEUHORFDO ODWURLVLqPHGHYLHQW
∆ ∆ φ =
− ν ∆ 9 − ( α ∆ 7 − ν
)RUPXODLUHHQFRRUGRQQpHVF\OLQGULTXHV
/D IRQFWLRQ GH FRQWUDLQWH φ [ \ RX IRQFWLRQ G¶$LU\ VDWLVIDLW DXWRPDWLTXHPHQW DX[ GHX[ SUHPLqUHVpTXDWLRQV pTXLOLEUHORFDO ODWURLVLqPHGHYLHQW
∆ ∆ φ =
− ν ∆ 9 − ( α ∆ 7 − ν
)RUPXODLUHHQFRRUGRQQpHVF\OLQGULTXHV
⎧X = U θ ] W ⎪⎪ 3R3 ⎨Y = U θ ] W ⎪ ⎪⎩Z = ] ⋅ ε ] U θ W
−∂ φ ∂ φ ∂ φ − 9 σ = − 9 τ = [\ \ ∂[ ∂\ ∂ \ ∂ [
⎧ ⎛ ∂Z ∂Y ⎞ ⎟ − ⎪ωU = ⎜⎜ ⎝ U ∂ θ ∂ ] ⎟⎠ ⎪ ⎪ ⎛∂X ∂Z ⎞ ⎪ ⎟ − ⎨ωθ = ⎜⎜ ⎝ ∂ ] ∂ U ⎟⎠ ⎪ ⎪ ⎪ω = ⎛⎜ ∂ Y + Y − ∂ X ⎞⎟ ⎪ ] ⎜ ∂U U U ∂θ ⎟ ⎝ ⎠ ⎩
⎧ ∂X ⎪ε U = ∂ U ⎪ ⎪ X ∂Y ⎪ + ⎨ε θ = U U ∂θ ⎪ ⎪ ⎪ε = − ν ε + ε + + ν α 7 − 7 [ \ ⎪ ] − ν − ν ⎩
- 51 -
⎧ ⎪γ θ ] = ⎪ ⎪ ⎪ ⎨γ ] U = ⎪ ⎪ ⎪γ = ⎛⎜ ∂ Y + Y − ∂ X ⎞⎟ ⎪ Uθ ⎜ ∂ U U U ∂θ ⎟ ⎝ ⎠ ⎩
⎧X = U θ ] W ⎪⎪ 3R3 ⎨Y = U θ ] W ⎪ ⎪⎩Z = ] ⋅ ε ] U θ W
⎧ ⎛ ∂Z ∂Y ⎞ ⎟ − ⎪ωU = ⎜⎜ ⎝ U ∂ θ ∂ ] ⎟⎠ ⎪ ⎪ ⎛∂X ∂Z ⎞ ⎪ ⎟ − ⎨ωθ = ⎜⎜ ⎝ ∂ ] ∂ U ⎟⎠ ⎪ ⎪ ⎪ω = ⎛⎜ ∂ Y + Y − ∂ X ⎞⎟ ⎪ ] ⎜ ∂U U U ∂θ ⎟ ⎝ ⎠ ⎩
⎧ ∂X ⎪ε U = ∂ U ⎪ ⎪ X ∂Y ⎪ + ⎨ε θ = U U ∂θ ⎪ ⎪ ⎪ε = − ν ε + ε + + ν α 7 − 7 [ \ ⎪ ] − ν − ν ⎩
- 51 -
⎧ ⎪γ θ ] = ⎪ ⎪ ⎪ ⎨γ ] U = ⎪ ⎪ ⎪γ = ⎛⎜ ∂ Y + Y − ∂ X ⎞⎟ ⎪ Uθ ⎜ ∂ U U U ∂θ ⎟ ⎝ ⎠ ⎩
H = GLY 3R3 = WU E = ε U + εθ + ε ] =
∆=
− ν + ν ε U + ε θ + α 7 − 7 − ν − ν
∂ ⎛ ∂ ⎞ ∂ ∂ ⎜⎜ U ⎟+ + ⎟ U ∂ U ⎝ ∂ U ⎠ U ∂ θ ∂ ]
H = GLY 3R3 = WU E = ε U + εθ + ε ] =
∆=
− ν + ν ε U + ε θ + α 7 − 7 − ν − ν
∂ ⎛ ∂ ⎞ ∂ ∂ ⎜⎜ U ⎟+ + ⎟ U ∂ U ⎝ ∂ U ⎠ U ∂ θ ∂ ]
(TXDWLRQVGH1DYLHU'XKDPHO
(TXDWLRQVGH1DYLHU'XKDPHO
⎧ ∂ ⎛ ∂X X ∂Y⎞ ⎛ ∂7 X ∂Y⎞ − ν ⎟⎟ + − ν ⎜⎜ ∆ X − − ⎟⎟ = + ν α + + − IU ⎪ ⎜⎜ ∂U ( U U ∂θ ⎠ ⎝ ⎪∂ U ⎝ ∂ U U U ∂ θ ⎠ ⎨ ⎛ ⎪ ∂ ⎛ ∂ X X ∂ Y ⎞ Y ∂X ⎞ ∂7 − ν ⎪ U ∂ θ ⎜⎜ ∂ U + U + U ∂ θ ⎟⎟ + − ν ⎜⎜ ∆ Y − − ∂ θ ⎟⎟ = + ν α U ∂ U − ( I θ U U ⎝ ⎠ ⎝ ⎠ ⎩
⎧ ∂ ⎛ ∂X X ∂Y⎞ ⎛ ∂7 X ∂Y⎞ − ν ⎟⎟ + − ν ⎜⎜ ∆ X − − ⎟⎟ = + ν α + + − IU ⎪ ⎜⎜ ∂U ( U U ∂θ ⎠ ⎝ ⎪∂ U ⎝ ∂ U U U ∂ θ ⎠ ⎨ ⎛ ⎪ ∂ ⎛ ∂ X X ∂ Y ⎞ Y ∂X ⎞ ∂7 − ν ⎪ U ∂ θ ⎜⎜ ∂ U + U + U ∂ θ ⎟⎟ + − ν ⎜⎜ ∆ Y − − ∂ θ ⎟⎟ = + ν α U ∂ U − ( I θ U U ⎝ ⎠ ⎝ ⎠ ⎩
(TXDWLRQGHFRPSDWLELOLWpLGHQWLTXHj'3
(TXDWLRQGHFRPSDWLELOLWpLGHQWLTXHj'3
∂ εθ ∂ ε U ∂ γ U θ ∂ ε U ∂ εθ ∂ γ U θ + − − + − = ∂ U U ∂ θ U ∂ U ∂ θ U ∂ U U ∂ U U ∂θ
∂ εθ ∂ ε U ∂ γ U θ ∂ ε U ∂ εθ ∂ γ U θ + − − + − = ∂ U U ∂ θ U ∂ U ∂ θ U ∂ U U ∂ U U ∂θ
(TXDWLRQVDX[FRQWUDLQWHV
(TXDWLRQVDX[FRQWUDLQWHV
⎧ ∂ σ U σ U − σθ ∂ τU θ + + = − IU ⎪ U U ∂θ ⎪ ∂U ⎪ ∂ σθ ⎪ ∂ τU θ + τU θ + = − Iθ ⎨ ∂ U U U ∂θ ⎪ G ⎪ ⎪∆ σ + σ = − + ν GLY I + ( α ∆ 7 U θ ⎪ − ν ⎩
)RQFWLRQG¶$LU\LGHQWLTXHj'3
σU =
⎧ ∂ σ U σ U − σθ ∂ τU θ + + = − IU ⎪ U U ∂θ ⎪ ∂U ⎪ ∂ σθ ⎪ ∂ τU θ + τU θ + = − Iθ ⎨ ∂ U U U ∂θ ⎪ G ⎪ ⎪∆ σ + σ = − + ν GLY I + ( α ∆ 7 U θ ⎪ − ν ⎩
∂ φ ∂ φ ∂ ⎛ ∂φ⎞ ∂ φ ⎜ ⎟ σ = − 9 τU θ = − + − 9 θ ∂ U ⎜⎝ U ∂ θ ⎟⎠ U ∂U U ∂θ ∂U
H = GLY 3R3 = WU E = ε U + εθ + ε ] =
∆=
σU =
∂ φ ∂ φ ∂ ⎛ ∂φ⎞ ∂ φ ⎜ ⎟ σ = − 9 τU θ = − + − 9 θ ∂ U ⎜⎝ U ∂ θ ⎟⎠ U ∂U U ∂θ ∂U
- 52 -
− ν + ν ε U + ε θ + α 7 − 7 − ν − ν
∂ ⎛ ∂ ⎞ ∂ ∂ ⎜⎜ U ⎟⎟ + + U ∂U ⎝ ∂U ⎠ U ∂θ ∂]
H = GLY 3R3 = WU E = ε U + εθ + ε ] =
∆=
− ν + ν ε U + ε θ + α 7 − 7 − ν − ν
∂ ⎛ ∂ ⎞ ∂ ∂ ⎜⎜ U ⎟⎟ + + U ∂U ⎝ ∂U ⎠ U ∂θ ∂]
(TXDWLRQVGH1DYLHU'XKDPHO
(TXDWLRQVGH1DYLHU'XKDPHO
⎧ ∂ ⎛ ∂X X ∂Y⎞ ⎛ ∂7 X ∂Y⎞ − ν ⎟⎟ + − ν ⎜⎜ ∆ X − − ⎟⎟ = + ν α + + − IU ⎪ ⎜⎜ ∂U ( U U ∂θ ⎠ ⎝ ⎪∂ U ⎝ ∂ U U U ∂ θ ⎠ ⎨ ⎛ ⎪ ∂ ⎛ ∂ X X ∂ Y ⎞ Y ∂X ⎞ ∂7 − ν ⎪ U ∂ θ ⎜⎜ ∂ U + U + U ∂ θ ⎟⎟ + − ν ⎜⎜ ∆ Y − − ∂ θ ⎟⎟ = + ν α U ∂ U − ( I θ U U ⎝ ⎠ ⎝ ⎠ ⎩
⎧ ∂ ⎛ ∂X X ∂Y⎞ ⎛ ∂7 X ∂Y⎞ − ν ⎟⎟ + − ν ⎜⎜ ∆ X − − ⎟⎟ = + ν α + + − IU ⎪ ⎜⎜ ∂U ( U U ∂θ ⎠ ⎝ ⎪∂ U ⎝ ∂ U U U ∂ θ ⎠ ⎨ ⎛ ⎪ ∂ ⎛ ∂ X X ∂ Y ⎞ Y ∂X ⎞ ∂7 − ν ⎪ U ∂ θ ⎜⎜ ∂ U + U + U ∂ θ ⎟⎟ + − ν ⎜⎜ ∆ Y − − ∂ θ ⎟⎟ = + ν α U ∂ U − ( I θ U U ⎝ ⎠ ⎝ ⎠ ⎩
(TXDWLRQGHFRPSDWLELOLWpLGHQWLTXHj'3
(TXDWLRQGHFRPSDWLELOLWpLGHQWLTXHj'3
∂ εθ ∂ ε U ∂ γ U θ ∂ ε U ∂ εθ ∂ γ U θ + − − + − = ∂ U U ∂ θ U ∂ U ∂ θ U ∂ U U ∂ U U ∂θ
∂ εθ ∂ ε U ∂ γ U θ ∂ ε U ∂ εθ ∂ γ U θ + − − + − = ∂ U U ∂ θ U ∂ U ∂ θ U ∂ U U ∂ U U ∂θ
(TXDWLRQVDX[FRQWUDLQWHV
(TXDWLRQVDX[FRQWUDLQWHV
⎧ ∂ σ U σ U − σθ ∂ τU θ + + = − IU ⎪ U U ∂θ ⎪ ∂U ⎪ ∂ σθ ⎪ ∂ τU θ + τU θ + = − Iθ ⎨ ∂ U U U ∂θ ⎪ G ⎪ ⎪∆ σ + σ = − + ν GLY I + ( α ∆ 7 U θ ⎪ − ν ⎩
)RQFWLRQG¶$LU\LGHQWLTXHj'3
σU =
)RQFWLRQG¶$LU\LGHQWLTXHj'3
- 52 -
⎧ ∂ σ U σ U − σθ ∂ τU θ + + = − IU ⎪ U U ∂θ ⎪ ∂U ⎪ ∂ σθ ⎪ ∂ τU θ + τU θ + = − Iθ ⎨ ∂ U U U ∂θ ⎪ G ⎪ ⎪∆ σ + σ = − + ν GLY I + ( α ∆ 7 U θ ⎪ − ν ⎩
)RQFWLRQG¶$LU\LGHQWLTXHj'3
∂ φ ∂ φ ∂ ⎛ ∂φ⎞ ∂ φ ⎜ ⎟ σ = − 9 τU θ = − + − 9 θ U ⎜⎝ U ∂ θ ⎟⎠ ∂ U ∂ U U ∂ θ ∂U
- 52 -
σU =
∂ φ ∂ φ ∂ ⎛ ∂φ⎞ ∂ φ ⎜ ⎟ σ = − 9 τU θ = − + − 9 θ U ⎜⎝ U ∂ θ ⎟⎠ ∂ U ∂ U U ∂ θ ∂U
- 52 -
([HPSOHFRQWUDLQWHVWKHUPLTXHVGDQVXQHSODTXHUHFWDQJXODLUH
([HPSOHFRQWUDLQWHVWKHUPLTXHVGDQVXQHSODTXHUHFWDQJXODLUH
)LJXUH
)LJXUH
/D ILJXUH GRQQH OD JpRPpWULH OHV D[HV HW OHV OLDLVRQV O¶DVVHPEODJH HVW UpDOLVp j OD E⎞ ⎛ WHPSpUDWXUH 7 VDQVMHXQLVHUUDJH2QSRUWHOHERUG ⎜ \ = − ⎟ jODWHPSpUDWXUH 7 OHERUG ⎠ ⎝ E⎞ D⎞ K⎞ ⎛ ⎛ ⎛ ⎜ \ = + ⎟ j OD WHPSpUDWXUH 7 OHV IDFHV ⎜ [ = ± ⎟ HW ⎜ ] = ± ⎟ VRQW UHFRXYHUWHV G¶XQ ⎠ ⎠ ⎠ ⎝ ⎝ ⎝ LVRODQWSDUIDLWVDQVULJLGLWp
/D ILJXUH GRQQH OD JpRPpWULH OHV D[HV HW OHV OLDLVRQV O¶DVVHPEODJH HVW UpDOLVp j OD E⎞ ⎛ WHPSpUDWXUH 7 VDQVMHXQLVHUUDJH2QSRUWHOHERUG ⎜ \ = − ⎟ jODWHPSpUDWXUH 7 OHERUG ⎠ ⎝ E⎞ D⎞ K⎞ ⎛ ⎛ ⎛ ⎜ \ = + ⎟ j OD WHPSpUDWXUH 7 OHV IDFHV ⎜ [ = ± ⎟ HW ⎜ ] = ± ⎟ VRQW UHFRXYHUWHV G¶XQ ⎠ ⎠ ⎠ ⎝ ⎝ ⎝ LVRODQWSDUIDLWVDQVULJLGLWp
2Q YHXW FDOFXOHU HQ UpJLPH VWDWLRQQDLUH OHV WHPSpUDWXUHV 7 WUDQVODWLRQV 3R3 URWDWLRQV GpIRUPDWLRQV E HWFRQWUDLQWHV Σ
2Q YHXW FDOFXOHU HQ UpJLPH VWDWLRQQDLUH OHV WHPSpUDWXUHV 7 WUDQVODWLRQV 3R3 URWDWLRQV GpIRUPDWLRQV E HWFRQWUDLQWHV Σ
/D SODTXH VH WURXYH HQ pWDW GH FRQWUDLQWHV SODQHV HW O¶RQ WURXYH OD VROXWLRQ SDU O¶XQH TXHOFRQTXHGHVPpWKRGHSURSRVpHV
/D SODTXH VH WURXYH HQ pWDW GH FRQWUDLQWHV SODQHV HW O¶RQ WURXYH OD VROXWLRQ SDU O¶XQH TXHOFRQTXHGHVPpWKRGHSURSRVpHV
7 + 7 7 − 7 + \ E
7=
⎧X = ⎪ ⎪⎪ ⎡⎛ 7 + 7 7 − 7 \ − ] ⎤ ⎞ 3R3 ⎨Y = + ν α ⎢⎜ − 7 ⎟ \ + ⎥ E ⎦⎥ ⎠ ⎪ ⎣⎢⎝ ⎪ ⎪⎩Z = + ν α 7 − 7 ]
7 − 7 ⎧ ⎪ω[ = + ν α E ] ⎪ ⎨ω\ = ⎪ ⎪ω] = ⎩
7 + 7 7 − 7 + \ E
7=
⎧X = ⎪ ⎪⎪ ⎡⎛ 7 + 7 7 − 7 \ − ] ⎤ ⎞ 3R3 ⎨Y = + ν α ⎢⎜ − 7 ⎟ \ + ⎥ E ⎦⎥ ⎠ ⎪ ⎣⎢⎝ ⎪ ⎪⎩Z = + ν α 7 − 7 ]
7 − 7 ⎧ ⎪ω[ = + ν α E ] ⎪ ⎨ω\ = ⎪ ⎪ω] = ⎩
- 53 -
- 53 -
([HPSOHFRQWUDLQWHVWKHUPLTXHVGDQVXQHSODTXHUHFWDQJXODLUH
([HPSOHFRQWUDLQWHVWKHUPLTXHVGDQVXQHSODTXHUHFWDQJXODLUH
)LJXUH
)LJXUH
/D ILJXUH GRQQH OD JpRPpWULH OHV D[HV HW OHV OLDLVRQV O¶DVVHPEODJH HVW UpDOLVp j OD E⎞ ⎛ WHPSpUDWXUH 7 VDQVMHXQLVHUUDJH2QSRUWHOHERUG ⎜ \ = − ⎟ jODWHPSpUDWXUH 7 OHERUG ⎠ ⎝ E D K⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎜ \ = + ⎟ j OD WHPSpUDWXUH 7 OHV IDFHV ⎜ [ = ± ⎟ HW ⎜ ] = ± ⎟ VRQW UHFRXYHUWHV G¶XQ ⎠ ⎠ ⎠ ⎝ ⎝ ⎝ LVRODQWSDUIDLWVDQVULJLGLWp
/D ILJXUH GRQQH OD JpRPpWULH OHV D[HV HW OHV OLDLVRQV O¶DVVHPEODJH HVW UpDOLVp j OD E⎞ ⎛ WHPSpUDWXUH 7 VDQVMHXQLVHUUDJH2QSRUWHOHERUG ⎜ \ = − ⎟ jODWHPSpUDWXUH 7 OHERUG ⎠ ⎝ E D K⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎜ \ = + ⎟ j OD WHPSpUDWXUH 7 OHV IDFHV ⎜ [ = ± ⎟ HW ⎜ ] = ± ⎟ VRQW UHFRXYHUWHV G¶XQ ⎠ ⎠ ⎠ ⎝ ⎝ ⎝ LVRODQWSDUIDLWVDQVULJLGLWp
2Q YHXW FDOFXOHU HQ UpJLPH VWDWLRQQDLUH OHV WHPSpUDWXUHV 7 WUDQVODWLRQV 3R3 URWDWLRQV GpIRUPDWLRQV E HWFRQWUDLQWHV Σ
2Q YHXW FDOFXOHU HQ UpJLPH VWDWLRQQDLUH OHV WHPSpUDWXUHV 7 WUDQVODWLRQV 3R3 URWDWLRQV GpIRUPDWLRQV E HWFRQWUDLQWHV Σ
/D SODTXH VH WURXYH HQ pWDW GH FRQWUDLQWHV SODQHV HW O¶RQ WURXYH OD VROXWLRQ SDU O¶XQH TXHOFRQTXHGHVPpWKRGHSURSRVpHV
/D SODTXH VH WURXYH HQ pWDW GH FRQWUDLQWHV SODQHV HW O¶RQ WURXYH OD VROXWLRQ SDU O¶XQH TXHOFRQTXHGHVPpWKRGHSURSRVpHV
7 + 7 7 − 7 + \ E
7=
⎧X = ⎪ ⎪⎪ ⎡⎛ 7 + 7 7 − 7 \ − ] ⎤ ⎞ 3R3 ⎨Y = + ν α ⎢⎜ − 7 ⎟ \ + ⎥ E ⎥⎦ ⎠ ⎢⎣⎝ ⎪ ⎪ ⎪⎩Z = + ν α 7 − 7 ]
7 − 7 ⎧ ⎪ω[ = + ν α E ] ⎪ ⎨ω\ = ⎪ ⎪ω] = ⎩
- 53 -
7 + 7 7 − 7 + \ E
7=
⎧X = ⎪ ⎪⎪ ⎡⎛ 7 + 7 7 − 7 \ − ] ⎤ ⎞ 3R3 ⎨Y = + ν α ⎢⎜ − 7 ⎟ \ + ⎥ E ⎥⎦ ⎠ ⎢⎣⎝ ⎪ ⎪ ⎪⎩Z = + ν α 7 − 7 ]
7 − 7 ⎧ ⎪ω[ = + ν α E ] ⎪ ⎨ω\ = ⎪ ⎪ω] = ⎩
- 53 -
⎧ γ \] = ⎪ ⎪ ⎨ γ ][ = ⎪ ⎪⎩γ [\ =
⎧ε [ = ⎪⎪ ⎨ε \ = + ν α 7 − 7 ⎪ ⎪⎩ε ] = + ν α 7 − 7
σ [ = −( α 7 − 7 σ \ = σ ] = = τ \] = τ][ = τ [\
⎧ γ \] = ⎪ ⎪ ⎨ γ ][ = ⎪ ⎪⎩γ [\ =
⎧ε [ = ⎪⎪ ⎨ε \ = + ν α 7 − 7 ⎪ ⎪⎩ε ] = + ν α 7 − 7
σ [ = −( α 7 − 7 σ \ = σ ] = = τ \] = τ][ = τ [\
±e7$7$;,6<0e75,48(0e5,',(1
±e7$7$;,6<0e75,48(0e5,',(1
&¶HVW OH FDV SDU GpILQLWLRQ R HQ FRRUGRQQpHV F\OLQGULTXHV U θ ] G¶D[H ]′] OH YHFWHXU WUDQVODWLRQHVWGHODIRUPH ⎧X = X U ] W UDGLDO ⎪⎪ 3R3 ⎨Y = FLUFRQIpUHQWLHO ⎪ ⎩⎪Z = Z U ] W D[LDO
&¶HVW OH FDV SDU GpILQLWLRQ R HQ FRRUGRQQpHV F\OLQGULTXHV U θ ] G¶D[H ]′] OH YHFWHXU WUDQVODWLRQHVWGHODIRUPH ⎧X = X U ] W UDGLDO ⎪⎪ 3R3 ⎨Y = FLUFRQIpUHQWLHO ⎪ ⎩⎪Z = Z U ] W D[LDO
&HFLDOLHXORUVTXHR]HVWD[HGHUpYROXWLRQSRXUODVWUXFWXUHSRXUOHFKDPSGHWHPSpUDWXUH SRXU OHV IRUFHV DSSOLTXpHV GRQQpHV HW GH OLDLVRQ TXL Q¶RQW GH SOXV SDV GH FRPSRVDQWH FLUFRQIpUHQWLHOOH
&HFLDOLHXORUVTXHR]HVWD[HGHUpYROXWLRQSRXUODVWUXFWXUHSRXUOHFKDPSGHWHPSpUDWXUH SRXU OHV IRUFHV DSSOLTXpHV GRQQpHV HW GH OLDLVRQ TXL Q¶RQW GH SOXV SDV GH FRPSRVDQWH FLUFRQIpUHQWLHOOH
2QDDORUVOHVIRUPXOHVVXLYDQWHVHQFRRUGRQQpHVF\OLQGULTXHV
2QDDORUVOHVIRUPXOHVVXLYDQWHVHQFRRUGRQQpHVF\OLQGULTXHV
⎧ ⎪ωU = ⎪ ⎪ ⎛ ∂X ∂Z ⎞ ⎟ − ⎨ωθ = ⎜⎜ ⎝ ∂ ] ∂ U ⎟⎠ ⎪ ⎪ ⎪ω] = ⎩
⎧ ⎪γ θ ] = ⎪ ⎪ ⎛ ∂X ∂Z ⎞ ⎟ − ⎨γ ]U = ⎜⎜ ⎝ ∂ ] ∂ U ⎟⎠ ⎪ ⎪ ⎪γ U θ = ⎩
⎧ ∂X ⎪ εU = ∂ U ⎪ X ⎪ ⎨ εθ = U ⎪ ⎪ ∂Z ⎪ε ] = ∂] ⎩
⎧ ⎪ε U = ( [σ U − ν σθ + σ ] ]+ α 7 − 7 ⎪ ⎪ ⎨ε θ = [σθ − ν σ ] + σ U ]+ α 7 − 7 ( ⎪ ⎪ ⎪ε ] = [σ ] − ν σ U + σθ ]+ α 7 − 7 ( ⎩
H = GLY 3R3 = WU E = ε U + εθ + ε ] =
∆=
⎧ ⎪τ θ ] = ⎪ + ν ⎪ γ ]U ⎨τ]U = ( ⎪ ⎪ ⎪τ U θ = ⎩
∂X X ∂Z + + ∂U U ∂]
∂ ⎛ ∂ ⎞ ∂ ⎜U ⎟+ U ∂ U ⎜⎝ ∂ U ⎟⎠ ∂ ]
⎧ ⎪ωU = ⎪ ⎪ ⎛ ∂X ∂Z ⎞ ⎟ − ⎨ωθ = ⎜⎜ ⎝ ∂ ] ∂ U ⎟⎠ ⎪ ⎪ ⎪ω] = ⎩
⎧ ⎪γ θ ] = ⎪ ⎪ ⎛ ∂X ∂Z ⎞ ⎟ − ⎨γ ]U = ⎜⎜ ⎝ ∂ ] ∂ U ⎟⎠ ⎪ ⎪ ⎪γ U θ = ⎩
⎧ ∂X ⎪ εU = ∂ U ⎪ X ⎪ ⎨ εθ = U ⎪ ⎪ ∂Z ⎪ε ] = ∂] ⎩
⎧ ⎪ε U = ( [σ U − ν σθ + σ ] ]+ α 7 − 7 ⎪ ⎪ ⎨ε θ = [σθ − ν σ ] + σ U ]+ α 7 − 7 ( ⎪ ⎪ ⎪ε ] = [σ ] − ν σ U + σθ ]+ α 7 − 7 ( ⎩
H = GLY 3R3 = WU E = ε U + εθ + ε ] =
∆=
⎧ ⎪τ θ ] = ⎪ + ν ⎪ γ ]U ⎨τ]U = ( ⎪ ⎪ ⎪τ U θ = ⎩
∂X X ∂Z + + ∂U U ∂]
∂ ⎛ ∂ ⎞ ∂ ⎜U ⎟+ U ∂ U ⎜⎝ ∂ U ⎟⎠ ∂ ]
- 54 -
- 54 -
⎧ γ \] = ⎪ ⎪ ⎨ γ ][ = ⎪ ⎪⎩γ [\ =
⎧ε [ = ⎪⎪ ⎨ε \ = + ν α 7 − 7 ⎪ ⎪⎩ε ] = + ν α 7 − 7
σ [ = −( α 7 − 7 σ \ = σ ] = = τ \] = τ][ = τ [\
⎧ γ \] = ⎪ ⎪ ⎨ γ ][ = ⎪ ⎪⎩γ [\ =
⎧ε [ = ⎪⎪ ⎨ε \ = + ν α 7 − 7 ⎪ ⎪⎩ε ] = + ν α 7 − 7
σ [ = −( α 7 − 7 σ \ = σ ] = = τ \] = τ][ = τ [\
±e7$7$;,6<0e75,48(0e5,',(1
±e7$7$;,6<0e75,48(0e5,',(1
&¶HVW OH FDV SDU GpILQLWLRQ R HQ FRRUGRQQpHV F\OLQGULTXHV U θ ] G¶D[H ]′] OH YHFWHXU WUDQVODWLRQHVWGHODIRUPH ⎧X = X U ] W UDGLDO ⎪⎪ 3R3 ⎨Y = FLUFRQIpUHQWLHO ⎪ ⎪⎩Z = Z U ] W D[LDO
&¶HVW OH FDV SDU GpILQLWLRQ R HQ FRRUGRQQpHV F\OLQGULTXHV U θ ] G¶D[H ]′] OH YHFWHXU WUDQVODWLRQHVWGHODIRUPH ⎧X = X U ] W UDGLDO ⎪⎪ 3R3 ⎨Y = FLUFRQIpUHQWLHO ⎪ ⎪⎩Z = Z U ] W D[LDO
&HFLDOLHXORUVTXHR]HVWD[HGHUpYROXWLRQSRXUODVWUXFWXUHSRXUOHFKDPSGHWHPSpUDWXUH SRXU OHV IRUFHV DSSOLTXpHV GRQQpHV HW GH OLDLVRQ TXL Q¶RQW GH SOXV SDV GH FRPSRVDQWH FLUFRQIpUHQWLHOOH
&HFLDOLHXORUVTXHR]HVWD[HGHUpYROXWLRQSRXUODVWUXFWXUHSRXUOHFKDPSGHWHPSpUDWXUH SRXU OHV IRUFHV DSSOLTXpHV GRQQpHV HW GH OLDLVRQ TXL Q¶RQW GH SOXV SDV GH FRPSRVDQWH FLUFRQIpUHQWLHOOH
2QDDORUVOHVIRUPXOHVVXLYDQWHVHQFRRUGRQQpHVF\OLQGULTXHV
2QDDORUVOHVIRUPXOHVVXLYDQWHVHQFRRUGRQQpHVF\OLQGULTXHV
⎧ ⎪ωU = ⎪ ⎪ ⎛ ∂X ∂Z ⎞ ⎟ − ⎨ωθ = ⎜⎜ ⎝ ∂ ] ∂ U ⎟⎠ ⎪ ⎪ ⎪ω] = ⎩
⎧ ⎪γ θ ] = ⎪ ⎪ ⎛ ∂X ∂Z ⎞ ⎟ − ⎨γ ]U = ⎜⎜ ⎝ ∂ ] ∂ U ⎟⎠ ⎪ ⎪ ⎪γ U θ = ⎩
⎧ ∂X ⎪ εU = ∂ U ⎪ X ⎪ ⎨ εθ = U ⎪ ⎪ ∂Z ⎪ε ] = ∂] ⎩
⎧ ⎪ε U = ( [σ U − ν σθ + σ ] ]+ α 7 − 7 ⎪ ⎪ ⎨ε θ = [σθ − ν σ ] + σ U ]+ α 7 − 7 ( ⎪ ⎪ ⎪ε ] = [σ ] − ν σ U + σθ ]+ α 7 − 7 ( ⎩
H = GLY 3R3 = WU E = ε U + εθ + ε ] =
∆=
⎧ ⎪τ θ ] = ⎪ + ν ⎪ γ ]U ⎨τ]U = ( ⎪ ⎪ ⎪τ U θ = ⎩
∂X X ∂Z + + ∂U U ∂]
∂ ⎛ ∂ ⎞ ∂ ⎜U ⎟+ U ∂ U ⎜⎝ ∂ U ⎟⎠ ∂ ]
- 54 -
⎧ ⎪ωU = ⎪ ⎪ ⎛ ∂X ∂Z ⎞ ⎟ − ⎨ωθ = ⎜⎜ ⎝ ∂ ] ∂ U ⎟⎠ ⎪ ⎪ ⎪ω] = ⎩
⎧ ⎪γ θ ] = ⎪ ⎪ ⎛ ∂X ∂Z ⎞ ⎟ − ⎨γ ]U = ⎜⎜ ⎝ ∂ ] ∂ U ⎟⎠ ⎪ ⎪ ⎪γ U θ = ⎩
⎧ ∂X ⎪ εU = ∂ U ⎪ X ⎪ ⎨ εθ = U ⎪ ⎪ ∂Z ⎪ε ] = ∂] ⎩
⎧ ⎪ε U = ( [σ U − ν σθ + σ ] ]+ α 7 − 7 ⎪ ⎪ ⎨ε θ = [σθ − ν σ ] + σ U ]+ α 7 − 7 ( ⎪ ⎪ ⎪ε ] = [σ ] − ν σ U + σθ ]+ α 7 − 7 ( ⎩
H = GLY 3R3 = WU E = ε U + εθ + ε ] =
∆=
⎧ ⎪τ θ ] = ⎪ + ν ⎪ γ ]U ⎨τ]U = ( ⎪ ⎪ ⎪τ U θ = ⎩
∂X X ∂Z + + ∂U U ∂]
∂ ⎛ ∂ ⎞ ∂ ⎜U ⎟+ U ∂ U ⎜⎝ ∂ U ⎟⎠ ∂ ]
- 54 -
(TXDWLRQVGH1DYLHU'XKDPHO
⎧ ⎪λ + µ ⎪ ⎨ ⎪ ⎪λ + µ ⎩
(TXDWLRQVGH1DYLHU'XKDPHO
∂ ∂U
⎛ ∂X X ∂Z ⎞ ∂ ⎛∂Z ∂X ⎞ ∂7 ⎜⎜ ⎟⎟ − µ ⎜⎜ ⎟⎟ = λ + µ α + + − − IU U U ] ] U ] ∂ ∂ ∂ ∂ ∂ ∂U ⎝ ⎠ ⎝ ⎠
∂ ∂]
⎛ ∂ ⎞ ⎛ ∂X ∂ Z ⎞ ⎛ ∂X X ∂Z ⎞ ∂7 ⎟⎟ = λ + µ ⎜⎜ ⎟⎟ − µ ⎜⎜ + ⎟⎟ ⎜⎜ − I] − + + ∂] ⎝ ∂U U ⎠ ⎝ ∂] ∂U ⎠ ⎝ ∂U U ∂] ⎠
(TXDWLRQVGHO¶pTXLOLEUHORFDO
⎧ ⎪λ + µ ⎪ ⎨ ⎪ ⎪λ + µ ⎩
∂ ∂U
⎛ ∂X X ∂Z ⎞ ∂ ⎛∂Z ∂X ⎞ ∂7 ⎜⎜ ⎟⎟ − µ ⎜⎜ ⎟⎟ = λ + µ α + + − − IU U U ] ] U ] ∂ ∂ ∂ ∂ ∂ ∂U ⎝ ⎠ ⎝ ⎠
∂ ∂]
⎛ ∂ ⎞ ⎛ ∂X ∂ Z ⎞ ⎛ ∂X X ∂Z ⎞ ∂7 ⎟⎟ = λ + µ ⎜⎜ ⎟⎟ − µ ⎜⎜ + ⎟⎟ ⎜⎜ − I] − + + ∂] ⎝ ∂U U ⎠ ⎝ ∂] ∂U ⎠ ⎝ ∂U U ∂] ⎠
(TXDWLRQVGHO¶pTXLOLEUHORFDO
∂ σ U σ U − σθ ∂ τU] ∂τ ∂ σ] + + = − I U U] + τU] + = − I] ∂U U ∂] ∂] U ∂]
∂ σ U σ U − σθ ∂ τU] ∂τ ∂ σ] + + = − I U U] + τU] + = − I] ∂U U ∂] ∂] U ∂]
(TXDWLRQVGH%HOWUDPL'XKDPHO
(TXDWLRQVGH%HOWUDPL'XKDPHO
∆ σU −
G (α ⎡ ∂I ν ∂ V ( α ∂ 7 ⎤ = − ⎢ U + ∆7 + σ U − σ θ − GLY I + ⎥ + ν ∂U − ν + ν ∂ U ⎥⎦ U ⎣⎢ ∂ U − ν
∆ σU −
G (α ⎡ ∂I ν ∂ V ( α ∂ 7 ⎤ = − ⎢ U + ∆7 + σ U − σ θ − GLY I + ⎥ + ν ∂U − ν + ν ∂ U ⎥⎦ U ⎣⎢ ∂ U − ν
∆ σθ −
G (α ⎡ ∂V (α ∂7⎤ ν σ U − σ θ − GLY I + = − ⎢ IU + ∆7 + + ν U ∂ U − ν − ν + ν U ∂ U ⎥⎦ U ⎣U
∆ σθ −
G (α ⎡ ∂V (α ∂7⎤ ν σ U − σ θ − GLY I + = − ⎢ IU + ∆7 + + ν U ∂ U − ν − ν + ν U ∂ U ⎥⎦ U ⎣U
∆ σ] +
G (α ⎡ ∂ I] ∂ V ( α ∂ 7 ⎤ ν GLY I 7 = − + + ∆ + ⎢ ⎥ + ν ∂ ] − ν + ν ∂ ] ⎥⎦ ⎢⎣ ∂ ] − ν
∆ σ] +
G (α ⎡ ∂ I] ∂ V ( α ∂ 7 ⎤ ν GLY I 7 = − + + ∆ + ⎢ ⎥ + ν ∂ ] − ν + ν ∂ ] ⎥⎦ ⎢⎣ ∂ ] − ν
∆ τU] −
⎡∂ I ∂ V ∂I ( α ∂ 7 ⎤ τ + =−⎢ ] + U + ⎥ U] + ν ∂ U ∂ ] ∂ ] + ν ∂ U ∂ ] ⎥⎦ U ⎢⎣ ∂ U
∆ τU] −
⎡∂ I ∂ V ∂I ( α ∂ 7 ⎤ τ + =−⎢ ] + U + ⎥ U] + ν ∂ U ∂ ] ∂ ] + ν ∂ U ∂ ] ⎥⎦ U ⎢⎣ ∂ U
DYHF
∆V = −
G ∂I G (α + ν ∂I ∆ 7 HW GLY I = U + I U + ] GLY I − − ν ∂U U ∂] − ν
DYHF
∆V = −
G ∂I G (α + ν ∂I ∆ 7 HW GLY I = U + I U + ] GLY I − − ν ∂U U ∂] − ν
±6<0e75,(63+e5,48(
±6<0e75,(63+e5,48(
8QSUREOqPHGHWKHUPRpODVWLFLWpSRVVqGHODV\PpWULHVSKpULTXHVLOHYHFWHXUWUDQVODWLRQ 3R3 HVWSXUHPHQWUDGLDOHWQHGpSHQGTXHGHODFRRUGRQQpH U = 23 HWGXWHPSVpYHQWXHOOHPHQW 2GpVLJQHXQSRLQWIL[HDSSHOpS{OH
8QSUREOqPHGHWKHUPRpODVWLFLWpSRVVqGHODV\PpWULHVSKpULTXHVLOHYHFWHXUWUDQVODWLRQ 3R3 HVWSXUHPHQWUDGLDOHWQHGpSHQGTXHGHODFRRUGRQQpH U = 23 HWGXWHPSVpYHQWXHOOHPHQW 2GpVLJQHXQSRLQWIL[HDSSHOpS{OH
,O V¶DJLW G¶XQ FDV D[LV\PpWULTXH PpULGLHQ SDUWLFXOLHU R WRXW D[H SDVVDQW SDU 2 HVW D[H GH UpYROXWLRQ
,O V¶DJLW G¶XQ FDV D[LV\PpWULTXH PpULGLHQ SDUWLFXOLHU R WRXW D[H SDVVDQW SDU 2 HVW D[H GH UpYROXWLRQ
- 55 -
- 55 -
(TXDWLRQVGH1DYLHU'XKDPHO
⎧ ⎪λ + µ ⎪ ⎨ ⎪ ⎪λ + µ ⎩
(TXDWLRQVGH1DYLHU'XKDPHO
∂ ∂U
⎛ ∂X X ∂Z ⎞ ∂ ⎛∂Z ∂X ⎞ ∂7 ⎜⎜ ⎟⎟ − µ ⎜⎜ ⎟⎟ = λ + µ α + + − − IU U U ] ] U ] ∂ ∂ ∂ ∂ ∂ ∂U ⎝ ⎠ ⎝ ⎠
∂ ∂]
⎛ ∂ ⎞ ⎛ ∂X ∂ Z ⎞ ⎛ ∂X X ∂Z ⎞ ∂7 ⎟⎟ = λ + µ ⎜⎜ ⎟⎟ − µ ⎜⎜ + ⎟⎟ ⎜⎜ − I] − + + ∂] ⎝ ∂U U ⎠ ⎝ ∂] ∂U ⎠ ⎝ ∂U U ∂] ⎠
(TXDWLRQVGHO¶pTXLOLEUHORFDO
⎧ ⎪λ + µ ⎪ ⎨ ⎪ ⎪λ + µ ⎩
∂ ∂U
⎛ ∂X X ∂Z ⎞ ∂ ⎛∂Z ∂X ⎞ ∂7 ⎜⎜ ⎟⎟ − µ ⎜⎜ ⎟⎟ = λ + µ α + + − − IU U U ] ] U ] ∂ ∂ ∂ ∂ ∂ ∂U ⎝ ⎠ ⎝ ⎠
∂ ∂]
⎛ ∂ ⎞ ⎛ ∂X ∂ Z ⎞ ⎛ ∂X X ∂Z ⎞ ∂7 ⎟⎟ = λ + µ ⎜⎜ ⎟⎟ − µ ⎜⎜ + ⎟⎟ ⎜⎜ − I] − + + ∂] ⎝ ∂U U ⎠ ⎝ ∂] ∂U ⎠ ⎝ ∂U U ∂] ⎠
(TXDWLRQVGHO¶pTXLOLEUHORFDO
∂ σ U σ U − σθ ∂ τU] ∂τ ∂ σ] + + = − I U U] + τU] + = − I] ∂U U ∂] ∂] U ∂]
(TXDWLRQVGH%HOWUDPL'XKDPHO
∂ σ U σ U − σθ ∂ τU] ∂τ ∂ σ] + + = − I U U] + τU] + = − I] ∂U U ∂] ∂] U ∂]
(TXDWLRQVGH%HOWUDPL'XKDPHO
∆ σU −
G (α ⎡ ∂ IU ν ∂ V ( α ∂ 7 ⎤ σ − σ − = − + + ∆ + GLY I 7 ⎢ ⎥ θ U + ν ∂ U − ν + ν ∂ U ⎥⎦ U ⎢⎣ ∂ U − ν
∆ σU −
G (α ⎡ ∂ IU ν ∂ V ( α ∂ 7 ⎤ σ − σ − = − + + ∆ + GLY I 7 ⎢ ⎥ θ U + ν ∂ U − ν + ν ∂ U ⎥⎦ U ⎢⎣ ∂ U − ν
∆ σθ −
G (α ⎡ ∂V (α ∂7⎤ ν σ U − σ θ − GLY I + = − ⎢ IU + ∆7 + + ν U ∂ U − ν − ν + ν U ∂ U ⎥⎦ U ⎣U
∆ σθ −
G (α ⎡ ∂V (α ∂7⎤ ν σ U − σ θ − GLY I + = − ⎢ IU + ∆7 + + ν U ∂ U − ν − ν + ν U ∂ U ⎥⎦ U ⎣U
∆ σ] +
G (α ⎡ ∂ I] ∂ V ( α ∂ 7 ⎤ ν GLY I 7 = − + + ∆ + ⎢ ⎥ + ν ∂ ] − ν + ν ∂ ] ⎦⎥ ⎣⎢ ∂ ] − ν
∆ σ] +
G (α ⎡ ∂ I] ∂ V ( α ∂ 7 ⎤ ν GLY I 7 = − + + ∆ + ⎢ ⎥ + ν ∂ ] − ν + ν ∂ ] ⎦⎥ ⎣⎢ ∂ ] − ν
∆ τU] −
⎡ ∂ I] ∂ IU ( α ∂ 7 ⎤ ∂ V τ + = − + + ⎢ ⎥ U] + ν ∂U ∂] ∂ ] + ν ∂ U ∂ ] ⎥⎦ U ⎢⎣ ∂ U
∆ τU] −
⎡ ∂ I] ∂ IU ( α ∂ 7 ⎤ ∂ V τ + = − + + ⎢ ⎥ U] + ν ∂U ∂] ∂ ] + ν ∂ U ∂ ] ⎥⎦ U ⎢⎣ ∂ U
DYHF
∆V = −
G ∂I G (α + ν ∂I ∆ 7 HW GLY I = U + I U + ] GLY I − − ν ∂U U ∂] − ν
DYHF
∆V = −
G ∂I G (α + ν ∂I ∆ 7 HW GLY I = U + I U + ] GLY I − − ν ∂U U ∂] − ν
±6<0e75,(63+e5,48(
±6<0e75,(63+e5,48(
8QSUREOqPHGHWKHUPRpODVWLFLWpSRVVqGHODV\PpWULHVSKpULTXHVLOHYHFWHXUWUDQVODWLRQ 3R3 HVWSXUHPHQWUDGLDOHWQHGpSHQGTXHGHODFRRUGRQQpH U = 23 HWGXWHPSVpYHQWXHOOHPHQW 2GpVLJQHXQSRLQWIL[HDSSHOpS{OH
8QSUREOqPHGHWKHUPRpODVWLFLWpSRVVqGHODV\PpWULHVSKpULTXHVLOHYHFWHXUWUDQVODWLRQ 3R3 HVWSXUHPHQWUDGLDOHWQHGpSHQGTXHGHODFRRUGRQQpH U = 23 HWGXWHPSVpYHQWXHOOHPHQW 2GpVLJQHXQSRLQWIL[HDSSHOpS{OH
,O V¶DJLW G¶XQ FDV D[LV\PpWULTXH PpULGLHQ SDUWLFXOLHU R WRXW D[H SDVVDQW SDU 2 HVW D[H GH UpYROXWLRQ
,O V¶DJLW G¶XQ FDV D[LV\PpWULTXH PpULGLHQ SDUWLFXOLHU R WRXW D[H SDVVDQW SDU 2 HVW D[H GH UpYROXWLRQ
- 55 -
- 55 -
)LJXUH
G G G $SSHORQV U ϕ θ OHVFRRUGRQQpHVVSKpULTXHVGH 32 'DQVODEDVH 32 U ϕ θ OHVIRUPXOHV GHWKHUPRpODVWLFLWpV¶pFULYHQW
{
}
G ⎧X = X U W VXLYDQWU ⎪⎪ G 3R3 ⎨Y = VXLYDQWϕ G ⎪ ⎪⎩Z = VXLYDQWθ
∂X X ⎧ εϕ = εθ = εF = γθϕ = γϕ U = γU = ⎪⎪ε U = ∂ U U ⎨ ⎪εF GpVLJQHODGLODWDWLRQOLQpDLUHUHODWLYHFLUFRQIpUHQWLHOOH ⎪⎩
)LJXUH
⎧ ωU = ⎪⎪ ⎨ωϕ = ⎪ ⎪⎩ωθ =
/DVHXOHpTXDWLRQGHFRPSDWLELOLWpV¶pFULW
G G G $SSHORQV U ϕ θ OHVFRRUGRQQpHVVSKpULTXHVGH 32 'DQVODEDVH 32 U ϕ θ OHVIRUPXOHV GHWKHUPRpODVWLFLWpV¶pFULYHQW
{
G ⎧X = X U W VXLYDQWU ⎪⎪ G 3R3 ⎨Y = VXLYDQWϕ G ⎪ ⎪⎩Z = VXLYDQWθ
∂X X ⎧ εϕ = εθ = εF = γθϕ = γϕ U = γU = ⎪⎪ε U = ∂ U U ⎨ ⎪εF GpVLJQHODGLODWDWLRQOLQpDLUHUHODWLYHFLUFRQIpUHQWLHOOH ⎪⎩
/DVHXOHpTXDWLRQGHFRPSDWLELOLWpV¶pFULW
∂ε ε U = εF + U F ∂U
ε U = εF + U
/HVUHODWLRQVGH+RRNH'XKDPHOV¶pFULYHQW
}
⎧ ωU = ⎪⎪ ⎨ωϕ = ⎪ ⎪⎩ωθ =
∂ εF ∂U
/HVUHODWLRQVGH+RRNH'XKDPHOV¶pFULYHQW
⎧ ⎪⎪ε U = ( σ U − ν σF + α 7 − 7 ⎨ ⎪ε = [ − ν σ − ν σ ]+ α 7 − 7 F U ⎪⎩ F (
⎧ ⎪⎪ε U = ( σ U − ν σF + α 7 − 7 ⎨ ⎪ε = [ − ν σ − ν σ ]+ α 7 − 7 F U ⎪⎩ F (
- 56 -
- 56 -
)LJXUH
G G G $SSHORQV U ϕ θ OHVFRRUGRQQpHVVSKpULTXHVGH 32 'DQVODEDVH 32 U ϕ θ OHVIRUPXOHV GHWKHUPRpODVWLFLWpV¶pFULYHQW
{
G ⎧X = X U W VXLYDQWU ⎪⎪ G 3R3 ⎨Y = VXLYDQWϕ G ⎪ ⎪⎩Z = VXLYDQWθ
∂X X ⎧ εϕ = εθ = εF = γθϕ = γϕ U = γU = ⎪⎪ε U = ∂ U U ⎨ ⎪εF GpVLJQHODGLODWDWLRQOLQpDLUHUHODWLYHFLUFRQIpUHQWLHOOH ⎩⎪
⎧ ωU = ⎪⎪ ⎨ωϕ = ⎪ ⎪⎩ωθ =
/DVHXOHpTXDWLRQGHFRPSDWLELOLWpV¶pFULW
∂ε ε U = εF + U F ∂U
/HVUHODWLRQVGH+RRNH'XKDPHOV¶pFULYHQW
)LJXUH
}
G G G $SSHORQV U ϕ θ OHVFRRUGRQQpHVVSKpULTXHVGH 32 'DQVODEDVH 32 U ϕ θ OHVIRUPXOHV GHWKHUPRpODVWLFLWpV¶pFULYHQW
{
G ⎧X = X U W VXLYDQWU ⎪⎪ G 3R3 ⎨Y = VXLYDQWϕ G ⎪ ⎪⎩Z = VXLYDQWθ
∂X X ⎧ εϕ = εθ = εF = γθϕ = γϕ U = γU = ⎪⎪ε U = ∂ U U ⎨ ⎪εF GpVLJQHODGLODWDWLRQOLQpDLUHUHODWLYHFLUFRQIpUHQWLHOOH ⎩⎪
/DVHXOHpTXDWLRQGHFRPSDWLELOLWpV¶pFULW ε U = εF + U
⎧ ωU = ⎪⎪ ⎨ωϕ = ⎪ ⎪⎩ωθ =
∂ εF ∂U
/HVUHODWLRQVGH+RRNH'XKDPHOV¶pFULYHQW
⎧ ⎪⎪ε U = ( σ U − ν σF + α 7 − 7 ⎨ ⎪ε = [ − ν σ − ν σ ]+ α 7 − 7 F U ⎪⎩ F (
⎧ ⎪⎪ε U = ( σ U − ν σF + α 7 − 7 ⎨ ⎪ε = [ − ν σ − ν σ ]+ α 7 − 7 F U ⎪⎩ F (
- 56 -
- 56 -
}
RXLQYHUVHPHQW
RXLQYHUVHPHQW ( (α ⎧ ⎪⎪σ U = + ν − ν [ − ν ε U − ν εF ]− − ν 7 − 7 ⎨ ( ⎪σF = [εF − ν εU ]− ( α 7 − 7 + ν − ν − ν ⎩⎪
( (α ⎧ ⎪⎪σ U = + ν − ν [ − ν ε U − ν εF ]− − ν 7 − 7 ⎨ ( ⎪σF = [εF − ν εU ]− ( α 7 − 7 + ν − ν − ν ⎩⎪
/DVHXOHpTXDWLRQG¶pTXLOLEUHORFDOV¶pFULWVXUO¶D[HUDGLDO
∂ σU + σ U − σ F = − I U ∂U U
2QDGHSOXV
H = GLY 3R3 = WU E = ε U + εθ + εϕ = ε U + εF =
HW
∆=
/DVHXOHpTXDWLRQG¶pTXLOLEUHORFDOV¶pFULWVXUO¶D[HUDGLDO
I θ = I ϕ = I F = ∂X X + ∂U U
∂ ⎛ ∂ ⎞ ⎜⎜ U ⎟⎟ U ∂ U ⎝ ∂ U ⎠
/HFKDPS 3R3 HVWLUURWDWLRQQHOHWO¶pTXDWLRQGH1DYLHUV¶pFULW
∂ σU + σ U − σ F = − I U ∂U U
2QDGHSOXV
H = GLY 3R3 = WU E = ε U + εθ + εϕ = ε U + εF =
HW
∆=
I θ = I ϕ = I F = ∂X X + ∂U U
∂ ⎛ ∂ ⎞ ⎜⎜ U ⎟⎟ U ∂ U ⎝ ∂ U ⎠
/HFKDPS 3R3 HVWLUURWDWLRQQHOHWO¶pTXDWLRQGH1DYLHUV¶pFULW
∂ ⎡ ∂ XU ⎤ + ν ∂ 7 + ν − ν α − IU ⎢ ⎥= ∂ U ⎣⎢ U ∂ U ⎦⎥ − ν ∂ U ( − ν
∂ ⎡ ∂ XU ⎤ + ν ∂ 7 + ν − ν α − IU ⎢ ⎥= ∂ U ⎣⎢ U ∂ U ⎦⎥ − ν ∂ U ( − ν
(TXDWLRQVDX[FRQWUDLQWHV
(TXDWLRQVDX[FRQWUDLQWHV
2QSHXWGpWHUPLQHUOHVFRQWUDLQWHV σ U HW σF SDULQWpJUDWLRQGXV\VWqPHG¶pTXDWLRQVpTXLOLEUH HWFRPSDWLELOLWp
2QSHXWGpWHUPLQHUOHVFRQWUDLQWHV σ U HW σF SDULQWpJUDWLRQGXV\VWqPHG¶pTXDWLRQVpTXLOLEUH HWFRPSDWLELOLWp
∂ ∂ σU [σ U + σ F ] = − + ν I U − ( α ∂ 7 + σ U − σF = − I U ∂U − ν − ν ∂U ∂U U
(QVpSDUDQWOHVYDULDEOHVRQDUULYHDXV\VWqPHpTXLYDOHQW
/DSUHPLqUHVDQVVHFRQGPHPEUHDGPHWSRXUVROXWLRQJpQpUDOH σU =
∂ ∂ σU [σ U + σ F ] = − + ν I U − ( α ∂ 7 + σ U − σF = − I U ∂U − ν − ν ∂U ∂U U
⎧ ∂ ⎡ ∂ σU ⎤ ⎛ (α ∂7 ⎞ ∂I ⎟ IU + U U + + σ U ⎥ = −⎜⎜ ⎪ ⎢U U U U ∂ ∂ − ν ∂ − ν ∂ U ⎟⎠ ⎦ ⎝ ⎪ ⎣ ⎨ ⎞ ⎪ U ⎛ ∂ σU ⎪σF = σ U + ⎜⎜ ∂ U + I U ⎟⎟ ⎝ ⎠ ⎩
/DSUHPLqUHVDQVVHFRQGPHPEUHDGPHWSRXUVROXWLRQJpQpUDOH
$ + % U
σU =
- 57 -
$ + % U
- 57 -
RXLQYHUVHPHQW
RXLQYHUVHPHQW ( (α ⎧ ⎪⎪σ U = + ν − ν [ − ν ε U − ν εF ]− − ν 7 − 7 ⎨ ( (α ⎪σF = [εF − ν εU ]− 7 − 7 ⎪⎩ + ν − ν − ν
( (α ⎧ ⎪⎪σ U = + ν − ν [ − ν ε U − ν εF ]− − ν 7 − 7 ⎨ ( (α ⎪σF = [εF − ν εU ]− 7 − 7 ⎪⎩ + ν − ν − ν
/DVHXOHpTXDWLRQG¶pTXLOLEUHORFDOV¶pFULWVXUO¶D[HUDGLDO
∂ σU + σ U − σ F = − I U ∂U U
2QDGHSOXV
H = GLY 3R3 = WU E = ε U + εθ + εϕ = ε U + εF =
HW
∆=
/DVHXOHpTXDWLRQG¶pTXLOLEUHORFDOV¶pFULWVXUO¶D[HUDGLDO
I θ = I ϕ = I F = ∂X X + ∂U U
∂ ⎛ ∂ ⎞ ⎜⎜ U ⎟⎟ U ∂ U ⎝ ∂ U ⎠
/HFKDPS 3R3 HVWLUURWDWLRQQHOHWO¶pTXDWLRQGH1DYLHUV¶pFULW
(QVpSDUDQWOHVYDULDEOHVRQDUULYHDXV\VWqPHpTXLYDOHQW
⎧ ∂ ⎡ ∂ σU ⎤ ⎛ (α ∂7 ⎞ ∂I ⎟ IU + U U + + σ U ⎥ = −⎜⎜ ⎪ ⎢U U U U ∂ ∂ − ν ∂ − ν ∂ U ⎟⎠ ⎦ ⎝ ⎪ ⎣ ⎨ ⎞ ⎪ U ⎛ ∂ σU ⎪σF = σ U + ⎜⎜ ∂ U + I U ⎟⎟ ⎝ ⎠ ⎩
∂ ∂U
⎡ ∂ XU ⎤ + ν ∂ 7 + ν − ν α − IU ⎢ ⎥= ∂ U ⎦⎥ − ν ∂ U ( − ν ⎣⎢ U
∂ σU + σ U − σ F = − I U ∂U U
2QDGHSOXV
H = GLY 3R3 = WU E = ε U + εθ + εϕ = ε U + εF =
HW
∆=
I θ = I ϕ = I F = ∂X X + ∂U U
∂ ⎛ ∂ ⎞ ⎜⎜ U ⎟⎟ U ∂ U ⎝ ∂ U ⎠
/HFKDPS 3R3 HVWLUURWDWLRQQHOHWO¶pTXDWLRQGH1DYLHUV¶pFULW
∂ ∂U
⎡ ∂ XU ⎤ + ν ∂ 7 + ν − ν α − IU ⎢ ⎥= ∂ U ⎦⎥ − ν ∂ U ( − ν ⎣⎢ U
(TXDWLRQVDX[FRQWUDLQWHV
(TXDWLRQVDX[FRQWUDLQWHV
2QSHXWGpWHUPLQHUOHVFRQWUDLQWHV σ U HW σF SDULQWpJUDWLRQGXV\VWqPHG¶pTXDWLRQVpTXLOLEUH HWFRPSDWLELOLWp
2QSHXWGpWHUPLQHUOHVFRQWUDLQWHV σ U HW σF SDULQWpJUDWLRQGXV\VWqPHG¶pTXDWLRQVpTXLOLEUH HWFRPSDWLELOLWp
∂ ∂ σU [σ U + σ F ] = − + ν I U − ( α ∂ 7 + σ U − σF = − I U ∂U − ν − ν ∂U ∂U U
(QVpSDUDQWOHVYDULDEOHVRQDUULYHDXV\VWqPHpTXLYDOHQW
⎧ ∂ ⎡ ∂ σU ⎤ ⎛ (α ∂7 ⎞ ∂I ⎟ IU + U U + + σ U ⎥ = −⎜⎜ ⎪ ⎢U ∂ U − ν ∂ U ⎟⎠ ⎦ ⎝− ν ⎪∂ U ⎣ ∂ U ⎨ ⎞ ⎪ U ⎛ ∂ σU ⎪σF = σ U + ⎜⎜ ∂ U + I U ⎟⎟ ⎝ ⎠ ⎩
/DSUHPLqUHVDQVVHFRQGPHPEUHDGPHWSRXUVROXWLRQJpQpUDOH σU =
$ + % U
- 57 -
∂ ∂ σU [σ U + σ F ] = − + ν I U − ( α ∂ 7 + σ U − σF = − I U ∂U − ν − ν ∂U ∂U U
(QVpSDUDQWOHVYDULDEOHVRQDUULYHDXV\VWqPHpTXLYDOHQW
⎧ ∂ ⎡ ∂ σU ⎤ ⎛ (α ∂7 ⎞ ∂I ⎟ IU + U U + + σ U ⎥ = −⎜⎜ ⎪ ⎢U ∂ U − ν ∂ U ⎟⎠ ⎦ ⎝− ν ⎪∂ U ⎣ ∂ U ⎨ ⎞ ⎪ U ⎛ ∂ σU ⎪σF = σ U + ⎜⎜ ∂ U + I U ⎟⎟ ⎝ ⎠ ⎩
/DSUHPLqUHVDQVVHFRQGPHPEUHDGPHWSRXUVROXWLRQJpQpUDOH σU =
$ + % U
- 57 -
([HPSOHFRTXHVSKpULTXHDYHFJUDGLHQWGHWHPSpUDWXUHUDGLDO
([HPSOHFRTXHVSKpULTXHDYHFJUDGLHQWGHWHPSpUDWXUHUDGLDO
8QH VSKqUH FUHXVH D SRXU UD\RQ 5 LQWpULHXU HW 5 H[WpULHXU OD SDURL LQWHUQH HVW PDLQWHQXHj 7 ODSDURLH[WpULHXUHHVWPDLQWHQXHj 7
8QH VSKqUH FUHXVH D SRXU UD\RQ 5 LQWpULHXU HW 5 H[WpULHXU OD SDURL LQWHUQH HVW PDLQWHQXHj 7 ODSDURLH[WpULHXUHHVWPDLQWHQXHj 7
$X FKDSLWUH SUpFpGHQW QRXV DYRQV WURXYp OH FKDPS GH WHPSpUDWXUH 7 = % − $=
5 5 7 5 75 7 − 7 HW % = 5 − 5 5 − 5
$ DYHF U
$X FKDSLWUH SUpFpGHQW QRXV DYRQV WURXYp OH FKDPS GH WHPSpUDWXUH 7 = % − $=
/¶LQWpJUDWLRQGXV\VWqPH GRQQH
5 5 7 5 75 7 − 7 HW % = 5 − 5 5 − 5
$ DYHF U
/¶LQWpJUDWLRQGXV\VWqPH GRQQH
⎧ (α ⎪σ U = − − ν ⎪ ⎨ ⎪ (α ⎪σF = − − ν ⎩
⎡% + & $ ' ⎤ ⎢⎣ − U + U ⎥⎦ ⎡% + & $ ' ⎤ ⎢⎣ − U − U ⎥⎦
⎧ (α ⎪σ U = − − ν ⎪ ⎨ ⎪ (α ⎪σF = − − ν ⎩
⎡% + & $ ' ⎤ ⎢⎣ − U + U ⎥⎦ ⎡% + & $ ' ⎤ ⎢⎣ − U − U ⎥⎦
/HV FRQGLWLRQV DX[ OLPLWHV σ U = SRXU U = 5 HW U = 5 SHUPHW GH GpWHUPLQHU OHV FRQVWDQWHVG¶LQWpJUDWLRQ
/HV FRQGLWLRQV DX[ OLPLWHV σ U = SRXU U = 5 HW U = 5 SHUPHW GH GpWHUPLQHU OHV FRQVWDQWHVG¶LQWpJUDWLRQ
% + & 5 5 5 + 5 7 − 7 5 5 7 − 7 = HW ' = 5 − 5 5 − 5
% + & 5 5 5 + 5 7 − 7 5 5 7 − 7 = HW ' = 5 − 5 5 − 5
'¶RILQDOHPHQW
'¶RILQDOHPHQW
⎧ ( α 7 − 7 5 5 ⎪σ U = − ν 5 − 5 ⎪ ⎨ ⎪ ( α 7 − 7 5 5 ⎪σF = − ν 5 − 5 ⎩
⎤ ⎡ 5 + 5 5 + 5 5 5 − 5 + 5 ⎥ ⎢ U U ⎦⎥ ⎣⎢ ⎤ ⎡ 5 + 5 5 + 5 5 5 − 5 + 5 ⎥ ⎢ U U ⎥⎦ ⎢⎣
⎧ ( α 7 − 7 5 5 ⎪σ U = − ν 5 − 5 ⎪ ⎨ ⎪ ( α 7 − 7 5 5 ⎪σF = − ν 5 − 5 ⎩
⎤ ⎡ 5 + 5 5 + 5 5 5 − 5 + 5 ⎥ ⎢ U U ⎦⎥ ⎣⎢ ⎤ ⎡ 5 + 5 5 + 5 5 5 − 5 + 5 ⎥ ⎢ U U ⎥⎦ ⎢⎣
- 58 -
- 58 -
([HPSOHFRTXHVSKpULTXHDYHFJUDGLHQWGHWHPSpUDWXUHUDGLDO
([HPSOHFRTXHVSKpULTXHDYHFJUDGLHQWGHWHPSpUDWXUHUDGLDO
8QH VSKqUH FUHXVH D SRXU UD\RQ 5 LQWpULHXU HW 5 H[WpULHXU OD SDURL LQWHUQH HVW PDLQWHQXHj 7 ODSDURLH[WpULHXUHHVWPDLQWHQXHj 7
8QH VSKqUH FUHXVH D SRXU UD\RQ 5 LQWpULHXU HW 5 H[WpULHXU OD SDURL LQWHUQH HVW PDLQWHQXHj 7 ODSDURLH[WpULHXUHHVWPDLQWHQXHj 7
$X FKDSLWUH SUpFpGHQW QRXV DYRQV WURXYp OH FKDPS GH WHPSpUDWXUH 7 = % − $=
5 5 7 5 75 7 − 7 HW % = 5 − 5 5 − 5
$ DYHF U
$X FKDSLWUH SUpFpGHQW QRXV DYRQV WURXYp OH FKDPS GH WHPSpUDWXUH 7 = % − $=
/¶LQWpJUDWLRQGXV\VWqPH GRQQH
5 5 7 5 75 7 − 7 HW % = 5 − 5 5 − 5
$ DYHF U
/¶LQWpJUDWLRQGXV\VWqPH GRQQH
⎧ (α ⎪σ U = − − ν ⎪ ⎨ ⎪ (α ⎪σF = − − ν ⎩
⎡% + & $ ' ⎤ ⎢⎣ − U + U ⎥⎦ ⎡% + & $ ' ⎤ ⎢⎣ − U − U ⎥⎦
⎧ (α ⎪σ U = − − ν ⎪ ⎨ ⎪ (α ⎪σF = − − ν ⎩
⎡% + & $ ' ⎤ ⎢⎣ − U + U ⎥⎦ ⎡% + & $ ' ⎤ ⎢⎣ − U − U ⎥⎦
/HV FRQGLWLRQV DX[ OLPLWHV σ U = SRXU U = 5 HW U = 5 SHUPHW GH GpWHUPLQHU OHV FRQVWDQWHVG¶LQWpJUDWLRQ
/HV FRQGLWLRQV DX[ OLPLWHV σ U = SRXU U = 5 HW U = 5 SHUPHW GH GpWHUPLQHU OHV FRQVWDQWHVG¶LQWpJUDWLRQ
% + & 5 5 5 + 5 7 − 7 5 5 7 − 7 = HW ' = 5 − 5 5 − 5
% + & 5 5 5 + 5 7 − 7 5 5 7 − 7 = HW ' = 5 − 5 5 − 5
'¶RILQDOHPHQW
⎧ ( α 7 − 7 5 5 ⎪σ U = − ν 5 − 5 ⎪ ⎨ ⎪ ( α 7 − 7 5 5 ⎪σF = − ν 5 − 5 ⎩
'¶RILQDOHPHQW
⎤ ⎡ 5 + 5 5 + 5 5 5 − 5 + 5 ⎥ ⎢ U U ⎥⎦ ⎢⎣ ⎤ ⎡ 5 + 5 5 + 5 5 5 − 5 + 5 ⎥ ⎢ U U ⎦⎥ ⎣⎢
⎧ ( α 7 − 7 5 5 ⎪σ U = − ν 5 − 5 ⎪ ⎨ ⎪ ( α 7 − 7 5 5 ⎪σF = − ν 5 − 5 ⎩
- 58 -
⎤ ⎡ 5 + 5 5 + 5 5 5 − 5 + 5 ⎥ ⎢ U U ⎥⎦ ⎢⎣ ⎤ ⎡ 5 + 5 5 + 5 5 5 − 5 + 5 ⎥ ⎢ U U ⎦⎥ ⎣⎢
- 58 -
&+$3,75(,,,
&+$3,75(,,,
7+(50,48('(632875(6
7+(50,48('(632875(6
/H WRPH ,, HVW FRQVDFUp j OD WKpRULH GHV SRXWUHV HW GHV DVVHPEODJHV GH SRXWUHV RVVDWXUHV VRXPLV j GHV FKDUJHPHQWV SXUHPHQW PpFDQLTXHs 'DQV OH SUpVHQW FKDSLWUH QRXV QRXV SURSRVRQVGpWHQGUHFHWWHWKpRULHDXFDVROHFKDUJHPHQWHVWPpFDQLTXHHWWKHUPLTXH
/H WRPH ,, HVW FRQVDFUp j OD WKpRULH GHV SRXWUHV HW GHV DVVHPEODJHV GH SRXWUHV RVVDWXUHV VRXPLV j GHV FKDUJHPHQWV SXUHPHQW PpFDQLTXHs 'DQV OH SUpVHQW FKDSLWUH QRXV QRXV SURSRVRQVGpWHQGUHFHWWHWKpRULHDXFDVROHFKDUJHPHQWHVWPpFDQLTXHHWWKHUPLTXH
/HSUHPLHUFKDSLWUHGHFHWRPH,,pWXGLHODJpRPpWULHHWODVWDWLTXHGHVSRXWUHVOHVUpVXOWDWV UHVWHQWWRXWjIDLWYDODEOHVLFL5DSSHORQVOHV
/HSUHPLHUFKDSLWUHGHFHWRPH,,pWXGLHODJpRPpWULHHWODVWDWLTXHGHVSRXWUHVOHVUpVXOWDWV UHVWHQWWRXWjIDLWYDODEOHVLFL5DSSHORQVOHV
/HV FDUDFWpULVWLTXHV JpRPpWULTXHV G¶XQH SRXWUH VRQW G¶XQH SDUW FHOOHV GH VD ILEUH PR\HQQH ORQJXHXUFRXUEXUHWRUVLRQUHSqUHHWIRUPXOHVGH)UHQHW G¶DXWUHSDUWFHOOHVGHVHVVHFWLRQV GURLWHV FHQWUH GH JUDYLWp FHQWUH GH WRUVLRQ D[HV SULQFLSDX[ DLUH PRPHQWV TXDGUDWLTXHV FRHIILFLHQWVGHWRUVLRQMHWGHFLVDLOOHPHQW N \ N ]
/HV FDUDFWpULVWLTXHV JpRPpWULTXHV G¶XQH SRXWUH VRQW G¶XQH SDUW FHOOHV GH VD ILEUH PR\HQQH ORQJXHXUFRXUEXUHWRUVLRQUHSqUHHWIRUPXOHVGH)UHQHW G¶DXWUHSDUWFHOOHVGHVHVVHFWLRQV GURLWHV FHQWUH GH JUDYLWp FHQWUH GH WRUVLRQ D[HV SULQFLSDX[ DLUH PRPHQWV TXDGUDWLTXHV FRHIILFLHQWVGHWRUVLRQMHWGHFLVDLOOHPHQW N \ N ]
/DFRXSXUHG¶XQHSRXWUHVXLYDQWXQHVHFWLRQGURLWH6SHUPHWGHGpILQLUGHYLVVHXUHWVHVVL[ FRPSRVDQWHVFHOOHVFLSHXYHQWrWUHFDOFXOpHV
/DFRXSXUHG¶XQHSRXWUHVXLYDQWXQHVHFWLRQGURLWH6SHUPHWGHGpILQLUGHYLVVHXUHWVHVVL[ FRPSRVDQWHVFHOOHVFLSHXYHQWrWUHFDOFXOpHV
± VRLW SDU OD PpWKRGH GLUHFWH j SDUWLU GHV IRUFHV GH FKDUJHPHQW HW GH OLDLVRQ DSSOLTXpHV j O¶DPRQWRXDO¶DYDO GH6
± VRLW SDU OD PpWKRGH GLUHFWH j SDUWLU GHV IRUFHV GH FKDUJHPHQW HW GH OLDLVRQ DSSOLTXpHV j O¶DPRQWRXDO¶DYDO GH6
± VRLW SDU LQWpJUDWLRQ GHV pTXDWLRQV GH O¶pTXLOLEUH ORFDO HW GpWHUPLQDWLRQ GHV FRQVWDQWHV G¶LQWpJUDWLRQDXPR\HQGHVFRQGLWLRQVDX[OLPLWHVHWGHOLDLVRQ
± VRLW SDU LQWpJUDWLRQ GHV pTXDWLRQV GH O¶pTXLOLEUH ORFDO HW GpWHUPLQDWLRQ GHV FRQVWDQWHV G¶LQWpJUDWLRQDXPR\HQGHVFRQGLWLRQVDX[OLPLWHVHWGHOLDLVRQ
/D WKpRULH GHV SRXWUHV D pWp GpGXLWH GH O¶pODVWLFLWp WULGLPHQVLRQQHOOH JUkFH j TXHOTXHV K\SRWKqVHVVLPSOLILFDWULFHVGXHVjOHXUJpRPpWULHVSpFLILTXHHWDX[pWXGHVGH6DLQW9HQDQWHQ WUDFWLRQ IOH[LRQ WRUVLRQ HW FLVDLOOHPHQW 1RXV DMRXWHURQV XQH K\SRWKqVH VXU OH FKDPS GH WHPSpUDWXUHFHOXLFLVHUDVXUFKDTXHVHFWLRQGURLWHOLQpDULVpF¶HVWjGLUHTXHO¶RQSUHQGUD VXU6G¶DEVFLVVHFXUYLOLJQHV 73 = 7* + $\ + %=
/D WKpRULH GHV SRXWUHV D pWp GpGXLWH GH O¶pODVWLFLWp WULGLPHQVLRQQHOOH JUkFH j TXHOTXHV K\SRWKqVHVVLPSOLILFDWULFHVGXHVjOHXUJpRPpWULHVSpFLILTXHHWDX[pWXGHVGH6DLQW9HQDQWHQ WUDFWLRQ IOH[LRQ WRUVLRQ HW FLVDLOOHPHQW 1RXV DMRXWHURQV XQH K\SRWKqVH VXU OH FKDPS GH WHPSpUDWXUHFHOXLFLVHUDVXUFKDTXHVHFWLRQGURLWHOLQpDULVpF¶HVWjGLUHTXHO¶RQSUHQGUD VXU6G¶DEVFLVVHFXUYLOLJQHV 7 3 = 7* + $\ + %=
/DWHPSpUDWXUH73 DXSRLQWFRXUDQW3<= GH6HVWDLQVLFRQVLGpUpHFRPPHODVRPPH
/DWHPSpUDWXUH73 DXSRLQWFRXUDQW3<= GH6HVWDLQVLFRQVLGpUpHFRPPHODVRPPH
± G¶XQHFRQVWDQWH 7* WHPSpUDWXUHDXFHQWUH*GH6VLFLSRLQWHVWVXU6
± G¶XQHFRQVWDQWH 7* WHPSpUDWXUHDXFHQWUH*GH6VLFLSRLQWHVWVXU6
± GHGHX[YDULDWLRQVGHWHPSpUDWXUHV$<HW%= 7* $HW%VRQWFRQVWDQWVVXUFKDTXHVHFWLRQ GURLWHLOVSHXYHQWrWUHIRQFWLRQGHVHWGXWHPSVW
± GHGHX[YDULDWLRQVGHWHPSpUDWXUHV$<HW%= 7* $HW%VRQWFRQVWDQWVVXUFKDTXHVHFWLRQ GURLWHLOVSHXYHQWrWUHIRQFWLRQGHVHWGXWHPSVW
$HW%VRQWDLQVLGHVJUDGLHQWVWUDQVYHUVDX[GHWHPSpUDWXUHVXLYDQWOHVGLUHFWLRQVSULQFLSDOHV <HW=GH62QUHPSODFHGRQFODWHPSpUDWXUH73 SDUVRQGpYHORSSHPHQWOLPLWpDXSUHPLHU GHJUpVXU6DXWRXUGH*
$HW%VRQWDLQVLGHVJUDGLHQWVWUDQVYHUVDX[GHWHPSpUDWXUHVXLYDQWOHVGLUHFWLRQVSULQFLSDOHV <HW=GH62QUHPSODFHGRQFODWHPSpUDWXUH73 SDUVRQGpYHORSSHPHQWOLPLWpDXSUHPLHU GHJUpVXU6DXWRXUGH*
'H SOXV FRPPH GDQV WRXWH FHWWH SUHPLqUH SDUWLH FRQVDFUpH j OD 7KHUPLTXH GHV 6WUXFWXUHV QRXVQRXVOLPLWRQVDXUpJLPHVWDWLRQQDLUHFRPPHDXWRPH,, RXDXTXDVLVWDWLTXH
'H SOXV FRPPH GDQV WRXWH FHWWH SUHPLqUH SDUWLH FRQVDFUpH j OD 7KHUPLTXH GHV 6WUXFWXUHV QRXVQRXVOLPLWRQVDXUpJLPHVWDWLRQQDLUHFRPPHDXWRPH,, RXDXTXDVLVWDWLTXH
- 59 -
- 59 -
&+$3,75(,,,
&+$3,75(,,,
7+(50,48('(632875(6
7+(50,48('(632875(6
/H WRPH ,, HVW FRQVDFUp j OD WKpRULH GHV SRXWUHV HW GHV DVVHPEODJHV GH SRXWUHV RVVDWXUHV VRXPLV j GHV FKDUJHPHQWV SXUHPHQW PpFDQLTXHs 'DQV OH SUpVHQW FKDSLWUH QRXV QRXV SURSRVRQVGpWHQGUHFHWWHWKpRULHDXFDVROHFKDUJHPHQWHVWPpFDQLTXHHWWKHUPLTXH
/H WRPH ,, HVW FRQVDFUp j OD WKpRULH GHV SRXWUHV HW GHV DVVHPEODJHV GH SRXWUHV RVVDWXUHV VRXPLV j GHV FKDUJHPHQWV SXUHPHQW PpFDQLTXHs 'DQV OH SUpVHQW FKDSLWUH QRXV QRXV SURSRVRQVGpWHQGUHFHWWHWKpRULHDXFDVROHFKDUJHPHQWHVWPpFDQLTXHHWWKHUPLTXH
/HSUHPLHUFKDSLWUHGHFHWRPH,,pWXGLHODJpRPpWULHHWODVWDWLTXHGHVSRXWUHVOHVUpVXOWDWV UHVWHQWWRXWjIDLWYDODEOHVLFL5DSSHORQVOHV
/HSUHPLHUFKDSLWUHGHFHWRPH,,pWXGLHODJpRPpWULHHWODVWDWLTXHGHVSRXWUHVOHVUpVXOWDWV UHVWHQWWRXWjIDLWYDODEOHVLFL5DSSHORQVOHV
/HV FDUDFWpULVWLTXHV JpRPpWULTXHV G¶XQH SRXWUH VRQW G¶XQH SDUW FHOOHV GH VD ILEUH PR\HQQH ORQJXHXUFRXUEXUHWRUVLRQUHSqUHHWIRUPXOHVGH)UHQHW G¶DXWUHSDUWFHOOHVGHVHVVHFWLRQV GURLWHV FHQWUH GH JUDYLWp FHQWUH GH WRUVLRQ D[HV SULQFLSDX[ DLUH PRPHQWV TXDGUDWLTXHV FRHIILFLHQWVGHWRUVLRQMHWGHFLVDLOOHPHQW N \ N ]
/HV FDUDFWpULVWLTXHV JpRPpWULTXHV G¶XQH SRXWUH VRQW G¶XQH SDUW FHOOHV GH VD ILEUH PR\HQQH ORQJXHXUFRXUEXUHWRUVLRQUHSqUHHWIRUPXOHVGH)UHQHW G¶DXWUHSDUWFHOOHVGHVHVVHFWLRQV GURLWHV FHQWUH GH JUDYLWp FHQWUH GH WRUVLRQ D[HV SULQFLSDX[ DLUH PRPHQWV TXDGUDWLTXHV FRHIILFLHQWVGHWRUVLRQMHWGHFLVDLOOHPHQW N \ N ]
/DFRXSXUHG¶XQHSRXWUHVXLYDQWXQHVHFWLRQGURLWH6SHUPHWGHGpILQLUGHYLVVHXUHWVHVVL[ FRPSRVDQWHVFHOOHVFLSHXYHQWrWUHFDOFXOpHV
/DFRXSXUHG¶XQHSRXWUHVXLYDQWXQHVHFWLRQGURLWH6SHUPHWGHGpILQLUGHYLVVHXUHWVHVVL[ FRPSRVDQWHVFHOOHVFLSHXYHQWrWUHFDOFXOpHV
± VRLW SDU OD PpWKRGH GLUHFWH j SDUWLU GHV IRUFHV GH FKDUJHPHQW HW GH OLDLVRQ DSSOLTXpHV j O¶DPRQWRXDO¶DYDO GH6
± VRLW SDU OD PpWKRGH GLUHFWH j SDUWLU GHV IRUFHV GH FKDUJHPHQW HW GH OLDLVRQ DSSOLTXpHV j O¶DPRQWRXDO¶DYDO GH6
± VRLW SDU LQWpJUDWLRQ GHV pTXDWLRQV GH O¶pTXLOLEUH ORFDO HW GpWHUPLQDWLRQ GHV FRQVWDQWHV G¶LQWpJUDWLRQDXPR\HQGHVFRQGLWLRQVDX[OLPLWHVHWGHOLDLVRQ
± VRLW SDU LQWpJUDWLRQ GHV pTXDWLRQV GH O¶pTXLOLEUH ORFDO HW GpWHUPLQDWLRQ GHV FRQVWDQWHV G¶LQWpJUDWLRQDXPR\HQGHVFRQGLWLRQVDX[OLPLWHVHWGHOLDLVRQ
/D WKpRULH GHV SRXWUHV D pWp GpGXLWH GH O¶pODVWLFLWp WULGLPHQVLRQQHOOH JUkFH j TXHOTXHV K\SRWKqVHVVLPSOLILFDWULFHVGXHVjOHXUJpRPpWULHVSpFLILTXHHWDX[pWXGHVGH6DLQW9HQDQWHQ WUDFWLRQ IOH[LRQ WRUVLRQ HW FLVDLOOHPHQW 1RXV DMRXWHURQV XQH K\SRWKqVH VXU OH FKDPS GH WHPSpUDWXUHFHOXLFLVHUDVXUFKDTXHVHFWLRQGURLWHOLQpDULVpF¶HVWjGLUHTXHO¶RQSUHQGUD VXU6G¶DEVFLVVHFXUYLOLJQHV 73 = 7* + $\ + %=
/D WKpRULH GHV SRXWUHV D pWp GpGXLWH GH O¶pODVWLFLWp WULGLPHQVLRQQHOOH JUkFH j TXHOTXHV K\SRWKqVHVVLPSOLILFDWULFHVGXHVjOHXUJpRPpWULHVSpFLILTXHHWDX[pWXGHVGH6DLQW9HQDQWHQ WUDFWLRQ IOH[LRQ WRUVLRQ HW FLVDLOOHPHQW 1RXV DMRXWHURQV XQH K\SRWKqVH VXU OH FKDPS GH WHPSpUDWXUHFHOXLFLVHUDVXUFKDTXHVHFWLRQGURLWHOLQpDULVpF¶HVWjGLUHTXHO¶RQSUHQGUD VXU6G¶DEVFLVVHFXUYLOLJQHV 7 3 = 7* + $\ + %=
/DWHPSpUDWXUH73 DXSRLQWFRXUDQW3<= GH6HVWDLQVLFRQVLGpUpHFRPPHODVRPPH
/DWHPSpUDWXUH73 DXSRLQWFRXUDQW3<= GH6HVWDLQVLFRQVLGpUpHFRPPHODVRPPH
± G¶XQHFRQVWDQWH 7* WHPSpUDWXUHDXFHQWUH*GH6VLFLSRLQWHVWVXU6
± G¶XQHFRQVWDQWH 7* WHPSpUDWXUHDXFHQWUH*GH6VLFLSRLQWHVWVXU6
± GHGHX[YDULDWLRQVGHWHPSpUDWXUHV$<HW%= 7* $HW%VRQWFRQVWDQWVVXUFKDTXHVHFWLRQ GURLWHLOVSHXYHQWrWUHIRQFWLRQGHVHWGXWHPSVW
± GHGHX[YDULDWLRQVGHWHPSpUDWXUHV$<HW%= 7* $HW%VRQWFRQVWDQWVVXUFKDTXHVHFWLRQ GURLWHLOVSHXYHQWrWUHIRQFWLRQGHVHWGXWHPSVW
$HW%VRQWDLQVLGHVJUDGLHQWVWUDQVYHUVDX[GHWHPSpUDWXUHVXLYDQWOHVGLUHFWLRQVSULQFLSDOHV <HW=GH62QUHPSODFHGRQFODWHPSpUDWXUH73 SDUVRQGpYHORSSHPHQWOLPLWpDXSUHPLHU GHJUpVXU6DXWRXUGH*
$HW%VRQWDLQVLGHVJUDGLHQWVWUDQVYHUVDX[GHWHPSpUDWXUHVXLYDQWOHVGLUHFWLRQVSULQFLSDOHV <HW=GH62QUHPSODFHGRQFODWHPSpUDWXUH73 SDUVRQGpYHORSSHPHQWOLPLWpDXSUHPLHU GHJUpVXU6DXWRXUGH*
'H SOXV FRPPH GDQV WRXWH FHWWH SUHPLqUH SDUWLH FRQVDFUpH j OD 7KHUPLTXH GHV 6WUXFWXUHV QRXVQRXVOLPLWRQVDXUpJLPHVWDWLRQQDLUHFRPPHDXWRPH,, RXDXTXDVLVWDWLTXH
'H SOXV FRPPH GDQV WRXWH FHWWH SUHPLqUH SDUWLH FRQVDFUpH j OD 7KHUPLTXH GHV 6WUXFWXUHV QRXVQRXVOLPLWRQVDXUpJLPHVWDWLRQQDLUHFRPPHDXWRPH,, RXDXTXDVLVWDWLTXH
- 59 -
- 59 -
&RQVLGpURQV XQH WUDQFKH pOpPHQWDLUH GH SRXWUH HQWUH OHV VHFWLRQV GURLWHV YRLVLQHV 6 HW 6′ GLVWDQWHVGHGVILJXUH /DYDULDWLRQGHWHPSpUDWXUH 73 − 7 SDUUDSSRUWjODWHPSpUDWXUHGH
UpIpUHQFH 7 SHXWGRQFrWUHFRQVLGpUpHFRPPHODVRPPHGHVWURLVWHUPHV 7* − 7 $<%=
&RQVLGpURQV XQH WUDQFKH pOpPHQWDLUH GH SRXWUH HQWUH OHV VHFWLRQV GURLWHV YRLVLQHV 6 HW 6′ GLVWDQWHVGHGVILJXUH /DYDULDWLRQGHWHPSpUDWXUH 7 3 − 7 SDUUDSSRUWjODWHPSpUDWXUHGH
UpIpUHQFH 7 SHXWGRQFrWUHFRQVLGpUpHFRPPHODVRPPHGHVWURLVWHUPHV 7* − 7 $<%=
)LJXUH
)LJXUH
/DYDULDWLRQ 7* − 7 XQLIRUPHVXUODWUDQFKHGLODWHLGHQWLTXHPHQWWRXWHVOHVILEUHV 33′ GH FHWWHWUDQFKHHWDGRQFPrPHHIIHWTX¶XQHIIRUWQRUPDO1jVDYRLUXQHWUDQVODWLRQGH 6′ SDU UDSSRUWj6VXLYDQWODGLUHFWLRQ;
/DYDULDWLRQ 7* − 7 XQLIRUPHVXUODWUDQFKHGLODWHLGHQWLTXHPHQWWRXWHVOHVILEUHV 33′ GH FHWWHWUDQFKHHWDGRQFPrPHHIIHWTX¶XQHIIRUWQRUPDO1jVDYRLUXQHWUDQVODWLRQGH 6′ SDU UDSSRUWj6VXLYDQWODGLUHFWLRQ;
/DYDULDWLRQ$<GHWHPSpUDWXUHGLODWHODILEUH 33′ SURSRUWLRQQHOOHPHQWjVRQRUGRQQpH< HOOHDGRQFOHPrPHHIIHWTX¶XQPRPHQWIOpFKLVVDQW 0 = F¶HVWjGLUHXQHURWDWLRQGH 6′ SDU UDSSRUWj6DXWRXUGHO¶D[H=
/DYDULDWLRQ$<GHWHPSpUDWXUHGLODWHODILEUH 33′ SURSRUWLRQQHOOHPHQWjVRQRUGRQQpH< HOOHDGRQFOHPrPHHIIHWTX¶XQPRPHQWIOpFKLVVDQW 0 = F¶HVWjGLUHXQHURWDWLRQGH 6′ SDU UDSSRUWj6DXWRXUGHO¶D[H=
6HPEODEOHPHQWODYDULDWLRQ%=GHWHPSpUDWXUHGLODWHODILEUH 33′ SURSRUWLRQQHOOHPHQWjVD F{WH=HOOHDGRQFOHPrPHHIIHWTX¶XQPRPHQWIOpFKLVVDQW 0 < F¶HVWjGLUHXQHURWDWLRQGH 6′ SDUUDSSRUWj6DXWRXUGHO¶D[H<
6HPEODEOHPHQWODYDULDWLRQ%=GHWHPSpUDWXUHGLODWHODILEUH 33′ SURSRUWLRQQHOOHPHQWjVD F{WH=HOOHDGRQFOHPrPHHIIHWTX¶XQPRPHQWIOpFKLVVDQW 0 < F¶HVWjGLUHXQHURWDWLRQGH 6′ SDUUDSSRUWj6DXWRXUGHO¶D[H<
([DPLQRQVPDLQWHQDQWFKDFXQGHFHVWURLVFDV
([DPLQRQVPDLQWHQDQWFKDFXQGHFHVWURLVFDV
±())2571250$/1(7e&+$8))(0(1781,)250( 7* − 7
±())2571250$/1(7e&+$8))(0(1781,)250( 7* − 7
,VRORQVXQHWUDQFKHpOpPHQWDLUHHWVRXPHWWRQVODG¶XQHSDUWjXQHIIRUWQRUPDO1G¶DXWUHSDUW jXQHYDULDWLRQXQLIRUPHGHWHPSpUDWXUH 7* − 7
,VRORQVXQHWUDQFKHpOpPHQWDLUHHWVRXPHWWRQVODG¶XQHSDUWjXQHIIRUWQRUPDO1G¶DXWUHSDUW jXQHYDULDWLRQXQLIRUPHGHWHPSpUDWXUH 7* − 7
,OHQUpVXOWHDXSRLQWFRXUDQW3
,OHQUpVXOWHDXSRLQWFRXUDQW3
± XQWHQVHXUFRQWUDLQWH Σ GHPDWULFH
± XQWHQVHXUFRQWUDLQWH Σ GHPDWULFH
⎡σ [ ⎢ [Σ] = ⎢ ⎢ ⎢⎣
⎤ ⎥ 1 ⎥ DYHF σ [ = 6 ⎥ ⎥⎦
⎡σ [ ⎢ [Σ] = ⎢ ⎢ ⎢⎣
⎤ ⎥ 1 ⎥ DYHF σ [ = 6 ⎥ ⎥⎦
- 60 -
- 60 -
&RQVLGpURQV XQH WUDQFKH pOpPHQWDLUH GH SRXWUH HQWUH OHV VHFWLRQV GURLWHV YRLVLQHV 6 HW 6′ GLVWDQWHVGHGVILJXUH /DYDULDWLRQGHWHPSpUDWXUH 73 − 7 SDUUDSSRUWjODWHPSpUDWXUHGH UpIpUHQFH 7 SHXWGRQFrWUHFRQVLGpUpHFRPPHODVRPPHGHVWURLVWHUPHV 7* − 7 $<%=
&RQVLGpURQV XQH WUDQFKH pOpPHQWDLUH GH SRXWUH HQWUH OHV VHFWLRQV GURLWHV YRLVLQHV 6 HW 6′ GLVWDQWHVGHGVILJXUH /DYDULDWLRQGHWHPSpUDWXUH 7 3 − 7 SDUUDSSRUWjODWHPSpUDWXUHGH UpIpUHQFH 7 SHXWGRQFrWUHFRQVLGpUpHFRPPHODVRPPHGHVWURLVWHUPHV 7* − 7 $<%=
)LJXUH
)LJXUH
/DYDULDWLRQ 7* − 7 XQLIRUPHVXUODWUDQFKHGLODWHLGHQWLTXHPHQWWRXWHVOHVILEUHV 33′ GH FHWWHWUDQFKHHWDGRQFPrPHHIIHWTX¶XQHIIRUWQRUPDO1jVDYRLUXQHWUDQVODWLRQGH 6′ SDU UDSSRUWj6VXLYDQWODGLUHFWLRQ;
/DYDULDWLRQ 7* − 7 XQLIRUPHVXUODWUDQFKHGLODWHLGHQWLTXHPHQWWRXWHVOHVILEUHV 33′ GH FHWWHWUDQFKHHWDGRQFPrPHHIIHWTX¶XQHIIRUWQRUPDO1jVDYRLUXQHWUDQVODWLRQGH 6′ SDU UDSSRUWj6VXLYDQWODGLUHFWLRQ;
/DYDULDWLRQ$<GHWHPSpUDWXUHGLODWHODILEUH 33′ SURSRUWLRQQHOOHPHQWjVRQRUGRQQpH< HOOHDGRQFOHPrPHHIIHWTX¶XQPRPHQWIOpFKLVVDQW 0 = F¶HVWjGLUHXQHURWDWLRQGH 6′ SDU UDSSRUWj6DXWRXUGHO¶D[H=
/DYDULDWLRQ$<GHWHPSpUDWXUHGLODWHODILEUH 33′ SURSRUWLRQQHOOHPHQWjVRQRUGRQQpH< HOOHDGRQFOHPrPHHIIHWTX¶XQPRPHQWIOpFKLVVDQW 0 = F¶HVWjGLUHXQHURWDWLRQGH 6′ SDU UDSSRUWj6DXWRXUGHO¶D[H=
6HPEODEOHPHQWODYDULDWLRQ%=GHWHPSpUDWXUHGLODWHODILEUH 33′ SURSRUWLRQQHOOHPHQWjVD F{WH=HOOHDGRQFOHPrPHHIIHWTX¶XQPRPHQWIOpFKLVVDQW 0 < F¶HVWjGLUHXQHURWDWLRQGH 6′ SDUUDSSRUWj6DXWRXUGHO¶D[H<
6HPEODEOHPHQWODYDULDWLRQ%=GHWHPSpUDWXUHGLODWHODILEUH 33′ SURSRUWLRQQHOOHPHQWjVD F{WH=HOOHDGRQFOHPrPHHIIHWTX¶XQPRPHQWIOpFKLVVDQW 0 < F¶HVWjGLUHXQHURWDWLRQGH 6′ SDUUDSSRUWj6DXWRXUGHO¶D[H<
([DPLQRQVPDLQWHQDQWFKDFXQGHFHVWURLVFDV
([DPLQRQVPDLQWHQDQWFKDFXQGHFHVWURLVFDV
±())2571250$/1(7e&+$8))(0(1781,)250( 7* − 7
±())2571250$/1(7e&+$8))(0(1781,)250( 7* − 7
,VRORQVXQHWUDQFKHpOpPHQWDLUHHWVRXPHWWRQVODG¶XQHSDUWjXQHIIRUWQRUPDO1G¶DXWUHSDUW jXQHYDULDWLRQXQLIRUPHGHWHPSpUDWXUH 7* − 7
,VRORQVXQHWUDQFKHpOpPHQWDLUHHWVRXPHWWRQVODG¶XQHSDUWjXQHIIRUWQRUPDO1G¶DXWUHSDUW jXQHYDULDWLRQXQLIRUPHGHWHPSpUDWXUH 7* − 7
,OHQUpVXOWHDXSRLQWFRXUDQW3
,OHQUpVXOWHDXSRLQWFRXUDQW3
± XQWHQVHXUFRQWUDLQWH Σ GHPDWULFH
± XQWHQVHXUFRQWUDLQWH Σ GHPDWULFH
⎡σ [ ⎢ [Σ] = ⎢ ⎢ ⎢⎣
⎤ ⎥ 1 ⎥ DYHF σ [ = 6 ⎥ ⎥⎦ - 60 -
⎡σ [ ⎢ [Σ] = ⎢ ⎢ ⎢⎣
⎤ ⎥ 1 ⎥ DYHF σ [ = 6 ⎥ ⎥⎦ - 60 -
)LJXUH
)LJXUH
± XQWHQVHXUGpIRUPDWLRQE GHPDWULFH
± XQWHQVHXUGpIRUPDWLRQE GHPDWULFH
1 ⎧ ε[ = + α 7* 7 ⎪ (6 ⎡ε [ ⎤ ⎪ ⎥ ⎢ [E] = ⎢ ε \ ⎥ DYHF ⎪⎨ε \ = −ν 1 + α 7* 7 (6 ⎥ ⎢ ⎪ ⎢⎣ ε ] ⎥⎦ ⎪ 1 + α 7* 7 ⎪ε ] = −ν (6 ⎩ G¶DSUqVODORLGH+RRNH'XKDPHO
1 ⎧ ε[ = + α 7* 7 ⎪ (6 ⎡ε [ ⎤ ⎪ ⎥ ⎢ [E] = ⎢ ε \ ⎥ DYHF ⎪⎨ε \ = −ν 1 + α 7* 7 (6 ⎥ ⎢ ⎪ ⎢⎣ ε ] ⎥⎦ ⎪ 1 + α 7* 7 ⎪ε ] = −ν (6 ⎩ G¶DSUqVODORLGH+RRNH'XKDPHO
'HSOXV 6′ VXELWSDUUDSSRUWj6ODWUDQVODWLRQGHYHFWHXU
'HSOXV 6′ VXELWSDUUDSSRUWj6ODWUDQVODWLRQGHYHFWHXU
G ⎡1 G ⎤ + α 7* − 7 ⎥ GV ⋅ , GΛ = ⎢ ⎣ (6 ⎦
G ⎡1 G ⎤ + α 7* − 7 ⎥ GV ⋅ , GΛ = ⎢ ⎣ (6 ⎦
G R , GpVLJQHO¶XQLWDLUHGHO¶D[HGHV;
G R , GpVLJQHO¶XQLWDLUHGHO¶D[HGHV;
±020(17)/e&+,66$17 0 = (7*5$',(17'(7(03e5$785($
±020(17)/e&+,66$17 0 = (7*5$',(17'(7(03e5$785($
)LJXUH
)LJXUH
- 61 -
- 61 -
)LJXUH
)LJXUH
± XQWHQVHXUGpIRUPDWLRQE GHPDWULFH
± XQWHQVHXUGpIRUPDWLRQE GHPDWULFH
1 ⎧ ⎪ε [ = (6 + α 7* 7 ⎤ ⎪ ⎥ 1 ⎪ + α 7* 7 ε \ ⎥ DYHF ⎨ε \ = −ν (6 ⎥ ⎪ ε ] ⎥⎦ ⎪ 1 + α 7* 7 ⎪ε ] = −ν (6 ⎩ G¶DSUqVODORLGH+RRNH'XKDPHO
1 ⎧ ⎪ε [ = (6 + α 7* 7 ⎤ ⎪ ⎥ 1 ⎪ + α 7* 7 ε \ ⎥ DYHF ⎨ε \ = −ν (6 ⎥ ⎪ ε ] ⎥⎦ ⎪ 1 + α 7* 7 ⎪ε ] = −ν (6 ⎩ G¶DSUqVODORLGH+RRNH'XKDPHO
⎡ε [ ⎢ [E] = ⎢ ⎢ ⎢⎣
'HSOXV 6′ VXELWSDUUDSSRUWj6ODWUDQVODWLRQGHYHFWHXU
⎡ε [ ⎢ [E] = ⎢ ⎢ ⎢⎣
'HSOXV 6′ VXELWSDUUDSSRUWj6ODWUDQVODWLRQGHYHFWHXU
G ⎡1 G ⎤ + α 7* − 7 ⎥ GV ⋅ , GΛ = ⎢ ⎣ (6 ⎦
G ⎡1 G ⎤ + α 7* − 7 ⎥ GV ⋅ , GΛ = ⎢ ⎣ (6 ⎦
G R , GpVLJQHO¶XQLWDLUHGHO¶D[HGHV;
G R , GpVLJQHO¶XQLWDLUHGHO¶D[HGHV;
±020(17)/e&+,66$17 0 = (7*5$',(17'(7(03e5$785($
±020(17)/e&+,66$17 0 = (7*5$',(17'(7(03e5$785($
)LJXUH
)LJXUH
- 61 -
- 61 -
6RXPHWWRQVODWUDQFKHpOpPHQWDLUHGHSRXWUHjXQPRPHQWIOpFKLVVDQW 0 = FRPELQpDYHFXQH pOpYDWLRQGHWHPSpUDWXUHGHODIRUPH$<,OHQUpVXOWHDXSRLQWFRXUDQW3<=
6RXPHWWRQVODWUDQFKHpOpPHQWDLUHGHSRXWUHjXQPRPHQWIOpFKLVVDQW 0 = FRPELQpDYHFXQH pOpYDWLRQGHWHPSpUDWXUHGHODIRUPH$<,OHQUpVXOWHDXSRLQWFRXUDQW3<=
± XQWHQVHXUFRQWUDLQWH Σ GHPDWULFH
± XQWHQVHXUFRQWUDLQWH Σ GHPDWULFH
⎡σ [ ⎢ [Σ] = ⎢ ⎢ ⎣⎢
⎤ ⎥ −0 ⎥ DYHF σ [ = = ⋅ < ,= ⎥ ⎦⎥
± XQWHQVHXUGpIRUPDWLRQ E GHPDWULFH
⎡ε [ ⎢ [E] = ⎢ ⎢ ⎢⎣
ε\
⎡σ [ ⎢ [Σ] = ⎢ ⎢ ⎣⎢
⎤ ⎥ −0 ⎥ DYHF σ [ = = ⋅ < ,= ⎥ ⎦⎥
± XQWHQVHXUGpIRUPDWLRQ E GHPDWULFH
⎤ ⎥ ⎥ DYHF ⎥ ε ] ⎥⎦
⎧ ⎛ 0= ⎞ + α $ ⎟⎟ < ⎪ε [ = ⎜⎜ − (, = ⎝ ⎠ ⎪ ⎨ ⎛ ν 0= ⎞ ⎪ ⎪ε \ = ε ] = ⎜⎜ (, + α $ ⎟⎟ < = ⎝ ⎠ ⎩
⎡ε [ ⎢ [E] = ⎢ ⎢ ⎢⎣
ε\
⎤ ⎥ ⎥ DYHF ⎥ ε ] ⎥⎦
⎧ ⎛ 0= ⎞ + α $ ⎟⎟ < ⎪ε [ = ⎜⎜ − (, = ⎝ ⎠ ⎪ ⎨ ⎛ ν 0= ⎞ ⎪ ⎪ε \ = ε ] = ⎜⎜ (, + α $ ⎟⎟ < = ⎝ ⎠ ⎩
2QDGHSOXVXQHURWDWLRQGH 6′ SDUUDSSRUWj6DXWRXUGH=O¶DPHQDQWGHODSRVLWLRQ 6′ jOD SRVLWLRQ 6′ GHSVHXGRYHFWHXU G ⎛0 ⎞ = ⎜⎜ = − α $ ⎟⎟ GV ⋅ . ⎝ (, = ⎠ G R . GpVLJQHO¶XQLWDLUHGHO¶D[HGHV=
2QDGHSOXVXQHURWDWLRQGH 6′ SDUUDSSRUWj6DXWRXUGH=O¶DPHQDQWGHODSRVLWLRQ 6′ jOD SRVLWLRQ 6′ GHSVHXGRYHFWHXU G ⎛0 ⎞ = ⎜⎜ = − α $ ⎟⎟ GV ⋅ . ⎝ (, = ⎠ G R . GpVLJQHO¶XQLWDLUHGHO¶D[HGHV=
±020(17)/e&+,66$17 0 < (7*5$',(17'(7(03e5$785(%
±020(17)/e&+,66$17 0 < (7*5$',(17'(7(03e5$785(%
6HPEODEOHPHQW VRXPHWWRQV OD WUDQFKH j XQ PRPHQW IOpFKLVVDQW 0 < HW j XQH YDULDWLRQ GH WHPSpUDWXUH%=,OHQUpVXOWHDXSRLQWFRXUDQW3<=
6HPEODEOHPHQW VRXPHWWRQV OD WUDQFKH j XQ PRPHQW IOpFKLVVDQW 0 < HW j XQH YDULDWLRQ GH WHPSpUDWXUH%=,OHQUpVXOWHDXSRLQWFRXUDQW3<=
± XQWHQVHXUFRQWUDLQWH Σ GHPDWULFH
± XQWHQVHXUFRQWUDLQWH Σ GHPDWULFH
⎡σ [ ⎢ [Σ] = ⎢ ⎢ ⎢⎣
⎤ ⎥ 0 ⎥ DYHF σ [ = < ⋅ = ,< ⎥ ⎥⎦
± XQWHQVHXUGpIRUPDWLRQ E GHPDWULFH
⎡ε [ ⎢ [E] = ⎢ ⎢ ⎢⎣
ε\
⎡σ [ ⎢ [Σ] = ⎢ ⎢ ⎢⎣
⎤ ⎥ 0 ⎥ DYHF σ [ = < ⋅ = ,< ⎥ ⎥⎦
± XQWHQVHXUGpIRUPDWLRQ E GHPDWULFH
⎧ ⎛ 0< ⎞ ⎤ + α % ⎟⎟ = ⎪ε [ = ⎜⎜ (, ⎥ ⎝ < ⎠ ⎪ ⎥ DYHF ⎨ ⎥ ⎛ ν 0< ⎞ ⎪ ε ] ⎥⎦ ⎪ε \ = ε ] = ⎜⎜ − (, + α % ⎟⎟ = < ⎝ ⎠ ⎩
G¶DSUqVODORLGH+RRNH'XKDPHO
⎡ε [ ⎢ [E] = ⎢ ⎢ ⎢⎣
ε\
⎧ ⎛ 0< ⎞ ⎤ + α % ⎟⎟ = ⎪ε [ = ⎜⎜ (, ⎥ ⎝ < ⎠ ⎪ ⎥ DYHF ⎨ ⎥ ⎛ ν 0< ⎞ ⎪ ε ] ⎥⎦ ⎪ε \ = ε ] = ⎜⎜ − (, + α % ⎟⎟ = < ⎝ ⎠ ⎩
G¶DSUqVODORLGH+RRNH'XKDPHO
- 62 -
- 62 -
6RXPHWWRQVODWUDQFKHpOpPHQWDLUHGHSRXWUHjXQPRPHQWIOpFKLVVDQW 0 = FRPELQpDYHFXQH pOpYDWLRQGHWHPSpUDWXUHGHODIRUPH$<,OHQUpVXOWHDXSRLQWFRXUDQW3<=
6RXPHWWRQVODWUDQFKHpOpPHQWDLUHGHSRXWUHjXQPRPHQWIOpFKLVVDQW 0 = FRPELQpDYHFXQH pOpYDWLRQGHWHPSpUDWXUHGHODIRUPH$<,OHQUpVXOWHDXSRLQWFRXUDQW3<=
± XQWHQVHXUFRQWUDLQWH Σ GHPDWULFH
± XQWHQVHXUFRQWUDLQWH Σ GHPDWULFH
⎡σ [ ⎢ [Σ] = ⎢ ⎢ ⎢⎣
⎤ ⎥ −0 ⎥ DYHF σ [ = = ⋅ < ,= ⎥ ⎥⎦
± XQWHQVHXUGpIRUPDWLRQ E GHPDWULFH
⎡ε [ ⎢ [E] = ⎢ ⎢ ⎢⎣
ε\
⎡σ [ ⎢ [Σ] = ⎢ ⎢ ⎢⎣
⎤ ⎥ −0 ⎥ DYHF σ [ = = ⋅ < ,= ⎥ ⎥⎦
± XQWHQVHXUGpIRUPDWLRQ E GHPDWULFH
⎤ ⎥ ⎥ DYHF ⎥ ε ] ⎥⎦
⎧ ⎛ 0= ⎞ + α $ ⎟⎟ < ⎪ε [ = ⎜⎜ − ⎝ (, = ⎠ ⎪ ⎨ ⎛ ν 0= ⎞ ⎪ ⎪ε \ = ε ] = ⎜⎜ (, + α $ ⎟⎟ < = ⎝ ⎠ ⎩
⎡ε [ ⎢ [E] = ⎢ ⎢ ⎢⎣
ε\
⎤ ⎥ ⎥ DYHF ⎥ ε ] ⎥⎦
⎧ ⎛ 0= ⎞ + α $ ⎟⎟ < ⎪ε [ = ⎜⎜ − ⎝ (, = ⎠ ⎪ ⎨ ⎛ ν 0= ⎞ ⎪ ⎪ε \ = ε ] = ⎜⎜ (, + α $ ⎟⎟ < = ⎝ ⎠ ⎩
2QDGHSOXVXQHURWDWLRQGH 6′ SDUUDSSRUWj6DXWRXUGH=O¶DPHQDQWGHODSRVLWLRQ 6′ jOD SRVLWLRQ 6′ GHSVHXGRYHFWHXU G ⎛0 ⎞ = ⎜⎜ = − α $ ⎟⎟ GV ⋅ . ⎝ (, = ⎠ G R . GpVLJQHO¶XQLWDLUHGHO¶D[HGHV=
2QDGHSOXVXQHURWDWLRQGH 6′ SDUUDSSRUWj6DXWRXUGH=O¶DPHQDQWGHODSRVLWLRQ 6′ jOD SRVLWLRQ 6′ GHSVHXGRYHFWHXU G ⎛0 ⎞ = ⎜⎜ = − α $ ⎟⎟ GV ⋅ . ⎝ (, = ⎠ G R . GpVLJQHO¶XQLWDLUHGHO¶D[HGHV=
±020(17)/e&+,66$17 0 < (7*5$',(17'(7(03e5$785(%
±020(17)/e&+,66$17 0 < (7*5$',(17'(7(03e5$785(%
6HPEODEOHPHQW VRXPHWWRQV OD WUDQFKH j XQ PRPHQW IOpFKLVVDQW 0 < HW j XQH YDULDWLRQ GH WHPSpUDWXUH%=,OHQUpVXOWHDXSRLQWFRXUDQW3<=
6HPEODEOHPHQW VRXPHWWRQV OD WUDQFKH j XQ PRPHQW IOpFKLVVDQW 0 < HW j XQH YDULDWLRQ GH WHPSpUDWXUH%=,OHQUpVXOWHDXSRLQWFRXUDQW3<=
± XQWHQVHXUFRQWUDLQWH Σ GHPDWULFH
± XQWHQVHXUFRQWUDLQWH Σ GHPDWULFH
⎡σ [ ⎢ [Σ] = ⎢ ⎢ ⎣⎢
⎤ ⎥ 0 ⎥ DYHF σ [ = < ⋅ = ,< ⎥ ⎦⎥
± XQWHQVHXUGpIRUPDWLRQ E GHPDWULFH
⎡ε [ ⎢ [E] = ⎢ ⎢ ⎢⎣
ε\
⎡σ [ ⎢ [Σ] = ⎢ ⎢ ⎣⎢
⎤ ⎥ 0 ⎥ DYHF σ [ = < ⋅ = ,< ⎥ ⎦⎥
± XQWHQVHXUGpIRUPDWLRQ E GHPDWULFH
⎧ ⎛ 0< ⎞ ⎤ + α % ⎟⎟ = ⎪ε [ = ⎜⎜ (, ⎥ ⎝ < ⎠ ⎪ ⎥ DYHF ⎨ ⎥ ⎛ ν 0< ⎞ ⎪ ε ] ⎥⎦ ⎪ε \ = ε ] = ⎜⎜ − (, + α % ⎟⎟ = < ⎝ ⎠ ⎩
G¶DSUqVODORLGH+RRNH'XKDPHO
⎡ε [ ⎢ [E] = ⎢ ⎢ ⎢⎣
ε\
⎧ ⎛ 0< ⎞ ⎤ + α % ⎟⎟ = ⎪ε [ = ⎜⎜ (, ⎥ ⎝ < ⎠ ⎪ ⎥ DYHF ⎨ ⎥ ⎛ ν 0< ⎞ ⎪ ε ] ⎥⎦ ⎪ε \ = ε ] = ⎜⎜ − (, + α % ⎟⎟ = < ⎝ ⎠ ⎩
G¶DSUqVODORLGH+RRNH'XKDPHO
- 62 -
- 62 -
'HSOXV 6′ WRXUQHSDUUDSSRUWj6DXWRXUGH<GH
G R - GpVLJQHO¶XQLWDLUHGHO¶D[HGHV<
'HSOXV 6′ WRXUQHSDUUDSSRUWj6DXWRXUGH<GH
G ⎛0 ⎞ = ⎜⎜ < + α % ⎟⎟ GV ⋅ - ⎝ (, < ⎠
G R - GpVLJQHO¶XQLWDLUHGHO¶D[HGHV<
&RQVpTXHQFHV)RUPXOHVGH%UHVVH 6
∫
+
6
Λ = Λ +
** +
∫
6
6
+
∫
6
G ⎛0 ⎞ = ⎜⎜ < + α % ⎟⎟ GV ⋅ - ⎝ (, < ⎠
6
∫
+
6
⎡ 0W G ⎛ 0< ⎞G ⎛0 ⎞ G⎤ + α % ⎟⎟ - + ⎜⎜ = − α $ ⎟⎟ . ⎥ ⋅ GV , + ⎜⎜ ⎢ ⎢⎣ *⎝ (,< ⎠ ⎝ (, = ⎠ ⎥⎦ 6
7\ G ⎧⎡ 1 7 G⎫ ⎤G - + N ] ] . ⎬ GV + α (7* − 7 )⎥ , + N \ ⎨⎢ *6 *6 ⎭ ⎦ ⎩⎣ (6
Λ = Λ +
** +
∫
6
6
⎫ ⎧0W G ⎡⎛ 0 ⎞G ⎛0 ⎞ G⎤ ⎪ ⎪ ,Λ &* + ⎢⎜⎜ < + α % ⎟⎟ - + ⎜⎜ = − α $ ⎟⎟ . ⎥ ** ⎬ GV ⎨ ⎠ ⎝ (, = ⎠ ⎦Λ ⎣⎝ (, < ⎪⎭ ⎪⎩ *-
+
∫
6
±32875(&,5&8/$,5(¬3/$102<(1
7\ G ⎧⎡ 1 7 G⎫ ⎤G - + N ] ] . ⎬ GV + α (7* − 7 )⎥ , + N \ ⎨⎢ *6 *6 ⎭ ⎦ ⎩⎣ (6
⎫ ⎧0W G ⎡⎛ 0 ⎞G ⎛0 ⎞ G⎤ ⎪ ⎪ ,Λ &* + ⎢⎜⎜ < + α % ⎟⎟ - + ⎜⎜ = − α $ ⎟⎟ . ⎥ ** ⎬ GV ⎨ ⎠ ⎝ (, = ⎠ ⎦Λ ⎣⎝ (, < ⎪⎭ ⎪⎩ *-
±32875(&,5&8/$,5(¬3/$102<(1
)LJXUH
)LJXUH
- 63 -
- 63 -
'HSOXV 6′ WRXUQHSDUUDSSRUWj6DXWRXUGH<GH
G R - GpVLJQHO¶XQLWDLUHGHO¶D[HGHV<
'HSOXV 6′ WRXUQHSDUUDSSRUWj6DXWRXUGH<GH
G ⎛0 ⎞ = ⎜⎜ < + α % ⎟⎟ GV ⋅ - ⎝ (, < ⎠
+
∫
6
Λ = Λ +
** +
∫
6
6
+
∫
6
G ⎛0 ⎞ = ⎜⎜ < + α % ⎟⎟ GV ⋅ - ⎝ (, < ⎠
&RQVpTXHQFHV)RUPXOHVGH%UHVVH 6
⎡ 0W G ⎛ 0< ⎞G ⎛0 ⎞ G⎤ + α % ⎟⎟ - + ⎜⎜ = − α $ ⎟⎟ . ⎥ ⋅ GV , + ⎜⎜ ⎢ ⎝ (,< ⎠ ⎝ (, = ⎠ ⎦⎥ ⎣⎢ *6
G R - GpVLJQHO¶XQLWDLUHGHO¶D[HGHV<
&RQVpTXHQFHV)RUPXOHVGH%UHVVH 6
&RQVpTXHQFHV)RUPXOHVGH%UHVVH
⎡ 0W G ⎛ 0< ⎞G ⎛0 ⎞ G⎤ + α % ⎟⎟ - + ⎜⎜ = − α $ ⎟⎟ . ⎥ ⋅ GV , + ⎜⎜ ⎢ ⎢⎣ *⎝ (,< ⎠ ⎝ (, = ⎠ ⎥⎦ 6
+
∫
6
7\ G ⎧⎡ 1 7 G⎫ ⎤G - + N ] ] . ⎬ GV + α (7* − 7 )⎥ , + N \ ⎨⎢ *6 *6 ⎭ ⎦ ⎩⎣ (6
⎫ ⎧0W G ⎡⎛ 0 ⎞G ⎛0 ⎞ G⎤ ⎪ ⎪ ,Λ &* + ⎢⎜⎜ < + α % ⎟⎟ - + ⎜⎜ = − α $ ⎟⎟ . ⎥ ** ⎬ GV ⎨ *(, (, ⎠ ⎝ = ⎠ ⎦Λ ⎣⎝ < ⎪⎭ ⎪⎩
±32875(&,5&8/$,5(¬3/$102<(1
⎡ 0W G ⎛ 0< ⎞G ⎛0 ⎞ G⎤ + α % ⎟⎟ - + ⎜⎜ = − α $ ⎟⎟ . ⎥ ⋅ GV , + ⎜⎜ ⎢ ⎝ (,< ⎠ ⎝ (, = ⎠ ⎦⎥ ⎣⎢ *6
Λ = Λ +
** +
∫
6
6
+
∫
6
7\ G ⎧⎡ 1 7 G⎫ ⎤G - + N ] ] . ⎬ GV + α (7* − 7 )⎥ , + N \ ⎨⎢ *6 *6 ⎭ ⎦ ⎩⎣ (6
⎫ ⎧0W G ⎡⎛ 0 ⎞G ⎛0 ⎞ G⎤ ⎪ ⎪ ,Λ &* + ⎢⎜⎜ < + α % ⎟⎟ - + ⎜⎜ = − α $ ⎟⎟ . ⎥ ** ⎬ GV ⎨ *(, (, ⎠ ⎝ = ⎠ ⎦Λ ⎣⎝ < ⎪⎭ ⎪⎩
±32875(&,5&8/$,5(¬3/$102<(1
)LJXUH
)LJXUH
- 63 -
- 63 -
[R\ GpVLJQHOHSODQGHV\PpWULHGHODSRXWUHFLUFXODLUHRXYHUWHRXIHUPpH RHVWOHFHQWUH GHO¶DUFGHFHUFOHFRQVWLWXpSDUODOLJQHPR\HQQH
[R\ GpVLJQHOHSODQGHV\PpWULHGHODSRXWUHFLUFXODLUHRXYHUWHRXIHUPpH RHVWOHFHQWUH GHO¶DUFGHFHUFOHFRQVWLWXpSDUODOLJQHPR\HQQH
/D SRXWUH HVW VXSSRVpH FKDUJpH GDQV VRQ SODQ HW VRXPLVH j XQ FKDPS GH WHPSpUDWXUH 7 = 7* + $< &HWWH SRXWUH D pWp pWXGLpH GDQV OH FDV LVRWKHUPH DX WRPH ,, SDJHV HW
/D SRXWUH HVW VXSSRVpH FKDUJpH GDQV VRQ SODQ HW VRXPLVH j XQ FKDPS GH WHPSpUDWXUH 7 = 7* + $< &HWWH SRXWUH D pWp pWXGLpH GDQV OH FDV LVRWKHUPH DX WRPH ,, SDJHV HW
/HV UpVXOWDWV V¶pWHQGHQW DLVpPHQW HQ UHPSODoDQW
⎛0 ⎞ 0= 1 SDU ⎜⎜ = ⎟⎟ − α $ HW SDU (, (6 (, = ⎝ =⎠
/HV UpVXOWDWV V¶pWHQGHQW DLVpPHQW HQ UHPSODoDQW
⎛0 ⎞ 0= 1 SDU ⎜⎜ = ⎟⎟ − α $ HW SDU (, (6 (, = ⎝ =⎠
1 + α 7* − 7 (6
1 + α 7* − 7 (6
/HVGpSODFHPHQWVWDQJHQWLHO8HWQRUPDO9GH*ODURWDWLRQ ω GHODVHFWLRQ6VDWLVIRQWDX[ pTXDWLRQV ⎧ G 9 ⎞ ⎛ 1 ⎞ ⎛ 0 + α 7* − 7 ⎟ ⎪ + 9 = 5 ⎜ − α $⎟ − 5 ⎜ ⎝ (, ⎠ ⎝ (6 ⎠ ⎪ Gθ ⎪ G8 ⎪ ⎛ 1 ⎞ =9+5⎜ + α 7* − 7 ⎟ ⎨DYHF G θ (6 ⎝ ⎠ ⎪ ⎪ ⎪HW G ω = 5 ⎛ 0 − α $ ⎞ ⎜ ⎟ ⎪ Gθ ⎝ (, ⎠ ⎩
/HVGpSODFHPHQWVWDQJHQWLHO8HWQRUPDO9GH*ODURWDWLRQ ω GHODVHFWLRQ6VDWLVIRQWDX[ pTXDWLRQV ⎧ G 9 ⎞ ⎛ 1 ⎞ ⎛ 0 + α 7* − 7 ⎟ ⎪ + 9 = 5 ⎜ − α $⎟ − 5 ⎜ ⎝ (, ⎠ ⎝ (6 ⎠ ⎪ Gθ ⎪ G8 ⎪ ⎛ 1 ⎞ =9+5⎜ + α 7* − 7 ⎟ ⎨DYHF G θ (6 ⎝ ⎠ ⎪ ⎪ ⎪HW G ω = 5 ⎛ 0 − α $ ⎞ ⎜ ⎟ ⎪ Gθ ⎝ (, ⎠ ⎩
([HPSOHpOpYDWLRQXQLIRUPHGHWHPSpUDWXUH 7* − 7 GDQVXQDQQHDXFLUFXODLUHILJXUH
([HPSOHpOpYDWLRQXQLIRUPHGHWHPSpUDWXUH 7* − 7 GDQVXQDQQHDXFLUFXODLUHILJXUH
Gω = O¶pTXLOLEUH G¶XQ GHPL Gθ DQQHDX GRQQH G¶DXWUH SDUW 1 OD SUHPLqUH pTXDWLRQ GRQQH DORUV OH GpSODFHPHQW UDGLDO9VXLYDQW< 9 = α 5 7* − 7
Gω = O¶pTXLOLEUH G¶XQ GHPL Gθ DQQHDX GRQQH G¶DXWUH SDUW 1 OD SUHPLqUH pTXDWLRQ GRQQH DORUV OH GpSODFHPHQW UDGLDO9VXLYDQW< 9 = α 5 7* − 7
/D WURLVLqPH pTXDWLRQ GRQQH 0 SXLVTXH $ HW
/D WURLVLqPH pTXDWLRQ GRQQH 0 SXLVTXH $ HW
/HVIRUPXOHV HW GRQQHQWHQILQ Σ = HW ε [ = ε \ = ε ] = α 7 − 7
/HVIRUPXOHV HW GRQQHQWHQILQ Σ = HW ε [ = ε \ = ε ] = α 7 − 7
&HVUpVXOWDWVSHXYHQWrWUHREWHQXVSOXVVLPSOHPHQWSXLVTX¶RQDXQVROLGHKRPRJqQHLVRWURSH OLEUHGHVHGpIRUPHUHWVRXPLVjXQHpOpYDWLRQXQLIRUPHGHWHPSpUDWXUH
&HVUpVXOWDWVSHXYHQWrWUHREWHQXVSOXVVLPSOHPHQWSXLVTX¶RQDXQVROLGHKRPRJqQHLVRWURSH OLEUHGHVHGpIRUPHUHWVRXPLVjXQHpOpYDWLRQXQLIRUPHGHWHPSpUDWXUH
([HPSOH JUDGLHQW WUDQYHUVDO $ GH WHPSpUDWXUH GDQV XQ DQQHDX FLUFXODLUH $ FRQVWDQW ILJXUH
([HPSOH JUDGLHQW WUDQYHUVDO $ GH WHPSpUDWXUH GDQV XQ DQQHDX FLUFXODLUH $ FRQVWDQW ILJXUH
/¶pTXLOLEUHG¶XQGHPLDQQHDXGRQQH1
/¶pTXLOLEUHG¶XQGHPLDQQHDXGRQQH1
/HVpTXDWLRQV GRQQHQWGHSOXV
0 = α $ HW9 8 (,
/HVpTXDWLRQV GRQQHQWGHSOXV
0 = α $ HW9 8 (,
/HVpTXDWLRQV HW GRQQHQWHQILQ
/HVpTXDWLRQV HW GRQQHQWHQILQ
σ ; = − α $ ⋅ ( ⋅ < VHXOHFRQWUDLQWHQRQQXOOH
σ ; = − α $ ⋅ ( ⋅ < VHXOHFRQWUDLQWHQRQQXOOH
ε ; = HW ε < = ε = = + ν α $ < VHXOHVGpIRUPDWLRQVQRQQXOOHV
ε ; = HW ε < = ε = = + ν α $ < VHXOHVGpIRUPDWLRQVQRQQXOOHV
- 64 -
- 64 -
[R\ GpVLJQHOHSODQGHV\PpWULHGHODSRXWUHFLUFXODLUHRXYHUWHRXIHUPpH RHVWOHFHQWUH GHO¶DUFGHFHUFOHFRQVWLWXpSDUODOLJQHPR\HQQH
[R\ GpVLJQHOHSODQGHV\PpWULHGHODSRXWUHFLUFXODLUHRXYHUWHRXIHUPpH RHVWOHFHQWUH GHO¶DUFGHFHUFOHFRQVWLWXpSDUODOLJQHPR\HQQH
/D SRXWUH HVW VXSSRVpH FKDUJpH GDQV VRQ SODQ HW VRXPLVH j XQ FKDPS GH WHPSpUDWXUH 7 = 7* + $< &HWWH SRXWUH D pWp pWXGLpH GDQV OH FDV LVRWKHUPH DX WRPH ,, SDJHV HW
/D SRXWUH HVW VXSSRVpH FKDUJpH GDQV VRQ SODQ HW VRXPLVH j XQ FKDPS GH WHPSpUDWXUH 7 = 7* + $< &HWWH SRXWUH D pWp pWXGLpH GDQV OH FDV LVRWKHUPH DX WRPH ,, SDJHV HW
/HV UpVXOWDWV V¶pWHQGHQW DLVpPHQW HQ UHPSODoDQW
⎛0 ⎞ 0= 1 SDU ⎜⎜ = ⎟⎟ − α $ HW SDU (6 (, = ⎝ (, = ⎠
/HV UpVXOWDWV V¶pWHQGHQW DLVpPHQW HQ UHPSODoDQW
⎛0 ⎞ 0= 1 SDU ⎜⎜ = ⎟⎟ − α $ HW SDU (6 (, = ⎝ (, = ⎠
1 + α 7* − 7 (6
1 + α 7* − 7 (6
/HVGpSODFHPHQWVWDQJHQWLHO8HWQRUPDO9GH*ODURWDWLRQ ω GHODVHFWLRQ6VDWLVIRQWDX[ pTXDWLRQV ⎧ G 9 ⎞ ⎛ 1 ⎞ ⎛ 0 + α 7* − 7 ⎟ ⎪ + 9 = 5 ⎜ − α $⎟ − 5 ⎜ (, (6 ⎝ ⎠ ⎝ ⎠ ⎪ Gθ ⎪ G8 ⎪ ⎛ 1 ⎞ =9+5⎜ + α 7* − 7 ⎟ ⎨DYHF G θ (6 ⎝ ⎠ ⎪ ⎪ ⎪HW G ω = 5 ⎛ 0 − α $ ⎞ ⎜ ⎟ ⎪ Gθ ⎝ (, ⎠ ⎩
/HVGpSODFHPHQWVWDQJHQWLHO8HWQRUPDO9GH*ODURWDWLRQ ω GHODVHFWLRQ6VDWLVIRQWDX[ pTXDWLRQV ⎧ G 9 ⎞ ⎛ 1 ⎞ ⎛ 0 + α 7* − 7 ⎟ ⎪ + 9 = 5 ⎜ − α $⎟ − 5 ⎜ (, (6 ⎝ ⎠ ⎝ ⎠ ⎪ Gθ ⎪ G8 ⎪ ⎛ 1 ⎞ =9+5⎜ + α 7* − 7 ⎟ ⎨DYHF G θ (6 ⎝ ⎠ ⎪ ⎪ ⎪HW G ω = 5 ⎛ 0 − α $ ⎞ ⎜ ⎟ ⎪ Gθ ⎝ (, ⎠ ⎩
([HPSOHpOpYDWLRQXQLIRUPHGHWHPSpUDWXUH 7* − 7 GDQVXQDQQHDXFLUFXODLUHILJXUH
([HPSOHpOpYDWLRQXQLIRUPHGHWHPSpUDWXUH 7* − 7 GDQVXQDQQHDXFLUFXODLUHILJXUH
Gω = O¶pTXLOLEUH G¶XQ GHPL Gθ DQQHDX GRQQH G¶DXWUH SDUW 1 OD SUHPLqUH pTXDWLRQ GRQQH DORUV OH GpSODFHPHQW UDGLDO9VXLYDQW< 9 = α 5 7* − 7
Gω = O¶pTXLOLEUH G¶XQ GHPL Gθ DQQHDX GRQQH G¶DXWUH SDUW 1 OD SUHPLqUH pTXDWLRQ GRQQH DORUV OH GpSODFHPHQW UDGLDO9VXLYDQW< 9 = α 5 7* − 7
/D WURLVLqPH pTXDWLRQ GRQQH 0 SXLVTXH $ HW
/D WURLVLqPH pTXDWLRQ GRQQH 0 SXLVTXH $ HW
/HVIRUPXOHV HW GRQQHQWHQILQ Σ = HW ε [ = ε \ = ε ] = α 7 − 7
/HVIRUPXOHV HW GRQQHQWHQILQ Σ = HW ε [ = ε \ = ε ] = α 7 − 7
&HVUpVXOWDWVSHXYHQWrWUHREWHQXVSOXVVLPSOHPHQWSXLVTX¶RQDXQVROLGHKRPRJqQHLVRWURSH OLEUHGHVHGpIRUPHUHWVRXPLVjXQHpOpYDWLRQXQLIRUPHGHWHPSpUDWXUH
&HVUpVXOWDWVSHXYHQWrWUHREWHQXVSOXVVLPSOHPHQWSXLVTX¶RQDXQVROLGHKRPRJqQHLVRWURSH OLEUHGHVHGpIRUPHUHWVRXPLVjXQHpOpYDWLRQXQLIRUPHGHWHPSpUDWXUH
([HPSOH JUDGLHQW WUDQYHUVDO $ GH WHPSpUDWXUH GDQV XQ DQQHDX FLUFXODLUH $ FRQVWDQW ILJXUH
([HPSOH JUDGLHQW WUDQYHUVDO $ GH WHPSpUDWXUH GDQV XQ DQQHDX FLUFXODLUH $ FRQVWDQW ILJXUH
/¶pTXLOLEUHG¶XQGHPLDQQHDXGRQQH1
/¶pTXLOLEUHG¶XQGHPLDQQHDXGRQQH1
/HVpTXDWLRQV GRQQHQWGHSOXV
0 = α $ HW9 8 (,
/HVpTXDWLRQV GRQQHQWGHSOXV
0 = α $ HW9 8 (,
/HVpTXDWLRQV HW GRQQHQWHQILQ
/HVpTXDWLRQV HW GRQQHQWHQILQ
σ ; = − α $ ⋅ ( ⋅ < VHXOHFRQWUDLQWHQRQQXOOH
σ ; = − α $ ⋅ ( ⋅ < VHXOHFRQWUDLQWHQRQQXOOH
ε ; = HW ε < = ε = = + ν α $ < VHXOHVGpIRUPDWLRQVQRQQXOOHV
ε ; = HW ε < = ε = = + ν α $ < VHXOHVGpIRUPDWLRQVQRQQXOOHV
- 64 -
- 64 -
)LJXUH
)LJXUH
±)/(;,213/$1('¶81(32875(5(&7,/,*1(¬3/$102<(1
±)/(;,213/$1('¶81(32875(5(&7,/,*1(¬3/$102<(1
&H SUREOqPH WUqV LPSRUWDQW D pWp pWXGLp DX WRPH ,, FKDSLWUH ,,, GDQV OH FDV LVRWKHUPH ⎛0 ⎞ 0 7 = 7 (OOHVV¶pWHQGHQWDLVpPHQWDX[FDVWKHUPLTXHHQUHPSODoDQW = SDU ⎜⎜ = − α $ ⎟⎟ (, = (, ⎝ = ⎠ ⎛0 ⎞ 0 HW < SDU ⎜⎜ < + α % ⎟⎟ (, (, < ⎝ < ⎠
&H SUREOqPH WUqV LPSRUWDQW D pWp pWXGLp DX WRPH ,, FKDSLWUH ,,, GDQV OH FDV LVRWKHUPH ⎛0 ⎞ 0 7 = 7 (OOHVV¶pWHQGHQWDLVpPHQWDX[FDVWKHUPLTXHHQUHPSODoDQW = SDU ⎜⎜ = − α $ ⎟⎟ (, = (, ⎝ = ⎠ ⎛0 ⎞ 0 HW < SDU ⎜⎜ < + α % ⎟⎟ (, (, < ⎝ < ⎠
(QSDUWLFXOLHUODIOqFKHY[ VDWLVIDLWjODIRUPXOH
(QSDUWLFXOLHUODIOqFKHY[ VDWLVIDLWjODIRUPXOH
G Y 0= G ω= = −α $ = (, = G[ G[
'DQVOHSODQ[R\ RQDXUDLW
G Z 0< Gω = −α %= − < G[ G [ (, <
G Y 0= G ω= = −α $ = (, = G[ G[
'DQVOHSODQ[R\ RQDXUDLW
([HPSOHSRXWUHLVRVWDWLTXH
G Z 0< Gω = −α %= − < G[ G [ (, <
([HPSOHSRXWUHLVRVWDWLTXH
)LJXUH
- 65 -
)LJXUH
)LJXUH
- 65 -
)LJXUH
±)/(;,213/$1('¶81(32875(5(&7,/,*1(¬3/$102<(1
±)/(;,213/$1('¶81(32875(5(&7,/,*1(¬3/$102<(1
&H SUREOqPH WUqV LPSRUWDQW D pWp pWXGLp DX WRPH ,, FKDSLWUH ,,, GDQV OH FDV LVRWKHUPH ⎛0 ⎞ 0 7 = 7 (OOHVV¶pWHQGHQWDLVpPHQWDX[FDVWKHUPLTXHHQUHPSODoDQW = SDU ⎜⎜ = − α $ ⎟⎟ (, = (, ⎝ = ⎠
&H SUREOqPH WUqV LPSRUWDQW D pWp pWXGLp DX WRPH ,, FKDSLWUH ,,, GDQV OH FDV LVRWKHUPH ⎛0 ⎞ 0 7 = 7 (OOHVV¶pWHQGHQWDLVpPHQWDX[FDVWKHUPLTXHHQUHPSODoDQW = SDU ⎜⎜ = − α $ ⎟⎟ (, = (, ⎝ = ⎠
HW
⎛0 ⎞ 0< SDU ⎜⎜ < + α % ⎟⎟ (, < ⎝ (, < ⎠
HW
(QSDUWLFXOLHUODIOqFKHY[ VDWLVIDLWjODIRUPXOH 'DQVOHSODQ[R\ RQDXUDLW
G Y 0= G ω= = −α $ = (, G[ G[ =
⎛0 ⎞ 0< SDU ⎜⎜ < + α % ⎟⎟ (, < ⎝ (, < ⎠
(QSDUWLFXOLHUODIOqFKHY[ VDWLVIDLWjODIRUPXOH
G Z 0< Gω = −α %= − < (, < G[ G[
'DQVOHSODQ[R\ RQDXUDLW
([HPSOHSRXWUHLVRVWDWLTXH
G Y 0= G ω= = −α $ = (, G[ G[ =
G Z 0< Gω = −α %= − < (, < G[ G[
([HPSOHSRXWUHLVRVWDWLTXH
)LJXUH
- 65 -
)LJXUH
- 65 -
/DILJXUHGRQQHODJpRPpWULHOHVD[HVHWOHVOLDLVRQV/DSRXWUHHVWVRXPLVHjXQJUDGLHQWGH WHPSpUDWXUHWUDQVYHUVDOXQLIRUPH$/HPRPHQWGHIOH[LRQHVWXQLIRUPpPHQWQXO2QDGRQF
/DILJXUHGRQQHODJpRPpWULHOHVD[HVHWOHVOLDLVRQV/DSRXWUHHVWVRXPLVHjXQJUDGLHQWGH WHPSpUDWXUHWUDQVYHUVDOXQLIRUPH$/HPRPHQWGHIOH[LRQHVWXQLIRUPpPHQWQXO2QDGRQF
G Y GY = − α $ = − α $ [ Y = − α $ [ Y/ = − α $ / G[ G [
G Y GY = − α $ = − α $ [ Y = − α $ [ Y/ = − α $ / G[ G [
([HPSOHSRXWUHK\SHUVWDWLTXH
([HPSOHSRXWUHK\SHUVWDWLTXH
)LJXUH
)LJXUH
,OV¶DJLWGXPrPHSUREOqPHTXHGDQVO¶H[HPSOHPDLVO¶H[WUpPLWpHVWVLPSOHPHQWDSSX\pH
,OV¶DJLWGXPrPHSUREOqPHTXHGDQVO¶H[HPSOHPDLVO¶H[WUpPLWpHVWVLPSOHPHQWDSSX\pH
&HWWHVWUXFWXUHHVWGRQFH[WpULHXUHPHQWK\SHUVWDWLTXHGHGHJUpVRXVO¶DFWLRQGXJUDGLHQW WUDQVYHUVDO$ODIOqFKHpWDQWHPSrFKpHHQ&FHODFUpHXQHUpDFWLRQ 5 F HWSDUFRQVpTXHQWXQ PRPHQWIOpFKLVVDQW 0 = 0 = = 5 F / − [ jO¶DEVFLVVH[
&HWWHVWUXFWXUHHVWGRQFH[WpULHXUHPHQWK\SHUVWDWLTXHGHGHJUpVRXVO¶DFWLRQGXJUDGLHQW WUDQVYHUVDO$ODIOqFKHpWDQWHPSrFKpHHQ&FHODFUpHXQHUpDFWLRQ 5 F HWSDUFRQVpTXHQWXQ PRPHQWIOpFKLVVDQW 0 = 0 = = 5 F / − [ jO¶DEVFLVVH[
/DIRUPXOH V¶pFULWDORUV
G Y 5 F = / − [ − α $ G [ (,
/DIRUPXOH V¶pFULWDORUV
6RQLQWpJUDWLRQGRQQHFRPSWHWHQXGHVFRQGLWLRQVDX[OLPLWHVHQ
GY 5 ⎛ [ ⎞⎟ −α $ [ = ω = F ⎜ /[ − ⎜ G[ (, ⎝ ⎟⎠
SXLV
Y [ =
6RQLQWpJUDWLRQGRQQHFRPSWHWHQXGHVFRQGLWLRQVDX[OLPLWHVHQ
5F (,
⎛ [ [ ⎞ [ ⎜/ − ⎟ −α $ ⎜ ⎟⎠ ⎝
/DOLDLVRQK\SHUVWDWLTXHHQ&LPSRVHY/ G¶RO¶RQWLUH 5F =
GY 5 ⎛ [ ⎞⎟ −α $ [ = ω = F ⎜ /[ − G[ (, ⎝⎜ ⎟⎠
SXLV
Y [ =
5F (,
⎛ [ [ ⎞ [ ⎜/ − ⎟ −α $ ⎜ ⎟⎠ ⎝
/DOLDLVRQK\SHUVWDWLTXHHQ&LPSRVHY/ G¶RO¶RQWLUH
α$(, /
5F =
/HVpTXDWLRQVGHO¶pTXLOLEUHJOREDOGRQQHQWDORUV 5 = − 5F = −
G Y 5 F = / − [ − α $ G [ (,
α$(, /
/HVpTXDWLRQVGHO¶pTXLOLEUHJOREDOGRQQHQWDORUV
α$(, HW 0 H = − / 5 F = − α $ ( , /
5 = − 5F = −
α$(, HW 0 H = − / 5 F = − α $ ( , /
- 66 -
- 66 -
/DILJXUHGRQQHODJpRPpWULHOHVD[HVHWOHVOLDLVRQV/DSRXWUHHVWVRXPLVHjXQJUDGLHQWGH WHPSpUDWXUHWUDQVYHUVDOXQLIRUPH$/HPRPHQWGHIOH[LRQHVWXQLIRUPpPHQWQXO2QDGRQF
/DILJXUHGRQQHODJpRPpWULHOHVD[HVHWOHVOLDLVRQV/DSRXWUHHVWVRXPLVHjXQJUDGLHQWGH WHPSpUDWXUHWUDQVYHUVDOXQLIRUPH$/HPRPHQWGHIOH[LRQHVWXQLIRUPpPHQWQXO2QDGRQF
G Y GY = − α $ = − α $ [ Y = − α $ [ Y/ = − α $ / G[ G [
G Y GY = − α $ = − α $ [ Y = − α $ [ Y/ = − α $ / G[ G [
([HPSOHSRXWUHK\SHUVWDWLTXH
([HPSOHSRXWUHK\SHUVWDWLTXH
)LJXUH
)LJXUH
,OV¶DJLWGXPrPHSUREOqPHTXHGDQVO¶H[HPSOHPDLVO¶H[WUpPLWpHVWVLPSOHPHQWDSSX\pH
,OV¶DJLWGXPrPHSUREOqPHTXHGDQVO¶H[HPSOHPDLVO¶H[WUpPLWpHVWVLPSOHPHQWDSSX\pH
&HWWHVWUXFWXUHHVWGRQFH[WpULHXUHPHQWK\SHUVWDWLTXHGHGHJUpVRXVO¶DFWLRQGXJUDGLHQW WUDQVYHUVDO$ODIOqFKHpWDQWHPSrFKpHHQ&FHODFUpHXQHUpDFWLRQ 5 F HWSDUFRQVpTXHQWXQ PRPHQWIOpFKLVVDQW 0 = 0 = = 5 F / − [ jO¶DEVFLVVH[
&HWWHVWUXFWXUHHVWGRQFH[WpULHXUHPHQWK\SHUVWDWLTXHGHGHJUpVRXVO¶DFWLRQGXJUDGLHQW WUDQVYHUVDO$ODIOqFKHpWDQWHPSrFKpHHQ&FHODFUpHXQHUpDFWLRQ 5 F HWSDUFRQVpTXHQWXQ PRPHQWIOpFKLVVDQW 0 = 0 = = 5 F / − [ jO¶DEVFLVVH[
/DIRUPXOH V¶pFULWDORUV
G Y 5 F = / − [ − α $ G [ (,
6RQLQWpJUDWLRQGRQQHFRPSWHWHQXGHVFRQGLWLRQVDX[OLPLWHVHQ
GY 5 ⎛ [ ⎞⎟ −α $ [ = ω = F ⎜ /[ − G[ (, ⎝⎜ ⎟⎠
SXLV
Y [ =
5F (,
⎛ [ [ ⎞ [ ⎜/ − ⎟ −α $ ⎜ ⎟⎠ ⎝
/DOLDLVRQK\SHUVWDWLTXHHQ&LPSRVHY/ G¶RO¶RQWLUH 5F =
G Y 5 F = / − [ − α $ G [ (,
6RQLQWpJUDWLRQGRQQHFRPSWHWHQXGHVFRQGLWLRQVDX[OLPLWHVHQ
GY 5 ⎛ [ ⎞⎟ −α $ [ = ω = F ⎜ /[ − G[ (, ⎝⎜ ⎟⎠
SXLV
Y [ =
α$(, HW 0 H = − / 5 F = − α $ ( , /
- 66 -
5F (,
⎛ [ [ ⎞ [ ⎜/ − ⎟ −α $ ⎜ ⎟⎠ ⎝
/DOLDLVRQK\SHUVWDWLTXHHQ&LPSRVHY/ G¶RO¶RQWLUH
α$(, /
/HVpTXDWLRQVGHO¶pTXLOLEUHJOREDOGRQQHQWDORUV 5 = − 5F = −
/DIRUPXOH V¶pFULWDORUV
5F =
α$(, /
/HVpTXDWLRQVGHO¶pTXLOLEUHJOREDOGRQQHQWDORUV 5 = − 5F = −
α$(, HW 0 H = − / 5 F = − α $ ( , /
- 66 -
±62//,&,7$7,216&20%,1e(6
±62//,&,7$7,216&20%,1e(6
&RQVLGpURQV XQH SRXWUH RX XQ DVVHPEODJH GH SRXWUHV TXHOFRQTXH DSSOLTXRQV OXL XQ FKDUJHPHQWPpFDQLTXHIRUFHV HWWKHUPLTXHWHPSpUDWXUHV
&RQVLGpURQV XQH SRXWUH RX XQ DVVHPEODJH GH SRXWUHV TXHOFRQTXH DSSOLTXRQV OXL XQ FKDUJHPHQWPpFDQLTXHIRUFHV HWWKHUPLTXHWHPSpUDWXUHV
'HX[FDVGRLYHQWrWUHFRQVLGpUpV
'HX[FDVGRLYHQWrWUHFRQVLGpUpV
HUFDVVWUXFWXUHLVRVWDWLTXHLQWpULHXUHPHQWHWH[WpULHXUHPHQW
HUFDVVWUXFWXUHLVRVWDWLTXHLQWpULHXUHPHQWHWH[WpULHXUHPHQW
/HV YLVVHXUV OHV FRQWUDLQWHV OHV UpDFWLRQV GH OLDLVRQ QH VRQW GXV TX¶DX FKDUJHPHQW PpFDQLTXH LOV UHVWHQW HQ SDUWLFXOLHU LQFKDQJpV ORUVTX¶RQ VXSHUSRVH XQ FKDUJHPHQW WKHUPLTXH FH GHUQLHU Q¶LQWURGXLW TXH GHV GpIRUPDWLRQV HW GpSODFHPHQWV WUDQVODWLRQV HW URWDWLRQV &HFLHVWGDXIDLWTXHOHFKDPSGHWHPSpUDWXUHHVWFRQVLGpUpFRPPHOLQpDLUHVXU FKDTXHVHFWLRQGURLWHHWFRQIRUPHDXWKpRUqPHGpPRQWUpDXFKDSLWUHSUpFpGHQW VXUOHV FKDPSVGHWHPSpUDWXUHVDQVFRQWUDLQWHV
/HV YLVVHXUV OHV FRQWUDLQWHV OHV UpDFWLRQV GH OLDLVRQ QH VRQW GXV TX¶DX FKDUJHPHQW PpFDQLTXH LOV UHVWHQW HQ SDUWLFXOLHU LQFKDQJpV ORUVTX¶RQ VXSHUSRVH XQ FKDUJHPHQW WKHUPLTXH FH GHUQLHU Q¶LQWURGXLW TXH GHV GpIRUPDWLRQV HW GpSODFHPHQWV WUDQVODWLRQV HW URWDWLRQV &HFLHVWGDXIDLWTXHOHFKDPSGHWHPSpUDWXUHHVWFRQVLGpUpFRPPHOLQpDLUHVXU FKDTXHVHFWLRQGURLWHHWFRQIRUPHDXWKpRUqPHGpPRQWUpDXFKDSLWUHSUpFpGHQW VXUOHV FKDPSVGHWHPSpUDWXUHVDQVFRQWUDLQWHV
/¶H[HPSOHGXLOOXVWUHELHQFHFDV
/¶H[HPSOHGXLOOXVWUHELHQFHFDV
HFDVVWUXFWXUHK\SHUVWDWLTXHLQWpULHXUHPHQWRXH[WpULHXUHPHQW
HFDVVWUXFWXUHK\SHUVWDWLTXHLQWpULHXUHPHQWRXH[WpULHXUHPHQW
$SSOLTXRQV G¶DERUG OH FKDUJHPHQW PpFDQLTXH LO LQGXLW GDQV O¶RVVDWXUH GHV FRQWUDLQWHV YLVVHXUVGpIRUPDWLRQVGpSODFHPHQWVUpDFWLRQVGHOLDLVRQ
$SSOLTXRQV G¶DERUG OH FKDUJHPHQW PpFDQLTXH LO LQGXLW GDQV O¶RVVDWXUH GHV FRQWUDLQWHV YLVVHXUVGpIRUPDWLRQVGpSODFHPHQWVUpDFWLRQVGHOLDLVRQ
$SSOLTXRQVHQVXLWHOHFKDUJHPHQWWKHUPLTXHFHOXLFLWHQGjSURYRTXHUGHVGpIRUPDWLRQVHW GpSODFHPHQWV GRQW FHUWDLQV VRQW HPSrFKpV SDU OHV OLDLVRQV K\SHUVWDWLTXHV OHV UpDFWLRQV GH OLDLVRQVRQWDORUVPRGLILpHVGRQFDXVVLOHVYLVVHXUVHWOHVFRQWUDLQWHV
$SSOLTXRQVHQVXLWHOHFKDUJHPHQWWKHUPLTXHFHOXLFLWHQGjSURYRTXHUGHVGpIRUPDWLRQVHW GpSODFHPHQWV GRQW FHUWDLQV VRQW HPSrFKpV SDU OHV OLDLVRQV K\SHUVWDWLTXHV OHV UpDFWLRQV GH OLDLVRQVRQWDORUVPRGLILpHVGRQFDXVVLOHVYLVVHXUVHWOHVFRQWUDLQWHV
/¶H[HPSOH GX LOOXVWUH ELHQ FH FDV SRXU XQH SRXWUH H[WpULHXUHPHQW K\SHUVWDWLTXH HW O¶H[HPSOHGXSRXUXQHSRXWUHLQWpULHXUHPHQWK\SHUVWDWLTXH
/¶H[HPSOH GX LOOXVWUH ELHQ FH FDV SRXU XQH SRXWUH H[WpULHXUHPHQW K\SHUVWDWLTXH HW O¶H[HPSOHGXSRXUXQHSRXWUHLQWpULHXUHPHQWK\SHUVWDWLTXH
'RQQRQVXQDXWUHH[HPSOH
'RQQRQVXQDXWUHH[HPSOH
)LJXUHD FDVLVRVWDWLTXH
)LJXUHE FDVK\SHUVWDWLTXH
)LJXUHD FDVLVRVWDWLTXH
- 67 -
)LJXUHE FDVK\SHUVWDWLTXH
- 67 -
±62//,&,7$7,216&20%,1e(6
±62//,&,7$7,216&20%,1e(6
&RQVLGpURQV XQH SRXWUH RX XQ DVVHPEODJH GH SRXWUHV TXHOFRQTXH DSSOLTXRQV OXL XQ FKDUJHPHQWPpFDQLTXHIRUFHV HWWKHUPLTXHWHPSpUDWXUHV
&RQVLGpURQV XQH SRXWUH RX XQ DVVHPEODJH GH SRXWUHV TXHOFRQTXH DSSOLTXRQV OXL XQ FKDUJHPHQWPpFDQLTXHIRUFHV HWWKHUPLTXHWHPSpUDWXUHV
'HX[FDVGRLYHQWrWUHFRQVLGpUpV
'HX[FDVGRLYHQWrWUHFRQVLGpUpV
HUFDVVWUXFWXUHLVRVWDWLTXHLQWpULHXUHPHQWHWH[WpULHXUHPHQW
HUFDVVWUXFWXUHLVRVWDWLTXHLQWpULHXUHPHQWHWH[WpULHXUHPHQW
/HV YLVVHXUV OHV FRQWUDLQWHV OHV UpDFWLRQV GH OLDLVRQ QH VRQW GXV TX¶DX FKDUJHPHQW PpFDQLTXH LOV UHVWHQW HQ SDUWLFXOLHU LQFKDQJpV ORUVTX¶RQ VXSHUSRVH XQ FKDUJHPHQW WKHUPLTXH FH GHUQLHU Q¶LQWURGXLW TXH GHV GpIRUPDWLRQV HW GpSODFHPHQWV WUDQVODWLRQV HW URWDWLRQV &HFLHVWGDXIDLWTXHOHFKDPSGHWHPSpUDWXUHHVWFRQVLGpUpFRPPHOLQpDLUHVXU FKDTXHVHFWLRQGURLWHHWFRQIRUPHDXWKpRUqPHGpPRQWUpDXFKDSLWUHSUpFpGHQW VXUOHV FKDPSVGHWHPSpUDWXUHVDQVFRQWUDLQWHV
/HV YLVVHXUV OHV FRQWUDLQWHV OHV UpDFWLRQV GH OLDLVRQ QH VRQW GXV TX¶DX FKDUJHPHQW PpFDQLTXH LOV UHVWHQW HQ SDUWLFXOLHU LQFKDQJpV ORUVTX¶RQ VXSHUSRVH XQ FKDUJHPHQW WKHUPLTXH FH GHUQLHU Q¶LQWURGXLW TXH GHV GpIRUPDWLRQV HW GpSODFHPHQWV WUDQVODWLRQV HW URWDWLRQV &HFLHVWGDXIDLWTXHOHFKDPSGHWHPSpUDWXUHHVWFRQVLGpUpFRPPHOLQpDLUHVXU FKDTXHVHFWLRQGURLWHHWFRQIRUPHDXWKpRUqPHGpPRQWUpDXFKDSLWUHSUpFpGHQW VXUOHV FKDPSVGHWHPSpUDWXUHVDQVFRQWUDLQWHV
/¶H[HPSOHGXLOOXVWUHELHQFHFDV
/¶H[HPSOHGXLOOXVWUHELHQFHFDV
HFDVVWUXFWXUHK\SHUVWDWLTXHLQWpULHXUHPHQWRXH[WpULHXUHPHQW
HFDVVWUXFWXUHK\SHUVWDWLTXHLQWpULHXUHPHQWRXH[WpULHXUHPHQW
$SSOLTXRQV G¶DERUG OH FKDUJHPHQW PpFDQLTXH LO LQGXLW GDQV O¶RVVDWXUH GHV FRQWUDLQWHV YLVVHXUVGpIRUPDWLRQVGpSODFHPHQWVUpDFWLRQVGHOLDLVRQ
$SSOLTXRQV G¶DERUG OH FKDUJHPHQW PpFDQLTXH LO LQGXLW GDQV O¶RVVDWXUH GHV FRQWUDLQWHV YLVVHXUVGpIRUPDWLRQVGpSODFHPHQWVUpDFWLRQVGHOLDLVRQ
$SSOLTXRQVHQVXLWHOHFKDUJHPHQWWKHUPLTXHFHOXLFLWHQGjSURYRTXHUGHVGpIRUPDWLRQVHW GpSODFHPHQWV GRQW FHUWDLQV VRQW HPSrFKpV SDU OHV OLDLVRQV K\SHUVWDWLTXHV OHV UpDFWLRQV GH OLDLVRQVRQWDORUVPRGLILpHVGRQFDXVVLOHVYLVVHXUVHWOHVFRQWUDLQWHV
$SSOLTXRQVHQVXLWHOHFKDUJHPHQWWKHUPLTXHFHOXLFLWHQGjSURYRTXHUGHVGpIRUPDWLRQVHW GpSODFHPHQWV GRQW FHUWDLQV VRQW HPSrFKpV SDU OHV OLDLVRQV K\SHUVWDWLTXHV OHV UpDFWLRQV GH OLDLVRQVRQWDORUVPRGLILpHVGRQFDXVVLOHVYLVVHXUVHWOHVFRQWUDLQWHV
/¶H[HPSOH GX LOOXVWUH ELHQ FH FDV SRXU XQH SRXWUH H[WpULHXUHPHQW K\SHUVWDWLTXH HW O¶H[HPSOHGXSRXUXQHSRXWUHLQWpULHXUHPHQWK\SHUVWDWLTXH
/¶H[HPSOH GX LOOXVWUH ELHQ FH FDV SRXU XQH SRXWUH H[WpULHXUHPHQW K\SHUVWDWLTXH HW O¶H[HPSOHGXSRXUXQHSRXWUHLQWpULHXUHPHQWK\SHUVWDWLTXH
'RQQRQVXQDXWUHH[HPSOH
'RQQRQVXQDXWUHH[HPSOH
)LJXUHD FDVLVRVWDWLTXH
)LJXUHE FDVK\SHUVWDWLTXH
- 67 -
)LJXUHD FDVLVRVWDWLTXH
)LJXUHE FDVK\SHUVWDWLTXH
- 67 -
&RQVLGpURQV O¶RVVDWXUH GHV ILJXUHV D HW E FRQVWLWXpH GH GHX[ SRXWUH SULVPDWLTXHV LGHQWLTXHV VRXGpHV HQWUH HOOHV SHUSHQGLFXODLUHPHQW HQ $ /H PRQWDJH D OLHX GDQV OHV GHX[ FDVVDQVMHXQLVHUUDJHjODWHPSpUDWXUH 7
&RQVLGpURQV O¶RVVDWXUH GHV ILJXUHV D HW E FRQVWLWXpH GH GHX[ SRXWUH SULVPDWLTXHV LGHQWLTXHV VRXGpHV HQWUH HOOHV SHUSHQGLFXODLUHPHQW HQ $ /H PRQWDJH D OLHX GDQV OHV GHX[ FDVVDQVMHXQLVHUUDJHjODWHPSpUDWXUH 7
3RUWRQVjODWHPSpUDWXUHXQLIRUPH 7 ≠ 7
3RUWRQVjODWHPSpUDWXUHXQLIRUPH 7 ≠ 7
'DQV OH FDV LVRVWDWLTXH D OD VWUXFWXUH OLEUH GH VH GpIRUPHU VXELW OD GLODWDWLRQ XQLIRUPH HW LVRWURSH LPSRVpH SDU O¶pOpYDWLRQ GH WHPSpUDWXUH 7 − 7 HW DXFXQH FRQWUDLQWH QH SUHQG QDLVVDQFH
'DQV OH FDV LVRVWDWLTXH D OD VWUXFWXUH OLEUH GH VH GpIRUPHU VXELW OD GLODWDWLRQ XQLIRUPH HW LVRWURSH LPSRVpH SDU O¶pOpYDWLRQ GH WHPSpUDWXUH 7 − 7 HW DXFXQH FRQWUDLQWH QH SUHQG QDLVVDQFH
'DQV OH FDV H[WpULHXUHPHQW K\SHUVWDWLTXH E OD OLDLVRQ ©UHGRQGDQWHª HQ % HPSrFKH OHV GpSODFHPHQWV WUDQVODWLRQV HW URWDWLRQV GH OD VHFWLRQ 6% LQWURGXLVDQW XQH IRUFH GH OLDLVRQ 5 % ; % <% HW XQ FRXSOH 0 % 6XU FKDTXH VHFWLRQ GURLWH GH O¶RVVDWXUH RQ DXUD GRQF XQ HIIRUWQRUPDO1XQHIIRUWWUDQFKDQW 7 = 7< HWXQPRPHQWIOpFKLVVDQW 0 = 0 =
'DQV OH FDV H[WpULHXUHPHQW K\SHUVWDWLTXH E OD OLDLVRQ ©UHGRQGDQWHª HQ % HPSrFKH OHV GpSODFHPHQWV WUDQVODWLRQV HW URWDWLRQV GH OD VHFWLRQ 6% LQWURGXLVDQW XQH IRUFH GH OLDLVRQ 5 % ; % <% HW XQ FRXSOH 0 % 6XU FKDTXH VHFWLRQ GURLWH GH O¶RVVDWXUH RQ DXUD GRQF XQ HIIRUWQRUPDO1XQHIIRUWWUDQFKDQW 7 = 7< HWXQPRPHQWIOpFKLVVDQW 0 = 0 =
2QWURXYHWRXVOHVFDOFXOVIDLW
2QWURXYHWRXVOHVFDOFXOVIDLW
(, (, α 7 − 7 ; % = <% = − α 7 − 7 HW 0 % = / /
; % = <% = −
(, (, α 7 − 7 α 7 − 7 HW 0 % = / /
2QHQGpGXLWDLVpPHQWVXUFKDTXHVHFWLRQGURLWHOHVYLVVHXUVHWOHVFRQWUDLQWHV
2QHQGpGXLWDLVpPHQWVXUFKDTXHVHFWLRQGURLWHOHVYLVVHXUVHWOHVFRQWUDLQWHV
±&2175$,17(67+(50,48(6'$16/(675(,//,6
±&2175$,17(67+(50,48(6'$16/(675(,//,6
$X WRPH ,, FKDSLWUH ,, QRXV DYRQV GRQQp XQH PpWKRGH JpQpUDOH GH FDOFXO GHV WUHLOOLV GDQVFDVLVRWKHUPH
$X WRPH ,, FKDSLWUH ,, QRXV DYRQV GRQQp XQH PpWKRGH JpQpUDOH GH FDOFXO GHV WUHLOOLV GDQVFDVLVRWKHUPH
1RXVDOORQVHQpWHQGUHOHVUpVXOWDWVDXFDVROHPRQWDJHD\DQWpWpUpDOLVpVDQVMHXQLVHUUDJH jODWHPSpUDWXUH 7 RQSRUWHjODWHPSpUDWXUHXQLIRUPH7
1RXVDOORQVHQpWHQGUHOHVUpVXOWDWVDXFDVROHPRQWDJHD\DQWpWpUpDOLVpVDQVMHXQLVHUUDJH jODWHPSpUDWXUH 7 RQSRUWHjODWHPSpUDWXUHXQLIRUPH7
/HV GpILQLWLRQV OH FDOFXO GX GHJUp G¶K\SHUVWDWLFLWp OHV pTXDWLRQV G¶pTXLOLEUH GHV Q°XGV UHVWHQWELQHVULQFKDQJpV
/HV GpILQLWLRQV OH FDOFXO GX GHJUp G¶K\SHUVWDWLFLWp OHV pTXDWLRQV G¶pTXLOLEUH GHV Q°XGV UHVWHQWELQHVULQFKDQJpV
3DU FRQWUH GDQV OHV pTXDWLRQV DX[ GpSODFHPHQWV QRGDX[ O¶DOORQJHPHQW δ /LM GH OD EDUUH
3DU FRQWUH GDQV OHV pTXDWLRQV DX[ GpSODFHPHQWV QRGDX[ O¶DOORQJHPHQW δ /LM GH OD EDUUH
⎛ 1/ ⎞ $ L $ M HVWODVRPPHG¶XQHGLODWDWLRQ ⎜ ⎟ GXHjO¶HIIRUWQRUPDO 1LM HWG¶XQHGLODWDWLRQ ⎝ (6 ⎠ LM
⎛ 1/ ⎞ $ L $ M HVWODVRPPHG¶XQHGLODWDWLRQ ⎜ ⎟ GXHjO¶HIIRUWQRUPDO 1LM HWG¶XQHGLODWDWLRQ ⎝ (6 ⎠ LM
WKHUPLTXH /α LM 7 − 7 &HVpTXDWLRQVV¶pFULYHQWDORUVGDQVOHFDVG¶XQWUHLOOLVSODQ
WKHUPLTXH /α LM 7 − 7 &HVpTXDWLRQVV¶pFULYHQWDORUVGDQVOHFDVG¶XQWUHLOOLVSODQ
⎛ 1/ ⎞ X M − X L FRV ϕLM + Y M − YL VLQ ϕLM = ⎜ ⎟ + α/ LM 7 − 7 ⎝ (6 ⎠ LM
'DQVOHFDVG¶XQWUHLOOLV'HOOHVV¶pFULYHQW
⎛ 1/ ⎞ X M − X L α LM + Y M − YL βLM + Z M − Z L γ LM = ⎜ ⎟ + α/ LM 7 − 7 ⎝ (6 ⎠ LM
⎛ 1/ ⎞ X M − X L FRV ϕLM + Y M − YL VLQ ϕLM = ⎜ ⎟ + α/ LM 7 − 7 ⎝ (6 ⎠ LM
'DQVOHFDVG¶XQWUHLOOLV'HOOHVV¶pFULYHQW ′
⎛ 1/ ⎞ X M − X L α LM + Y M − YL βLM + Z M − Z L γ LM = ⎜ ⎟ + α/ LM 7 − 7 ⎝ (6 ⎠ LM
′
- 68 -
- 68 -
&RQVLGpURQV O¶RVVDWXUH GHV ILJXUHV D HW E FRQVWLWXpH GH GHX[ SRXWUH SULVPDWLTXHV LGHQWLTXHV VRXGpHV HQWUH HOOHV SHUSHQGLFXODLUHPHQW HQ $ /H PRQWDJH D OLHX GDQV OHV GHX[ FDVVDQVMHXQLVHUUDJHjODWHPSpUDWXUH 7
&RQVLGpURQV O¶RVVDWXUH GHV ILJXUHV D HW E FRQVWLWXpH GH GHX[ SRXWUH SULVPDWLTXHV LGHQWLTXHV VRXGpHV HQWUH HOOHV SHUSHQGLFXODLUHPHQW HQ $ /H PRQWDJH D OLHX GDQV OHV GHX[ FDVVDQVMHXQLVHUUDJHjODWHPSpUDWXUH 7
3RUWRQVjODWHPSpUDWXUHXQLIRUPH 7 ≠ 7
3RUWRQVjODWHPSpUDWXUHXQLIRUPH 7 ≠ 7
'DQV OH FDV LVRVWDWLTXH D OD VWUXFWXUH OLEUH GH VH GpIRUPHU VXELW OD GLODWDWLRQ XQLIRUPH HW LVRWURSH LPSRVpH SDU O¶pOpYDWLRQ GH WHPSpUDWXUH 7 − 7 HW DXFXQH FRQWUDLQWH QH SUHQG QDLVVDQFH
'DQV OH FDV LVRVWDWLTXH D OD VWUXFWXUH OLEUH GH VH GpIRUPHU VXELW OD GLODWDWLRQ XQLIRUPH HW LVRWURSH LPSRVpH SDU O¶pOpYDWLRQ GH WHPSpUDWXUH 7 − 7 HW DXFXQH FRQWUDLQWH QH SUHQG QDLVVDQFH
'DQV OH FDV H[WpULHXUHPHQW K\SHUVWDWLTXH E OD OLDLVRQ ©UHGRQGDQWHª HQ % HPSrFKH OHV GpSODFHPHQWV WUDQVODWLRQV HW URWDWLRQV GH OD VHFWLRQ 6% LQWURGXLVDQW XQH IRUFH GH OLDLVRQ 5 % ; % <% HW XQ FRXSOH 0 % 6XU FKDTXH VHFWLRQ GURLWH GH O¶RVVDWXUH RQ DXUD GRQF XQ HIIRUWQRUPDO1XQHIIRUWWUDQFKDQW 7 = 7< HWXQPRPHQWIOpFKLVVDQW 0 = 0 =
'DQV OH FDV H[WpULHXUHPHQW K\SHUVWDWLTXH E OD OLDLVRQ ©UHGRQGDQWHª HQ % HPSrFKH OHV GpSODFHPHQWV WUDQVODWLRQV HW URWDWLRQV GH OD VHFWLRQ 6% LQWURGXLVDQW XQH IRUFH GH OLDLVRQ 5 % ; % <% HW XQ FRXSOH 0 % 6XU FKDTXH VHFWLRQ GURLWH GH O¶RVVDWXUH RQ DXUD GRQF XQ HIIRUWQRUPDO1XQHIIRUWWUDQFKDQW 7 = 7< HWXQPRPHQWIOpFKLVVDQW 0 = 0 =
2QWURXYHWRXVOHVFDOFXOVIDLW
2QWURXYHWRXVOHVFDOFXOVIDLW
(, (, α 7 − 7 ; % = <% = − α 7 − 7 HW 0 % = / /
; % = <% = −
(, (, α 7 − 7 α 7 − 7 HW 0 % = / /
2QHQGpGXLWDLVpPHQWVXUFKDTXHVHFWLRQGURLWHOHVYLVVHXUVHWOHVFRQWUDLQWHV
2QHQGpGXLWDLVpPHQWVXUFKDTXHVHFWLRQGURLWHOHVYLVVHXUVHWOHVFRQWUDLQWHV
±&2175$,17(67+(50,48(6'$16/(675(,//,6
±&2175$,17(67+(50,48(6'$16/(675(,//,6
$X WRPH ,, FKDSLWUH ,, QRXV DYRQV GRQQp XQH PpWKRGH JpQpUDOH GH FDOFXO GHV WUHLOOLV GDQVFDVLVRWKHUPH
$X WRPH ,, FKDSLWUH ,, QRXV DYRQV GRQQp XQH PpWKRGH JpQpUDOH GH FDOFXO GHV WUHLOOLV GDQVFDVLVRWKHUPH
1RXVDOORQVHQpWHQGUHOHVUpVXOWDWVDXFDVROHPRQWDJHD\DQWpWpUpDOLVpVDQVMHXQLVHUUDJH jODWHPSpUDWXUH 7 RQSRUWHjODWHPSpUDWXUHXQLIRUPH7
1RXVDOORQVHQpWHQGUHOHVUpVXOWDWVDXFDVROHPRQWDJHD\DQWpWpUpDOLVpVDQVMHXQLVHUUDJH jODWHPSpUDWXUH 7 RQSRUWHjODWHPSpUDWXUHXQLIRUPH7
/HV GpILQLWLRQV OH FDOFXO GX GHJUp G¶K\SHUVWDWLFLWp OHV pTXDWLRQV G¶pTXLOLEUH GHV Q°XGV UHVWHQWELQHVULQFKDQJpV
/HV GpILQLWLRQV OH FDOFXO GX GHJUp G¶K\SHUVWDWLFLWp OHV pTXDWLRQV G¶pTXLOLEUH GHV Q°XGV UHVWHQWELQHVULQFKDQJpV
3DU FRQWUH GDQV OHV pTXDWLRQV DX[ GpSODFHPHQWV QRGDX[ O¶DOORQJHPHQW δ /LM GH OD EDUUH
3DU FRQWUH GDQV OHV pTXDWLRQV DX[ GpSODFHPHQWV QRGDX[ O¶DOORQJHPHQW δ /LM GH OD EDUUH
⎛ 1/ ⎞ $ L $ M HVWODVRPPHG¶XQHGLODWDWLRQ ⎜ ⎟ GXHjO¶HIIRUWQRUPDO 1LM HWG¶XQHGLODWDWLRQ ⎝ (6 ⎠ LM
⎛ 1/ ⎞ $ L $ M HVWODVRPPHG¶XQHGLODWDWLRQ ⎜ ⎟ GXHjO¶HIIRUWQRUPDO 1LM HWG¶XQHGLODWDWLRQ ⎝ (6 ⎠ LM
WKHUPLTXH /α LM 7 − 7 &HVpTXDWLRQVV¶pFULYHQWDORUVGDQVOHFDVG¶XQWUHLOOLVSODQ
WKHUPLTXH /α LM 7 − 7 &HVpTXDWLRQVV¶pFULYHQWDORUVGDQVOHFDVG¶XQWUHLOOLVSODQ
⎛ 1/ ⎞ X M − X L FRV ϕLM + Y M − YL VLQ ϕLM = ⎜ ⎟ + α/ LM 7 − 7 ⎝ (6 ⎠ LM
'DQVOHFDVG¶XQWUHLOOLV'HOOHVV¶pFULYHQW
⎛ 1/ ⎞ X M − X L α LM + Y M − YL βLM + Z M − Z L γ LM = ⎜ ⎟ + α/ LM 7 − 7 ⎝ (6 ⎠ LM
- 68 -
⎛ 1/ ⎞ X M − X L FRV ϕLM + Y M − YL VLQ ϕLM = ⎜ ⎟ + α/ LM 7 − 7 ⎝ (6 ⎠ LM
'DQVOHFDVG¶XQWUHLOOLV'HOOHVV¶pFULYHQW ′
⎛ 1/ ⎞ X M − X L α LM + Y M − YL βLM + Z M − Z L γ LM = ⎜ ⎟ + α/ LM 7 − 7 ⎝ (6 ⎠ LM
- 68 -
′
([HPSOHWUHLOOLVHQIRUPHGHFDUUpDYHFGHX[GLDJRQDOHV/HVEDUUHVODWpUDOHVVRQWHQDFLHU GH FDUDFWpULVWLTXHV / ( 6 α /HV GLDJRQDOHV VRQW HQ DOXPLQLXP GH FDUDFWpULVWLTXHV / (′ 6′ α′
([HPSOHWUHLOOLVHQIRUPHGHFDUUpDYHFGHX[GLDJRQDOHV/HVEDUUHVODWpUDOHVVRQWHQDFLHU GH FDUDFWpULVWLTXHV / ( 6 α /HV GLDJRQDOHV VRQW HQ DOXPLQLXP GH FDUDFWpULVWLTXHV / (′ 6′ α′
/¶DVVHPEODJHHVWHIIHFWXpVDQVMHXQLVHUUDJHjODWHPSpUDWXUH 7 2QSRUWHjODWHPSpUDWXUH 7 α′ pWDQWGLIIpUHQWGH α RQDXUDGHVHIIRUWVQRUPDX[HWGHVFRQWUDLQWHVGDQVOHVEDUUHV TXHQRXVQRXVSURSRVRQVGHFDOFXOHU
/¶DVVHPEODJHHVWHIIHFWXpVDQVMHXQLVHUUDJHjODWHPSpUDWXUH 7 2QSRUWHjODWHPSpUDWXUH 7 α′ pWDQWGLIIpUHQWGH α RQDXUDGHVHIIRUWVQRUPDX[HWGHVFRQWUDLQWHVGDQVOHVEDUUHV TXHQRXVQRXVSURSRVRQVGHFDOFXOHU
)LJXUH
)LJXUH
/D ILJXUH GRQQH OD JpRPpWULH OHV D[HV HW OHV OLDLVRQV /H WUHLOOLV pWDQW H[WpULHXUHPHQW LVRVWDWLTXHHQO¶DEVHQFHGHFKDUJHPHQWPpFDQLTXHOHVDFWLRQVGHOLDLVRQVVRQWQXOOHV
/D ILJXUH GRQQH OD JpRPpWULH OHV D[HV HW OHV OLDLVRQV /H WUHLOOLV pWDQW H[WpULHXUHPHQW LVRVWDWLTXHHQO¶DEVHQFHGHFKDUJHPHQWPpFDQLTXHOHVDFWLRQVGHOLDLVRQVVRQWQXOOHV
/¶pTXLOLEUH GHV Q°XGV V¶pFULW 1 + 1′ ODWpUDOHHW 1′ GDQVXQHGLDJRQDOH
= 1 GpVLJQDQW O¶HIIRUW QRUPDO GDQV XQH EDUUH
/¶pTXLOLEUH GHV Q°XGV V¶pFULW 1 + 1′ ODWpUDOHHW 1′ GDQVXQHGLDJRQDOH
= 1 GpVLJQDQW O¶HIIRUW QRUPDO GDQV XQH EDUUH
'¶DXWUH SDUW SXLVTXH X $ = X % = Y % = Y F = δ / OHV pTXDWLRQV DX[ GpSODFHPHQWV QRGDX[ VH UpGXLVHQWj 1/ 1′/ δ/ = + α / 7 − 7 HW δ / = + α′ / 7 − 7 (6 (′6′
'¶DXWUH SDUW SXLVTXH X $ = X % = Y % = Y F = δ / OHV pTXDWLRQV DX[ GpSODFHPHQWV QRGDX[ VH UpGXLVHQWj 1/ 1′/ δ/ = + α / 7 − 7 HW δ / = + α′ / 7 − 7 (6 (′6′
/DUpVROXWLRQGRQQH
/DUpVROXWLRQGRQQH
1=
δ / α′ (′ 6′ + α ( 6 α′ − α 7 − 7 = 7 − 7 1′ = − 1 / (′ 6′ + ( 6 + (6 (′6′
%LHQVUVLO¶RQDYDLW α = α′ RQWURXYHUDLW 1 = 1′ = HW
δ/ = α 7 − 7 /
1=
δ / α′ (′ 6′ + α ( 6 α′ − α 7 − 7 = 7 − 7 1′ = − 1 / (′ 6′ + ( 6 + (6 (′6′
%LHQVUVLO¶RQDYDLW α = α′ RQWURXYHUDLW 1 = 1′ = HW
δ/ = α 7 − 7 /
- 69 -
- 69 -
([HPSOHWUHLOOLVHQIRUPHGHFDUUpDYHFGHX[GLDJRQDOHV/HVEDUUHVODWpUDOHVVRQWHQDFLHU GH FDUDFWpULVWLTXHV / ( 6 α /HV GLDJRQDOHV VRQW HQ DOXPLQLXP GH FDUDFWpULVWLTXHV / (′ 6′ α′
([HPSOHWUHLOOLVHQIRUPHGHFDUUpDYHFGHX[GLDJRQDOHV/HVEDUUHVODWpUDOHVVRQWHQDFLHU GH FDUDFWpULVWLTXHV / ( 6 α /HV GLDJRQDOHV VRQW HQ DOXPLQLXP GH FDUDFWpULVWLTXHV / (′ 6′ α′
/¶DVVHPEODJHHVWHIIHFWXpVDQVMHXQLVHUUDJHjODWHPSpUDWXUH 7 2QSRUWHjODWHPSpUDWXUH 7 α′ pWDQWGLIIpUHQWGH α RQDXUDGHVHIIRUWVQRUPDX[HWGHVFRQWUDLQWHVGDQVOHVEDUUHV TXHQRXVQRXVSURSRVRQVGHFDOFXOHU
/¶DVVHPEODJHHVWHIIHFWXpVDQVMHXQLVHUUDJHjODWHPSpUDWXUH 7 2QSRUWHjODWHPSpUDWXUH 7 α′ pWDQWGLIIpUHQWGH α RQDXUDGHVHIIRUWVQRUPDX[HWGHVFRQWUDLQWHVGDQVOHVEDUUHV TXHQRXVQRXVSURSRVRQVGHFDOFXOHU
)LJXUH
)LJXUH
/D ILJXUH GRQQH OD JpRPpWULH OHV D[HV HW OHV OLDLVRQV /H WUHLOOLV pWDQW H[WpULHXUHPHQW LVRVWDWLTXHHQO¶DEVHQFHGHFKDUJHPHQWPpFDQLTXHOHVDFWLRQVGHOLDLVRQVVRQWQXOOHV
/D ILJXUH GRQQH OD JpRPpWULH OHV D[HV HW OHV OLDLVRQV /H WUHLOOLV pWDQW H[WpULHXUHPHQW LVRVWDWLTXHHQO¶DEVHQFHGHFKDUJHPHQWPpFDQLTXHOHVDFWLRQVGHOLDLVRQVVRQWQXOOHV
/¶pTXLOLEUH GHV Q°XGV V¶pFULW 1 + 1′ ODWpUDOHHW 1′ GDQVXQHGLDJRQDOH
= 1 GpVLJQDQW O¶HIIRUW QRUPDO GDQV XQH EDUUH
/¶pTXLOLEUH GHV Q°XGV V¶pFULW 1 + 1′ ODWpUDOHHW 1′ GDQVXQHGLDJRQDOH
= 1 GpVLJQDQW O¶HIIRUW QRUPDO GDQV XQH EDUUH
'¶DXWUH SDUW SXLVTXH X $ = X % = Y % = Y F = δ / OHV pTXDWLRQV DX[ GpSODFHPHQWV QRGDX[ VH UpGXLVHQWj 1/ 1′/ δ/ = + α / 7 − 7 HW δ / = + α′ / 7 − 7 (6 (′6′
'¶DXWUH SDUW SXLVTXH X $ = X % = Y % = Y F = δ / OHV pTXDWLRQV DX[ GpSODFHPHQWV QRGDX[ VH UpGXLVHQWj 1/ 1′/ δ/ = + α / 7 − 7 HW δ / = + α′ / 7 − 7 (6 (′6′
/DUpVROXWLRQGRQQH
/DUpVROXWLRQGRQQH
1=
δ / α′ (′ 6′ + α ( 6 α′ − α 7 − 7 = 7 − 7 1′ = − 1 / (′ 6′ + ( 6 + (6 (′6′
%LHQVUVLO¶RQDYDLW α = α′ RQWURXYHUDLW 1 = 1′ = HW
- 69 -
δ/ = α 7 − 7 /
1=
δ / α′ (′ 6′ + α ( 6 α′ − α 7 − 7 = 7 − 7 1′ = − 1 / (′ 6′ + ( 6 + (6 (′6′
%LHQVUVLO¶RQDYDLW α = α′ RQWURXYHUDLW 1 = 1′ = HW
- 69 -
δ/ = α 7 − 7 /
±)/$0%(0(177+(50,48(
±)/$0%(0(177+(50,48(
'DQV XQH RVVDWXUH K\SHUVWDWLTXH LQWpULHXUHPHQW RX H[WpULHXUHPHQW XQH YDULDWLRQ GH WHPSpUDWXUH SHXW SURYRTXHU OH IODPEHPHQW PrPH HQ O¶DEVHQFH GH WRXW FKDUJHPHQW PpFDQLTXH
'DQV XQH RVVDWXUH K\SHUVWDWLTXH LQWpULHXUHPHQW RX H[WpULHXUHPHQW XQH YDULDWLRQ GH WHPSpUDWXUH SHXW SURYRTXHU OH IODPEHPHQW PrPH HQ O¶DEVHQFH GH WRXW FKDUJHPHQW PpFDQLTXH
'DQVO¶H[HPSOHGXWUHLOOLVFLGHVVXVVXSSRVRQV 7 > 7 FRPPH α′ > α OHVEDUUHVGLDJRQDOHV VRQWFRPSULPpHV
'DQVO¶H[HPSOHGXWUHLOOLVFLGHVVXVVXSSRVRQV 7 > 7 FRPPH α′ > α OHVEDUUHVGLDJRQDOHV VRQWFRPSULPpHV
(WDQW DUWLFXOpHV HQ OHXUV GHX[ H[WUpPLWpV HOOHV IODPEHQW VXLYDQW OH SUHPLHU PRGH G¶(XOHU π (′ , ORUVTXHO¶LQWHQVLWpGHO¶HIIRUW 1′ DWWHLQWODYDOHXUFULWLTXHIRQGDPHQWDOH F¶HVWjGLUH / SRXUXQHpOpYDWLRQGHWHPSpUDWXUH
(WDQW DUWLFXOpHV HQ OHXUV GHX[ H[WUpPLWpV HOOHV IODPEHQW VXLYDQW OH SUHPLHU PRGH G¶(XOHU π (′ , ORUVTXHO¶LQWHQVLWpGHO¶HIIRUW 1′ DWWHLQWODYDOHXUFULWLTXHIRQGDPHQWDOH F¶HVWjGLUH / SRXUXQHpOpYDWLRQGHWHPSpUDWXUH
7 − 7 =
⎛ π (′ , ⎞ ⎟ ⎜ + ⎜ / α′ − α ⎝ (6 (′ 6′ ⎟⎠
7 − 7 =
'RQQRQVXQDXWUHH[HPSOHFRQVLGpURQVXQHSRXWUHSULVPDWLTXHGRQWOHSODQPR\HQ[R\ HVWFHOXLGHPRLQGUHUpVLVWDQFHjODIOH[LRQHQFDVWUpHHQVHVGHX[H[WUpPLWpVOHPRQWDJHHVW VXSSRVpUpDOLVpVDQVSUpFRQWUDLQWHVjODWHPSpUDWXUH 7
⎛ π (′ , ⎞ ⎟ ⎜ + ⎜ / α′ − α ⎝ (6 (′ 6′ ⎟⎠
'RQQRQVXQDXWUHH[HPSOHFRQVLGpURQVXQHSRXWUHSULVPDWLTXHGRQWOHSODQPR\HQ[R\ HVWFHOXLGHPRLQGUHUpVLVWDQFHjODIOH[LRQHQFDVWUpHHQVHVGHX[H[WUpPLWpVOHPRQWDJHHVW VXSSRVpUpDOLVpVDQVSUpFRQWUDLQWHVjODWHPSpUDWXUH 7
)LJXUH
)LJXUH
8QH pOpYDWLRQ GH WHPSpUDWXUH 7 − 7 LQWURGXLVDQW XQH FRPSUHVVLRQ G¶LQWHQVLWp α (6 7 − 7 OH IODPEHPHQW DXUD OLHX ORUVTXH FHW HIIRUW DWWHLQGUD OD FKDUJH FULWLTXH
8QH pOpYDWLRQ GH WHPSpUDWXUH 7 − 7 LQWURGXLVDQW XQH FRPSUHVVLRQ G¶LQWHQVLWp α (6 7 − 7 OH IODPEHPHQW DXUD OLHX ORUVTXH FHW HIIRUW DWWHLQGUD OD FKDUJH FULWLTXH
π (, G¶DSUqVOHVUpVXOWDWVREWHQXVDXWRPH,,FKDSLWUH9,,GRQFSRXUXQH / pOpYDWLRQGHWHPSpUDWXUH
IRQGDPHQWDOH
7 − 7 =
π (, G¶DSUqVOHVUpVXOWDWVREWHQXVDXWRPH,,FKDSLWUH9,,GRQFSRXUXQH / pOpYDWLRQGHWHPSpUDWXUH
IRQGDPHQWDOH
π , α 6/
7 − 7 =
π , α 6/
0RQWURQVVXUXQH[HPSOHQXPpULTXHODVHQVLELOLWpG¶XQHWHOOHSRXWUHDXIODPEDJHWKHUPLTXH HQ VXSSRVDQW TX¶LO V¶DJLW G¶XQ WX\DX HQ FXLYUH GH FKDXIIDJH FHQWUDO WUDYHUVDQW GHX[ PXUV SDUDOOqOHVGLVWDQWVGH/ PGDQVOHVTXHOVLOSHXWrWUHFRQVLGpUpFRPPHHQFDVWUp
0RQWURQVVXUXQH[HPSOHQXPpULTXHODVHQVLELOLWpG¶XQHWHOOHSRXWUHDXIODPEDJHWKHUPLTXH HQ VXSSRVDQW TX¶LO V¶DJLW G¶XQ WX\DX HQ FXLYUH GH FKDXIIDJH FHQWUDO WUDYHUVDQW GHX[ PXUV SDUDOOqOHVGLVWDQWVGH/ PGDQVOHVTXHOVLOSHXWrWUHFRQVLGpUpFRPPHHQFDVWUp
- 70 -
- 70 -
±)/$0%(0(177+(50,48(
±)/$0%(0(177+(50,48(
'DQV XQH RVVDWXUH K\SHUVWDWLTXH LQWpULHXUHPHQW RX H[WpULHXUHPHQW XQH YDULDWLRQ GH WHPSpUDWXUH SHXW SURYRTXHU OH IODPEHPHQW PrPH HQ O¶DEVHQFH GH WRXW FKDUJHPHQW PpFDQLTXH
'DQV XQH RVVDWXUH K\SHUVWDWLTXH LQWpULHXUHPHQW RX H[WpULHXUHPHQW XQH YDULDWLRQ GH WHPSpUDWXUH SHXW SURYRTXHU OH IODPEHPHQW PrPH HQ O¶DEVHQFH GH WRXW FKDUJHPHQW PpFDQLTXH
'DQVO¶H[HPSOHGXWUHLOOLVFLGHVVXVVXSSRVRQV 7 > 7 FRPPH α′ > α OHVEDUUHVGLDJRQDOHV VRQWFRPSULPpHV
'DQVO¶H[HPSOHGXWUHLOOLVFLGHVVXVVXSSRVRQV 7 > 7 FRPPH α′ > α OHVEDUUHVGLDJRQDOHV VRQWFRPSULPpHV
(WDQW DUWLFXOpHV HQ OHXUV GHX[ H[WUpPLWpV HOOHV IODPEHQW VXLYDQW OH SUHPLHU PRGH G¶(XOHU π (′ , ORUVTXHO¶LQWHQVLWpGHO¶HIIRUW 1′ DWWHLQWODYDOHXUFULWLTXHIRQGDPHQWDOH F¶HVWjGLUH / SRXUXQHpOpYDWLRQGHWHPSpUDWXUH
(WDQW DUWLFXOpHV HQ OHXUV GHX[ H[WUpPLWpV HOOHV IODPEHQW VXLYDQW OH SUHPLHU PRGH G¶(XOHU π (′ , ORUVTXHO¶LQWHQVLWpGHO¶HIIRUW 1′ DWWHLQWODYDOHXUFULWLTXHIRQGDPHQWDOH F¶HVWjGLUH / SRXUXQHpOpYDWLRQGHWHPSpUDWXUH
7 − 7 =
⎛ π (′ , ⎞ ⎟ ⎜ + ⎜ / α′ − α ⎝ (6 (′ 6′ ⎟⎠
7 − 7 =
'RQQRQVXQDXWUHH[HPSOHFRQVLGpURQVXQHSRXWUHSULVPDWLTXHGRQWOHSODQPR\HQ[R\ HVWFHOXLGHPRLQGUHUpVLVWDQFHjODIOH[LRQHQFDVWUpHHQVHVGHX[H[WUpPLWpVOHPRQWDJHHVW VXSSRVpUpDOLVpVDQVSUpFRQWUDLQWHVjODWHPSpUDWXUH 7
⎛ π (′ , ⎞ ⎟ ⎜ + ⎜ / α′ − α ⎝ (6 (′ 6′ ⎟⎠
'RQQRQVXQDXWUHH[HPSOHFRQVLGpURQVXQHSRXWUHSULVPDWLTXHGRQWOHSODQPR\HQ[R\ HVWFHOXLGHPRLQGUHUpVLVWDQFHjODIOH[LRQHQFDVWUpHHQVHVGHX[H[WUpPLWpVOHPRQWDJHHVW VXSSRVpUpDOLVpVDQVSUpFRQWUDLQWHVjODWHPSpUDWXUH 7
)LJXUH
)LJXUH
8QH pOpYDWLRQ GH WHPSpUDWXUH 7 − 7 LQWURGXLVDQW XQH FRPSUHVVLRQ G¶LQWHQVLWp α (6 7 − 7 OH IODPEHPHQW DXUD OLHX ORUVTXH FHW HIIRUW DWWHLQGUD OD FKDUJH FULWLTXH
8QH pOpYDWLRQ GH WHPSpUDWXUH 7 − 7 LQWURGXLVDQW XQH FRPSUHVVLRQ G¶LQWHQVLWp α (6 7 − 7 OH IODPEHPHQW DXUD OLHX ORUVTXH FHW HIIRUW DWWHLQGUD OD FKDUJH FULWLTXH
π (, G¶DSUqVOHVUpVXOWDWVREWHQXVDXWRPH,,FKDSLWUH9,,GRQFSRXUXQH / pOpYDWLRQGHWHPSpUDWXUH
IRQGDPHQWDOH
7 − 7 =
π , α 6/
π (, G¶DSUqVOHVUpVXOWDWVREWHQXVDXWRPH,,FKDSLWUH9,,GRQFSRXUXQH / pOpYDWLRQGHWHPSpUDWXUH
IRQGDPHQWDOH
7 − 7 =
π , α 6/
0RQWURQVVXUXQH[HPSOHQXPpULTXHODVHQVLELOLWpG¶XQHWHOOHSRXWUHDXIODPEDJHWKHUPLTXH HQ VXSSRVDQW TX¶LO V¶DJLW G¶XQ WX\DX HQ FXLYUH GH FKDXIIDJH FHQWUDO WUDYHUVDQW GHX[ PXUV SDUDOOqOHVGLVWDQWVGH/ PGDQVOHVTXHOVLOSHXWrWUHFRQVLGpUpFRPPHHQFDVWUp
0RQWURQVVXUXQH[HPSOHQXPpULTXHODVHQVLELOLWpG¶XQHWHOOHSRXWUHDXIODPEDJHWKHUPLTXH HQ VXSSRVDQW TX¶LO V¶DJLW G¶XQ WX\DX HQ FXLYUH GH FKDXIIDJH FHQWUDO WUDYHUVDQW GHX[ PXUV SDUDOOqOHVGLVWDQWVGH/ PGDQVOHVTXHOVLOSHXWrWUHFRQVLGpUpFRPPHHQFDVWUp
- 70 -
- 70 -
3UHQRQVSRXUGLDPqWUHVGXWX\DXPPLQWpULHXU HWPPH[WpULHXU SRXUOHFXLYUHRQD α = ⋅ − . −
3UHQRQVSRXUGLDPqWUHVGXWX\DXPPLQWpULHXU HWPPH[WpULHXU SRXUOHFXLYUHRQD α = ⋅ − . −
/HPRQWDJHpWDQWUpDOLVp&VDQVMHXQLVHUUDJHO¶pOpYDWLRQGHWHPSpUDWXUHSURYRTXDQWOH IODPEHPHQWVXLYDQWOHSUHPLHUPRGHHVWGRQF π φL + φH 7 − 7 = = GHJUpV α /
/HPRQWDJHpWDQWUpDOLVp&VDQVMHXQLVHUUDJHO¶pOpYDWLRQGHWHPSpUDWXUHSURYRTXDQWOH IODPEHPHQWVXLYDQWOHSUHPLHUPRGHHVWGRQF π φL + φH 7 − 7 = = GHJUpV α /
1RXVYHQRQVGHYRLUGHX[IODPEHPHQWVWKHUPLTXHVSDUIOH[LRQSODQHG¶XQHSRXWUHRQSHXW DXVVL DYRLU SRXU GHV UDLVRQV WKHUPLTXHV G¶DXWUHV W\SHV GH IODPEHPHQW SDU H[HPSOH OH IODPEHPHQWSDUWRUVLRQRXOHGpYHUVHPHQWODWpUDO
1RXVYHQRQVGHYRLUGHX[IODPEHPHQWVWKHUPLTXHVSDUIOH[LRQSODQHG¶XQHSRXWUHRQSHXW DXVVL DYRLU SRXU GHV UDLVRQV WKHUPLTXHV G¶DXWUHV W\SHV GH IODPEHPHQW SDU H[HPSOH OH IODPEHPHQWSDUWRUVLRQRXOHGpYHUVHPHQWODWpUDO
- 71 -
- 71 -
3UHQRQVSRXUGLDPqWUHVGXWX\DXPPLQWpULHXU HWPPH[WpULHXU SRXUOHFXLYUHRQD α = ⋅ − . −
3UHQRQVSRXUGLDPqWUHVGXWX\DXPPLQWpULHXU HWPPH[WpULHXU SRXUOHFXLYUHRQD α = ⋅ − . −
/HPRQWDJHpWDQWUpDOLVp&VDQVMHXQLVHUUDJHO¶pOpYDWLRQGHWHPSpUDWXUHSURYRTXDQWOH IODPEHPHQWVXLYDQWOHSUHPLHUPRGHHVWGRQF π φL + φH 7 − 7 = = GHJUpV α /
/HPRQWDJHpWDQWUpDOLVp&VDQVMHXQLVHUUDJHO¶pOpYDWLRQGHWHPSpUDWXUHSURYRTXDQWOH IODPEHPHQWVXLYDQWOHSUHPLHUPRGHHVWGRQF π φL + φH 7 − 7 = = GHJUpV α /
1RXVYHQRQVGHYRLUGHX[IODPEHPHQWVWKHUPLTXHVSDUIOH[LRQSODQHG¶XQHSRXWUHRQSHXW DXVVL DYRLU SRXU GHV UDLVRQV WKHUPLTXHV G¶DXWUHV W\SHV GH IODPEHPHQW SDU H[HPSOH OH IODPEHPHQWSDUWRUVLRQRXOHGpYHUVHPHQWODWpUDO
1RXVYHQRQVGHYRLUGHX[IODPEHPHQWVWKHUPLTXHVSDUIOH[LRQSODQHG¶XQHSRXWUHRQSHXW DXVVL DYRLU SRXU GHV UDLVRQV WKHUPLTXHV G¶DXWUHV W\SHV GH IODPEHPHQW SDU H[HPSOH OH IODPEHPHQWSDUWRUVLRQRXOHGpYHUVHPHQWODWpUDO
- 71 -
- 71 -
- 72 -
- 72 -
- 72 -
- 72 -
&+$3,75(,9
&+$3,75(,9
7+(50,48('(63/$48(6
7+(50,48('(63/$48(6
/HV SODTXHV RQW pWp pWXGLpHV GDQV OH FDV LVRWKHUPH DX WRPH , 5DSSHORQV OHV SULQFLSDX[ UpVXOWDWVTXLUHVWHQWYDODEOHVVRXVFKDUJHPHQWWKHUPLTXH
/HV SODTXHV RQW pWp pWXGLpHV GDQV OH FDV LVRWKHUPH DX WRPH , 5DSSHORQV OHV SULQFLSDX[ UpVXOWDWVTXLUHVWHQWYDODEOHVVRXVFKDUJHPHQWWKHUPLTXH
[R\ GpVLJQDQW OH SODQ PR\HQ G¶XQH SODTXH QRXV DYRQV G¶DERUG GpILQL OHV pOpPHQWV JpRPpWULTXHVVXUOHVTXHOVUDLVRQQHUIHXLOOHWVILEUHVORQJLWXGLQDOHVHWWUDQVYHUVDOHVFRXSXUHV 1RXVDYRQVHQVXLWHGpILQLOHYLVVHXUVXUXQHFRXSXUHpOpPHQWDLUHVHVFLQTFRPSRVDQWHV17 4 8 0 TXH QRXV DYRQV H[SULPpHV HQ IRQFWLRQ GHV FRQWUDLQWHV 1RXV DYRQV GRQQp OHV IRUPXOHVGHFKDQJHPHQWGHEDVHSRXUOHVYLVVHXUVFHTXLQRXVDSHUPLVGHGpILQLUOHWHQVHXU GHV IRUFHV GH PHPEUDQH OH YHFWHXU GHV HIIRUWV WUDQFKDQWV WUDQVYHUVDX[ HW OD PDWULFH GH IOH[LRQWRUVLRQ
[R\ GpVLJQDQW OH SODQ PR\HQ G¶XQH SODTXH QRXV DYRQV G¶DERUG GpILQL OHV pOpPHQWV JpRPpWULTXHVVXUOHVTXHOVUDLVRQQHUIHXLOOHWVILEUHVORQJLWXGLQDOHVHWWUDQVYHUVDOHVFRXSXUHV 1RXVDYRQVHQVXLWHGpILQLOHYLVVHXUVXUXQHFRXSXUHpOpPHQWDLUHVHVFLQTFRPSRVDQWHV17 4 8 0 TXH QRXV DYRQV H[SULPpHV HQ IRQFWLRQ GHV FRQWUDLQWHV 1RXV DYRQV GRQQp OHV IRUPXOHVGHFKDQJHPHQWGHEDVHSRXUOHVYLVVHXUVFHTXLQRXVDSHUPLVGHGpILQLUOHWHQVHXU GHV IRUFHV GH PHPEUDQH OH YHFWHXU GHV HIIRUWV WUDQFKDQWV WUDQVYHUVDX[ HW OD PDWULFH GH IOH[LRQWRUVLRQ
(QILQQRXVDYRQVpWDEOLOHVpTXDWLRQVGHO¶pTXLOLEUHORFDO
(QILQQRXVDYRQVpWDEOLOHVpTXDWLRQVGHO¶pTXLOLEUHORFDO
7RXV FHV UpVXOWDWV GHPHXUHQW LQFKDQJpV GDQV OH FDV TXL QRXV LQWpUHVVH PDLQWHQDQW G¶XQ FKDUJHPHQWPpFDQLTXHHWWKHUPLTXH&RPPHGDQVOHFKDSLWUHSUpFpGHQWFRQVDFUpDX[SRXWUHV QRXV DOORQV LFL VLPSOLILHU OH FKDPS GH WHPSpUDWXUH GDQV OD SODTXH HQ OH OLQpDULVDQW VXLYDQW O¶pSDLVVHXUF¶HVWjGLUHHQSUHQDQW
7RXV FHV UpVXOWDWV GHPHXUHQW LQFKDQJpV GDQV OH FDV TXL QRXV LQWpUHVVH PDLQWHQDQW G¶XQ FKDUJHPHQWPpFDQLTXHHWWKHUPLTXH&RPPHGDQVOHFKDSLWUHSUpFpGHQWFRQVDFUpDX[SRXWUHV QRXV DOORQV LFL VLPSOLILHU OH FKDPS GH WHPSpUDWXUH GDQV OD SODTXH HQ OH OLQpDULVDQW VXLYDQW O¶pSDLVVHXUF¶HVWjGLUHHQSUHQDQW
7 3 = 7 3 + $ [ \ ⋅ ]
7 3 = 7 3 + $ [ \ ⋅ ]
$[\ GpVLJQH GRQF OH JUDGLHQW WUDQVYHUVDO GH WHPSpUDWXUH LQGpSHQGDQW GH ] VXSSRVp FRQVWDQW VXU XQH ILEUH QRUPDOH /D YDULDWLRQ 73 − 7 GH WHPSpUDWXUH SDU UDSSRUW j OD WHPSpUDWXUHGHUpIpUHQFH 7 HVWDLQVLODVRPPHGHGHX[WHUPHV
$[\ GpVLJQH GRQF OH JUDGLHQW WUDQVYHUVDO GH WHPSpUDWXUH LQGpSHQGDQW GH ] VXSSRVp FRQVWDQW VXU XQH ILEUH QRUPDOH /D YDULDWLRQ 73 − 7 GH WHPSpUDWXUH SDU UDSSRUW j OD WHPSpUDWXUHGHUpIpUHQFH 7 HVWDLQVLODVRPPHGHGHX[WHUPHV
7 3 − 7 LQGpSHQGDQWHGH]HWTXLSURGXLWXQHGpIRUPDWLRQGHODSODTXH©GDQVVRQSODQª
7 3 − 7 LQGpSHQGDQWHGH]HWTXLSURGXLWXQHGpIRUPDWLRQGHODSODTXH©GDQVVRQSODQª
$ [ \ ⋅ ] TXLSURGXLWXQHFRXUEXUHGXIHXLOOHWPR\HQ
$ [ \ ⋅ ] TXLSURGXLWXQHFRXUEXUHGXIHXLOOHWPR\HQ
1RXV DYRQV GpVLJQp SDU 3 OD SDUWLFXOH FRXUDQWH GH FRWH ] G¶XQH ILEUH QRUPDOH HW SDU 3 OD SDUWLFXOHGHFHQWUDOHGHFHWWHILEUH
1RXV DYRQV GpVLJQp SDU 3 OD SDUWLFXOH FRXUDQWH GH FRWH ] G¶XQH ILEUH QRUPDOH HW SDU 3 OD SDUWLFXOHGHFHQWUDOHGHFHWWHILEUH
&HWWH GpFRPSRVLWLRQ QRXV SHUPHW FRPPH GDQV OH FDV LVRWKHUPH GH FRQVLGpUHU VpSDUpPHQW GHX[SUREOqPHVFHOXLG¶XQHSODTXHFKDUJpH©GDQVVRQSODQªHWFHOXLG¶XQHSODTXHFKDUJpH ©WUDQVYHUVDOHPHQWª
&HWWH GpFRPSRVLWLRQ QRXV SHUPHW FRPPH GDQV OH FDV LVRWKHUPH GH FRQVLGpUHU VpSDUpPHQW GHX[SUREOqPHVFHOXLG¶XQHSODTXHFKDUJpH©GDQVVRQSODQªHWFHOXLG¶XQHSODTXHFKDUJpH ©WUDQVYHUVDOHPHQWª
- 73 -
- 73 -
&+$3,75(,9
&+$3,75(,9
7+(50,48('(63/$48(6
7+(50,48('(63/$48(6
/HV SODTXHV RQW pWp pWXGLpHV GDQV OH FDV LVRWKHUPH DX WRPH , 5DSSHORQV OHV SULQFLSDX[ UpVXOWDWVTXLUHVWHQWYDODEOHVVRXVFKDUJHPHQWWKHUPLTXH
/HV SODTXHV RQW pWp pWXGLpHV GDQV OH FDV LVRWKHUPH DX WRPH , 5DSSHORQV OHV SULQFLSDX[ UpVXOWDWVTXLUHVWHQWYDODEOHVVRXVFKDUJHPHQWWKHUPLTXH
[R\ GpVLJQDQW OH SODQ PR\HQ G¶XQH SODTXH QRXV DYRQV G¶DERUG GpILQL OHV pOpPHQWV JpRPpWULTXHVVXUOHVTXHOVUDLVRQQHUIHXLOOHWVILEUHVORQJLWXGLQDOHVHWWUDQVYHUVDOHVFRXSXUHV 1RXVDYRQVHQVXLWHGpILQLOHYLVVHXUVXUXQHFRXSXUHpOpPHQWDLUHVHVFLQTFRPSRVDQWHV17 4 8 0 TXH QRXV DYRQV H[SULPpHV HQ IRQFWLRQ GHV FRQWUDLQWHV 1RXV DYRQV GRQQp OHV IRUPXOHVGHFKDQJHPHQWGHEDVHSRXUOHVYLVVHXUVFHTXLQRXVDSHUPLVGHGpILQLUOHWHQVHXU GHV IRUFHV GH PHPEUDQH OH YHFWHXU GHV HIIRUWV WUDQFKDQWV WUDQVYHUVDX[ HW OD PDWULFH GH IOH[LRQWRUVLRQ
[R\ GpVLJQDQW OH SODQ PR\HQ G¶XQH SODTXH QRXV DYRQV G¶DERUG GpILQL OHV pOpPHQWV JpRPpWULTXHVVXUOHVTXHOVUDLVRQQHUIHXLOOHWVILEUHVORQJLWXGLQDOHVHWWUDQVYHUVDOHVFRXSXUHV 1RXVDYRQVHQVXLWHGpILQLOHYLVVHXUVXUXQHFRXSXUHpOpPHQWDLUHVHVFLQTFRPSRVDQWHV17 4 8 0 TXH QRXV DYRQV H[SULPpHV HQ IRQFWLRQ GHV FRQWUDLQWHV 1RXV DYRQV GRQQp OHV IRUPXOHVGHFKDQJHPHQWGHEDVHSRXUOHVYLVVHXUVFHTXLQRXVDSHUPLVGHGpILQLUOHWHQVHXU GHV IRUFHV GH PHPEUDQH OH YHFWHXU GHV HIIRUWV WUDQFKDQWV WUDQVYHUVDX[ HW OD PDWULFH GH IOH[LRQWRUVLRQ
(QILQQRXVDYRQVpWDEOLOHVpTXDWLRQVGHO¶pTXLOLEUHORFDO
(QILQQRXVDYRQVpWDEOLOHVpTXDWLRQVGHO¶pTXLOLEUHORFDO
7RXV FHV UpVXOWDWV GHPHXUHQW LQFKDQJpV GDQV OH FDV TXL QRXV LQWpUHVVH PDLQWHQDQW G¶XQ FKDUJHPHQWPpFDQLTXHHWWKHUPLTXH&RPPHGDQVOHFKDSLWUHSUpFpGHQWFRQVDFUpDX[SRXWUHV QRXV DOORQV LFL VLPSOLILHU OH FKDPS GH WHPSpUDWXUH GDQV OD SODTXH HQ OH OLQpDULVDQW VXLYDQW O¶pSDLVVHXUF¶HVWjGLUHHQSUHQDQW
7RXV FHV UpVXOWDWV GHPHXUHQW LQFKDQJpV GDQV OH FDV TXL QRXV LQWpUHVVH PDLQWHQDQW G¶XQ FKDUJHPHQWPpFDQLTXHHWWKHUPLTXH&RPPHGDQVOHFKDSLWUHSUpFpGHQWFRQVDFUpDX[SRXWUHV QRXV DOORQV LFL VLPSOLILHU OH FKDPS GH WHPSpUDWXUH GDQV OD SODTXH HQ OH OLQpDULVDQW VXLYDQW O¶pSDLVVHXUF¶HVWjGLUHHQSUHQDQW
7 3 = 7 3 + $ [ \ ⋅ ]
7 3 = 7 3 + $ [ \ ⋅ ]
$[\ GpVLJQH GRQF OH JUDGLHQW WUDQVYHUVDO GH WHPSpUDWXUH LQGpSHQGDQW GH ] VXSSRVp FRQVWDQW VXU XQH ILEUH QRUPDOH /D YDULDWLRQ 73 − 7 GH WHPSpUDWXUH SDU UDSSRUW j OD WHPSpUDWXUHGHUpIpUHQFH 7 HVWDLQVLODVRPPHGHGHX[WHUPHV
$[\ GpVLJQH GRQF OH JUDGLHQW WUDQVYHUVDO GH WHPSpUDWXUH LQGpSHQGDQW GH ] VXSSRVp FRQVWDQW VXU XQH ILEUH QRUPDOH /D YDULDWLRQ 73 − 7 GH WHPSpUDWXUH SDU UDSSRUW j OD WHPSpUDWXUHGHUpIpUHQFH 7 HVWDLQVLODVRPPHGHGHX[WHUPHV
7 3 − 7 LQGpSHQGDQWHGH]HWTXLSURGXLWXQHGpIRUPDWLRQGHODSODTXH©GDQVVRQSODQª
7 3 − 7 LQGpSHQGDQWHGH]HWTXLSURGXLWXQHGpIRUPDWLRQGHODSODTXH©GDQVVRQSODQª
$ [ \ ⋅ ] TXLSURGXLWXQHFRXUEXUHGXIHXLOOHWPR\HQ
$ [ \ ⋅ ] TXLSURGXLWXQHFRXUEXUHGXIHXLOOHWPR\HQ
1RXV DYRQV GpVLJQp SDU 3 OD SDUWLFXOH FRXUDQWH GH FRWH ] G¶XQH ILEUH QRUPDOH HW SDU 3 OD SDUWLFXOHGHFHQWUDOHGHFHWWHILEUH
1RXV DYRQV GpVLJQp SDU 3 OD SDUWLFXOH FRXUDQWH GH FRWH ] G¶XQH ILEUH QRUPDOH HW SDU 3 OD SDUWLFXOHGHFHQWUDOHGHFHWWHILEUH
&HWWH GpFRPSRVLWLRQ QRXV SHUPHW FRPPH GDQV OH FDV LVRWKHUPH GH FRQVLGpUHU VpSDUpPHQW GHX[SUREOqPHVFHOXLG¶XQHSODTXHFKDUJpH©GDQVVRQSODQªHWFHOXLG¶XQHSODTXHFKDUJpH ©WUDQVYHUVDOHPHQWª
&HWWH GpFRPSRVLWLRQ QRXV SHUPHW FRPPH GDQV OH FDV LVRWKHUPH GH FRQVLGpUHU VpSDUpPHQW GHX[SUREOqPHVFHOXLG¶XQHSODTXHFKDUJpH©GDQVVRQSODQªHWFHOXLG¶XQHSODTXHFKDUJpH ©WUDQVYHUVDOHPHQWª
- 73 -
- 73 -
±3/$48(&+$5*(('$166213/$1
±3/$48(&+$5*(('$166213/$1
3DU GpILQLWLRQ WRXWHV OHV IRUFHV H[WpULHXUHV GRQQpHV HW GH OLDLVRQ VRQW SDUDOOqOHV DX SODQ PR\HQ HW XQLIRUPHV VXLYDQW O¶pSDLVVHXU GH SOXV OD WHPSpUDWXUH HVW LQGpSHQGDQWH GH ] /D SODTXHWUDYDLOOHHQPHPEUDQH/HVFRPSRVDQWHV48HW0GHWRXWYLVVHXUVRQWLGHQWLTXHPHQW QXOOHV
3DU GpILQLWLRQ WRXWHV OHV IRUFHV H[WpULHXUHV GRQQpHV HW GH OLDLVRQ VRQW SDUDOOqOHV DX SODQ PR\HQ HW XQLIRUPHV VXLYDQW O¶pSDLVVHXU GH SOXV OD WHPSpUDWXUH HVW LQGpSHQGDQWH GH ] /D SODTXHWUDYDLOOHHQPHPEUDQH/HVFRPSRVDQWHV48HW0GHWRXWYLVVHXUVRQWLGHQWLTXHPHQW QXOOHV
±&RQWUDLQWHVSODQHV
±&RQWUDLQWHVSODQHV
6RXYHQWGHVSODTXHVDLQVLFKDUJpHVVDWLVIRQWULJRXUHXVHPHQWDX[K\SRWKqVHVGHFRQWUDLQWHV SODQHVFDVpWXGLpDXGXFKDSLWUH,,5DSSHORQVTXHGDQVFHFDVRQDQpFHVVDLUHPHQWOD UHODWLRQ G ν GLY I + ( α ⋅ ∆ 7 =
6RXYHQWGHVSODTXHVDLQVLFKDUJpHVVDWLVIRQWULJRXUHXVHPHQWDX[K\SRWKqVHVGHFRQWUDLQWHV SODQHVFDVpWXGLpDXGXFKDSLWUH,,5DSSHORQVTXHGDQVFHFDVRQDQpFHVVDLUHPHQWOD UHODWLRQ G ν GLY I + ( α ⋅ ∆ 7 =
±&RQWUDLQWHVTXDVLSODQHV
±&RQWUDLQWHVTXDVLSODQHV
3OXV JpQpUDOHPHQW XQH SODTXH FKDUJpH GDQV VRQ SODQ QH VDWLVIDLW SDV QpFHVVDLUHPHQW DX[ K\SRWKqVHV GH FRQWUDLQWHV SODQHV PDLV QRXV DYRQV PRQWUp DX WRPH , FKDSLWUH 9, TX¶RQFRPPHWWDLWXQHWUqVIDLEOHHUUHXUHQFRQVLGpUDQWFHVK\SRWKqVHVFRPPHVDWLVIDLWHVF¶HVW jGLUHHQFRQVLGpUDQW ± G¶XQHSDUW σ ] τ [] τ \] FRPPHLGHQWLTXHPHQWQXOV
3OXV JpQpUDOHPHQW XQH SODTXH FKDUJpH GDQV VRQ SODQ QH VDWLVIDLW SDV QpFHVVDLUHPHQW DX[ K\SRWKqVHV GH FRQWUDLQWHV SODQHV PDLV QRXV DYRQV PRQWUp DX WRPH , FKDSLWUH 9, TX¶RQFRPPHWWDLWXQHWUqVIDLEOHHUUHXUHQFRQVLGpUDQWFHVK\SRWKqVHVFRPPHVDWLVIDLWHVF¶HVW jGLUHHQFRQVLGpUDQW ± G¶XQHSDUW σ ] τ [] τ \] FRPPHLGHQWLTXHPHQWQXOV
± G¶DXWUHSDUW σ ] σ \ τ [\ FRPPHLQGpSHQGDQWVGH]
± G¶DXWUHSDUW σ ] σ \ τ [\ FRPPHLQGpSHQGDQWVGH]
&HWWHHUUHXUHVWG¶DXWDQWSOXVIDLEOHTXHODSODTXHHVWSOXVPLQFH
&HWWHHUUHXUHVWG¶DXWDQWSOXVIDLEOHTXHODSODTXHHVWSOXVPLQFH
5DSSHORQVGDQVFHFDVOHVUHODWLRQVGH+RRNH'XKDPHO
5DSSHORQVGDQVFHFDVOHVUHODWLRQVGH+RRNH'XKDPHO
⎡ σ[ ⎢ [Σ] = ⎢τ[\ ⎢ ⎢⎣
τ [\ σ\
⎤ ⎡ ε[ ⎥ ⎢ ⎥ [E] = ⎢ γ [\ ⎥ ⎢ ⎢⎣ ⎥⎦
γ [\ ε\
⎤ ⎥ ⎥ ⎥ ε ] ⎥⎦
⎧ ⎪ε [ = ( σ [ − νσ \ + α 7 − 7 ⎪ ⎪ε = σ − νσ + α 7 − 7 [ ⎪⎪ \ ( \ ⎨ ⎪ε = ν σ + σ + α 7 − 7 \ ⎪ ] ( [ ⎪ ⎪τ [\ = ( γ [\ ⎪⎩ + ν
( (α ⎧ ⎪σ [ = − ν ε [ + νε \ − − ν 7 − 7 ⎪ ( (α ⎪ ε \ + νε [ − 7 − 7 ⎨σ \ = −ν − ν ⎪ ⎪ ( γ [\ ⎪τ [\ = + ν ⎩
⎡ σ[ ⎢ [Σ] = ⎢τ[\ ⎢ ⎢⎣
τ [\ σ\
⎤ ⎡ ε[ ⎥ ⎢ ⎥ [E] = ⎢ γ [\ ⎥ ⎢ ⎢⎣ ⎥⎦
γ [\ ε\
⎤ ⎥ ⎥ ⎥ ε ] ⎥⎦
⎧ ⎪ε [ = ( σ [ − νσ \ + α 7 − 7 ⎪ ⎪ε = σ − νσ + α 7 − 7 [ ⎪⎪ \ ( \ ⎨ ⎪ε = ν σ + σ + α 7 − 7 \ ⎪ ] ( [ ⎪ ⎪τ [\ = ( γ [\ ⎪⎩ + ν
( (α ⎧ ⎪σ [ = − ν ε [ + νε \ − − ν 7 − 7 ⎪ ( (α ⎪ ε \ + νε [ − 7 − 7 ⎨σ \ = −ν − ν ⎪ ⎪ ( γ [\ ⎪τ [\ = + ν ⎩
- 74 -
- 74 -
±3/$48(&+$5*(('$166213/$1
±3/$48(&+$5*(('$166213/$1
3DU GpILQLWLRQ WRXWHV OHV IRUFHV H[WpULHXUHV GRQQpHV HW GH OLDLVRQ VRQW SDUDOOqOHV DX SODQ PR\HQ HW XQLIRUPHV VXLYDQW O¶pSDLVVHXU GH SOXV OD WHPSpUDWXUH HVW LQGpSHQGDQWH GH ] /D SODTXHWUDYDLOOHHQPHPEUDQH/HVFRPSRVDQWHV48HW0GHWRXWYLVVHXUVRQWLGHQWLTXHPHQW QXOOHV
3DU GpILQLWLRQ WRXWHV OHV IRUFHV H[WpULHXUHV GRQQpHV HW GH OLDLVRQ VRQW SDUDOOqOHV DX SODQ PR\HQ HW XQLIRUPHV VXLYDQW O¶pSDLVVHXU GH SOXV OD WHPSpUDWXUH HVW LQGpSHQGDQWH GH ] /D SODTXHWUDYDLOOHHQPHPEUDQH/HVFRPSRVDQWHV48HW0GHWRXWYLVVHXUVRQWLGHQWLTXHPHQW QXOOHV
±&RQWUDLQWHVSODQHV
±&RQWUDLQWHVSODQHV
6RXYHQWGHVSODTXHVDLQVLFKDUJpHVVDWLVIRQWULJRXUHXVHPHQWDX[K\SRWKqVHVGHFRQWUDLQWHV SODQHVFDVpWXGLpDXGXFKDSLWUH,,5DSSHORQVTXHGDQVFHFDVRQDQpFHVVDLUHPHQWOD UHODWLRQ G ν GLY I + ( α ⋅ ∆ 7 =
6RXYHQWGHVSODTXHVDLQVLFKDUJpHVVDWLVIRQWULJRXUHXVHPHQWDX[K\SRWKqVHVGHFRQWUDLQWHV SODQHVFDVpWXGLpDXGXFKDSLWUH,,5DSSHORQVTXHGDQVFHFDVRQDQpFHVVDLUHPHQWOD UHODWLRQ G ν GLY I + ( α ⋅ ∆ 7 =
±&RQWUDLQWHVTXDVLSODQHV
±&RQWUDLQWHVTXDVLSODQHV
3OXV JpQpUDOHPHQW XQH SODTXH FKDUJpH GDQV VRQ SODQ QH VDWLVIDLW SDV QpFHVVDLUHPHQW DX[ K\SRWKqVHV GH FRQWUDLQWHV SODQHV PDLV QRXV DYRQV PRQWUp DX WRPH , FKDSLWUH 9, TX¶RQFRPPHWWDLWXQHWUqVIDLEOHHUUHXUHQFRQVLGpUDQWFHVK\SRWKqVHVFRPPHVDWLVIDLWHVF¶HVW jGLUHHQFRQVLGpUDQW ± G¶XQHSDUW σ ] τ [] τ \] FRPPHLGHQWLTXHPHQWQXOV
3OXV JpQpUDOHPHQW XQH SODTXH FKDUJpH GDQV VRQ SODQ QH VDWLVIDLW SDV QpFHVVDLUHPHQW DX[ K\SRWKqVHV GH FRQWUDLQWHV SODQHV PDLV QRXV DYRQV PRQWUp DX WRPH , FKDSLWUH 9, TX¶RQFRPPHWWDLWXQHWUqVIDLEOHHUUHXUHQFRQVLGpUDQWFHVK\SRWKqVHVFRPPHVDWLVIDLWHVF¶HVW jGLUHHQFRQVLGpUDQW ± G¶XQHSDUW σ ] τ [] τ \] FRPPHLGHQWLTXHPHQWQXOV
± G¶DXWUHSDUW σ ] σ \ τ [\ FRPPHLQGpSHQGDQWVGH]
± G¶DXWUHSDUW σ ] σ \ τ [\ FRPPHLQGpSHQGDQWVGH]
&HWWHHUUHXUHVWG¶DXWDQWSOXVIDLEOHTXHODSODTXHHVWSOXVPLQFH
&HWWHHUUHXUHVWG¶DXWDQWSOXVIDLEOHTXHODSODTXHHVWSOXVPLQFH
5DSSHORQVGDQVFHFDVOHVUHODWLRQVGH+RRNH'XKDPHO
5DSSHORQVGDQVFHFDVOHVUHODWLRQVGH+RRNH'XKDPHO
⎡ σ[ ⎢ [Σ] = ⎢τ[\ ⎢ ⎢⎣
τ [\ σ\
⎤ ⎡ ε[ ⎥ ⎢ ⎥ [E] = ⎢ γ [\ ⎥ ⎢ ⎢⎣ ⎥⎦
γ [\ ε\
⎤ ⎥ ⎥ ⎥ ε ] ⎥⎦
⎧ ⎪ε [ = ( σ [ − νσ \ + α 7 − 7 ⎪ ⎪ε = σ − νσ + α 7 − 7 [ ⎪⎪ \ ( \ ⎨ ⎪ε = ν σ + σ + α 7 − 7 \ ⎪ ] ( [ ⎪ ⎪τ [\ = ( γ [\ ⎪⎩ + ν
( (α ⎧ ⎪σ [ = − ν ε [ + νε \ − − ν 7 − 7 ⎪ ( (α ⎪ ε \ + νε [ − 7 − 7 ⎨σ \ = −ν − ν ⎪ ⎪ ( γ [\ ⎪τ [\ = + ν ⎩
- 74 -
⎡ σ[ ⎢ [Σ] = ⎢τ[\ ⎢ ⎢⎣
τ [\ σ\
⎤ ⎡ ε[ ⎥ ⎢ ⎥ [E] = ⎢ γ [\ ⎥ ⎢ ⎢⎣ ⎥⎦
γ [\ ε\
⎤ ⎥ ⎥ ⎥ ε ] ⎥⎦
⎧ ⎪ε [ = ( σ [ − νσ \ + α 7 − 7 ⎪ ⎪ε = σ − νσ + α 7 − 7 [ ⎪⎪ \ ( \ ⎨ ⎪ε = ν σ + σ + α 7 − 7 \ ⎪ ] ( [ ⎪ ⎪τ [\ = ( γ [\ ⎪⎩ + ν
( (α ⎧ ⎪σ [ = − ν ε [ + νε \ − − ν 7 − 7 ⎪ ( (α ⎪ ε \ + νε [ − 7 − 7 ⎨σ \ = −ν − ν ⎪ ⎪ ( γ [\ ⎪τ [\ = + ν ⎩
- 74 -
DYHFpJDOHPHQW
ε] = −
+ ν ν ε [ + ε \ + α 7 − 7 − ν − ν
DYHFpJDOHPHQW
ε] = −
+ ν ν ε [ + ε \ + α 7 − 7 − ν − ν
1RXV DYRQV GRQQp DX FKDSLWUH ,, OHV PpWKRGHV GH UpVROXWLRQ G¶XQ SUREOqPH GH FRQWUDLQWHV SODQHV /D SOXV XWLOLVpH HVW OD PpWKRGH GHV FRQWUDLQWHV TXL FRQVLVWH j LQWpJUHU OH V\VWqPH
1RXV DYRQV GRQQp DX FKDSLWUH ,, OHV PpWKRGHV GH UpVROXWLRQ G¶XQ SUREOqPH GH FRQWUDLQWHV SODQHV /D SOXV XWLOLVpH HVW OD PpWKRGH GHV FRQWUDLQWHV TXL FRQVLVWH j LQWpJUHU OH V\VWqPH
⎧ ∂ σ [ ∂ τ [\ + = ⎪I [ + ∂[ ∂\ ⎪ ⎪ ∂ τ [\ ∂ σ \ ⎪ (TXLOLEUHORFDO + = ⎨I \ + ∂[ ∂\ ⎪ ⎪ ⎪∆ σ + σ + + ν GLY IG + ( α ⋅ ∆ 7 = [ \ ⎪ ⎩
⎧ ∂ σ [ ∂ τ [\ + = ⎪I [ + ∂[ ∂\ ⎪ ⎪ ∂ τ [\ ∂ σ \ ⎪ (TXLOLEUHORFDO + = ⎨I \ + ∂[ ∂\ ⎪ ⎪ ⎪∆ σ + σ + + ν GLY IG + ( α ⋅ ∆ 7 = [ \ ⎪ ⎩
&HWWH WURLVLqPH pTXDWLRQ HVW O¶H[SUHVVLRQ HQ WHUPHV GH FRQWUDLQWHV HW FRPSWH WHQX GHV GHX[ DXWUHVGHO¶pTXDWLRQGHFRPSDWLELOLWp
&HWWH WURLVLqPH pTXDWLRQ HVW O¶H[SUHVVLRQ HQ WHUPHV GH FRQWUDLQWHV HW FRPSWH WHQX GHV GHX[ DXWUHVGHO¶pTXDWLRQGHFRPSDWLELOLWp
∂ γ [\ ∂ ε[ ∂ ε\ + = ∂[ ∂\ ∂ \ ∂ [
∂ γ [\ ∂ ε[ ∂ ε\ + = ∂[ ∂\ ∂ \ ∂ [
5HPDUTXHVLO¶RQXWLOLVHXQHIRQFWLRQG¶$LU\ φ [ \ FHOOHFLVDWLVIDLWO¶pTXDWLRQ ∆ ∆ φ = − ν ∆ 9 − ( α ∆ 7
5HPDUTXHVLO¶RQXWLOLVHXQHIRQFWLRQG¶$LU\ φ [ \ FHOOHFLVDWLVIDLWO¶pTXDWLRQ
5HPDUTXHOHVFRQWUDLQWHVpWDQWFRQVWDQWHVVXLYDQWO¶pSDLVVHXURQD
∆ ∆ φ = − ν ∆ 9 − ( α ∆ 7
5HPDUTXHOHVFRQWUDLQWHVpWDQWFRQVWDQWHVVXLYDQWO¶pSDLVVHXURQD
1 [ = K ⋅ σ [ 1 \ = K ⋅ σ \ 7[ = 7\ = K ⋅ τ [\
1 [ = K ⋅ σ [ 1 \ = K ⋅ σ \ 7[ = 7\ = K ⋅ τ [\
G G /HVpTXDWLRQV V¶pFULYHQWDORUVDXVVLSXLVTXH S = K ⋅ I IRUFHVXUIDFLTXH
G G /HVpTXDWLRQV V¶pFULYHQWDORUVDXVVLSXLVTXH S = K ⋅ I IRUFHVXUIDFLTXH
⎧ ∂ 1 [ ∂ 7\ + = ⎪S [ + ∂[ ∂\ ⎪ ⎪ ∂ 7[ ∂ 1 \ ⎪ + = ⎨S \ + ∂[ ∂\ ⎪ ⎪ ⎪∆ 1 + 1 + + ν GLY SG + ( K α ⋅ ∆ 7 = [ \ ⎪ ⎩
⎧ ∂ 1 [ ∂ 7\ + = ⎪S [ + ∂[ ∂\ ⎪ ⎪ ∂ 7[ ∂ 1 \ ⎪ + = ⎨S \ + ∂[ ∂\ ⎪ ⎪ ⎪∆ 1 + 1 + + ν GLY SG + ( K α ⋅ ∆ 7 = [ \ ⎪ ⎩
5HPDUTXH GDQV OH FDV WUqV FRXUDQW R O¶RQ HVW GHQ UpJLPH VWDWLRQQDLUH VDQV IRUFH YROXPLTXHVQLVRXUFHVGHFKDOHXUDXVHLQGXVROLGHRQD I = HW ∆ 7 = FHTXLVLPSOLILHOHV pTXDWLRQV HW
5HPDUTXH GDQV OH FDV WUqV FRXUDQW R O¶RQ HVW GHQ UpJLPH VWDWLRQQDLUH VDQV IRUFH YROXPLTXHVQLVRXUFHVGHFKDOHXUDXVHLQGXVROLGHRQD I = HW ∆ 7 = FHTXLVLPSOLILHOHV pTXDWLRQV HW
- 75 -
- 75 -
DYHFpJDOHPHQW
ε] = −
+ ν ν ε [ + ε \ + α 7 − 7 − ν − ν
DYHFpJDOHPHQW
ε] = −
+ ν ν ε [ + ε \ + α 7 − 7 − ν − ν
1RXV DYRQV GRQQp DX FKDSLWUH ,, OHV PpWKRGHV GH UpVROXWLRQ G¶XQ SUREOqPH GH FRQWUDLQWHV SODQHV /D SOXV XWLOLVpH HVW OD PpWKRGH GHV FRQWUDLQWHV TXL FRQVLVWH j LQWpJUHU OH V\VWqPH
1RXV DYRQV GRQQp DX FKDSLWUH ,, OHV PpWKRGHV GH UpVROXWLRQ G¶XQ SUREOqPH GH FRQWUDLQWHV SODQHV /D SOXV XWLOLVpH HVW OD PpWKRGH GHV FRQWUDLQWHV TXL FRQVLVWH j LQWpJUHU OH V\VWqPH
⎧ ∂ σ [ ∂ τ [\ + = ⎪I [ + ∂[ ∂\ ⎪ ⎪ ∂ τ [\ ∂ σ \ ⎪ (TXLOLEUHORFDO + = ⎨I \ + ∂[ ∂\ ⎪ ⎪ ⎪∆ σ + σ + + ν GLY IG + ( α ⋅ ∆ 7 = [ \ ⎪ ⎩
⎧ ∂ σ [ ∂ τ [\ + = ⎪I [ + ∂[ ∂\ ⎪ ⎪ ∂ τ [\ ∂ σ \ ⎪ (TXLOLEUHORFDO + = ⎨I \ + ∂[ ∂\ ⎪ ⎪ ⎪∆ σ + σ + + ν GLY IG + ( α ⋅ ∆ 7 = [ \ ⎪ ⎩
&HWWH WURLVLqPH pTXDWLRQ HVW O¶H[SUHVVLRQ HQ WHUPHV GH FRQWUDLQWHV HW FRPSWH WHQX GHV GHX[ DXWUHVGHO¶pTXDWLRQGHFRPSDWLELOLWp
&HWWH WURLVLqPH pTXDWLRQ HVW O¶H[SUHVVLRQ HQ WHUPHV GH FRQWUDLQWHV HW FRPSWH WHQX GHV GHX[ DXWUHVGHO¶pTXDWLRQGHFRPSDWLELOLWp
∂ γ [\ ∂ ε[ ∂ ε\ + = ∂[ ∂\ ∂ \ ∂ [
∂ γ [\ ∂ ε[ ∂ ε\ + = ∂[ ∂\ ∂ \ ∂ [
5HPDUTXHVLO¶RQXWLOLVHXQHIRQFWLRQG¶$LU\ φ [ \ FHOOHFLVDWLVIDLWO¶pTXDWLRQ
∆ ∆ φ = − ν ∆ 9 − ( α ∆ 7
5HPDUTXHVLO¶RQXWLOLVHXQHIRQFWLRQG¶$LU\ φ [ \ FHOOHFLVDWLVIDLWO¶pTXDWLRQ
5HPDUTXHOHVFRQWUDLQWHVpWDQWFRQVWDQWHVVXLYDQWO¶pSDLVVHXURQD
∆ ∆ φ = − ν ∆ 9 − ( α ∆ 7
5HPDUTXHOHVFRQWUDLQWHVpWDQWFRQVWDQWHVVXLYDQWO¶pSDLVVHXURQD
1 [ = K ⋅ σ [ 1 \ = K ⋅ σ \ 7[ = 7\ = K ⋅ τ [\
1 [ = K ⋅ σ [ 1 \ = K ⋅ σ \ 7[ = 7\ = K ⋅ τ [\
G G /HVpTXDWLRQV V¶pFULYHQWDORUVDXVVLSXLVTXH S = K ⋅ I IRUFHVXUIDFLTXH
G G /HVpTXDWLRQV V¶pFULYHQWDORUVDXVVLSXLVTXH S = K ⋅ I IRUFHVXUIDFLTXH
⎧ ∂ 1 [ ∂ 7\ + = ⎪S [ + ∂[ ∂\ ⎪ ⎪ ∂ 7[ ∂ 1 \ ⎪ + = ⎨S \ + ∂[ ∂\ ⎪ ⎪ ⎪∆ 1 + 1 + + ν GLY SG + ( K α ⋅ ∆ 7 = [ \ ⎪ ⎩
⎧ ∂ 1 [ ∂ 7\ + = ⎪S [ + ∂[ ∂\ ⎪ ⎪ ∂ 7[ ∂ 1 \ ⎪ + = ⎨S \ + ∂[ ∂\ ⎪ ⎪ ⎪∆ 1 + 1 + + ν GLY SG + ( K α ⋅ ∆ 7 = [ \ ⎪ ⎩
5HPDUTXH GDQV OH FDV WUqV FRXUDQW R O¶RQ HVW GHQ UpJLPH VWDWLRQQDLUH VDQV IRUFH YROXPLTXHVQLVRXUFHVGHFKDOHXUDXVHLQGXVROLGHRQD I = HW ∆ 7 = FHTXLVLPSOLILHOHV pTXDWLRQV HW
5HPDUTXH GDQV OH FDV WUqV FRXUDQW R O¶RQ HVW GHQ UpJLPH VWDWLRQQDLUH VDQV IRUFH YROXPLTXHVQLVRXUFHVGHFKDOHXUDXVHLQGXVROLGHRQD I = HW ∆ 7 = FHTXLVLPSOLILHOHV pTXDWLRQV HW
- 75 -
- 75 -
([HPSOHFRXURQQHFLUFXODLUHPLQFHVRXPLVHjXQJUDGLHQWUDGLDOGHWHPSpUDWXUH
([HPSOHFRXURQQHFLUFXODLUHPLQFHVRXPLVHjXQJUDGLHQWUDGLDOGHWHPSpUDWXUH
)LJXUH
)LJXUH
[R\ GpVLJQHOHSODQPR\HQ/DILJXUHGRQQHOHVFDUDFWpULVWLTXHVJpRPpWULTXHVUD\RQV 5 HW 5 /¶pSDLVVHXUHVWK/HVFDUDFWpULVWLTXHVGXPDWpULDXVRQW( ν α /HVERUGVLQWpULHXUHW K H[WpULHXU VRQW PDLQWHQXV DX[ WHPSpUDWXUHV 7 HW 7 UHVSHFWLYHPHQW /HV IDFHV ] = − HW K ] = VRQWUHFRXYHUWHVG¶XQLVRODQWSDUIDLWVDQVULJLGLWpPpFDQLTXH$XFKDSLWUH,,QRXV DYRQVFDOFXOpOHFKDPSGHWHPSpUDWXUH
[R\ GpVLJQHOHSODQPR\HQ/DILJXUHGRQQHOHVFDUDFWpULVWLTXHVJpRPpWULTXHVUD\RQV 5 HW 5 /¶pSDLVVHXUHVWK/HVFDUDFWpULVWLTXHVGXPDWpULDXVRQW( ν α /HVERUGVLQWpULHXUHW K H[WpULHXU VRQW PDLQWHQXV DX[ WHPSpUDWXUHV 7 HW 7 UHVSHFWLYHPHQW /HV IDFHV ] = − HW K ] = VRQWUHFRXYHUWHVG¶XQLVRODQWSDUIDLWVDQVULJLGLWpPpFDQLTXH$XFKDSLWUH,,QRXV DYRQVFDOFXOpOHFKDPSGHWHPSpUDWXUH
7 = $ /RJ U + %
DYHF
$=
7 = $ /RJ U + %
7 /RJ 5 − 7 /RJ 5 7 − 7 HW % = ⎛ 5 ⎞ ⎛ 5 ⎞ ⎟⎟ ⎟⎟ /RJ ⎜⎜ /RJ ⎜⎜ ⎝ 5 ⎠ ⎝ 5 ⎠
DYHF
$=
7 /RJ 5 − 7 /RJ 5 7 − 7 HW % = ⎛ 5 ⎞ ⎛ 5 ⎞ ⎟⎟ ⎟⎟ /RJ ⎜⎜ /RJ ⎜⎜ ⎝ 5 ⎠ ⎝ 5 ⎠
&DOFXORQVOHVFRQWUDLQWHV σ U σθ OHVGpIRUPDWLRQV ε U εθ ε ] HWOHVGpSODFHPHQWVXUDGLDO HW ZWUDQVYHUVDO SDUODPpWKRGHGHVGpSODFHPHQWV
&DOFXORQVOHVFRQWUDLQWHV σ U σθ OHVGpIRUPDWLRQV ε U εθ ε ] HWOHVGpSODFHPHQWVXUDGLDO HW ZWUDQVYHUVDO SDUODPpWKRGHGHVGpSODFHPHQWV
/¶pTXDWLRQGH1DYLHU'XKDPHO GXFKDSLWUH,,V¶pFULWLFLOHFKDPSGHGpSODFHPHQWV 3R3 pWDQWLUURWDWLRQQHO G ⎛ GX X ⎞ ⎜ + ⎟= G U ⎜⎝ G U U ⎟⎠
/¶pTXDWLRQGH1DYLHU'XKDPHO GXFKDSLWUH,,V¶pFULWLFLOHFKDPSGHGpSODFHPHQWV 3R3 pWDQWLUURWDWLRQQHO G ⎛ GX X ⎞ ⎜ + ⎟= G U ⎜⎝ G U U ⎟⎠
6DVROXWLRQJpQpUDOHV¶pFULW
6DVROXWLRQJpQpUDOHV¶pFULW X = &U +
' G¶RO¶RQWLUH U
X = &U +
- 76 -
' G¶RO¶RQWLUH U
- 76 -
([HPSOHFRXURQQHFLUFXODLUHPLQFHVRXPLVHjXQJUDGLHQWUDGLDOGHWHPSpUDWXUH
([HPSOHFRXURQQHFLUFXODLUHPLQFHVRXPLVHjXQJUDGLHQWUDGLDOGHWHPSpUDWXUH
)LJXUH
)LJXUH
[R\ GpVLJQHOHSODQPR\HQ/DILJXUHGRQQHOHVFDUDFWpULVWLTXHVJpRPpWULTXHVUD\RQV 5 HW 5 /¶pSDLVVHXUHVWK/HVFDUDFWpULVWLTXHVGXPDWpULDXVRQW( ν α /HVERUGVLQWpULHXUHW K H[WpULHXU VRQW PDLQWHQXV DX[ WHPSpUDWXUHV 7 HW 7 UHVSHFWLYHPHQW /HV IDFHV ] = − HW K ] = VRQWUHFRXYHUWHVG¶XQLVRODQWSDUIDLWVDQVULJLGLWpPpFDQLTXH$XFKDSLWUH,,QRXV DYRQVFDOFXOpOHFKDPSGHWHPSpUDWXUH
[R\ GpVLJQHOHSODQPR\HQ/DILJXUHGRQQHOHVFDUDFWpULVWLTXHVJpRPpWULTXHVUD\RQV 5 HW 5 /¶pSDLVVHXUHVWK/HVFDUDFWpULVWLTXHVGXPDWpULDXVRQW( ν α /HVERUGVLQWpULHXUHW K H[WpULHXU VRQW PDLQWHQXV DX[ WHPSpUDWXUHV 7 HW 7 UHVSHFWLYHPHQW /HV IDFHV ] = − HW K ] = VRQWUHFRXYHUWHVG¶XQLVRODQWSDUIDLWVDQVULJLGLWpPpFDQLTXH$XFKDSLWUH,,QRXV DYRQVFDOFXOpOHFKDPSGHWHPSpUDWXUH
7 = $ /RJ U + %
DYHF
$=
7 /RJ 5 − 7 /RJ 5 7 − 7 HW % = ⎛5 ⎞ ⎛5 ⎞ /RJ ⎜⎜ ⎟⎟ /RJ ⎜⎜ ⎟⎟ ⎝ 5 ⎠ ⎝ 5 ⎠
7 = $ /RJ U + %
DYHF
$=
7 /RJ 5 − 7 /RJ 5 7 − 7 HW % = ⎛5 ⎞ ⎛5 ⎞ /RJ ⎜⎜ ⎟⎟ /RJ ⎜⎜ ⎟⎟ ⎝ 5 ⎠ ⎝ 5 ⎠
&DOFXORQVOHVFRQWUDLQWHV σ U σθ OHVGpIRUPDWLRQV ε U εθ ε ] HWOHVGpSODFHPHQWVXUDGLDO HW ZWUDQVYHUVDO SDUODPpWKRGHGHVGpSODFHPHQWV
&DOFXORQVOHVFRQWUDLQWHV σ U σθ OHVGpIRUPDWLRQV ε U εθ ε ] HWOHVGpSODFHPHQWVXUDGLDO HW ZWUDQVYHUVDO SDUODPpWKRGHGHVGpSODFHPHQWV
/¶pTXDWLRQGH1DYLHU'XKDPHO GXFKDSLWUH,,V¶pFULWLFLOHFKDPSGHGpSODFHPHQWV 3R3 pWDQWLUURWDWLRQQHO G ⎛ GX X ⎞ ⎜ + ⎟= G U ⎜⎝ G U U ⎟⎠
/¶pTXDWLRQGH1DYLHU'XKDPHO GXFKDSLWUH,,V¶pFULWLFLOHFKDPSGHGpSODFHPHQWV 3R3 pWDQWLUURWDWLRQQHO G ⎛ GX X ⎞ ⎜ + ⎟= G U ⎜⎝ G U U ⎟⎠
6DVROXWLRQJpQpUDOHV¶pFULW
6DVROXWLRQJpQpUDOHV¶pFULW X = &U +
' G¶RO¶RQWLUH U
- 76 -
X = &U +
' G¶RO¶RQWLUH U
- 76 -
⎧ GX ' ⎪ε U = G U = & − U ⎪ ⎪ X ' ⎪ ⎨εθ = = & + U U ⎪ ⎪ ⎪ε = ν& + + ν α 7 − 7 ⎪ ] − ν − ν ⎩
⎧ ( ⎪σ U = − ν ⎪ ⎨ ⎪ ( ⎪σθ = − ν ⎩
'⎤ ( α ⎡ ⎢⎣& + ν − − ν U ⎥⎦ − − ν 7 − 7 '⎤ ( α ⎡ ⎢⎣& + ν + − ν U ⎥⎦ − − ν 7 − 7
⎧ GX ' ⎪ε U = G U = & − U ⎪ ⎪ X ' ⎪ ⎨εθ = = & + U U ⎪ ⎪ ⎪ε = ν& + + ν α 7 − 7 ⎪ ] − ν − ν ⎩
⎧ ( ⎪σ U = − ν ⎪ ⎨ ⎪ ( ⎪σθ = − ν ⎩
'⎤ ( α ⎡ ⎢⎣& + ν − − ν U ⎥⎦ − − ν 7 − 7 '⎤ ( α ⎡ ⎢⎣& + ν + − ν U ⎥⎦ − − ν 7 − 7
/HV FRQGLWLRQV DX[ OLPLWHV VRQW σ U = SRXU 5 HW 5 2Q HQ GpGXLW OHV FRQVWDQWHV G¶LQWpJUDWLRQ&HW' ⎧ ⎞ ⎛ 7 5 − 7 5 ⎪& = α ⎜⎜ − 7 ⎟⎟ ⎪ ⎠ ⎝ 5 − 5 ⎨ ⎪ + ν 5 5 (7 − 7 ) ⎪' = α − ν 5 − 5 ⎩
/HV FRQGLWLRQV DX[ OLPLWHV VRQW σ U = SRXU 5 HW 5 2Q HQ GpGXLW OHV FRQVWDQWHV G¶LQWpJUDWLRQ&HW' ⎧ ⎞ ⎛ 7 5 − 7 5 ⎪& = α ⎜⎜ − 7 ⎟⎟ ⎪ ⎠ ⎝ 5 − 5 ⎨ ⎪ + ν 5 5 (7 − 7 ) ⎪' = α − ν 5 − 5 ⎩
±3/$48(&+$5*e(75$169(56$/(0(17
±3/$48(&+$5*e(75$169(56$/(0(17
3DUGpILQLWLRQODSODTXHHVWVRXPLVH
3DUGpILQLWLRQODSODTXHHVWVRXPLVH
± jXQJUDGLHQWWUDQVYHUVDOGHWHPSpUDWXUH
∂7 = $ [ \ ∂]
± jXQJUDGLHQWWUDQVYHUVDOGHWHPSpUDWXUH
∂7 = $ [ \ ∂]
± jGHVIRUFHVQRUPDOHVjODSODTXHVXSSRVpHVDSSOLTXpHVDXIHXLOOHWPR\HQSRQFWXHOOHVRX VXUIDFLTXHVGHGHQVLWp S ] RXHQFRUHOLQpLTXHVXUOHVERUGGHGHQVLWp4
± jGHVIRUFHVQRUPDOHVjODSODTXHVXSSRVpHVDSSOLTXpHVDXIHXLOOHWPR\HQSRQFWXHOOHVRX VXUIDFLTXHVGHGHQVLWp S ] RXHQFRUHOLQpLTXHVXUOHVERUGGHGHQVLWp4
± jGHVFRXSOHVOLQpLTXHVGHIOH[LRQHWWRUVLRQVXUOHVERUGV
± jGHVFRXSOHVOLQpLTXHVGHIOH[LRQHWWRUVLRQVXUOHVERUGV
/H IHXLOOHW PR\HQ GHYLHQW XQH VXUIDFH FRXUEH /HV HIIRUWV GH PHPEUDQH 1 7 VRQW LGHQWLTXHPHQWQXOV
/H IHXLOOHW PR\HQ GHYLHQW XQH VXUIDFH FRXUEH /HV HIIRUWV GH PHPEUDQH 1 7 VRQW LGHQWLTXHPHQWQXOV
/HV K\SRWKqVHV TXL QRXV SHUPHWWHQW G¶pODERUHU XQH PpWKRGH GH FDOFXO VRQW FHOOHV GX FDV LVRWKHUPH WRPH , QRXV \ DMRXWRQV O¶K\SRWKqVH GX JUDGLHQW WUDQVYHUVDO GH WHPSpUDWXUH $[\ LQGpSHQGDQWGH]F¶HVWjGLUHFRQVWDQWVXLYDQWO¶pSDLVVHXU
/HV K\SRWKqVHV TXL QRXV SHUPHWWHQW G¶pODERUHU XQH PpWKRGH GH FDOFXO VRQW FHOOHV GX FDV LVRWKHUPH WRPH , QRXV \ DMRXWRQV O¶K\SRWKqVH GX JUDGLHQW WUDQVYHUVDO GH WHPSpUDWXUH $[\ LQGpSHQGDQWGH]F¶HVWjGLUHFRQVWDQWVXLYDQWO¶pSDLVVHXU
&HWWH PpWKRGH HVW XQH PpWKRGH GHV GpSODFHPHQWV TXL FRQVLVWH GDQV XQ SUHPLHU WHPSV j H[SULPHUWRXVOHVSDUDPqWUHVGXSUREOqPHHQIRQFWLRQGHODIOqFKHZ[\ SULVHSDUOHSRLQW FRXUDQW 3 GXIHXLOOHWPR\HQSRXUpWDEOLUHQVXLWHO¶pTXDWLRQGH/DJUDQJHjODTXHOOHVDWLVIDLW FHWWHIOqFKH(WDEOLVVRQVPDLQWHQDQWFHVIRUPXOHVHQFRRUGRQQpHVFDUWpVLHQQHV
&HWWH PpWKRGH HVW XQH PpWKRGH GHV GpSODFHPHQWV TXL FRQVLVWH GDQV XQ SUHPLHU WHPSV j H[SULPHUWRXVOHVSDUDPqWUHVGXSUREOqPHHQIRQFWLRQGHODIOqFKHZ[\ SULVHSDUOHSRLQW FRXUDQW 3 GXIHXLOOHWPR\HQSRXUpWDEOLUHQVXLWHO¶pTXDWLRQGH/DJUDQJHjODTXHOOHVDWLVIDLW FHWWHIOqFKH(WDEOLVVRQVPDLQWHQDQWFHVIRUPXOHVHQFRRUGRQQpHVFDUWpVLHQQHV
- 77 -
- 77 -
⎧ GX ' ⎪ε U = G U = & − U ⎪ ⎪ X ' ⎪ ⎨εθ = = & + U U ⎪ ⎪ ⎪ε = ν& + + ν α 7 − 7 ⎪ ] − ν − ν ⎩
⎧ GX ' ⎪ε U = G U = & − U ⎪ ⎪ X ' ⎪ ⎨εθ = = & + U U ⎪ ⎪ ⎪ε = ν& + + ν α 7 − 7 ⎪ ] − ν − ν ⎩
⎧ ( ⎪σ U = − ν ⎪ ⎨ ⎪ ( ⎪σθ = − ν ⎩
'⎤ ( α ⎡ ⎢⎣& + ν − − ν U ⎥⎦ − − ν 7 − 7 '⎤ ( α ⎡ ⎢⎣& + ν + − ν U ⎥⎦ − − ν 7 − 7
⎧ ( ⎪σ U = − ν ⎪ ⎨ ⎪ ( ⎪σθ = − ν ⎩
'⎤ ( α ⎡ ⎢⎣& + ν − − ν U ⎥⎦ − − ν 7 − 7 '⎤ ( α ⎡ ⎢⎣& + ν + − ν U ⎥⎦ − − ν 7 − 7
/HV FRQGLWLRQV DX[ OLPLWHV VRQW σ U = SRXU 5 HW 5 2Q HQ GpGXLW OHV FRQVWDQWHV G¶LQWpJUDWLRQ&HW' ⎧ ⎞ ⎛ 7 5 − 7 5 ⎪& = α ⎜⎜ − 7 ⎟⎟ ⎪ ⎠ ⎝ 5 − 5 ⎨ ⎪ + ν 5 5 (7 − 7 ) ⎪' = α − ν 5 − 5 ⎩
/HV FRQGLWLRQV DX[ OLPLWHV VRQW σ U = SRXU 5 HW 5 2Q HQ GpGXLW OHV FRQVWDQWHV G¶LQWpJUDWLRQ&HW' ⎧ ⎞ ⎛ 7 5 − 7 5 ⎪& = α ⎜⎜ − 7 ⎟⎟ ⎪ ⎠ ⎝ 5 − 5 ⎨ ⎪ + ν 5 5 (7 − 7 ) ⎪' = α − ν 5 − 5 ⎩
±3/$48(&+$5*e(75$169(56$/(0(17
±3/$48(&+$5*e(75$169(56$/(0(17
3DUGpILQLWLRQODSODTXHHVWVRXPLVH
3DUGpILQLWLRQODSODTXHHVWVRXPLVH
∂7 ± jXQJUDGLHQWWUDQVYHUVDOGHWHPSpUDWXUH = $ [ \ ∂]
± jXQJUDGLHQWWUDQVYHUVDOGHWHPSpUDWXUH
± jGHVIRUFHVQRUPDOHVjODSODTXHVXSSRVpHVDSSOLTXpHVDXIHXLOOHWPR\HQSRQFWXHOOHVRX VXUIDFLTXHVGHGHQVLWp S ] RXHQFRUHOLQpLTXHVXUOHVERUGGHGHQVLWp4
± jGHVIRUFHVQRUPDOHVjODSODTXHVXSSRVpHVDSSOLTXpHVDXIHXLOOHWPR\HQSRQFWXHOOHVRX VXUIDFLTXHVGHGHQVLWp S ] RXHQFRUHOLQpLTXHVXUOHVERUGGHGHQVLWp4
± jGHVFRXSOHVOLQpLTXHVGHIOH[LRQHWWRUVLRQVXUOHVERUGV
± jGHVFRXSOHVOLQpLTXHVGHIOH[LRQHWWRUVLRQVXUOHVERUGV
/H IHXLOOHW PR\HQ GHYLHQW XQH VXUIDFH FRXUEH /HV HIIRUWV GH PHPEUDQH 1 7 VRQW LGHQWLTXHPHQWQXOV
/H IHXLOOHW PR\HQ GHYLHQW XQH VXUIDFH FRXUEH /HV HIIRUWV GH PHPEUDQH 1 7 VRQW LGHQWLTXHPHQWQXOV
/HV K\SRWKqVHV TXL QRXV SHUPHWWHQW G¶pODERUHU XQH PpWKRGH GH FDOFXO VRQW FHOOHV GX FDV LVRWKHUPH WRPH , QRXV \ DMRXWRQV O¶K\SRWKqVH GX JUDGLHQW WUDQVYHUVDO GH WHPSpUDWXUH $[\ LQGpSHQGDQWGH]F¶HVWjGLUHFRQVWDQWVXLYDQWO¶pSDLVVHXU
/HV K\SRWKqVHV TXL QRXV SHUPHWWHQW G¶pODERUHU XQH PpWKRGH GH FDOFXO VRQW FHOOHV GX FDV LVRWKHUPH WRPH , QRXV \ DMRXWRQV O¶K\SRWKqVH GX JUDGLHQW WUDQVYHUVDO GH WHPSpUDWXUH $[\ LQGpSHQGDQWGH]F¶HVWjGLUHFRQVWDQWVXLYDQWO¶pSDLVVHXU
&HWWH PpWKRGH HVW XQH PpWKRGH GHV GpSODFHPHQWV TXL FRQVLVWH GDQV XQ SUHPLHU WHPSV j H[SULPHUWRXVOHVSDUDPqWUHVGXSUREOqPHHQIRQFWLRQGHODIOqFKHZ[\ SULVHSDUOHSRLQW FRXUDQW 3 GXIHXLOOHWPR\HQSRXUpWDEOLUHQVXLWHO¶pTXDWLRQGH/DJUDQJHjODTXHOOHVDWLVIDLW FHWWHIOqFKH(WDEOLVVRQVPDLQWHQDQWFHVIRUPXOHVHQFRRUGRQQpHVFDUWpVLHQQHV
&HWWH PpWKRGH HVW XQH PpWKRGH GHV GpSODFHPHQWV TXL FRQVLVWH GDQV XQ SUHPLHU WHPSV j H[SULPHUWRXVOHVSDUDPqWUHVGXSUREOqPHHQIRQFWLRQGHODIOqFKHZ[\ SULVHSDUOHSRLQW FRXUDQW 3 GXIHXLOOHWPR\HQSRXUpWDEOLUHQVXLWHO¶pTXDWLRQGH/DJUDQJHjODTXHOOHVDWLVIDLW FHWWHIOqFKH(WDEOLVVRQVPDLQWHQDQWFHVIRUPXOHVHQFRRUGRQQpHVFDUWpVLHQQHV
- 77 -
- 77 -
∂7 = $ [ \ ∂]
UHpWDSHH[SUHVVLRQGHVWUDQVODWLRQV
UHpWDSHH[SUHVVLRQGHVWUDQVODWLRQV
⎧ ∂Z ⎪X = − ] ∂ [ ⎪ ∂Z ⎪ 3R3 ⎨Y = −] ∂\ ⎪ ⎪ ⎪ Z = Z [ \ ⎩
HpWDSHH[SUHVVLRQGHVGpIRUPDWLRQV
γ [] HW γ \] VHURQWFDOFXOpVSOXVORLQRQDGHSOXV
⎧ ∂X ∂ Z = −] ⎪ε [ = ∂[ ∂ [ ⎪ ∂Y ∂ Z ⎪⎪ = −] ⎨ε \ = ∂\ ∂ \ ⎪ ⎪ ∂ Z ⎛ ∂X ∂Y ⎞ ⎟⎟ = − ] + ⎪γ [\ = ⎜⎜ ∂[ ∂\ ⎝∂\ ∂[ ⎠ ⎩⎪
+ ν ν ε [ + ε \ + α 7 − 7 − ν − ν
ε] = −
+ ν ν ε [ + ε \ + α 7 − 7 − ν − ν
HpWDSHH[SUHVVLRQGHVFRQWUDLQWHV
$O¶DLGHGHODORLGH+RRNH'XKDPHORQREWLHQW
$O¶DLGHGHODORLGH+RRNH'XKDPHORQREWLHQW
( (α ⎧ ⎪σ [ = − ν ε [ + ν ε \ − − ν 7 − 7 ⎪ ⎪ ( (α ⎪ ε \ + ν ε [ − 7 − 7 ⎨σ \ = − ν − ν ⎪ ⎪ ⎪τ = ( γ [\ [\ + ν ⎩⎪
( (α ⎧ ⎪σ [ = − ν ε [ + ν ε \ − − ν 7 − 7 ⎪ ⎪ ( (α ⎪ ε \ + ν ε [ − 7 − 7 ⎨σ \ = − ν − ν ⎪ ⎪ ⎪τ = ( γ [\ [\ + ν ⎩⎪
6RLW
6RLW ⎧ ( ⎡ ∂ Z +ν ⎪σ [ = − ⎢ − ν ⎣⎢ ∂ [ ⎪ ⎪ ( ⎡ ∂ Z ⎪ +ν ⎢ ⎨σ \ = − − ν ⎣⎢ ∂ \ ⎪ ⎪ ⎪τ = − ( ∂ Z ⋅ ] ⎪ [\ + ν ∂ [ ∂ \ ⎩
⎤ ∂ Z + α + ν $ ⎥ ⋅ ] ∂\ ⎦⎥ ⎤ ∂ Z + α + ν $ ⎥ ⋅ ] ∂[ ⎦⎥
⎧ ( ⎡ ∂ Z +ν ⎪σ [ = − ⎢ − ν ⎣⎢ ∂ [ ⎪ ⎪ ( ⎡ ∂ Z ⎪ +ν ⎢ ⎨σ \ = − − ν ⎣⎢ ∂ \ ⎪ ⎪ ⎪τ = − ( ∂ Z ⋅ ] ⎪ [\ + ν ∂ [ ∂ \ ⎩
- 78 -
HpWDSHH[SUHVVLRQGHVGpIRUPDWLRQV
γ [] HW γ \] VHURQWFDOFXOpVSOXVORLQRQDGHSOXV
⎧ ∂Z ⎪X = − ] ∂ [ ⎪ ∂Z ⎪ 3R3 ⎨Y = − ] ∂\ ⎪ ⎪ ⎪ Z = Z [ \ ⎩
⎧ ∂X ∂ Z = −] ⎪ε [ = ∂[ ∂ [ ⎪ ⎪⎪ ∂Y ∂ Z = −] ⎨ε \ = ∂\ ∂ \ ⎪ ⎪ ∂ Z ⎛ ∂X ∂Y ⎞ ⎟⎟ = − ] + ⎪γ [\ = ⎜⎜ ∂[ ∂\ ⎝∂\ ∂[ ⎠ ⎪⎩
γ [] HW γ \] VHURQWFDOFXOpVSOXVORLQRQDGHSOXV
+ ν ν ε [ + ε \ + α 7 − 7 − ν − ν
ε] = −
+ ν ν ε [ + ε \ + α 7 − 7 − ν − ν
HpWDSHH[SUHVVLRQGHVFRQWUDLQWHV
HpWDSHH[SUHVVLRQGHVFRQWUDLQWHV
$O¶DLGHGHODORLGH+RRNH'XKDPHORQREWLHQW
$O¶DLGHGHODORLGH+RRNH'XKDPHORQREWLHQW
( (α ⎧ ⎪σ [ = − ν ε [ + ν ε \ − − ν 7 − 7 ⎪ ⎪ ( (α ⎪ ε \ + ν ε [ − 7 − 7 ⎨σ \ = −ν − ν ⎪ ⎪ ⎪τ = ( γ ⎪⎩ [\ + ν [\
( (α ⎧ ⎪σ [ = − ν ε [ + ν ε \ − − ν 7 − 7 ⎪ ⎪ ( (α ⎪ ε \ + ν ε [ − 7 − 7 ⎨σ \ = −ν − ν ⎪ ⎪ ⎪τ = ( γ ⎪⎩ [\ + ν [\
6RLW
HpWDSHH[SUHVVLRQGHVGpIRUPDWLRQV
⎧ ∂X ∂ Z = −] ⎪ε [ = ∂[ ∂ [ ⎪ ⎪⎪ ∂Y ∂ Z = −] ⎨ε \ = ∂\ ∂ \ ⎪ ⎪ ∂ Z ⎛ ∂X ∂Y ⎞ ⎟⎟ = − ] + ⎪γ [\ = ⎜⎜ ∂[ ∂\ ⎝∂\ ∂[ ⎠ ⎪⎩
ε] = −
⎤ ∂ Z + α + ν $ ⎥ ⋅ ] ∂[ ⎦⎥
UHpWDSHH[SUHVVLRQGHVWUDQVODWLRQV
⎧ ∂Z ⎪X = − ] ∂ [ ⎪ ∂Z ⎪ 3R3 ⎨Y = −] ∂\ ⎪ ⎪ ⎪ Z = Z [ \ ⎩
⎤ ∂ Z + α + ν $ ⎥ ⋅ ] ∂\ ⎦⎥
- 78 -
UHpWDSHH[SUHVVLRQGHVWUDQVODWLRQV
γ [] HW γ \] VHURQWFDOFXOpVSOXVORLQRQDGHSOXV
HpWDSHH[SUHVVLRQGHVFRQWUDLQWHV
HpWDSHH[SUHVVLRQGHVGpIRUPDWLRQV
⎧ ∂X ∂ Z = −] ⎪ε [ = ∂[ ∂ [ ⎪ ∂Y ∂ Z ⎪⎪ = −] ⎨ε \ = ∂\ ∂ \ ⎪ ⎪ ∂ Z ⎛ ∂X ∂Y ⎞ ⎟⎟ = − ] + ⎪γ [\ = ⎜⎜ ∂[ ∂\ ⎝∂\ ∂[ ⎠ ⎩⎪
ε] = −
⎧ ∂Z ⎪X = − ] ∂ [ ⎪ ∂Z ⎪ 3R3 ⎨Y = − ] ∂\ ⎪ ⎪ ⎪ Z = Z [ \ ⎩
6RLW ⎧ ( ⎡ ∂ Z +ν ⎪σ [ = − ⎢ − ν ⎢⎣ ∂ [ ⎪ ⎪ ( ⎡ ∂ Z ⎪ +ν ⎢ ⎨σ \ = − − ν ⎣⎢ ∂ \ ⎪ ⎪ ⎪τ = − ( ∂ Z ⋅ ] [\ ⎪ + ν ∂ [ ∂ \ ⎩
⎤ ∂ Z + α + ν $ ⎥ ⋅ ] ∂\ ⎥⎦ ⎤ ∂ Z + α + ν $ ⎥ ⋅ ] ∂[ ⎦⎥
- 78 -
⎧ ( ⎡ ∂ Z +ν ⎪σ [ = − ⎢ − ν ⎢⎣ ∂ [ ⎪ ⎪ ( ⎡ ∂ Z ⎪ +ν ⎢ ⎨σ \ = − − ν ⎣⎢ ∂ \ ⎪ ⎪ ⎪τ = − ( ∂ Z ⋅ ] [\ ⎪ + ν ∂ [ ∂ \ ⎩
⎤ ∂ Z + α + ν $ ⎥ ⋅ ] ∂\ ⎥⎦ ⎤ ∂ Z + α + ν $ ⎥ ⋅ ] ∂[ ⎦⎥
- 78 -
HpWDSHH[SUHVVLRQGHVYLVVHXUV
'=
2QSRVH
HpWDSHH[SUHVVLRQGHVYLVVHXUV
( K − ν
'=
2QSRVH
⎧ ∂ Z ⎪ 8 [ = − 8 \ = ' − ν ∂[ ∂\ ⎪ ⎪ ⎞ ⎛ ∂ Z ∂ Z ⎪ ⎟ ⎜ ⎪0 [ = − ' ⎜ ∂ [ + ν ∂ \ α + ν $ ⎟ ⎠ ⎝ ⎪ ⎪ ⎞ ⎛∂ Z ∂ Z ⎪ +ν α + ν $ ⎟ ⎨0 \ = − ' ⎜⎜ ⎟ ∂[ ⎪ ⎠ ⎝ ∂\ ⎪ ⎪4 = − ' ∂ (∆ Z + α + ν $ ) ⎪ [ ∂[ ⎪ ⎪ ∂ ⎪4 [ = − ' (∆ Z + α + ν $ ) ∂\ ⎪⎩
( K − ν
⎧ ∂ Z ⎪8 [ = − 8 \ = ' − ν ∂[ ∂\ ⎪ ⎪ ⎞ ⎛ ∂ Z ∂ Z ⎪ ⎟ ⎜ ⎪0 [ = − ' ⎜ ∂ [ + ν ∂ \ α + ν $ ⎟ ⎠ ⎝ ⎪ ⎪ ⎞ ⎛∂ Z ∂ Z ⎪ +ν α + ν $ ⎟ ⎨0 \ = − ' ⎜⎜ ⎟ ∂[ ⎪ ⎠ ⎝ ∂\ ⎪ ⎪4 = − ' ∂ (∆ Z + α + ν $ ) ⎪ [ ∂[ ⎪ ⎪ ∂ ⎪4 [ = − ' (∆ Z + α + ν $ ) ∂\ ⎪⎩
HpWDSHpTXDWLRQGH/DJUDQJH
HpWDSHpTXDWLRQGH/DJUDQJH
(Q UHPSODoDQW 4 [ HW 4 \ SDU OHXUV H[SUHVVLRQV FLGHVVXV GDQV OD WURLVLqPH pTXDWLRQ
(Q UHPSODoDQW 4 [ HW 4 \ SDU OHXUV H[SUHVVLRQV FLGHVVXV GDQV OD WURLVLqPH pTXDWLRQ
G¶pTXLOLEUHORFDOGHVIRUFHVpTXLOLEUHVXLYDQWODQRUPDOH]RQREWLHQW
G¶pTXLOLEUHORFDOGHVIRUFHVpTXLOLEUHVXLYDQWODQRUPDOH]RQREWLHQW
∆ ∆ Z =
S] − α + ν ∆ $ '
∆ ∆ Z =
S] − α + ν ∆ $ '
5HPDUTXHRQD ∆ $ = ∆ 7 = (QUpJLPHVWDWLRQQDLUHHQO¶DEVHQFHGHVRXUFHVGHFKDOHXU YROXPLTXHVRQDGRQF ∆ 7 = ] ⋅ ∆ $ HWO¶pTXDWLRQ SRVVqGHDORUVODPrPHH[SUHVVLRQTXH GDQVOHFDVLVRWKHUPH
5HPDUTXHRQD ∆ $ = ∆ 7 = (QUpJLPHVWDWLRQQDLUHHQO¶DEVHQFHGHVRXUFHVGHFKDOHXU YROXPLTXHVRQDGRQF ∆ 7 = ] ⋅ ∆ $ HWO¶pTXDWLRQ SRVVqGHDORUVODPrPHH[SUHVVLRQTXH GDQVOHFDVLVRWKHUPH
5HPDUTXH OHV FRQWUDLQWHV DX SRLQW FRXUDQW 3 GH FRWH ] V¶H[SULPHQW HQ IRQFWLRQ GHV K FRPSRVDQWHVGHYLVVHXUVFRPPHGDQVOHFDVLVRWKHUPHDYHF , =
5HPDUTXH OHV FRQWUDLQWHV DX SRLQW FRXUDQW 3 GH FRWH ] V¶H[SULPHQW HQ IRQFWLRQ GHV K FRPSRVDQWHVGHYLVVHXUVFRPPHGDQVOHFDVLVRWKHUPHDYHF , =
⎧ ⎧ 0[ ] ⎪τ \] = ⎪σ [ = , ⎪ ⎪ ⎪ ⎪ 0\ ⎪ ⎪ ] ⎨τ [] = ⎨σ \ = − , ⎪ ⎪ ⎪ ⎪ ⎪τ = − ⎪σ ≈ ⎪ [\ ⎪ ] ⎩ ⎩
⎞ 4\ ⎛ ⎜ − ] ⎟ ⎜ K ⎝ K ⎟⎠
4[ K
⎞ ⎛ ⎜ − ] ⎟ ⎜ K ⎟⎠ ⎝
8\ 8[ ]=− ] , ,
⎧ ⎧ 0[ ] ⎪τ \] = ⎪σ [ = , ⎪ ⎪ ⎪ ⎪ 0\ ⎪ ⎪ ] ⎨τ [] = ⎨σ \ = − , ⎪ ⎪ ⎪ ⎪ ⎪τ = − ⎪σ ≈ ⎪ [\ ⎪ ] ⎩ ⎩
- 79 -
4[ K
⎞ ⎛ ⎜ − ] ⎟ ⎜ K ⎟⎠ ⎝
8\ 8[ ]=− ] , ,
- 79 -
HpWDSHH[SUHVVLRQGHVYLVVHXUV
HpWDSHH[SUHVVLRQGHVYLVVHXUV
'=
2QSRVH
⎞ 4\ ⎛ ⎜ − ] ⎟ ⎜ K ⎝ K ⎟⎠
( K − ν
'=
2QSRVH
⎧ ∂ Z ⎪ 8 [ = − 8 \ = ' − ν ∂[ ∂\ ⎪ ⎪ ⎞ ⎛ ∂ Z ∂ Z ⎪ ⎟ ⎜ ⎪0 [ = − ' ⎜ ∂ [ + ν ∂ \ α + ν $ ⎟ ⎠ ⎝ ⎪ ⎪ ⎞ ⎛∂ Z ∂ Z ⎪ +ν α + ν $ ⎟ ⎨0 \ = − ' ⎜⎜ ⎟ ∂[ ⎪ ⎠ ⎝ ∂\ ⎪ ⎪4 = − ' ∂ (∆ Z + α + ν $ ) ⎪ [ ∂[ ⎪ ⎪ ∂ ⎪4 [ = − ' (∆ Z + α + ν $ ) ∂ \ ⎪⎩
( K − ν
⎧ ∂ Z ⎪8 [ = − 8 \ = ' − ν ∂[ ∂\ ⎪ ⎪ ⎞ ⎛ ∂ Z ∂ Z ⎪ ⎟ ⎜ ⎪0 [ = − ' ⎜ ∂ [ + ν ∂ \ α + ν $ ⎟ ⎠ ⎝ ⎪ ⎪ ⎞ ⎛∂ Z ∂ Z ⎪ +ν α + ν $ ⎟ ⎨0 \ = − ' ⎜⎜ ⎟ ∂[ ⎪ ⎠ ⎝ ∂\ ⎪ ⎪4 = − ' ∂ (∆ Z + α + ν $ ) ⎪ [ ∂[ ⎪ ⎪ ∂ ⎪4 [ = − ' (∆ Z + α + ν $ ) ∂ \ ⎪⎩
HpWDSHpTXDWLRQGH/DJUDQJH
HpWDSHpTXDWLRQGH/DJUDQJH
(Q UHPSODoDQW 4 [ HW 4 \ SDU OHXUV H[SUHVVLRQV FLGHVVXV GDQV OD WURLVLqPH pTXDWLRQ
(Q UHPSODoDQW 4 [ HW 4 \ SDU OHXUV H[SUHVVLRQV FLGHVVXV GDQV OD WURLVLqPH pTXDWLRQ
G¶pTXLOLEUHORFDOGHVIRUFHVpTXLOLEUHVXLYDQWODQRUPDOH]RQREWLHQW
G¶pTXLOLEUHORFDOGHVIRUFHVpTXLOLEUHVXLYDQWODQRUPDOH]RQREWLHQW
∆ ∆ Z =
S] − α + ν ∆ $ '
∆ ∆ Z =
S] − α + ν ∆ $ '
5HPDUTXHRQD ∆ $ = ∆ 7 = (QUpJLPHVWDWLRQQDLUHHQO¶DEVHQFHGHVRXUFHVGHFKDOHXU YROXPLTXHVRQDGRQF ∆ 7 = ] ⋅ ∆ $ HWO¶pTXDWLRQ SRVVqGHDORUVODPrPHH[SUHVVLRQTXH GDQVOHFDVLVRWKHUPH
5HPDUTXHRQD ∆ $ = ∆ 7 = (QUpJLPHVWDWLRQQDLUHHQO¶DEVHQFHGHVRXUFHVGHFKDOHXU YROXPLTXHVRQDGRQF ∆ 7 = ] ⋅ ∆ $ HWO¶pTXDWLRQ SRVVqGHDORUVODPrPHH[SUHVVLRQTXH GDQVOHFDVLVRWKHUPH
5HPDUTXH OHV FRQWUDLQWHV DX SRLQW FRXUDQW 3 GH FRWH ] V¶H[SULPHQW HQ IRQFWLRQ GHV K FRPSRVDQWHVGHYLVVHXUVFRPPHGDQVOHFDVLVRWKHUPHDYHF , =
5HPDUTXH OHV FRQWUDLQWHV DX SRLQW FRXUDQW 3 GH FRWH ] V¶H[SULPHQW HQ IRQFWLRQ GHV K FRPSRVDQWHVGHYLVVHXUVFRPPHGDQVOHFDVLVRWKHUPHDYHF , =
⎧ ⎧ 0[ ] ⎪τ \] = ⎪σ [ = , ⎪ ⎪ ⎪ ⎪ 0\ ⎪ ⎪ ] ⎨τ [] = ⎨σ \ = − , ⎪ ⎪ ⎪ ⎪ ⎪τ = − ⎪σ ≈ ⎪ [\ ⎪ ] ⎩ ⎩
- 79 -
⎞ 4\ ⎛ ⎜ − ] ⎟ K ⎜⎝ K ⎟⎠
4[ K
⎞ ⎛ ⎜ − ] ⎟ ⎜ K ⎟⎠ ⎝
8\ 8[ ]=− ] , ,
⎧ ⎧ 0[ ] ⎪τ \] = ⎪σ [ = , ⎪ ⎪ ⎪ ⎪ 0\ ⎪ ⎪ ] ⎨τ [] = ⎨σ \ = − , ⎪ ⎪ ⎪ ⎪ ⎪τ = − ⎪σ ≈ ⎪ [\ ⎪ ] ⎩ ⎩
- 79 -
⎞ 4\ ⎛ ⎜ − ] ⎟ K ⎜⎝ K ⎟⎠
4[ K
⎞ ⎛ ⎜ − ] ⎟ ⎜ K ⎟⎠ ⎝
8\ 8[ ]=− ] , ,
3RXUOHVGpIRUPDWLRQVRQDOHVIRUPXOHV
3RXUOHVGpIRUPDWLRQVRQDOHVIRUPXOHV
⎧ ⎞ ⎛ 0[ + ν 0\ + ν ⎧ τ \] γ \] = + α $ ⎟⎟ ] ⎪ε [ = ⎜⎜ ⎪ ( (, ⎠ ⎝ ⎪ ⎪ ⎪ ⎪ ⎞ ⎛ − 0 \ + ν 0 [ + ν ⎪ ⎪ τ [] + α $ ⎟⎟ ] ⎨γ [] = ⎨ε \ = ⎜⎜ ( (, ⎠ ⎝ ⎪ ⎪ ⎪ ⎪ ⎪ε = ⎛⎜ ν 0 \ − 0 [ + α $ ⎞⎟ ] ⎪γ = + ν τ [\ ⎟ ⎪ ] ⎜ ⎪⎩ [\ ( (, ⎝ ⎠ ⎩
⎧ ⎞ ⎛ 0[ + ν 0\ + ν ⎧ τ \] γ \] = + α $ ⎟⎟ ] ⎪ε [ = ⎜⎜ ⎪ ( (, ⎠ ⎝ ⎪ ⎪ ⎪ ⎪ ⎞ ⎛ − 0 \ + ν 0 [ + ν ⎪ ⎪ τ [] + α $ ⎟⎟ ] ⎨γ [] = ⎨ε \ = ⎜⎜ ( (, ⎠ ⎝ ⎪ ⎪ ⎪ ⎪ ⎪ε = ⎛⎜ ν 0 \ − 0 [ + α $ ⎞⎟ ] ⎪γ = + ν τ [\ ⎟ ⎪ ] ⎜ ⎪⎩ [\ ( (, ⎝ ⎠ ⎩
5HPDUTXHQRXVDYRQVGRQQpGDQVOHFDVLVRWKHUPHWRPH, OHVIRUPXOHVGHVSODTXHVHQ FRRUGRQQpHVFXUYLOLJQHVRUWKRJRQDOHV(OOHVSHXYHQWrWUHFRPSOpWpHVDLVpPHQWSDUOHVWHUPHV GH WHPSpUDWXUH FRPPH FHOD D pWp IDLW SRXU OHV IRUPXOHV j FLGHVVXV 1RXV QH OHV UHSUHQGURQVSDVLFL
5HPDUTXHQRXVDYRQVGRQQpGDQVOHFDVLVRWKHUPHWRPH, OHVIRUPXOHVGHVSODTXHVHQ FRRUGRQQpHVFXUYLOLJQHVRUWKRJRQDOHV(OOHVSHXYHQWrWUHFRPSOpWpHVDLVpPHQWSDUOHVWHUPHV GH WHPSpUDWXUH FRPPH FHOD D pWp IDLW SRXU OHV IRUPXOHV j FLGHVVXV 1RXV QH OHV UHSUHQGURQVSDVLFL
([HPSOH SODTXH UHFWDQJXODLUH HQFDVWUpH VXU VHV TXDWUH ERUGV HW VRXPLVHV j XQ JUDGLHQW GH WHPSpUDWXUHWUDQVYHUVDOXQLIRUPH
([HPSOH SODTXH UHFWDQJXODLUH HQFDVWUpH VXU VHV TXDWUH ERUGV HW VRXPLVHV j XQ JUDGLHQW GH WHPSpUDWXUHWUDQVYHUVDOXQLIRUPH
)LJXUH
)LJXUH
&DUDFWpULVWLTXHVGHODSODTXH
&DUDFWpULVWLTXHVGHODSODTXH
± JpRPpWULTXHVF{WpVDHWEpSDLVVHXUK
± JpRPpWULTXHVF{WpVDHWEpSDLVVHXUK
± PpFDQLTXHVHWWKHUPLTXHV( ν α
± PpFDQLTXHVHWWKHUPLTXHV( ν α
K K ± FKDUJHPHQW SXUHPHQW WKHUPLTXH OHV IDFHV ] = − HW ] = VRQW PDLQWHQXV DX[ WHPSpUDWXUHV 7 HW 7 UHVSHFWLYHPHQWDYHF 7 + 7 = 7 HW 7 − 7 = $ ⋅ K
K K ± FKDUJHPHQW SXUHPHQW WKHUPLTXH OHV IDFHV ] = − HW ] = VRQW PDLQWHQXV DX[ WHPSpUDWXUHV 7 HW 7 UHVSHFWLYHPHQWDYHF 7 + 7 = 7 HW 7 − 7 = $ ⋅ K
/DWHPSpUDWXUHDXSRLQWFRXUDQW3HVWGRQF
/DWHPSpUDWXUHDXSRLQWFRXUDQW3HVWGRQF
7 = 7 + $ ⋅ ]
7 = 7 + $ ⋅ ]
- 80 -
- 80 -
3RXUOHVGpIRUPDWLRQVRQDOHVIRUPXOHV
3RXUOHVGpIRUPDWLRQVRQDOHVIRUPXOHV
⎧ ⎞ ⎛ 0[ + ν 0\ + ν ⎧ + α $ ⎟⎟ ] ⎪ε [ = ⎜⎜ ⎪γ \] = ( τ \] (, ⎠ ⎝ ⎪ ⎪ ⎪ ⎪ − + ν 0 0 ⎞ ⎛ + ν ⎪ ⎪ \ [ τ [] + α $ ⎟⎟ ] ⎨γ [] = ⎨ε \ = ⎜⎜ ( (, ⎠ ⎝ ⎪ ⎪ ⎪ ⎪ ⎪ε = ⎛⎜ ν 0 \ − 0 [ + α $ ⎞⎟ ] ⎪γ = + ν τ [\ ⎟ ⎪ ] ⎜ ⎪⎩ [\ ( (, ⎝ ⎠ ⎩
⎧ ⎞ ⎛ 0[ + ν 0\ + ν ⎧ + α $ ⎟⎟ ] ⎪ε [ = ⎜⎜ ⎪γ \] = ( τ \] (, ⎠ ⎝ ⎪ ⎪ ⎪ ⎪ − + ν 0 0 ⎞ ⎛ + ν ⎪ ⎪ \ [ τ [] + α $ ⎟⎟ ] ⎨γ [] = ⎨ε \ = ⎜⎜ ( (, ⎠ ⎝ ⎪ ⎪ ⎪ ⎪ ⎪ε = ⎛⎜ ν 0 \ − 0 [ + α $ ⎞⎟ ] ⎪γ = + ν τ [\ ⎟ ⎪ ] ⎜ ⎪⎩ [\ ( (, ⎝ ⎠ ⎩
5HPDUTXHQRXVDYRQVGRQQpGDQVOHFDVLVRWKHUPHWRPH, OHVIRUPXOHVGHVSODTXHVHQ FRRUGRQQpHVFXUYLOLJQHVRUWKRJRQDOHV(OOHVSHXYHQWrWUHFRPSOpWpHVDLVpPHQWSDUOHVWHUPHV GH WHPSpUDWXUH FRPPH FHOD D pWp IDLW SRXU OHV IRUPXOHV j FLGHVVXV 1RXV QH OHV UHSUHQGURQVSDVLFL
5HPDUTXHQRXVDYRQVGRQQpGDQVOHFDVLVRWKHUPHWRPH, OHVIRUPXOHVGHVSODTXHVHQ FRRUGRQQpHVFXUYLOLJQHVRUWKRJRQDOHV(OOHVSHXYHQWrWUHFRPSOpWpHVDLVpPHQWSDUOHVWHUPHV GH WHPSpUDWXUH FRPPH FHOD D pWp IDLW SRXU OHV IRUPXOHV j FLGHVVXV 1RXV QH OHV UHSUHQGURQVSDVLFL
([HPSOH SODTXH UHFWDQJXODLUH HQFDVWUpH VXU VHV TXDWUH ERUGV HW VRXPLVHV j XQ JUDGLHQW GH WHPSpUDWXUHWUDQVYHUVDOXQLIRUPH
([HPSOH SODTXH UHFWDQJXODLUH HQFDVWUpH VXU VHV TXDWUH ERUGV HW VRXPLVHV j XQ JUDGLHQW GH WHPSpUDWXUHWUDQVYHUVDOXQLIRUPH
)LJXUH
)LJXUH
&DUDFWpULVWLTXHVGHODSODTXH
&DUDFWpULVWLTXHVGHODSODTXH
± JpRPpWULTXHVF{WpVDHWEpSDLVVHXUK
± JpRPpWULTXHVF{WpVDHWEpSDLVVHXUK
± PpFDQLTXHVHWWKHUPLTXHV( ν α
± PpFDQLTXHVHWWKHUPLTXHV( ν α
K K ± FKDUJHPHQW SXUHPHQW WKHUPLTXH OHV IDFHV ] = − HW ] = VRQW PDLQWHQXV DX[ WHPSpUDWXUHV 7 HW 7 UHVSHFWLYHPHQWDYHF 7 + 7 = 7 HW 7 − 7 = $ ⋅ K
K K ± FKDUJHPHQW SXUHPHQW WKHUPLTXH OHV IDFHV ] = − HW ] = VRQW PDLQWHQXV DX[ WHPSpUDWXUHV 7 HW 7 UHVSHFWLYHPHQWDYHF 7 + 7 = 7 HW 7 − 7 = $ ⋅ K
/DWHPSpUDWXUHDXSRLQWFRXUDQW3HVWGRQF
/DWHPSpUDWXUHDXSRLQWFRXUDQW3HVWGRQF
7 = 7 + $ ⋅ ]
7 = 7 + $ ⋅ ]
- 80 -
- 80 -
/D VROXWLRQ TXHOTXH SHX SDUDGR[DOH j VXLYDQWHV ⎧X = ⎡ ⎪⎪ ⎢ 3R3 ⎨ Y = [E] ⎢ ⎢ ⎪ ⎢⎣ ⎪⎩Z = DYHF
ε] =
SUHPLqUH YXH HVW FRQVWLWXpH SDU OHV IRQFWLRQV ⎤ ⎡σ [ ⎥ ⎢ ⎥ [Σ] ⎢ ⎥ ⎢ ⎢⎣ ε ] ⎥⎦
σ\
⎤ ⎥ ⎥ ⎥ ⎥⎦
+ ν (α α $ ⋅ ] σ [ = σ \ = − $⋅] − ν − ν
/D VROXWLRQ TXHOTXH SHX SDUDGR[DOH j VXLYDQWHV ⎧X = ⎡ ⎪⎪ ⎢ 3R3 ⎨ Y = [E] ⎢ ⎢ ⎪ ⎢⎣ ⎪⎩Z = DYHF
ε] =
SUHPLqUH YXH HVW FRQVWLWXpH SDU OHV IRQFWLRQV ⎤ ⎡σ [ ⎥ ⎢ ⎥ [Σ] ⎢ ⎥ ⎢ ⎢⎣ ε ] ⎥⎦
σ\
⎤ ⎥ ⎥ ⎥ ⎥⎦
+ ν (α α $ ⋅ ] σ [ = σ \ = − $⋅] − ν − ν
8 [ = = 8 \ 0 [ = −0 \ = −' + ν α $ 4 [ = = 4 \
8 [ = = 8 \ 0 [ = −0 \ = −' + ν α $ 4 [ = = 4 \
/D SODTXH UHVWH GRQF SODQH Z OH JUDGLHQW GH WHPSpUDWXUH WHQG j FRXUEHU OH IHXLOOHW PR\HQPDLVFHWWHFRXUEXUHHVWHQWLqUHPHQWFRQWUpHSDUOHVPRPHQWVG¶HQFDVWUHPHQW
/D SODTXH UHVWH GRQF SODQH Z OH JUDGLHQW GH WHPSpUDWXUH WHQG j FRXUEHU OH IHXLOOHW PR\HQPDLVFHWWHFRXUEXUHHVWHQWLqUHPHQWFRQWUpHSDUOHVPRPHQWVG¶HQFDVWUHPHQW
±)/(;,21$;,6<0e75,48('(6',648(6(7&285211(6
±)/(;,21$;,6<0e75,48('(6',648(6(7&285211(6
/DSODTXHOHFKDUJHPHQWOHVOLDLVRQVDGPHWWHQWR]FRPPHD[HGHUpYROXWLRQ/HFKDUJHPHQW HVWWUDQVYHUVDOPpFDQLTXHHWWKHUPLTXH,OV¶DJLWGRQFG¶XQFDVSDUWLFXOLHUGHFHOXLWUDLWpDX (QFRRUGRQQpHVF\OLQGULTXHV U θ ] OHVIRUPXOHV j V¶pFULYHQW
/DSODTXHOHFKDUJHPHQWOHVOLDLVRQVDGPHWWHQWR]FRPPHD[HGHUpYROXWLRQ/HFKDUJHPHQW HVWWUDQVYHUVDOPpFDQLTXHHWWKHUPLTXH,OV¶DJLWGRQFG¶XQFDVSDUWLFXOLHUGHFHOXLWUDLWpDX (QFRRUGRQQpHVF\OLQGULTXHV U θ ] OHVIRUPXOHV j V¶pFULYHQW
⎧ ∂Z Y = Z = Z U W ⎪X = − ] ∂U ⎪ ⎨ ⎪ ] ∂Z ∂ Z εθ = − γU θ = ⎪ε U = −] U ∂U ∂ U ⎩
⎧ ∂Z Y = Z = Z U W ⎪X = − ] ∂U ⎪ ⎨ ⎪ ] ∂Z ∂ Z εθ = − γU θ = ⎪ε U = −] U ∂U ∂ U ⎩
⎧ ( ⎪σU = − − ν ⎪ ⎪ ( ⎪ ⎨σθ = − − ν ⎪ ⎪ ⎪τ = ⎪ Uθ ⎩
⎞ ⎛ ∂ Z ν ∂ Z ]⎜ + + α + ν $ ⎟ ⎟ ⎜ ∂U U ∂U ⎠ ⎝ ⎞ ⎛ ∂Z ∂ Z ]⎜ +ν + α + ν $ ⎟ ⎟ ⎜ U ∂U ∂U ⎠ ⎝
ε] =
⎞ ⎛ ∂ Z ν ∂ Z ]⎜ + + α + ν $ ⎟ ⎟ ⎜ ∂U U ∂U ⎠ ⎝ ⎞ ⎛ ∂Z ∂ Z ]⎜ +ν + α + ν $ ⎟ ⎟ ⎜ U ∂U ∂U ⎠ ⎝
⎧ ⎪8 U = = 8 θ ⎪ ⎪ ⎞ ⎛ ∂ Z ν ∂ Z ⎪ + α + ν $ ⎟ ⎨0 U = −' ⎜⎜ + ⎟ U ∂U ⎪ ⎠ ⎝ ∂U ⎪ ⎪0 = ' ⎛⎜ ∂ Z + ν ∂ Z + α + ν $ ⎞⎟ ⎟ ⎪ θ ⎜ U ∂U ∂ U ⎠ ⎝ ⎩
⎧ ⎪8 U = = 8 θ ⎪ ⎪ ⎞ ⎛ ∂ Z ν ∂ Z ⎪ + α + ν $ ⎟ ⎨0 U = −' ⎜⎜ + ⎟ U ∂U ⎪ ⎠ ⎝ ∂U ⎪ ⎪0 = ' ⎛⎜ ∂ Z + ν ∂ Z + α + ν $ ⎞⎟ ⎟ ⎪ θ ⎜ U ∂U ∂ U ⎠ ⎝ ⎩
- 81 -
- 81 -
/D VROXWLRQ TXHOTXH SHX SDUDGR[DOH j VXLYDQWHV ⎧X = ⎡ ⎪⎪ ⎢ 3R3 ⎨ Y = [E] ⎢ ⎢ ⎪ ⎢⎣ ⎩⎪Z = DYHF
⎧ ( ⎪σU = − − ν ⎪ ⎪ ( ⎪ ⎨σθ = − − ν ⎪ ⎪ ⎪τ = ⎪ Uθ ⎩
SUHPLqUH YXH HVW FRQVWLWXpH SDU OHV IRQFWLRQV ⎤ ⎡σ [ ⎥ ⎢ ⎥ [Σ] ⎢ ⎥ ⎢ ⎢⎣ ε ] ⎥⎦
σ\
⎤ ⎥ ⎥ ⎥ ⎥⎦
+ ν (α α $ ⋅ ] σ [ = σ \ = − $⋅] − ν − ν
/D VROXWLRQ TXHOTXH SHX SDUDGR[DOH j VXLYDQWHV ⎧X = ⎡ ⎪⎪ ⎢ 3R3 ⎨ Y = [E] ⎢ ⎢ ⎪ ⎢⎣ ⎩⎪Z = DYHF
ε] =
SUHPLqUH YXH HVW FRQVWLWXpH SDU OHV IRQFWLRQV ⎤ ⎡σ [ ⎥ ⎢ ⎥ [Σ] ⎢ ⎥ ⎢ ⎢⎣ ε ] ⎥⎦
σ\
⎤ ⎥ ⎥ ⎥ ⎥⎦
+ ν (α α $ ⋅ ] σ [ = σ \ = − $⋅] − ν − ν
8 [ = = 8 \ 0 [ = −0 \ = −' + ν α $ 4 [ = = 4 \
8 [ = = 8 \ 0 [ = −0 \ = −' + ν α $ 4 [ = = 4 \
/D SODTXH UHVWH GRQF SODQH Z OH JUDGLHQW GH WHPSpUDWXUH WHQG j FRXUEHU OH IHXLOOHW PR\HQPDLVFHWWHFRXUEXUHHVWHQWLqUHPHQWFRQWUpHSDUOHVPRPHQWVG¶HQFDVWUHPHQW
/D SODTXH UHVWH GRQF SODQH Z OH JUDGLHQW GH WHPSpUDWXUH WHQG j FRXUEHU OH IHXLOOHW PR\HQPDLVFHWWHFRXUEXUHHVWHQWLqUHPHQWFRQWUpHSDUOHVPRPHQWVG¶HQFDVWUHPHQW
±)/(;,21$;,6<0e75,48('(6',648(6(7&285211(6
±)/(;,21$;,6<0e75,48('(6',648(6(7&285211(6
/DSODTXHOHFKDUJHPHQWOHVOLDLVRQVDGPHWWHQWR]FRPPHD[HGHUpYROXWLRQ/HFKDUJHPHQW HVWWUDQVYHUVDOPpFDQLTXHHWWKHUPLTXH,OV¶DJLWGRQFG¶XQFDVSDUWLFXOLHUGHFHOXLWUDLWpDX (QFRRUGRQQpHVF\OLQGULTXHV U θ ] OHVIRUPXOHV j V¶pFULYHQW
/DSODTXHOHFKDUJHPHQWOHVOLDLVRQVDGPHWWHQWR]FRPPHD[HGHUpYROXWLRQ/HFKDUJHPHQW HVWWUDQVYHUVDOPpFDQLTXHHWWKHUPLTXH,OV¶DJLWGRQFG¶XQFDVSDUWLFXOLHUGHFHOXLWUDLWpDX (QFRRUGRQQpHVF\OLQGULTXHV U θ ] OHVIRUPXOHV j V¶pFULYHQW
⎧ ∂Z Y = Z = Z U W ⎪X = − ] ∂U ⎪ ⎨ ⎪ ] ∂Z ∂ Z εθ = − γU θ = ⎪ε U = −] U ∂U ∂ U ⎩
⎧ ∂Z Y = Z = Z U W ⎪X = − ] ∂U ⎪ ⎨ ⎪ ] ∂Z ∂ Z εθ = − γU θ = ⎪ε U = −] U ∂U ∂ U ⎩
⎧ ( ⎪σU = − − ν ⎪ ⎪ ( ⎪ ⎨σθ = − − ν ⎪ ⎪ ⎪τ = ⎪ Uθ ⎩
⎞ ⎛ ∂ Z ν ∂ Z ]⎜ + + α + ν $ ⎟ ⎟ ⎜ ∂U U U ∂ ⎠ ⎝ ⎞ ⎛ ∂Z ∂ Z ]⎜ +ν + α + ν $ ⎟ ⎟ ⎜ U ∂U ∂U ⎠ ⎝
⎧ ( ⎪σU = − − ν ⎪ ⎪ ( ⎪ ⎨σθ = − − ν ⎪ ⎪ ⎪τ = ⎪ Uθ ⎩
⎞ ⎛ ∂ Z ν ∂ Z ]⎜ + + α + ν $ ⎟ ⎟ ⎜ ∂U U U ∂ ⎠ ⎝ ⎞ ⎛ ∂Z ∂ Z ]⎜ +ν + α + ν $ ⎟ ⎟ ⎜ U ∂U ∂U ⎠ ⎝
⎧ ⎪8 U = = 8 θ ⎪ ⎪ ⎞ ⎛ ∂ Z ν ∂ Z ⎪ + α + ν $ ⎟ ⎨0 U = −' ⎜⎜ + ⎟ U ∂U ⎪ ⎠ ⎝ ∂U ⎪ ⎪0 = ' ⎛⎜ ∂ Z + ν ∂ Z + α + ν $ ⎞⎟ ⎟ ⎪ θ ⎜ U ∂U ∂ U ⎠ ⎝ ⎩
⎧ ⎪8 U = = 8 θ ⎪ ⎪ ⎞ ⎛ ∂ Z ν ∂ Z ⎪ + α + ν $ ⎟ ⎨0 U = −' ⎜⎜ + ⎟ U ∂U ⎪ ⎠ ⎝ ∂U ⎪ ⎪0 = ' ⎛⎜ ∂ Z + ν ∂ Z + α + ν $ ⎞⎟ ⎟ ⎪ θ ⎜ U ∂U ∂ U ⎠ ⎝ ⎩
- 81 -
- 81 -
∂ ⎧ ⎪⎪4 U = − ' ∂ U ∆ Z + α + ν $ ⎨ ⎪4θ = ⎪⎩ ∂ ⎛ ∂ ⎞ ⎜U ⎟ /¶RSpUDWHXUODSODFLHQV¶pFULWLFL ∆= U ∂ U ⎜⎝ ∂ U ⎟⎠ 5HPDUTXHHQUpJLPHVWDWLRQQDLUHRQD
∂ ⎧ ⎪⎪4 U = − ' ∂ U ∆ Z + α + ν $ ⎨ ⎪4θ = ⎪⎩ ∂ ⎛ ∂ ⎞ ⎜U ⎟ /¶RSpUDWHXUODSODFLHQV¶pFULWLFL ∆= U ∂ U ⎜⎝ ∂ U ⎟⎠
∂ G = ∂U GU
0U ⎧ ⎧τ θ ] = ⎪σ U = , ] ⎪ ⎪ ⎪⎪ 0θ 4U ⎪ ] ⎨τ U] = ⎨σθ = − , K ⎪ ⎪ ⎪ ⎪ ⎪σ ] = ⎩⎪τ U θ = ⎩
5HPDUTXHHQUpJLPHVWDWLRQQDLUHRQD
0U ⎧ ⎧τ θ ] = ⎪σ U = , ] ⎪ ⎪ ⎪⎪ 0θ 4U ⎪ ] ⎨τ U] = ⎨σθ = − , K ⎪ ⎪ ⎪ ⎪ ⎪σ ] = ⎩⎪τ U θ = ⎩
⎞ ⎛ ⎜ − ] ⎟ ⎜ K ⎟⎠ ⎝
⎧ ⎛ 0 U + ν 0θ ⎞ ⎧γ θ ] = + α $⎟ ] ⎪ε U = ⎜ (, ⎪ ⎝ ⎠ ⎪ ⎪ ⎪ ⎪ + ν 4 U ⎛⎜ ] ⎞ ⎪ ⎛ 0θ + ν 0U ⎞ + α $ ⎟ ] ⎨γ U] = − ⎟ ⎨εθ = ⎜ − (, ( K ⎜⎝ K ⎟⎠ ⎝ ⎠ ⎪ ⎪ ⎪ ⎪ ⎪ε = ⎛ ν 0 θ − 0 U + α $ ⎞ ] ⎪γ = ⎜ ⎟ ⎩ Uθ ⎪⎩ ] ⎝ (, ⎠
([HPSOHGLVTXHFLUFXODLUHVRXVJUDGLHQWWUDQVYHUVDOXQLIRUPHGHWHPSpUDWXUH $ =
7 + 7 = 7
∂ G = ∂U GU
⎞ ⎛ ⎜ − ] ⎟ ⎜ K ⎟⎠ ⎝
⎧ ⎛ 0 U + ν 0θ ⎞ ⎧γ θ ] = + α $⎟ ] ⎪ε U = ⎜ (, ⎪ ⎝ ⎠ ⎪ ⎪ ⎪ ⎪ + ν 4 U ⎛⎜ ] ⎞ ⎪ ⎛ 0θ + ν 0U ⎞ + α $ ⎟ ] ⎨γ U] = − ⎟ ⎨εθ = ⎜ − (, ( K ⎜⎝ K ⎟⎠ ⎝ ⎠ ⎪ ⎪ ⎪ ⎪ ⎪ε = ⎛ ν 0 θ − 0 U + α $ ⎞ ] ⎪γ = ⎜ ⎟ ⎩ Uθ ⎪⎩ ] ⎝ (, ⎠
7 − 7 K
([HPSOHGLVTXHFLUFXODLUHVRXVJUDGLHQWWUDQVYHUVDOXQLIRUPHGHWHPSpUDWXUH $ =
7 + 7 = 7
7 − 7 K
)LJXUH
)LJXUH
- 82 -
- 82 -
∂ ⎧ ⎪⎪4 U = − ' ∂ U ∆ Z + α + ν $ ⎨ ⎪4θ = ⎩⎪
∂ ⎧ ⎪⎪4 U = − ' ∂ U ∆ Z + α + ν $ ⎨ ⎪4θ = ⎩⎪
/¶RSpUDWHXUODSODFLHQV¶pFULWLFL
∆=
5HPDUTXHHQUpJLPHVWDWLRQQDLUHRQD
∂ ⎛ ∂ ⎞ ⎜U ⎟ U ∂ U ⎜⎝ ∂ U ⎟⎠
/¶RSpUDWHXUODSODFLHQV¶pFULWLFL
∂ G = ∂U GU
0U ⎧ ⎧τ θ ] = ⎪σ U = , ] ⎪ ⎪ ⎪⎪ 0θ 4U ⎪ ] ⎨τ U] = ⎨σθ = − , K ⎪ ⎪ ⎪ ⎪ ⎪⎩τ U θ = ⎪σ ] = ⎩
5HPDUTXHHQUpJLPHVWDWLRQQDLUHRQD
⎞ ⎛ ⎜ − ] ⎟ ⎜ K ⎟⎠ ⎝
([HPSOHGLVTXHFLUFXODLUHVRXVJUDGLHQWWUDQVYHUVDOXQLIRUPHGHWHPSpUDWXUH $ =
∂ ⎛ ∂ ⎞ ⎜U ⎟ U ∂ U ⎜⎝ ∂ U ⎟⎠
∂ G = ∂U GU
0U ⎧ ⎧τ θ ] = ⎪σ U = , ] ⎪ ⎪ ⎪⎪ 0θ 4U ⎪ ] ⎨τ U] = ⎨σθ = − , K ⎪ ⎪ ⎪ ⎪ ⎪⎩τ U θ = ⎪σ ] = ⎩
⎧ ⎛ 0 U + ν 0θ ⎞ ⎧γ θ ] = + α $⎟ ] ⎪ε U = ⎜ (, ⎪ ⎝ ⎠ ⎪ ⎪ ⎪ ⎪ + ν 4 U ⎛⎜ ] ⎞ ⎪ ⎛ 0θ + ν 0U ⎞ + α $ ⎟ ] ⎨γ U] = − ⎟ ⎨εθ = ⎜ − ⎜ (, ( K ⎝ K ⎟⎠ ⎝ ⎠ ⎪ ⎪ ⎪ ⎪ ⎪ε = ⎛ ν 0 θ − 0 U + α $ ⎞ ] ⎪γ = ⎟ ⎩ Uθ ⎪⎩ ] ⎜⎝ (, ⎠
7 + 7 = 7
∆=
⎞ ⎛ ⎜ − ] ⎟ ⎜ K ⎟⎠ ⎝
⎧ ⎛ 0 U + ν 0θ ⎞ ⎧γ θ ] = + α $⎟ ] ⎪ε U = ⎜ (, ⎪ ⎝ ⎠ ⎪ ⎪ ⎪ ⎪ + ν 4 U ⎛⎜ ] ⎞ ⎪ ⎛ 0θ + ν 0U ⎞ + α $ ⎟ ] ⎨γ U] = − ⎟ ⎨εθ = ⎜ − ⎜ (, ( K ⎝ K ⎟⎠ ⎝ ⎠ ⎪ ⎪ ⎪ ⎪ ⎪ε = ⎛ ν 0 θ − 0 U + α $ ⎞ ] ⎪γ = ⎟ ⎩ Uθ ⎪⎩ ] ⎜⎝ (, ⎠
7 − 7 K
([HPSOHGLVTXHFLUFXODLUHVRXVJUDGLHQWWUDQVYHUVDOXQLIRUPHGHWHPSpUDWXUH $ =
7 + 7 = 7
7 − 7 K
)LJXUH
)LJXUH
- 82 -
- 82 -
6LO¶RQLVROHSDUODSHQVpHXQGLVTXHGHUD\RQUHWTXHO¶RQpFULWVRQpTXLOLEUHVXLYDQW]RQ WURXYH G 4 U = VRLW ∆ Z + α + ν $ = GU
6LO¶RQLVROHSDUODSHQVpHXQGLVTXHGHUD\RQUHWTXHO¶RQpFULWVRQpTXLOLEUHVXLYDQW]RQ WURXYH G 4 U = VRLW ∆ Z + α + ν $ = GU
/¶LQWpJUDWLRQ GH FHWWH pTXDWLRQ GRQQH FRPSWH WHQX GH OD FRQGLWLRQ Z =
/¶LQWpJUDWLRQ GH FHWWH pTXDWLRQ GRQQH FRPSWH WHQX GH OD FRQGLWLRQ Z =
Z = −α + ν $ ⋅ & ⋅ U
Z = −α + ν $ ⋅ & ⋅ U
/D FRQVWDQWH G¶LQWpJUDWLRQ & VH GpWHUPLQH j O¶DLGH GH OD FRQGLWLRQ 0 U = VXU OH ERUG OLEUH U D RQWURXYH
/D FRQVWDQWH G¶LQWpJUDWLRQ & VH GpWHUPLQH j O¶DLGH GH OD FRQGLWLRQ 0 U = VXU OH ERUG OLEUH U D RQWURXYH
⎞ ⎛ G Z ν G Z ⎜ = VRLW & = + + α + ν $ ⎟ ⎟ ⎜ G U + ν U G U ⎠ U =D ⎝
⎞ ⎛ G Z ν G Z ⎜ = VRLW & = + + α + ν $ ⎟ ⎟ ⎜ G U + ν U G U ⎠ U =D ⎝
Z U = − α $ U
'¶RODIOqFKH
Z U = − α $ U
'¶RODIOqFKH
2QHQGpGXLWWRXVOHVSDUDPqWUHVGXSUREOqPHHQSDUWLFXOLHU ε U = εθ = α $ ⋅ ] σ U = σθ = 0 U = 0 θ = /HFKDPSGHWHPSpUDWXUHpWDQWOLQpDLUHHWOHGLVTXHOLEUHGHVHGpIRUPHULOHVW QRUPDOG¶DYRLUWURXYpGHVFRQWUDLQWHVHWYLVVHXUVSDUWRXWQXOV
2QHQGpGXLWWRXVOHVSDUDPqWUHVGXSUREOqPHHQSDUWLFXOLHU ε U = εθ = α $ ⋅ ] σ U = σθ = 0 U = 0 θ = /HFKDPSGHWHPSpUDWXUHpWDQWOLQpDLUHHWOHGLVTXHOLEUHGHVHGpIRUPHULOHVW QRUPDOG¶DYRLUWURXYpGHVFRQWUDLQWHVHWYLVVHXUVSDUWRXWQXOV
±)/(;,21&,1'5,48('(63/$48(65(&7$1*8/$,5(6
±)/(;,21&,1'5,48('(63/$48(65(&7$1*8/$,5(6
)LJXUH
)LJXUH
&RQVLGpURQVXQHSODTXHGHODUJHXUFRQVWDQWH/VXLYDQW[LQILQLHGDQVODGLUHFWLRQ\VRXPLVH j XQ FKDUJHPHQW WUDQVYHUVDO PpFDQLTXH HW WKHUPLTXH FRQVWDQW VXLYDQW \ OHV OLDLVRQV VRQW DXVVLVXSSRVpHVXQLIRUPHVVXLYDQW\/HIHXLOOHWPR\HQGpIRUPpFRQVWLWXHGRQFXQHVXUIDFH F\OLQGULTXH GH JpQpUDWULFHV SDUDOOqOHV j O¶D[H \ /D ILJXUH UHSUpVHQWH XQH WUDQFKH XQLWDLUH G¶XQHWHOOHSODTXH
&RQVLGpURQVXQHSODTXHGHODUJHXUFRQVWDQWH/VXLYDQW[LQILQLHGDQVODGLUHFWLRQ\VRXPLVH j XQ FKDUJHPHQW WUDQVYHUVDO PpFDQLTXH HW WKHUPLTXH FRQVWDQW VXLYDQW \ OHV OLDLVRQV VRQW DXVVLVXSSRVpHVXQLIRUPHVVXLYDQW\/HIHXLOOHWPR\HQGpIRUPpFRQVWLWXHGRQFXQHVXUIDFH F\OLQGULTXH GH JpQpUDWULFHV SDUDOOqOHV j O¶D[H \ /D ILJXUH UHSUpVHQWH XQH WUDQFKH XQLWDLUH G¶XQHWHOOHSODTXH
- 83 -
- 83 -
6LO¶RQLVROHSDUODSHQVpHXQGLVTXHGHUD\RQUHWTXHO¶RQpFULWVRQpTXLOLEUHVXLYDQW]RQ WURXYH G 4 U = VRLW ∆ Z + α + ν $ = GU
6LO¶RQLVROHSDUODSHQVpHXQGLVTXHGHUD\RQUHWTXHO¶RQpFULWVRQpTXLOLEUHVXLYDQW]RQ WURXYH G 4 U = VRLW ∆ Z + α + ν $ = GU
/¶LQWpJUDWLRQ GH FHWWH pTXDWLRQ GRQQH FRPSWH WHQX GH OD FRQGLWLRQ Z =
/¶LQWpJUDWLRQ GH FHWWH pTXDWLRQ GRQQH FRPSWH WHQX GH OD FRQGLWLRQ Z =
Z = −α + ν $ ⋅ & ⋅ U
Z = −α + ν $ ⋅ & ⋅ U
/D FRQVWDQWH G¶LQWpJUDWLRQ & VH GpWHUPLQH j O¶DLGH GH OD FRQGLWLRQ 0 U = VXU OH ERUG OLEUH U D RQWURXYH
/D FRQVWDQWH G¶LQWpJUDWLRQ & VH GpWHUPLQH j O¶DLGH GH OD FRQGLWLRQ 0 U = VXU OH ERUG OLEUH U D RQWURXYH
⎞ ⎛ G Z ν G Z ⎜ = VRLW & = + + α + ν $ ⎟ ⎟ ⎜ G U + ν U G U ⎠ U =D ⎝
⎞ ⎛ G Z ν G Z ⎜ = VRLW & = + + α + ν $ ⎟ ⎟ ⎜ G U + ν U G U ⎠ U =D ⎝
'¶RODIOqFKH
Z U = − α $ U
'¶RODIOqFKH
Z U = − α $ U
2QHQGpGXLWWRXVOHVSDUDPqWUHVGXSUREOqPHHQSDUWLFXOLHU ε U = εθ = α $ ⋅ ] σ U = σθ = 0 U = 0 θ = /HFKDPSGHWHPSpUDWXUHpWDQWOLQpDLUHHWOHGLVTXHOLEUHGHVHGpIRUPHULOHVW QRUPDOG¶DYRLUWURXYpGHVFRQWUDLQWHVHWYLVVHXUVSDUWRXWQXOV
2QHQGpGXLWWRXVOHVSDUDPqWUHVGXSUREOqPHHQSDUWLFXOLHU ε U = εθ = α $ ⋅ ] σ U = σθ = 0 U = 0 θ = /HFKDPSGHWHPSpUDWXUHpWDQWOLQpDLUHHWOHGLVTXHOLEUHGHVHGpIRUPHULOHVW QRUPDOG¶DYRLUWURXYpGHVFRQWUDLQWHVHWYLVVHXUVSDUWRXWQXOV
±)/(;,21&,1'5,48('(63/$48(65(&7$1*8/$,5(6
±)/(;,21&,1'5,48('(63/$48(65(&7$1*8/$,5(6
)LJXUH
)LJXUH
&RQVLGpURQVXQHSODTXHGHODUJHXUFRQVWDQWH/VXLYDQW[LQILQLHGDQVODGLUHFWLRQ\VRXPLVH j XQ FKDUJHPHQW WUDQVYHUVDO PpFDQLTXH HW WKHUPLTXH FRQVWDQW VXLYDQW \ OHV OLDLVRQV VRQW DXVVLVXSSRVpHVXQLIRUPHVVXLYDQW\/HIHXLOOHWPR\HQGpIRUPpFRQVWLWXHGRQFXQHVXUIDFH F\OLQGULTXH GH JpQpUDWULFHV SDUDOOqOHV j O¶D[H \ /D ILJXUH UHSUpVHQWH XQH WUDQFKH XQLWDLUH G¶XQHWHOOHSODTXH
&RQVLGpURQVXQHSODTXHGHODUJHXUFRQVWDQWH/VXLYDQW[LQILQLHGDQVODGLUHFWLRQ\VRXPLVH j XQ FKDUJHPHQW WUDQVYHUVDO PpFDQLTXH HW WKHUPLTXH FRQVWDQW VXLYDQW \ OHV OLDLVRQV VRQW DXVVLVXSSRVpHVXQLIRUPHVVXLYDQW\/HIHXLOOHWPR\HQGpIRUPpFRQVWLWXHGRQFXQHVXUIDFH F\OLQGULTXH GH JpQpUDWULFHV SDUDOOqOHV j O¶D[H \ /D ILJXUH UHSUpVHQWH XQH WUDQFKH XQLWDLUH G¶XQHWHOOHSODTXH
- 83 -
- 83 -
/HVIRUPXOHV j V¶pFULYHQWDORUV
/HVIRUPXOHV j V¶pFULYHQWDORUV
⎧ ∂Z Y = Z = Z [ ⎪X = − ] ∂[ ⎪ ⎨ ⎪ ∂ Z ε \ = γ [\ = ⎪ε [ = − ] ∂ [ ⎩
⎧ ( ⎪σ [ = − − ν ⎪ ⎪ ( ⎪ ⎨σ \ = − − ν ⎪ ⎪ ⎪τ = ⎪ [\ ⎩
⎧ ⎪8 [ = = 8 \ ⎪ ⎪ ⎞ ⎛ ∂ Z ⎪ ⎜ 0 = − ' + α + ν $ [ ⎟ [ ⎪ ⎟ ⎜ ∂ [ ⎠ ⎝ ⎪ ⎪ ⎞ ⎛ ∂ Z ⎪ + α + ν $ [ ⎟ ⎨0 \ = ' ⎜⎜ ν ⎟ ⎪ ⎠ ⎝ ∂[ ⎪ ⎪4 = − ' ⎛⎜ ∂ Z + α + ν ∂ $ ⎞⎟ ⎪ [ ⎜ ∂ [ ∂ [ ⎟⎠ ⎝ ⎪ ⎪ ⎪4 [ = ⎪⎩
HWO¶pTXDWLRQGH/DJUDQJH
⎧ ∂Z Y = Z = Z [ ⎪X = − ] ∂[ ⎪ ⎨ ⎪ ∂ Z ε \ = γ [\ = ⎪ε [ = − ] ∂ [ ⎩
⎧ ( ⎪σ [ = − − ν ⎪ ⎪ ( ⎪ ⎨σ \ = − − ν ⎪ ⎪ ⎪τ = ⎪ [\ ⎩
⎧ ⎪8 [ = = 8 \ ⎪ ⎪ ⎞ ⎛ ∂ Z ⎪ ⎜ 0 = − ' + α + ν $ [ ⎟ [ ⎪ ⎟ ⎜ ∂ [ ⎠ ⎝ ⎪ ⎪ ⎞ ⎛ ∂ Z ⎪ + α + ν $ [ ⎟ ⎨0 \ = ' ⎜⎜ ν ⎟ ⎪ ⎠ ⎝ ∂[ ⎪ ⎪4 = − ' ⎛⎜ ∂ Z + α + ν ∂ $ ⎞⎟ ⎪ [ ⎜ ∂ [ ∂ [ ⎟⎠ ⎝ ⎪ ⎪ ⎪4 [ = ⎪⎩
⎤ ⎡ ∂ Z ⎢ + α + ν $ [ ⎥ ⋅ ] ⎦⎥ ⎣⎢ ∂ [ ⎤ ⎡ ∂ Z + α + ν $ [ ⎥ ⋅ ] ⎢ν ⎥⎦ ⎢⎣ ∂ [
∂ Z S] ∂ $ = − α + ν ' ∂ [ ∂ [
5HPDUTXH HQ UpJLPH VWDWLRQQDLUH RQ D
HWO¶pTXDWLRQGH/DJUDQJH
∂ G SXLVTXH OHV SDUDPqWUHV QH GpSHQGHQW = ∂[ G[
⎤ ⎡ ∂ Z ⎢ + α + ν $ [ ⎥ ⋅ ] ⎦⎥ ⎣⎢ ∂ [ ⎤ ⎡ ∂ Z + α + ν $ [ ⎥ ⋅ ] ⎢ν ⎥⎦ ⎢⎣ ∂ [
∂ Z S] ∂ $ = − α + ν ' ∂ [ ∂ [
5HPDUTXH HQ UpJLPH VWDWLRQQDLUH RQ D
∂ G SXLVTXH OHV SDUDPqWUHV QH GpSHQGHQW = ∂[ G[
TXHGH[HWSDVGXWHPSV
TXHGH[HWSDVGXWHPSV
5HPDUTXHOHIHXLOOHWPR\HQGpIRUPpQ¶HVWXQHVXUIDFHF\OLQGULTXHHQWRXWHULJXHXUTXH GDQVOHFDVG¶XQHSODTXHLQILQLHVLQRQFHODQ¶HVWSDVWRXWjIDLWH[DFWSUqVGHVERUGVSDUDOOqOHV j[
5HPDUTXHOHIHXLOOHWPR\HQGpIRUPpQ¶HVWXQHVXUIDFHF\OLQGULTXHHQWRXWHULJXHXUTXH GDQVOHFDVG¶XQHSODTXHLQILQLHVLQRQFHODQ¶HVWSDVWRXWjIDLWH[DFWSUqVGHVERUGVSDUDOOqOHV j[
5HPDUTXH OD IOH[LRQ F\OLQGULTXH GHV SODTXHV UHFWDQJXODLUHV VH WUDLWH IRUPHOOHPHQW FRPPH XQH IOH[LRQ GH SRXWUH GDQV VRQ SODQ SULQFLSDO [R] FRPPH QRXV DOORQV OH YRLU PDLQWHQDQWVXUXQH[HPSOH
5HPDUTXH OD IOH[LRQ F\OLQGULTXH GHV SODTXHV UHFWDQJXODLUHV VH WUDLWH IRUPHOOHPHQW FRPPH XQH IOH[LRQ GH SRXWUH GDQV VRQ SODQ SULQFLSDO [R] FRPPH QRXV DOORQV OH YRLU PDLQWHQDQWVXUXQH[HPSOH
- 84 -
- 84 -
/HVIRUPXOHV j V¶pFULYHQWDORUV
/HVIRUPXOHV j V¶pFULYHQWDORUV
⎧ ∂Z Y = Z = Z [ ⎪X = − ] ∂[ ⎪ ⎨ ⎪ ∂ Z ε \ = γ [\ = ⎪ε [ = − ] ∂ [ ⎩
⎧ ( ⎪σ [ = − − ν ⎪ ⎪ ( ⎪ ⎨σ \ = − − ν ⎪ ⎪ ⎪τ = ⎪ [\ ⎩
⎧ ⎪8 [ = = 8 \ ⎪ ⎪ ⎞ ⎛ ∂ Z ⎪ ⎟ ⎜ ⎪0 [ = − ' ⎜ ∂ [ + α + ν $ [ ⎟ ⎠ ⎝ ⎪ ⎪ ⎞ ⎛ ∂ Z ⎪ + α + ν $ [ ⎟ ⎨0 \ = ' ⎜⎜ ν ⎟ ⎪ ⎠ ⎝ ∂[ ⎪ ⎪4 = − ' ⎛⎜ ∂ Z + α + ν ∂ $ ⎞⎟ ⎪ [ ⎜ ∂ [ ∂ [ ⎟⎠ ⎝ ⎪ ⎪ ⎪4 [ = ⎪⎩
HWO¶pTXDWLRQGH/DJUDQJH
⎧ ∂Z Y = Z = Z [ ⎪X = − ] ∂[ ⎪ ⎨ ⎪ ∂ Z ε \ = γ [\ = ⎪ε [ = − ] ∂ [ ⎩
⎧ ( ⎪σ [ = − − ν ⎪ ⎪ ( ⎪ ⎨σ \ = − − ν ⎪ ⎪ ⎪τ = ⎪ [\ ⎩
⎧ ⎪8 [ = = 8 \ ⎪ ⎪ ⎞ ⎛ ∂ Z ⎪ ⎟ ⎜ ⎪0 [ = − ' ⎜ ∂ [ + α + ν $ [ ⎟ ⎠ ⎝ ⎪ ⎪ ⎞ ⎛ ∂ Z ⎪ + α + ν $ [ ⎟ ⎨0 \ = ' ⎜⎜ ν ⎟ ⎪ ⎠ ⎝ ∂[ ⎪ ⎪4 = − ' ⎛⎜ ∂ Z + α + ν ∂ $ ⎞⎟ ⎪ [ ⎜ ∂ [ ∂ [ ⎟⎠ ⎝ ⎪ ⎪ ⎪4 [ = ⎪⎩
⎤ ⎡ ∂ Z ⎢ + α + ν $ [ ⎥ ⋅ ] ⎦⎥ ⎣⎢ ∂ [ ⎤ ⎡ ∂ Z + α + ν $ [ ⎥ ⋅ ] ⎢ν ⎥⎦ ⎢⎣ ∂ [
∂ Z S] ∂ $ = − α + ν ' ∂[ ∂ [
5HPDUTXH HQ UpJLPH VWDWLRQQDLUH RQ D
∂ G SXLVTXH OHV SDUDPqWUHV QH GpSHQGHQW = ∂[ G[
HWO¶pTXDWLRQGH/DJUDQJH
⎤ ⎡ ∂ Z ⎢ + α + ν $ [ ⎥ ⋅ ] ⎦⎥ ⎣⎢ ∂ [ ⎤ ⎡ ∂ Z + α + ν $ [ ⎥ ⋅ ] ⎢ν ⎥⎦ ⎢⎣ ∂ [
∂ Z S] ∂ $ = − α + ν ' ∂[ ∂ [
5HPDUTXH HQ UpJLPH VWDWLRQQDLUH RQ D
∂ G SXLVTXH OHV SDUDPqWUHV QH GpSHQGHQW = ∂[ G[
TXHGH[HWSDVGXWHPSV
TXHGH[HWSDVGXWHPSV
5HPDUTXHOHIHXLOOHWPR\HQGpIRUPpQ¶HVWXQHVXUIDFHF\OLQGULTXHHQWRXWHULJXHXUTXH GDQVOHFDVG¶XQHSODTXHLQILQLHVLQRQFHODQ¶HVWSDVWRXWjIDLWH[DFWSUqVGHVERUGVSDUDOOqOHV j[
5HPDUTXHOHIHXLOOHWPR\HQGpIRUPpQ¶HVWXQHVXUIDFHF\OLQGULTXHHQWRXWHULJXHXUTXH GDQVOHFDVG¶XQHSODTXHLQILQLHVLQRQFHODQ¶HVWSDVWRXWjIDLWH[DFWSUqVGHVERUGVSDUDOOqOHV j[
5HPDUTXH OD IOH[LRQ F\OLQGULTXH GHV SODTXHV UHFWDQJXODLUHV VH WUDLWH IRUPHOOHPHQW FRPPH XQH IOH[LRQ GH SRXWUH GDQV VRQ SODQ SULQFLSDO [R] FRPPH QRXV DOORQV OH YRLU PDLQWHQDQWVXUXQH[HPSOH
5HPDUTXH OD IOH[LRQ F\OLQGULTXH GHV SODTXHV UHFWDQJXODLUHV VH WUDLWH IRUPHOOHPHQW FRPPH XQH IOH[LRQ GH SRXWUH GDQV VRQ SODQ SULQFLSDO [R] FRPPH QRXV DOORQV OH YRLU PDLQWHQDQWVXUXQH[HPSOH
- 84 -
- 84 -
([HPSOH SUHQRQV OD SODTXH GH OD ILJXUH VRXPHWWRQVOD j XQ FKDUJHPHQW WUDQVYHUVDO SXUHPHQW WKHUPLTXH OD IDFH LQWpULHXUH HVW SRUWpH HW PDLQWHQXH j OD WHPSpUDWXUH 7 OD IDFH VXSpULHXUH j 7 DYHF 7 + 7 = 7 HW 7 − 7 = $ ⋅ K /H FDOFXO GH OD IOqFKH Z[ SHXW VH IDLUHFRPPHSRXUXQHSRXWUHjSDUWLUGXPRPHQWIOpFKLVVDQWOLQpLTXH 0 [ H[SULPpGDQVOHV IRUPXOHV (QDSSHODQW 5 $ ODUpDFWLRQYHUWLFDOHOLQpLTXHjO¶DSSXL$RQDjO¶DEVFLVVH[
([HPSOH SUHQRQV OD SODTXH GH OD ILJXUH VRXPHWWRQVOD j XQ FKDUJHPHQW WUDQVYHUVDO SXUHPHQW WKHUPLTXH OD IDFH LQWpULHXUH HVW SRUWpH HW PDLQWHQXH j OD WHPSpUDWXUH 7 OD IDFH VXSpULHXUH j 7 DYHF 7 + 7 = 7 HW 7 − 7 = $ ⋅ K /H FDOFXO GH OD IOqFKH Z[ SHXW VH IDLUHFRPPHSRXUXQHSRXWUHjSDUWLUGXPRPHQWIOpFKLVVDQWOLQpLTXH 0 [ H[SULPpGDQVOHV IRUPXOHV (QDSSHODQW 5 $ ODUpDFWLRQYHUWLFDOHOLQpLTXHjO¶DSSXL$RQDjO¶DEVFLVVH[
⎛ ∂ Z ⎞ 0[ = − ' ⎜ + α + ν $ ⎟ = −5 $ / − [ ⎟ ⎜ ∂ [ ⎝ ⎠
⎛ ∂ Z ⎞ 0[ = − ' ⎜ + α + ν $ ⎟ = −5 $ / − [ ⎟ ⎜ ∂ [ ⎝ ⎠
G¶R
∂ Z 5 $ = / − [ − α + ν $ ' ∂ [
/¶LQWpJUDWLRQGRQQHFRPSWHWHQXGHVFRQGLWLRQVG¶HQFDVWUHPHQWHQ[
G¶R
/¶LQWpJUDWLRQGRQQHFRPSWHWHQXGHVFRQGLWLRQVG¶HQFDVWUHPHQWHQ[
[ ⎞⎟ ∂ Z 5 $ ⎛⎜ /[ − − α + ν $ ⋅ [ = ' ⎝⎜ ⎠⎟ ∂[ Z [ =
5$ '
5$ =
[ ⎞⎟ ∂ Z 5 $ ⎛⎜ /[ − − α + ν $ ⋅ [ = ' ⎝⎜ ⎠⎟ ∂[
⎛ [ [ ⎞ [ ⎜/ − ⎟ − α + ν $ ⋅ ⎟ ⎜ ⎠ ⎝
/DFRQGLWLRQZ/ SHUPHWGHOHYHUO¶K\SHUVWDWLFLWpRQWURXYH
Z [ =
5$ '
⎛ [ [ ⎞ [ ⎜/ − ⎟ − α + ν $ ⋅ ⎟ ⎜ ⎠ ⎝
/DFRQGLWLRQZ/ SHUPHWGHOHYHUO¶K\SHUVWDWLFLWpRQWURXYH
α ' + ν $ α ( K $ = / − ν /
/HVpTXDWLRQVGHO¶pTXLOLEUHJOREDO
∂ Z 5 $ = / − [ − α + ν $ ' ∂ [
5$ =
α ' + ν $ α ( K $ = / − ν /
/HVpTXDWLRQVGHO¶pTXLOLEUHJOREDO
5 $ + 5 = HW MH − 5 $ ⋅ / =
5 $ + 5 = HW MH − 5 $ ⋅ / =
GRQQHQW HQVXLWH OD UpDFWLRQ OLQpLTXH HQ [ 5 = −5 $ HW OH PRPHQW G¶HQFDVWUHPHQW OLQpLTXH MH = 5 $ ⋅ / /DIOqFKHZ[ DILQDOHPHQWSRXUH[SUHVVLRQ
GRQQHQW HQVXLWH OD UpDFWLRQ OLQpLTXH HQ [ 5 = −5 $ HW OH PRPHQW G¶HQFDVWUHPHQW OLQpLTXH MH = 5 $ ⋅ / /DIOqFKHZ[ DILQDOHPHQWSRXUH[SUHVVLRQ
Z [ =
⎛ [ [ ⎞ α + ν $ / ⎜ − ⎟ ⎜/ / ⎟⎠ ⎝
Z [ =
⎛ [ [ ⎞ α + ν $ / ⎜ − ⎟ ⎜/ / ⎟⎠ ⎝
2QHQGpGXLWOHVDXWUHVSDUDPqWUHVGXSUREOqPHjO¶DLGHGHVIRUPXOHV
2QHQGpGXLWOHVDXWUHVSDUDPqWUHVGXSUREOqPHjO¶DLGHGHVIRUPXOHV
±)/$0%(0(177+(50,48(
±)/$0%(0(177+(50,48(
'DQV XQH SODTXH K\SHUVWDWLTXH XQ FKDUJHPHQW WKHUPLTXH SHXW SURYRTXHU OH IODPEHPHQW PrPHHQO¶DEVHQFHGHWRXWFKDUJHPHQWPpFDQLTXH SXLVTX¶LOSHXWLQWURGXLUHGHVHIIRUWVGH FRPSUHVVLRQ
'DQV XQH SODTXH K\SHUVWDWLTXH XQ FKDUJHPHQW WKHUPLTXH SHXW SURYRTXHU OH IODPEHPHQW PrPHHQO¶DEVHQFHGHWRXWFKDUJHPHQWPpFDQLTXH SXLVTX¶LOSHXWLQWURGXLUHGHVHIIRUWVGH FRPSUHVVLRQ
- 85 -
- 85 -
([HPSOH SUHQRQV OD SODTXH GH OD ILJXUH VRXPHWWRQVOD j XQ FKDUJHPHQW WUDQVYHUVDO SXUHPHQW WKHUPLTXH OD IDFH LQWpULHXUH HVW SRUWpH HW PDLQWHQXH j OD WHPSpUDWXUH 7 OD IDFH VXSpULHXUH j 7 DYHF 7 + 7 = 7 HW 7 − 7 = $ ⋅ K /H FDOFXO GH OD IOqFKH Z[ SHXW VH IDLUHFRPPHSRXUXQHSRXWUHjSDUWLUGXPRPHQWIOpFKLVVDQWOLQpLTXH 0 [ H[SULPpGDQVOHV IRUPXOHV (QDSSHODQW 5 $ ODUpDFWLRQYHUWLFDOHOLQpLTXHjO¶DSSXL$RQDjO¶DEVFLVVH[
([HPSOH SUHQRQV OD SODTXH GH OD ILJXUH VRXPHWWRQVOD j XQ FKDUJHPHQW WUDQVYHUVDO SXUHPHQW WKHUPLTXH OD IDFH LQWpULHXUH HVW SRUWpH HW PDLQWHQXH j OD WHPSpUDWXUH 7 OD IDFH VXSpULHXUH j 7 DYHF 7 + 7 = 7 HW 7 − 7 = $ ⋅ K /H FDOFXO GH OD IOqFKH Z[ SHXW VH IDLUHFRPPHSRXUXQHSRXWUHjSDUWLUGXPRPHQWIOpFKLVVDQWOLQpLTXH 0 [ H[SULPpGDQVOHV IRUPXOHV (QDSSHODQW 5 $ ODUpDFWLRQYHUWLFDOHOLQpLTXHjO¶DSSXL$RQDjO¶DEVFLVVH[
⎛ ∂ Z ⎞ 0[ = − ' ⎜ + α + ν $ ⎟ = −5 $ / − [ ⎟ ⎜ ∂ [ ⎝ ⎠
⎛ ∂ Z ⎞ 0[ = − ' ⎜ + α + ν $ ⎟ = −5 $ / − [ ⎟ ⎜ ∂ [ ⎝ ⎠
G¶R
∂ Z 5 $ = / − [ − α + ν $ ' ∂ [
/¶LQWpJUDWLRQGRQQHFRPSWHWHQXGHVFRQGLWLRQVG¶HQFDVWUHPHQWHQ[ [ ⎞⎟ ∂ Z 5 $ ⎛⎜ /[ − − α + ν $ ⋅ [ = ' ⎝⎜ ⎠⎟ ∂[ Z [ =
5$ '
⎛ [ [ ⎞ [ ⎜/ − ⎟ − α + ν $ ⋅ ⎜ ⎠⎟ ⎝
/DFRQGLWLRQZ/ SHUPHWGHOHYHUO¶K\SHUVWDWLFLWpRQWURXYH 5$ =
α ' + ν $ α ( K $ = / − ν /
/HVpTXDWLRQVGHO¶pTXLOLEUHJOREDO
G¶R
∂ Z 5 $ = / − [ − α + ν $ ' ∂ [
/¶LQWpJUDWLRQGRQQHFRPSWHWHQXGHVFRQGLWLRQVG¶HQFDVWUHPHQWHQ[ [ ⎞⎟ ∂ Z 5 $ ⎛⎜ /[ − − α + ν $ ⋅ [ = ' ⎝⎜ ⎠⎟ ∂[ Z [ =
5$ '
⎛ [ [ ⎞ [ ⎜/ − ⎟ − α + ν $ ⋅ ⎜ ⎠⎟ ⎝
/DFRQGLWLRQZ/ SHUPHWGHOHYHUO¶K\SHUVWDWLFLWpRQWURXYH 5$ =
α ' + ν $ α ( K $ = / − ν /
/HVpTXDWLRQVGHO¶pTXLOLEUHJOREDO
5 $ + 5 = HW MH − 5 $ ⋅ / =
5 $ + 5 = HW MH − 5 $ ⋅ / =
GRQQHQW HQVXLWH OD UpDFWLRQ OLQpLTXH HQ [ 5 = −5 $ HW OH PRPHQW G¶HQFDVWUHPHQW OLQpLTXH MH = 5 $ ⋅ / /DIOqFKHZ[ DILQDOHPHQWSRXUH[SUHVVLRQ
GRQQHQW HQVXLWH OD UpDFWLRQ OLQpLTXH HQ [ 5 = −5 $ HW OH PRPHQW G¶HQFDVWUHPHQW OLQpLTXH MH = 5 $ ⋅ / /DIOqFKHZ[ DILQDOHPHQWSRXUH[SUHVVLRQ
Z [ =
⎛ [ [ ⎞ α + ν $ / ⎜ − ⎟ ⎜/ / ⎟⎠ ⎝
Z [ =
⎛ [ [ ⎞ α + ν $ / ⎜ − ⎟ ⎜/ / ⎟⎠ ⎝
2QHQGpGXLWOHVDXWUHVSDUDPqWUHVGXSUREOqPHjO¶DLGHGHVIRUPXOHV
2QHQGpGXLWOHVDXWUHVSDUDPqWUHVGXSUREOqPHjO¶DLGHGHVIRUPXOHV
±)/$0%(0(177+(50,48(
±)/$0%(0(177+(50,48(
'DQV XQH SODTXH K\SHUVWDWLTXH XQ FKDUJHPHQW WKHUPLTXH SHXW SURYRTXHU OH IODPEHPHQW PrPHHQO¶DEVHQFHGHWRXWFKDUJHPHQWPpFDQLTXH SXLVTX¶LOSHXWLQWURGXLUHGHVHIIRUWVGH FRPSUHVVLRQ
'DQV XQH SODTXH K\SHUVWDWLTXH XQ FKDUJHPHQW WKHUPLTXH SHXW SURYRTXHU OH IODPEHPHQW PrPHHQO¶DEVHQFHGHWRXWFKDUJHPHQWPpFDQLTXH SXLVTX¶LOSHXWLQWURGXLUHGHVHIIRUWVGH FRPSUHVVLRQ
- 85 -
- 85 -
,OOXVWURQV FH SKpQRPqQH VXU XQ H[HPSOH XQ GLVTXH HVW VLPSOHPHQW DSSX\p VXU VHV ERUGV FRPPHOHPRQWUHODILJXUH/¶DVVHPEODJHHVWUpDOLVpVDQVMHXQLVHUUDJHjODWHPSpUDWXUHGH UpIpUHQFH 7 2Q pOqYH HQVXLWH XQLIRUPpPHQW OD WHPSpUDWXUH QH SRXYDQW VH GLODWHU UDGLDOHPHQWOHGLVTXHVXELWXQHFRPSUHVVLRQXQLIRUPpPHQWUpSDUWLHVXUVRQERUGG¶LQWHQVLWp )SDUXQLWpGHORQJXHXUFHFHOXLFL
,OOXVWURQV FH SKpQRPqQH VXU XQ H[HPSOH XQ GLVTXH HVW VLPSOHPHQW DSSX\p VXU VHV ERUGV FRPPHOHPRQWUHODILJXUH/¶DVVHPEODJHHVWUpDOLVpVDQVMHXQLVHUUDJHjODWHPSpUDWXUHGH UpIpUHQFH 7 2Q pOqYH HQVXLWH XQLIRUPpPHQW OD WHPSpUDWXUH QH SRXYDQW VH GLODWHU UDGLDOHPHQWOHGLVTXHVXELWXQHFRPSUHVVLRQXQLIRUPpPHQWUpSDUWLHVXUVRQERUGG¶LQWHQVLWp )SDUXQLWpGHORQJXHXUFHFHOXLFL
)LJXUH
)LJXUH
&HWWHIRUFHGH FRPSUHVVLRQVL HOOH DWWHLQW ODFULWLTXH )&5 = + ν ,;GXWRPH,SURYRTXHOHIODPEHPHQWVXLYDQWOHPRGHIRQGDPHQWDO
' FDOFXOpH DXFKDSLWUH U
&HWWHIRUFHGH FRPSUHVVLRQVL HOOH DWWHLQW ODFULWLTXH )&5 = + ν ,;GXWRPH,SURYRTXHOHIODPEHPHQWVXLYDQWOHPRGHIRQGDPHQWDO
' FDOFXOpH DXFKDSLWUH U
1RXVGHYRQVGRQFFDOFXOHUODUpDFWLRQOLQpLTXHVXUOHVERUGVTXLDSSDUDLWORUVTX¶RQpOqYHOD WHPSpUDWXUHGH 7 j76LOHGLVTXHHVWOLEUHSDVGHOLDLVRQ O¶pOpYDWLRQ 7 − 7 SURGXLWXQH GpIRUPDWLRQ TXL HVW XQH KRPRWKpWLH IDLVDQW SDVVHU OH UD\RQ GH 5 j 5X5 DYHF X 5 = α 5 7 − 7
1RXVGHYRQVGRQFFDOFXOHUODUpDFWLRQOLQpLTXHVXUOHVERUGVTXLDSSDUDLWORUVTX¶RQpOqYHOD WHPSpUDWXUHGH 7 j76LOHGLVTXHHVWOLEUHSDVGHOLDLVRQ O¶pOpYDWLRQ 7 − 7 SURGXLWXQH GpIRUPDWLRQ TXL HVW XQH KRPRWKpWLH IDLVDQW SDVVHU OH UD\RQ GH 5 j 5X5 DYHF X 5 = α 5 7 − 7
1RXVDYRQVGpPRQWUpDXWRPH,FKDSLWUH,9TXHSRXUUDPHQHUFHUD\RQGH5X5 j 5LOIDXWDSSOLTXHUVXUOHERUGXQHIRUFHGHFRPSUHVVLRQG¶LQWHQVLWpOLQpLTXH
1RXVDYRQVGpPRQWUpDXWRPH,FKDSLWUH,9TXHSRXUUDPHQHUFHUD\RQGH5X5 j 5LOIDXWDSSOLTXHUVXUOHERUGXQHIRUFHGHFRPSUHVVLRQG¶LQWHQVLWpOLQpLTXH
)=
2QHQGpGXLW
)=
X 5 (K − ν 5
( K α 7 − 7 − ν
&HWWHIRUFHDWWHLQWVDYDOHXUFULWLTXH )&5 = + ν SRXU
7 − 7 =
)=
2QHQGpGXLW
' U
)=
X 5 (K − ν 5
( K α 7 − 7 − ν
&HWWHIRUFHDWWHLQWVDYDOHXUFULWLTXH )&5 = + ν
' − ν ⎛ K ⎞ = ⎜ ⎟ α ⎝5⎠ ( K α 5
SRXU
7 − 7 =
' U
' − ν ⎛ K ⎞ = ⎜ ⎟ α ⎝5⎠ ( K α 5
- 86 -
- 86 -
,OOXVWURQV FH SKpQRPqQH VXU XQ H[HPSOH XQ GLVTXH HVW VLPSOHPHQW DSSX\p VXU VHV ERUGV FRPPHOHPRQWUHODILJXUH/¶DVVHPEODJHHVWUpDOLVpVDQVMHXQLVHUUDJHjODWHPSpUDWXUHGH UpIpUHQFH 7 2Q pOqYH HQVXLWH XQLIRUPpPHQW OD WHPSpUDWXUH QH SRXYDQW VH GLODWHU UDGLDOHPHQWOHGLVTXHVXELWXQHFRPSUHVVLRQXQLIRUPpPHQWUpSDUWLHVXUVRQERUGG¶LQWHQVLWp )SDUXQLWpGHORQJXHXUFHFHOXLFL
,OOXVWURQV FH SKpQRPqQH VXU XQ H[HPSOH XQ GLVTXH HVW VLPSOHPHQW DSSX\p VXU VHV ERUGV FRPPHOHPRQWUHODILJXUH/¶DVVHPEODJHHVWUpDOLVpVDQVMHXQLVHUUDJHjODWHPSpUDWXUHGH UpIpUHQFH 7 2Q pOqYH HQVXLWH XQLIRUPpPHQW OD WHPSpUDWXUH QH SRXYDQW VH GLODWHU UDGLDOHPHQWOHGLVTXHVXELWXQHFRPSUHVVLRQXQLIRUPpPHQWUpSDUWLHVXUVRQERUGG¶LQWHQVLWp )SDUXQLWpGHORQJXHXUFHFHOXLFL
)LJXUH
)LJXUH
&HWWHIRUFHGH FRPSUHVVLRQVL HOOH DWWHLQW ODFULWLTXH )&5 = + ν ,;GXWRPH,SURYRTXHOHIODPEHPHQWVXLYDQWOHPRGHIRQGDPHQWDO
' FDOFXOpH DXFKDSLWUH U
&HWWHIRUFHGH FRPSUHVVLRQVL HOOH DWWHLQW ODFULWLTXH )&5 = + ν ,;GXWRPH,SURYRTXHOHIODPEHPHQWVXLYDQWOHPRGHIRQGDPHQWDO
' FDOFXOpH DXFKDSLWUH U
1RXVGHYRQVGRQFFDOFXOHUODUpDFWLRQOLQpLTXHVXUOHVERUGVTXLDSSDUDLWORUVTX¶RQpOqYHOD WHPSpUDWXUHGH 7 j76LOHGLVTXHHVWOLEUHSDVGHOLDLVRQ O¶pOpYDWLRQ 7 − 7 SURGXLWXQH GpIRUPDWLRQ TXL HVW XQH KRPRWKpWLH IDLVDQW SDVVHU OH UD\RQ GH 5 j 5X5 DYHF X 5 = α 5 7 − 7
1RXVGHYRQVGRQFFDOFXOHUODUpDFWLRQOLQpLTXHVXUOHVERUGVTXLDSSDUDLWORUVTX¶RQpOqYHOD WHPSpUDWXUHGH 7 j76LOHGLVTXHHVWOLEUHSDVGHOLDLVRQ O¶pOpYDWLRQ 7 − 7 SURGXLWXQH GpIRUPDWLRQ TXL HVW XQH KRPRWKpWLH IDLVDQW SDVVHU OH UD\RQ GH 5 j 5X5 DYHF X 5 = α 5 7 − 7
1RXVDYRQVGpPRQWUpDXWRPH,FKDSLWUH,9TXHSRXUUDPHQHUFHUD\RQGH5X5 j 5LOIDXWDSSOLTXHUVXUOHERUGXQHIRUFHGHFRPSUHVVLRQG¶LQWHQVLWpOLQpLTXH
1RXVDYRQVGpPRQWUpDXWRPH,FKDSLWUH,9TXHSRXUUDPHQHUFHUD\RQGH5X5 j 5LOIDXWDSSOLTXHUVXUOHERUGXQHIRUFHGHFRPSUHVVLRQG¶LQWHQVLWpOLQpLTXH
)=
2QHQGpGXLW
)=
X 5 (K − ν 5
( K α 7 − 7 − ν
&HWWHIRUFHDWWHLQWVDYDOHXUFULWLTXH )&5 = + ν SRXU
7 − 7 =
)=
2QHQGpGXLW
' U
( K α 7 − 7 − ν
&HWWHIRUFHDWWHLQWVDYDOHXUFULWLTXH )&5 = + ν
' − ν ⎛ K ⎞ = ⎜ ⎟ α ⎝5⎠ ( K α 5
SRXU
- 86 -
)=
X 5 (K − ν 5
7 − 7 =
' U
' − ν ⎛ K ⎞ = ⎜ ⎟ α ⎝5⎠ ( K α 5
- 86 -
&+$3,75(9
&+$3,75(9
7+(50,48('(6&248(6
7+(50,48('(6&248(6
'DQVOHSUpVHQWFKDSLWUHQRXVQRXVSURSRVRQVG¶pWHQGUHDX[FDVGHFKDUJHPHQWVWKHUPLTXHV HW PpFDQLTXHV OHV UpVXOWDWV HW PpWKRGHV REWHQXV GDQV OH FDV G¶XQ FKDUJHPHQW SXUHPHQW PpFDQLTXHRXFDVLVRWKHUPH DXWRPH,/DVXUIDFHPR\HQQHGHODFRTXH\HVWpWXGLpHG¶XQ SRLQWGHYXHSXUHPHQWJpRPpWULTXHQRXVXWLOLVHURQVLFLOHVUpVXOWDWVGHFHVpWXGHVVDQVDXFXQ FKDQJHPHQW,OHQHVWGHPrPHGHVIRUPXOHVIRQGDPHQWDOHV
'DQVOHSUpVHQWFKDSLWUHQRXVQRXVSURSRVRQVG¶pWHQGUHDX[FDVGHFKDUJHPHQWVWKHUPLTXHV HW PpFDQLTXHV OHV UpVXOWDWV HW PpWKRGHV REWHQXV GDQV OH FDV G¶XQ FKDUJHPHQW SXUHPHQW PpFDQLTXHRXFDVLVRWKHUPH DXWRPH,/DVXUIDFHPR\HQQHGHODFRTXH\HVWpWXGLpHG¶XQ SRLQWGHYXHSXUHPHQWJpRPpWULTXHQRXVXWLOLVHURQVLFLOHVUpVXOWDWVGHFHVpWXGHVVDQVDXFXQ FKDQJHPHQW,OHQHVWGHPrPHGHVIRUPXOHVIRQGDPHQWDOHV
± H[SULPDQWOHVHIIRUWVLQWHUQHVYLVVHXUV HQIRQFWLRQGHVFRQWUDLQWHV
± H[SULPDQWOHVHIIRUWVLQWHUQHVYLVVHXUV HQIRQFWLRQGHVFRQWUDLQWHV
± WUDGXLVDQWO¶pTXLOLEUHG¶XQpOpPHQWGHFRTXH
± WUDGXLVDQWO¶pTXLOLEUHG¶XQpOpPHQWGHFRTXH
± H[SULPDQWOHVGpIRUPDWLRQVHWURWDWLRQVHQIRQFWLRQGHVFRPSRVDQWHV X X Z GXYHFWHXU
± H[SULPDQWOHVGpIRUPDWLRQVHWURWDWLRQVHQIRQFWLRQGHVFRPSRVDQWHV X X Z GXYHFWHXU
WUDQVODWLRQ 3R3
WUDQVODWLRQ 3R3
/HVWURLVWKpRULHVGHFRTXHVPLQFHVTXHQRXVDOORQVSUpVHQWHUGpULYHQWGHODWKHUPRpODVWLFLWp WULGLPHQVLRQQHOOHHWV¶DSSXLHQWVXUWURLVK\SRWKqVHVFRPPHGDQVOHFDVLVRWKHUPH/HFKDPS GHWHPSpUDWXUHpWDQWVXSSRVpFRQQXGDQVODFRTXHOHVPpWKRGHVSURSRVpHVGDQVFHVWURLVFDV VRQWGHVPpWKRGHVGHGpSODFHPHQWVRQSUHQGHQHIIHWFRPPHLQFRQQXHVSULYLOpJLpHVOHVWURLV FRPSRVDQWHV X X Z GX GpSODFHPHQW GH OD SDUWLFXOH FRXUDQWH 3 GX IHXLOOHW PR\HQ FHV WURLV IRQFWLRQV VRQW FDOFXOpHV SDU LQWpJUDWLRQ G¶XQ V\VWqPH GH WURLV pTXDWLRQV DX[ GpULYpHV SDUWLHOOHVOHVFRQVWDQWHVG¶LQWpJUDWLRQpWDQWGpWHUPLQpHVjO¶DLGHGHVFRQGLWLRQVLQLWLDOHVGDQV OHV FDV LQVWDWLRQQDLUHV *UkFH DX[ WURLV K\SRWKqVHV VLPSOLILFDWULFH RQ VDLW H[SULPHU WRXV OHV DXWUHVSDUDPqWUHVGXSUREOqPHHQIRQFWLRQGH X X Z
/HVWURLVWKpRULHVGHFRTXHVPLQFHVTXHQRXVDOORQVSUpVHQWHUGpULYHQWGHODWKHUPRpODVWLFLWp WULGLPHQVLRQQHOOHHWV¶DSSXLHQWVXUWURLVK\SRWKqVHVFRPPHGDQVOHFDVLVRWKHUPH/HFKDPS GHWHPSpUDWXUHpWDQWVXSSRVpFRQQXGDQVODFRTXHOHVPpWKRGHVSURSRVpHVGDQVFHVWURLVFDV VRQWGHVPpWKRGHVGHGpSODFHPHQWVRQSUHQGHQHIIHWFRPPHLQFRQQXHVSULYLOpJLpHVOHVWURLV FRPSRVDQWHV X X Z GX GpSODFHPHQW GH OD SDUWLFXOH FRXUDQWH 3 GX IHXLOOHW PR\HQ FHV WURLV IRQFWLRQV VRQW FDOFXOpHV SDU LQWpJUDWLRQ G¶XQ V\VWqPH GH WURLV pTXDWLRQV DX[ GpULYpHV SDUWLHOOHVOHVFRQVWDQWHVG¶LQWpJUDWLRQpWDQWGpWHUPLQpHVjO¶DLGHGHVFRQGLWLRQVLQLWLDOHVGDQV OHV FDV LQVWDWLRQQDLUHV *UkFH DX[ WURLV K\SRWKqVHV VLPSOLILFDWULFH RQ VDLW H[SULPHU WRXV OHV DXWUHVSDUDPqWUHVGXSUREOqPHHQIRQFWLRQGH X X Z
5DSSHORQVHQILQTXHQRXVSUHQRQVOHVOLJQHVGHFRXUEXUHFRPPHOLJQHVGHFRRUGRQQpHVVXU ODVXUIDFHPR\HQQH 6
5DSSHORQVHQILQTXHQRXVSUHQRQVOHVOLJQHVGHFRXUEXUHFRPPHOLJQHVGHFRRUGRQQpHVVXU ODVXUIDFHPR\HQQH 6
±+<327+Ê6(6'(6&248(60,1&(6
±+<327+Ê6(6'(6&248(60,1&(6
UHK\SRWKqVH
UHK\SRWKqVH
3 α α ] GpVLJQDQW OD SDUWLFXOH FRXUDQWH G¶XQH ILEUH QRUPDOH GH FHQWUH 3 α α R OD G WUDQVODWLRQ VXELH SDU 3 QRWpH X X X Z HVW OD VRPPH GH WURLV WUDQVODWLRQV GXHV UHVSHFWLYHPHQW
3 α α ] GpVLJQDQW OD SDUWLFXOH FRXUDQWH G¶XQH ILEUH QRUPDOH GH FHQWUH 3 α α R OD G WUDQVODWLRQ VXELH SDU 3 QRWpH X X X Z HVW OD VRPPH GH WURLV WUDQVODWLRQV GXHV UHVSHFWLYHPHQW
± jODWUDQVODWLRQGHODILEUHGHFRPSRVDQWHV X X Z
± jODWUDQVODWLRQGHODILEUHGHFRPSRVDQWHV X X Z
± jXQHURWDWLRQGHODILEUHDXWRXUGH 3 GHFRPSRVDQWHV ω ω ω]
± jXQHURWDWLRQGHODILEUHDXWRXUGH 3 GHFRPSRVDQWHV ω ω ω]
± jXQHGpIRUPDWLRQSXUHGHODILEUH
± jXQHGpIRUPDWLRQSXUHGHODILEUH
- 87 -
- 87 -
&+$3,75(9
&+$3,75(9
7+(50,48('(6&248(6
7+(50,48('(6&248(6
'DQVOHSUpVHQWFKDSLWUHQRXVQRXVSURSRVRQVG¶pWHQGUHDX[FDVGHFKDUJHPHQWVWKHUPLTXHV HW PpFDQLTXHV OHV UpVXOWDWV HW PpWKRGHV REWHQXV GDQV OH FDV G¶XQ FKDUJHPHQW SXUHPHQW PpFDQLTXHRXFDVLVRWKHUPH DXWRPH,/DVXUIDFHPR\HQQHGHODFRTXH\HVWpWXGLpHG¶XQ SRLQWGHYXHSXUHPHQWJpRPpWULTXHQRXVXWLOLVHURQVLFLOHVUpVXOWDWVGHFHVpWXGHVVDQVDXFXQ FKDQJHPHQW,OHQHVWGHPrPHGHVIRUPXOHVIRQGDPHQWDOHV
'DQVOHSUpVHQWFKDSLWUHQRXVQRXVSURSRVRQVG¶pWHQGUHDX[FDVGHFKDUJHPHQWVWKHUPLTXHV HW PpFDQLTXHV OHV UpVXOWDWV HW PpWKRGHV REWHQXV GDQV OH FDV G¶XQ FKDUJHPHQW SXUHPHQW PpFDQLTXHRXFDVLVRWKHUPH DXWRPH,/DVXUIDFHPR\HQQHGHODFRTXH\HVWpWXGLpHG¶XQ SRLQWGHYXHSXUHPHQWJpRPpWULTXHQRXVXWLOLVHURQVLFLOHVUpVXOWDWVGHFHVpWXGHVVDQVDXFXQ FKDQJHPHQW,OHQHVWGHPrPHGHVIRUPXOHVIRQGDPHQWDOHV
± H[SULPDQWOHVHIIRUWVLQWHUQHVYLVVHXUV HQIRQFWLRQGHVFRQWUDLQWHV
± H[SULPDQWOHVHIIRUWVLQWHUQHVYLVVHXUV HQIRQFWLRQGHVFRQWUDLQWHV
± WUDGXLVDQWO¶pTXLOLEUHG¶XQpOpPHQWGHFRTXH
± WUDGXLVDQWO¶pTXLOLEUHG¶XQpOpPHQWGHFRTXH
± H[SULPDQWOHVGpIRUPDWLRQVHWURWDWLRQVHQIRQFWLRQGHVFRPSRVDQWHV X X Z GXYHFWHXU
± H[SULPDQWOHVGpIRUPDWLRQVHWURWDWLRQVHQIRQFWLRQGHVFRPSRVDQWHV X X Z GXYHFWHXU
WUDQVODWLRQ 3R3
WUDQVODWLRQ 3R3
/HVWURLVWKpRULHVGHFRTXHVPLQFHVTXHQRXVDOORQVSUpVHQWHUGpULYHQWGHODWKHUPRpODVWLFLWp WULGLPHQVLRQQHOOHHWV¶DSSXLHQWVXUWURLVK\SRWKqVHVFRPPHGDQVOHFDVLVRWKHUPH/HFKDPS GHWHPSpUDWXUHpWDQWVXSSRVpFRQQXGDQVODFRTXHOHVPpWKRGHVSURSRVpHVGDQVFHVWURLVFDV VRQWGHVPpWKRGHVGHGpSODFHPHQWVRQSUHQGHQHIIHWFRPPHLQFRQQXHVSULYLOpJLpHVOHVWURLV FRPSRVDQWHV X X Z GX GpSODFHPHQW GH OD SDUWLFXOH FRXUDQWH 3 GX IHXLOOHW PR\HQ FHV WURLV IRQFWLRQV VRQW FDOFXOpHV SDU LQWpJUDWLRQ G¶XQ V\VWqPH GH WURLV pTXDWLRQV DX[ GpULYpHV SDUWLHOOHVOHVFRQVWDQWHVG¶LQWpJUDWLRQpWDQWGpWHUPLQpHVjO¶DLGHGHVFRQGLWLRQVLQLWLDOHVGDQV OHV FDV LQVWDWLRQQDLUHV *UkFH DX[ WURLV K\SRWKqVHV VLPSOLILFDWULFH RQ VDLW H[SULPHU WRXV OHV DXWUHVSDUDPqWUHVGXSUREOqPHHQIRQFWLRQGH X X Z
/HVWURLVWKpRULHVGHFRTXHVPLQFHVTXHQRXVDOORQVSUpVHQWHUGpULYHQWGHODWKHUPRpODVWLFLWp WULGLPHQVLRQQHOOHHWV¶DSSXLHQWVXUWURLVK\SRWKqVHVFRPPHGDQVOHFDVLVRWKHUPH/HFKDPS GHWHPSpUDWXUHpWDQWVXSSRVpFRQQXGDQVODFRTXHOHVPpWKRGHVSURSRVpHVGDQVFHVWURLVFDV VRQWGHVPpWKRGHVGHGpSODFHPHQWVRQSUHQGHQHIIHWFRPPHLQFRQQXHVSULYLOpJLpHVOHVWURLV FRPSRVDQWHV X X Z GX GpSODFHPHQW GH OD SDUWLFXOH FRXUDQWH 3 GX IHXLOOHW PR\HQ FHV WURLV IRQFWLRQV VRQW FDOFXOpHV SDU LQWpJUDWLRQ G¶XQ V\VWqPH GH WURLV pTXDWLRQV DX[ GpULYpHV SDUWLHOOHVOHVFRQVWDQWHVG¶LQWpJUDWLRQpWDQWGpWHUPLQpHVjO¶DLGHGHVFRQGLWLRQVLQLWLDOHVGDQV OHV FDV LQVWDWLRQQDLUHV *UkFH DX[ WURLV K\SRWKqVHV VLPSOLILFDWULFH RQ VDLW H[SULPHU WRXV OHV DXWUHVSDUDPqWUHVGXSUREOqPHHQIRQFWLRQGH X X Z
5DSSHORQVHQILQTXHQRXVSUHQRQVOHVOLJQHVGHFRXUEXUHFRPPHOLJQHVGHFRRUGRQQpHVVXU ODVXUIDFHPR\HQQH 6
5DSSHORQVHQILQTXHQRXVSUHQRQVOHVOLJQHVGHFRXUEXUHFRPPHOLJQHVGHFRRUGRQQpHVVXU ODVXUIDFHPR\HQQH 6
±+<327+Ê6(6'(6&248(60,1&(6
±+<327+Ê6(6'(6&248(60,1&(6
UHK\SRWKqVH
UHK\SRWKqVH
3 α α ] GpVLJQDQW OD SDUWLFXOH FRXUDQWH G¶XQH ILEUH QRUPDOH GH FHQWUH 3 α α R OD G WUDQVODWLRQ VXELH SDU 3 QRWpH X X X Z HVW OD VRPPH GH WURLV WUDQVODWLRQV GXHV UHVSHFWLYHPHQW
3 α α ] GpVLJQDQW OD SDUWLFXOH FRXUDQWH G¶XQH ILEUH QRUPDOH GH FHQWUH 3 α α R OD G WUDQVODWLRQ VXELH SDU 3 QRWpH X X X Z HVW OD VRPPH GH WURLV WUDQVODWLRQV GXHV UHVSHFWLYHPHQW
± jODWUDQVODWLRQGHODILEUHGHFRPSRVDQWHV X X Z
± jODWUDQVODWLRQGHODILEUHGHFRPSRVDQWHV X X Z
± jXQHURWDWLRQGHODILEUHDXWRXUGH 3 GHFRPSRVDQWHV ω ω ω]
± jXQHURWDWLRQGHODILEUHDXWRXUGH 3 GHFRPSRVDQWHV ω ω ω]
± jXQHGpIRUPDWLRQSXUHGHODILEUH
± jXQHGpIRUPDWLRQSXUHGHODILEUH
- 87 -
- 87 -
+ &HWWHWURLVLqPHWUDQVODWLRQHVWQpJOLJHDEOHGHYDQWOHVGHX[DXWUHV
+ &HWWHWURLVLqPHWUDQVODWLRQHVWQpJOLJHDEOHGHYDQWOHVGHX[DXWUHV
&HWWH SUHPLqUH K\SRWKqVHV HVW GRQF LQFKDQJpH SDU UDSSRUW DX FDV LVRWKHUPH HW D OHV GHX[ PrPHVFRQVpTXHQFHVSULQFLSDOHV
&HWWH SUHPLqUH K\SRWKqVHV HVW GRQF LQFKDQJpH SDU UDSSRUW DX FDV LVRWKHUPH HW D OHV GHX[ PrPHVFRQVpTXHQFHVSULQFLSDOHV
UHFRQVpTXHQFH
UHFRQVpTXHQFH
⎧X = X + = ω G ⎪⎪ X ⎨X = X − = ω ⎪ ⎪⎩Z = Z
HFRQVpTXHQFH
HFRQVpTXHQFH ⎧ ∂Z X + ⎪ ω = β ∂ α 5 1 ⎪ ⎪ ∂Z X ⎪ + ⎨ ω = − β ∂ α 5 1 ⎪ ⎪ ⎪ ω = ⎛⎜ ∂ X − ∂ X + X + X ⎞⎟ ⎪ ] ⎜β ∂α β ∂α 5J 5J ⎟⎠ ⎝ ⎩
⎧X = X + = ω G ⎪⎪ X ⎨X = X − = ω ⎪ ⎪⎩Z = Z
⎧ ∂Z X + ⎪ ω = β ∂ α 5 1 ⎪ ⎪ ∂Z X ⎪ + ⎨ ω = − β ∂ α 5 1 ⎪ ⎪ ⎪ ω = ⎛⎜ ∂ X − ∂ X + X + X ⎞⎟ ⎪ ] ⎜β ∂α β ∂α 5J 5J ⎟⎠ ⎝ ⎩
HK\SRWKqVH
HK\SRWKqVH
+ σ ] HVWQpJOLJHDEOHGHYDQW σ HW σ FRPPHGDQVOHFDVLVRWKHUPH
+ σ ] HVWQpJOLJHDEOHGHYDQW σ HW σ FRPPHGDQVOHFDVLVRWKHUPH
&RQVpTXHQFHRQHQGpGXLWHQYHUWXGHODORLGH+RRNH'XKDPHO
&RQVpTXHQFHRQHQGpGXLWHQYHUWXGHODORLGH+RRNH'XKDPHO
⎧ ⎪ε = ( σ − ν σ + α 7 − 7 ⎪ ⎪ε = σ − ν σ + α 7 − 7 ⎪⎪ ( ⎨ ⎪ε = − ν σ + σ + α 7 − 7 = − ν ε + ε + + ν α 7 − 7 ⎪ ] ( − ν − ν ⎪ ⎪γ = + ν τ HWLQYHUVHPHQW ( ⎩⎪
(α ( ⎧ ⎪σ = − ν ε + ν ε − − ν 7 − 7 ⎪ (α ( ⎪ ε + ν ε − 7 − 7 ⎨σ = −ν − ν ⎪ ⎪ ( γ ⎪τ = + ν ⎩
⎧ ⎪ε = ( σ − ν σ + α 7 − 7 ⎪ ⎪ε = σ − ν σ + α 7 − 7 ⎪⎪ ( ⎨ ⎪ε = − ν σ + σ + α 7 − 7 = − ν ε + ε + + ν α 7 − 7 ⎪ ] ( − ν − ν ⎪ ⎪γ = + ν τ HWLQYHUVHPHQW ( ⎩⎪
(α ( ⎧ ⎪σ = − ν ε + ν ε − − ν 7 − 7 ⎪ (α ( ⎪ ε + ν ε − 7 − 7 ⎨σ = −ν − ν ⎪ ⎪ ( γ ⎪τ = + ν ⎩
- 88 -
- 88 -
+ &HWWHWURLVLqPHWUDQVODWLRQHVWQpJOLJHDEOHGHYDQWOHVGHX[DXWUHV
+ &HWWHWURLVLqPHWUDQVODWLRQHVWQpJOLJHDEOHGHYDQWOHVGHX[DXWUHV
&HWWH SUHPLqUH K\SRWKqVHV HVW GRQF LQFKDQJpH SDU UDSSRUW DX FDV LVRWKHUPH HW D OHV GHX[ PrPHVFRQVpTXHQFHVSULQFLSDOHV
&HWWH SUHPLqUH K\SRWKqVHV HVW GRQF LQFKDQJpH SDU UDSSRUW DX FDV LVRWKHUPH HW D OHV GHX[ PrPHVFRQVpTXHQFHVSULQFLSDOHV
UHFRQVpTXHQFH
UHFRQVpTXHQFH
⎧X = X + = ω G ⎪⎪ X ⎨X = X − = ω ⎪ ⎪⎩Z = Z
HFRQVpTXHQFH
HFRQVpTXHQFH ⎧ ∂Z X + ⎪ ω = β ∂ α 5 1 ⎪ ⎪ ∂Z X ⎪ + ⎨ ω = − β ∂ α 5 1 ⎪ ⎪ ⎪ ω = ⎛⎜ ∂ X − ∂ X + X + X ⎞⎟ ⎪ ] ⎜β ∂α β ∂α 5J 5J ⎟⎠ ⎝ ⎩
⎧X = X + = ω G ⎪⎪ X ⎨X = X − = ω ⎪ ⎪⎩Z = Z
⎧ ∂Z X + ⎪ ω = β ∂ α 5 1 ⎪ ⎪ ∂Z X ⎪ + ⎨ ω = − β ∂ α 5 1 ⎪ ⎪ ⎪ ω = ⎛⎜ ∂ X − ∂ X + X + X ⎞⎟ ⎪ ] ⎜β ∂α β ∂α 5J 5J ⎟⎠ ⎝ ⎩
HK\SRWKqVH
HK\SRWKqVH
+ σ ] HVWQpJOLJHDEOHGHYDQW σ HW σ FRPPHGDQVOHFDVLVRWKHUPH
+ σ ] HVWQpJOLJHDEOHGHYDQW σ HW σ FRPPHGDQVOHFDVLVRWKHUPH
&RQVpTXHQFHRQHQGpGXLWHQYHUWXGHODORLGH+RRNH'XKDPHO
&RQVpTXHQFHRQHQGpGXLWHQYHUWXGHODORLGH+RRNH'XKDPHO
⎧ ⎪ε = ( σ − ν σ + α 7 − 7 ⎪ ⎪ε = σ − ν σ + α 7 − 7 ⎪⎪ ( ⎨ ⎪ε = − ν σ + σ + α 7 − 7 = − ν ε + ε + + ν α 7 − 7 ⎪ ] ( − ν − ν ⎪ ⎪γ = + ν τ HWLQYHUVHPHQW ⎪⎩ (
(α ( ⎧ ⎪σ = − ν ε + ν ε − − ν 7 − 7 ⎪ (α ( ⎪ ε + ν ε − 7 − 7 ⎨σ = −ν − ν ⎪ ⎪ ( γ ⎪τ = + ν ⎩
- 88 -
⎧ ⎪ε = ( σ − ν σ + α 7 − 7 ⎪ ⎪ε = σ − ν σ + α 7 − 7 ⎪⎪ ( ⎨ ⎪ε = − ν σ + σ + α 7 − 7 = − ν ε + ε + + ν α 7 − 7 ⎪ ] ( − ν − ν ⎪ ⎪γ = + ν τ HWLQYHUVHPHQW ⎪⎩ (
(α ( ⎧ ⎪σ = − ν ε + ν ε − − ν 7 − 7 ⎪ (α ( ⎪ ε + ν ε − 7 − 7 ⎨σ = −ν − ν ⎪ ⎪ ( γ ⎪τ = + ν ⎩
- 88 -
HK\SRWKqVH
HK\SRWKqVH
+ /HV IRQFWLRQV GH ] FRRUGRQQpH VXLYDQW O¶pSDLVVHXU VHURQW UHPSODFpHV SDU XQ GpYHORSSHPHQWOLPLWpGHPrPHSRXUOHVSDUDPqWUHVIRQFWLRQGHK
+ /HV IRQFWLRQV GH ] FRRUGRQQpH VXLYDQW O¶pSDLVVHXU VHURQW UHPSODFpHV SDU XQ GpYHORSSHPHQWOLPLWpGHPrPHSRXUOHVSDUDPqWUHVIRQFWLRQGHK
'DQVODWKpRULHTXDGUDWLTXHSDUH[HPSOHRQSUHQGUD
'DQVODWKpRULHTXDGUDWLTXHSDUH[HPSOHRQSUHQGUD
= ⎛ = ⎞ ⎟⎟ =+ + ⎜⎜ = 5 5 1 1 ⎝ ⎠ − 51
= ⎛ = ⎞ ⎟⎟ =+ + ⎜⎜ = 5 5 1 1 ⎝ ⎠ − 51
HWSRXUODWHPSpUDWXUH 7 3 = 7 + 7′ = + 7′′ = DYHF7 = 7 3
HWSRXUODWHPSpUDWXUH 7 3 = 7 + 7′ = + 7′′ = DYHF7 = 7 3
R 7 7′ HW 7′′ VRQWGHVIRQFWLRQVGH α α HWWpYHQWXHOOHPHQW
R 7 7′ HW 7′′ VRQWGHVIRQFWLRQVGH α α HWWpYHQWXHOOHPHQW
±7+e25,(48$'5$7,48(
±7+e25,(48$'5$7,48(
UHpWDSHH[SUHVVLRQGHVGpSODFHPHQWV
UHpWDSHH[SUHVVLRQGHVGpSODFHPHQWV
/HVIRUPXOHV GRQQHQWOHVFRPSRVDQWHVGHODURWDWLRQHQOHVSRUWDQWGDQVOHVIRUPXOHV RQREWLHQW ⎧ ⎛ ∂Z X ⎞ + ⎟⎟ ] ⎪X = X − ⎜⎜ β ∂ α 5 1 ⎠ ⎝ ⎪ ⎪ ⎛ G ∂Z X ⎞ ⎪ X = 3R3 ⎨X = X − ⎜⎜ + ⎟⎟ ] ⎝ β ∂ α 5 1 ⎠ ⎪ ⎪ ⎪Z = Z α α W ⎪⎩
/HVIRUPXOHV GRQQHQWOHVFRPSRVDQWHVGHODURWDWLRQHQOHVSRUWDQWGDQVOHVIRUPXOHV RQREWLHQW ⎧ ⎛ ∂Z X ⎞ + ⎟⎟ ] ⎪X = X − ⎜⎜ β ∂ α 5 1 ⎠ ⎝ ⎪ ⎪ ⎛ G ∂Z X ⎞ ⎪ X = 3R3 ⎨X = X − ⎜⎜ + ⎟⎟ ] ⎝ β ∂ α 5 1 ⎠ ⎪ ⎪ ⎪Z = Z α α W ⎪⎩
HpWDSHH[SUHVVLRQGHVGpIRUPDWLRQV
HpWDSHH[SUHVVLRQGHVGpIRUPDWLRQV
6L O¶RQ UHPSODFH X X HW Z SDU OHXUV H[SUHVVLRQV FLGHVVXV GDQV OHV IRUPXOHV GX WRPH,FKDSLWUH9,,,RQREWLHQW ⎧ε = ε + ] ε′ + ] ε′′ ⎪ ⎪ ⎨ε = ε + ] ε′ + ] ε′′ ⎪ ′ + ] γ ′′ ⎪⎩γ = γ + ] γ DYHF ⎧ ∂ X X Z − − ⎪ε = 5J 5 β ∂ α 1 ⎪ ⎪ ∂ X X Z ⎪ + − ⎨ ε = 5J 5 β ∂ α 1 ⎪ ⎪ ⎞ ⎛ ⎪γ = ⎜ ∂ X + ∂ X + X − X ⎟ ⎜ ⎝ β ∂ α β ∂ α 5J 5J ⎟⎠ ⎪⎩
6L O¶RQ UHPSODFH X X HW Z SDU OHXUV H[SUHVVLRQV FLGHVVXV GDQV OHV IRUPXOHV GX WRPH,FKDSLWUH9,,,RQREWLHQW ⎧ε = ε + ] ε′ + ] ε′′ ⎪ ⎪ ⎨ε = ε + ] ε′ + ] ε′′ ⎪ ′ + ] γ ′′ ⎪⎩γ = γ + ] γ DYHF ⎧ ∂ X X Z − − ⎪ε = 5J 5 β ∂ α 1 ⎪ ⎪ ∂ X X Z ⎪ + − ⎨ ε = 5J 5 β ∂ α 1 ⎪ ⎪ ⎞ ⎛ ⎪γ = ⎜ ∂ X + ∂ X + X − X ⎟ ⎜ ⎝ β ∂ α β ∂ α 5J 5J ⎟⎠ ⎪⎩
- 89 -
- 89 -
HK\SRWKqVH
HK\SRWKqVH
+ /HV IRQFWLRQV GH ] FRRUGRQQpH VXLYDQW O¶pSDLVVHXU VHURQW UHPSODFpHV SDU XQ GpYHORSSHPHQWOLPLWpGHPrPHSRXUOHVSDUDPqWUHVIRQFWLRQGHK
+ /HV IRQFWLRQV GH ] FRRUGRQQpH VXLYDQW O¶pSDLVVHXU VHURQW UHPSODFpHV SDU XQ GpYHORSSHPHQWOLPLWpGHPrPHSRXUOHVSDUDPqWUHVIRQFWLRQGHK
'DQVODWKpRULHTXDGUDWLTXHSDUH[HPSOHRQSUHQGUD
'DQVODWKpRULHTXDGUDWLTXHSDUH[HPSOHRQSUHQGUD
−
= 51
=+
= ⎛ = ⎞ ⎟ +⎜ 5 1 ⎜⎝ 5 1 ⎟⎠
−
= 51
=+
= ⎛ = ⎞ ⎟ +⎜ 5 1 ⎜⎝ 5 1 ⎟⎠
HWSRXUODWHPSpUDWXUH 7 3 = 7 + 7′ = + 7′′ = DYHF7 = 7 3
HWSRXUODWHPSpUDWXUH 7 3 = 7 + 7′ = + 7′′ = DYHF7 = 7 3
R 7 7′ HW 7′′ VRQWGHVIRQFWLRQVGH α α HWWpYHQWXHOOHPHQW
R 7 7′ HW 7′′ VRQWGHVIRQFWLRQVGH α α HWWpYHQWXHOOHPHQW
±7+e25,(48$'5$7,48(
±7+e25,(48$'5$7,48(
UHpWDSHH[SUHVVLRQGHVGpSODFHPHQWV
UHpWDSHH[SUHVVLRQGHVGpSODFHPHQWV
/HVIRUPXOHV GRQQHQWOHVFRPSRVDQWHVGHODURWDWLRQHQOHVSRUWDQWGDQVOHVIRUPXOHV RQREWLHQW ⎧ ⎛ ∂Z X ⎞ + ⎟⎟ ] ⎪X = X − ⎜⎜ ⎝ β ∂ α 5 1 ⎠ ⎪ ⎪ ⎛ ∂Z G X ⎞ ⎪ X = 3R3 ⎨X = X − ⎜⎜ + ⎟⎟ ] ⎝ β ∂ α 5 1 ⎠ ⎪ ⎪ ⎪Z = Z α α W ⎩⎪
/HVIRUPXOHV GRQQHQWOHVFRPSRVDQWHVGHODURWDWLRQHQOHVSRUWDQWGDQVOHVIRUPXOHV RQREWLHQW ⎧ ⎛ ∂Z X ⎞ + ⎟⎟ ] ⎪X = X − ⎜⎜ ⎝ β ∂ α 5 1 ⎠ ⎪ ⎪ ⎛ ∂Z G X ⎞ ⎪ X = 3R3 ⎨X = X − ⎜⎜ + ⎟⎟ ] ⎝ β ∂ α 5 1 ⎠ ⎪ ⎪ ⎪Z = Z α α W ⎩⎪
HpWDSHH[SUHVVLRQGHVGpIRUPDWLRQV
HpWDSHH[SUHVVLRQGHVGpIRUPDWLRQV
6L O¶RQ UHPSODFH X X HW Z SDU OHXUV H[SUHVVLRQV FLGHVVXV GDQV OHV IRUPXOHV GX WRPH,FKDSLWUH9,,,RQREWLHQW ⎧ε = ε + ] ε′ + ] ε′′ ⎪ ⎪ ⎨ε = ε + ] ε′ + ] ε′′ ⎪ ′ + ] γ ′′ ⎪⎩γ = γ + ] γ DYHF ⎧ ∂ X X Z − − ⎪ε = 5J 5 β ∂ α 1 ⎪ ⎪ ∂ X X Z ⎪ + − ⎨ ε = β ∂ α 5J 5 1 ⎪ ⎪ ⎞ ⎛ ⎪γ = ⎜ ∂ X + ∂ X + X − X ⎟ ⎟ ⎜ 5J 5J β ∂ α β ∂ α ⎪⎩ ⎠ ⎝
6L O¶RQ UHPSODFH X X HW Z SDU OHXUV H[SUHVVLRQV FLGHVVXV GDQV OHV IRUPXOHV GX WRPH,FKDSLWUH9,,,RQREWLHQW ⎧ε = ε + ] ε′ + ] ε′′ ⎪ ⎪ ⎨ε = ε + ] ε′ + ] ε′′ ⎪ ′ + ] γ ′′ ⎪⎩γ = γ + ] γ DYHF ⎧ ∂ X X Z − − ⎪ε = 5J 5 β ∂ α 1 ⎪ ⎪ ∂ X X Z ⎪ + − ⎨ ε = β ∂ α 5J 5 1 ⎪ ⎪ ⎞ ⎛ ⎪γ = ⎜ ∂ X + ∂ X + X − X ⎟ ⎟ ⎜ 5J 5J β ∂ α β ∂ α ⎪⎩ ⎠ ⎝
- 89 -
- 89 -
⎧ ∂Z X ⎛ ⎞ X ∂ ⎛ ⎞ Z ∂ ⎛ ∂Z ⎞ ⎜⎜ ⎟⎟ − ⎜⎜ ⎟⎟ − − ⎜⎜ ⎟⎟ + − ⎪ε′ = 5J ⎝ 5 1 5 1 ⎠ β ∂ α ⎝ 5 1 ⎠ 5 1 β ∂ α ⎝ β ∂ α ⎠ β 5J ∂ α ⎪ ⎪ ⎪ ⎪ ⎪ ∂Z X ⎛ ⎞ X ∂ ⎛ ⎞ Z ∂ ⎛ ∂Z ⎞ ⎟⎟ − ⎜⎜ ⎟⎟ − − ⎜⎜ ⎟⎟ − − ⎪ε′ = ⎜⎜ 5J ⎝ 5 1 5 1 ⎠ β ∂ α ⎝ 5 1 ⎠ 5 1 β ∂ α ⎝ β ∂ α ⎠ β 5J ∂ α ⎪⎪ ⎨ ⎪ ⎪ ∂ X ∂ ⎛ X ⎞ ∂ X ∂ ⎛ X ⎞ ⎪ γ′ = ⎜⎜ ⎟⎟ + ⎜ ⎟ − − ⎪ β 5 β ∂ α ⎝ 5 1 ⎠ β 5 1 ∂ α β ∂ α ⎜⎝ 5 1 ⎟⎠ 1 ∂ α ⎪ ⎪ ∂Z ∂ Z ∂Z ⎪ − + − − − ⎪ β 5J ∂ α β 5J ∂ α β β ∂ α ∂ α ⎪⎩
⎧ ∂Z X ⎛ ⎞ X ∂ ⎛ ⎞ Z ∂ ⎛ ∂Z ⎞ ⎜⎜ ⎟⎟ − ⎜⎜ ⎟⎟ − − ⎜⎜ ⎟⎟ + − ⎪ε′ = 5J ⎝ 5 1 5 1 ⎠ β ∂ α ⎝ 5 1 ⎠ 5 1 β ∂ α ⎝ β ∂ α ⎠ β 5J ∂ α ⎪ ⎪ ⎪ ⎪ ⎪ ∂Z X ⎛ ⎞ X ∂ ⎛ ⎞ Z ∂ ⎛ ∂Z ⎞ ⎟⎟ − ⎜⎜ ⎟⎟ − − ⎜⎜ ⎟⎟ − − ⎪ε′ = ⎜⎜ 5J ⎝ 5 1 5 1 ⎠ β ∂ α ⎝ 5 1 ⎠ 5 1 β ∂ α ⎝ β ∂ α ⎠ β 5J ∂ α ⎪⎪ ⎨ ⎪ ⎪ ∂ X ∂ ⎛ X ⎞ ∂ X ∂ ⎛ X ⎞ ⎪ γ′ = ⎜⎜ ⎟⎟ + ⎜ ⎟ − − ⎪ β 5 β ∂ α ⎝ 5 1 ⎠ β 5 1 ∂ α β ∂ α ⎜⎝ 5 1 ⎟⎠ 1 ∂ α ⎪ ⎪ ∂Z ∂ Z ∂Z ⎪ − + − − − ⎪ β 5J ∂ α β 5J ∂ α β β ∂ α ∂ α ⎪⎩
⎧ ⎛ X ∂ ⎛ ⎞ X ⎞ Z ⎜⎜ ⎟⎟ + ⎜⎜ ⎟⎟ − − ⎪ε′′ = 5 1 β ∂ α ⎝ 5 1 ⎠ 5J 5 1 ⎝ 5 1 5 1 ⎠ 5 1 ⎪ ⎪ ⎪ ∂ ⎛ ∂Z ⎞ ∂Z ⎪ ⎜ ⎟+ − ⎪ 5 1 β ∂ α ⎜⎝ β ∂ α ⎟⎠ 5 1 5J β ∂ α ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎛ X ∂ ⎛ ⎞ X ⎞ Z ⎜⎜ ⎟⎟ + ⎜⎜ ⎟⎟ − − ⎪ε′′ = 5 1 β ∂ α ⎝ 5 1 ⎠ 5J 5 1 ⎝ 5 1 5 1 ⎠ 5 1 ⎪ ⎪ ⎪ ∂ ⎛ ∂Z ⎞ ∂Z ⎪ ⎜⎜ ⎟⎟ + − ⎨ 5 5J 5 β ∂ α β ∂ α β 1 ⎝ ⎠ 1 ∂ α ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎡ ∂ X ∂ ⎛ X ⎞ ∂ X ′′ = ⎢ ⎜⎜ ⎟⎟ + − ⎪γ β ∂α β ∂α 5 5 β ∂ α ⎪ 1 ⎝ 1 ⎠ 5 1 ⎣⎢ 5 1 ⎪ ⎪ ∂ ⎛ X ⎞ ⎛ ⎞ ∂Z ⎪ ⎜⎜ ⎟⎟ − ⎜⎜ ⎟ + − ⎪ 5 1 β ∂ α ⎝ 5 1 ⎠ 5J ⎝ 5 1 5 1 ⎟⎠ β ∂ α ⎪ ⎪ ⎪ ⎛ ⎞ ∂Z ⎛ ⎞ ∂ Z ⎤ ⎪ ⎜⎜ ⎟⎟ ⎟⎟ + + − ⎜⎜ + ⎥ 5J ⎝ 5 1 5 1 ⎠ β ∂ α ⎝ 5 1 5 1 ⎠ β β ∂ α ∂ α ⎦⎥ ⎪⎩
⎧ ⎛ X ∂ ⎛ ⎞ X ⎞ Z ⎜⎜ ⎟⎟ + ⎜⎜ ⎟⎟ − − ⎪ε′′ = 5 1 β ∂ α ⎝ 5 1 ⎠ 5J 5 1 ⎝ 5 1 5 1 ⎠ 5 1 ⎪ ⎪ ⎪ ∂ ⎛ ∂Z ⎞ ∂Z ⎪ ⎜ ⎟+ − ⎪ 5 1 β ∂ α ⎜⎝ β ∂ α ⎟⎠ 5 1 5J β ∂ α ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎛ X ∂ ⎛ ⎞ X ⎞ Z ⎜⎜ ⎟⎟ + ⎜⎜ ⎟⎟ − − ⎪ε′′ = 5 1 β ∂ α ⎝ 5 1 ⎠ 5J 5 1 ⎝ 5 1 5 1 ⎠ 5 1 ⎪ ⎪ ⎪ ∂ ⎛ ∂Z ⎞ ∂Z ⎪ ⎜⎜ ⎟⎟ + − ⎨ 5 5J 5 β ∂ α β ∂ α β 1 ⎝ ⎠ 1 ∂ α ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎡ ∂ X ∂ ⎛ X ⎞ ∂ X ′′ = ⎢ ⎜⎜ ⎟⎟ + − ⎪γ β ∂α β ∂α 5 5 β ∂ α ⎪ 1 ⎝ 1 ⎠ 5 1 ⎣⎢ 5 1 ⎪ ⎪ ∂ ⎛ X ⎞ ⎛ ⎞ ∂Z ⎪ ⎜⎜ ⎟⎟ − ⎜⎜ ⎟ + − ⎪ 5 1 β ∂ α ⎝ 5 1 ⎠ 5J ⎝ 5 1 5 1 ⎟⎠ β ∂ α ⎪ ⎪ ⎪ ⎛ ⎞ ∂Z ⎛ ⎞ ∂ Z ⎤ ⎪ ⎜⎜ ⎟⎟ ⎟⎟ + + − ⎜⎜ + ⎥ 5J ⎝ 5 1 5 1 ⎠ β ∂ α ⎝ 5 1 5 1 ⎠ β β ∂ α ∂ α ⎦⎥ ⎪⎩
- 90 -
- 90 -
⎧ ∂Z X ⎛ ⎞ X ∂ ⎛ ⎞ Z ∂ ⎛ ∂Z ⎞ ⎜⎜ ⎟⎟ − ⎜⎜ ⎟⎟ − − ⎜⎜ ⎟⎟ + − ⎪ε′ = β ∂ α β ∂ α β ∂ α β ∂ 5J 5 5 5 5J ⎝ 1 1 ⎠ ⎝ 1 ⎠ 5 1 ⎝ ⎠ α ⎪ ⎪ ⎪ ⎪ ⎪ ∂Z X ⎛ ⎞ X ∂ ⎛ ⎞ Z ∂ ⎛ ∂Z ⎞ ⎟⎟ − ⎜⎜ ⎟⎟ − − ⎜⎜ ⎟⎟ − − ⎪ε′ = ⎜⎜ β ∂ α β ∂ α β ∂ α β ∂ 5J 5 5 5 5J ⎝ 1 1 ⎠ ⎝ 1 ⎠ 5 1 ⎝ ⎠ α ⎪⎪ ⎨ ⎪ ⎪ ∂ X ∂ ⎛ X ⎞ ∂ X ∂ ⎛ X ⎞ ⎪ γ′ = ⎜⎜ ⎟⎟ + ⎜ ⎟ − − ⎪ β 5 β ∂ α ⎝ 5 1 ⎠ β 5 1 ∂ α β ∂ α ⎜⎝ 5 1 ⎟⎠ 1 ∂ α ⎪ ⎪ ∂Z ∂ Z ∂Z ⎪ − +− −− ⎪ β 5J ∂ α β 5J ∂ α β β ∂ α ∂ α ⎪⎩
⎧ ∂Z X ⎛ ⎞ X ∂ ⎛ ⎞ Z ∂ ⎛ ∂Z ⎞ ⎜⎜ ⎟⎟ − ⎜⎜ ⎟⎟ − − ⎜⎜ ⎟⎟ + − ⎪ε′ = β ∂ α β ∂ α β ∂ α β ∂ 5J 5 5 5 5J ⎝ 1 1 ⎠ ⎝ 1 ⎠ 5 1 ⎝ ⎠ α ⎪ ⎪ ⎪ ⎪ ⎪ ∂Z X ⎛ ⎞ X ∂ ⎛ ⎞ Z ∂ ⎛ ∂Z ⎞ ⎟⎟ − ⎜⎜ ⎟⎟ − − ⎜⎜ ⎟⎟ − − ⎪ε′ = ⎜⎜ β ∂ α β ∂ α β ∂ α β ∂ 5J 5 5 5 5J ⎝ 1 1 ⎠ ⎝ 1 ⎠ 5 1 ⎝ ⎠ α ⎪⎪ ⎨ ⎪ ⎪ ∂ X ∂ ⎛ X ⎞ ∂ X ∂ ⎛ X ⎞ ⎪ γ′ = ⎜⎜ ⎟⎟ + ⎜ ⎟ − − ⎪ β 5 β ∂ α ⎝ 5 1 ⎠ β 5 1 ∂ α β ∂ α ⎜⎝ 5 1 ⎟⎠ 1 ∂ α ⎪ ⎪ ∂Z ∂ Z ∂Z ⎪ − +− −− ⎪ β 5J ∂ α β 5J ∂ α β β ∂ α ∂ α ⎪⎩
⎧ ⎛ X ∂ ⎛ ⎞ X ⎞ Z ⎜⎜ ⎟⎟ + ⎜⎜ ⎟⎟ − − ⎪ε′′ = 5 1 β ∂ α ⎝ 5 1 ⎠ 5J 5 1 ⎝ 5 1 5 1 ⎠ 5 1 ⎪ ⎪ ⎪ ∂ ⎛ ∂Z ⎞ ∂Z ⎪ ⎜ ⎟+ − ⎪ 5 1 β ∂ α ⎜⎝ β ∂ α ⎟⎠ 5 1 5J β ∂ α ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎛ X ∂ ⎛ ⎞ X ⎞ Z ⎜⎜ ⎟⎟ + ⎜⎜ ⎟⎟ − − ⎪ε′′ = 5 1 β ∂ α ⎝ 5 1 ⎠ 5J 5 1 ⎝ 5 1 5 1 ⎠ 5 1 ⎪ ⎪ ⎪ ∂ ⎛ ∂Z ⎞ ∂Z ⎪ ⎜⎜ ⎟⎟ + − ⎨ 5 5J 5 ∂ α β ∂ α β β 1 ⎝ ⎠ 1 ∂ α ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎡ ∂ X ∂ ⎛ X ⎞ ∂ X ′′ = ⎢ ⎜ ⎟+ − ⎪γ ⎢⎣ 5 1 β ∂ α 5 1 β ∂ α ⎜⎝ 5 1 ⎟⎠ 5 1 β ∂ α ⎪ ⎪ ⎪ ∂ ⎛ X ⎞ ⎛ ⎞ ∂Z ⎪ ⎜⎜ ⎟⎟ − ⎜⎜ ⎟⎟ + − ⎪ 5 1 β ∂ α ⎝ 5 1 ⎠ 5J ⎝ 5 1 5 1 ⎠ β ∂ α ⎪ ⎪ ⎪ ⎛ ⎞ ∂Z ⎛ ⎞ ∂ Z ⎤ ⎪ ⎜⎜ ⎟⎟ ⎟⎟ + + − ⎜⎜ + ⎥ 5J ⎝ 5 1 5 1 ⎠ β ∂ α ⎝ 5 1 5 1 ⎠ β β ∂ α ∂ α ⎦⎥ ⎪⎩
⎧ ⎛ X ∂ ⎛ ⎞ X ⎞ Z ⎜⎜ ⎟⎟ + ⎜⎜ ⎟⎟ − − ⎪ε′′ = 5 1 β ∂ α ⎝ 5 1 ⎠ 5J 5 1 ⎝ 5 1 5 1 ⎠ 5 1 ⎪ ⎪ ⎪ ∂ ⎛ ∂Z ⎞ ∂Z ⎪ ⎜ ⎟+ − ⎪ 5 1 β ∂ α ⎜⎝ β ∂ α ⎟⎠ 5 1 5J β ∂ α ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎛ X ∂ ⎛ ⎞ X ⎞ Z ⎜⎜ ⎟⎟ + ⎜⎜ ⎟⎟ − − ⎪ε′′ = 5 1 β ∂ α ⎝ 5 1 ⎠ 5J 5 1 ⎝ 5 1 5 1 ⎠ 5 1 ⎪ ⎪ ⎪ ∂ ⎛ ∂Z ⎞ ∂Z ⎪ ⎜⎜ ⎟⎟ + − ⎨ 5 5J 5 ∂ α β ∂ α β β 1 ⎝ ⎠ 1 ∂ α ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎡ ∂ X ∂ ⎛ X ⎞ ∂ X ′′ = ⎢ ⎜ ⎟+ − ⎪γ ⎢⎣ 5 1 β ∂ α 5 1 β ∂ α ⎜⎝ 5 1 ⎟⎠ 5 1 β ∂ α ⎪ ⎪ ⎪ ∂ ⎛ X ⎞ ⎛ ⎞ ∂Z ⎪ ⎜⎜ ⎟⎟ − ⎜⎜ ⎟⎟ + − ⎪ 5 1 β ∂ α ⎝ 5 1 ⎠ 5J ⎝ 5 1 5 1 ⎠ β ∂ α ⎪ ⎪ ⎪ ⎛ ⎞ ∂Z ⎛ ⎞ ∂ Z ⎤ ⎪ ⎜⎜ ⎟⎟ ⎟⎟ + + − ⎜⎜ + ⎥ 5J ⎝ 5 1 5 1 ⎠ β ∂ α ⎝ 5 1 5 1 ⎠ β β ∂ α ∂ α ⎦⎥ ⎪⎩
- 90 -
- 90 -
HpWDSHH[SUHVVLRQGHVFRQWUDLQWHV
HpWDSHH[SUHVVLRQGHVFRQWUDLQWHV
/HVIRUPXOHV SHUPHWWHQWG¶pFULUHDYHF 7 − 7 = 7 − 7 + 7′ = + 7′′ =
/HVIRUPXOHV SHUPHWWHQWG¶pFULUHDYHF 7 − 7 = 7 − 7 + 7′ = + 7′′ =
⎧σ = σ + ] σ′ + ] σ′′ ⎪ ⎪ ⎨σ = σ + ] σ′ + ] σ′′ ⎪ ′ + ] τ ′′ ⎪⎩τ = τ + ] τ
DYHF
⎧σ = σ + ] σ′ + ] σ′′ ⎪ ⎪ ⎨σ = σ + ] σ′ + ] σ′′ ⎪ ′ + ] τ ′′ ⎪⎩τ = τ + ] τ
( (α ⎧ ⎪σ = − ν ε + ν ε − − ν 7 − 7 ⎪ ⎪ ( (α ⎪ ε + ν ε − 7 − 7 ⎨ σ = −ν − ν ⎪ ⎪ ⎪τ = ( γ ⎪⎩ + ν
( (α ⎧ ′ ⎪σ = − ν ε′ + ν ε′ − − ν 7 ′ ⎪ ⎪ ( (α ⎪ ε′ + ν ε′ − 7′ ⎨σ′ = − ν − ν ⎪ ⎪ ⎪ τ′ = ( γ′ ⎪⎩ + ν
( (α ⎧ ′′ ⎪σ = − ν ε′′ + ν ε′′ − − ν 7 ′′ ⎪ ⎪ ( (α ⎪ ε′′ + ν ε′′ − 7 ′′ ⎨σ′′ = −ν − ν ⎪ ⎪ ⎪ τ′′ = ( γ′′ ⎪⎩ + ν
DYHF
( (α ⎧ ⎪σ = − ν ε + ν ε − − ν 7 − 7 ⎪ ⎪ ( (α ⎪ ε + ν ε − 7 − 7 ⎨ σ = −ν − ν ⎪ ⎪ ⎪τ = ( γ ⎪⎩ + ν
( (α ⎧ ′ ⎪σ = − ν ε′ + ν ε′ − − ν 7 ′ ⎪ ⎪ ( (α ⎪ ε′ + ν ε′ − 7′ ⎨σ′ = − ν − ν ⎪ ⎪ ⎪ τ′ = ( γ′ ⎪⎩ + ν
( (α ⎧ ′′ ⎪σ = − ν ε′′ + ν ε′′ − − ν 7 ′′ ⎪ ⎪ ( (α ⎪ ε′′ + ν ε′′ − 7 ′′ ⎨σ′′ = −ν − ν ⎪ ⎪ ⎪ τ′′ = ( γ′′ ⎪⎩ + ν
HpWDSHH[SUHVVLRQGHVYLVVHXUV HW
HpWDSHH[SUHVVLRQGHVYLVVHXUV HW
(Q XWLOLVDQW OHV IRUPXOHV pWDEOLHV DX WRPH , GDQV OH FDV LVRWKHUPH HW HQ HIIHFWXDQW OHV LQWpJUDWLRQV VXLYDQW O¶pSDLVVHXU DSUqV DYRLU UHPSODFp OHV FRQWUDLQWHV SDU OHXUV H[SUHVVLRQV K RQREWLHQWOHVH[SUHVVLRQVGHVFRPSRVDQWHVGHVYLVVHXUVDYHF , =
(Q XWLOLVDQW OHV IRUPXOHV pWDEOLHV DX WRPH , GDQV OH FDV LVRWKHUPH HW HQ HIIHFWXDQW OHV LQWpJUDWLRQV VXLYDQW O¶pSDLVVHXU DSUqV DYRLU UHPSODFp OHV FRQWUDLQWHV SDU OHXUV H[SUHVVLRQV K RQREWLHQWOHVH[SUHVVLRQVGHVFRPSRVDQWHVGHVYLVVHXUVDYHF , =
- 91 -
- 91 -
HpWDSHH[SUHVVLRQGHVFRQWUDLQWHV
HpWDSHH[SUHVVLRQGHVFRQWUDLQWHV
/HVIRUPXOHV SHUPHWWHQWG¶pFULUHDYHF 7 − 7 = 7 − 7 + 7′ = + 7′′ =
/HVIRUPXOHV SHUPHWWHQWG¶pFULUHDYHF 7 − 7 = 7 − 7 + 7′ = + 7′′ =
⎧σ = σ + ] σ′ + ] σ′′ ⎪ ⎪ ⎨σ = σ + ] σ′ + ] σ′′ ⎪ ′ + ] τ ′′ ⎪⎩τ = τ + ] τ
DYHF
⎧σ = σ + ] σ′ + ] σ′′ ⎪ ⎪ ⎨σ = σ + ] σ′ + ] σ′′ ⎪ ′ + ] τ ′′ ⎪⎩τ = τ + ] τ
( (α ⎧ ⎪σ = − ν ε + ν ε − − ν 7 − 7 ⎪ ⎪ ( (α ⎪ ε + ν ε − 7 − 7 ⎨ σ = −ν − ν ⎪ ⎪ ⎪τ = ( γ ⎪⎩ + ν
( (α ⎧ ′ ⎪σ = − ν ε′ + ν ε′ − − ν 7 ′ ⎪ ⎪ ( (α ⎪ ε′ + ν ε′ − 7′ ⎨σ′ = −ν − ν ⎪ ⎪ ⎪ τ′ = ( γ′ ⎪⎩ + ν
( (α ⎧ ′′ ⎪σ = − ν ε′′ + ν ε′′ − − ν 7 ′′ ⎪ ⎪ (α ( ⎪ ε′′ + ν ε′′ − 7 ′′ ⎨σ′′ = − ν − ν ⎪ ⎪ ⎪ τ′′ = ( γ′′ + ν ⎩⎪
DYHF
( (α ⎧ ⎪σ = − ν ε + ν ε − − ν 7 − 7 ⎪ ⎪ ( (α ⎪ ε + ν ε − 7 − 7 ⎨ σ = −ν − ν ⎪ ⎪ ⎪τ = ( γ ⎪⎩ + ν
( (α ⎧ ′ ⎪σ = − ν ε′ + ν ε′ − − ν 7 ′ ⎪ ⎪ ( (α ⎪ ε′ + ν ε′ − 7′ ⎨σ′ = −ν − ν ⎪ ⎪ ⎪ τ′ = ( γ′ ⎪⎩ + ν
( (α ⎧ ′′ ⎪σ = − ν ε′′ + ν ε′′ − − ν 7 ′′ ⎪ ⎪ (α ( ⎪ ε′′ + ν ε′′ − 7 ′′ ⎨σ′′ = − ν − ν ⎪ ⎪ ⎪ τ′′ = ( γ′′ + ν ⎩⎪
HpWDSHH[SUHVVLRQGHVYLVVHXUV HW
HpWDSHH[SUHVVLRQGHVYLVVHXUV HW
(Q XWLOLVDQW OHV IRUPXOHV pWDEOLHV DX WRPH , GDQV OH FDV LVRWKHUPH HW HQ HIIHFWXDQW OHV LQWpJUDWLRQV VXLYDQW O¶pSDLVVHXU DSUqV DYRLU UHPSODFp OHV FRQWUDLQWHV SDU OHXUV H[SUHVVLRQV K RQREWLHQWOHVH[SUHVVLRQVGHVFRPSRVDQWHVGHVYLVVHXUVDYHF , =
(Q XWLOLVDQW OHV IRUPXOHV pWDEOLHV DX WRPH , GDQV OH FDV LVRWKHUPH HW HQ HIIHFWXDQW OHV LQWpJUDWLRQV VXLYDQW O¶pSDLVVHXU DSUqV DYRLU UHPSODFp OHV FRQWUDLQWHV SDU OHXUV H[SUHVVLRQV K RQREWLHQWOHVH[SUHVVLRQVGHVFRPSRVDQWHVGHVYLVVHXUVDYHF , =
- 91 -
- 91 -
⎧ ⎧ ⎛ ⎛ σ′ ⎞ σ′ ⎞ ⎟⎟ ⎟ ⎪ 1 = K σ + , ⎜⎜ σ′′ − ⎪ 1 = K σ + , ⎜⎜ σ′′ − 5 1 ⎠ 5 1 ⎟⎠ ⎝ ⎝ ⎪ ⎪ ⎪ ⎪ ′ ⎞ ′ ⎞ ⎪7 = K τ + , ⎛⎜ τ′′ − τ ⎪7 = K τ + , ⎛⎜ τ′′ − τ ⎟ ⎜ 5 ⎟ ⎜ 5 ⎟⎟ ⎪ ⎪ 1 ⎠ 1 ⎠ ⎝ ⎝ ⎪ ⎪ ⎨ ⎨ ⎞ ⎞ ⎛ τ ⎛ τ ′′ ⎪ ⎪ ′ ⎟⎟ ′ ⎟⎟ ⎪8 = , ⎜⎜ 5 − τ ⎪8 = −, ⎜⎜ 5 − τ 1 1 ⎠ ⎠ ⎝ ⎝ ⎪ ⎪ ⎪ ⎪ ⎪0 = , ⎛⎜ − σ + σ′ ⎞⎟ ⎪0 = −, ⎛⎜ − σ + σ′ ⎞⎟ ⎟ ⎟ ⎜ ⎜ 5 ⎪⎩ ⎪⎩ 1 ⎠ ⎠ ⎝ 5 1 ⎝
⎧ ⎧ ⎛ ⎛ σ′ ⎞ σ′ ⎞ ⎟⎟ ⎟ ⎪ 1 = K σ + , ⎜⎜ σ′′ − ⎪ 1 = K σ + , ⎜⎜ σ′′ − 5 1 ⎠ 5 1 ⎟⎠ ⎝ ⎝ ⎪ ⎪ ⎪ ⎪ ′ ⎞ ′ ⎞ ⎪7 = K τ + , ⎛⎜ τ′′ − τ ⎪7 = K τ + , ⎛⎜ τ′′ − τ ⎟ ⎜ 5 ⎟ ⎜ 5 ⎟⎟ ⎪ ⎪ 1 ⎠ 1 ⎠ ⎝ ⎝ ⎪ ⎪ ⎨ ⎨ ⎞ ⎞ ⎛ τ ⎛ τ ′′ ⎪ ⎪ ′ ⎟⎟ ′ ⎟⎟ ⎪8 = , ⎜⎜ 5 − τ ⎪8 = −, ⎜⎜ 5 − τ 1 1 ⎠ ⎠ ⎝ ⎝ ⎪ ⎪ ⎪ ⎪ ⎪0 = , ⎛⎜ − σ + σ′ ⎞⎟ ⎪0 = −, ⎛⎜ − σ + σ′ ⎞⎟ ⎟ ⎟ ⎜ ⎜ 5 ⎪⎩ ⎪⎩ 1 ⎠ ⎠ ⎝ 5 1 ⎝
2Q SHXW DORUV HQ GpGXLUH 4 HW 4 HIIRUWV WUDQFKDQWV WUDQVYHUVDX[ j SDUWLU GHV GHX[ SUHPLqUHV pTXDWLRQV GH O¶pTXLOLEUH ORFDO GHV PRPHQWV OD WURLVLqPH DXWRXU GH ] pWDQW LGHQWLTXHPHQWYpULILpH
2Q SHXW DORUV HQ GpGXLUH 4 HW 4 HIIRUWV WUDQFKDQWV WUDQVYHUVDX[ j SDUWLU GHV GHX[ SUHPLqUHV pTXDWLRQV GH O¶pTXLOLEUH ORFDO GHV PRPHQWV OD WURLVLqPH DXWRXU GH ] pWDQW LGHQWLTXHPHQWYpULILpH
HpWDSHpTXDWLRQVDX[GpSODFHPHQWVGH 3
HpWDSHpTXDWLRQVDX[GpSODFHPHQWVGH 3
2QOHVREWLHQWHQUHPSODoDQWGDQVOHVWURLVpTXDWLRQVO¶pTXLOLEUHGHVIRUFHVOHVFRPSRVDQWHV GHVYLVVHXUV HW SDUOHXUVH[SUHVVLRQVHQIRQFWLRQGH X X Z REWHQXHVJUkFHDX[pWDSHV SUpFpGHQWHV
2QOHVREWLHQWHQUHPSODoDQWGDQVOHVWURLVpTXDWLRQVO¶pTXLOLEUHGHVIRUFHVOHVFRPSRVDQWHV GHVYLVVHXUV HW SDUOHXUVH[SUHVVLRQVHQIRQFWLRQGH X X Z REWHQXHVJUkFHDX[pWDSHV SUpFpGHQWHV
&H VRQW GHV pTXDWLRQV DX[ GpULYpHV SDUWLHOOHV TXDWULqPHV SDU UDSSRUW j α α HW W pYHQWXHOOHPHQW
&H VRQW GHV pTXDWLRQV DX[ GpULYpHV SDUWLHOOHV TXDWULqPHV SDU UDSSRUW j α α HW W pYHQWXHOOHPHQW
±7+e25,(/,1e$,5(
±7+e25,(/,1e$,5(
(OOHVVHGpGXLWGHODSUpFpGHQWHHQSUHQDQWGHVGpYHORSSHPHQWVOLPLWpVDXSUHPLHUGHJUpHQ] VXLYDQWO¶pSDLVVHXU
(OOHVVHGpGXLWGHODSUpFpGHQWHHQSUHQDQWGHVGpYHORSSHPHQWVOLPLWpVDXSUHPLHUGHJUpHQ] VXLYDQWO¶pSDLVVHXU
UHpWDSHH[SUHVVLRQGHVGpSODFHPHQWV X X Z GH3
UHpWDSHH[SUHVVLRQGHVGpSODFHPHQWV X X Z GH3
⎧ ⎛ ∂Z X ⎞ + ⎟⎟ ] ⎪X = X − ⎜⎜ ⎝ β ∂ α 5 1 ⎠ ⎪ ⎪ ⎛ ∂Z X ⎞ G⎪ X ⎨X = X − ⎜⎜ + ⎟⎟ ] ⎝ β ∂ α 5 1 ⎠ ⎪ ⎪ ⎪Z = Z ⎪⎩
HpWDSHH[SUHVVLRQGHVGpIRUPDWLRQV
HpWDSHH[SUHVVLRQGHVGpIRUPDWLRQV
⎧ε = ε + ] ε′ ⎪⎪ ⎨ε = ε + ] ε′ ⎪ ′ ⎪⎩γ = γ + ] γ
⎧ ⎛ ∂Z X ⎞ + ⎟⎟ ] ⎪X = X − ⎜⎜ ⎝ β ∂ α 5 1 ⎠ ⎪ ⎪ ⎛ ∂Z X ⎞ G⎪ X ⎨X = X − ⎜⎜ + ⎟⎟ ] ⎝ β ∂ α 5 1 ⎠ ⎪ ⎪ ⎪Z = Z ⎪⎩
⎧ε = ε + ] ε′ ⎪⎪ ⎨ε = ε + ] ε′ ⎪ ′ ⎪⎩γ = γ + ] γ
- 92 -
- 92 -
⎧ ⎧ ⎛ ⎛ σ′ ⎞ σ′ ⎞ ⎟⎟ ⎟⎟ ⎪ 1 = K σ + , ⎜⎜ σ′′ − ⎪ 1 = K σ + , ⎜⎜ σ′′ − 5 5 1 ⎠ 1 ⎠ ⎝ ⎝ ⎪ ⎪ ⎪ ⎪ ′ ⎞ ′ ⎞ ⎪7 = K τ + , ⎛⎜ τ′′ − τ ⎪7 = K τ + , ⎛⎜ τ′′ − τ ⎜ 5 ⎟⎟ ⎜ 5 ⎟⎟ ⎪ ⎪ 1 ⎠ 1 ⎠ ⎝ ⎝ ⎪ ⎪ ⎨ ⎨ ⎞ ⎞ ⎛ τ ⎛ τ ′′ ⎪ ⎪ ′ ⎟⎟ ′ ⎟⎟ ⎪8 = , ⎜⎜ 5 − τ ⎪8 = −, ⎜⎜ 5 − τ ⎠ ⎠ ⎝ 1 ⎝ 1 ⎪ ⎪ ⎪ ⎪ ⎪0 = , ⎛⎜ − σ + σ′ ⎞⎟ ⎪0 = −, ⎛⎜ − σ + σ′ ⎞⎟ ⎟ ⎟ ⎜ 5 ⎜ 5 ⎪⎩ ⎪⎩ 1 1 ⎠ ⎠ ⎝ ⎝
⎧ ⎧ ⎛ ⎛ σ′ ⎞ σ′ ⎞ ⎟⎟ ⎟⎟ ⎪ 1 = K σ + , ⎜⎜ σ′′ − ⎪ 1 = K σ + , ⎜⎜ σ′′ − 5 5 1 ⎠ 1 ⎠ ⎝ ⎝ ⎪ ⎪ ⎪ ⎪ ′ ⎞ ′ ⎞ ⎪7 = K τ + , ⎛⎜ τ′′ − τ ⎪7 = K τ + , ⎛⎜ τ′′ − τ ⎜ 5 ⎟⎟ ⎜ 5 ⎟⎟ ⎪ ⎪ 1 ⎠ 1 ⎠ ⎝ ⎝ ⎪ ⎪ ⎨ ⎨ ⎞ ⎞ ⎛ τ ⎛ τ ′′ ⎪ ⎪ ′ ⎟⎟ ′ ⎟⎟ ⎪8 = , ⎜⎜ 5 − τ ⎪8 = −, ⎜⎜ 5 − τ ⎠ ⎠ ⎝ 1 ⎝ 1 ⎪ ⎪ ⎪ ⎪ ⎪0 = , ⎛⎜ − σ + σ′ ⎞⎟ ⎪0 = −, ⎛⎜ − σ + σ′ ⎞⎟ ⎟ ⎟ ⎜ 5 ⎜ 5 ⎪⎩ ⎪⎩ 1 1 ⎠ ⎠ ⎝ ⎝
2Q SHXW DORUV HQ GpGXLUH 4 HW 4 HIIRUWV WUDQFKDQWV WUDQVYHUVDX[ j SDUWLU GHV GHX[ SUHPLqUHV pTXDWLRQV GH O¶pTXLOLEUH ORFDO GHV PRPHQWV OD WURLVLqPH DXWRXU GH ] pWDQW LGHQWLTXHPHQWYpULILpH
2Q SHXW DORUV HQ GpGXLUH 4 HW 4 HIIRUWV WUDQFKDQWV WUDQVYHUVDX[ j SDUWLU GHV GHX[ SUHPLqUHV pTXDWLRQV GH O¶pTXLOLEUH ORFDO GHV PRPHQWV OD WURLVLqPH DXWRXU GH ] pWDQW LGHQWLTXHPHQWYpULILpH
HpWDSHpTXDWLRQVDX[GpSODFHPHQWVGH 3
HpWDSHpTXDWLRQVDX[GpSODFHPHQWVGH 3
2QOHVREWLHQWHQUHPSODoDQWGDQVOHVWURLVpTXDWLRQVO¶pTXLOLEUHGHVIRUFHVOHVFRPSRVDQWHV GHVYLVVHXUV HW SDUOHXUVH[SUHVVLRQVHQIRQFWLRQGH X X Z REWHQXHVJUkFHDX[pWDSHV SUpFpGHQWHV
2QOHVREWLHQWHQUHPSODoDQWGDQVOHVWURLVpTXDWLRQVO¶pTXLOLEUHGHVIRUFHVOHVFRPSRVDQWHV GHVYLVVHXUV HW SDUOHXUVH[SUHVVLRQVHQIRQFWLRQGH X X Z REWHQXHVJUkFHDX[pWDSHV SUpFpGHQWHV
&H VRQW GHV pTXDWLRQV DX[ GpULYpHV SDUWLHOOHV TXDWULqPHV SDU UDSSRUW j α α HW W pYHQWXHOOHPHQW
&H VRQW GHV pTXDWLRQV DX[ GpULYpHV SDUWLHOOHV TXDWULqPHV SDU UDSSRUW j α α HW W pYHQWXHOOHPHQW
±7+e25,(/,1e$,5(
±7+e25,(/,1e$,5(
(OOHVVHGpGXLWGHODSUpFpGHQWHHQSUHQDQWGHVGpYHORSSHPHQWVOLPLWpVDXSUHPLHUGHJUpHQ] VXLYDQWO¶pSDLVVHXU
(OOHVVHGpGXLWGHODSUpFpGHQWHHQSUHQDQWGHVGpYHORSSHPHQWVOLPLWpVDXSUHPLHUGHJUpHQ] VXLYDQWO¶pSDLVVHXU
UHpWDSHH[SUHVVLRQGHVGpSODFHPHQWV X X Z GH3
UHpWDSHH[SUHVVLRQGHVGpSODFHPHQWV X X Z GH3
⎧ ⎛ ∂Z X ⎞ + ⎟⎟ ] ⎪X = X − ⎜⎜ β ∂ α 5 1 ⎠ ⎝ ⎪ ⎛ ∂Z X ⎞ G ⎪⎪ X ⎨X = X − ⎜⎜ + ⎟⎟ ] ⎝ β ∂ α 5 1 ⎠ ⎪ ⎪ ⎪Z = Z ⎪⎩
HpWDSHH[SUHVVLRQGHVGpIRUPDWLRQV
⎧ ⎛ ∂Z X ⎞ + ⎟⎟ ] ⎪X = X − ⎜⎜ β ∂ α 5 1 ⎠ ⎝ ⎪ ⎛ ∂Z X ⎞ G ⎪⎪ X ⎨X = X − ⎜⎜ + ⎟⎟ ] ⎝ β ∂ α 5 1 ⎠ ⎪ ⎪ ⎪Z = Z ⎪⎩
HpWDSHH[SUHVVLRQGHVGpIRUPDWLRQV
⎧ε = ε + ] ε′ ⎪⎪ ⎨ε = ε + ] ε′ ⎪ ′ ⎪⎩γ = γ + ] γ
- 92 -
⎧ε = ε + ] ε′ ⎪⎪ ⎨ε = ε + ] ε′ ⎪ ′ ⎪⎩γ = γ + ] γ
- 92 -
± ε ε γ VRQWGRQQpVSDUOHVIRUPXOHV
± ε ε γ VRQWGRQQpVSDUOHVIRUPXOHV
′ OHVRQWSDUOHVIRUPXOHV ± ε′ ε′ γ
′ OHVRQWSDUOHVIRUPXOHV ± ε′ ε′ γ
HpWDSHH[SUHVVLRQGHVFRQWUDLQWHV
HpWDSHH[SUHVVLRQGHVFRQWUDLQWHV
⎧σ = σ + ] σ′ ⎪⎪ ⎨σ = σ + ] σ′ ⎪ ′ ⎪⎩τ = τ + ] τ
DYHF
⎧σ = σ + ] σ′ ⎪⎪ ⎨σ = σ + ] σ′ ⎪ ′ ⎪⎩τ = τ + ] τ
( (α ⎧ ⎪σ = − ν ε + ν ε − − ν 7 − 7 ⎪ ⎪ ( (α ⎪ ε + ν ε − 7 − 7 ⎨ σ = −ν − ν ⎪ ⎪ ⎪τ = ( γ ⎪⎩ + ν
( (α ⎧ ′ ⎪σ = − ν ε′ + ν ε′ − − ν 7 ′ ⎪ ⎪ ( (α ⎪ ε′ + ν ε′ − 7′ ⎨σ′ = −ν − ν ⎪ ⎪ ⎪ τ′ = ( γ′ ⎪⎩ + ν
DYHF
( (α ⎧ ⎪σ = − ν ε + ν ε − − ν 7 − 7 ⎪ ⎪ ( (α ⎪ ε + ν ε − 7 − 7 ⎨ σ = −ν − ν ⎪ ⎪ ⎪τ = ( γ ⎪⎩ + ν
( (α ⎧ ′ ⎪σ = − ν ε′ + ν ε′ − − ν 7 ′ ⎪ ⎪ ( (α ⎪ ε′ + ν ε′ − 7′ ⎨σ′ = −ν − ν ⎪ ⎪ ⎪ τ′ = ( γ′ ⎪⎩ + ν
HpWDSHH[SUHVVLRQGHVYLVVHXUV HW
HpWDSHH[SUHVVLRQGHVYLVVHXUV HW
'HVIRUPXOHV RQGpGXLWHQDQQXODQWOHVWHUPHVGXVHFRQGRUGUH
'HVIRUPXOHV RQGpGXLWHQDQQXODQWOHVWHUPHVGXVHFRQGRUGUH
⎧ ⎧ , , σ′ σ′ ⎪ 1 = K σ − ⎪ 1 = K σ − 5 5 1 1 ⎪ ⎪ ⎪ ⎪ ⎪7 = K τ − , τ′ ⎪7 = K τ − , τ′ ⎪ ⎪ 5 1 5 1 ⎪ ⎪ ⎨ ⎨ ⎞ ⎞ ⎛ τ ⎛ τ ⎪ ⎪ ′ ⎟⎟ ′ ⎟⎟ ⎪8 = , ⎜⎜ 5 − τ ⎪8 = , ⎜⎜ 5 − τ 1 1 ⎠ ⎠ ⎝ ⎝ ⎪ ⎪ ⎪ ⎪ ⎪0 = , ⎛⎜ − σ + σ′ ⎞⎟ ⎪0 = , ⎛⎜ − σ + σ′ ⎞⎟ ⎟ ⎟ ⎜ 5 ⎜ ⎪⎩ ⎪⎩ 1 ⎠ ⎠ ⎝ ⎝ 5 1
⎧ ⎧ , , σ′ σ′ ⎪ 1 = K σ − ⎪ 1 = K σ − 5 5 1 1 ⎪ ⎪ ⎪ ⎪ ⎪7 = K τ − , τ′ ⎪7 = K τ − , τ′ ⎪ ⎪ 5 1 5 1 ⎪ ⎪ ⎨ ⎨ ⎞ ⎞ ⎛ τ ⎛ τ ⎪ ⎪ ′ ⎟⎟ ′ ⎟⎟ ⎪8 = , ⎜⎜ 5 − τ ⎪8 = , ⎜⎜ 5 − τ 1 1 ⎠ ⎠ ⎝ ⎝ ⎪ ⎪ ⎪ ⎪ ⎪0 = , ⎛⎜ − σ + σ′ ⎞⎟ ⎪0 = , ⎛⎜ − σ + σ′ ⎞⎟ ⎟ ⎟ ⎜ 5 ⎜ ⎪⎩ ⎪⎩ 1 ⎠ ⎠ ⎝ ⎝ 5 1
- 93 -
- 93 -
± ε ε γ VRQWGRQQpVSDUOHVIRUPXOHV
± ε ε γ VRQWGRQQpVSDUOHVIRUPXOHV
′ OHVRQWSDUOHVIRUPXOHV ± ε′ ε′ γ
′ OHVRQWSDUOHVIRUPXOHV ± ε′ ε′ γ
HpWDSHH[SUHVVLRQGHVFRQWUDLQWHV
HpWDSHH[SUHVVLRQGHVFRQWUDLQWHV
⎧σ = σ + ] σ′ ⎪⎪ ⎨σ = σ + ] σ′ ⎪ ′ ⎩⎪τ = τ + ] τ
DYHF
⎧σ = σ + ] σ′ ⎪⎪ ⎨σ = σ + ] σ′ ⎪ ′ ⎩⎪τ = τ + ] τ
( (α ⎧ ⎪σ = − ν ε + ν ε − − ν 7 − 7 ⎪ ⎪ ( (α ⎪ ε + ν ε − 7 − 7 ⎨ σ = − ν − ν ⎪ ⎪ ⎪τ = ( γ + ν ⎩⎪
( (α ⎧ ′ ⎪σ = − ν ε′ + ν ε′ − − ν 7 ′ ⎪ ⎪ ( (α ⎪ ε′ + ν ε′ − 7′ ⎨σ′ = −ν − ν ⎪ ⎪ ⎪ τ′ = ( γ′ ⎪⎩ + ν
DYHF
( (α ⎧ ⎪σ = − ν ε + ν ε − − ν 7 − 7 ⎪ ⎪ ( (α ⎪ ε + ν ε − 7 − 7 ⎨ σ = − ν − ν ⎪ ⎪ ⎪τ = ( γ + ν ⎩⎪
( (α ⎧ ′ ⎪σ = − ν ε′ + ν ε′ − − ν 7 ′ ⎪ ⎪ ( (α ⎪ ε′ + ν ε′ − 7′ ⎨σ′ = −ν − ν ⎪ ⎪ ⎪ τ′ = ( γ′ ⎪⎩ + ν
HpWDSHH[SUHVVLRQGHVYLVVHXUV HW
HpWDSHH[SUHVVLRQGHVYLVVHXUV HW
'HVIRUPXOHV RQGpGXLWHQDQQXODQWOHVWHUPHVGXVHFRQGRUGUH
'HVIRUPXOHV RQGpGXLWHQDQQXODQWOHVWHUPHVGXVHFRQGRUGUH
⎧ ⎧ , , σ′ σ′ ⎪ 1 = K σ − ⎪ 1 = K σ − 5 5 1 1 ⎪ ⎪ ⎪ ⎪ ⎪7 = K τ − , τ′ ⎪7 = K τ − , τ′ ⎪ ⎪ 5 1 5 1 ⎪ ⎪ ⎨ ⎨ ⎞ ⎞ ⎛ τ ⎛ τ ⎪ ⎪ ′ ⎟⎟ ′ ⎟⎟ ⎪8 = , ⎜⎜ 5 − τ ⎪8 = , ⎜⎜ 5 − τ ⎠ ⎠ ⎝ 1 ⎝ 1 ⎪ ⎪ ⎪ ⎪ ⎪0 = , ⎛⎜ − σ + σ′ ⎞⎟ ⎪0 = , ⎛⎜ − σ + σ′ ⎞⎟ ⎟ ⎟ ⎜ 5 ⎜ 5 ⎪⎩ ⎪⎩ 1 1 ⎠ ⎠ ⎝ ⎝ - 93 -
⎧ ⎧ , , σ′ σ′ ⎪ 1 = K σ − ⎪ 1 = K σ − 5 5 1 1 ⎪ ⎪ ⎪ ⎪ ⎪7 = K τ − , τ′ ⎪7 = K τ − , τ′ ⎪ ⎪ 5 1 5 1 ⎪ ⎪ ⎨ ⎨ ⎞ ⎞ ⎛ τ ⎛ τ ⎪ ⎪ ′ ⎟⎟ ′ ⎟⎟ ⎪8 = , ⎜⎜ 5 − τ ⎪8 = , ⎜⎜ 5 − τ ⎠ ⎠ ⎝ 1 ⎝ 1 ⎪ ⎪ ⎪ ⎪ ⎪0 = , ⎛⎜ − σ + σ′ ⎞⎟ ⎪0 = , ⎛⎜ − σ + σ′ ⎞⎟ ⎟ ⎟ ⎜ 5 ⎜ 5 ⎪⎩ ⎪⎩ 1 1 ⎠ ⎠ ⎝ ⎝ - 93 -
2QHQGpGXLWDORUVOHVH[SUHVVLRQVGHVHIIRUWVWUDQFKDQWVWUDQVYHUVDX[ 4 HW 4 DXPR\HQGHV GHX[ SUHPLqUHV pTXDWLRQV GH O¶pTXLOLEUH ORFDO GHV PRPHQWV WRPH , FKDSLWUH 9,,, IRUPXOHV
2QHQGpGXLWDORUVOHVH[SUHVVLRQVGHVHIIRUWVWUDQFKDQWVWUDQVYHUVDX[ 4 HW 4 DXPR\HQGHV GHX[ SUHPLqUHV pTXDWLRQV GH O¶pTXLOLEUH ORFDO GHV PRPHQWV WRPH , FKDSLWUH 9,,, IRUPXOHV
HpWDSHpTXDWLRQVDX[GpSODFHPHQWVGH 3
HpWDSHpTXDWLRQVDX[GpSODFHPHQWVGH 3
&RPPH GDQV OD WKpRULH TXDGUDWLTXH RQ OHV REWLHQW HQ UHPSODoDQW GDQV OHV WURLV pTXDWLRQV G¶pTXLOLEUHORFDOGHVIRUFHVWRPH,FKDSLWUH9,,,IRUPXOHV OHVFRPSRVDQWHVGHVYLVVHXUV HW SDUOHXUVH[SUHVVLRQVHQIRQFWLRQGH X X Z REWHQXHVJUkFHDX[pWDSHVSUpFpGHQWHV
&RPPH GDQV OD WKpRULH TXDGUDWLTXH RQ OHV REWLHQW HQ UHPSODoDQW GDQV OHV WURLV pTXDWLRQV G¶pTXLOLEUHORFDOGHVIRUFHVWRPH,FKDSLWUH9,,,IRUPXOHV OHVFRPSRVDQWHVGHVYLVVHXUV HW SDUOHXUVH[SUHVVLRQVHQIRQFWLRQGH X X Z REWHQXHVJUkFHDX[pWDSHVSUpFpGHQWHV
&H VRQW GHV pTXDWLRQV DX[ GpULYpHV SDUWLHOOHV TXDWULqPHV SDU UDSSRUW j α α HW W pYHQWXHOOHPHQW
&H VRQW GHV pTXDWLRQV DX[ GpULYpHV SDUWLHOOHV TXDWULqPHV SDU UDSSRUW j α α HW W pYHQWXHOOHPHQW
5HPDUTXHGHVIRUPXOHV RQWLUHHQQpJOLJHDQW K GHYDQW 5 1
5HPDUTXHGHVIRUPXOHV RQWLUHHQQpJOLJHDQW K GHYDQW 5 1
σ =
σ ′ =
K
⎛ 0 ⎞ ⎛ 0 ⎞ ⎛ 8 ⎞ ⎛ 8 ⎞ ⎜⎜ 1 + ⎟⎟ σ = ⎜⎜ 1 − ⎟⎟ τ = ⎜⎜ 7 − ⎟⎟ = ⎜⎜ 7 + ⎟⎟ 5 K 5 K 5 K 5 1 ⎠ 1 ⎠ 1 ⎠ 1 ⎠ ⎝ ⎝ ⎝ ⎝
1 0 1 0 7 8 7 8 + ′ = σ′ = − τ − = + K 5 1 , K 5 1 , K 5 1 , K 5 1 ,
'¶R
σ ′ =
K
⎛ 0 ⎞ ⎛ 0 ⎞ ⎛ 8 ⎞ ⎛ 8 ⎞ ⎜⎜ 1 + ⎟⎟ σ = ⎜⎜ 1 − ⎟⎟ τ = ⎜⎜ 7 − ⎟⎟ = ⎜⎜ 7 + ⎟⎟ 5 K 5 K 5 K 5 1 ⎠ 1 ⎠ 1 ⎠ 1 ⎠ ⎝ ⎝ ⎝ ⎝
1 0 1 0 7 8 7 8 + ′ = σ′ = − τ − = + K 5 1 , K 5 1 , K 5 1 , K 5 1 ,
'¶R ⎧ ⎛ 1 ⎛ 0 ⎞ 0 ⎞ ⎟⎟ + ] ⎜⎜ + ⎟⎟ ⎪σ = ⎜⎜ 1 + K⎝ 5 1 ⎠ , ⎠ ⎝ K 5 1 ⎪ ⎪ ⎛ 1 ⎛ 0 ⎞ 0 ⎞ ⎪ ⎟⎟ + ] ⎜⎜ − ⎟⎟ ⎨σ = ⎜⎜ 1 − K 5 K 5 , ⎠ 1 ⎠ 1 ⎝ ⎝ ⎪ ⎪ ⎪ τ = ⎛⎜ 7 − 8 ⎞⎟ + ⎛⎜ 7 − 8 ⎞⎟ ] = ⎛⎜ 7 + 8 ⎞⎟ + ⎛⎜ 7 + 8 ⎞⎟ ] ⎪ K ⎜ 5 ⎟ ⎜ K 5 , ⎟⎠ 5 1 ⎟⎠ ⎜⎝ K 5 1 , ⎟⎠ K ⎜⎝ 1 ⎠ ⎝ 1 ⎝ ⎩
σ =
&RPPHGDQVOHFDVGHVSODTXHVRQDSRXUOHVFLVVLRQVWUDQVYHUVHV τ] =
4 ⎜⎛ ] ⎞ 4 ⎜⎛ ] ⎞ − ⎟ HW τ] = − ⎟ K ⎜⎝ K ⎜⎝ K ⎠⎟ K ⎟⎠
⎧ ⎛ 1 ⎛ 0 ⎞ 0 ⎞ ⎟⎟ + ] ⎜⎜ + ⎟⎟ ⎪σ = ⎜⎜ 1 + K⎝ 5 1 ⎠ , ⎠ ⎝ K 5 1 ⎪ ⎪ ⎛ 1 ⎛ 0 ⎞ 0 ⎞ ⎪ ⎟⎟ + ] ⎜⎜ − ⎟⎟ ⎨σ = ⎜⎜ 1 − K 5 K 5 , ⎠ 1 ⎠ 1 ⎝ ⎝ ⎪ ⎪ ⎪ τ = ⎛⎜ 7 − 8 ⎞⎟ + ⎛⎜ 7 − 8 ⎞⎟ ] = ⎛⎜ 7 + 8 ⎞⎟ + ⎛⎜ 7 + 8 ⎞⎟ ] ⎪ K ⎜ 5 ⎟ ⎜ K 5 , ⎟⎠ 5 1 ⎟⎠ ⎜⎝ K 5 1 , ⎟⎠ K ⎜⎝ 1 ⎠ ⎝ 1 ⎝ ⎩
&RPPHGDQVOHFDVGHVSODTXHVRQDSRXUOHVFLVVLRQVWUDQVYHUVHV
τ] =
4 ⎜⎛ ] ⎞ 4 ⎜⎛ ] ⎞ − ⎟ HW τ] = − ⎟ K ⎜⎝ K ⎜⎝ K ⎠⎟ K ⎟⎠
±7+e25,('(60(0%5$1(6
±7+e25,('(60(0%5$1(6
'DQV FH FDV OH ORQJ GH WRXWH ILEUH WUDQVYHUVH OHV GpSODFHPHQWV OHV GpIRUPDWLRQV OHV FRQWUDLQWHVHWODWHPSpUDWXUHVRQWVXSSRVpVFRQVWDQWV
'DQV FH FDV OH ORQJ GH WRXWH ILEUH WUDQVYHUVH OHV GpSODFHPHQWV OHV GpIRUPDWLRQV OHV FRQWUDLQWHVHWODWHPSpUDWXUHVRQWVXSSRVpVFRQVWDQWV
/D WKpRULH GHV PHPEUDQHV VH GpGXLW GH OD WKpRULH OLQpDLUH FLGHVVXV HQ DQQXODQW WRXV OHV IDFWHXUVGH]FRHIILFLHQWVHQ′
/D WKpRULH GHV PHPEUDQHV VH GpGXLW GH OD WKpRULH OLQpDLUH FLGHVVXV HQ DQQXODQW WRXV OHV IDFWHXUVGH]FRHIILFLHQWVHQ′
- 94 -
- 94 -
2QHQGpGXLWDORUVOHVH[SUHVVLRQVGHVHIIRUWVWUDQFKDQWVWUDQVYHUVDX[ 4 HW 4 DXPR\HQGHV GHX[ SUHPLqUHV pTXDWLRQV GH O¶pTXLOLEUH ORFDO GHV PRPHQWV WRPH , FKDSLWUH 9,,, IRUPXOHV
2QHQGpGXLWDORUVOHVH[SUHVVLRQVGHVHIIRUWVWUDQFKDQWVWUDQVYHUVDX[ 4 HW 4 DXPR\HQGHV GHX[ SUHPLqUHV pTXDWLRQV GH O¶pTXLOLEUH ORFDO GHV PRPHQWV WRPH , FKDSLWUH 9,,, IRUPXOHV
HpWDSHpTXDWLRQVDX[GpSODFHPHQWVGH 3
HpWDSHpTXDWLRQVDX[GpSODFHPHQWVGH 3
&RPPH GDQV OD WKpRULH TXDGUDWLTXH RQ OHV REWLHQW HQ UHPSODoDQW GDQV OHV WURLV pTXDWLRQV G¶pTXLOLEUHORFDOGHVIRUFHVWRPH,FKDSLWUH9,,,IRUPXOHV OHVFRPSRVDQWHVGHVYLVVHXUV HW SDUOHXUVH[SUHVVLRQVHQIRQFWLRQGH X X Z REWHQXHVJUkFHDX[pWDSHVSUpFpGHQWHV
&RPPH GDQV OD WKpRULH TXDGUDWLTXH RQ OHV REWLHQW HQ UHPSODoDQW GDQV OHV WURLV pTXDWLRQV G¶pTXLOLEUHORFDOGHVIRUFHVWRPH,FKDSLWUH9,,,IRUPXOHV OHVFRPSRVDQWHVGHVYLVVHXUV HW SDUOHXUVH[SUHVVLRQVHQIRQFWLRQGH X X Z REWHQXHVJUkFHDX[pWDSHVSUpFpGHQWHV
&H VRQW GHV pTXDWLRQV DX[ GpULYpHV SDUWLHOOHV TXDWULqPHV SDU UDSSRUW j α α HW W pYHQWXHOOHPHQW
&H VRQW GHV pTXDWLRQV DX[ GpULYpHV SDUWLHOOHV TXDWULqPHV SDU UDSSRUW j α α HW W pYHQWXHOOHPHQW
5HPDUTXHGHVIRUPXOHV RQWLUHHQQpJOLJHDQW K GHYDQW 5 1
5HPDUTXHGHVIRUPXOHV RQWLUHHQQpJOLJHDQW K GHYDQW 5 1
σ =
σ ′ =
K
⎛ 0 ⎞ ⎛ 0 ⎞ ⎛ 8 ⎞ ⎛ 8 ⎞ ⎜⎜ 1 + ⎟⎟ σ = ⎜⎜ 1 − ⎟⎟ τ = ⎜⎜ 7 − ⎟⎟ = ⎜⎜ 7 + ⎟⎟ 5 K 5 K 5 K 5 1 ⎠ 1 ⎠ 1 ⎠ 1 ⎠ ⎝ ⎝ ⎝ ⎝
1 0 1 0 7 8 7 8 + ′ = σ′ = − τ − = + K 5 1 , K 5 1 , K 5 1 , K 5 1 ,
'¶R
σ ′ =
K
⎛ 0 ⎞ ⎛ 0 ⎞ ⎛ 8 ⎞ ⎛ 8 ⎞ ⎜⎜ 1 + ⎟⎟ σ = ⎜⎜ 1 − ⎟⎟ τ = ⎜⎜ 7 − ⎟⎟ = ⎜⎜ 7 + ⎟⎟ 5 K 5 K 5 K 5 1 ⎠ 1 ⎠ 1 ⎠ 1 ⎠ ⎝ ⎝ ⎝ ⎝
1 0 1 0 7 8 7 8 + ′ = σ′ = − τ − = + K 5 1 , K 5 1 , K 5 1 , K 5 1 ,
'¶R ⎧ ⎛ 1 ⎛ 0 ⎞ 0 ⎞ ⎟⎟ + ] ⎜⎜ + ⎟⎟ ⎪σ = ⎜⎜ 1 + K⎝ 5 1 ⎠ , ⎠ ⎝ K 5 1 ⎪ ⎪ ⎛ 1 ⎛ 0 ⎞ 0 ⎞ ⎪ ⎟⎟ + ] ⎜⎜ − ⎟⎟ ⎨σ = ⎜⎜ 1 − K⎝ 5 1 ⎠ , ⎠ ⎝ K 5 1 ⎪ ⎪ ⎪ τ = ⎛⎜ 7 − 8 ⎞⎟ + ⎛⎜ 7 − 8 ⎞⎟ ] = ⎛⎜ 7 + 8 ⎞⎟ + ⎛⎜ 7 + 8 ⎞⎟ ] ⎪ K ⎜ 5 ⎟ ⎜ K 5 , ⎟⎠ 5 1 ⎟⎠ ⎜⎝ K 5 1 , ⎟⎠ K ⎜⎝ 1 ⎠ ⎝ 1 ⎝ ⎩
&RPPHGDQVOHFDVGHVSODTXHVRQDSRXUOHVFLVVLRQVWUDQVYHUVHV
σ =
τ] =
4 ⎜⎛ ] ⎞ 4 ⎜⎛ ] ⎞ − ⎟ HW τ] = − ⎟ K ⎜⎝ K ⎜⎝ K ⎠⎟ K ⎟⎠
⎧ ⎛ 1 ⎛ 0 ⎞ 0 ⎞ ⎟⎟ + ] ⎜⎜ + ⎟⎟ ⎪σ = ⎜⎜ 1 + K⎝ 5 1 ⎠ , ⎠ ⎝ K 5 1 ⎪ ⎪ ⎛ 1 ⎛ 0 ⎞ 0 ⎞ ⎪ ⎟⎟ + ] ⎜⎜ − ⎟⎟ ⎨σ = ⎜⎜ 1 − K⎝ 5 1 ⎠ , ⎠ ⎝ K 5 1 ⎪ ⎪ ⎪ τ = ⎛⎜ 7 − 8 ⎞⎟ + ⎛⎜ 7 − 8 ⎞⎟ ] = ⎛⎜ 7 + 8 ⎞⎟ + ⎛⎜ 7 + 8 ⎞⎟ ] ⎪ K ⎜ 5 ⎟ ⎜ K 5 , ⎟⎠ 5 1 ⎟⎠ ⎜⎝ K 5 1 , ⎟⎠ K ⎜⎝ 1 ⎠ ⎝ 1 ⎝ ⎩
&RPPHGDQVOHFDVGHVSODTXHVRQDSRXUOHVFLVVLRQVWUDQVYHUVHV
τ] =
4 ⎜⎛ ] ⎞ 4 ⎜⎛ ] ⎞ − ⎟ HW τ] = − ⎟ K ⎜⎝ K ⎜⎝ K ⎠⎟ K ⎟⎠
±7+e25,('(60(0%5$1(6
±7+e25,('(60(0%5$1(6
'DQV FH FDV OH ORQJ GH WRXWH ILEUH WUDQVYHUVH OHV GpSODFHPHQWV OHV GpIRUPDWLRQV OHV FRQWUDLQWHVHWODWHPSpUDWXUHVRQWVXSSRVpVFRQVWDQWV
'DQV FH FDV OH ORQJ GH WRXWH ILEUH WUDQVYHUVH OHV GpSODFHPHQWV OHV GpIRUPDWLRQV OHV FRQWUDLQWHVHWODWHPSpUDWXUHVRQWVXSSRVpVFRQVWDQWV
/D WKpRULH GHV PHPEUDQHV VH GpGXLW GH OD WKpRULH OLQpDLUH FLGHVVXV HQ DQQXODQW WRXV OHV IDFWHXUVGH]FRHIILFLHQWVHQ′
/D WKpRULH GHV PHPEUDQHV VH GpGXLW GH OD WKpRULH OLQpDLUH FLGHVVXV HQ DQQXODQW WRXV OHV IDFWHXUVGH]FRHIILFLHQWVHQ′
- 94 -
- 94 -
UHpWDSHGpSODFHPHQWV
UHpWDSHGpSODFHPHQWV
⎧X = X α α W G ⎪⎪ X ⎨X = X α α W ⎪ ⎪⎩Z = Z α α W
HpWDSHGpIRUPDWLRQV
⎧X = X α α W G ⎪⎪ X ⎨X = X α α W ⎪ ⎪⎩Z = Z α α W
HpWDSHGpIRUPDWLRQV
ε = ε α α W
ε = ε α α W
γ = γ α α W
ε = ε α α W
ε = ε α α W
&HVWURLVIRQFWLRQVVRQWGRQQpHVSDUOHVIRUPXOHV
&HVWURLVIRQFWLRQVVRQWGRQQpHVSDUOHVIRUPXOHV
HpWDSHFRQWUDLQWHV
HpWDSHFRQWUDLQWHV
( (α ⎧ ⎪σ = X α α W = − ν ε + ν ε − − ν 7 − 7 ⎪ ⎪ ( (α ⎪ ε + ν ε − 7 − 7 ⎨σ = X α α W = − ν − ν ⎪ ⎪ ⎪τ = τ α α W = ( γ + ν ⎩⎪
HpWDSHYLVVHXUV
⎧ 1 = K σ ⎪⎪ ⎨1 = K σ ⎪ ⎪⎩7 = 7 = K τ
⎧4 = 6 = ⎪⎪ ⎨0 = 0 = ⎪ ⎪⎩8 = 8 =
( (α ⎧ ⎪σ = X α α W = − ν ε + ν ε − − ν 7 − 7 ⎪ ⎪ ( (α ⎪ ε + ν ε − 7 − 7 ⎨σ = X α α W = − ν − ν ⎪ ⎪ ⎪τ = τ α α W = ( γ + ν ⎩⎪
HpWDSHYLVVHXUV
γ = γ α α W
⎧ 1 = K σ ⎪⎪ ⎨1 = K σ ⎪ ⎪⎩7 = 7 = K τ
⎧4 = 6 = ⎪⎪ ⎨0 = 0 = ⎪ ⎪⎩8 = 8 =
2QQ¶DTXHGHVHIIRUWVGHPHPEUDQHELHQHQWHQGX
2QQ¶DTXHGHVHIIRUWVGHPHPEUDQHELHQHQWHQGX
HpWDSHpTXDWLRQVGXSUREOqPH
HpWDSHpTXDWLRQVGXSUREOqPH
/HV pTXDWLRQV G¶pTXLOLEUH ORFDO GHV PRPHQWV VRQW LGHQWLTXHPHQW YpULILpHV OHV pTXDWLRQV G¶pTXLOLEUHGHVIRUFHVV¶pFULYHQW
/HV pTXDWLRQV G¶pTXLOLEUH ORFDO GHV PRPHQWV VRQW LGHQWLTXHPHQW YpULILpHV OHV pTXDWLRQV G¶pTXLOLEUHGHVIRUFHVV¶pFULYHQW
⎧ ∂ 1 ∂ 7 1 − 1 7 + 7 + + − = ⎪S + 5J 5J β β ∂ α ∂ α ⎪ ⎪ ∂ 1 ∂ 7 1 − 1 7 + 7 ⎪ + + − = ⎨S + 5J 5J β ∂ α β ∂ α ⎪ ⎪ ⎪S + 1 + 1 = ⎪ ] 5 5 1 1 ⎩
⎧ ∂ 1 ∂ 7 1 − 1 7 + 7 + + − = ⎪S + 5J 5J β β ∂ α ∂ α ⎪ ⎪ ∂ 1 ∂ 7 1 − 1 7 + 7 ⎪ + + − = ⎨S + 5J 5J β ∂ α β ∂ α ⎪ ⎪ ⎪S + 1 + 1 = ⎪ ] 5 5 1 1 ⎩
- 95 -
UHpWDSHGpSODFHPHQWV
- 95 -
UHpWDSHGpSODFHPHQWV
⎧X = X α α W G ⎪⎪ X ⎨X = X α α W ⎪ ⎩⎪Z = Z α α W
HpWDSHGpIRUPDWLRQV
⎧X = X α α W G ⎪⎪ X ⎨X = X α α W ⎪ ⎩⎪Z = Z α α W
ε = ε α α W
ε = ε α α W
γ = γ α α W
ε = ε α α W
ε = ε α α W
&HVWURLVIRQFWLRQVVRQWGRQQpHVSDUOHVIRUPXOHV
HpWDSHFRQWUDLQWHV
HpWDSHFRQWUDLQWHV
( (α ⎧ ⎪σ = X α α W = − ν ε + ν ε − − ν 7 − 7 ⎪ ⎪ ( (α ⎪ ε + ν ε − 7 − 7 ⎨σ = X α α W = −ν − ν ⎪ ⎪ ⎪τ = τ α α W = ( γ ⎪⎩ + ν
HpWDSHYLVVHXUV
HpWDSHGpIRUPDWLRQV
&HVWURLVIRQFWLRQVVRQWGRQQpHVSDUOHVIRUPXOHV
⎧ 1 = K σ ⎪⎪ ⎨1 = K σ ⎪ ⎩⎪7 = 7 = K τ
⎧4 = 6 = ⎪⎪ ⎨0 = 0 = ⎪ ⎩⎪8 = 8 =
( (α ⎧ ⎪σ = X α α W = − ν ε + ν ε − − ν 7 − 7 ⎪ ⎪ ( (α ⎪ ε + ν ε − 7 − 7 ⎨σ = X α α W = −ν − ν ⎪ ⎪ ⎪τ = τ α α W = ( γ ⎪⎩ + ν
HpWDSHYLVVHXUV
γ = γ α α W
⎧ 1 = K σ ⎪⎪ ⎨1 = K σ ⎪ ⎩⎪7 = 7 = K τ
⎧4 = 6 = ⎪⎪ ⎨0 = 0 = ⎪ ⎩⎪8 = 8 =
2QQ¶DTXHGHVHIIRUWVGHPHPEUDQHELHQHQWHQGX
2QQ¶DTXHGHVHIIRUWVGHPHPEUDQHELHQHQWHQGX
HpWDSHpTXDWLRQVGXSUREOqPH
HpWDSHpTXDWLRQVGXSUREOqPH
/HV pTXDWLRQV G¶pTXLOLEUH ORFDO GHV PRPHQWV VRQW LGHQWLTXHPHQW YpULILpHV OHV pTXDWLRQV G¶pTXLOLEUHGHVIRUFHVV¶pFULYHQW
/HV pTXDWLRQV G¶pTXLOLEUH ORFDO GHV PRPHQWV VRQW LGHQWLTXHPHQW YpULILpHV OHV pTXDWLRQV G¶pTXLOLEUHGHVIRUFHVV¶pFULYHQW
⎧ ∂ 1 ∂ 7 1 − 1 7 + 7 + + − = ⎪S + 5J 5J β ∂ α β ∂ α ⎪ ⎪ ∂ 1 ∂ 7 1 − 1 7 + 7 ⎪ + + − = ⎨S + 5J 5J β β ∂ α ∂ α ⎪ ⎪ ⎪S + 1 + 1 = ⎪ ] 5 5 1 1 ⎩
⎧ ∂ 1 ∂ 7 1 − 1 7 + 7 + + − = ⎪S + 5J 5J β ∂ α β ∂ α ⎪ ⎪ ∂ 1 ∂ 7 1 − 1 7 + 7 ⎪ + + − = ⎨S + 5J 5J β β ∂ α ∂ α ⎪ ⎪ ⎪S + 1 + 1 = ⎪ ] 5 5 1 1 ⎩
- 95 -
- 95 -
2QDDORUVOHFKRL[HQWUHGHX[PpWKRGHV ± XQH PpWKRGH GHV IRUFHV TXL FRQVLVWH j LQWpJUHU OH V\VWqPH GH WURLV pTXDWLRQV j WURLV IRQFWLRQVLQFRQQXHV 1 1 7 = 7
2QDDORUVOHFKRL[HQWUHGHX[PpWKRGHV ± XQH PpWKRGH GHV IRUFHV TXL FRQVLVWH j LQWpJUHU OH V\VWqPH GH WURLV pTXDWLRQV j WURLV IRQFWLRQVLQFRQQXHV 1 1 7 = 7
± XQHPpWKRGHGHVGpSODFHPHQWVTXLFRQVLVWHjLQWpJUHUDXVVLOHV\VWqPH PDLVDSUqV\ DYRLUUHPSODFp 1 1 HW 7 7 SDUOHXUVH[SUHVVLRQVHQIRQFWLRQGH X X Z
± XQHPpWKRGHGHVGpSODFHPHQWVTXLFRQVLVWHjLQWpJUHUDXVVLOHV\VWqPH PDLVDSUqV\ DYRLUUHPSODFp 1 1 HW 7 7 SDUOHXUVH[SUHVVLRQVHQIRQFWLRQGH X X Z
±(;(03/('(/$63+Ê5(&5(86(
±(;(03/('(/$63+Ê5(&5(86(
2Q DSSHOOH 5 HW 5 OHV UD\RQV LQWpULHXU HW H[WpULHXU DYHF 5 − 5 = K pSDLVVHXU /HV IDFHVLQWpULHXUHHWH[WpULHXUHVRQWPDLQWHQXHVDX[WHPSpUDWXUHV 7 HW 7 UHVSHFWLYHPHQW$X FKDSLWUH,QRXVDYRQVGpWHUPLQpOHFKDPSGHWHPSpUDWXUHGDQVFHWWHFRTXHVSKpULTXHRQD WURXYp $ 5 5 7 5 −7 5 7 = % − DYHF $ = 7 − 7 HW % = U 5 − 5 5 − 5
2Q DSSHOOH 5 HW 5 OHV UD\RQV LQWpULHXU HW H[WpULHXU DYHF 5 − 5 = K pSDLVVHXU /HV IDFHVLQWpULHXUHHWH[WpULHXUHVRQWPDLQWHQXHVDX[WHPSpUDWXUHV 7 HW 7 UHVSHFWLYHPHQW$X FKDSLWUH,QRXVDYRQVGpWHUPLQpOHFKDPSGHWHPSpUDWXUHGDQVFHWWHFRTXHVSKpULTXHRQD WURXYp $ 5 5 7 5 −7 5 7 = % − DYHF $ = 7 − 7 HW % = U 5 − 5 5 − 5
/DFRTXHpWDQWPLQFHRQD
/DFRTXHpWDQWPLQFHRQD
U = 5 + ] 5 =
$=
%=
GRQF
5 + 5
5 + 5
U = 5 + ] 5 =
5 7 − 7 K
$=
5 7 − 7 K
7 + 7 5 7 + 7 7 − 7 7 −7 + ] − ] + 7 − 7 HW 7 = K 5K K
%=
7 + 7 5 7 + 7 7 − 7 7 −7 + ] − ] + 7 − 7 HW 7 = K 5K K
GRQF
− 7 + 7 7 −7 7 + 7 7 ′ = 7 ′′ = 7 = 7 3 = 5K K
7 = 7 3 =
− 7 + 7 7 −7 7 + 7 7 ′ = 7 ′′ = 5K K
)LJXUH
)LJXUH
- 96 -
- 96 -
2QDDORUVOHFKRL[HQWUHGHX[PpWKRGHV ± XQH PpWKRGH GHV IRUFHV TXL FRQVLVWH j LQWpJUHU OH V\VWqPH GH WURLV pTXDWLRQV j WURLV IRQFWLRQVLQFRQQXHV 1 1 7 = 7
2QDDORUVOHFKRL[HQWUHGHX[PpWKRGHV ± XQH PpWKRGH GHV IRUFHV TXL FRQVLVWH j LQWpJUHU OH V\VWqPH GH WURLV pTXDWLRQV j WURLV IRQFWLRQVLQFRQQXHV 1 1 7 = 7
± XQHPpWKRGHGHVGpSODFHPHQWVTXLFRQVLVWHjLQWpJUHUDXVVLOHV\VWqPH PDLVDSUqV\ DYRLUUHPSODFp 1 1 HW 7 7 SDUOHXUVH[SUHVVLRQVHQIRQFWLRQGH X X Z
± XQHPpWKRGHGHVGpSODFHPHQWVTXLFRQVLVWHjLQWpJUHUDXVVLOHV\VWqPH PDLVDSUqV\ DYRLUUHPSODFp 1 1 HW 7 7 SDUOHXUVH[SUHVVLRQVHQIRQFWLRQGH X X Z
±(;(03/('(/$63+Ê5(&5(86(
±(;(03/('(/$63+Ê5(&5(86(
2Q DSSHOOH 5 HW 5 OHV UD\RQV LQWpULHXU HW H[WpULHXU DYHF 5 − 5 = K pSDLVVHXU /HV IDFHVLQWpULHXUHHWH[WpULHXUHVRQWPDLQWHQXHVDX[WHPSpUDWXUHV 7 HW 7 UHVSHFWLYHPHQW$X FKDSLWUH,QRXVDYRQVGpWHUPLQpOHFKDPSGHWHPSpUDWXUHGDQVFHWWHFRTXHVSKpULTXHRQD WURXYp $ 5 5 7 5 −7 5 7 = % − DYHF $ = 7 − 7 HW % = U 5 − 5 5 − 5
2Q DSSHOOH 5 HW 5 OHV UD\RQV LQWpULHXU HW H[WpULHXU DYHF 5 − 5 = K pSDLVVHXU /HV IDFHVLQWpULHXUHHWH[WpULHXUHVRQWPDLQWHQXHVDX[WHPSpUDWXUHV 7 HW 7 UHVSHFWLYHPHQW$X FKDSLWUH,QRXVDYRQVGpWHUPLQpOHFKDPSGHWHPSpUDWXUHGDQVFHWWHFRTXHVSKpULTXHRQD WURXYp $ 5 5 7 5 −7 5 7 = % − DYHF $ = 7 − 7 HW % = U 5 − 5 5 − 5
/DFRTXHpWDQWPLQFHRQD
/DFRTXHpWDQWPLQFHRQD
U = 5 + ] 5 =
$=
%=
GRQF
5 + 5
5 + 5
U = 5 + ] 5 =
5 7 − 7 K
$=
5 7 − 7 K
7 + 7 5 7 + 7 7 − 7 7 −7 + ] − ] + 7 − 7 HW 7 = K 5K K
%=
7 + 7 5 7 + 7 7 − 7 7 −7 + ] − ] + 7 − 7 HW 7 = K 5K K
GRQF
− 7 + 7 7 −7 7 + 7 7 ′ = 7 ′′ = 7 = 7 3 = 5K K
7 = 7 3 =
− 7 + 7 7 −7 7 + 7 7 ′ = 7 ′′ = 5K K
)LJXUH
)LJXUH
- 96 -
- 96 -
/HSUREOqPHHVWFRQVLGpUpHQUpJLPHVWDWLRQQDLUHLOSRVVqGHGHSOXVODV\PpWULHVSKpULTXH 3DUODWKpRULHTXDGUDWLTXHRQWURXYH
/HSUREOqPHHVWFRQVLGpUpHQUpJLPHVWDWLRQQDLUHLOSRVVqGHGHSOXVODV\PpWULHVSKpULTXH 3DUODWKpRULHTXDGUDWLTXHRQWURXYH
± OHVGpSODFHPHQWVHQ3
± OHVGpSODFHPHQWVHQ3
⎧ ⎪X = ⎪ G ⎪ X = 3R3 ⎨X = ⎪ ⎛ 7 + 7 ⎞ ⎪ ⎪Z = α 5 ⎜⎝ − 7 ⎟⎠ ⎩
± OHVGpIRUPDWLRQVHQ3
⎧ ⎪X = ⎪ G ⎪ X = 3R3 ⎨X = ⎪ ⎛ 7 + 7 ⎞ ⎪ ⎪Z = α 5 ⎜⎝ − 7 ⎟⎠ ⎩
± OHVGpIRUPDWLRQVHQ3
] ] ⎞ ⎛ 7 + 7 ⎞⎛ ε = ε = εF = α ⎜ − 7 ⎟ ⎜ − + ⎟ ⎜ ⎝ ⎠ ⎝ 5 5 ⎠⎟
] ] ⎞ ⎛ 7 + 7 ⎞⎛ ε = ε = εF = α ⎜ − 7 ⎟ ⎜ − + ⎟ ⎜ ⎝ ⎠ ⎝ 5 5 ⎠⎟
± OHVFRQWUDLQWHVHQ3
± OHVFRQWUDLQWHVHQ3
σ = σ = σF =
(α − ν
5 ] ⎞⎟ ⎡ 7 + 7 ⎤ ⎜⎛ ] − 7 + 7 − 7 ⎥⎜ − ⎢⎣ K 5 ⎠⎟ ⎦⎝5
σ = σ = σF =
± OHVYLVVHXUVHQ 3
(α − ν
5 ] ⎞⎟ ⎡ 7 + 7 ⎤ ⎜⎛ ] − 7 + 7 − 7 ⎥⎜ − ⎢⎣ K 5 ⎠⎟ ⎦⎝5
± OHVYLVVHXUVHQ 3
1 = 1 = 7 = 7 = 4 = 4 = = 8 = 8 0 = −0 = −
1 = 1 = 7 = 7 = 4 = 4 = = 8 = 8
' + ν α ⎡ 7 + 7 5 ⎤ ⎢⎣ − 7 − K 7 − 7 ⎥⎦ 5
0 = −0 = −
' + ν α ⎡ 7 + 7 5 ⎤ ⎢⎣ − 7 − K 7 − 7 ⎥⎦ 5
(Q VXSSULPDQW OHV WHUPHV HQ ] RQ REWLHQW OHV UpVXOWDWV GRQQpV SDU OD WKpRULH OLQpDLUH HQ VXSSULPDQWDXVVLOHVWHUPHVHQ]RQREWLHQWOHVUpVXOWDWVGRQQpVSDUODWKpRULHGHVPHPEUDQHV LQDGDSWpHLFLSXLVTX¶RQDXQJUDGLHQWWUDQVYHUVDOGHWHPSpUDWXUH
(Q VXSSULPDQW OHV WHUPHV HQ ] RQ REWLHQW OHV UpVXOWDWV GRQQpV SDU OD WKpRULH OLQpDLUH HQ VXSSULPDQWDXVVLOHVWHUPHVHQ]RQREWLHQWOHVUpVXOWDWVGRQQpVSDUODWKpRULHGHVPHPEUDQHV LQDGDSWpHLFLSXLVTX¶RQDXQJUDGLHQWWUDQVYHUVDOGHWHPSpUDWXUH
9R\RQV VXU XQH DSSOLFDWLRQ QXPpULTXH OHV GLIIpUHQFHV HQWUH OD WKpRULH OLQpDLUH HW FHOOH GH WKHUPRpODVWLFLWp 3UHQRQV 7 = ° & 7 = ° & 7 = ° & 5 = P K = FP
9R\RQV VXU XQH DSSOLFDWLRQ QXPpULTXH OHV GLIIpUHQFHV HQWUH OD WKpRULH OLQpDLUH HW FHOOH GH WKHUPRpODVWLFLWp 3UHQRQV 7 = ° & 7 = ° & 7 = ° & 5 = P K = FP
( = *3D α = ⋅ − . − HW ν = /HVFRQWUDLQWHV σL ILEUHLQWHUQH HW σH ILEUH H[WHUQH RQWSRXUYDOHXUVHQ03D
( = *3D α = ⋅ − . − HW ν = /HVFRQWUDLQWHV σL ILEUHLQWHUQH HW σH ILEUH H[WHUQH RQWSRXUYDOHXUVHQ03D
7KpRULHOLQpDLUH
7KpRULH'
7KpRULHOLQpDLUH
7KpRULH'
σL
σL
σH
±
±
σH
±
±
/HVpFDUWVVRQWGHO¶RUGUHGHSRXUXQHFRTXHDVVH]pSDLVVHHWXQJUDGLHQWGHWHPSpUDWXUH LPSRUWDQW
/HVpFDUWVVRQWGHO¶RUGUHGHSRXUXQHFRTXHDVVH]pSDLVVHHWXQJUDGLHQWGHWHPSpUDWXUH LPSRUWDQW
- 97 -
- 97 -
/HSUREOqPHHVWFRQVLGpUpHQUpJLPHVWDWLRQQDLUHLOSRVVqGHGHSOXVODV\PpWULHVSKpULTXH 3DUODWKpRULHTXDGUDWLTXHRQWURXYH
/HSUREOqPHHVWFRQVLGpUpHQUpJLPHVWDWLRQQDLUHLOSRVVqGHGHSOXVODV\PpWULHVSKpULTXH 3DUODWKpRULHTXDGUDWLTXHRQWURXYH
± OHVGpSODFHPHQWVHQ3
± OHVGpSODFHPHQWVHQ3
⎧ ⎪X = ⎪ G ⎪ X = 3R3 ⎨X = ⎪ ⎛ 7 + 7 ⎞ ⎪ ⎪Z = α 5 ⎜⎝ − 7 ⎟⎠ ⎩
± OHVGpIRUPDWLRQVHQ3
⎧ ⎪X = ⎪ G ⎪ X = 3R3 ⎨X = ⎪ ⎛ 7 + 7 ⎞ ⎪ ⎪Z = α 5 ⎜⎝ − 7 ⎟⎠ ⎩
± OHVGpIRUPDWLRQVHQ3
] ] ⎞ ⎛ 7 + 7 ⎞⎛ ε = ε = εF = α ⎜ − 7 ⎟ ⎜ − + ⎟ ⎜ ⎝ ⎠ ⎝ 5 5 ⎠⎟
] ] ⎞ ⎛ 7 + 7 ⎞⎛ ε = ε = εF = α ⎜ − 7 ⎟ ⎜ − + ⎟ ⎝ ⎠ ⎝⎜ 5 5 ⎠⎟
± OHVFRQWUDLQWHVHQ3
± OHVFRQWUDLQWHVHQ3
σ = σ = σF =
( α ⎡ 7 + 7 5 ] ⎞⎟ ⎤ ⎜⎛ ] − 7 + 7 − 7 ⎥⎜ − ⎢ − ν ⎣ K 5 ⎠⎟ ⎦⎝5
σ = σ = σF =
± OHVYLVVHXUVHQ 3
( α ⎡ 7 + 7 5 ] ⎞⎟ ⎤ ⎜⎛ ] − 7 + 7 − 7 ⎥⎜ − ⎢ − ν ⎣ K 5 ⎠⎟ ⎦⎝5
± OHVYLVVHXUVHQ 3
1 = 1 = 7 = 7 = 4 = 4 = = 8 = 8 0 = −0 = −
' + ν α 5
1 = 1 = 7 = 7 = 4 = 4 = = 8 = 8
5 ⎡ 7 + 7 ⎤ ⎢⎣ − 7 − K 7 − 7 ⎥⎦
0 = −0 = −
' + ν α 5
5 ⎡ 7 + 7 ⎤ ⎢⎣ − 7 − K 7 − 7 ⎥⎦
(Q VXSSULPDQW OHV WHUPHV HQ ] RQ REWLHQW OHV UpVXOWDWV GRQQpV SDU OD WKpRULH OLQpDLUH HQ VXSSULPDQWDXVVLOHVWHUPHVHQ]RQREWLHQWOHVUpVXOWDWVGRQQpVSDUODWKpRULHGHVPHPEUDQHV LQDGDSWpHLFLSXLVTX¶RQDXQJUDGLHQWWUDQVYHUVDOGHWHPSpUDWXUH
(Q VXSSULPDQW OHV WHUPHV HQ ] RQ REWLHQW OHV UpVXOWDWV GRQQpV SDU OD WKpRULH OLQpDLUH HQ VXSSULPDQWDXVVLOHVWHUPHVHQ]RQREWLHQWOHVUpVXOWDWVGRQQpVSDUODWKpRULHGHVPHPEUDQHV LQDGDSWpHLFLSXLVTX¶RQDXQJUDGLHQWWUDQVYHUVDOGHWHPSpUDWXUH
9R\RQV VXU XQH DSSOLFDWLRQ QXPpULTXH OHV GLIIpUHQFHV HQWUH OD WKpRULH OLQpDLUH HW FHOOH GH WKHUPRpODVWLFLWp 3UHQRQV 7 = ° & 7 = ° & 7 = ° & 5 = P K = FP
9R\RQV VXU XQH DSSOLFDWLRQ QXPpULTXH OHV GLIIpUHQFHV HQWUH OD WKpRULH OLQpDLUH HW FHOOH GH WKHUPRpODVWLFLWp 3UHQRQV 7 = ° & 7 = ° & 7 = ° & 5 = P K = FP
( = *3D α = ⋅ − . − HW ν = /HVFRQWUDLQWHV σL ILEUHLQWHUQH HW σH ILEUH H[WHUQH RQWSRXUYDOHXUVHQ03D
( = *3D α = ⋅ − . − HW ν = /HVFRQWUDLQWHV σL ILEUHLQWHUQH HW σH ILEUH H[WHUQH RQWSRXUYDOHXUVHQ03D
7KpRULHOLQpDLUH
7KpRULH'
7KpRULHOLQpDLUH
7KpRULH'
σL
σL
σH
±
±
σH
±
±
/HVpFDUWVVRQWGHO¶RUGUHGHSRXUXQHFRTXHDVVH]pSDLVVHHWXQJUDGLHQWGHWHPSpUDWXUH LPSRUWDQW
/HVpFDUWVVRQWGHO¶RUGUHGHSRXUXQHFRTXHDVVH]pSDLVVHHWXQJUDGLHQWGHWHPSpUDWXUH LPSRUWDQW
- 97 -
- 97 -
±352%/Ê0(6$;,6<0e75,48(60e5,',(16
±352%/Ê0(6$;,6<0e75,48(60e5,',(16
]′] HVWVXSSRVpD[HGHUpYROXWLRQSRXUODFRTXHOHFKDUJHPHQWOHVOLDLVRQVHWOHFKDPSGH WHPSpUDWXUH OHV IRUFHV VRQW GH SOXV ©PpULGLHQQHVª F¶HVW j GLUH VLWXpHV GDQV GHV SODQV PpULGLHQV
]′] HVWVXSSRVpD[HGHUpYROXWLRQSRXUODFRTXHOHFKDUJHPHQWOHVOLDLVRQVHWOHFKDPSGH WHPSpUDWXUH OHV IRUFHV VRQW GH SOXV ©PpULGLHQQHVª F¶HVW j GLUH VLWXpHV GDQV GHV SODQV PpULGLHQV
±7KpRULHTXDGUDWLTXH
±7KpRULHTXDGUDWLTXH
UHpWDSHGpSODFHPHQWV
UHpWDSHGpSODFHPHQWV
HpWDSHGpIRUPDWLRQV
HpWDSHGpIRUPDWLRQV
/HVFRHIILFLHQWVQRQQXOVRQWSRXUH[SUHVVLRQ
/HVFRHIILFLHQWVQRQQXOVRQWSRXUH[SUHVVLRQ
⎧ ⎧ ∂ Z X ⎪X = ⎪ ω = ∂ V + 5 ⎪ ⎪ ⎪ ⎛ ∂ Z X ⎞ G ⎪ ⎟⎟ + X = 3R3 ⎨X = X − ] ⎜⎜ ⎨ ω = ⎝ ∂ V 5 ⎠ ⎪ ⎪ ⎪ ⎪ω = ⎪ ] ⎪Z = Z V W ⎩ ⎩
⎧ ⎪ε = − X FRV γ + Z VLQ γ U ⎪ ⎪ ⎪ε = ∂ X − Z ⎪ ∂V 5 ⎪ ⎪ ⎛ ⎞ ⎪ε′ = X FRV γ ⎜ + VLQ γ ⎟ − Z VLQ γ ⎜ ⎟ U 5 U ⎪⎪ ⎝ ⎠ U ⎨ ⎪ G ⎛ ⎞ Z ∂ Z ⎪ε′ = − X G V ⎜⎜ 5 ⎟⎟ − − ∂ V ⎝ ⎠ 5 ⎪ ⎪ ⎪ε′′ = − X VLQ γ FRV γ ⎛⎜ + VLQ γ ⎞⎟ + Z VLQ γ − VLQ γ FRV γ ∂ Z ⎜ ⎟ ⎪ ∂ V U U ⎠ U U ⎝ 5 ⎪ ⎪ X G ⎛ ⎞ Z ∂ Z ⎜⎜ ⎟⎟ − − ⎪ε′′ = − 5 G V ⎝ 5 ⎠ 5 5 ∂ V ⎪⎩
⎧ ⎧ ∂ Z X ⎪X = ⎪ ω = ∂ V + 5 ⎪ ⎪ ⎪ ⎛ ∂ Z X ⎞ G ⎪ ⎟⎟ + X = 3R3 ⎨X = X − ] ⎜⎜ ⎨ ω = ⎝ ∂ V 5 ⎠ ⎪ ⎪ ⎪ ⎪ω = ⎪ ] ⎪Z = Z V W ⎩ ⎩
⎧ ⎪ε = − X FRV γ + Z VLQ γ U ⎪ ⎪ ⎪ε = ∂ X − Z ⎪ ∂V 5 ⎪ ⎪ ⎛ ⎞ ⎪ε′ = X FRV γ ⎜ + VLQ γ ⎟ − Z VLQ γ ⎜ ⎟ U 5 U ⎪⎪ ⎝ ⎠ U ⎨ ⎪ G ⎛ ⎞ Z ∂ Z ⎪ε′ = − X G V ⎜⎜ 5 ⎟⎟ − − ∂ V ⎝ ⎠ 5 ⎪ ⎪ ⎪ε′′ = − X VLQ γ FRV γ ⎛⎜ + VLQ γ ⎞⎟ + Z VLQ γ − VLQ γ FRV γ ∂ Z ⎜ ⎟ ⎪ ∂ V U U ⎠ U U ⎝ 5 ⎪ ⎪ X G ⎛ ⎞ Z ∂ Z ⎜⎜ ⎟⎟ − − ⎪ε′′ = − 5 G V ⎝ 5 ⎠ 5 5 ∂ V ⎪⎩
HpWDSHFRQWUDLQWHV
HpWDSHFRQWUDLQWHV
2QHQGpGXLWOHVFRQWUDLQWHVQRQQXOOHV
2QHQGpGXLWOHVFRQWUDLQWHVQRQQXOOHV
( (α ⎧ ⎪ σ = − ν ε + ν ε − − ν 7 − 7 = σ + ] σ′ + = σ′′ ⎪ ⎨ ( (α ⎪ ε + ν ε − 7 − 7 = σ + ] σ′ + = σ′′ ⎪σ = − ν − ν ⎩
( (α ⎧ ⎪ σ = − ν ε + ν ε − − ν 7 − 7 = σ + ] σ′ + = σ′′ ⎪ ⎨ ( (α ⎪ ε + ν ε − 7 − 7 = σ + ] σ′ + = σ′′ ⎪σ = − ν − ν ⎩
- 98 -
- 98 -
±352%/Ê0(6$;,6<0e75,48(60e5,',(16
±352%/Ê0(6$;,6<0e75,48(60e5,',(16
]′] HVWVXSSRVpD[HGHUpYROXWLRQSRXUODFRTXHOHFKDUJHPHQWOHVOLDLVRQVHWOHFKDPSGH WHPSpUDWXUH OHV IRUFHV VRQW GH SOXV ©PpULGLHQQHVª F¶HVW j GLUH VLWXpHV GDQV GHV SODQV PpULGLHQV
]′] HVWVXSSRVpD[HGHUpYROXWLRQSRXUODFRTXHOHFKDUJHPHQWOHVOLDLVRQVHWOHFKDPSGH WHPSpUDWXUH OHV IRUFHV VRQW GH SOXV ©PpULGLHQQHVª F¶HVW j GLUH VLWXpHV GDQV GHV SODQV PpULGLHQV
±7KpRULHTXDGUDWLTXH
±7KpRULHTXDGUDWLTXH
UHpWDSHGpSODFHPHQWV
UHpWDSHGpSODFHPHQWV
HpWDSHGpIRUPDWLRQV
HpWDSHGpIRUPDWLRQV
/HVFRHIILFLHQWVQRQQXOVRQWSRXUH[SUHVVLRQ
/HVFRHIILFLHQWVQRQQXOVRQWSRXUH[SUHVVLRQ
⎧ ⎧ ∂ Z X ⎪X = ⎪ ω = ∂ V + 5 ⎪ ⎪ ⎪ ⎛ ∂ Z X ⎞ G ⎪ ⎟⎟ + X = 3R3 ⎨X = X − ] ⎜⎜ ⎨ ω = ⎝ ∂ V 5 ⎠ ⎪ ⎪ ⎪ ⎪ω = ⎪ ] ⎪Z = Z V W ⎩ ⎩
⎧ ⎪ε = − X FRV γ + Z VLQ γ U ⎪ ⎪ ⎪ε = ∂ X − Z ⎪ ∂V 5 ⎪ ⎪ ⎛ ⎞ ⎪ε′ = X FRV γ ⎜ + VLQ γ ⎟ − Z VLQ γ U ⎜⎝ 5 U ⎟⎠ U ⎪⎪ ⎨ ⎪ G ⎛ ⎞ Z ∂ Z ⎪ε′ = − X G V ⎜⎜ 5 ⎟⎟ − − ∂ V ⎝ ⎠ 5 ⎪ ⎪ ⎪ε′′ = − X VLQ γ FRV γ ⎛⎜ + VLQ γ ⎞⎟ + Z VLQ γ − VLQ γ FRV γ ∂ Z ⎜ ⎟ ⎪ ∂ V U U ⎠ U U ⎝ 5 ⎪ ⎪ X G ⎛ ⎞ Z ∂ Z ⎜⎜ ⎟⎟ − − ⎪ε′′ = − 5 G V ⎝ 5 ⎠ 5 5 ∂ V ⎩⎪
⎧ ⎧ ∂ Z X ⎪X = ⎪ ω = ∂ V + 5 ⎪ ⎪ ⎪ ⎛ ∂ Z X ⎞ G ⎪ ⎟⎟ + X = 3R3 ⎨X = X − ] ⎜⎜ ⎨ ω = ⎝ ∂ V 5 ⎠ ⎪ ⎪ ⎪ ⎪ω = ⎪ ] ⎪Z = Z V W ⎩ ⎩
⎧ ⎪ε = − X FRV γ + Z VLQ γ U ⎪ ⎪ ⎪ε = ∂ X − Z ⎪ ∂V 5 ⎪ ⎪ ⎛ ⎞ ⎪ε′ = X FRV γ ⎜ + VLQ γ ⎟ − Z VLQ γ U ⎜⎝ 5 U ⎟⎠ U ⎪⎪ ⎨ ⎪ G ⎛ ⎞ Z ∂ Z ⎪ε′ = − X G V ⎜⎜ 5 ⎟⎟ − − ∂ V ⎝ ⎠ 5 ⎪ ⎪ ⎪ε′′ = − X VLQ γ FRV γ ⎛⎜ + VLQ γ ⎞⎟ + Z VLQ γ − VLQ γ FRV γ ∂ Z ⎜ ⎟ ⎪ ∂ V U U ⎠ U U ⎝ 5 ⎪ ⎪ X G ⎛ ⎞ Z ∂ Z ⎜⎜ ⎟⎟ − − ⎪ε′′ = − 5 G V ⎝ 5 ⎠ 5 5 ∂ V ⎩⎪
HpWDSHFRQWUDLQWHV
HpWDSHFRQWUDLQWHV
2QHQGpGXLWOHVFRQWUDLQWHVQRQQXOOHV
2QHQGpGXLWOHVFRQWUDLQWHVQRQQXOOHV
( (α ⎧ ⎪ σ = − ν ε + ν ε − − ν 7 − 7 = σ + ] σ′ + = σ′′ ⎪ ⎨ ( (α ⎪ ε + ν ε − 7 − 7 = σ + ] σ′ + = σ′′ ⎪σ = − ν − ν ⎩
( (α ⎧ ⎪ σ = − ν ε + ν ε − − ν 7 − 7 = σ + ] σ′ + = σ′′ ⎪ ⎨ ( (α ⎪ ε + ν ε − 7 − 7 = σ + ] σ′ + = σ′′ ⎪σ = − ν − ν ⎩
- 98 -
- 98 -
7 − 7 = 7 − 7 + ] 7 ′ V W + ] 7 ′′ V W
DYHF
7 − 7 = 7 − 7 + ] 7 ′ V W + ] 7 ′′ V W
DYHF
HpWDSHYLVVHXUV
HpWDSHYLVVHXUV
/HVFRPSRVDQWHVQRQQXOOHVRQWSRXUH[SUHVVLRQV
/HVFRPSRVDQWHVQRQQXOOHVRQWSRXUH[SUHVVLRQV
⎧ ⎛ σ′ ⎞ VLQ γ ⎞ ⎛ ⎟⎟ 1 = K σ + , ⎜ σ′′ + σ′ ⎟ ⎪ 1 = K σ + , ⎜⎜ σ′′ − U ⎠ 5 ⎝ ⎠ ⎝ ⎪ ⎪ ⎛ σ ⎞ ⎪ ⎛ VLQ γ ⎞ 0 = − , ⎜ σ + σ′ ⎟⎟ + σ′ ⎟ ⎨0 = , ⎜⎜ − 5 U ⎝ ⎠ ⎝ ⎠ ⎪ ⎪ ⎪G¶ R4 = − ∂ 0 − FRV γ 0 + 0 ⎪ U ∂ V ⎩
⎧ ⎛ σ′ ⎞ VLQ γ ⎞ ⎛ ⎟⎟ 1 = K σ + , ⎜ σ′′ + σ′ ⎟ ⎪ 1 = K σ + , ⎜⎜ σ′′ − U ⎠ 5 ⎝ ⎠ ⎝ ⎪ ⎪ ⎛ σ ⎞ ⎪ ⎛ VLQ γ ⎞ 0 = − , ⎜ σ + σ′ ⎟⎟ + σ′ ⎟ ⎨0 = , ⎜⎜ − 5 U ⎝ ⎠ ⎝ ⎠ ⎪ ⎪ ⎪G¶ R4 = − ∂ 0 − FRV γ 0 + 0 ⎪ U ∂ V ⎩
HpWDSHpTXDWLRQVDX[GpSODFHPHQWV
HpWDSHpTXDWLRQVDX[GpSODFHPHQWV
/HVHVHWHVpTXDWLRQVG¶pTXLOLEUHGHVIRUFHVV¶pFULYHQWLFL
/HVHVHWHVpTXDWLRQVG¶pTXLOLEUHGHVIRUFHVV¶pFULYHQWLFL
∂ 1 FRV γ 4 ⎧ ⎪S + ∂ V + 1 − 1 U − 5 = ⎪ ⎨ ∂ 4 VLQ γ 1 FRV γ ⎪ ⎪S ] + ∂ V − 1 U + 5 − 4 U = ⎩
∂ 1 FRV γ 4 ⎧ ⎪S + ∂ V + 1 − 1 U − 5 = ⎪ ⎨ ∂ 4 VLQ γ 1 FRV γ ⎪ ⎪S ] + ∂ V − 1 U + 5 − 4 U = ⎩
(Q\UHPSODoDQW 1 1 HW 4 SDUOHXUVH[SUHVVLRQVHQIRQFWLRQGH X HWZRQREWLHQWOHV pTXDWLRQVDX[GpSODFHPHQWV
(Q\UHPSODoDQW 1 1 HW 4 SDUOHXUVH[SUHVVLRQVHQIRQFWLRQGH X HWZRQREWLHQWOHV pTXDWLRQVDX[GpSODFHPHQWV
±7KpRULHOLQpDLUH
±7KpRULHOLQpDLUH
(OOHVHGpGXLWGHODWKpRULHTXDGUDWLTXHFLGHVVXVSDUVXSSUHVVLRQGHVWHUPHVHQ ] RQSUHQG DLQVL ε′′ = ε′′ = = σ′′ = σ′′ HW 7 ′′ =
(OOHVHGpGXLWGHODWKpRULHTXDGUDWLTXHFLGHVVXVSDUVXSSUHVVLRQGHVWHUPHVHQ ] RQSUHQG DLQVL ε′′ = ε′′ = = σ′′ = σ′′ HW 7 ′′ =
±7KpRULHGHVPHPEUDQHV
±7KpRULHGHVPHPEUDQHV
(OOHVHGpGXLWGHODWKpRULHTXDGUDWLTXHHQDQQXODQWOHVFRHIILFLHQWVGH ] HWFHX[GH]GRQF HQ SUHQDQW ε′ = ε′′ = σ′ = σ′′ = ε′ = ε′′ = σ′ = σ′′ = 7 ′ = 7 ′′ = (OOH Q¶HVW GRQF SDVDGDSWpHDX[FRTXHVSUpVHQWDQWXQJUDGLHQWWUDQVYHUVDOGHWHPSpUDWXUH
(OOHVHGpGXLWGHODWKpRULHTXDGUDWLTXHHQDQQXODQWOHVFRHIILFLHQWVGH ] HWFHX[GH]GRQF HQ SUHQDQW ε′ = ε′′ = σ′ = σ′′ = ε′ = ε′′ = σ′ = σ′′ = 7 ′ = 7 ′′ = (OOH Q¶HVW GRQF SDVDGDSWpHDX[FRTXHVSUpVHQWDQWXQJUDGLHQWWUDQVYHUVDOGHWHPSpUDWXUH
/HVpTXDWLRQVG¶pTXLOLEUHGHYLHQQHQWHQSDUWLFXOLHUSXLVTXH 0 = 0 = = 4 = 4
/HVpTXDWLRQVG¶pTXLOLEUHGHYLHQQHQWHQSDUWLFXOLHUSXLVTXH 0 = 0 = = 4 = 4
∂ 1 FRV γ ⎧ ⎪S + ∂ V + 1 − 1 U = ⎪ ⎨ VLQ γ 1 ⎪ ⎪S ] − 1 U + 5 = ⎩
∂ 1 FRV γ ⎧ ⎪S + ∂ V + 1 − 1 U = ⎪ ⎨ VLQ γ 1 ⎪ ⎪S ] − 1 U + 5 = ⎩
- 99 -
- 99 -
7 − 7 = 7 − 7 + ] 7 ′ V W + ] 7 ′′ V W
DYHF
7 − 7 = 7 − 7 + ] 7 ′ V W + ] 7 ′′ V W
DYHF
HpWDSHYLVVHXUV
HpWDSHYLVVHXUV
/HVFRPSRVDQWHVQRQQXOOHVRQWSRXUH[SUHVVLRQV
/HVFRPSRVDQWHVQRQQXOOHVRQWSRXUH[SUHVVLRQV
⎧ ⎛ σ′ ⎞ VLQ γ ⎞ ⎛ ⎟⎟ 1 = K σ + , ⎜ σ′′ + σ′ ⎟ ⎪ 1 = K σ + , ⎜⎜ σ′′ − U ⎠ 5 ⎠ ⎝ ⎝ ⎪ ⎪ ⎛ σ ⎞ ⎪ ⎛ VLQ γ ⎞ 0 = − , ⎜ σ + σ′ ⎟⎟ + σ′ ⎟ ⎨0 = , ⎜⎜ − 5 U ⎝ ⎠ ⎝ ⎠ ⎪ ⎪ ⎪G¶ R4 = − ∂ 0 − FRV γ 0 + 0 ⎪ U ∂ V ⎩
⎧ ⎛ σ′ ⎞ VLQ γ ⎞ ⎛ ⎟⎟ 1 = K σ + , ⎜ σ′′ + σ′ ⎟ ⎪ 1 = K σ + , ⎜⎜ σ′′ − U ⎠ 5 ⎠ ⎝ ⎝ ⎪ ⎪ ⎛ σ ⎞ ⎪ ⎛ VLQ γ ⎞ 0 = − , ⎜ σ + σ′ ⎟⎟ + σ′ ⎟ ⎨0 = , ⎜⎜ − 5 U ⎝ ⎠ ⎝ ⎠ ⎪ ⎪ ⎪G¶ R4 = − ∂ 0 − FRV γ 0 + 0 ⎪ U ∂ V ⎩
HpWDSHpTXDWLRQVDX[GpSODFHPHQWV
HpWDSHpTXDWLRQVDX[GpSODFHPHQWV
/HVHVHWHVpTXDWLRQVG¶pTXLOLEUHGHVIRUFHVV¶pFULYHQWLFL
/HVHVHWHVpTXDWLRQVG¶pTXLOLEUHGHVIRUFHVV¶pFULYHQWLFL
∂ 1 FRV γ 4 ⎧ ⎪S + ∂ V + 1 − 1 U − 5 = ⎪ ⎨ ∂ 4 VLQ γ 1 FRV γ ⎪ ⎪S ] + ∂ V − 1 U + 5 − 4 U = ⎩
∂ 1 FRV γ 4 ⎧ ⎪S + ∂ V + 1 − 1 U − 5 = ⎪ ⎨ ∂ 4 VLQ γ 1 FRV γ ⎪ ⎪S ] + ∂ V − 1 U + 5 − 4 U = ⎩
(Q\UHPSODoDQW 1 1 HW 4 SDUOHXUVH[SUHVVLRQVHQIRQFWLRQGH X HWZRQREWLHQWOHV pTXDWLRQVDX[GpSODFHPHQWV
(Q\UHPSODoDQW 1 1 HW 4 SDUOHXUVH[SUHVVLRQVHQIRQFWLRQGH X HWZRQREWLHQWOHV pTXDWLRQVDX[GpSODFHPHQWV
±7KpRULHOLQpDLUH
±7KpRULHOLQpDLUH
(OOHVHGpGXLWGHODWKpRULHTXDGUDWLTXHFLGHVVXVSDUVXSSUHVVLRQGHVWHUPHVHQ ] RQSUHQG DLQVL ε′′ = ε′′ = = σ′′ = σ′′ HW 7 ′′ =
(OOHVHGpGXLWGHODWKpRULHTXDGUDWLTXHFLGHVVXVSDUVXSSUHVVLRQGHVWHUPHVHQ ] RQSUHQG DLQVL ε′′ = ε′′ = = σ′′ = σ′′ HW 7 ′′ =
±7KpRULHGHVPHPEUDQHV
±7KpRULHGHVPHPEUDQHV
(OOHVHGpGXLWGHODWKpRULHTXDGUDWLTXHHQDQQXODQWOHVFRHIILFLHQWVGH ] HWFHX[GH]GRQF HQ SUHQDQW ε′ = ε′′ = σ′ = σ′′ = ε′ = ε′′ = σ′ = σ′′ = 7 ′ = 7 ′′ = (OOH Q¶HVW GRQF SDVDGDSWpHDX[FRTXHVSUpVHQWDQWXQJUDGLHQWWUDQVYHUVDOGHWHPSpUDWXUH
(OOHVHGpGXLWGHODWKpRULHTXDGUDWLTXHHQDQQXODQWOHVFRHIILFLHQWVGH ] HWFHX[GH]GRQF HQ SUHQDQW ε′ = ε′′ = σ′ = σ′′ = ε′ = ε′′ = σ′ = σ′′ = 7 ′ = 7 ′′ = (OOH Q¶HVW GRQF SDVDGDSWpHDX[FRTXHVSUpVHQWDQWXQJUDGLHQWWUDQVYHUVDOGHWHPSpUDWXUH
/HVpTXDWLRQVG¶pTXLOLEUHGHYLHQQHQWHQSDUWLFXOLHUSXLVTXH 0 = 0 = = 4 = 4
/HVpTXDWLRQVG¶pTXLOLEUHGHYLHQQHQWHQSDUWLFXOLHUSXLVTXH 0 = 0 = = 4 = 4
∂ 1 FRV γ ⎧ ⎪S + ∂ V + 1 − 1 U = ⎪ ⎨ VLQ γ 1 ⎪ ⎪S ] − 1 U + 5 = ⎩
- 99 -
∂ 1 FRV γ ⎧ ⎪S + ∂ V + 1 − 1 U = ⎪ ⎨ VLQ γ 1 ⎪ ⎪S ] − 1 U + 5 = ⎩
- 99 -
±$SSOLFDWLRQDXF\OLQGUH
±$SSOLFDWLRQDXF\OLQGUH
6RLWDOHUD\RQPR\HQGXF\OLQGUH ]′] O¶D[HGHUpYROXWLRQODIRUFHVXUIDFLTXHHVWVXSSRVpH QRUPDOH GH PHVXUH DOJpEULTXH S = S ] OD WHPSpUDWXUH HVW GH OD IRUPH [[ 'RQQRQV OHV IRUPXOHVGHODWKpRULHOLQpDLUHOHVFDUDFWpULVWLTXHVJpRPpWULTXHVGXF\OLQGUHFLUFXODLUHD\DQW pWpGRQQpHVDXWRPH,FKDSLWUH9,,SDJH
6RLWDOHUD\RQPR\HQGXF\OLQGUH ]′] O¶D[HGHUpYROXWLRQODIRUFHVXUIDFLTXHHVWVXSSRVpH QRUPDOH GH PHVXUH DOJpEULTXH S = S ] OD WHPSpUDWXUH HVW GH OD IRUPH [[ 'RQQRQV OHV IRUPXOHVGHODWKpRULHOLQpDLUHOHVFDUDFWpULVWLTXHVJpRPpWULTXHVGXF\OLQGUHFLUFXODLUHD\DQW pWpGRQQpHVDXWRPH,FKDSLWUH9,,SDJH
⎧ ⎧ ∂Z ⎪ ω = ∂ ] ⎪X = ⎪ ⎪ G ∂Z ⎪ ⎪ ω ⎨ ω = X = 3R3 ⎨X = X − = ∂] ⎪ ⎪ ⎪ω = ⎪ Z = Z ] W ⎪ ] ⎪ ⎩ ⎩
⎧ ⎧ ∂Z ⎪ ω = ∂ ] ⎪X = ⎪ ⎪ G ∂Z ⎪ ⎪ ω ⎨ ω = X = 3R3 ⎨X = X − = ∂] ⎪ ⎪ ⎪ω = ⎪ Z = Z ] W ⎪ ] ⎪ ⎩ ⎩
/HVpTXDWLRQVG¶pTXLOLEUH V¶pFULYHQWSXLVTXH γ =
1 = & WH S +
π = V = ] + & WH U = D S = 5
∂ 4 1 ∂ 0 − = HW 4 = − ∂] D ∂]
2QREWLHQWDORUVOHVFRHIILFLHQWVGHODWKpRULHOLQpDLUH ε = −
/HVpTXDWLRQVG¶pTXLOLEUH V¶pFULYHQWSXLVTXH γ =
1 = & WH S +
∂ 4 1 ∂ 0 − = HW 4 = − ∂] D ∂]
2QREWLHQWDORUVOHVFRHIILFLHQWVGHODWKpRULHOLQpDLUH
∂X Z ∂ Z Z ε′ = − ε = − ε′ = − D ∂] D ∂]
SXLV
π = V = ] + & WH U = D S = 5
ε = −
∂X Z ∂ Z Z ε′ = − ε = − ε′ = − D ∂] D ∂]
SXLV
σ =
−( ⎛Z ∂ X ⎞ ( α ⎜ +ν ⎟− 7 − 7 ⎜ D ∂ ] ⎟⎠ − ν − ν ⎝
σ =
−( ⎛Z ∂ X ⎞ ( α ⎜ +ν ⎟− 7 − 7 ⎜ D ∂ ] ⎟⎠ − ν − ν ⎝
σ′ =
− ( ⎜⎛ Z ∂ Z ⎞⎟ ( α +ν − 7′ ⎜ ∂ ] ⎟⎠ − ν − ν ⎝ D
σ′ =
− ( ⎜⎛ Z ∂ Z ⎞⎟ ( α +ν − 7′ ⎜ ∂ ] ⎟⎠ − ν − ν ⎝ D
σ =
⎛ ∂ X Z⎞ (α ⎜⎜ + ν ⎟⎟ − 7 − 7 ∂ ] D ⎠ − ν − ν ⎝
σ =
⎛ ∂ X Z⎞ (α ⎜⎜ + ν ⎟⎟ − 7 − 7 ∂ ] D ⎠ − ν − ν ⎝
σ′ =
Z⎞ (α − ( ⎜⎛ ∂ Z 7′ +ν ⎟− ⎜ − ν ⎝ ∂ ] D ⎟⎠ − ν
σ′ =
Z⎞ (α − ( ⎜⎛ ∂ Z 7′ +ν ⎟− ⎜ − ν ⎝ ∂ ] D ⎟⎠ − ν
(
HWHQILQHQQpJOLJHDQW K GHYDQW D
1 =
(K − ν
(
HWHQILQHQQpJOLJHDQW K GHYDQW D
⎛Z ∂ X ⎞ ( α K ⎜⎜ + ν ⎟− 7 − 7 D ∂ ] ⎟⎠ − ν ⎝
1 =
(K − ν
⎛Z ∂ X ⎞ ( α K ⎜⎜ + ν ⎟− 7 − 7 D ∂ ] ⎟⎠ − ν ⎝
- 100 -
- 100 -
±$SSOLFDWLRQDXF\OLQGUH
±$SSOLFDWLRQDXF\OLQGUH
6RLWDOHUD\RQPR\HQGXF\OLQGUH ]′] O¶D[HGHUpYROXWLRQODIRUFHVXUIDFLTXHHVWVXSSRVpH QRUPDOH GH PHVXUH DOJpEULTXH S = S ] OD WHPSpUDWXUH HVW GH OD IRUPH [[ 'RQQRQV OHV IRUPXOHVGHODWKpRULHOLQpDLUHOHVFDUDFWpULVWLTXHVJpRPpWULTXHVGXF\OLQGUHFLUFXODLUHD\DQW pWpGRQQpHVDXWRPH,FKDSLWUH9,,SDJH
6RLWDOHUD\RQPR\HQGXF\OLQGUH ]′] O¶D[HGHUpYROXWLRQODIRUFHVXUIDFLTXHHVWVXSSRVpH QRUPDOH GH PHVXUH DOJpEULTXH S = S ] OD WHPSpUDWXUH HVW GH OD IRUPH [[ 'RQQRQV OHV IRUPXOHVGHODWKpRULHOLQpDLUHOHVFDUDFWpULVWLTXHVJpRPpWULTXHVGXF\OLQGUHFLUFXODLUHD\DQW pWpGRQQpHVDXWRPH,FKDSLWUH9,,SDJH
⎧ ⎧ ∂Z ⎪ ω = ∂ ] ⎪X = ⎪ ⎪ G ∂Z ⎪ ⎪ ω ⎨ ω = X = 3R3 ⎨X = X − = ∂] ⎪ ⎪ ⎪ω = ⎪ Z = Z ] W ⎪ ] ⎪ ⎩ ⎩
⎧ ⎧ ∂Z ⎪ ω = ∂ ] ⎪X = ⎪ ⎪ G ∂Z ⎪ ⎪ ω ⎨ ω = X = 3R3 ⎨X = X − = ∂] ⎪ ⎪ ⎪ω = ⎪ Z = Z ] W ⎪ ] ⎪ ⎩ ⎩
/HVpTXDWLRQVG¶pTXLOLEUH V¶pFULYHQWSXLVTXH γ =
1 = & WH S +
π = V = ] + & WH U = D S = 5
∂ 4 1 ∂ 0 − = HW 4 = − ∂] D ∂]
2QREWLHQWDORUVOHVFRHIILFLHQWVGHODWKpRULHOLQpDLUH ε = −
/HVpTXDWLRQVG¶pTXLOLEUH V¶pFULYHQWSXLVTXH γ =
1 = & WH S +
∂ 4 1 ∂ 0 − = HW 4 = − ∂] D ∂]
2QREWLHQWDORUVOHVFRHIILFLHQWVGHODWKpRULHOLQpDLUH
∂X Z ∂ Z Z ε′ = − ε = − ε′ = − D ∂] D ∂]
SXLV
π = V = ] + & WH U = D S = 5
ε = −
∂X Z ∂ Z Z ε′ = − ε = − ε′ = − D ∂] D ∂]
SXLV
σ =
−( ⎛Z ∂ X ⎞ ( α ⎜ +ν ⎟− 7 − 7 ⎜ D ∂ ] ⎟⎠ − ν − ν ⎝
σ =
−( ⎛Z ∂ X ⎞ ( α ⎜ +ν ⎟− 7 − 7 ⎜ D ∂ ] ⎟⎠ − ν − ν ⎝
σ′ =
− ( ⎜⎛ Z ∂ Z ⎞⎟ ( α + ν − 7′ ∂ ] ⎟⎠ − ν − ν ⎜⎝ D
σ′ =
− ( ⎜⎛ Z ∂ Z ⎞⎟ ( α + ν − 7′ ∂ ] ⎟⎠ − ν − ν ⎜⎝ D
σ =
( ⎛ ∂ X Z⎞ (α ⎜⎜ + ν ⎟⎟ − 7 − 7 D ⎠ − ν − ν ⎝ ∂ ]
σ =
( ⎛ ∂ X Z⎞ (α ⎜⎜ + ν ⎟⎟ − 7 − 7 D ⎠ − ν − ν ⎝ ∂ ]
σ′ =
Z⎞ (α − ( ⎜⎛ ∂ Z 7′ +ν ⎟− ⎜ − ν ⎝ ∂ ] D ⎟⎠ − ν
σ′ =
Z⎞ (α − ( ⎜⎛ ∂ Z 7′ +ν ⎟− ⎜ − ν ⎝ ∂ ] D ⎟⎠ − ν
HWHQILQHQQpJOLJHDQW K GHYDQW D
1 =
(K − ν
HWHQILQHQQpJOLJHDQW K GHYDQW D
⎛Z ∂ X ⎞ ( α K ⎜⎜ + ν ⎟− 7 − 7 ∂ ] ⎟⎠ − ν ⎝D
- 100 -
1 =
(K − ν
⎛Z ∂ X ⎞ ( α K ⎜⎜ + ν ⎟− 7 − 7 ∂ ] ⎟⎠ − ν ⎝D
- 100 -
1 =
(K − ν
⎛ ∂ X Z⎞ (αK ⎜⎜ + ν ⎟⎟ − 7 − 7 ∂ ] D ⎠ − ν ⎝
(K − ν
⎛ ∂ X Z⎞ (αK ⎜⎜ + ν ⎟⎟ − 7 − 7 ∂ ] D ⎠ − ν ⎝
1 =
⎤ ⎡Z ∂ Z 0 = −' ⎢ + ν + α + ν 7 ′⎥ ∂] ⎦⎥ ⎣⎢ D
⎤ ⎡Z ∂ Z 0 = −' ⎢ + ν + α + ν 7 ′⎥ ∂] ⎦⎥ ⎣⎢ D
⎡ ∂ Z ∂ X ⎛ 7 − 7 ⎞⎤ 0 = −' ⎢ − + α + ν ⎜⎜ + 7 ′ ⎟⎟⎥ D ∂] ⎢⎣ ∂ ] ⎝ D ⎠⎥⎦
⎡ ∂ Z ∂ X ⎛ 7 − 7 ⎞⎤ 0 = −' ⎢ − + α + ν ⎜⎜ + 7 ′ ⎟⎟⎥ D ∂] ⎢⎣ ∂ ] ⎝ D ⎠⎥⎦
4 =
4 =
∂ 0 ( K DYHF ' = ∂] − ν
∂ 0 ( K DYHF ' = ∂] − ν
/HVSDUDPqWUHV γ τ 7 7 8 8 4 VRQWLFLLGHQWLTXHPHQWQXOV
/HVSDUDPqWUHV γ τ 7 7 8 8 4 VRQWLFLLGHQWLTXHPHQWQXOV
/HVpTXDWLRQVG¶pTXLOLEUHpFULWHVHQWHUPHVGHGpSODFHPHQWVGRQQHQWILQDOHPHQW
/HVpTXDWLRQVG¶pTXLOLEUHpFULWHVHQWHUPHVGHGpSODFHPHQWVGRQQHQWILQDOHPHQW
0 =
DYHF N =
HW
S] 1 ∂ Z ∂ 7′ ( α K N Z ] W + 7 − 7 + = − ν − α + ν ' D' 'D ∂ ] ∂ ]
( K − ν = 'D K D
0 =
DYHF N =
∂ X − ν Z = 1 − ν + α + ν 7 − 7 ∂] (K D
HW
S] 1 ∂ Z ∂ 7′ ( α K N Z ] W + 7 − 7 + = − ν − α + ν ' D' 'D ∂ ] ∂ ]
( K − ν = 'D K D
∂ X − ν Z = 1 − ν + α + ν 7 − 7 ∂] (K D
±([HPSOH
±([HPSOH
&\OLQGUHVHPLLQILQLHQFDVWUpVXLYDQWVDVHFWLRQ] VRXPLVjXQHpOpYDWLRQXQLIRUPHGH WHPSpUDWXUH 7 − 7 O¶HQFDVWUHPHQWDpWpUpDOLVpVDQVMHXQLVHUUDJHjODWHPSpUDWXUH 7
&\OLQGUHVHPLLQILQLHQFDVWUpVXLYDQWVDVHFWLRQ] VRXPLVjXQHpOpYDWLRQXQLIRUPHGH WHPSpUDWXUH 7 − 7 O¶HQFDVWUHPHQWDpWpUpDOLVpVDQVMHXQLVHUUDJHjODWHPSpUDWXUH 7
2Q D LFL 1 = S = HW 7 ′ = /¶pTXDWLRQ GH OD IOqFKH Z V¶pFULW GRQF HQ UpJLPH VWDWLRQQDLUH
2Q D LFL 1 = S = HW 7 ′ = /¶pTXDWLRQ GH OD IOqFKH Z V¶pFULW GRQF HQ UpJLPH VWDWLRQQDLUH
∂ Z ∂]
+ N Z =
∂ Z
(αK 7 − 7 'D
∂ ]
- 101 -
1 =
(K − ν
+ N Z =
(αK 7 − 7 'D
- 101 -
⎛ ∂ X Z⎞ (αK ⎜⎜ + ν ⎟⎟ − 7 − 7 ∂ ] D ⎠ − ν ⎝
(K − ν
⎛ ∂ X Z⎞ (αK ⎜⎜ + ν ⎟⎟ − 7 − 7 ∂ ] D ⎠ − ν ⎝
1 =
⎤ ⎡Z ∂ Z 0 = −' ⎢ + ν + α + ν 7 ′⎥ ∂] ⎥⎦ ⎢⎣ D
⎤ ⎡Z ∂ Z 0 = −' ⎢ + ν + α + ν 7 ′⎥ ∂] ⎥⎦ ⎢⎣ D
⎡ ∂ Z ∂ X ⎛ 7 − 7 ⎞⎤ 0 = −' ⎢ − + α + ν ⎜⎜ + 7 ′ ⎟⎟⎥ D ∂] ⎢⎣ ∂ ] ⎝ D ⎠⎥⎦
⎡ ∂ Z ∂ X ⎛ 7 − 7 ⎞⎤ 0 = −' ⎢ − + α + ν ⎜⎜ + 7 ′ ⎟⎟⎥ D ∂] ⎢⎣ ∂ ] ⎝ D ⎠⎥⎦
4 =
4 =
∂ 0 ( K DYHF ' = ∂] − ν
∂ 0 ( K DYHF ' = ∂] − ν
/HVSDUDPqWUHV γ τ 7 7 8 8 4 VRQWLFLLGHQWLTXHPHQWQXOV
/HVSDUDPqWUHV γ τ 7 7 8 8 4 VRQWLFLLGHQWLTXHPHQWQXOV
/HVpTXDWLRQVG¶pTXLOLEUHpFULWHVHQWHUPHVGHGpSODFHPHQWVGRQQHQWILQDOHPHQW
/HVpTXDWLRQVG¶pTXLOLEUHpFULWHVHQWHUPHVGHGpSODFHPHQWVGRQQHQWILQDOHPHQW
0 =
DYHF N =
HW
S 1 ∂ Z ∂ 7′ ( α K + 7 − 7 + N Z ] W = ] − ν − α + ν ' D' 'D ∂ ] ∂]
( K − ν = 'D K D
0 =
DYHF N =
∂ X − ν Z = 1 − ν + α + ν 7 − 7 ∂] (K D
HW
S 1 ∂ Z ∂ 7′ ( α K + 7 − 7 + N Z ] W = ] − ν − α + ν ' D' 'D ∂ ] ∂]
( K − ν = 'D K D
∂ X − ν Z = 1 − ν + α + ν 7 − 7 ∂] (K D
±([HPSOH
±([HPSOH
&\OLQGUHVHPLLQILQLHQFDVWUpVXLYDQWVDVHFWLRQ] VRXPLVjXQHpOpYDWLRQXQLIRUPHGH WHPSpUDWXUH 7 − 7 O¶HQFDVWUHPHQWDpWpUpDOLVpVDQVMHXQLVHUUDJHjODWHPSpUDWXUH 7
&\OLQGUHVHPLLQILQLHQFDVWUpVXLYDQWVDVHFWLRQ] VRXPLVjXQHpOpYDWLRQXQLIRUPHGH WHPSpUDWXUH 7 − 7 O¶HQFDVWUHPHQWDpWpUpDOLVpVDQVMHXQLVHUUDJHjODWHPSpUDWXUH 7
2Q D LFL 1 = S = HW 7 ′ = /¶pTXDWLRQ GH OD IOqFKH Z V¶pFULW GRQF HQ UpJLPH VWDWLRQQDLUH
2Q D LFL 1 = S = HW 7 ′ = /¶pTXDWLRQ GH OD IOqFKH Z V¶pFULW GRQF HQ UpJLPH VWDWLRQQDLUH
∂ Z ∂]
+ N Z =
(αK 7 − 7 'D
- 101 -
∂ Z ∂]
+ N Z =
(αK 7 − 7 'D
- 101 -
)LJXUH
)LJXUH
(OOHDSRXUVROXWLRQJpQpUDOH
(OOHDSRXUVROXWLRQJpQpUDOH
Z = H − N] $ FRV N ] + % VLQ N ] + H N] $ ′ FRV N ] + % ′ VLQ N ] + α D 7 − 7
± SRXU ] → ∞ [GRLWUHVWHUILQLFHTXLLPSOLTXH $′ = %′ = ± SRXU] RQGRLWDYRLUZ HW
Z = H − N] $ FRV N ] + % VLQ N ] + H N] $ ′ FRV N ] + % ′ VLQ N ] + α D 7 − 7
± SRXU ] → ∞ [GRLWUHVWHUILQLFHTXLLPSOLTXH $′ = %′ =
GZ = FHTXLLPSRVH G]
± SRXU] RQGRLWDYRLUZ HW
$ = % = −α D 7 − 7
G¶R
Z ] = α D 7 − 7 − H − N] FRV N ] + VLQ N ]
SXLV
G X = α 7 − 7 + ν H − N] FRV N ] + VLQ N ] G]
[
]
]
[
GZ = FHTXLLPSRVH G]
$ = % = −α D 7 − 7
G¶R
Z ] = α D 7 − 7 − H − N] FRV N ] + VLQ N ]
SXLV
G X = α 7 − 7 + ν H − N] FRV N ] + VLQ N ] G]
[
]
]
[
2Q HQ GpGXLW DORUV WRXV OHV SDUDPqWUHV GX SUREOqPH URWDWLRQV WUDQVODWLRQV GpIRUPDWLRQV FRQWUDLQWHVYLVVHXUVUpDFWLRQVGHOLDLVRQ
2Q HQ GpGXLW DORUV WRXV OHV SDUDPqWUHV GX SUREOqPH URWDWLRQV WUDQVODWLRQV GpIRUPDWLRQV FRQWUDLQWHVYLVVHXUVUpDFWLRQVGHOLDLVRQ
- 102 -
- 102 -
)LJXUH
)LJXUH
(OOHDSRXUVROXWLRQJpQpUDOH
(OOHDSRXUVROXWLRQJpQpUDOH
Z = H − N] $ FRV N ] + % VLQ N ] + H N] $ ′ FRV N ] + % ′ VLQ N ] + α D 7 − 7
± SRXU ] → ∞ [GRLWUHVWHUILQLFHTXLLPSOLTXH $′ = %′ = ± SRXU] RQGRLWDYRLUZ HW
± SRXU ] → ∞ [GRLWUHVWHUILQLFHTXLLPSOLTXH $′ = %′ =
GZ = FHTXLLPSRVH G]
± SRXU] RQGRLWDYRLUZ HW
$ = % = −α D 7 − 7
G¶R
Z ] = α D 7 − 7 − H − N] FRV N ] + VLQ N ]
SXLV
G X = α 7 − 7 + ν H − N] FRV N ] + VLQ N ] G]
[
]
]
[
Z = H − N] $ FRV N ] + % VLQ N ] + H N] $ ′ FRV N ] + % ′ VLQ N ] + α D 7 − 7
GZ = FHTXLLPSRVH G]
$ = % = −α D 7 − 7
G¶R
Z ] = α D 7 − 7 − H − N] FRV N ] + VLQ N ]
SXLV
G X = α 7 − 7 + ν H − N] FRV N ] + VLQ N ] G]
[
]
]
[
2Q HQ GpGXLW DORUV WRXV OHV SDUDPqWUHV GX SUREOqPH URWDWLRQV WUDQVODWLRQV GpIRUPDWLRQV FRQWUDLQWHVYLVVHXUVUpDFWLRQVGHOLDLVRQ
2Q HQ GpGXLW DORUV WRXV OHV SDUDPqWUHV GX SUREOqPH URWDWLRQV WUDQVODWLRQV GpIRUPDWLRQV FRQWUDLQWHVYLVVHXUVUpDFWLRQVGHOLDLVRQ
- 102 -
- 102 -
H3$57,(
H3$57,(
'<1$0,48('(66758&785(6
'<1$0,48('(66758&785(6
/HVWRPHV,HW,,VRQWFRQVDFUpVjOD6WDWLTXHGHV6WUXFWXUHVGDQVFHFDVOHFKDUJHPHQWSDVVH SURJUHVVLYHPHQW GH VD YDOHXU LQLWLDOH j VD YDOHXU ILQDOH IDLVDQW SDVVHU OD VWUXFWXUH G¶XQH FRQILJXUDWLRQ LQLWLDOH j XQH FRQILJXUDWLRQ ILQDOH /HV SDUDPqWUHV j FDOFXOHU FRQWUDLQWHVGpIRUPDWLRQVGpSODFHPHQWVUpDFWLRQVGHOLDLVRQVRQWUHODWLIVjO¶pWDWILQDOHWQH GpSHQGHQWSDUFRQVpTXHQWSDVGXWHPSV
/HVWRPHV,HW,,VRQWFRQVDFUpVjOD6WDWLTXHGHV6WUXFWXUHVGDQVFHFDVOHFKDUJHPHQWSDVVH SURJUHVVLYHPHQW GH VD YDOHXU LQLWLDOH j VD YDOHXU ILQDOH IDLVDQW SDVVHU OD VWUXFWXUH G¶XQH FRQILJXUDWLRQ LQLWLDOH j XQH FRQILJXUDWLRQ ILQDOH /HV SDUDPqWUHV j FDOFXOHU FRQWUDLQWHVGpIRUPDWLRQVGpSODFHPHQWVUpDFWLRQVGHOLDLVRQVRQWUHODWLIVjO¶pWDWILQDOHWQH GpSHQGHQWSDUFRQVpTXHQWSDVGXWHPSV
/DqUHSDUWLHFRQVDFUpHjOD7KHUPLTXHGHV6WUXFWXUHV'DQVFHFDVOHFKDUJHPHQWSHXWrWUH XQHIRQFWLRQTXHOFRQTXHGXWHPSVOHVSDUWLFXOHVGHODVWUXFWXUHVRQWHQPRXYHPHQWPrPH pYHQWXHOOHPHQW GDQV OD FRQILJXUDWLRQ LQLWLDOH /HV SDUDPqWUHV j FDOFXOHU VRQW GRQF DXVVL GHV IRQFWLRQVHXWHPSVHWO¶RQSHXWrWUHDPHQpjGpWHUPLQHUGHQRXYHDX[SDUDPqWUHVFLQpPDWLTXHV WHOVTXHYLWHVVHVDFFpOpUDWLRQVIUpTXHQFHVTXLQ¶H[LVWHQWSDVGDQVOHFDVGHODVWDWLTXH/HV SULQFLSDX[ SUREOqPHV GH '\QDPLTXH GHV 6WUXFWXUHV VRQW OHV SUREOqPHV GH YLEUDWLRQV ©OLEUHVªHWOHVSUREOqPHVGHUpSRQVHjXQHVROOLFLWDWLRQ
/DqUHSDUWLHFRQVDFUpHjOD7KHUPLTXHGHV6WUXFWXUHV'DQVFHFDVOHFKDUJHPHQWSHXWrWUH XQHIRQFWLRQTXHOFRQTXHGXWHPSVOHVSDUWLFXOHVGHODVWUXFWXUHVRQWHQPRXYHPHQWPrPH pYHQWXHOOHPHQW GDQV OD FRQILJXUDWLRQ LQLWLDOH /HV SDUDPqWUHV j FDOFXOHU VRQW GRQF DXVVL GHV IRQFWLRQVHXWHPSVHWO¶RQSHXWrWUHDPHQpjGpWHUPLQHUGHQRXYHDX[SDUDPqWUHVFLQpPDWLTXHV WHOVTXHYLWHVVHVDFFpOpUDWLRQVIUpTXHQFHVTXLQ¶H[LVWHQWSDVGDQVOHFDVGHODVWDWLTXH/HV SULQFLSDX[ SUREOqPHV GH '\QDPLTXH GHV 6WUXFWXUHV VRQW OHV SUREOqPHV GH YLEUDWLRQV ©OLEUHVªHWOHVSUREOqPHVGHUpSRQVHjXQHVROOLFLWDWLRQ
1RXV pWXGLHURQV G¶DERUG OHV VWUXFWXUHV GLVFUqWHV FRQVWLWXpHV GH VROLGHV LQGpIRUPDEOHV DVVHPEODJHVjQGHJUpVGHOLEHUWpSXLVOHVVWUXFWXUHVFRQWLQXHVFRQVWLWXpHVGHXQRX SOXVLHXUVVROLGHVGpIRUPDEOHV
1RXV pWXGLHURQV G¶DERUG OHV VWUXFWXUHV GLVFUqWHV FRQVWLWXpHV GH VROLGHV LQGpIRUPDEOHV DVVHPEODJHVjQGHJUpVGHOLEHUWpSXLVOHVVWUXFWXUHVFRQWLQXHVFRQVWLWXpHVGHXQRX SOXVLHXUVVROLGHVGpIRUPDEOHV
'DQVWRXVOHVFDVRQV¶LQWpUHVVHUDDX[PRXYHPHQWVGHODVWUXFWXUHDXWRXUG¶XQHFRQILJXUDWLRQ G¶pTXLOLEUHVWDEOHQRWpH
'DQVWRXVOHVFDVRQV¶LQWpUHVVHUDDX[PRXYHPHQWVGHODVWUXFWXUHDXWRXUG¶XQHFRQILJXUDWLRQ G¶pTXLOLEUHVWDEOHQRWpH
- 103 -
- 103 -
H3$57,(
H3$57,(
'<1$0,48('(66758&785(6
'<1$0,48('(66758&785(6
/HVWRPHV,HW,,VRQWFRQVDFUpVjOD6WDWLTXHGHV6WUXFWXUHVGDQVFHFDVOHFKDUJHPHQWSDVVH SURJUHVVLYHPHQW GH VD YDOHXU LQLWLDOH j VD YDOHXU ILQDOH IDLVDQW SDVVHU OD VWUXFWXUH G¶XQH FRQILJXUDWLRQ LQLWLDOH j XQH FRQILJXUDWLRQ ILQDOH /HV SDUDPqWUHV j FDOFXOHU FRQWUDLQWHVGpIRUPDWLRQVGpSODFHPHQWVUpDFWLRQVGHOLDLVRQVRQWUHODWLIVjO¶pWDWILQDOHWQH GpSHQGHQWSDUFRQVpTXHQWSDVGXWHPSV
/HVWRPHV,HW,,VRQWFRQVDFUpVjOD6WDWLTXHGHV6WUXFWXUHVGDQVFHFDVOHFKDUJHPHQWSDVVH SURJUHVVLYHPHQW GH VD YDOHXU LQLWLDOH j VD YDOHXU ILQDOH IDLVDQW SDVVHU OD VWUXFWXUH G¶XQH FRQILJXUDWLRQ LQLWLDOH j XQH FRQILJXUDWLRQ ILQDOH /HV SDUDPqWUHV j FDOFXOHU FRQWUDLQWHVGpIRUPDWLRQVGpSODFHPHQWVUpDFWLRQVGHOLDLVRQVRQWUHODWLIVjO¶pWDWILQDOHWQH GpSHQGHQWSDUFRQVpTXHQWSDVGXWHPSV
/DqUHSDUWLHFRQVDFUpHjOD7KHUPLTXHGHV6WUXFWXUHV'DQVFHFDVOHFKDUJHPHQWSHXWrWUH XQHIRQFWLRQTXHOFRQTXHGXWHPSVOHVSDUWLFXOHVGHODVWUXFWXUHVRQWHQPRXYHPHQWPrPH pYHQWXHOOHPHQW GDQV OD FRQILJXUDWLRQ LQLWLDOH /HV SDUDPqWUHV j FDOFXOHU VRQW GRQF DXVVL GHV IRQFWLRQVHXWHPSVHWO¶RQSHXWrWUHDPHQpjGpWHUPLQHUGHQRXYHDX[SDUDPqWUHVFLQpPDWLTXHV WHOVTXHYLWHVVHVDFFpOpUDWLRQVIUpTXHQFHVTXLQ¶H[LVWHQWSDVGDQVOHFDVGHODVWDWLTXH/HV SULQFLSDX[ SUREOqPHV GH '\QDPLTXH GHV 6WUXFWXUHV VRQW OHV SUREOqPHV GH YLEUDWLRQV ©OLEUHVªHWOHVSUREOqPHVGHUpSRQVHjXQHVROOLFLWDWLRQ
/DqUHSDUWLHFRQVDFUpHjOD7KHUPLTXHGHV6WUXFWXUHV'DQVFHFDVOHFKDUJHPHQWSHXWrWUH XQHIRQFWLRQTXHOFRQTXHGXWHPSVOHVSDUWLFXOHVGHODVWUXFWXUHVRQWHQPRXYHPHQWPrPH pYHQWXHOOHPHQW GDQV OD FRQILJXUDWLRQ LQLWLDOH /HV SDUDPqWUHV j FDOFXOHU VRQW GRQF DXVVL GHV IRQFWLRQVHXWHPSVHWO¶RQSHXWrWUHDPHQpjGpWHUPLQHUGHQRXYHDX[SDUDPqWUHVFLQpPDWLTXHV WHOVTXHYLWHVVHVDFFpOpUDWLRQVIUpTXHQFHVTXLQ¶H[LVWHQWSDVGDQVOHFDVGHODVWDWLTXH/HV SULQFLSDX[ SUREOqPHV GH '\QDPLTXH GHV 6WUXFWXUHV VRQW OHV SUREOqPHV GH YLEUDWLRQV ©OLEUHVªHWOHVSUREOqPHVGHUpSRQVHjXQHVROOLFLWDWLRQ
1RXV pWXGLHURQV G¶DERUG OHV VWUXFWXUHV GLVFUqWHV FRQVWLWXpHV GH VROLGHV LQGpIRUPDEOHV DVVHPEODJHVjQGHJUpVGHOLEHUWpSXLVOHVVWUXFWXUHVFRQWLQXHVFRQVWLWXpHVGHXQRX SOXVLHXUVVROLGHVGpIRUPDEOHV
1RXV pWXGLHURQV G¶DERUG OHV VWUXFWXUHV GLVFUqWHV FRQVWLWXpHV GH VROLGHV LQGpIRUPDEOHV DVVHPEODJHVjQGHJUpVGHOLEHUWpSXLVOHVVWUXFWXUHVFRQWLQXHVFRQVWLWXpHVGHXQRX SOXVLHXUVVROLGHVGpIRUPDEOHV
'DQVWRXVOHVFDVRQV¶LQWpUHVVHUDDX[PRXYHPHQWVGHODVWUXFWXUHDXWRXUG¶XQHFRQILJXUDWLRQ G¶pTXLOLEUHVWDEOHQRWpH
'DQVWRXVOHVFDVRQV¶LQWpUHVVHUDDX[PRXYHPHQWVGHODVWUXFWXUHDXWRXUG¶XQHFRQILJXUDWLRQ G¶pTXLOLEUHVWDEOHQRWpH
- 103 -
- 103 -
- 104 -
- 104 -
- 104 -
- 104 -
&+$3,75(9,
&+$3,75(9,
6758&785(6¬81'(*5e'(/,%(57e
6758&785(6¬81'(*5e'(/,%(57e
8QHVWUXFWXUHHVWGLWH©jXQGHJUpGHOLEHUWpªVLVDFRQILJXUDWLRQjXQLQVWDQWWTXHOFRQTXH SHXW rWUH GpWHUPLQpH DX PR\HQ G¶XQ VHXO SDUDPqWUH VFDODLUH TW QRPPp SDUDPqWUH GH FRQILJXUDWLRQ
8QHVWUXFWXUHHVWGLWH©jXQGHJUpGHOLEHUWpªVLVDFRQILJXUDWLRQjXQLQVWDQWWTXHOFRQTXH SHXW rWUH GpWHUPLQpH DX PR\HQ G¶XQ VHXO SDUDPqWUH VFDODLUH TW QRPPp SDUDPqWUH GH FRQILJXUDWLRQ
8QHWHOOHVWUXFWXUHSHXWFRQVLVWHUHQXQVROLGHLQGpIRUPDEOHOLpDXEkWLSDUXQHOLDLVRQjXQ GHJUp GH OLEHUWp F¶HVW OH FDV SDU H[HPSOH GX SHQGXOH VLPSOH VROLGH SDUIDLW PRELOH DXWRXU G¶XQD[HXQDQJOHSHUPHWGHSRVLWLRQQHUFHVROLGH
8QHWHOOHVWUXFWXUHSHXWFRQVLVWHUHQXQVROLGHLQGpIRUPDEOHOLpDXEkWLSDUXQHOLDLVRQjXQ GHJUp GH OLEHUWp F¶HVW OH FDV SDU H[HPSOH GX SHQGXOH VLPSOH VROLGH SDUIDLW PRELOH DXWRXU G¶XQD[HXQDQJOHSHUPHWGHSRVLWLRQQHUFHVROLGH
8QHWHOOHVWUXFWXUHSHXWDXVVLrWUHXQDVVHPEODJHGHSOXVLHXUVVROLGHLQGpIRUPDEOHVDYHFXQ GHJUpG¶K\SRVWDWLFLWpH[WpULHXUHF¶HVWOHFDVGHODVWUXFWXUHSODQHGHODILJXUHFRQVWLWXpHGH GHX[EDUUHLQGpIRUPDEOHVDYHFOHV\VWqPHGHOLDLVRQVLQGLTXp/jHQFRUHO¶DQJOH θ SHXWrWUH SULVFRPPHSDUDPqWUHGHFRQILJXUDWLRQ
8QHWHOOHVWUXFWXUHSHXWDXVVLrWUHXQDVVHPEODJHGHSOXVLHXUVVROLGHLQGpIRUPDEOHVDYHFXQ GHJUpG¶K\SRVWDWLFLWpH[WpULHXUHF¶HVWOHFDVGHODVWUXFWXUHSODQHGHODILJXUHFRQVWLWXpHGH GHX[EDUUHLQGpIRUPDEOHVDYHFOHV\VWqPHGHOLDLVRQVLQGLTXp/jHQFRUHO¶DQJOH θ SHXWrWUH SULVFRPPHSDUDPqWUHGHFRQILJXUDWLRQ
)LJXUH
)LJXUH
±&,1e0$7,48(
±&,1e0$7,48(
±2VFLOODWLRQKDUPRQLTXH
±2VFLOODWLRQKDUPRQLTXH
/H PRXYHPHQW GH OD VWUXFWXUH HVW GLW KDUPRQLTXH RX VLQXVRwGDO VL OH SDUDPqWUH GH FRQILJXUDWLRQTW HVWXQHIRQFWLRQVLQXVRwGDOHGXWHPSVGHODIRUPH
/H PRXYHPHQW GH OD VWUXFWXUH HVW GLW KDUPRQLTXH RX VLQXVRwGDO VL OH SDUDPqWUH GH FRQILJXUDWLRQTW HVWXQHIRQFWLRQVLQXVRwGDOHGXWHPSVGHODIRUPH
T = D FRV ωW + ϕ
T = D FRV ωW + ϕ
D GpVLJQH O¶DPSOLWXGH RX pORQJDWLRQ PD[LPDOH ω OD SXOVDWLRQ HQ UDGLDQV SDU VHFRQGHV π ω 7= OD SpULRGH HQ VHFRQGHV I = = OD IUpTXHQFH HQ KHUW] ϕ OD SKDVH HQ ω π 7 UDGLDQV
D GpVLJQH O¶DPSOLWXGH RX pORQJDWLRQ PD[LPDOH ω OD SXOVDWLRQ HQ UDGLDQV SDU VHFRQGHV π ω 7= OD SpULRGH HQ VHFRQGHV I = = OD IUpTXHQFH HQ KHUW] ϕ OD SKDVH HQ ω π 7 UDGLDQV
- 105 -
- 105 -
&+$3,75(9,
&+$3,75(9,
6758&785(6¬81'(*5e'(/,%(57e
6758&785(6¬81'(*5e'(/,%(57e
8QHVWUXFWXUHHVWGLWH©jXQGHJUpGHOLEHUWpªVLVDFRQILJXUDWLRQjXQLQVWDQWWTXHOFRQTXH SHXW rWUH GpWHUPLQpH DX PR\HQ G¶XQ VHXO SDUDPqWUH VFDODLUH TW QRPPp SDUDPqWUH GH FRQILJXUDWLRQ
8QHVWUXFWXUHHVWGLWH©jXQGHJUpGHOLEHUWpªVLVDFRQILJXUDWLRQjXQLQVWDQWWTXHOFRQTXH SHXW rWUH GpWHUPLQpH DX PR\HQ G¶XQ VHXO SDUDPqWUH VFDODLUH TW QRPPp SDUDPqWUH GH FRQILJXUDWLRQ
8QHWHOOHVWUXFWXUHSHXWFRQVLVWHUHQXQVROLGHLQGpIRUPDEOHOLpDXEkWLSDUXQHOLDLVRQjXQ GHJUp GH OLEHUWp F¶HVW OH FDV SDU H[HPSOH GX SHQGXOH VLPSOH VROLGH SDUIDLW PRELOH DXWRXU G¶XQD[HXQDQJOHSHUPHWGHSRVLWLRQQHUFHVROLGH
8QHWHOOHVWUXFWXUHSHXWFRQVLVWHUHQXQVROLGHLQGpIRUPDEOHOLpDXEkWLSDUXQHOLDLVRQjXQ GHJUp GH OLEHUWp F¶HVW OH FDV SDU H[HPSOH GX SHQGXOH VLPSOH VROLGH SDUIDLW PRELOH DXWRXU G¶XQD[HXQDQJOHSHUPHWGHSRVLWLRQQHUFHVROLGH
8QHWHOOHVWUXFWXUHSHXWDXVVLrWUHXQDVVHPEODJHGHSOXVLHXUVVROLGHLQGpIRUPDEOHVDYHFXQ GHJUpG¶K\SRVWDWLFLWpH[WpULHXUHF¶HVWOHFDVGHODVWUXFWXUHSODQHGHODILJXUHFRQVWLWXpHGH GHX[EDUUHLQGpIRUPDEOHVDYHFOHV\VWqPHGHOLDLVRQVLQGLTXp/jHQFRUHO¶DQJOH θ SHXWrWUH SULVFRPPHSDUDPqWUHGHFRQILJXUDWLRQ
8QHWHOOHVWUXFWXUHSHXWDXVVLrWUHXQDVVHPEODJHGHSOXVLHXUVVROLGHLQGpIRUPDEOHVDYHFXQ GHJUpG¶K\SRVWDWLFLWpH[WpULHXUHF¶HVWOHFDVGHODVWUXFWXUHSODQHGHODILJXUHFRQVWLWXpHGH GHX[EDUUHLQGpIRUPDEOHVDYHFOHV\VWqPHGHOLDLVRQVLQGLTXp/jHQFRUHO¶DQJOH θ SHXWrWUH SULVFRPPHSDUDPqWUHGHFRQILJXUDWLRQ
)LJXUH
)LJXUH
±&,1e0$7,48(
±&,1e0$7,48(
±2VFLOODWLRQKDUPRQLTXH
±2VFLOODWLRQKDUPRQLTXH
/H PRXYHPHQW GH OD VWUXFWXUH HVW GLW KDUPRQLTXH RX VLQXVRwGDO VL OH SDUDPqWUH GH FRQILJXUDWLRQTW HVWXQHIRQFWLRQVLQXVRwGDOHGXWHPSVGHODIRUPH
/H PRXYHPHQW GH OD VWUXFWXUH HVW GLW KDUPRQLTXH RX VLQXVRwGDO VL OH SDUDPqWUH GH FRQILJXUDWLRQTW HVWXQHIRQFWLRQVLQXVRwGDOHGXWHPSVGHODIRUPH
T = D FRV ωW + ϕ
T = D FRV ωW + ϕ
D GpVLJQH O¶DPSOLWXGH RX pORQJDWLRQ PD[LPDOH ω OD SXOVDWLRQ HQ UDGLDQV SDU VHFRQGHV π ω 7= OD SpULRGH HQ VHFRQGHV I = = OD IUpTXHQFH HQ KHUW] ϕ OD SKDVH HQ ω π 7 UDGLDQV
D GpVLJQH O¶DPSOLWXGH RX pORQJDWLRQ PD[LPDOH ω OD SXOVDWLRQ HQ UDGLDQV SDU VHFRQGHV π ω 7= OD SpULRGH HQ VHFRQGHV I = = OD IUpTXHQFH HQ KHUW] ϕ OD SKDVH HQ ω π 7 UDGLDQV
- 105 -
- 105 -
5HPDUTXH2QSUHQGUDWRXMRXUVDHW ω SRVLWLIV&HFLQHUHVWUHLQWSDVODJpQpUDOLWpGHQRWUH pWXGHFRPPHOHPRQWUHO¶H[HPSOHVXLYDQWVXSSRVRQVTXHO¶RQDLW
5HPDUTXH2QSUHQGUDWRXMRXUVDHW ω SRVLWLIV&HFLQHUHVWUHLQWSDVODJpQpUDOLWpGHQRWUH pWXGHFRPPHOHPRQWUHO¶H[HPSOHVXLYDQWVXSSRVRQVTXHO¶RQDLW
T W = − FRV −W + RQSHXWDXVVLpFULUH
T W = − FRV −W + RQSHXWDXVVLpFULUH
T W = FRV W − − π H[SUHVVLRQRDHW ω VRQWELHQSRVLWLIV
T W = FRV W − − π H[SUHVVLRQRDHW ω VRQWELHQSRVLWLIV
5HPDUTXH2QSHXWGRQQHUjO¶pTXDWLRQKRUDLUH O¶H[SUHVVLRQ T W = D VLQ ωW + ϕ′ DYHF ϕ′ = ϕ +
5HPDUTXH2QSHXWGRQQHUjO¶pTXDWLRQKRUDLUH O¶H[SUHVVLRQ
π
T W = D VLQ ωW + ϕ′ DYHF ϕ′ = ϕ +
π
5HPDUTXH8QHH[SUHVVLRQGHODIRUPH T = $ FRV ωW + % VLQ ωW SHXWWRXMRXUVrWUHUDPHQpH jODIRUPH DYHF $ = D FRV ϕ HW % = −D VLQ ϕ
5HPDUTXH8QHH[SUHVVLRQGHODIRUPH T = $ FRV ωW + % VLQ ωW SHXWWRXMRXUVrWUHUDPHQpH jODIRUPH DYHF $ = D FRV ϕ HW % = −D VLQ ϕ
±6XSHUSRVLWLRQGHGHX[PRXYHPHQWVKDUPRQLTXHVGHPrPHIUpTXHQFH
±6XSHUSRVLWLRQGHGHX[PRXYHPHQWVKDUPRQLTXHVGHPrPHIUpTXHQFH
6XSSRVRQVTXHO¶RQDLW
6XSSRVRQVTXHO¶RQDLW
T = D FRV ωW + ϕ + D FRV ωW + ϕ
2QSHXWWRXMRXUVWURXYHUDHW ϕ WHOVTXH
T = D FRV ωW + ϕ + D FRV ωW + ϕ
2QSHXWWRXMRXUVWURXYHUDHW ϕ WHOVTXH
T = D FRV ωW + ϕ
T = D FRV ωW + ϕ
DYHF
D VLQ ϕ + D VLQ ϕ = D VLQ ϕ
DYHF
D VLQ ϕ + D VLQ ϕ = D VLQ ϕ
HW
D FRV ϕ + D FRV ϕ = D FRV ϕ
HW
D FRV ϕ + D FRV ϕ = D FRV ϕ
TW HVWGRQFDXVVLXQHIRQFWLRQKDUPRQLTXHGHSXOVDWLRQ ω
TW HVWGRQFDXVVLXQHIRQFWLRQKDUPRQLTXHGHSXOVDWLRQ ω
±0RXYHPHQWSpULRGLTXHQRQKDUPRQLTXH
±0RXYHPHQWSpULRGLTXHQRQKDUPRQLTXH
6XSSRVRQVODIRQFWLRQTW QRQVLQXVRwGDOHPDLVSpULRGLTXH$SSHORQV7ODSpULRGHHWSRVRQV π ω= 7
6XSSRVRQVODIRQFWLRQTW QRQVLQXVRwGDOHPDLVSpULRGLTXH$SSHORQV7ODSpULRGHHWSRVRQV π ω= 7
2QVDLWDORUVTXHPR\HQQDQWTXHOTXHVK\SRWKqVHVPDWKpPDWLTXHVSHXUHVWULFWLYHVTW SHXW rWUHFRQVLGpUpFRPPHODVRPPHG¶XQHVpULHGH)RXULHUHWV¶pFULUH
2QVDLWDORUVTXHPR\HQQDQWTXHOTXHVK\SRWKqVHVPDWKpPDWLTXHVSHXUHVWULFWLYHVTW SHXW rWUHFRQVLGpUpFRPPHODVRPPHG¶XQHVpULHGH)RXULHUHWV¶pFULUH
T W =
$ + $ FRV ωW + % VLQ ωW + $ FRV ωW + % VLQ ωW
+ !!!! + $ Q FRV Q ωW + %Q VLQ Q ωW + !!!!
T W =
$ + $ FRV ωW + % VLQ ωW + $ FRV ωW + % VLQ ωW
+ !!!! + $ Q FRV Q ωW + %Q VLQ Q ωW + !!!!
- 106 -
- 106 -
5HPDUTXH2QSUHQGUDWRXMRXUVDHW ω SRVLWLIV&HFLQHUHVWUHLQWSDVODJpQpUDOLWpGHQRWUH pWXGHFRPPHOHPRQWUHO¶H[HPSOHVXLYDQWVXSSRVRQVTXHO¶RQDLW
5HPDUTXH2QSUHQGUDWRXMRXUVDHW ω SRVLWLIV&HFLQHUHVWUHLQWSDVODJpQpUDOLWpGHQRWUH pWXGHFRPPHOHPRQWUHO¶H[HPSOHVXLYDQWVXSSRVRQVTXHO¶RQDLW
T W = − FRV −W + RQSHXWDXVVLpFULUH
T W = − FRV −W + RQSHXWDXVVLpFULUH
T W = FRV W − − π H[SUHVVLRQRDHW ω VRQWELHQSRVLWLIV
T W = FRV W − − π H[SUHVVLRQRDHW ω VRQWELHQSRVLWLIV
5HPDUTXH2QSHXWGRQQHUjO¶pTXDWLRQKRUDLUH O¶H[SUHVVLRQ T W = D VLQ ωW + ϕ′ DYHF ϕ′ = ϕ +
5HPDUTXH2QSHXWGRQQHUjO¶pTXDWLRQKRUDLUH O¶H[SUHVVLRQ
π
T W = D VLQ ωW + ϕ′ DYHF ϕ′ = ϕ +
π
5HPDUTXH8QHH[SUHVVLRQGHODIRUPH T = $ FRV ωW + % VLQ ωW SHXWWRXMRXUVrWUHUDPHQpH jODIRUPH DYHF $ = D FRV ϕ HW % = −D VLQ ϕ
5HPDUTXH8QHH[SUHVVLRQGHODIRUPH T = $ FRV ωW + % VLQ ωW SHXWWRXMRXUVrWUHUDPHQpH jODIRUPH DYHF $ = D FRV ϕ HW % = −D VLQ ϕ
±6XSHUSRVLWLRQGHGHX[PRXYHPHQWVKDUPRQLTXHVGHPrPHIUpTXHQFH
±6XSHUSRVLWLRQGHGHX[PRXYHPHQWVKDUPRQLTXHVGHPrPHIUpTXHQFH
6XSSRVRQVTXHO¶RQDLW
6XSSRVRQVTXHO¶RQDLW
T = D FRV ωW + ϕ + D FRV ωW + ϕ
2QSHXWWRXMRXUVWURXYHUDHW ϕ WHOVTXH
T = D FRV ωW + ϕ + D FRV ωW + ϕ
2QSHXWWRXMRXUVWURXYHUDHW ϕ WHOVTXH
T = D FRV ωW + ϕ
T = D FRV ωW + ϕ
DYHF
D VLQ ϕ + D VLQ ϕ = D VLQ ϕ
DYHF
D VLQ ϕ + D VLQ ϕ = D VLQ ϕ
HW
D FRV ϕ + D FRV ϕ = D FRV ϕ
HW
D FRV ϕ + D FRV ϕ = D FRV ϕ
TW HVWGRQFDXVVLXQHIRQFWLRQKDUPRQLTXHGHSXOVDWLRQ ω
TW HVWGRQFDXVVLXQHIRQFWLRQKDUPRQLTXHGHSXOVDWLRQ ω
±0RXYHPHQWSpULRGLTXHQRQKDUPRQLTXH
±0RXYHPHQWSpULRGLTXHQRQKDUPRQLTXH
6XSSRVRQVODIRQFWLRQTW QRQVLQXVRwGDOHPDLVSpULRGLTXH$SSHORQV7ODSpULRGHHWSRVRQV π ω= 7
6XSSRVRQVODIRQFWLRQTW QRQVLQXVRwGDOHPDLVSpULRGLTXH$SSHORQV7ODSpULRGHHWSRVRQV π ω= 7
2QVDLWDORUVTXHPR\HQQDQWTXHOTXHVK\SRWKqVHVPDWKpPDWLTXHVSHXUHVWULFWLYHVTW SHXW rWUHFRQVLGpUpFRPPHODVRPPHG¶XQHVpULHGH)RXULHUHWV¶pFULUH
2QVDLWDORUVTXHPR\HQQDQWTXHOTXHVK\SRWKqVHVPDWKpPDWLTXHVSHXUHVWULFWLYHVTW SHXW rWUHFRQVLGpUpFRPPHODVRPPHG¶XQHVpULHGH)RXULHUHWV¶pFULUH
T W =
$ + $ FRV ωW + % VLQ ωW + $ FRV ωW + % VLQ ωW
+ !!!! + $ Q FRV Q ωW + %Q VLQ Q ωW + !!!!
- 106 -
T W =
$ + $ FRV ωW + % VLQ ωW + $ FRV ωW + % VLQ ωW
+ !!!! + $ Q FRV Q ωW + %Q VLQ Q ωW + !!!!
- 106 -
/HVFRHIILFLHQWVGH)RXULHUVHFDOFXOHQWjO¶DLGHGHVIRUPXOHV
/HVFRHIILFLHQWVGH)RXULHUVHFDOFXOHQWjO¶DLGHGHVIRUPXOHV
7 ⎧ ⎪$ Q = ω T W ⋅ FRV Q ωW ⋅ GW ⎪ π ⎪ ⎨ 7 ⎪ ⎪%Q = ω T W ⋅ VLQ Q ωW ⋅ GW π ⎪ ⎩
7 ⎧ ⎪$ Q = ω T W ⋅ FRV Q ωW ⋅ GW ⎪ π ⎪ ⎨ 7 ⎪ ⎪%Q = ω T W ⋅ VLQ Q ωW ⋅ GW π ⎪ ⎩
∫
∫
∫
∫
5HPDUTXH2QSHXWWRXMRXUVWURXYHU D Q HW ϕQ DYHF $ Q = D Q FRV ϕQ HW %Q = −D Q VLQ ϕQ WHOVTXH T W =
D + D FRV ωW + ϕ + D FRV ωW + ϕ + !! + D Q FRV Q ωW + ϕQ + !!
5HPDUTXH2QSHXWWRXMRXUVWURXYHU D Q HW ϕQ DYHF $ Q = D Q FRV ϕQ HW %Q = −D Q VLQ ϕQ WHOVTXH T W =
D + D FRV ωW + ϕ + D FRV ωW + ϕ + !! + D Q FRV Q ωW + ϕQ + !!
5HPDUTXH/HWHUPH D Q FRV Q ωW + ϕQ = $ Q FRV Q ωW + %Q VLQ Q ωW VHQRPPHKDUPRQLTXH GH UDQJ Q GH OD IRQFWLRQ TW VRQ DPSOLWXGH HVW D Q VD SXOVDWLRQ Q ω VD SpULRGH π 7 Qω = VDIUpTXHQFH I Q = 7Q = = QI HWVDSKDVH ϕQ Qω Q π
5HPDUTXH/HWHUPH D Q FRV Q ωW + ϕQ = $ Q FRV Q ωW + %Q VLQ Q ωW VHQRPPHKDUPRQLTXH GH UDQJ Q GH OD IRQFWLRQ TW VRQ DPSOLWXGH HVW D Q VD SXOVDWLRQ Q ω VD SpULRGH π 7 Qω = VDIUpTXHQFH I Q = 7Q = = QI HWVDSKDVH ϕQ Qω Q π
5HPDUTXH/HVVXLWHV {$ Q } {%Q } {D Q }FRQVWLWXHQWOHVVSHFWUHVGHODIRQFWLRQSpULRGLTXH TW 2QSHXWOHVUHSUpVHQWHUJUDSKLTXHPHQWFRPPHOHPRQWUHODILJXUH SRXUODVXLWH {$ Q }
5HPDUTXH/HVVXLWHV {$ Q } {%Q } {D Q }FRQVWLWXHQWOHVVSHFWUHVGHODIRQFWLRQSpULRGLTXH TW 2QSHXWOHVUHSUpVHQWHUJUDSKLTXHPHQWFRPPHOHPRQWUHODILJXUH SRXUODVXLWH {$ Q }
)LJXUH
)LJXUH
±%DWWHPHQWV
±%DWWHPHQWV
&¶HVW OH FDV R OD IRQFWLRQ TW HVW OD VRPPH GH GHX[ IRQFWLRQV VLQXVRwGDOHV GH PrPH DPSOLWXGHHWGHSXOVDWLRQVYRLVLQHV ω HW ω 2QDDORUV
&¶HVW OH FDV R OD IRQFWLRQ TW HVW OD VRPPH GH GHX[ IRQFWLRQV VLQXVRwGDOHV GH PrPH DPSOLWXGHHWGHSXOVDWLRQVYRLVLQHV ω HW ω 2QDDORUV
T W = D [FRV ωW + ϕ + FRV ω W + ϕ ]VRLW
T W = D [FRV ωW + ϕ + FRV ω W + ϕ ]VRLW
- 107 -
- 107 -
/HVFRHIILFLHQWVGH)RXULHUVHFDOFXOHQWjO¶DLGHGHVIRUPXOHV
/HVFRHIILFLHQWVGH)RXULHUVHFDOFXOHQWjO¶DLGHGHVIRUPXOHV
7 ⎧ ⎪$ Q = ω T W ⋅ FRV Q ωW ⋅ GW ⎪ π ⎪ ⎨ 7 ⎪ ⎪%Q = ω T W ⋅ VLQ Q ωW ⋅ GW π ⎪ ⎩
7 ⎧ ⎪$ Q = ω T W ⋅ FRV Q ωW ⋅ GW ⎪ π ⎪ ⎨ 7 ⎪ ⎪%Q = ω T W ⋅ VLQ Q ωW ⋅ GW π ⎪ ⎩
∫
∫
∫
∫
5HPDUTXH2QSHXWWRXMRXUVWURXYHU D Q HW ϕQ DYHF $ Q = D Q FRV ϕQ HW %Q = −D Q VLQ ϕQ WHOVTXH T W =
D + D FRV ωW + ϕ + D FRV ωW + ϕ + !! + D Q FRV Q ωW + ϕQ + !!
5HPDUTXH2QSHXWWRXMRXUVWURXYHU D Q HW ϕQ DYHF $ Q = D Q FRV ϕQ HW %Q = −D Q VLQ ϕQ WHOVTXH T W =
D + D FRV ωW + ϕ + D FRV ωW + ϕ + !! + D Q FRV Q ωW + ϕQ + !!
5HPDUTXH/HWHUPH D Q FRV Q ωW + ϕQ = $ Q FRV Q ωW + %Q VLQ Q ωW VHQRPPHKDUPRQLTXH GH UDQJ Q GH OD IRQFWLRQ TW VRQ DPSOLWXGH HVW D Q VD SXOVDWLRQ Q ω VD SpULRGH π 7 Qω = VDIUpTXHQFH I Q = 7Q = = QI HWVDSKDVH ϕQ Qω Q π
5HPDUTXH/HWHUPH D Q FRV Q ωW + ϕQ = $ Q FRV Q ωW + %Q VLQ Q ωW VHQRPPHKDUPRQLTXH GH UDQJ Q GH OD IRQFWLRQ TW VRQ DPSOLWXGH HVW D Q VD SXOVDWLRQ Q ω VD SpULRGH π 7 Qω = VDIUpTXHQFH I Q = 7Q = = QI HWVDSKDVH ϕQ Qω Q π
5HPDUTXH/HVVXLWHV {$ Q } {%Q } {D Q }FRQVWLWXHQWOHVVSHFWUHVGHODIRQFWLRQSpULRGLTXH TW 2QSHXWOHVUHSUpVHQWHUJUDSKLTXHPHQWFRPPHOHPRQWUHODILJXUH SRXUODVXLWH {$ Q }
5HPDUTXH/HVVXLWHV {$ Q } {%Q } {D Q }FRQVWLWXHQWOHVVSHFWUHVGHODIRQFWLRQSpULRGLTXH TW 2QSHXWOHVUHSUpVHQWHUJUDSKLTXHPHQWFRPPHOHPRQWUHODILJXUH SRXUODVXLWH {$ Q }
)LJXUH
)LJXUH
±%DWWHPHQWV
±%DWWHPHQWV
&¶HVW OH FDV R OD IRQFWLRQ TW HVW OD VRPPH GH GHX[ IRQFWLRQV VLQXVRwGDOHV GH PrPH DPSOLWXGHHWGHSXOVDWLRQVYRLVLQHV ω HW ω 2QDDORUV
&¶HVW OH FDV R OD IRQFWLRQ TW HVW OD VRPPH GH GHX[ IRQFWLRQV VLQXVRwGDOHV GH PrPH DPSOLWXGHHWGHSXOVDWLRQVYRLVLQHV ω HW ω 2QDDORUV
T W = D [FRV ωW + ϕ + FRV ω W + ϕ ]VRLW
T W = D [FRV ωW + ϕ + FRV ω W + ϕ ]VRLW
- 107 -
- 107 -
T W = D FRV
ω + ω W + ϕ + ϕ ω − ω W + ϕ − ϕ FRV
T W = D FRV
'DQV FH SURGXLW GH GHX[ IRQFWLRQV KDUPRQLTXHV OD SUHPLqUH GLWH RQGH PR\HQQH D SRXU ω + ω π HW SRXU SpULRGH 7PR\ = SXOVDWLRQ ωPR\ = OD VHFRQGH GLWH RQGH GH ω + ω ω − ω π PRGXODWLRQDSRXUSXOVDWLRQ ωPRG = HWSRXUSpULRGH 7PRG = HQVXSSRVDQW ω − ω ω > ω /DFRXUEHUHSUpVHQWDWLYHGHTW HVWGRQQpHSDUODILJXUH2QD 7PRG >> 7PR\
'DQV FH SURGXLW GH GHX[ IRQFWLRQV KDUPRQLTXHV OD SUHPLqUH GLWH RQGH PR\HQQH D SRXU ω + ω π HW SRXU SpULRGH 7PR\ = SXOVDWLRQ ωPR\ = OD VHFRQGH GLWH RQGH GH ω + ω ω − ω π PRGXODWLRQDSRXUSXOVDWLRQ ωPRG = HWSRXUSpULRGH 7PRG = HQVXSSRVDQW ω − ω ω > ω /DFRXUEHUHSUpVHQWDWLYHGHTW HVWGRQQpHSDUODILJXUH2QD 7PRG >> 7PR\
)LJXUH
/DIRQFWLRQTW HVWFHOOHG¶XQHRVFLOODWLRQGH©SVHXGRSpULRGHª 7PR\ GRQWO¶DPSOLWXGHHVW PRGXOpH/DIRQFWLRQTW HVWHOOHPrPHSpULRGLTXHVLOHUDSSRUW
ω + ω W + ϕ + ϕ ω − ω W + ϕ − ϕ FRV
ω HVWXQQRPEUHUDWLRQQHO ω
)LJXUH
/DIRQFWLRQTW HVWFHOOHG¶XQHRVFLOODWLRQGH©SVHXGRSpULRGHª 7PR\ GRQWO¶DPSOLWXGHHVW PRGXOpH/DIRQFWLRQTW HVWHOOHPrPHSpULRGLTXHVLOHUDSSRUW
ω HVWXQQRPEUHUDWLRQQHO ω
±6758&785(/,1e$,5(
±6758&785(/,1e$,5(
8QHVWUXFWXUHjXQGHJUpGHOLEHUWpHVWGLWHOLQpDLUHVLVRQSDUDPqWUHGHFRQILJXUDWLRQREpLWj XQHpTXDWLRQGLIIpUHQWLHOOHGXVHFRQGRUGUHOLQpDLUHjFRHIILFHQWVFRQVWDQWVQRQQpJDWLIVGX W\SH
8QHVWUXFWXUHjXQGHJUpGHOLEHUWpHVWGLWHOLQpDLUHVLVRQSDUDPqWUHGHFRQILJXUDWLRQREpLWj XQHpTXDWLRQGLIIpUHQWLHOOHGXVHFRQGRUGUHOLQpDLUHjFRHIILFHQWVFRQVWDQWVQRQQpJDWLIVGX W\SH
0 T + & T + . T = ) W
0 T + & T + . T = ) W
8QH WHOOH pTXDWLRQ V¶REWLHQW HQ pFULYDQW OH SULQFLSH IRQGDPHQWDO GH OD G\QDPLTXH RX ELHQ O¶pTXDWLRQGH/DJUDQJH
8QH WHOOH pTXDWLRQ V¶REWLHQW HQ pFULYDQW OH SULQFLSH IRQGDPHQWDO GH OD G\QDPLTXH RX ELHQ O¶pTXDWLRQGH/DJUDQJH
/HV WURLV FRQVWDQWHV 0 & . VH QRPPHQW FRHIILFLHQWV GH PDVVH RX G¶LQHUWLH O¶DPRUWLVVHPHQWGHUDLGHXURXGHULJLGLWp UHVSHFWLYHPHQW)W HVWODIRUFHH[FLWDWULFHIRUFH H[WpULHXUHGRQQpHH[SOLFLWHPHQWHQIRQFWLRQGXWHPSV
/HV WURLV FRQVWDQWHV 0 & . VH QRPPHQW FRHIILFLHQWV GH PDVVH RX G¶LQHUWLH O¶DPRUWLVVHPHQWGHUDLGHXURXGHULJLGLWp UHVSHFWLYHPHQW)W HVWODIRUFHH[FLWDWULFHIRUFH H[WpULHXUHGRQQpHH[SOLFLWHPHQWHQIRQFWLRQGXWHPSV
/DVWUXFWXUHHVWGLWHOLEUHVL)W HOOHHVWGLWHH[FLWpHGDQVOHFDVFRQWUDLUH
/DVWUXFWXUHHVWGLWHOLEUHVL)W HOOHHVWGLWHH[FLWpHGDQVOHFDVFRQWUDLUH
- 108 -
T W = D FRV
- 108 -
ω + ω W + ϕ + ϕ ω − ω W + ϕ − ϕ FRV
T W = D FRV
'DQV FH SURGXLW GH GHX[ IRQFWLRQV KDUPRQLTXHV OD SUHPLqUH GLWH RQGH PR\HQQH D SRXU ω + ω π HW SRXU SpULRGH 7PR\ = SXOVDWLRQ ωPR\ = OD VHFRQGH GLWH RQGH GH ω + ω ω − ω π PRGXODWLRQDSRXUSXOVDWLRQ ωPRG = HWSRXUSpULRGH 7PRG = HQVXSSRVDQW ω − ω ω > ω /DFRXUEHUHSUpVHQWDWLYHGHTW HVWGRQQpHSDUODILJXUH2QD 7PRG >> 7PR\
'DQV FH SURGXLW GH GHX[ IRQFWLRQV KDUPRQLTXHV OD SUHPLqUH GLWH RQGH PR\HQQH D SRXU ω + ω π HW SRXU SpULRGH 7PR\ = SXOVDWLRQ ωPR\ = OD VHFRQGH GLWH RQGH GH ω + ω ω − ω π PRGXODWLRQDSRXUSXOVDWLRQ ωPRG = HWSRXUSpULRGH 7PRG = HQVXSSRVDQW ω − ω ω > ω /DFRXUEHUHSUpVHQWDWLYHGHTW HVWGRQQpHSDUODILJXUH2QD 7PRG >> 7PR\
)LJXUH
/DIRQFWLRQTW HVWFHOOHG¶XQHRVFLOODWLRQGH©SVHXGRSpULRGHª 7PR\ GRQWO¶DPSOLWXGHHVW PRGXOpH/DIRQFWLRQTW HVWHOOHPrPHSpULRGLTXHVLOHUDSSRUW
ω + ω W + ϕ + ϕ ω − ω W + ϕ − ϕ FRV
ω HVWXQQRPEUHUDWLRQQHO ω
)LJXUH
/DIRQFWLRQTW HVWFHOOHG¶XQHRVFLOODWLRQGH©SVHXGRSpULRGHª 7PR\ GRQWO¶DPSOLWXGHHVW PRGXOpH/DIRQFWLRQTW HVWHOOHPrPHSpULRGLTXHVLOHUDSSRUW
ω HVWXQQRPEUHUDWLRQQHO ω
±6758&785(/,1e$,5(
±6758&785(/,1e$,5(
8QHVWUXFWXUHjXQGHJUpGHOLEHUWpHVWGLWHOLQpDLUHVLVRQSDUDPqWUHGHFRQILJXUDWLRQREpLWj XQHpTXDWLRQGLIIpUHQWLHOOHGXVHFRQGRUGUHOLQpDLUHjFRHIILFHQWVFRQVWDQWVQRQQpJDWLIVGX W\SH
8QHVWUXFWXUHjXQGHJUpGHOLEHUWpHVWGLWHOLQpDLUHVLVRQSDUDPqWUHGHFRQILJXUDWLRQREpLWj XQHpTXDWLRQGLIIpUHQWLHOOHGXVHFRQGRUGUHOLQpDLUHjFRHIILFHQWVFRQVWDQWVQRQQpJDWLIVGX W\SH
0 T + & T + . T = ) W
0 T + & T + . T = ) W
8QH WHOOH pTXDWLRQ V¶REWLHQW HQ pFULYDQW OH SULQFLSH IRQGDPHQWDO GH OD G\QDPLTXH RX ELHQ O¶pTXDWLRQGH/DJUDQJH
8QH WHOOH pTXDWLRQ V¶REWLHQW HQ pFULYDQW OH SULQFLSH IRQGDPHQWDO GH OD G\QDPLTXH RX ELHQ O¶pTXDWLRQGH/DJUDQJH
/HV WURLV FRQVWDQWHV 0 & . VH QRPPHQW FRHIILFLHQWV GH PDVVH RX G¶LQHUWLH O¶DPRUWLVVHPHQWGHUDLGHXURXGHULJLGLWp UHVSHFWLYHPHQW)W HVWODIRUFHH[FLWDWULFHIRUFH H[WpULHXUHGRQQpHH[SOLFLWHPHQWHQIRQFWLRQGXWHPSV
/HV WURLV FRQVWDQWHV 0 & . VH QRPPHQW FRHIILFLHQWV GH PDVVH RX G¶LQHUWLH O¶DPRUWLVVHPHQWGHUDLGHXURXGHULJLGLWp UHVSHFWLYHPHQW)W HVWODIRUFHH[FLWDWULFHIRUFH H[WpULHXUHGRQQpHH[SOLFLWHPHQWHQIRQFWLRQGXWHPSV
/DVWUXFWXUHHVWGLWHOLEUHVL)W HOOHHVWGLWHH[FLWpHGDQVOHFDVFRQWUDLUH
/DVWUXFWXUHHVWGLWHOLEUHVL)W HOOHHVWGLWHH[FLWpHGDQVOHFDVFRQWUDLUH
- 108 -
- 108 -
/DVWUXFWXUHHVWGLWHFRQVHUYDWULFHVL& HOOHHVWGLWHGLVVLSDWLYHVL&!
/DVWUXFWXUHHVWGLWHFRQVHUYDWULFHVL& HOOHHVWGLWHGLVVLSDWLYHVL&!
8QHVWUXFWXUHSHXWWRXMRXUVrWUHFODVVpHYLVjYLVGHVRQFRPSRUWHPHQWG\QDPLTXHGDQVO¶XQH GHVTXDWUHFDVHVGXWDEOHDXVXLYDQW
8QHVWUXFWXUHSHXWWRXMRXUVrWUHFODVVpHYLVjYLVGHVRQFRPSRUWHPHQWG\QDPLTXHGDQVO¶XQH GHVTXDWUHFDVHVGXWDEOHDXVXLYDQW
6WUXFWXUH
FRQVHUYDWLYH
GLVVLSDWLYH
6WUXFWXUH
FRQVHUYDWLYH
GLVVLSDWLYH
OLEUH
OLEUH
H[FLWpH
H[FLWpH
(WXGLRQV PDLQWHQDQW FKDFXQ GH FHV TXDWUH FDV HQ SUHQDQW T GDQV OD FRQILJXUDWLRQ G¶pTXLOLEUHVWDEOHDXYRLVLQDJHGHODTXHOOHV¶HIIHFWXHOHPRXYHPHQW
(WXGLRQV PDLQWHQDQW FKDFXQ GH FHV TXDWUH FDV HQ SUHQDQW T GDQV OD FRQILJXUDWLRQ G¶pTXLOLEUHVWDEOHDXYRLVLQDJHGHODTXHOOHV¶HIIHFWXHOHPRXYHPHQW
±6758&785(/,1e$,5(&216(59$7,9(/,%5(
±6758&785(/,1e$,5(&216(59$7,9(/,%5(
(OOHREpLWjO¶pTXDWLRQGLIIpUHQWLHOOH
0 T + . T =
/DVROXWLRQJpQpUDOHV¶pFULWHQSRVDQW ω =
. 0
0 T + . T =
/DVROXWLRQJpQpUDOHV¶pFULWHQSRVDQW ω =
T W = $ FRV ωW + % VLQ ωW = D FRV ωW + ϕ
(OOHREpLWjO¶pTXDWLRQGLIIpUHQWLHOOH
0 HW OD IUpTXHQFH I = GH FHW RVFLOODWHXU KDUPRQLTXH VRQW GRQF 7 . LQGpSHQGDQWHV GHV FRQGLWLRQV LQLWLDOHV GH SRVLWLRQ HW YLWHVVH T HWT DLQVL TXH GH O¶DPSOLWXGH/HPRXYHPHQWVLQXVRwGDOHVWGLWOLEUHRXQDWXUHO GHPrPHTXHODSXOVDWLRQ ω ODSpULRGH7HWODIUpTXHQFHI
. 0
T W = $ FRV ωW + % VLQ ωW = D FRV ωW + ϕ
0 HW OD IUpTXHQFH I = GH FHW RVFLOODWHXU KDUPRQLTXH VRQW GRQF 7 . LQGpSHQGDQWHV GHV FRQGLWLRQV LQLWLDOHV GH SRVLWLRQ HW YLWHVVH T HWT DLQVL TXH GH O¶DPSOLWXGH/HPRXYHPHQWVLQXVRwGDOHVWGLWOLEUHRXQDWXUHO GHPrPHTXHODSXOVDWLRQ ω ODSpULRGH7HWODIUpTXHQFHI
/D SpULRGH 7 = π
/D SpULRGH 7 = π
π 2QUHPDUTXHTXHODYLWHVVH T = D ω FRV ωW + ϕ HWO¶DFFpOpUDWLRQ T = D ω FRV ωW + ϕ + π VRQWDXVVLVLQXVRwGDOHVGHSXOVDWLRQ ω T HVWHQTXDGUDWXUHDYDQFHVXUT T HQRSSRVLWLRQGH SKDVHVXUT
π 2QUHPDUTXHTXHODYLWHVVH T = D ω FRV ωW + ϕ HWO¶DFFpOpUDWLRQ T = D ω FRV ωW + ϕ + π VRQWDXVVLVLQXVRwGDOHVGHSXOVDWLRQ ω T HVWHQTXDGUDWXUHDYDQFHVXUT T HQRSSRVLWLRQGH SKDVHVXUT
6LO¶RQDjO¶LQVWDQWLQLWLDOW T = T HW T = T RQHQGpGXLWOHVFRQVWDQWHVG¶LQWpJUDWLRQ
6LO¶RQDjO¶LQVWDQWLQLWLDOW T = T HW T = T RQHQGpGXLWOHVFRQVWDQWHVG¶LQWpJUDWLRQ
$ = T % =
T T T T D = T FRV ϕ = VLQ ϕ = − ωD D ω ω
$ = T % =
T T T T D = T FRV ϕ = VLQ ϕ = − ωD D ω ω
HUH[HPSOH
HUH[HPSOH
/¶RVFLOODWHXUKDUPRQLTXHOHSOXVVLPSOHHVWFRQVWLWXpSDUOHV\VWqPHPDVVHUHVVRUWGHODILJXUH HQVXSSRVDQWOHVROLGHGHUpIpUHQFH 6 JDOLOpHQHWOHVGLVVLSDWLRQVG¶pQHUJLHQpJOLJHDEOHV
/¶RVFLOODWHXUKDUPRQLTXHOHSOXVVLPSOHHVWFRQVWLWXpSDUOHV\VWqPHPDVVHUHVVRUWGHODILJXUH HQVXSSRVDQWOHVROLGHGHUpIpUHQFH 6 JDOLOpHQHWOHVGLVVLSDWLRQVG¶pQHUJLHQpJOLJHDEOHV
- 109 -
- 109 -
/DVWUXFWXUHHVWGLWHFRQVHUYDWULFHVL& HOOHHVWGLWHGLVVLSDWLYHVL&!
/DVWUXFWXUHHVWGLWHFRQVHUYDWULFHVL& HOOHHVWGLWHGLVVLSDWLYHVL&!
8QHVWUXFWXUHSHXWWRXMRXUVrWUHFODVVpHYLVjYLVGHVRQFRPSRUWHPHQWG\QDPLTXHGDQVO¶XQH GHVTXDWUHFDVHVGXWDEOHDXVXLYDQW
8QHVWUXFWXUHSHXWWRXMRXUVrWUHFODVVpHYLVjYLVGHVRQFRPSRUWHPHQWG\QDPLTXHGDQVO¶XQH GHVTXDWUHFDVHVGXWDEOHDXVXLYDQW
6WUXFWXUH
FRQVHUYDWLYH
GLVVLSDWLYH
6WUXFWXUH
FRQVHUYDWLYH
GLVVLSDWLYH
OLEUH
OLEUH
H[FLWpH
H[FLWpH
(WXGLRQV PDLQWHQDQW FKDFXQ GH FHV TXDWUH FDV HQ SUHQDQW T GDQV OD FRQILJXUDWLRQ G¶pTXLOLEUHVWDEOHDXYRLVLQDJHGHODTXHOOHV¶HIIHFWXHOHPRXYHPHQW
(WXGLRQV PDLQWHQDQW FKDFXQ GH FHV TXDWUH FDV HQ SUHQDQW T GDQV OD FRQILJXUDWLRQ G¶pTXLOLEUHVWDEOHDXYRLVLQDJHGHODTXHOOHV¶HIIHFWXHOHPRXYHPHQW
±6758&785(/,1e$,5(&216(59$7,9(/,%5(
±6758&785(/,1e$,5(&216(59$7,9(/,%5(
(OOHREpLWjO¶pTXDWLRQGLIIpUHQWLHOOH
0 T + . T =
/DVROXWLRQJpQpUDOHV¶pFULWHQSRVDQW ω =
. 0
T W = $ FRV ωW + % VLQ ωW = D FRV ωW + ϕ
(OOHREpLWjO¶pTXDWLRQGLIIpUHQWLHOOH
0 T + . T =
/DVROXWLRQJpQpUDOHV¶pFULWHQSRVDQW ω =
0 HW OD IUpTXHQFH I = GH FHW RVFLOODWHXU KDUPRQLTXH VRQW GRQF 7 . LQGpSHQGDQWHV GHV FRQGLWLRQV LQLWLDOHV GH SRVLWLRQ HW YLWHVVH T HWT DLQVL TXH GH O¶DPSOLWXGH/HPRXYHPHQWVLQXVRwGDOHVWGLWOLEUHRXQDWXUHO GHPrPHTXHODSXOVDWLRQ ω ODSpULRGH7HWODIUpTXHQFHI
. 0
T W = $ FRV ωW + % VLQ ωW = D FRV ωW + ϕ
0 HW OD IUpTXHQFH I = GH FHW RVFLOODWHXU KDUPRQLTXH VRQW GRQF 7 . LQGpSHQGDQWHV GHV FRQGLWLRQV LQLWLDOHV GH SRVLWLRQ HW YLWHVVH T HWT DLQVL TXH GH O¶DPSOLWXGH/HPRXYHPHQWVLQXVRwGDOHVWGLWOLEUHRXQDWXUHO GHPrPHTXHODSXOVDWLRQ ω ODSpULRGH7HWODIUpTXHQFHI
/D SpULRGH 7 = π
/D SpULRGH 7 = π
π 2QUHPDUTXHTXHODYLWHVVH T = D ω FRV ωW + ϕ HWO¶DFFpOpUDWLRQ T = D ω FRV ωW + ϕ + π VRQWDXVVLVLQXVRwGDOHVGHSXOVDWLRQ ω T HVWHQTXDGUDWXUHDYDQFHVXUT T HQRSSRVLWLRQGH SKDVHVXUT
π 2QUHPDUTXHTXHODYLWHVVH T = D ω FRV ωW + ϕ HWO¶DFFpOpUDWLRQ T = D ω FRV ωW + ϕ + π VRQWDXVVLVLQXVRwGDOHVGHSXOVDWLRQ ω T HVWHQTXDGUDWXUHDYDQFHVXUT T HQRSSRVLWLRQGH SKDVHVXUT
6LO¶RQDjO¶LQVWDQWLQLWLDOW T = T HW T = T RQHQGpGXLWOHVFRQVWDQWHVG¶LQWpJUDWLRQ
6LO¶RQDjO¶LQVWDQWLQLWLDOW T = T HW T = T RQHQGpGXLWOHVFRQVWDQWHVG¶LQWpJUDWLRQ
$ = T % =
T T T T D = T FRV ϕ = VLQ ϕ = − ω D D ω ω
$ = T % =
T T T T D = T FRV ϕ = VLQ ϕ = − ω D D ω ω
HUH[HPSOH
HUH[HPSOH
/¶RVFLOODWHXUKDUPRQLTXHOHSOXVVLPSOHHVWFRQVWLWXpSDUOHV\VWqPHPDVVHUHVVRUWGHODILJXUH HQVXSSRVDQWOHVROLGHGHUpIpUHQFH 6 JDOLOpHQHWOHVGLVVLSDWLRQVG¶pQHUJLHQpJOLJHDEOHV
/¶RVFLOODWHXUKDUPRQLTXHOHSOXVVLPSOHHVWFRQVWLWXpSDUOHV\VWqPHPDVVHUHVVRUWGHODILJXUH HQVXSSRVDQWOHVROLGHGHUpIpUHQFH 6 JDOLOpHQHWOHVGLVVLSDWLRQVG¶pQHUJLHQpJOLJHDEOHV
- 109 -
- 109 -
)LJXUH
)LJXUH
/H SDUDPqWUH GH FRQILJXUDWLRQ T HVW O¶DEVFLVVH [ GX FKDULRW GH PDVVH 0 DYHF [ GDQV OD SRVLWLRQGHUHSRVGXUHVVRUWVXSSRVpOLQpDLUHGHUDLGHXU.HWGHPDVVHQpJOLJHDEOHGHYDQW0 /¶pTXDWLRQ V¶REWLHQW DLVpPHQW HQ pFULYDQW j W TXHOFRQTXH HQ SURMHFWLRQ VXU O¶D[H GHV [ KRUL]RQWDO O¶pJDOLWp HQWUH OD IRUFH H[WpULHXUH GH UDSSHO − . [ H[HUFpH SDU OH UHVVRUW VXU OH FKDULRWHWODTXDQWLWpG¶DFFpOpUDWLRQ [ GHFHOXLFL
/H SDUDPqWUH GH FRQILJXUDWLRQ T HVW O¶DEVFLVVH [ GX FKDULRW GH PDVVH 0 DYHF [ GDQV OD SRVLWLRQGHUHSRVGXUHVVRUWVXSSRVpOLQpDLUHGHUDLGHXU.HWGHPDVVHQpJOLJHDEOHGHYDQW0 /¶pTXDWLRQ V¶REWLHQW DLVpPHQW HQ pFULYDQW j W TXHOFRQTXH HQ SURMHFWLRQ VXU O¶D[H GHV [ KRUL]RQWDO O¶pJDOLWp HQWUH OD IRUFH H[WpULHXUH GH UDSSHO − . [ H[HUFpH SDU OH UHVVRUW VXU OH FKDULRWHWODTXDQWLWpG¶DFFpOpUDWLRQ [ GHFHOXLFL
G 5HPDUTXHLQIOXHQFHGHODSHVDQWHXU J
G 5HPDUTXHLQIOXHQFHGHODSHVDQWHXU J
6XSSRVRQVTXHO¶D[HGHV[VRLWYHUWLFDOGHVFHQGDQW
6XSSRVRQVTXHO¶D[HGHV[VRLWYHUWLFDOGHVFHQGDQW
)LJXUH
)LJXUH
'DQV OH FDV GH OD ILJXUH OD SRVLWLRQ QHXWUH SRVLWLRQ G¶pTXLOLEUH VWDWLTXH HVW FHOOH SRXU ODTXHOOHOHUHVVRUWHVWDXUHSRVQLWHQGXQLFRPSULPp GDQVOHFDVGHODILJXUHF¶HVWFHOOH GX UHVVRUW VRXV O¶DFWLRQ G¶XQH IRUFH GH WHQVLRQ VWDWLTXH G¶LQWHQVLWp 0J &HV GHX[ SRVLWLRQV 0J QHXWUHVVRQWGLVWDQWHVGH G = .
'DQV OH FDV GH OD ILJXUH OD SRVLWLRQ QHXWUH SRVLWLRQ G¶pTXLOLEUH VWDWLTXH HVW FHOOH SRXU ODTXHOOHOHUHVVRUWHVWDXUHSRVQLWHQGXQLFRPSULPp GDQVOHFDVGHODILJXUHF¶HVWFHOOH GX UHVVRUW VRXV O¶DFWLRQ G¶XQH IRUFH GH WHQVLRQ VWDWLTXH G¶LQWHQVLWp 0J &HV GHX[ SRVLWLRQV 0J QHXWUHVVRQWGLVWDQWHVGH G = .
- 110 -
- 110 -
)LJXUH
)LJXUH
/H SDUDPqWUH GH FRQILJXUDWLRQ T HVW O¶DEVFLVVH [ GX FKDULRW GH PDVVH 0 DYHF [ GDQV OD SRVLWLRQGHUHSRVGXUHVVRUWVXSSRVpOLQpDLUHGHUDLGHXU.HWGHPDVVHQpJOLJHDEOHGHYDQW0 /¶pTXDWLRQ V¶REWLHQW DLVpPHQW HQ pFULYDQW j W TXHOFRQTXH HQ SURMHFWLRQ VXU O¶D[H GHV [ KRUL]RQWDO O¶pJDOLWp HQWUH OD IRUFH H[WpULHXUH GH UDSSHO − . [ H[HUFpH SDU OH UHVVRUW VXU OH FKDULRWHWODTXDQWLWpG¶DFFpOpUDWLRQ [ GHFHOXLFL
/H SDUDPqWUH GH FRQILJXUDWLRQ T HVW O¶DEVFLVVH [ GX FKDULRW GH PDVVH 0 DYHF [ GDQV OD SRVLWLRQGHUHSRVGXUHVVRUWVXSSRVpOLQpDLUHGHUDLGHXU.HWGHPDVVHQpJOLJHDEOHGHYDQW0 /¶pTXDWLRQ V¶REWLHQW DLVpPHQW HQ pFULYDQW j W TXHOFRQTXH HQ SURMHFWLRQ VXU O¶D[H GHV [ KRUL]RQWDO O¶pJDOLWp HQWUH OD IRUFH H[WpULHXUH GH UDSSHO − . [ H[HUFpH SDU OH UHVVRUW VXU OH FKDULRWHWODTXDQWLWpG¶DFFpOpUDWLRQ [ GHFHOXLFL
G 5HPDUTXHLQIOXHQFHGHODSHVDQWHXU J
G 5HPDUTXHLQIOXHQFHGHODSHVDQWHXU J
6XSSRVRQVTXHO¶D[HGHV[VRLWYHUWLFDOGHVFHQGDQW
6XSSRVRQVTXHO¶D[HGHV[VRLWYHUWLFDOGHVFHQGDQW
)LJXUH
)LJXUH
'DQV OH FDV GH OD ILJXUH OD SRVLWLRQ QHXWUH SRVLWLRQ G¶pTXLOLEUH VWDWLTXH HVW FHOOH SRXU ODTXHOOHOHUHVVRUWHVWDXUHSRVQLWHQGXQLFRPSULPp GDQVOHFDVGHODILJXUHF¶HVWFHOOH GX UHVVRUW VRXV O¶DFWLRQ G¶XQH IRUFH GH WHQVLRQ VWDWLTXH G¶LQWHQVLWp 0J &HV GHX[ SRVLWLRQV 0J QHXWUHVVRQWGLVWDQWHVGH G = .
'DQV OH FDV GH OD ILJXUH OD SRVLWLRQ QHXWUH SRVLWLRQ G¶pTXLOLEUH VWDWLTXH HVW FHOOH SRXU ODTXHOOHOHUHVVRUWHVWDXUHSRVQLWHQGXQLFRPSULPp GDQVOHFDVGHODILJXUHF¶HVWFHOOH GX UHVVRUW VRXV O¶DFWLRQ G¶XQH IRUFH GH WHQVLRQ VWDWLTXH G¶LQWHQVLWp 0J &HV GHX[ SRVLWLRQV 0J QHXWUHVVRQWGLVWDQWHVGH G = .
- 110 -
- 110 -
'DQV OH VHFRQG FDV HQ SUHQDQW O¶RULJLQH GHV DEVFLVVHV DX SRLQW GH O¶pTXLOLEUH VWDWLTXH OH SULQFLSHIRQGDPHQWDOV¶pFULW 0J − . [ + G = 0 [ VRLW
0 [ + . [ =
'DQV OH VHFRQG FDV HQ SUHQDQW O¶RULJLQH GHV DEVFLVVHV DX SRLQW GH O¶pTXLOLEUH VWDWLTXH OH SULQFLSHIRQGDPHQWDOV¶pFULW 0J − . [ + G = 0 [ VRLW
0 [ + . [ =
/DSHVDQWHXUPRGLILHGRQFODSRVLWLRQQHXWUHPDLVQ¶DDXFXQHLQIOXHQFHVXUOHPRXYHPHQW DPSOLWXGHSXOVDWLRQSpULRGHIUpTXHQFHVRQWLQFKDQJpHV
/DSHVDQWHXUPRGLILHGRQFODSRVLWLRQQHXWUHPDLVQ¶DDXFXQHLQIOXHQFHVXUOHPRXYHPHQW DPSOLWXGHSXOVDWLRQSpULRGHIUpTXHQFHVRQWLQFKDQJpHV
HH[HPSOHOHSHQGXOH
HH[HPSOHOHSHQGXOH
7UqV VRXYHQW OHV VWUXFWXUHV j XQ GHJUp GH OLEHUWp QH VRQW SDV OLQpDLUHV PDLV SHXYHQW rWUH ©OLQpDULVpHVªVLO¶RQVHOLPLWHDX[PRXYHPHQWVGHIDLEOHDPSOLWXGH
7UqV VRXYHQW OHV VWUXFWXUHV j XQ GHJUp GH OLEHUWp QH VRQW SDV OLQpDLUHV PDLV SHXYHQW rWUH ©OLQpDULVpHVªVLO¶RQVHOLPLWHDX[PRXYHPHQWVGHIDLEOHDPSOLWXGH
&¶HVW OH FDV GX SHQGXOH VROLGH LQGpIRUPDEOH PRELOH DXWRXU G¶XQ D[H KRUL]RQWDO R] GDQV OH FKDPSGHODSHVDQWHXUILJXUH
&¶HVW OH FDV GX SHQGXOH VROLGH LQGpIRUPDEOH PRELOH DXWRXU G¶XQ D[H KRUL]RQWDO R] GDQV OH FKDPSGHODSHVDQWHXUILJXUH
2QD
2QD
0=PDVVHGXVROLGH
0=PDVVHGXVROLGH
*=FHQWUHGHJUDYLWp
*=FHQWUHGHJUDYLWp
2*= D ≠
2*= D ≠
,=PRPHQWG¶LQHUWLHSDUUDSSRUWjO¶D[HR]
,=PRPHQWG¶LQHUWLHSDUUDSSRUWjO¶D[HR]
{R [\]}VXSSRVpJDOLOpHQDYHFR[YHUWLFDOGHVFHQGDQW
{R [\]}VXSSRVpJDOLOpHQDYHFR[YHUWLFDOGHVFHQGDQW
2[ 2* = θPRGXOH π
2[ 2* = θPRGXOH π
)LJXUH
)LJXUH
- 111 -
- 111 -
'DQV OH VHFRQG FDV HQ SUHQDQW O¶RULJLQH GHV DEVFLVVHV DX SRLQW GH O¶pTXLOLEUH VWDWLTXH OH SULQFLSHIRQGDPHQWDOV¶pFULW 0J − . [ + G = 0 [ VRLW
'DQV OH VHFRQG FDV HQ SUHQDQW O¶RULJLQH GHV DEVFLVVHV DX SRLQW GH O¶pTXLOLEUH VWDWLTXH OH SULQFLSHIRQGDPHQWDOV¶pFULW 0J − . [ + G = 0 [ VRLW
0 [ + . [ =
0 [ + . [ =
/DSHVDQWHXUPRGLILHGRQFODSRVLWLRQQHXWUHPDLVQ¶DDXFXQHLQIOXHQFHVXUOHPRXYHPHQW DPSOLWXGHSXOVDWLRQSpULRGHIUpTXHQFHVRQWLQFKDQJpHV
/DSHVDQWHXUPRGLILHGRQFODSRVLWLRQQHXWUHPDLVQ¶DDXFXQHLQIOXHQFHVXUOHPRXYHPHQW DPSOLWXGHSXOVDWLRQSpULRGHIUpTXHQFHVRQWLQFKDQJpHV
HH[HPSOHOHSHQGXOH
HH[HPSOHOHSHQGXOH
7UqV VRXYHQW OHV VWUXFWXUHV j XQ GHJUp GH OLEHUWp QH VRQW SDV OLQpDLUHV PDLV SHXYHQW rWUH ©OLQpDULVpHVªVLO¶RQVHOLPLWHDX[PRXYHPHQWVGHIDLEOHDPSOLWXGH
7UqV VRXYHQW OHV VWUXFWXUHV j XQ GHJUp GH OLEHUWp QH VRQW SDV OLQpDLUHV PDLV SHXYHQW rWUH ©OLQpDULVpHVªVLO¶RQVHOLPLWHDX[PRXYHPHQWVGHIDLEOHDPSOLWXGH
&¶HVW OH FDV GX SHQGXOH VROLGH LQGpIRUPDEOH PRELOH DXWRXU G¶XQ D[H KRUL]RQWDO R] GDQV OH FKDPSGHODSHVDQWHXUILJXUH
&¶HVW OH FDV GX SHQGXOH VROLGH LQGpIRUPDEOH PRELOH DXWRXU G¶XQ D[H KRUL]RQWDO R] GDQV OH FKDPSGHODSHVDQWHXUILJXUH
2QD
2QD
0=PDVVHGXVROLGH
0=PDVVHGXVROLGH
*=FHQWUHGHJUDYLWp
*=FHQWUHGHJUDYLWp
2*= D ≠
2*= D ≠
,=PRPHQWG¶LQHUWLHSDUUDSSRUWjO¶D[HR]
,=PRPHQWG¶LQHUWLHSDUUDSSRUWjO¶D[HR]
{R [\]}VXSSRVpJDOLOpHQDYHFR[YHUWLFDOGHVFHQGDQW
{R [\]}VXSSRVpJDOLOpHQDYHFR[YHUWLFDOGHVFHQGDQW
2[ 2* = θPRGXOH π
2[ 2* = θPRGXOH π
)LJXUH
- 111 -
)LJXUH
- 111 -
/H SULQFLSH IRQGDPHQWDO GH OD G\QDPLTXH SRXU XQ VROLGH HQ URWDWLRQ DXWRXU G¶XQ D[H R] V¶pFULWLFL , ⋅ θ + 0J D ⋅ VLQ θ =
/H SULQFLSH IRQGDPHQWDO GH OD G\QDPLTXH SRXU XQ VROLGH HQ URWDWLRQ DXWRXU G¶XQ D[H R] V¶pFULWLFL , ⋅ θ + 0J D ⋅ VLQ θ =
&HWWH VWUXFWXUH Q¶HVW GRQF SDV OLQpDLUH SXLVTXH VRQ pTXDWLRQ GLIIpUHQWLHOOH Q¶HVW SDV GX W\SH 6LO¶RQVXSSRVHOHVPRXYHPHQWVGHIDLEOHDPSOLWXGHF¶HVWjGLUH θ WUqVSHWLWGHYDQWXQ UDGLDQRQSHXWSUHQGUH VLQ θ ≈ θ HWO¶pTXDWLRQ GHYLHQW
&HWWH VWUXFWXUH Q¶HVW GRQF SDV OLQpDLUH SXLVTXH VRQ pTXDWLRQ GLIIpUHQWLHOOH Q¶HVW SDV GX W\SH 6LO¶RQVXSSRVHOHVPRXYHPHQWVGHIDLEOHDPSOLWXGHF¶HVWjGLUH θ WUqVSHWLWGHYDQWXQ UDGLDQRQSHXWSUHQGUH VLQ θ ≈ θ HWO¶pTXDWLRQ GHYLHQW
θ + 0J D θ = ,
'¶R
ω=
0J D 0J D 7 = π , ,
'¶R
5HPDUTXHOHSHQGXOHVLPSOHHVWOHFDVSDUWLFXOLHURWRXWHODPDVVHHVWFRQFHQWUpHHQ*2* Q¶pWDQWTX¶XQILOGHPDVVHQpJOLJHDEOHRQDDORUV , = 0D G¶R
ω=
J D HW 7 = π D J
P O θ HWO¶pQHUJLHSRWHQWLHOOHHPPDJDVLQpHGDQVOHUHVVRUW
G ∂/ ∂/ − = VRLW P O θ + N θ = G W ∂ θ ∂ θ
RXHQFRUH
θ + ω θ = DYHF ω = N P O
θ + ω θ = DYHF ω = N P O
'¶R
'¶R ODSpULRGH 7 = π O
J D HW 7 = π D J
P O θ HWO¶pQHUJLHSRWHQWLHOOHHPPDJDVLQpHGDQVOHUHVVRUW
RXHQFRUH
ω=
9 = N θ G¶ROHODJUDQJLHQ/ 7±9/¶pTXDWLRQGH/DJUDQJHV¶pFULWLFL
G ∂/ ∂/ − = VRLW P O θ + N θ = G W ∂ θ ∂ θ
0J D 0J D 7 = π , ,
([HPSOHSUHQRQVODVWUXFWXUHGHODILJXUHDYHF θ FRPPHSDUDPqWUHGHFRQILJXUDWLRQ HQ O¶DEVHQFH GH SHVDQWHXU OD FRQILJXUDWLRQ θ = HVW FHOOH GH O¶pTXLOLEUH VWDWLTXH UHVVRUW VSLUDOHDXUHSRV OHVEDUUHVSULVPDWLTXHVVRQWGHORQJXHXU/HWGHPDVVHPOHUHVVRUWHVW OLQpDLUHVDQVPDVVHGHULJLGLWpNF¶HVWjGLUHTXHVLODGHX[LqPHEDUUHFHOOHGHGURLWH WRXUQH G¶XQ DQJOH α SDU UDSSRUW j OD SUHPLqUH HOOH HVW VRXPLVH j XQ FRXSOH GH UDSSHO − N α &RPPH GDQV O¶H[HPSOH GX SHQGXOH FHWWH VWUXFWXUH Q¶HVW OLQpDLUH TXH VL O¶RQ VH OLPLWH j GHV DQJOHV θ SHWLWVGHYDQWXQUDGLDQ'DQVFHFDVjXQLQVWDQWWO¶pQHUJLHDSRXUH[SUHVVLRQ 7=
9 = N θ G¶ROHODJUDQJLHQ/ 7±9/¶pTXDWLRQGH/DJUDQJHV¶pFULWLFL
ω=
5HPDUTXHOHSHQGXOHVLPSOHHVWOHFDVSDUWLFXOLHURWRXWHODPDVVHHVWFRQFHQWUpHHQ*2* Q¶pWDQWTX¶XQILOGHPDVVHQpJOLJHDEOHRQDDORUV , = 0D G¶R
([HPSOHSUHQRQVODVWUXFWXUHGHODILJXUHDYHF θ FRPPHSDUDPqWUHGHFRQILJXUDWLRQ HQ O¶DEVHQFH GH SHVDQWHXU OD FRQILJXUDWLRQ θ = HVW FHOOH GH O¶pTXLOLEUH VWDWLTXH UHVVRUW VSLUDOHDXUHSRV OHVEDUUHVSULVPDWLTXHVVRQWGHORQJXHXU/HWGHPDVVHPOHUHVVRUWHVW OLQpDLUHVDQVPDVVHGHULJLGLWpNF¶HVWjGLUHTXHVLODGHX[LqPHEDUUHFHOOHGHGURLWH WRXUQH G¶XQ DQJOH α SDU UDSSRUW j OD SUHPLqUH HOOH HVW VRXPLVH j XQ FRXSOH GH UDSSHO − N α &RPPH GDQV O¶H[HPSOH GX SHQGXOH FHWWH VWUXFWXUH Q¶HVW OLQpDLUH TXH VL O¶RQ VH OLPLWH j GHV DQJOHV θ SHWLWVGHYDQWXQUDGLDQ'DQVFHFDVjXQLQVWDQWWO¶pQHUJLHDSRXUH[SUHVVLRQ 7=
θ + 0J D θ = ,
P HWODIUpTXHQFH I = 7 N
ODSpULRGH 7 = π O
P HWODIUpTXHQFH I = 7 N
- 112 -
- 112 -
/H SULQFLSH IRQGDPHQWDO GH OD G\QDPLTXH SRXU XQ VROLGH HQ URWDWLRQ DXWRXU G¶XQ D[H R] V¶pFULWLFL , ⋅ θ + 0J D ⋅ VLQ θ =
/H SULQFLSH IRQGDPHQWDO GH OD G\QDPLTXH SRXU XQ VROLGH HQ URWDWLRQ DXWRXU G¶XQ D[H R] V¶pFULWLFL , ⋅ θ + 0J D ⋅ VLQ θ =
&HWWH VWUXFWXUH Q¶HVW GRQF SDV OLQpDLUH SXLVTXH VRQ pTXDWLRQ GLIIpUHQWLHOOH Q¶HVW SDV GX W\SH 6LO¶RQVXSSRVHOHVPRXYHPHQWVGHIDLEOHDPSOLWXGHF¶HVWjGLUH θ WUqVSHWLWGHYDQWXQ UDGLDQRQSHXWSUHQGUH VLQ θ ≈ θ HWO¶pTXDWLRQ GHYLHQW
&HWWH VWUXFWXUH Q¶HVW GRQF SDV OLQpDLUH SXLVTXH VRQ pTXDWLRQ GLIIpUHQWLHOOH Q¶HVW SDV GX W\SH 6LO¶RQVXSSRVHOHVPRXYHPHQWVGHIDLEOHDPSOLWXGHF¶HVWjGLUH θ WUqVSHWLWGHYDQWXQ UDGLDQRQSHXWSUHQGUH VLQ θ ≈ θ HWO¶pTXDWLRQ GHYLHQW
θ + 0J D θ = ,
'¶R
ω=
0J D 0J D 7 = π , ,
5HPDUTXHOHSHQGXOHVLPSOHHVWOHFDVSDUWLFXOLHURWRXWHODPDVVHHVWFRQFHQWUpHHQ*2* Q¶pWDQWTX¶XQILOGHPDVVHQpJOLJHDEOHRQDDORUV , = 0D G¶R
ω=
J D HW 7 = π D J
([HPSOHSUHQRQVODVWUXFWXUHGHODILJXUHDYHF θ FRPPHSDUDPqWUHGHFRQILJXUDWLRQ HQ O¶DEVHQFH GH SHVDQWHXU OD FRQILJXUDWLRQ θ = HVW FHOOH GH O¶pTXLOLEUH VWDWLTXH UHVVRUW VSLUDOHDXUHSRV OHVEDUUHVSULVPDWLTXHVVRQWGHORQJXHXU/HWGHPDVVHPOHUHVVRUWHVW OLQpDLUHVDQVPDVVHGHULJLGLWpNF¶HVWjGLUHTXHVLODGHX[LqPHEDUUHFHOOHGHGURLWH WRXUQH G¶XQ DQJOH α SDU UDSSRUW j OD SUHPLqUH HOOH HVW VRXPLVH j XQ FRXSOH GH UDSSHO − N α &RPPH GDQV O¶H[HPSOH GX SHQGXOH FHWWH VWUXFWXUH Q¶HVW OLQpDLUH TXH VL O¶RQ VH OLPLWH j GHV DQJOHV θ SHWLWVGHYDQWXQUDGLDQ'DQVFHFDVjXQLQVWDQWWO¶pQHUJLHDSRXUH[SUHVVLRQ 7=
P O θ HWO¶pQHUJLHSRWHQWLHOOHHPPDJDVLQpHGDQVOHUHVVRUW
9 = N θ G¶ROHODJUDQJLHQ/ 7±9/¶pTXDWLRQGH/DJUDQJHV¶pFULWLFL
G ∂/ ∂/ − = VRLW P O θ + N θ = GW ∂θ ∂θ
RXHQFRUH
'¶R
ω=
θ + ω θ = DYHF ω = N P O
5HPDUTXHOHSHQGXOHVLPSOHHVWOHFDVSDUWLFXOLHURWRXWHODPDVVHHVWFRQFHQWUpHHQ*2* Q¶pWDQWTX¶XQILOGHPDVVHQpJOLJHDEOHRQDDORUV , = 0D G¶R
ω=
J D HW 7 = π D J
([HPSOHSUHQRQVODVWUXFWXUHGHODILJXUHDYHF θ FRPPHSDUDPqWUHGHFRQILJXUDWLRQ HQ O¶DEVHQFH GH SHVDQWHXU OD FRQILJXUDWLRQ θ = HVW FHOOH GH O¶pTXLOLEUH VWDWLTXH UHVVRUW VSLUDOHDXUHSRV OHVEDUUHVSULVPDWLTXHVVRQWGHORQJXHXU/HWGHPDVVHPOHUHVVRUWHVW OLQpDLUHVDQVPDVVHGHULJLGLWpNF¶HVWjGLUHTXHVLODGHX[LqPHEDUUHFHOOHGHGURLWH WRXUQH G¶XQ DQJOH α SDU UDSSRUW j OD SUHPLqUH HOOH HVW VRXPLVH j XQ FRXSOH GH UDSSHO − N α &RPPH GDQV O¶H[HPSOH GX SHQGXOH FHWWH VWUXFWXUH Q¶HVW OLQpDLUH TXH VL O¶RQ VH OLPLWH j GHV DQJOHV θ SHWLWVGHYDQWXQUDGLDQ'DQVFHFDVjXQLQVWDQWWO¶pQHUJLHDSRXUH[SUHVVLRQ 7=
P O θ HWO¶pQHUJLHSRWHQWLHOOHHPPDJDVLQpHGDQVOHUHVVRUW
9 = N θ G¶ROHODJUDQJLHQ/ 7±9/¶pTXDWLRQGH/DJUDQJHV¶pFULWLFL
G ∂/ ∂/ − = VRLW P O θ + N θ = GW ∂θ ∂θ
θ + ω θ = DYHF ω = N P O
'¶R ODSpULRGH 7 = π O
P HWODIUpTXHQFH I = 7 N
- 112 -
0J D 0J D 7 = π , ,
RXHQFRUH
'¶R
θ + 0J D θ = ,
ODSpULRGH 7 = π O
P HWODIUpTXHQFH I = 7 N
- 112 -
±6758&785(/,1e$,5(',66,3$7,9(/,%5(
±6758&785(/,1e$,5(',66,3$7,9(/,%5(
(OOHREpLWjO¶pTXDWLRQGLIIpUHQWLHOOH
(OOHREpLWjO¶pTXDWLRQGLIIpUHQWLHOOH
0 T + & T + . T = DYHF0&.SRVLWLIV
3RXU IL[HU OHV LGpHV SUHQRQV FRPPH PRGqOH G¶XQH WHOOH VWUXFWXUH OH V\VWqPH GH PDVVH UHVVRUWDPRUWLVVHXUGHODILJXUH
0 T + & T + . T = DYHF0&.SRVLWLIV
3RXU IL[HU OHV LGpHV SUHQRQV FRPPH PRGqOH G¶XQH WHOOH VWUXFWXUH OH V\VWqPH GH PDVVH UHVVRUWDPRUWLVVHXUGHODILJXUH
)LJXUH
)LJXUH
8Q DPRUWLVVHXU YLVTXHX[ OLQpDLUH GH FRHIILFLHQW & H[HUFH XQH UpDFWLRQ SURSRUWLRQQHOOH j OD YLWHVVHDLQVLGDQVOHFDVGHODILJXUHVLOHFKDULRWSRVVqGHXQHYLWHVVH [ LOHVWVRXPLVGH OD SDUW GH O¶DPRUWLVVHXU j XQH IRUFH − & [ /H SULQFLSH IRQGDPHQWDO GH OD G\QDPLTXH DSSOLTXpDXFKDULRWGRQQHO¶pTXDWLRQGXPRXYHPHQW
8Q DPRUWLVVHXU YLVTXHX[ OLQpDLUH GH FRHIILFLHQW & H[HUFH XQH UpDFWLRQ SURSRUWLRQQHOOH j OD YLWHVVHDLQVLGDQVOHFDVGHODILJXUHVLOHFKDULRWSRVVqGHXQHYLWHVVH [ LOHVWVRXPLVGH OD SDUW GH O¶DPRUWLVVHXU j XQH IRUFH − & [ /H SULQFLSH IRQGDPHQWDO GH OD G\QDPLTXH DSSOLTXpDXFKDULRWGRQQHO¶pTXDWLRQGXPRXYHPHQW
0 [ + & [ + . [ =
0 [ + & [ + . [ =
/D VROXWLRQ JpQpUDOH GH O¶pTXDWLRQ HVW XQH FRPELQDLVRQ OLQpDLUH GH GHX[ VROXWLRQV TXHOFRQTXHV LQGpSHQGDQWHV VL O¶RQ FKHUFKH GHV VROXWLRQV GH OD IRUPH HVW RQ WURXYH TXH V VDWLVIDLWjO¶pTXDWLRQFDUDFWpULVWLTXHDVVRFLpH
/D VROXWLRQ JpQpUDOH GH O¶pTXDWLRQ HVW XQH FRPELQDLVRQ OLQpDLUH GH GHX[ VROXWLRQV TXHOFRQTXHV LQGpSHQGDQWHV VL O¶RQ FKHUFKH GHV VROXWLRQV GH OD IRUPH HVW RQ WURXYH TXH V VDWLVIDLWjO¶pTXDWLRQFDUDFWpULVWLTXHDVVRFLpH
0 V + & V + . =
0 V + & V + . =
7URLVFDVGRLYHQWGRQFrWUHHQYLVDJpVVXLYDQWTXHOHGLVFULPLQDQW ∆ = & − 0 . HVWSRVLWLI QXORXQpJDWLI
7URLVFDVGRLYHQWGRQFrWUHHQYLVDJpVVXLYDQWTXHOHGLVFULPLQDQW ∆ = & − 0 . HVWSRVLWLI QXORXQpJDWLI
3RVRQV ω =
. SXOVDWLRQQDWXUHOOH 0
3RVRQV ω =
&F = . 0 FRHIILFLHQWG¶DPRUWLVVHPHQWFULWLTXH λ=
. SXOVDWLRQQDWXUHOOH 0
&F = . 0 FRHIILFLHQWG¶DPRUWLVVHPHQWFULWLTXH
& FRHIILFLHQWG¶DPRUWLVVHPHQWUpGXLWRXHQFRUHWDX[G¶DPRUWLVVHPHQW &F
λ=
& FRHIILFLHQWG¶DPRUWLVVHPHQWUpGXLWRXHQFRUHWDX[G¶DPRUWLVVHPHQW &F
HUFDV λ > ±$PRUWLVVHPHQWIRUW± & > &F
HUFDV λ > ±$PRUWLVVHPHQWIRUW± & > &F
3RVRQV U = ω λ − OD VROXWLRQ JpQpUDOH SHXW VH PHWWUH VRXV O¶XQH GHV WURLV IRUPHV VXLYDQWHV
3RVRQV U = ω λ − OD VROXWLRQ JpQpUDOH SHXW VH PHWWUH VRXV O¶XQH GHV WURLV IRUPHV VXLYDQWHV
- 113 -
- 113 -
±6758&785(/,1e$,5(',66,3$7,9(/,%5(
±6758&785(/,1e$,5(',66,3$7,9(/,%5(
(OOHREpLWjO¶pTXDWLRQGLIIpUHQWLHOOH
(OOHREpLWjO¶pTXDWLRQGLIIpUHQWLHOOH
0 T + & T + . T = DYHF0&.SRVLWLIV
3RXU IL[HU OHV LGpHV SUHQRQV FRPPH PRGqOH G¶XQH WHOOH VWUXFWXUH OH V\VWqPH GH PDVVH UHVVRUWDPRUWLVVHXUGHODILJXUH
0 T + & T + . T = DYHF0&.SRVLWLIV
3RXU IL[HU OHV LGpHV SUHQRQV FRPPH PRGqOH G¶XQH WHOOH VWUXFWXUH OH V\VWqPH GH PDVVH UHVVRUWDPRUWLVVHXUGHODILJXUH
)LJXUH
)LJXUH
8Q DPRUWLVVHXU YLVTXHX[ OLQpDLUH GH FRHIILFLHQW & H[HUFH XQH UpDFWLRQ SURSRUWLRQQHOOH j OD YLWHVVHDLQVLGDQVOHFDVGHODILJXUHVLOHFKDULRWSRVVqGHXQHYLWHVVH [ LOHVWVRXPLVGH OD SDUW GH O¶DPRUWLVVHXU j XQH IRUFH − & [ /H SULQFLSH IRQGDPHQWDO GH OD G\QDPLTXH DSSOLTXpDXFKDULRWGRQQHO¶pTXDWLRQGXPRXYHPHQW
8Q DPRUWLVVHXU YLVTXHX[ OLQpDLUH GH FRHIILFLHQW & H[HUFH XQH UpDFWLRQ SURSRUWLRQQHOOH j OD YLWHVVHDLQVLGDQVOHFDVGHODILJXUHVLOHFKDULRWSRVVqGHXQHYLWHVVH [ LOHVWVRXPLVGH OD SDUW GH O¶DPRUWLVVHXU j XQH IRUFH − & [ /H SULQFLSH IRQGDPHQWDO GH OD G\QDPLTXH DSSOLTXpDXFKDULRWGRQQHO¶pTXDWLRQGXPRXYHPHQW
0 [ + & [ + . [ =
0 [ + & [ + . [ =
/D VROXWLRQ JpQpUDOH GH O¶pTXDWLRQ HVW XQH FRPELQDLVRQ OLQpDLUH GH GHX[ VROXWLRQV TXHOFRQTXHV LQGpSHQGDQWHV VL O¶RQ FKHUFKH GHV VROXWLRQV GH OD IRUPH HVW RQ WURXYH TXH V VDWLVIDLWjO¶pTXDWLRQFDUDFWpULVWLTXHDVVRFLpH
/D VROXWLRQ JpQpUDOH GH O¶pTXDWLRQ HVW XQH FRPELQDLVRQ OLQpDLUH GH GHX[ VROXWLRQV TXHOFRQTXHV LQGpSHQGDQWHV VL O¶RQ FKHUFKH GHV VROXWLRQV GH OD IRUPH HVW RQ WURXYH TXH V VDWLVIDLWjO¶pTXDWLRQFDUDFWpULVWLTXHDVVRFLpH
0 V + & V + . =
0 V + & V + . =
7URLVFDVGRLYHQWGRQFrWUHHQYLVDJpVVXLYDQWTXHOHGLVFULPLQDQW ∆ = & − 0 . HVWSRVLWLI QXORXQpJDWLI
7URLVFDVGRLYHQWGRQFrWUHHQYLVDJpVVXLYDQWTXHOHGLVFULPLQDQW ∆ = & − 0 . HVWSRVLWLI QXORXQpJDWLI
3RVRQV ω =
. SXOVDWLRQQDWXUHOOH 0
3RVRQV ω =
&F = . 0 FRHIILFLHQWG¶DPRUWLVVHPHQWFULWLTXH λ=
& FRHIILFLHQWG¶DPRUWLVVHPHQWUpGXLWRXHQFRUHWDX[G¶DPRUWLVVHPHQW &F
. SXOVDWLRQQDWXUHOOH 0
&F = . 0 FRHIILFLHQWG¶DPRUWLVVHPHQWFULWLTXH λ=
& FRHIILFLHQWG¶DPRUWLVVHPHQWUpGXLWRXHQFRUHWDX[G¶DPRUWLVVHPHQW &F
HUFDV λ > ±$PRUWLVVHPHQWIRUW± & > &F
HUFDV λ > ±$PRUWLVVHPHQWIRUW± & > &F
3RVRQV U = ω λ − OD VROXWLRQ JpQpUDOH SHXW VH PHWWUH VRXV O¶XQH GHV WURLV IRUPHV VXLYDQWHV
3RVRQV U = ω λ − OD VROXWLRQ JpQpUDOH SHXW VH PHWWUH VRXV O¶XQH GHV WURLV IRUPHV VXLYDQWHV
- 113 -
- 113 -
⎧ − λωW $ FKUW + % VK UW ⎪T W = H ⎪ ⎪ − λωW FK UW + ϕ ⎨T W = D H ⎪ $ − % − UW ⎞ ⎪ − λωW ⎛ $ + % UW H ⎟ H + ⎜ ⎪T W = H ⎝ ⎠ ⎩
⎧ − λωW $ FKUW + % VK UW ⎪T W = H ⎪ ⎪ − λωW FK UW + ϕ ⎨T W = D H ⎪ $ − % − UW ⎞ ⎪ − λωW ⎛ $ + % UW H ⎟ H + ⎜ ⎪T W = H ⎝ ⎠ ⎩
/HV FRQVWDQWHV G¶LQWpJUDWLRQ V¶H[SULPHQW DX PR\HQ GHV FRQGLWLRQV LQLWLDOHV T HW T RQ DLQVL T + λ ω T $ = T HW % = U
/HV FRQVWDQWHV G¶LQWpJUDWLRQ V¶H[SULPHQW DX PR\HQ GHV FRQGLWLRQV LQLWLDOHV T HW T RQ DLQVL T + λ ω T $ = T HW % = U
/HPRXYHPHQWGHVDSpULRGLTXHLOQ¶DSDVOHFDUDFWqUHRVFLOODQWTW WHQGYHUV]pURDYHF W /DILJXUHGRQQHGLIIpUHQWHVIRUPHVSRVVLEOHVGHTW VXLYDQW T
/HPRXYHPHQWGHVDSpULRGLTXHLOQ¶DSDVOHFDUDFWqUHRVFLOODQWTW WHQGYHUV]pURDYHF W /DILJXUHGRQQHGLIIpUHQWHVIRUPHVSRVVLEOHVGHTW VXLYDQW T
)LJXUH
)LJXUH
HFDV λ = ±$PRUWLVVHPHQWFULWLTXH± & = &F
HFDV λ = ±$PRUWLVVHPHQWFULWLTXH± & = &F
/DVROXWLRQJpQpUDOHGHO¶pTXDWLRQ V¶pFULW
/DVROXWLRQJpQpUDOHGHO¶pTXDWLRQ V¶pFULW
T W = H − ωW $ + % W DYHF
⎧⎪$ = T ⎨ ⎪⎩% = T + ω T
T W = H − ωW $ + % W DYHF
⎧⎪$ = T ⎨ ⎪⎩% = T + ω T
/HPRXYHPHQWHVWDSpULRGLTXHODILJXUHGRQQHGLIIpUHQWHVIRUPHVSRVVLEOHVGHODIRQFWLRQ TW
/HPRXYHPHQWHVWDSpULRGLTXHODILJXUHGRQQHGLIIpUHQWHVIRUPHVSRVVLEOHVGHODIRQFWLRQ TW
HFDV λ < ±$PRUWLVVHPHQWIDLEOH± & < &F
HFDV λ < ±$PRUWLVVHPHQWIDLEOH± & < &F
6LO¶RQSRVH Ω = ω − λ ODIRQFWLRQTW VROXWLRQJpQpUDOHGH SHXWVHPHWWUHVRXVO¶XQH GHVGHX[IRUPHV
6LO¶RQSRVH Ω = ω − λ ODIRQFWLRQTW VROXWLRQJpQpUDOHGH SHXWVHPHWWUHVRXVO¶XQH GHVGHX[IRUPHV
- 114 -
- 114 -
⎧ − λωW $ FKUW + % VK UW ⎪T W = H ⎪ ⎪ − λωW FK UW + ϕ ⎨T W = D H ⎪ $ − % − UW ⎞ ⎪ − λωW ⎛ $ + % UW H ⎟ H + ⎜ ⎪T W = H ⎝ ⎠ ⎩
⎧ − λωW $ FKUW + % VK UW ⎪T W = H ⎪ ⎪ − λωW FK UW + ϕ ⎨T W = D H ⎪ $ − % − UW ⎞ ⎪ − λωW ⎛ $ + % UW H ⎟ H + ⎜ ⎪T W = H ⎝ ⎠ ⎩
/HV FRQVWDQWHV G¶LQWpJUDWLRQ V¶H[SULPHQW DX PR\HQ GHV FRQGLWLRQV LQLWLDOHV T HW T RQ DLQVL T + λ ω T $ = T HW % = U
/HV FRQVWDQWHV G¶LQWpJUDWLRQ V¶H[SULPHQW DX PR\HQ GHV FRQGLWLRQV LQLWLDOHV T HW T RQ DLQVL T + λ ω T $ = T HW % = U
/HPRXYHPHQWGHVDSpULRGLTXHLOQ¶DSDVOHFDUDFWqUHRVFLOODQWTW WHQGYHUV]pURDYHF W /DILJXUHGRQQHGLIIpUHQWHVIRUPHVSRVVLEOHVGHTW VXLYDQW T
/HPRXYHPHQWGHVDSpULRGLTXHLOQ¶DSDVOHFDUDFWqUHRVFLOODQWTW WHQGYHUV]pURDYHF W /DILJXUHGRQQHGLIIpUHQWHVIRUPHVSRVVLEOHVGHTW VXLYDQW T
)LJXUH
)LJXUH
HFDV λ = ±$PRUWLVVHPHQWFULWLTXH± & = &F
HFDV λ = ±$PRUWLVVHPHQWFULWLTXH± & = &F
/DVROXWLRQJpQpUDOHGHO¶pTXDWLRQ V¶pFULW
/DVROXWLRQJpQpUDOHGHO¶pTXDWLRQ V¶pFULW
T W = H − ωW $ + % W DYHF
⎧⎪$ = T ⎨ ⎪⎩% = T + ω T
T W = H − ωW $ + % W DYHF
⎧⎪$ = T ⎨ ⎪⎩% = T + ω T
/HPRXYHPHQWHVWDSpULRGLTXHODILJXUHGRQQHGLIIpUHQWHVIRUPHVSRVVLEOHVGHODIRQFWLRQ TW
/HPRXYHPHQWHVWDSpULRGLTXHODILJXUHGRQQHGLIIpUHQWHVIRUPHVSRVVLEOHVGHODIRQFWLRQ TW
HFDV λ < ±$PRUWLVVHPHQWIDLEOH± & < &F
HFDV λ < ±$PRUWLVVHPHQWIDLEOH± & < &F
6LO¶RQSRVH Ω = ω − λ ODIRQFWLRQTW VROXWLRQJpQpUDOHGH SHXWVHPHWWUHVRXVO¶XQH GHVGHX[IRUPHV
6LO¶RQSRVH Ω = ω − λ ODIRQFWLRQTW VROXWLRQJpQpUDOHGH SHXWVHPHWWUHVRXVO¶XQH GHVGHX[IRUPHV
- 114 -
- 114 -
⎧⎪T W = H −λωW $ FRV ΩW + % VLQ ΩW ⎨ ⎪⎩T W = D H − λωW FRV ΩW + ϕ
⎧⎪T W = H −λωW $ FRV ΩW + % VLQ ΩW ⎨ ⎪⎩T W = D H − λωW FRV ΩW + ϕ
⎧ ⎧ ⎪$ = T ⎪D FRV ϕ = T RX ⎨ DYHF ⎨ T + λ ω T T + λ ω T ⎪% = ⎪D VLQ ϕ = Ω Ω ⎩ ⎩
⎧ ⎧ ⎪$ = T ⎪D FRV ϕ = T RX ⎨ DYHF ⎨ T + λ ω T T + λ ω T ⎪% = ⎪D VLQ ϕ = Ω Ω ⎩ ⎩
/HPRXYHPHQWHVWRVFLOODWRLUHG¶DPSOLWXGHGpFURLVVDQWHYHUV]pUR/DILJXUHGRQQHODIRUPH GHTW GDQVOHFDVR T HW T VRQWSRVLWLIV
/HPRXYHPHQWHVWRVFLOODWRLUHG¶DPSOLWXGHGpFURLVVDQWHYHUV]pUR/DILJXUHGRQQHODIRUPH GHTW GDQVOHFDVR T HW T VRQWSRVLWLIV
)LJXUH
'pILQLVVRQVTXHOTXHVSDUDPqWUHVDVVRFLpVjXQWHOPRXYHPHQWRVFLOODWRLUHDPRUWL 3VHXGRSpULRGHO¶D[HGHVWHPSVHVWFRXSpjGHVLQWHUYDOOHVVXFFHVVLIVpJDX[j HVWODSVHXGRSpULRGH
)LJXUH
'pILQLVVRQVTXHOTXHVSDUDPqWUHVDVVRFLpVjXQWHOPRXYHPHQWRVFLOODWRLUHDPRUWL 7 π = 7 Ω
3VHXGRSpULRGHO¶D[HGHVWHPSVHVWFRXSpjGHVLQWHUYDOOHVVXFFHVVLIVpJDX[j HVWODSVHXGRSpULRGH
7 π = 7 Ω
'pFUpPHQW ORJDULWKPH F¶HVW OH ORJDULWKPH QpSpULHQ GX UDSSRUW GHV RUGRQQpHV GH GHX[ SRLQWVGHWDQJHQFHFRQVpFXWLIV 0 L HW 0 L + GHODFRXUEHTW DYHFO¶H[SRQHQWLHOOH H −λωW VRLW
'pFUpPHQW ORJDULWKPH F¶HVW OH ORJDULWKPH QpSpULHQ GX UDSSRUW GHV RUGRQQpHV GH GHX[ SRLQWVGHWDQJHQFHFRQVpFXWLIV 0 L HW 0 L + GHODFRXUEHTW DYHFO¶H[SRQHQWLHOOH H −λωW VRLW
⎛ T ⎞ δ = /RJ ⎜⎜ L ⎟⎟ ⎝ T L + ⎠
⎛ T ⎞ δ = /RJ ⎜⎜ L ⎟⎟ ⎝ T L + ⎠
$YHF T L = D H −λωW L HW T L + = D H −λω W L + 7 RQD
$YHF T L = D H −λωW L HW T L + = D H −λω W L + 7 RQD
δ=λωW=
πλ
− λ
δ=λωW=
- 115 -
− λ
- 115 -
⎧⎪T W = H −λωW $ FRV ΩW + % VLQ ΩW ⎨ ⎪⎩T W = D H − λωW FRV ΩW + ϕ
πλ
⎧⎪T W = H −λωW $ FRV ΩW + % VLQ ΩW ⎨ ⎪⎩T W = D H − λωW FRV ΩW + ϕ
⎧ ⎧ ⎪$ = T ⎪D FRV ϕ = T RX ⎨ DYHF ⎨ T + λ ω T T + λ ω T ⎪% = ⎪D VLQ ϕ = Ω Ω ⎩ ⎩
⎧ ⎧ ⎪$ = T ⎪D FRV ϕ = T RX ⎨ DYHF ⎨ T + λ ω T T + λ ω T ⎪% = ⎪D VLQ ϕ = Ω Ω ⎩ ⎩
/HPRXYHPHQWHVWRVFLOODWRLUHG¶DPSOLWXGHGpFURLVVDQWHYHUV]pUR/DILJXUHGRQQHODIRUPH GHTW GDQVOHFDVR T HW T VRQWSRVLWLIV
/HPRXYHPHQWHVWRVFLOODWRLUHG¶DPSOLWXGHGpFURLVVDQWHYHUV]pUR/DILJXUHGRQQHODIRUPH GHTW GDQVOHFDVR T HW T VRQWSRVLWLIV
)LJXUH
'pILQLVVRQVTXHOTXHVSDUDPqWUHVDVVRFLpVjXQWHOPRXYHPHQWRVFLOODWRLUHDPRUWL 3VHXGRSpULRGHO¶D[HGHVWHPSVHVWFRXSpjGHVLQWHUYDOOHVVXFFHVVLIVpJDX[j HVWODSVHXGRSpULRGH
)LJXUH
'pILQLVVRQVTXHOTXHVSDUDPqWUHVDVVRFLpVjXQWHOPRXYHPHQWRVFLOODWRLUHDPRUWL 7 π = 7 Ω
3VHXGRSpULRGHO¶D[HGHVWHPSVHVWFRXSpjGHVLQWHUYDOOHVVXFFHVVLIVpJDX[j HVWODSVHXGRSpULRGH
7 π = 7 Ω
'pFUpPHQW ORJDULWKPH F¶HVW OH ORJDULWKPH QpSpULHQ GX UDSSRUW GHV RUGRQQpHV GH GHX[ SRLQWVGHWDQJHQFHFRQVpFXWLIV 0 L HW 0 L + GHODFRXUEHTW DYHFO¶H[SRQHQWLHOOH H −λωW VRLW
'pFUpPHQW ORJDULWKPH F¶HVW OH ORJDULWKPH QpSpULHQ GX UDSSRUW GHV RUGRQQpHV GH GHX[ SRLQWVGHWDQJHQFHFRQVpFXWLIV 0 L HW 0 L + GHODFRXUEHTW DYHFO¶H[SRQHQWLHOOH H −λωW VRLW
⎛ T ⎞ δ = /RJ ⎜⎜ L ⎟⎟ ⎝ T L + ⎠
⎛ T ⎞ δ = /RJ ⎜⎜ L ⎟⎟ ⎝ T L + ⎠
$YHF T L = D H −λωW L HW T L + = D H −λω W L + 7 RQD
$YHF T L = D H −λωW L HW T L + = D H −λω W L + 7 RQD
δ=λωW=
πλ
- 115 -
− λ
δ=λωW=
πλ
- 115 -
− λ
&RQVWDQWHGHWHPSVRXWHPSVGHUHOD[DWLRQ F¶HVWOHSDUDPqWUH τ =
0 WHPSVDX = λω &
&RQVWDQWHGHWHPSVRXWHPSVGHUHOD[DWLRQ F¶HVWOHSDUDPqWUH τ =
0 WHPSVDX = λω &
ERXWGXTXHOO¶DPSOLWXGHHVWGLYLVpHSDUH
ERXWGXTXHOO¶DPSOLWXGHHVWGLYLVpHSDUH
'LVVLSDWLRQ UHODWLYH G¶pQHUJLH F¶HVW OH UDSSRUW GH O¶pQHUJLH GLVVLSpH HQWUH OHV LQVWDQWV W HW W7jO¶pQHUJLHPpFDQLTXHDXWHPSVW2QWURXYH
'LVVLSDWLRQ UHODWLYH G¶pQHUJLH F¶HVW OH UDSSRUW GH O¶pQHUJLH GLVVLSpH HQWUH OHV LQVWDQWV W HW W7jO¶pQHUJLHPpFDQLTXHDXWHPSVW2QWURXYH
⎛ − πλ ( W − ( W + 7 = − H[S ⎜ ⎜ ( W ⎝ − λ
⎞ ⎟ ⎟ ⎠
⎛ − πλ ( W − ( W + 7 = − H[S ⎜ ⎜ ( W ⎝ − λ
⎞ ⎟ ⎟ ⎠
TXDQWLWp LQGpSHQGDQWH GX WHPSV W /¶pQHUJLH PpFDQLTXH GH OD VWUXFWXUH HVW OD VRPPH GH O¶pQHUJLHFLQpWLTXH 0 T HWGHO¶pQHUJLHSRWHQWLHOOH . T
TXDQWLWp LQGpSHQGDQWH GX WHPSV W /¶pQHUJLH PpFDQLTXH GH OD VWUXFWXUH HVW OD VRPPH GH O¶pQHUJLHFLQpWLTXH 0 T HWGHO¶pQHUJLHSRWHQWLHOOH . T
±6758&785(/,1e$,5(&216(59$7,9((;&,7e(
±6758&785(/,1e$,5(&216(59$7,9((;&,7e(
/DVWUXFWXUHREpLWjO¶pTXDWLRQGLIIpUHQWLHOOH
/DVWUXFWXUHREpLWjO¶pTXDWLRQGLIIpUHQWLHOOH
0 T + . T = ) W
0 T + . T = ) W
6DVROXWLRQJpQpUDOHV¶REWLHQWHQDMRXWDQWjODVROXWLRQJpQpUDOHGHO¶pTXDWLRQKRPRJqQHVDQV VHFRQGPHPEUH XQHVROXWLRQSDUWLFXOLqUHTXHOFRQTXHGHO¶pTXDWLRQFRPSOqWH
6DVROXWLRQJpQpUDOHV¶REWLHQWHQDMRXWDQWjODVROXWLRQJpQpUDOHGHO¶pTXDWLRQKRPRJqQHVDQV VHFRQGPHPEUH XQHVROXWLRQSDUWLFXOLqUHTXHOFRQTXHGHO¶pTXDWLRQFRPSOqWH
1RXVGLVWLQJXHURQVOHVWURLVFDVG¶H[FLWDWLRQKDUPRQLTXHSpULRGLTXHQRQSpULRGLTXH
1RXVGLVWLQJXHURQVOHVWURLVFDVG¶H[FLWDWLRQKDUPRQLTXHSpULRGLTXHQRQSpULRGLTXH
±5pSRQVHjXQHH[FLWDWLRQKDUPRQLTXH
±5pSRQVHjXQHH[FLWDWLRQKDUPRQLTXH
2Q SHXW SUHQGUH GDQV FH FDV ) W = ) ⋅ VLQ ω W R ) HW ω VRQW GRQQpV /D VROXWLRQ JpQpUDOHV¶pFULWGDQVOHFDVRODSXOVDWLRQG¶H[FLWDWLRQ ω GLIIqUHGHODSXOVDWLRQQDWXUHOOH ω
2Q SHXW SUHQGUH GDQV FH FDV ) W = ) ⋅ VLQ ω W R ) HW ω VRQW GRQQpV /D VROXWLRQ JpQpUDOHV¶pFULWGDQVOHFDVRODSXOVDWLRQG¶H[FLWDWLRQ ω GLIIqUHGHODSXOVDWLRQQDWXUHOOH ω
) . T W = D VLQ ωW + ϕ + ω − ω
) . T W = D VLQ ωW + ϕ + ω − ω
DHW ϕ VRQWGpWHUPLQpVSDUOHVFRQGLWLRQVLQLWLDOHVWDQGLVTXH ψ O¶HVWSDUOHVUHODWLRQV VLQ ψ = WJ ψ = FRV ψ =
ω − ω ω − ω
DHW ϕ VRQWGpWHUPLQpVSDUOHVFRQGLWLRQVLQLWLDOHVWDQGLVTXH ψ O¶HVWSDUOHVUHODWLRQV VLQ ψ = WJ ψ = FRV ψ =
GRQFRX±
ω ) HVW OD GpIOH[LRQ VWDWLTXH GX UHVVRUW VRXV O¶DFWLRQ GH ) − . ω
−
HVW OH IDFWHXU
ω − ω ω − ω
GRQFRX±
ω ) HVW OD GpIOH[LRQ VWDWLTXH GX UHVVRUW VRXV O¶DFWLRQ GH ) − . ω
−
HVW OH IDFWHXU
G¶DPSOLILFDWLRQ G\QDPLTXH TXL SHXW rWUH WUqV JUDQG VL ω HW ω VRQW YRLVLQV FDV GH OD UpVRQDQFH
G¶DPSOLILFDWLRQ G\QDPLTXH TXL SHXW rWUH WUqV JUDQG VL ω HW ω VRQW YRLVLQV FDV GH OD UpVRQDQFH
- 116 -
- 116 -
&RQVWDQWHGHWHPSVRXWHPSVGHUHOD[DWLRQ F¶HVWOHSDUDPqWUH τ =
0 WHPSVDX = λω &
&RQVWDQWHGHWHPSVRXWHPSVGHUHOD[DWLRQ F¶HVWOHSDUDPqWUH τ =
0 WHPSVDX = λω &
ERXWGXTXHOO¶DPSOLWXGHHVWGLYLVpHSDUH
ERXWGXTXHOO¶DPSOLWXGHHVWGLYLVpHSDUH
'LVVLSDWLRQ UHODWLYH G¶pQHUJLH F¶HVW OH UDSSRUW GH O¶pQHUJLH GLVVLSpH HQWUH OHV LQVWDQWV W HW W7jO¶pQHUJLHPpFDQLTXHDXWHPSVW2QWURXYH
'LVVLSDWLRQ UHODWLYH G¶pQHUJLH F¶HVW OH UDSSRUW GH O¶pQHUJLH GLVVLSpH HQWUH OHV LQVWDQWV W HW W7jO¶pQHUJLHPpFDQLTXHDXWHPSVW2QWURXYH
⎛ − πλ ( W − ( W + 7 = − H[S ⎜ ⎜ ( W ⎝ − λ
⎞ ⎟ ⎟ ⎠
⎛ − πλ ( W − ( W + 7 = − H[S ⎜ ⎜ ( W ⎝ − λ
⎞ ⎟ ⎟ ⎠
TXDQWLWp LQGpSHQGDQWH GX WHPSV W /¶pQHUJLH PpFDQLTXH GH OD VWUXFWXUH HVW OD VRPPH GH O¶pQHUJLHFLQpWLTXH 0 T HWGHO¶pQHUJLHSRWHQWLHOOH . T
TXDQWLWp LQGpSHQGDQWH GX WHPSV W /¶pQHUJLH PpFDQLTXH GH OD VWUXFWXUH HVW OD VRPPH GH O¶pQHUJLHFLQpWLTXH 0 T HWGHO¶pQHUJLHSRWHQWLHOOH . T
±6758&785(/,1e$,5(&216(59$7,9((;&,7e(
±6758&785(/,1e$,5(&216(59$7,9((;&,7e(
/DVWUXFWXUHREpLWjO¶pTXDWLRQGLIIpUHQWLHOOH
/DVWUXFWXUHREpLWjO¶pTXDWLRQGLIIpUHQWLHOOH
0 T + . T = ) W
0 T + . T = ) W
6DVROXWLRQJpQpUDOHV¶REWLHQWHQDMRXWDQWjODVROXWLRQJpQpUDOHGHO¶pTXDWLRQKRPRJqQHVDQV VHFRQGPHPEUH XQHVROXWLRQSDUWLFXOLqUHTXHOFRQTXHGHO¶pTXDWLRQFRPSOqWH
6DVROXWLRQJpQpUDOHV¶REWLHQWHQDMRXWDQWjODVROXWLRQJpQpUDOHGHO¶pTXDWLRQKRPRJqQHVDQV VHFRQGPHPEUH XQHVROXWLRQSDUWLFXOLqUHTXHOFRQTXHGHO¶pTXDWLRQFRPSOqWH
1RXVGLVWLQJXHURQVOHVWURLVFDVG¶H[FLWDWLRQKDUPRQLTXHSpULRGLTXHQRQSpULRGLTXH
1RXVGLVWLQJXHURQVOHVWURLVFDVG¶H[FLWDWLRQKDUPRQLTXHSpULRGLTXHQRQSpULRGLTXH
±5pSRQVHjXQHH[FLWDWLRQKDUPRQLTXH
±5pSRQVHjXQHH[FLWDWLRQKDUPRQLTXH
2Q SHXW SUHQGUH GDQV FH FDV ) W = ) ⋅ VLQ ω W R ) HW ω VRQW GRQQpV /D VROXWLRQ JpQpUDOHV¶pFULWGDQVOHFDVRODSXOVDWLRQG¶H[FLWDWLRQ ω GLIIqUHGHODSXOVDWLRQQDWXUHOOH ω
2Q SHXW SUHQGUH GDQV FH FDV ) W = ) ⋅ VLQ ω W R ) HW ω VRQW GRQQpV /D VROXWLRQ JpQpUDOHV¶pFULWGDQVOHFDVRODSXOVDWLRQG¶H[FLWDWLRQ ω GLIIqUHGHODSXOVDWLRQQDWXUHOOH ω
) . T W = D VLQ ωW + ϕ + ω − ω
) . T W = D VLQ ωW + ϕ + ω − ω
DHW ϕ VRQWGpWHUPLQpVSDUOHVFRQGLWLRQVLQLWLDOHVWDQGLVTXH ψ O¶HVWSDUOHVUHODWLRQV VLQ ψ = WJ ψ = FRV ψ =
ω − ω ω − ω
−
HVW OH IDFWHXU
DHW ϕ VRQWGpWHUPLQpVSDUOHVFRQGLWLRQVLQLWLDOHVWDQGLVTXH ψ O¶HVWSDUOHVUHODWLRQV VLQ ψ = WJ ψ = FRV ψ =
GRQFRX±
ω ) HVW OD GpIOH[LRQ VWDWLTXH GX UHVVRUW VRXV O¶DFWLRQ GH ) − . ω
ω − ω ω − ω
GRQFRX±
ω ) HVW OD GpIOH[LRQ VWDWLTXH GX UHVVRUW VRXV O¶DFWLRQ GH ) − . ω
−
HVW OH IDFWHXU
G¶DPSOLILFDWLRQ G\QDPLTXH TXL SHXW rWUH WUqV JUDQG VL ω HW ω VRQW YRLVLQV FDV GH OD UpVRQDQFH
G¶DPSOLILFDWLRQ G\QDPLTXH TXL SHXW rWUH WUqV JUDQG VL ω HW ω VRQW YRLVLQV FDV GH OD UpVRQDQFH
- 116 -
- 116 -
/H PRXYHPHQW Q¶HVW GRQF SDV KDUPRQLTXH SXLVTXH TW HVW OD VRPPH GH GHX[ IRQFWLRQV KDUPRQLTXHVGHSXOVDWLRQVGLIIpUHQWHV ω IRUFpH HW ω QDWXUHOOH
/H PRXYHPHQW Q¶HVW GRQF SDV KDUPRQLTXH SXLVTXH TW HVW OD VRPPH GH GHX[ IRQFWLRQV KDUPRQLTXHVGHSXOVDWLRQVGLIIpUHQWHV ω IRUFpH HW ω QDWXUHOOH
/DILJXUHGRQQHOHIDFWHXUG¶DPSOLILFDWLRQG\QDPLTXH)$' HWODSKDVH ψ HQIRQFWLRQGX ω UDSSRUW ω
/DILJXUHGRQQHOHIDFWHXUG¶DPSOLILFDWLRQG\QDPLTXH)$' HWODSKDVH ψ HQIRQFWLRQGX ω UDSSRUW ω
)LJXUH
)LJXUH
± 3RXU ≤ ω < ω RQD ψ = ODUpSRQVHIRUFpHHVWHQSKDVHDYHFO¶H[FLWDWLRQOH)$'HVW YRLVLQGHSRXU ω SHWLWHWLOGHYLHQWWUqVJUDQGORUVTXH ω WHQGYHUV ω UpVRQDQFH
± 3RXU ≤ ω < ω RQD ψ = ODUpSRQVHIRUFpHHVWHQSKDVHDYHFO¶H[FLWDWLRQOH)$'HVW YRLVLQGHSRXU ω SHWLWHWLOGHYLHQWWUqVJUDQGORUVTXH ω WHQGYHUV ω UpVRQDQFH
± 3RXU ω > ω RQD ψ = π ODUpSRQVHIRUFpHHVWHQRSSRVLWLRQGHSKDVHDYHFO¶H[FLWDWLRQ
± 3RXU ω > ω RQD ψ = π ODUpSRQVHIRUFpHHVWHQRSSRVLWLRQGHSKDVHDYHFO¶H[FLWDWLRQ
±5pSRQVHjXQHH[FLWDWLRQSpULRGLTXH
±5pSRQVHjXQHH[FLWDWLRQSpULRGLTXH
OH)$'WHQGYHUV]pURORUVTXH ω GHYLHQWWUqVJUDQG
π ODSpULRGHGH)W FHWWHIRQFWLRQVHGpYHORSSHHQVpULHGH)RXULHUFRPPHQRXV ω O¶DYRQVUDSSHOpSOXVKDXW2QDDLQVL
6RLW 7 =
) W =
) +
∞
∑
π ODSpULRGHGH)W FHWWHIRQFWLRQVHGpYHORSSHHQVpULHGH)RXULHUFRPPHQRXV ω O¶DYRQVUDSSHOpSOXVKDXW2QDDLQVL
6RLW 7 =
)Q VLQ Q ω W + ϕQ
) W =
Q =
/DVROXWLRQSDUWLFXOLqUHGHO¶pTXDWLRQFRPSOqWH HVWODVRPPHGHVVROXWLRQVSDUWLFXOLqUHV FRUUHVSRQGDQWjFKDTXHKDUPRQLHGH)W 2QREWLHQWDLQVLODVROXWLRQJpQpUDOH ) T W = D VLQ ωW + ϕ + +
. . YLEUDWLRQQDWXUHOOH
OH)$'WHQGYHUV]pURORUVTXH ω GHYLHQWWUqVJUDQG
∞
∑
)Q Q
Q =
ω
) +
∞
∑ ) VLQ Q ω W + ϕ Q
Q
Q =
/DVROXWLRQSDUWLFXOLqUHGHO¶pTXDWLRQFRPSOqWH HVWODVRPPHGHVVROXWLRQVSDUWLFXOLqUHV FRUUHVSRQGDQWjFKDTXHKDUPRQLHGH)W 2QREWLHQWDLQVLODVROXWLRQJpQpUDOH ) T W = D VLQ ωW + ϕ + +
. .
VLQ Q ω W + ψ Q
− ω
YLEUDWLRQQDWXUHOOH
⎛ π⎞ ⎟ YLEUDWLRQIRUFpH⎜⎜ SpULRGH7 = ω ⎟⎠ ⎝
∞
∑
)Q
VLQ Q ω W + ψ Q
Q ω
Q =
− ω
⎛ π⎞ ⎟ YLEUDWLRQIRUFpH⎜⎜ SpULRGH7 = ω ⎟⎠ ⎝
- 117 -
- 117 -
/H PRXYHPHQW Q¶HVW GRQF SDV KDUPRQLTXH SXLVTXH TW HVW OD VRPPH GH GHX[ IRQFWLRQV KDUPRQLTXHVGHSXOVDWLRQVGLIIpUHQWHV ω IRUFpH HW ω QDWXUHOOH
/H PRXYHPHQW Q¶HVW GRQF SDV KDUPRQLTXH SXLVTXH TW HVW OD VRPPH GH GHX[ IRQFWLRQV KDUPRQLTXHVGHSXOVDWLRQVGLIIpUHQWHV ω IRUFpH HW ω QDWXUHOOH
/DILJXUHGRQQHOHIDFWHXUG¶DPSOLILFDWLRQG\QDPLTXH)$' HWODSKDVH ψ HQIRQFWLRQGX ω UDSSRUW ω
/DILJXUHGRQQHOHIDFWHXUG¶DPSOLILFDWLRQG\QDPLTXH)$' HWODSKDVH ψ HQIRQFWLRQGX ω UDSSRUW ω
)LJXUH
)LJXUH
± 3RXU ≤ ω < ω RQD ψ = ODUpSRQVHIRUFpHHVWHQSKDVHDYHFO¶H[FLWDWLRQOH)$'HVW
± 3RXU ≤ ω < ω RQD ψ = ODUpSRQVHIRUFpHHVWHQSKDVHDYHFO¶H[FLWDWLRQOH)$'HVW
± 3RXU ω > ω RQD ψ = π ODUpSRQVHIRUFpHHVWHQRSSRVLWLRQGHSKDVHDYHFO¶H[FLWDWLRQ
± 3RXU ω > ω RQD ψ = π ODUpSRQVHIRUFpHHVWHQRSSRVLWLRQGHSKDVHDYHFO¶H[FLWDWLRQ
±5pSRQVHjXQHH[FLWDWLRQSpULRGLTXH
±5pSRQVHjXQHH[FLWDWLRQSpULRGLTXH
YRLVLQGHSRXU ω SHWLWHWLOGHYLHQWWUqVJUDQGORUVTXH ω WHQGYHUV ω UpVRQDQFH OH)$'WHQGYHUV]pURORUVTXH ω GHYLHQWWUqVJUDQG
π ODSpULRGHGH)W FHWWHIRQFWLRQVHGpYHORSSHHQVpULHGH)RXULHUFRPPHQRXV ω O¶DYRQVUDSSHOpSOXVKDXW2QDDLQVL
6RLW 7 =
) W =
) +
∞
∑
)Q VLQ Q ω W + ϕQ
OH)$'WHQGYHUV]pURORUVTXH ω GHYLHQWWUqVJUDQG
π ODSpULRGHGH)W FHWWHIRQFWLRQVHGpYHORSSHHQVpULHGH)RXULHUFRPPHQRXV ω O¶DYRQVUDSSHOpSOXVKDXW2QDDLQVL
6RLW 7 =
) W =
Q =
/DVROXWLRQSDUWLFXOLqUHGHO¶pTXDWLRQFRPSOqWH HVWODVRPPHGHVVROXWLRQVSDUWLFXOLqUHV FRUUHVSRQGDQWjFKDTXHKDUPRQLHGH)W 2QREWLHQWDLQVLODVROXWLRQJpQpUDOH ) T W = D VLQ ωW + ϕ + +
. . YLEUDWLRQQDWXUHOOH
YRLVLQGHSRXU ω SHWLWHWLOGHYLHQWWUqVJUDQGORUVTXH ω WHQGYHUV ω UpVRQDQFH
∞
∑ Q =
)Q −
Q
ω
VLQ Q ω W + ψ Q
ω
⎛ π⎞ ⎟ YLEUDWLRQIRUFpH⎜⎜ SpULRGH7 = ω ⎟⎠ ⎝
- 117 -
) +
∞
∑ ) VLQ Q ω W + ϕ Q
Q
Q =
/DVROXWLRQSDUWLFXOLqUHGHO¶pTXDWLRQFRPSOqWH HVWODVRPPHGHVVROXWLRQVSDUWLFXOLqUHV FRUUHVSRQGDQWjFKDTXHKDUPRQLHGH)W 2QREWLHQWDLQVLODVROXWLRQJpQpUDOH ) T W = D VLQ ωW + ϕ + +
. . YLEUDWLRQQDWXUHOOH
∞
∑ Q =
)Q
−
Q ω
VLQ Q ω W + ψ Q
ω
⎛ π⎞ ⎟ YLEUDWLRQIRUFpH⎜⎜ SpULRGH7 = ω ⎟⎠ ⎝
- 117 -
DYHF HW
ψ Q = ϕQ ψ Q = ϕQ + π
VL VL
ω > Q ω ω < Q ω
DYHF HW
ψ Q = ϕQ ψ Q = ϕQ + π
VL VL
ω > Q ω ω < Q ω
3RXU FKDTXH KDUPRQLTXH GH OD YLEUDWLRQ IRUFpH RQ D GRQF OHV PrPHV UpVXOWDWV TX¶DX SDUDJUDSKHSUpFpGHQW QRWDPPHQWHQFHTXLFRQFHUQHODUpVRQDQFH
3RXU FKDTXH KDUPRQLTXH GH OD YLEUDWLRQ IRUFpH RQ D GRQF OHV PrPHV UpVXOWDWV TX¶DX SDUDJUDSKHSUpFpGHQW QRWDPPHQWHQFHTXLFRQFHUQHODUpVRQDQFH
±5pSRQVHjXQHH[FLWDWLRQQRQSpULRGLTXH
±5pSRQVHjXQHH[FLWDWLRQQRQSpULRGLTXH
&H SUREOqPH HVW WUqV YDVWH HW FRPSRUWH XQH LQILQLWp GH FDV 1RXV WUDLWHURQV GHX[ H[HPSOHV LPSRUWDQWV
&H SUREOqPH HVW WUqV YDVWH HW FRPSRUWH XQH LQILQLWp GH FDV 1RXV WUDLWHURQV GHX[ H[HPSOHV LPSRUWDQWV
([HPSOHUpSRQVHjXQpFKHORQ
([HPSOHUpSRQVHjXQpFKHORQ
)LJXUH
)LJXUH
± $ W < RQD ) = 0 T + . T = G¶R . T T = T FRV ωW + VLQ ωW DYHF ω = ω 0
± $ W < RQD ) = 0 T + . T = G¶R . T T = T FRV ωW + VLQ ωW DYHF ω = ω 0
± $ W > RQD ) = ) 0 T + . T = ) G¶R T ) T = T FRV ωW + VLQ ωW + − FRV ωW ω .
± $ W > RQD ) = ) 0 T + . T = ) G¶R T ) T = T FRV ωW + VLQ ωW + − FRV ωW ω .
± $ W = LO\DELHQHQWHQGXFRQWLQXLWpSRXUTW HW T W HWXQVDXWGHGLVFRQWLQXLWppJDOj ) SRXU T W 0
± $ W = LO\DELHQHQWHQGXFRQWLQXLWpSRXUTW HW T W HWXQVDXWGHGLVFRQWLQXLWppJDOj ) SRXU T W 0
([HPSOHUpSRQVHjXQFUpQHDX
([HPSOHUpSRQVHjXQFUpQHDX
YLEUDWLRQQDWXUHOOH
UpSRQVHIRUFpH
YLEUDWLRQQDWXUHOOH
)LJXUH
ψ Q = ϕQ ψ Q = ϕQ + π
VL VL
)LJXUH
- 118 -
DYHF HW
UpSRQVHIRUFpH
- 118 -
ω > Q ω ω < Q ω
DYHF HW
ψ Q = ϕQ ψ Q = ϕQ + π
VL VL
ω > Q ω ω < Q ω
3RXU FKDTXH KDUPRQLTXH GH OD YLEUDWLRQ IRUFpH RQ D GRQF OHV PrPHV UpVXOWDWV TX¶DX SDUDJUDSKHSUpFpGHQW QRWDPPHQWHQFHTXLFRQFHUQHODUpVRQDQFH
3RXU FKDTXH KDUPRQLTXH GH OD YLEUDWLRQ IRUFpH RQ D GRQF OHV PrPHV UpVXOWDWV TX¶DX SDUDJUDSKHSUpFpGHQW QRWDPPHQWHQFHTXLFRQFHUQHODUpVRQDQFH
±5pSRQVHjXQHH[FLWDWLRQQRQSpULRGLTXH
±5pSRQVHjXQHH[FLWDWLRQQRQSpULRGLTXH
&H SUREOqPH HVW WUqV YDVWH HW FRPSRUWH XQH LQILQLWp GH FDV 1RXV WUDLWHURQV GHX[ H[HPSOHV LPSRUWDQWV
&H SUREOqPH HVW WUqV YDVWH HW FRPSRUWH XQH LQILQLWp GH FDV 1RXV WUDLWHURQV GHX[ H[HPSOHV LPSRUWDQWV
([HPSOHUpSRQVHjXQpFKHORQ
([HPSOHUpSRQVHjXQpFKHORQ
)LJXUH
)LJXUH
± $ W < RQD ) = 0 T + . T = G¶R . T T = T FRV ωW + VLQ ωW DYHF ω = ω 0
± $ W < RQD ) = 0 T + . T = G¶R . T T = T FRV ωW + VLQ ωW DYHF ω = ω 0
± $ W > RQD ) = ) 0 T + . T = ) G¶R T ) T = T FRV ωW + VLQ ωW + − FRV ωW ω .
± $ W > RQD ) = ) 0 T + . T = ) G¶R T ) T = T FRV ωW + VLQ ωW + − FRV ωW ω .
± $ W = LO\DELHQHQWHQGXFRQWLQXLWpSRXUTW HW T W HWXQVDXWGHGLVFRQWLQXLWppJDOj ) SRXU T W 0
± $ W = LO\DELHQHQWHQGXFRQWLQXLWpSRXUTW HW T W HWXQVDXWGHGLVFRQWLQXLWppJDOj ) SRXU T W 0
([HPSOHUpSRQVHjXQFUpQHDX
([HPSOHUpSRQVHjXQFUpQHDX
YLEUDWLRQQDWXUHOOH
)LJXUH
- 118 -
UpSRQVHIRUFpH
YLEUDWLRQQDWXUHOOH
)LJXUH
- 118 -
UpSRQVHIRUFpH
± SRXUWRQD ) = HW 0 T + . T = G¶R T = T FRV ωW +
± SRXUWRQD ) = HW 0 T + . T = G¶R
. T VLQ ωW DYHF ω = ω 0
T = T FRV ωW +
± SRXU < W < τ RQD ) = ) 0 T + . T = ) G¶R T = T FRV ωW +
. T VLQ ωW DYHF ω = ω 0
± SRXU < W < τ RQD ) = ) 0 T + . T = ) G¶R
T ) VLQ ωW + − FRV ωW ω .
T = T FRV ωW +
T ) VLQ ωW + − FRV ωW ω .
± SRXU τ < W RQ D ) = HW 0 T + . T = G¶R HQ pFULYDQW OD FRQWLQXLWp GH T HW T SRXU W = τ
± SRXU τ < W RQ D ) = HW 0 T + . T = G¶R HQ pFULYDQW OD FRQWLQXLWp GH T HW T SRXU W = τ
) ) ⎛ ⎞ ⎛ T ⎞ T W = ⎜ T − − FRV ωτ ⎟ FRV ωW + ⎜ + VLQ ωτ ⎟ VLQ ωW . ⎝ ⎠ ⎝ω . ⎠
) ) ⎛ ⎞ ⎛ T ⎞ T W = ⎜ T − − FRV ωτ ⎟ FRV ωW + ⎜ + VLQ ωτ ⎟ VLQ ωW . ⎝ ⎠ ⎝ω . ⎠
&DV SDUWLFXOLHU OH FDV OLPLWH R τ → ) → ∞ OH SURGXLW ) τ D\DQW XQH YDOHXU ILQLH GRQQpH,VHQRPPHLPSXOVLRQ2QDGDQVFHFDV
&DV SDUWLFXOLHU OH FDV OLPLWH R τ → ) → ∞ OH SURGXLW ) τ D\DQW XQH YDOHXU ILQLH GRQQpH,VHQRPPHLPSXOVLRQ2QDGDQVFHFDV
± SRXU W < T W = T FRV ωW +
T VLQ ωW ω
± SRXU W < T W = T FRV ωW +
T , VLQ ωW ± SRXU W > T W = T FRV ωW + VLQ ωW + ω ω 0
YLEUDWLRQQDWXUHOOH
T , VLQ ωW ± SRXU W > T W = T FRV ωW + VLQ ωW + ω ω 0
YLEUDWLRQQDWXUHOOH
UpSRQVH LPSXOVLRQQHOOH
'DQVFHFDVLO\DFRQWLQXLWpGHTW HW T W SRXU W = HWXQVDXWGHGLVFRQWLQXLWppJDOj
SRXU T W
T VLQ ωW ω
, 0
UpSRQVH LPSXOVLRQQHOOH
'DQVFHFDVLO\DFRQWLQXLWpGHTW HW T W SRXU W = HWXQVDXWGHGLVFRQWLQXLWppJDOj
SRXU T W
, 0
6758&785(/,1e$,5(',66,3$7,9((;&,7e(
6758&785(/,1e$,5(',66,3$7,9((;&,7e(
&¶HVWOHFDVOHSOXVJpQpUDORO¶pTXDWLRQ HVWFRPSOqWHQRXVGLVWLQJXHURQVHQFRUHWURLV FDVSRXUODIRUFHH[FLWDWULFH)W KDUPRQLTXHSpULRGLTXHQRQKDUPRQLTXHQRQSpULRGLTXH /DVROXWLRQJpQpUDOHGHO¶pTXDWLRQKRPRJqQHRXpTXDWLRQVDQVVHFRQGPHPEUH DpWppWXGLpH DX
&¶HVWOHFDVOHSOXVJpQpUDORO¶pTXDWLRQ HVWFRPSOqWHQRXVGLVWLQJXHURQVHQFRUHWURLV FDVSRXUODIRUFHH[FLWDWULFH)W KDUPRQLTXHSpULRGLTXHQRQKDUPRQLTXHQRQSpULRGLTXH /DVROXWLRQJpQpUDOHGHO¶pTXDWLRQKRPRJqQHRXpTXDWLRQVDQVVHFRQGPHPEUH DpWppWXGLpH DX
6RQ DPSOLWXGH GpFURvW HW WHQG YHUV ]pUR DX ERXW G¶XQ WHPSV SOXV RX PRLQV FRXUW VXLYDQW O¶LPSRUWDQFHGHO¶DPRUWLVVHPHQWRQO¶DSSHOOHUpSRQVHWUDQVLWRLUH
6RQ DPSOLWXGH GpFURvW HW WHQG YHUV ]pUR DX ERXW G¶XQ WHPSV SOXV RX PRLQV FRXUW VXLYDQW O¶LPSRUWDQFHGHO¶DPRUWLVVHPHQWRQO¶DSSHOOHUpSRQVHWUDQVLWRLUH
/D VROXWLRQ SDUWLFXOLqUH GH O¶pTXDWLRQ FRPSOqWH QRWpH T∗ VH QRPPH UpSRQVH IRUFpH RX SHUPDQHQWHRXVWDWLRQQDLUH F¶HVWHOOHTXHQRXVDOORQVpWXGLHUPDLQWHQDQW
/D VROXWLRQ SDUWLFXOLqUH GH O¶pTXDWLRQ FRPSOqWH QRWpH T∗ VH QRPPH UpSRQVH IRUFpH RX SHUPDQHQWHRXVWDWLRQQDLUH F¶HVWHOOHTXHQRXVDOORQVpWXGLHUPDLQWHQDQW
- 119 -
- 119 -
± SRXUWRQD ) = HW 0 T + . T = G¶R T = T FRV ωW +
± SRXUWRQD ) = HW 0 T + . T = G¶R
. T VLQ ωW DYHF ω = ω 0
T = T FRV ωW +
± SRXU < W < τ RQD ) = ) 0 T + . T = ) G¶R T = T FRV ωW +
. T VLQ ωW DYHF ω = ω 0
± SRXU < W < τ RQD ) = ) 0 T + . T = ) G¶R
T ) VLQ ωW + − FRV ωW ω .
T = T FRV ωW +
T ) VLQ ωW + − FRV ωW ω .
± SRXU τ < W RQ D ) = HW 0 T + . T = G¶R HQ pFULYDQW OD FRQWLQXLWp GH T HW T SRXU W = τ
± SRXU τ < W RQ D ) = HW 0 T + . T = G¶R HQ pFULYDQW OD FRQWLQXLWp GH T HW T SRXU W = τ
) ) ⎛ ⎞ ⎛ T ⎞ T W = ⎜ T − − FRV ωτ ⎟ FRV ωW + ⎜ + VLQ ωτ ⎟ VLQ ωW . ⎝ ⎠ ⎝ω . ⎠
) ) ⎛ ⎞ ⎛ T ⎞ T W = ⎜ T − − FRV ωτ ⎟ FRV ωW + ⎜ + VLQ ωτ ⎟ VLQ ωW . ⎝ ⎠ ⎝ω . ⎠
&DV SDUWLFXOLHU OH FDV OLPLWH R τ → ) → ∞ OH SURGXLW ) τ D\DQW XQH YDOHXU ILQLH GRQQpH,VHQRPPHLPSXOVLRQ2QDGDQVFHFDV
&DV SDUWLFXOLHU OH FDV OLPLWH R τ → ) → ∞ OH SURGXLW ) τ D\DQW XQH YDOHXU ILQLH GRQQpH,VHQRPPHLPSXOVLRQ2QDGDQVFHFDV
± SRXU W < T W = T FRV ωW +
T VLQ ωW ω
± SRXU W < T W = T FRV ωW +
T , VLQ ωW ± SRXU W > T W = T FRV ωW + VLQ ωW + ω 0 ω
YLEUDWLRQQDWXUHOOH
T , VLQ ωW ± SRXU W > T W = T FRV ωW + VLQ ωW + ω 0 ω
YLEUDWLRQQDWXUHOOH
UpSRQVH LPSXOVLRQQHOOH
'DQVFHFDVLO\DFRQWLQXLWpGHTW HW T W SRXU W = HWXQVDXWGHGLVFRQWLQXLWppJDOj
SRXU T W
T VLQ ωW ω
, 0
UpSRQVH LPSXOVLRQQHOOH
'DQVFHFDVLO\DFRQWLQXLWpGHTW HW T W SRXU W = HWXQVDXWGHGLVFRQWLQXLWppJDOj
SRXU T W
, 0
6758&785(/,1e$,5(',66,3$7,9((;&,7e(
6758&785(/,1e$,5(',66,3$7,9((;&,7e(
&¶HVWOHFDVOHSOXVJpQpUDORO¶pTXDWLRQ HVWFRPSOqWHQRXVGLVWLQJXHURQVHQFRUHWURLV FDVSRXUODIRUFHH[FLWDWULFH)W KDUPRQLTXHSpULRGLTXHQRQKDUPRQLTXHQRQSpULRGLTXH /DVROXWLRQJpQpUDOHGHO¶pTXDWLRQKRPRJqQHRXpTXDWLRQVDQVVHFRQGPHPEUH DpWppWXGLpH DX
&¶HVWOHFDVOHSOXVJpQpUDORO¶pTXDWLRQ HVWFRPSOqWHQRXVGLVWLQJXHURQVHQFRUHWURLV FDVSRXUODIRUFHH[FLWDWULFH)W KDUPRQLTXHSpULRGLTXHQRQKDUPRQLTXHQRQSpULRGLTXH /DVROXWLRQJpQpUDOHGHO¶pTXDWLRQKRPRJqQHRXpTXDWLRQVDQVVHFRQGPHPEUH DpWppWXGLpH DX
6RQ DPSOLWXGH GpFURvW HW WHQG YHUV ]pUR DX ERXW G¶XQ WHPSV SOXV RX PRLQV FRXUW VXLYDQW O¶LPSRUWDQFHGHO¶DPRUWLVVHPHQWRQO¶DSSHOOHUpSRQVHWUDQVLWRLUH
6RQ DPSOLWXGH GpFURvW HW WHQG YHUV ]pUR DX ERXW G¶XQ WHPSV SOXV RX PRLQV FRXUW VXLYDQW O¶LPSRUWDQFHGHO¶DPRUWLVVHPHQWRQO¶DSSHOOHUpSRQVHWUDQVLWRLUH
/D VROXWLRQ SDUWLFXOLqUH GH O¶pTXDWLRQ FRPSOqWH QRWpH T∗ VH QRPPH UpSRQVH IRUFpH RX SHUPDQHQWHRXVWDWLRQQDLUH F¶HVWHOOHTXHQRXVDOORQVpWXGLHUPDLQWHQDQW
/D VROXWLRQ SDUWLFXOLqUH GH O¶pTXDWLRQ FRPSOqWH QRWpH T∗ VH QRPPH UpSRQVH IRUFpH RX SHUPDQHQWHRXVWDWLRQQDLUH F¶HVWHOOHTXHQRXVDOORQVpWXGLHUPDLQWHQDQW
- 119 -
- 119 -
±5pSRQVHjXQHH[FLWDWLRQKDUPRQLTXH
±5pSRQVHjXQHH[FLWDWLRQKDUPRQLTXH
/¶pTXDWLRQGXPRXYHPHQWSHXWV¶pFULUH
/¶pTXDWLRQGXPRXYHPHQWSHXWV¶pFULUH
0 T + & T + . T = ) VLQ ω W
HQSUHQDQWpJDOHj]pURODSKDVH ϕ GHODIRUFHH[FLWDWULFHFHTXLQHUHVWUHLQWSDVODJpQpUDOLWp GHO¶pWXGH2QDGDQVFHFDVSRXUODUpSRQVHIRUFpH
DYHF
) VLQ ω W + ψ .
∗
T =
⎧ ⎪ ⎪ FRV ψ = ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ VLQ ψ = ⎪ ⎪ ⎪⎩
⎛ ω ⎞ ⎜ − ⎟ + ⎛⎜ λ ω ⎞⎟ ⎜ ω ⎟ ω⎠ ⎝ ⎝ ⎠
⎛ω ⎞ − ⎜ ⎟ ⎝ ω ⎠
⎞ ⎛ ⎜ − ω ⎟ ⎜ ω ⎟⎠ ⎝
ω ⎞ ⎛ + ⎜ λ ⎟ ω ⎠ ⎝
ω ⎞ ⎛ + ⎜ λ ⎟ ω ⎠ ⎝
DYHF
5HPDUTXHODUpSRQVHIRUFpHHVWKDUPRQLTXHHWVDIUpTXHQFHHVWFHOOHGHO¶H[FLWDWLRQ 5HPDUTXHO¶DPSOLWXGHGHODUpSRQVHIRUFpHHVWpJDOHjO¶DPSOLWXGHVWDWLTXH
−
ω SRXU ω GLIIpUHQWHVYDOHXUVGHO¶DPRUWLVVHPHQW λ /HPD[LPXPGX)$'HVWG¶DXWDQWSOXVJUDQGTXH O¶DPRUWLVVHPHQW HVW IDLEOH LO GHYLHQW LQILQL GDQV OH FDV QRQ UpHO G¶XQ DPRUWLVVHPHQW ULJRXUHXVHPHQWQXO
LQIpULHXURXpJDOjO¶XQLWpTXHOOHTXHVRLWODYDOHXUGXUDSSRUW
ω ω
) VLQ ω W + ψ .
∗
T =
⎧ ⎪ ⎪ FRV ψ = ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ VLQ ψ = ⎪ ⎪ ⎪⎩
⎛ ω ⎞ ⎜ − ⎟ + ⎛⎜ λ ω ⎞⎟ ⎜ ω ⎟ ω⎠ ⎝ ⎝ ⎠
⎛ω ⎞ − ⎜ ⎟ ⎝ ω ⎠
⎞ ⎛ ⎜ − ω ⎟ ⎜ ω ⎟⎠ ⎝
OH)$' HVW
) VLQ ω W + ψ .
⎛ ω ⎞ ⎜ − ⎟ + ⎛⎜ λ ω ⎞⎟ ⎜ ω ⎟ ω⎠ ⎝ ⎝ ⎠
⎛ω ⎞ − ⎜ ⎟ ⎝ ω ⎠
) PXOWLSOLpH . −
ω ω
OH)$' HVW
ω ⎞ ⎛ + ⎜ λ ⎟ ω ⎠ ⎝
DYHF
5HPDUTXHO¶DPSOLWXGHGHODUpSRQVHIRUFpHHVWpJDOHjO¶DPSOLWXGHVWDWLTXH
) PXOWLSOLpH .
⎤ ⎡⎛ ω ⎞ ω ⎞ ⎛ SDUOH)$'IDFWHXUG¶DPSOLILFDWLRQG\QDPLTXH pJDOj ⎢⎜ − ⎟ + ⎜ λ ⎟ ⎥ ⎢⎜⎝ ω ⎟⎠ ω⎠ ⎥ ⎝ ⎣ ⎦
−
ω SRXU ω GLIIpUHQWHVYDOHXUVGHO¶DPRUWLVVHPHQW λ /HPD[LPXPGX)$'HVWG¶DXWDQWSOXVJUDQGTXH O¶DPRUWLVVHPHQW HVW IDLEOH LO GHYLHQW LQILQL GDQV OH FDV QRQ UpHO G¶XQ DPRUWLVVHPHQW ULJRXUHXVHPHQWQXO
/DILJXUHGRQQHOHVYDOHXUVGHFHIDFWHXUHQIRQFWLRQGXUDSSRUWGHVIUpTXHQFHV
/DSHQWHDXSRLQW RULJLQHFRPPXQHGHVFRXUEHVHVWQXOOH3RXU λ ≥ LQIpULHXURXpJDOjO¶XQLWpTXHOOHTXHVRLWODYDOHXUGXUDSSRUW
ω ω
OH)$' HVW
0 T + & T + . T = ) VLQ ω W
HQSUHQDQWpJDOHj]pURODSKDVH ϕ GHODIRUFHH[FLWDWULFHFHTXLQHUHVWUHLQWSDVODJpQpUDOLWp GHO¶pWXGH2QDGDQVFHFDVSRXUODUpSRQVHIRUFpH
ω ⎞ ⎛ + ⎜ λ ⎟ ω ⎠ ⎝
5HPDUTXHODUpSRQVHIRUFpHHVWKDUPRQLTXHHWVDIUpTXHQFHHVWFHOOHGHO¶H[FLWDWLRQ
- 120 -
ω −λ ω ⎞ ⎛ ⎜ − ω ⎟ ⎜ ω ⎟⎠ ⎝
- 120 -
HQSUHQDQWpJDOHj]pURODSKDVH ϕ GHODIRUFHH[FLWDWULFHFHTXLQHUHVWUHLQWSDVODJpQpUDOLWp GHO¶pWXGH2QDGDQVFHFDVSRXUODUpSRQVHIRUFpH
DYHF
ω ⎞ ⎛ + ⎜ λ ⎟ ω ⎠ ⎝
LQIpULHXURXpJDOjO¶XQLWpTXHOOHTXHVRLWODYDOHXUGXUDSSRUW
0 T + & T + . T = ) VLQ ω W
⎞ ⎛ ⎜ − ω ⎟ ⎜ ω ⎟⎠ ⎝
/DSHQWHDXSRLQW RULJLQHFRPPXQHGHVFRXUEHVHVWQXOOH3RXU λ ≥
/¶pTXDWLRQGXPRXYHPHQWSHXWV¶pFULUH
⎧ ⎪ ⎪ FRV ψ = ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ VLQ ψ = ⎪ ⎪ ⎪⎩
ω SRXU ω GLIIpUHQWHVYDOHXUVGHO¶DPRUWLVVHPHQW λ /HPD[LPXPGX)$'HVWG¶DXWDQWSOXVJUDQGTXH O¶DPRUWLVVHPHQW HVW IDLEOH LO GHYLHQW LQILQL GDQV OH FDV QRQ UpHO G¶XQ DPRUWLVVHPHQW ULJRXUHXVHPHQWQXO
/¶pTXDWLRQGXPRXYHPHQWSHXWV¶pFULUH
T =
ω ⎞ ⎛ + ⎜ λ ⎟ ω ⎠ ⎝
/DILJXUHGRQQHOHVYDOHXUVGHFHIDFWHXUHQIRQFWLRQGXUDSSRUWGHVIUpTXHQFHV
±5pSRQVHjXQHH[FLWDWLRQKDUPRQLTXH
5HPDUTXHO¶DPSOLWXGHGHODUpSRQVHIRUFpHHVWpJDOHjO¶DPSOLWXGHVWDWLTXH
±5pSRQVHjXQHH[FLWDWLRQKDUPRQLTXH
∗
ω −λ ω
- 120 -
⎞ ⎛ ⎜ − ω ⎟ ⎜ ω ⎟⎠ ⎝
⎤ ⎡⎛ ω ⎞⎟ ω ⎞ ⎛ ⎢ ⎜ SDUOH)$'IDFWHXUG¶DPSOLILFDWLRQG\QDPLTXH pJDOj − + ⎜ λ ⎟ ⎥ ⎢⎜⎝ ω ⎟⎠ ω⎠ ⎥ ⎝ ⎣ ⎦
/DILJXUHGRQQHOHVYDOHXUVGHFHIDFWHXUHQIRQFWLRQGXUDSSRUWGHVIUpTXHQFHV
/DSHQWHDXSRLQW RULJLQHFRPPXQHGHVFRXUEHVHVWQXOOH3RXU λ ≥
5HPDUTXHODUpSRQVHIRUFpHHVWKDUPRQLTXHHWVDIUpTXHQFHHVWFHOOHGHO¶H[FLWDWLRQ
) PXOWLSOLpH .
⎤ ⎡⎛ ω ⎞⎟ ω ⎞ ⎛ ⎢ ⎜ SDUOH)$'IDFWHXUG¶DPSOLILFDWLRQG\QDPLTXH pJDOj − + ⎜ λ ⎟ ⎥ ⎢⎜⎝ ω ⎟⎠ ω⎠ ⎥ ⎝ ⎣ ⎦
0 T + & T + . T = ) VLQ ω W
HQSUHQDQWpJDOHj]pURODSKDVH ϕ GHODIRUFHH[FLWDWULFHFHTXLQHUHVWUHLQWSDVODJpQpUDOLWp GHO¶pWXGH2QDGDQVFHFDVSRXUODUpSRQVHIRUFpH
ω −λ ω ⎞ ⎛ ⎜ − ω ⎟ ⎜ ω ⎟⎠ ⎝
∗
T =
⎧ ⎪ ⎪ FRV ψ = ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ VLQ ψ = ⎪ ⎪ ⎪⎩
) VLQ ω W + ψ .
⎛ ω ⎞ ⎜ − ⎟ + ⎛⎜ λ ω ⎞⎟ ⎜ ω ⎟ ω⎠ ⎝ ⎝ ⎠
⎛ω ⎞ − ⎜ ⎟ ⎝ ω ⎠
⎞ ⎛ ⎜ − ω ⎟ ⎜ ω ⎟⎠ ⎝
ω ⎞ ⎛ + ⎜ λ ⎟ ω ⎠ ⎝
ω −λ ω ⎞ ⎛ ⎜ − ω ⎟ ⎜ ω ⎟⎠ ⎝
ω ⎞ ⎛ + ⎜ λ ⎟ ω ⎠ ⎝
5HPDUTXHODUpSRQVHIRUFpHHVWKDUPRQLTXHHWVDIUpTXHQFHHVWFHOOHGHO¶H[FLWDWLRQ 5HPDUTXHO¶DPSOLWXGHGHODUpSRQVHIRUFpHHVWpJDOHjO¶DPSOLWXGHVWDWLTXH
) PXOWLSOLpH .
⎤ ⎡⎛ ω ⎞ ω ⎞ ⎛ SDUOH)$'IDFWHXUG¶DPSOLILFDWLRQG\QDPLTXH pJDOj ⎢⎜ − ⎟ + ⎜ λ ⎟ ⎥ ⎢⎜⎝ ω ⎟⎠ ω⎠ ⎥ ⎝ ⎣ ⎦
−
ω SRXU ω GLIIpUHQWHVYDOHXUVGHO¶DPRUWLVVHPHQW λ /HPD[LPXPGX)$'HVWG¶DXWDQWSOXVJUDQGTXH O¶DPRUWLVVHPHQW HVW IDLEOH LO GHYLHQW LQILQL GDQV OH FDV QRQ UpHO G¶XQ DPRUWLVVHPHQW ULJRXUHXVHPHQWQXO
/DILJXUHGRQQHOHVYDOHXUVGHFHIDFWHXUHQIRQFWLRQGXUDSSRUWGHVIUpTXHQFHV
/DSHQWHDXSRLQW RULJLQHFRPPXQHGHVFRXUEHVHVWQXOOH3RXU λ ≥ LQIpULHXURXpJDOjO¶XQLWpTXHOOHTXHVRLWODYDOHXUGXUDSSRUW
- 120 -
ω ω
OH)$' HVW
)DFWHXUG¶$PSOLILFDWLRQ'\QDPLTXH
)DFWHXUG¶$PSOLILFDWLRQ'\QDPLTXH
)LJXUH
)LJXUH
5HPDUTXHGDQVODUpSRQVHIRUFpHODSKDVH ψ PRG π GXGpSODFHPHQW T∗ SDUUDSSRUW
5HPDUTXHGDQVODUpSRQVHIRUFpHODSKDVH ψ PRG π GXGpSODFHPHQW T∗ SDUUDSSRUW
j O¶H[FLWDWLRQ HVW WRXMRXUV FRPSULVH HQWUH − π HW T∗ HVW HQ UHWDUG VXU )W /D ILJXUH ω ⎛ π⎞ GRQQHOHVYDOHXUVGH −ψ HQIRQFWLRQGH SRXUGLIIpUHQWHVYDOHXUVGH λ OHSRLQW ⎜ ⎟ ω ⎝ ⎠
j O¶H[FLWDWLRQ HVW WRXMRXUV FRPSULVH HQWUH − π HW T∗ HVW HQUHWDUG VXU )W /D ILJXUH ω ⎛ π⎞ GRQQHOHVYDOHXUVGH −ψ HQIRQFWLRQGH SRXUGLIIpUHQWHVYDOHXUVGH λ OHSRLQW ⎜ ⎟ ω ⎝ ⎠
HVW FRPPXQ j WRXWHV OHV FRXUEHV F¶HVW j GLUH TXH TXHO TXH VRLW λ T∗ W HVW HQ TXDGUDWXUH ω UHWDUGVXU)W VL ω = ω RQQRWHUDODUDSLGHYDULDWLRQGH ψ DXYRLVLQDJHGH = ω
HVW FRPPXQ j WRXWHV OHV FRXUEHV F¶HVW j GLUH TXH TXHO TXH VRLW λ T∗ W HVW HQ TXDGUDWXUH ω UHWDUGVXU)W VL ω = ω RQQRWHUDODUDSLGHYDULDWLRQGH ψ DXYRLVLQDJHGH = ω
- 121 -
- 121 -
)DFWHXUG¶$PSOLILFDWLRQ'\QDPLTXH
)DFWHXUG¶$PSOLILFDWLRQ'\QDPLTXH
)LJXUH
)LJXUH
5HPDUTXHGDQVODUpSRQVHIRUFpHODSKDVH ψ PRG π GXGpSODFHPHQW T∗ SDUUDSSRUW
5HPDUTXHGDQVODUpSRQVHIRUFpHODSKDVH ψ PRG π GXGpSODFHPHQW T∗ SDUUDSSRUW
j O¶H[FLWDWLRQ HVW WRXMRXUV FRPSULVH HQWUH − π HW T∗ HVW HQ UHWDUG VXU )W /D ILJXUH ω ⎛ π⎞ GRQQHOHVYDOHXUVGH −ψ HQIRQFWLRQGH SRXUGLIIpUHQWHVYDOHXUVGH λ OHSRLQW ⎜ ⎟ ω ⎝ ⎠
j O¶H[FLWDWLRQ HVW WRXMRXUV FRPSULVH HQWUH − π HW T∗ HVW HQUHWDUG VXU )W /D ILJXUH ω ⎛ π⎞ GRQQHOHVYDOHXUVGH −ψ HQIRQFWLRQGH SRXUGLIIpUHQWHVYDOHXUVGH λ OHSRLQW ⎜ ⎟ ω ⎝ ⎠
HVW FRPPXQ j WRXWHV OHV FRXUEHV F¶HVW j GLUH TXH TXHO TXH VRLW λ T∗ W HVW HQ TXDGUDWXUH ω UHWDUGVXU)W VL ω = ω RQQRWHUDODUDSLGHYDULDWLRQGH ψ DXYRLVLQDJHGH = ω
HVW FRPPXQ j WRXWHV OHV FRXUEHV F¶HVW j GLUH TXH TXHO TXH VRLW λ T∗ W HVW HQ TXDGUDWXUH ω UHWDUGVXU)W VL ω = ω RQQRWHUDODUDSLGHYDULDWLRQGH ψ DXYRLVLQDJHGH = ω
- 121 -
- 121 -
)LJXUH
)LJXUH
5HPDUTXH±5pVRQDQFHVXUOHUpVHDXGHFRXUEHVGHODILJXUHFRQVLGpURQVODFRXUEH FHV SRLQWV G¶DPSOLWXGH PD[LPDOH VRQW OLHX GHV SRLQWV G¶RUGRQQpH PD[LPDOH 3RXU λ ≥ LOV VRQW VXU XQH FRXUEH DGPHWWDQW SRXU WRXV FRQIRQGXV DYHF OH SRLQW 3RXU λ < DV\PSWRWHODGURLWHG¶DEVFLVVHGLWHFRXUEHGHUpVRQDQFHHWO¶RQD
5HPDUTXH±5pVRQDQFHVXUOHUpVHDXGHFRXUEHVGHODILJXUHFRQVLGpURQVODFRXUEH FHV SRLQWV G¶DPSOLWXGH PD[LPDOH VRQW OLHX GHV SRLQWV G¶RUGRQQpH PD[LPDOH 3RXU λ ≥ LOV VRQW VXU XQH FRXUEH DGPHWWDQW SRXU WRXV FRQIRQGXV DYHF OH SRLQW 3RXU λ < DV\PSWRWHODGURLWHG¶DEVFLVVHGLWHFRXUEHGHUpVRQDQFHHWO¶RQD
)$' PD[ =
λ − λ
SRXU
ω = − λ ω
)$' PD[ =
λ − λ
SRXU
ω = − λ ω
/DSXOVDWLRQG¶H[FLWDWLRQ ω5 = ω − λ VHQRPPHSXOVDWLRQGHUpVRQDQFH
/DSXOVDWLRQG¶H[FLWDWLRQ ω5 = ω − λ VHQRPPHSXOVDWLRQGHUpVRQDQFH
,OIDXWQRWHUTXHOHSLFGHUpVRQDQFHHVWG¶DXWDQWSOXVKDXWHWpWURLWTXHO¶DPRUWLVVHPHQW λ HVW SOXVIDLEOHSDUH[HPSOHSRXU λ = RQD )$' PD[ = SRXU ω = ω5 = ω ω HW OH )$' UHVWH VXSpULHXU j GDQV O¶LQWHUYDOOH < < OD IRUFH H[FLWDWULFH Q¶HVW ω DORUVGDQJHUHXVHTXHGDQVXQHSODJHGHIUpTXHQFHWUqVUpGXLWH
,OIDXWQRWHUTXHOHSLFGHUpVRQDQFHHVWG¶DXWDQWSOXVKDXWHWpWURLWTXHO¶DPRUWLVVHPHQW λ HVW SOXVIDLEOHSDUH[HPSOHSRXU λ = RQD )$' PD[ = SRXU ω = ω5 = ω ω HW OH )$' UHVWH VXSpULHXU j GDQV O¶LQWHUYDOOH < < OD IRUFH H[FLWDWULFH Q¶HVW ω DORUVGDQJHUHXVHTXHGDQVXQHSODJHGHIUpTXHQFHWUqVUpGXLWH
3RXU XQH VWUXFWXUH IDLEOHPHQW DPRUWLH FDV OH SOXV IUpTXHQW RQ GRLW GRQF FRQVLGpUHU TXDWUH SXOVDWLRQV
3RXU XQH VWUXFWXUH IDLEOHPHQW DPRUWLH FDV OH SOXV IUpTXHQW RQ GRLW GRQF FRQVLGpUHU TXDWUH SXOVDWLRQV
ω SXOVDWLRQVG¶H[FLWDWLRQ ω =
. SXOVDWLRQQDWXUHOOHQRQDPRUWLHDVVRFLpH Ω = ω − λ 0
SXOVDWLRQGXUpJLPHWUDQVLWRLUH ω5 = ω − λ SXOVDWLRQGHUpVRQDQFH
ω SXOVDWLRQVG¶H[FLWDWLRQ ω =
. SXOVDWLRQQDWXUHOOHQRQDPRUWLHDVVRFLpH Ω = ω − λ 0
SXOVDWLRQGXUpJLPHWUDQVLWRLUH ω5 = ω − λ SXOVDWLRQGHUpVRQDQFH
- 122 -
- 122 -
)LJXUH
)LJXUH
5HPDUTXH±5pVRQDQFHVXUOHUpVHDXGHFRXUEHVGHODILJXUHFRQVLGpURQVODFRXUEH FHV SRLQWV G¶DPSOLWXGH PD[LPDOH VRQW OLHX GHV SRLQWV G¶RUGRQQpH PD[LPDOH 3RXU λ ≥ LOV VRQW VXU XQH FRXUEH DGPHWWDQW SRXU WRXV FRQIRQGXV DYHF OH SRLQW 3RXU λ < DV\PSWRWHODGURLWHG¶DEVFLVVHGLWHFRXUEHGHUpVRQDQFHHWO¶RQD
5HPDUTXH±5pVRQDQFHVXUOHUpVHDXGHFRXUEHVGHODILJXUHFRQVLGpURQVODFRXUEH FHV SRLQWV G¶DPSOLWXGH PD[LPDOH VRQW OLHX GHV SRLQWV G¶RUGRQQpH PD[LPDOH 3RXU λ ≥ LOV VRQW VXU XQH FRXUEH DGPHWWDQW SRXU WRXV FRQIRQGXV DYHF OH SRLQW 3RXU λ < DV\PSWRWHODGURLWHG¶DEVFLVVHGLWHFRXUEHGHUpVRQDQFHHWO¶RQD
)$' PD[ =
λ − λ
SRXU
ω = − λ ω
)$' PD[ =
λ − λ
SRXU
ω = − λ ω
/DSXOVDWLRQG¶H[FLWDWLRQ ω5 = ω − λ VHQRPPHSXOVDWLRQGHUpVRQDQFH
/DSXOVDWLRQG¶H[FLWDWLRQ ω5 = ω − λ VHQRPPHSXOVDWLRQGHUpVRQDQFH
,OIDXWQRWHUTXHOHSLFGHUpVRQDQFHHVWG¶DXWDQWSOXVKDXWHWpWURLWTXHO¶DPRUWLVVHPHQW λ HVW SOXVIDLEOHSDUH[HPSOHSRXU λ = RQD )$' PD[ = SRXU ω = ω5 = ω ω HW OH )$' UHVWH VXSpULHXU j GDQV O¶LQWHUYDOOH < < OD IRUFH H[FLWDWULFH Q¶HVW ω DORUVGDQJHUHXVHTXHGDQVXQHSODJHGHIUpTXHQFHWUqVUpGXLWH
,OIDXWQRWHUTXHOHSLFGHUpVRQDQFHHVWG¶DXWDQWSOXVKDXWHWpWURLWTXHO¶DPRUWLVVHPHQW λ HVW SOXVIDLEOHSDUH[HPSOHSRXU λ = RQD )$' PD[ = SRXU ω = ω5 = ω ω HW OH )$' UHVWH VXSpULHXU j GDQV O¶LQWHUYDOOH < < OD IRUFH H[FLWDWULFH Q¶HVW ω DORUVGDQJHUHXVHTXHGDQVXQHSODJHGHIUpTXHQFHWUqVUpGXLWH
3RXU XQH VWUXFWXUH IDLEOHPHQW DPRUWLH FDV OH SOXV IUpTXHQW RQ GRLW GRQF FRQVLGpUHU TXDWUH SXOVDWLRQV
3RXU XQH VWUXFWXUH IDLEOHPHQW DPRUWLH FDV OH SOXV IUpTXHQW RQ GRLW GRQF FRQVLGpUHU TXDWUH SXOVDWLRQV
ω SXOVDWLRQVG¶H[FLWDWLRQ ω =
. SXOVDWLRQQDWXUHOOHQRQDPRUWLHDVVRFLpH Ω = ω − λ 0
SXOVDWLRQGXUpJLPHWUDQVLWRLUH ω5 = ω − λ SXOVDWLRQGHUpVRQDQFH - 122 -
ω SXOVDWLRQVG¶H[FLWDWLRQ ω =
. SXOVDWLRQQDWXUHOOHQRQDPRUWLHDVVRFLpH Ω = ω − λ 0
SXOVDWLRQGXUpJLPHWUDQVLWRLUH ω5 = ω − λ SXOVDWLRQGHUpVRQDQFH - 122 -
5HPDUTXH OHV GHX[ UpVHDX[ GHV ILJXUHV HW FRQVWLWXHQW OHV FRXUEHV GH UpSRQVH HQ IUpTXHQFHVSRXUO¶DPSOLWXGHHWODSKDVHGXGpSODFHPHQW T∗
5HPDUTXH OHV GHX[ UpVHDX[ GHV ILJXUHV HW FRQVWLWXHQW OHV FRXUEHV GH UpSRQVH HQ IUpTXHQFHVSRXUO¶DPSOLWXGHHWODSKDVHGXGpSODFHPHQW T∗
'DQVFHUWDLQVSUREOqPHVRQV¶LQWpUHVVHDX[PrPHVUpVHDX[GHFRXUEHVSRXUO¶DPSOLWXGHHWOD SKDVHGHODYLWHVVH T ∗ RXGHO¶DFFpOpUDWLRQ T∗
'DQVFHUWDLQVSUREOqPHVRQV¶LQWpUHVVHDX[PrPHVUpVHDX[GHFRXUEHVSRXUO¶DPSOLWXGHHWOD SKDVHGHODYLWHVVH T ∗ RXGHO¶DFFpOpUDWLRQ T∗
5HPDUTXH pQHUJLH GLVVLSpH /D ILJXUH GRQQH OD FRXUEH IRUFHGpSODFHPHQW F¶HVW XQH HOOLSVHGRQWO¶DLUHUHSUpVHQWHO¶pQHUJLHGLVVLSpHDXFRXUVG¶XQF\FOH
5HPDUTXH pQHUJLH GLVVLSpH /D ILJXUH GRQQH OD FRXUEH IRUFHGpSODFHPHQW F¶HVW XQH HOOLSVHGRQWO¶DLUHUHSUpVHQWHO¶pQHUJLHGLVVLSpHDXFRXUVG¶XQF\FOH
)LJXUH
2QDGRQF
(' =
∫
) W T ∗ W GW = π &
F\FOH
)
.
)LJXUH
2QDGRQF
)$' ⋅ ω
(' =
∫
) W T ∗ W GW = π &
F\FOH
) )$' ⋅ ω .
±5pSRQVHjXQHH[FLWDWLRQSpULRGLTXHQRQKDUPRQLTXH
±5pSRQVHjXQHH[FLWDWLRQSpULRGLTXHQRQKDUPRQLTXH
/DVWUXFWXUHpWDQWOLQpDLUHF¶HVWjGLUHUpJLHSDUXQHpTXDWLRQGXW\SH RQSHXWOXLDSSOLTXHU OH SULQFLSH GH VXSHUSRVLWLRQ OD UpSRQVH j O¶H[FLWDWLRQ SpULRGLTXH )W V¶REWLHQGUD GRQF HQ GpFRPSRVDQW FHOOHFL HQ VpULH GH )RXULHU HW HQ FDOFXODQW VpSDUpPHQW OD UpSRQVH j FKDTXH KDUPRQLTXHODVRPPHGHODVpULHGH)RXULHUGHVUpSRQVHVIRXUQLWODUpSRQVHFKHUFKpHGHOD VWUXFWXUH
/DVWUXFWXUHpWDQWOLQpDLUHF¶HVWjGLUHUpJLHSDUXQHpTXDWLRQGXW\SH RQSHXWOXLDSSOLTXHU OH SULQFLSH GH VXSHUSRVLWLRQ OD UpSRQVH j O¶H[FLWDWLRQ SpULRGLTXH )W V¶REWLHQGUD GRQF HQ GpFRPSRVDQW FHOOHFL HQ VpULH GH )RXULHU HW HQ FDOFXODQW VpSDUpPHQW OD UpSRQVH j FKDTXH KDUPRQLTXHODVRPPHGHODVpULHGH)RXULHUGHVUpSRQVHVIRXUQLWODUpSRQVHFKHUFKpHGHOD VWUXFWXUH
3RXUFKDTXHKDUPRQLTXHQRXVVRPPHVGRQFUDPHQpVDXSUREOqPHSUpFpGHQW
3RXUFKDTXHKDUPRQLTXHQRXVVRPPHVGRQFUDPHQpVDXSUREOqPHSUpFpGHQW
±5pSRQVHjXQHH[FLWDWLRQQRQSpULRGLTXH
±5pSRQVHjXQHH[FLWDWLRQQRQSpULRGLTXH
2Q GRLW WURXYHU XQH VROXWLRQ SDUWLFXOLqUH T∗ W GH O¶pTXDWLRQ FRPSOqWH GRQW OH VHFRQG PHPEUHHVWXQHIRQFWLRQTXHOFRQTXH)W
2Q GRLW WURXYHU XQH VROXWLRQ SDUWLFXOLqUH T∗ W GH O¶pTXDWLRQ FRPSOqWH GRQW OH VHFRQG PHPEUHHVWXQHIRQFWLRQTXHOFRQTXH)W
- 123 -
- 123 -
5HPDUTXH OHV GHX[ UpVHDX[ GHV ILJXUHV HW FRQVWLWXHQW OHV FRXUEHV GH UpSRQVH HQ IUpTXHQFHVSRXUO¶DPSOLWXGHHWODSKDVHGXGpSODFHPHQW T∗
5HPDUTXH OHV GHX[ UpVHDX[ GHV ILJXUHV HW FRQVWLWXHQW OHV FRXUEHV GH UpSRQVH HQ IUpTXHQFHVSRXUO¶DPSOLWXGHHWODSKDVHGXGpSODFHPHQW T∗
'DQVFHUWDLQVSUREOqPHVRQV¶LQWpUHVVHDX[PrPHVUpVHDX[GHFRXUEHVSRXUO¶DPSOLWXGHHWOD SKDVHGHODYLWHVVH T ∗ RXGHO¶DFFpOpUDWLRQ T∗
'DQVFHUWDLQVSUREOqPHVRQV¶LQWpUHVVHDX[PrPHVUpVHDX[GHFRXUEHVSRXUO¶DPSOLWXGHHWOD SKDVHGHODYLWHVVH T ∗ RXGHO¶DFFpOpUDWLRQ T∗
5HPDUTXH pQHUJLH GLVVLSpH /D ILJXUH GRQQH OD FRXUEH IRUFHGpSODFHPHQW F¶HVW XQH HOOLSVHGRQWO¶DLUHUHSUpVHQWHO¶pQHUJLHGLVVLSpHDXFRXUVG¶XQF\FOH
5HPDUTXH pQHUJLH GLVVLSpH /D ILJXUH GRQQH OD FRXUEH IRUFHGpSODFHPHQW F¶HVW XQH HOOLSVHGRQWO¶DLUHUHSUpVHQWHO¶pQHUJLHGLVVLSpHDXFRXUVG¶XQF\FOH
)LJXUH
2QDGRQF
(' =
∫
) ) W T ∗ W GW = π & )$' ⋅ ω .
F\FOH
)LJXUH
2QDGRQF
(' =
∫
) W T ∗ W GW = π &
F\FOH
) )$' ⋅ ω .
±5pSRQVHjXQHH[FLWDWLRQSpULRGLTXHQRQKDUPRQLTXH
±5pSRQVHjXQHH[FLWDWLRQSpULRGLTXHQRQKDUPRQLTXH
/DVWUXFWXUHpWDQWOLQpDLUHF¶HVWjGLUHUpJLHSDUXQHpTXDWLRQGXW\SH RQSHXWOXLDSSOLTXHU OH SULQFLSH GH VXSHUSRVLWLRQ OD UpSRQVH j O¶H[FLWDWLRQ SpULRGLTXH )W V¶REWLHQGUD GRQF HQ GpFRPSRVDQW FHOOHFL HQ VpULH GH )RXULHU HW HQ FDOFXODQW VpSDUpPHQW OD UpSRQVH j FKDTXH KDUPRQLTXHODVRPPHGHODVpULHGH)RXULHUGHVUpSRQVHVIRXUQLWODUpSRQVHFKHUFKpHGHOD VWUXFWXUH
/DVWUXFWXUHpWDQWOLQpDLUHF¶HVWjGLUHUpJLHSDUXQHpTXDWLRQGXW\SH RQSHXWOXLDSSOLTXHU OH SULQFLSH GH VXSHUSRVLWLRQ OD UpSRQVH j O¶H[FLWDWLRQ SpULRGLTXH )W V¶REWLHQGUD GRQF HQ GpFRPSRVDQW FHOOHFL HQ VpULH GH )RXULHU HW HQ FDOFXODQW VpSDUpPHQW OD UpSRQVH j FKDTXH KDUPRQLTXHODVRPPHGHODVpULHGH)RXULHUGHVUpSRQVHVIRXUQLWODUpSRQVHFKHUFKpHGHOD VWUXFWXUH
3RXUFKDTXHKDUPRQLTXHQRXVVRPPHVGRQFUDPHQpVDXSUREOqPHSUpFpGHQW
3RXUFKDTXHKDUPRQLTXHQRXVVRPPHVGRQFUDPHQpVDXSUREOqPHSUpFpGHQW
±5pSRQVHjXQHH[FLWDWLRQQRQSpULRGLTXH
±5pSRQVHjXQHH[FLWDWLRQQRQSpULRGLTXH
2Q GRLW WURXYHU XQH VROXWLRQ SDUWLFXOLqUH T∗ W GH O¶pTXDWLRQ FRPSOqWH GRQW OH VHFRQG PHPEUHHVWXQHIRQFWLRQTXHOFRQTXH)W
2Q GRLW WURXYHU XQH VROXWLRQ SDUWLFXOLqUH T∗ W GH O¶pTXDWLRQ FRPSOqWH GRQW OH VHFRQG PHPEUHHVWXQHIRQFWLRQTXHOFRQTXH)W
- 123 -
- 123 -
,OQ¶HVWSDVSRVVLEOHGHIDLUHXQHpWXGHH[KDXVWLYHGHFHFDVQRXVQRXVFRQWHQWHURQVGHWUDLWHU XQH[HPSOH
,OQ¶HVWSDVSRVVLEOHGHIDLUHXQHpWXGHH[KDXVWLYHGHFHFDVQRXVQRXVFRQWHQWHURQVGHWUDLWHU XQH[HPSOH
([HPSOHUpSRQVHjXQHH[FLWDWLRQH[SRQHQWLHOOHGpFURLVVDQWH
([HPSOHUpSRQVHjXQHH[FLWDWLRQH[SRQHQWLHOOHGpFURLVVDQWH
)LJXUH
)LJXUH
/DIRUFHH[FLWDWULFHHVWGRQQpHSDUODILJXUH
/DIRUFHH[FLWDWULFHHVWGRQQpHSDUODILJXUH
3RXUIL[HUOHVLGpHVVXSSRVRQVTXHO¶RQVRLWGDQVOHFDVG¶XQDPRUWLVVHPHQWIRUW λ > DYHF jO¶LQVWDQWLQLWLDO W = T = HW T = VWUXFWXUHLPPRELOHHWVDQVYLWHVVH
3RXUIL[HUOHVLGpHVVXSSRVRQVTXHO¶RQVRLWGDQVOHFDVG¶XQDPRUWLVVHPHQWIRUW λ > DYHF jO¶LQVWDQWLQLWLDO W = T = HW T = VWUXFWXUHLPPRELOHHWVDQVYLWHVVH
3RXU W ≥ RQ D ) = ) H −ω W DYHF ω > HW XQH VROXWLRQ SDUWLFXOLqUH GH O¶pTXDWLRQ FRPSOqWH V¶pFULW ) T∗ = H − ω W = T∗ H − ω W 0 ω − & ω + .
3RXU W ≥ RQ D ) = ) H −ω W DYHF ω > HW XQH VROXWLRQ SDUWLFXOLqUH GH O¶pTXDWLRQ FRPSOqWH V¶pFULW ) T∗ = H − ω W = T∗ H − ω W 0 ω − & ω + .
DYHF λ > OHGpQRPLQDWHXUHVWVWULFWHPHQWSRVLWLI
DYHF λ > OHGpQRPLQDWHXUHVWVWULFWHPHQWSRVLWLI
/DVROXWLRQJpQpUDOHGHO¶pTXDWLRQFRPSOqWHHVWDORUV
/DVROXWLRQJpQpUDOHGHO¶pTXDWLRQFRPSOqWHHVWDORUV
T W = H −λωW $ FRV ΩW + % VLQ ΩW + T∗ H −ω W
T W = H −λωW $ FRV ΩW + % VLQ ΩW + T∗ H −ω W
/HVFRQGLWLRQVLQLWLDOHVGRQQHQWOHVFRQVWDQWHVG¶LQWpJUDWLRQ $ = − T∗ HW % =
/HVFRQGLWLRQVLQLWLDOHVGRQQHQWOHVFRQVWDQWHVG¶LQWpJUDWLRQ
ω − λω ∗ T Ω
$ = − T∗ HW % =
G¶RILQDOHPHQWDYHF Ω = ω λ −
T W
= T∗
⎡ ⎢ − λωW ⎢H ⎢ ⎣⎢
ω − λω ∗ T Ω
G¶RILQDOHPHQWDYHF Ω = ω λ −
⎤ ⎛ ω ⎞ −λ ⎜ ⎟ − ω W ⎥ ω ⎜ VLQ ΩW − FRV ΩW ⎟ + H ⎥ ⎜ λ − ⎟ ⎥ ⎜ ⎟ ⎝ ⎠ ⎦⎥
T W
= T∗
⎡ ⎢ − λωW ⎢H ⎢ ⎣⎢
⎤ ⎛ ω ⎞ −λ ⎜ ⎟ − ω W ⎥ ω ⎜ VLQ ΩW − FRV ΩW ⎟ + H ⎥ ⎜ λ − ⎟ ⎥ ⎜ ⎟ ⎝ ⎠ ⎦⎥
- 124 -
- 124 -
,OQ¶HVWSDVSRVVLEOHGHIDLUHXQHpWXGHH[KDXVWLYHGHFHFDVQRXVQRXVFRQWHQWHURQVGHWUDLWHU XQH[HPSOH
,OQ¶HVWSDVSRVVLEOHGHIDLUHXQHpWXGHH[KDXVWLYHGHFHFDVQRXVQRXVFRQWHQWHURQVGHWUDLWHU XQH[HPSOH
([HPSOHUpSRQVHjXQHH[FLWDWLRQH[SRQHQWLHOOHGpFURLVVDQWH
([HPSOHUpSRQVHjXQHH[FLWDWLRQH[SRQHQWLHOOHGpFURLVVDQWH
)LJXUH
)LJXUH
/DIRUFHH[FLWDWULFHHVWGRQQpHSDUODILJXUH
/DIRUFHH[FLWDWULFHHVWGRQQpHSDUODILJXUH
3RXUIL[HUOHVLGpHVVXSSRVRQVTXHO¶RQVRLWGDQVOHFDVG¶XQDPRUWLVVHPHQWIRUW λ > DYHF jO¶LQVWDQWLQLWLDO W = T = HW T = VWUXFWXUHLPPRELOHHWVDQVYLWHVVH
3RXUIL[HUOHVLGpHVVXSSRVRQVTXHO¶RQVRLWGDQVOHFDVG¶XQDPRUWLVVHPHQWIRUW λ > DYHF jO¶LQVWDQWLQLWLDO W = T = HW T = VWUXFWXUHLPPRELOHHWVDQVYLWHVVH
3RXU W ≥ RQ D ) = ) H −ω W DYHF ω > HW XQH VROXWLRQ SDUWLFXOLqUH GH O¶pTXDWLRQ FRPSOqWH V¶pFULW ) T∗ = H − ω W = T∗ H − ω W 0 ω − & ω + .
3RXU W ≥ RQ D ) = ) H −ω W DYHF ω > HW XQH VROXWLRQ SDUWLFXOLqUH GH O¶pTXDWLRQ FRPSOqWH V¶pFULW ) T∗ = H − ω W = T∗ H − ω W 0 ω − & ω + .
DYHF λ > OHGpQRPLQDWHXUHVWVWULFWHPHQWSRVLWLI
DYHF λ > OHGpQRPLQDWHXUHVWVWULFWHPHQWSRVLWLI
/DVROXWLRQJpQpUDOHGHO¶pTXDWLRQFRPSOqWHHVWDORUV
/DVROXWLRQJpQpUDOHGHO¶pTXDWLRQFRPSOqWHHVWDORUV
T W = H −λωW $ FRV ΩW + % VLQ ΩW + T∗ H −ω W /HVFRQGLWLRQVLQLWLDOHVGRQQHQWOHVFRQVWDQWHVG¶LQWpJUDWLRQ $ = − T∗ HW % =
T W
⎡ ⎢ − λωW ⎢H ⎢ ⎣⎢
/HVFRQGLWLRQVLQLWLDOHVGRQQHQWOHVFRQVWDQWHVG¶LQWpJUDWLRQ
ω − λω ∗ T Ω
G¶RILQDOHPHQWDYHF Ω = ω λ − = T∗
T W = H −λωW $ FRV ΩW + % VLQ ΩW + T∗ H −ω W
$ = − T∗ HW % =
ω − λω ∗ T Ω
G¶RILQDOHPHQWDYHF Ω = ω λ −
⎤ ⎛ ω ⎞ −λ ⎜ ⎟ − ω W ⎥ ω ⎜ VLQ ΩW − FRV ΩW ⎟ + H ⎥ ⎜ λ − ⎟ ⎥ ⎜ ⎟ ⎝ ⎠ ⎦⎥
- 124 -
T W
= T∗
⎡ ⎢ − λωW ⎢H ⎢ ⎣⎢
⎤ ⎛ ω ⎞ −λ ⎜ ⎟ − ω W ⎥ ω ⎜ VLQ ΩW − FRV ΩW ⎟ + H ⎥ ⎜ λ − ⎟ ⎥ ⎜ ⎟ ⎝ ⎠ ⎦⎥
- 124 -
±6758&785(6121/,1e$,5(6
±6758&785(6121/,1e$,5(6
1RXV DYRQV SUpFLVp SOXV KDXW DX FH TXH QRXV HQWHQGLRQV SDU VWUXFWXUH OLQpDLUH HQ G\QDPLTXH
1RXV DYRQV SUpFLVp SOXV KDXW DX FH TXH QRXV HQWHQGLRQV SDU VWUXFWXUH OLQpDLUH HQ G\QDPLTXH
(QUpDOLWpODSOXSDUWGHVVWUXFWXUHVQ¶RQWSDVXQFRPSRUWHPHQWOLQpDLUHULJRXUHXVHPHQWPDLV RQSHXWGLVWLQJXHUSDUPLHOOHV
(QUpDOLWpODSOXSDUWGHVVWUXFWXUHVQ¶RQWSDVXQFRPSRUWHPHQWOLQpDLUHULJRXUHXVHPHQWPDLV RQSHXWGLVWLQJXHUSDUPLHOOHV
± OHV VWUXFWXUHV ©OLQpDULVDEOHVª F¶HVW j GLUH TXH O¶RQ SHXW FRQVLGpUHU FRPPH OLQpDLUHV PR\HQQDQWFHUWDLQHVOLPLWDWLRQVSHWLWVPRXYHPHQWVQRWDPPHQW
± OHV VWUXFWXUHV ©OLQpDULVDEOHVª F¶HVW j GLUH TXH O¶RQ SHXW FRQVLGpUHU FRPPH OLQpDLUHV PR\HQQDQWFHUWDLQHVOLPLWDWLRQVSHWLWVPRXYHPHQWVQRWDPPHQW
±OHVVWUXFWXUHVTXHO¶RQQHSHXWDEVROXPHQWSDVVFKpPDWLVHUSDUXQPRGqOHOLQpDLUH
±OHVVWUXFWXUHVTXHO¶RQQHSHXWDEVROXPHQWSDVVFKpPDWLVHUSDUXQPRGqOHOLQpDLUH
/HV SUREOqPHV QRQOLQpDLUHV QH FRQVWLWXHQW SDV XQH FODVVH KRPRJqQH GH SUREOqPHV HW OHXU pWXGHUHOqYHVXLYDQWOHVFDVSDUWLFXOLHUVGHPpWKRGHVGLYHUVHV
/HV SUREOqPHV QRQOLQpDLUHV QH FRQVWLWXHQW SDV XQH FODVVH KRPRJqQH GH SUREOqPHV HW OHXU pWXGHUHOqYHVXLYDQWOHVFDVSDUWLFXOLHUVGHPpWKRGHVGLYHUVHV
1RXV QH SRXUURQV GRQF SDV HQ IDLUH XQH DQDO\VH V\VWpPDWLTXH HW H[KDXVWLYH QRXV QRXV FRQWHQWHURQV GH VLJQDOHU OHV GHX[ SULQFLSDOHV QRQOLQpDULWpV HW GH OHV LOOXVWUHU SDU GHV H[HPSOHV
1RXV QH SRXUURQV GRQF SDV HQ IDLUH XQH DQDO\VH V\VWpPDWLTXH HW H[KDXVWLYH QRXV QRXV FRQWHQWHURQV GH VLJQDOHU OHV GHX[ SULQFLSDOHV QRQOLQpDULWpV HW GH OHV LOOXVWUHU SDU GHV H[HPSOHV
±*UDQGHVDPSOLWXGHV
±*UDQGHVDPSOLWXGHV
&¶HVWOHFDVGXFKDULRWGHILJXUHVHWSRXUOHVIRUWHVpORQJDWLRQVODFRXUEHFDUDFWpULVWLTXH GXUHVVRUWFRXUEHIRUFHDOORQJHPHQWQ¶HVWOLQpDLUHTX¶DXYRLVLQDJHGHODSRVLWLRQQHXWUH
&¶HVWOHFDVGXFKDULRWGHILJXUHVHWSRXUOHVIRUWHVpORQJDWLRQVODFRXUEHFDUDFWpULVWLTXH GXUHVVRUWFRXUEHIRUFHDOORQJHPHQWQ¶HVWOLQpDLUHTX¶DXYRLVLQDJHGHODSRVLWLRQQHXWUH
6HPEODEOHPHQW GDQV OH FDV GX SHQGXOH ILJXUH OH PRPHQW HQ GX SRLGV HVW pJDO j − 0JD VLQ θ HWQHSHXWrWUHFRQVLGpUpFRPPHOLQpDLUHF¶HVWjGLUHSURSRUWLRQQHOj θ HWpJDO j − 0JD ⋅ θ TXHVL θ UHVWHSHWLWGHYDQWXQUDGLDQ
6HPEODEOHPHQW GDQV OH FDV GX SHQGXOH ILJXUH OH PRPHQW HQ GX SRLGV HVW pJDO j − 0JD VLQ θ HWQHSHXWrWUHFRQVLGpUpFRPPHOLQpDLUHF¶HVWjGLUHSURSRUWLRQQHOj θ HWpJDO j − 0JD ⋅ θ TXHVL θ UHVWHSHWLWGHYDQWXQUDGLDQ
([HPSOHJUDQGHVRVFLOODWLRQVG¶XQSHQGXOH
([HPSOHJUDQGHVRVFLOODWLRQVG¶XQSHQGXOH
5HSUHQRQV OH SHQGXOH GH OD ILJXUH HW VXSSRVRQV SRXU IL[HU OHV LGpHV TX¶LO RVFLOOH QDWXUHOOHPHQWVDQVDPRUWLVVHPHQWHQWUH θ = −° HW θ = ° 6XSSRVRQVGHSOXVTX¶D W = LO VRLW HQ SRVLWLRQ EDVVH θ = DYHF OD YLWHVVH DQJXODLUH θ /H WKpRUqPH GH O¶pQHUJLH FLQpWLTXHQRXVSHUPHWGHFDOFXOHU θ RQWURXYH
5HSUHQRQV OH SHQGXOH GH OD ILJXUH HW VXSSRVRQV SRXU IL[HU OHV LGpHV TX¶LO RVFLOOH QDWXUHOOHPHQWVDQVDPRUWLVVHPHQWHQWUH θ = −° HW θ = ° 6XSSRVRQVGHSOXVTX¶D W = LO VRLW HQ SRVLWLRQ EDVVH θ = DYHF OD YLWHVVH DQJXODLUH θ /H WKpRUqPH GH O¶pQHUJLH FLQpWLTXHQRXVSHUPHWGHFDOFXOHU θ RQWURXYH
θ = ω =
θ = ω =
/H PRXYHPHQW HVW SpULRGLTXH QRQ KDUPRQLTXH GH SpULRGH LQFRQQXH 7 = HIIHFWXHUXQHLQWpJUDWLRQDSSURFKpHGHO¶pTXDWLRQGXPRXYHPHQW
θ = ω VLQ θ = DYHF ω =
GDQV O¶LQWHUYDOOH GH WHPSV ≤ W ≤
0JD , π 1RXV DOORQV Ω
0JD ,
π HW FRPSWH WHQX GHV FRQGLWLRQV DX[ OLPLWHV GH FHW Ω
LQWHUYDOOHUDSSHOpVVXUODILJXUH
0JD ,
/H PRXYHPHQW HVW SpULRGLTXH QRQ KDUPRQLTXH GH SpULRGH LQFRQQXH 7 = HIIHFWXHUXQHLQWpJUDWLRQDSSURFKpHGHO¶pTXDWLRQGXPRXYHPHQW
θ = ω VLQ θ = DYHF ω =
GDQV O¶LQWHUYDOOH GH WHPSV ≤ W ≤
π 1RXV DOORQV Ω
0JD ,
π HW FRPSWH WHQX GHV FRQGLWLRQV DX[ OLPLWHV GH FHW Ω
LQWHUYDOOHUDSSHOpVVXUODILJXUH
- 125 -
- 125 -
±6758&785(6121/,1e$,5(6
±6758&785(6121/,1e$,5(6
1RXV DYRQV SUpFLVp SOXV KDXW DX FH TXH QRXV HQWHQGLRQV SDU VWUXFWXUH OLQpDLUH HQ G\QDPLTXH
1RXV DYRQV SUpFLVp SOXV KDXW DX FH TXH QRXV HQWHQGLRQV SDU VWUXFWXUH OLQpDLUH HQ G\QDPLTXH
(QUpDOLWpODSOXSDUWGHVVWUXFWXUHVQ¶RQWSDVXQFRPSRUWHPHQWOLQpDLUHULJRXUHXVHPHQWPDLV RQSHXWGLVWLQJXHUSDUPLHOOHV
(QUpDOLWpODSOXSDUWGHVVWUXFWXUHVQ¶RQWSDVXQFRPSRUWHPHQWOLQpDLUHULJRXUHXVHPHQWPDLV RQSHXWGLVWLQJXHUSDUPLHOOHV
± OHV VWUXFWXUHV ©OLQpDULVDEOHVª F¶HVW j GLUH TXH O¶RQ SHXW FRQVLGpUHU FRPPH OLQpDLUHV PR\HQQDQWFHUWDLQHVOLPLWDWLRQVSHWLWVPRXYHPHQWVQRWDPPHQW
± OHV VWUXFWXUHV ©OLQpDULVDEOHVª F¶HVW j GLUH TXH O¶RQ SHXW FRQVLGpUHU FRPPH OLQpDLUHV PR\HQQDQWFHUWDLQHVOLPLWDWLRQVSHWLWVPRXYHPHQWVQRWDPPHQW
±OHVVWUXFWXUHVTXHO¶RQQHSHXWDEVROXPHQWSDVVFKpPDWLVHUSDUXQPRGqOHOLQpDLUH
±OHVVWUXFWXUHVTXHO¶RQQHSHXWDEVROXPHQWSDVVFKpPDWLVHUSDUXQPRGqOHOLQpDLUH
/HV SUREOqPHV QRQOLQpDLUHV QH FRQVWLWXHQW SDV XQH FODVVH KRPRJqQH GH SUREOqPHV HW OHXU pWXGHUHOqYHVXLYDQWOHVFDVSDUWLFXOLHUVGHPpWKRGHVGLYHUVHV
/HV SUREOqPHV QRQOLQpDLUHV QH FRQVWLWXHQW SDV XQH FODVVH KRPRJqQH GH SUREOqPHV HW OHXU pWXGHUHOqYHVXLYDQWOHVFDVSDUWLFXOLHUVGHPpWKRGHVGLYHUVHV
1RXV QH SRXUURQV GRQF SDV HQ IDLUH XQH DQDO\VH V\VWpPDWLTXH HW H[KDXVWLYH QRXV QRXV FRQWHQWHURQV GH VLJQDOHU OHV GHX[ SULQFLSDOHV QRQOLQpDULWpV HW GH OHV LOOXVWUHU SDU GHV H[HPSOHV
1RXV QH SRXUURQV GRQF SDV HQ IDLUH XQH DQDO\VH V\VWpPDWLTXH HW H[KDXVWLYH QRXV QRXV FRQWHQWHURQV GH VLJQDOHU OHV GHX[ SULQFLSDOHV QRQOLQpDULWpV HW GH OHV LOOXVWUHU SDU GHV H[HPSOHV
±*UDQGHVDPSOLWXGHV
±*UDQGHVDPSOLWXGHV
&¶HVWOHFDVGXFKDULRWGHILJXUHVHWSRXUOHVIRUWHVpORQJDWLRQVODFRXUEHFDUDFWpULVWLTXH GXUHVVRUWFRXUEHIRUFHDOORQJHPHQWQ¶HVWOLQpDLUHTX¶DXYRLVLQDJHGHODSRVLWLRQQHXWUH
&¶HVWOHFDVGXFKDULRWGHILJXUHVHWSRXUOHVIRUWHVpORQJDWLRQVODFRXUEHFDUDFWpULVWLTXH GXUHVVRUWFRXUEHIRUFHDOORQJHPHQWQ¶HVWOLQpDLUHTX¶DXYRLVLQDJHGHODSRVLWLRQQHXWUH
6HPEODEOHPHQW GDQV OH FDV GX SHQGXOH ILJXUH OH PRPHQW HQ GX SRLGV HVW pJDO j − 0JD VLQ θ HWQHSHXWrWUHFRQVLGpUpFRPPHOLQpDLUHF¶HVWjGLUHSURSRUWLRQQHOj θ HWpJDO j − 0JD ⋅ θ TXHVL θ UHVWHSHWLWGHYDQWXQUDGLDQ
6HPEODEOHPHQW GDQV OH FDV GX SHQGXOH ILJXUH OH PRPHQW HQ GX SRLGV HVW pJDO j − 0JD VLQ θ HWQHSHXWrWUHFRQVLGpUpFRPPHOLQpDLUHF¶HVWjGLUHSURSRUWLRQQHOj θ HWpJDO j − 0JD ⋅ θ TXHVL θ UHVWHSHWLWGHYDQWXQUDGLDQ
([HPSOHJUDQGHVRVFLOODWLRQVG¶XQSHQGXOH
([HPSOHJUDQGHVRVFLOODWLRQVG¶XQSHQGXOH
5HSUHQRQV OH SHQGXOH GH OD ILJXUH HW VXSSRVRQV SRXU IL[HU OHV LGpHV TX¶LO RVFLOOH QDWXUHOOHPHQWVDQVDPRUWLVVHPHQWHQWUH θ = −° HW θ = ° 6XSSRVRQVGHSOXVTX¶D W = LO VRLW HQ SRVLWLRQ EDVVH θ = DYHF OD YLWHVVH DQJXODLUH θ /H WKpRUqPH GH O¶pQHUJLH FLQpWLTXHQRXVSHUPHWGHFDOFXOHU θ RQWURXYH
5HSUHQRQV OH SHQGXOH GH OD ILJXUH HW VXSSRVRQV SRXU IL[HU OHV LGpHV TX¶LO RVFLOOH QDWXUHOOHPHQWVDQVDPRUWLVVHPHQWHQWUH θ = −° HW θ = ° 6XSSRVRQVGHSOXVTX¶D W = LO VRLW HQ SRVLWLRQ EDVVH θ = DYHF OD YLWHVVH DQJXODLUH θ /H WKpRUqPH GH O¶pQHUJLH FLQpWLTXHQRXVSHUPHWGHFDOFXOHU θ RQWURXYH
θ = ω =
0JD ,
θ = ω =
/H PRXYHPHQW HVW SpULRGLTXH QRQ KDUPRQLTXH GH SpULRGH LQFRQQXH 7 = HIIHFWXHUXQHLQWpJUDWLRQDSSURFKpHGHO¶pTXDWLRQGXPRXYHPHQW
θ = ω VLQ θ = DYHF ω =
GDQV O¶LQWHUYDOOH GH WHPSV ≤ W ≤
0JD ,
π 1RXV DOORQV Ω
π HW FRPSWH WHQX GHV FRQGLWLRQV DX[ OLPLWHV GH FHW Ω
LQWHUYDOOHUDSSHOpVVXUODILJXUH
/H PRXYHPHQW HVW SpULRGLTXH QRQ KDUPRQLTXH GH SpULRGH LQFRQQXH 7 = HIIHFWXHUXQHLQWpJUDWLRQDSSURFKpHGHO¶pTXDWLRQGXPRXYHPHQW
θ = ω VLQ θ = DYHF ω =
GDQV O¶LQWHUYDOOH GH WHPSV ≤ W ≤
0JD ,
π 1RXV DOORQV Ω
π HW FRPSWH WHQX GHV FRQGLWLRQV DX[ OLPLWHV GH FHW Ω
LQWHUYDOOHUDSSHOpVVXUODILJXUH
- 125 -
0JD ,
- 125 -
)LJXUH
)LJXUH
3RXU FHOD UHPSODoRQV VLQ θ GDQV SDU XQH IRQFWLRQ GH W SDUWLHOOHPHQW GpWHUPLQpH HW VDWLVIDLVDQWDXPD[LPXPGHFRQGLWLRQVLPSRVpHV
3RXU FHOD UHPSODoRQV VLQ θ GDQV SDU XQH IRQFWLRQ GH W SDUWLHOOHPHQW GpWHUPLQpH HW VDWLVIDLVDQWDXPD[LPXPGHFRQGLWLRQVLPSRVpHV
1RXVSUHQGURQVODIRQFWLRQ
1RXVSUHQGURQVODIRQFWLRQ
I W = % VLQ ΩW + % VLQ ΩW + % VLQ ΩW
I W = % VLQ ΩW + % VLQ ΩW + % VLQ ΩW
TXLFRPPH VLQ θ W HVWLPSDLUHQXOOHSRXU W = HWGHGpULYpHQXOOHSRXU W =
π Ω
/HVFRQGLWLRQVDX[OLPLWHV I ′ = θ = ω HW I π Ω = GRQQHQWOHVGHX[UHODWLRQV % + % + % =
ω HW % − % + % = Ω
ω % FRV ΩW + % FRV ΩW + % FRV ΩW Ω ω % VLQ ΩW + % VLQ ΩW + % FRV ΩW Ω
% + % + % =
ω HW % − % + % = Ω
/¶LQWpJUDWLRQGH DSUqVUHPSODFHPHQWGH VLQ θ GRQQH ⎧ ⎪θ = ⎪ ⎨ ⎪ ⎪θ = ⎩
OHVFRQVWDQWHVG¶LQWpJUDWLRQVRQWQXOOHVjFDXVHGHVFRQGLWLRQV θ π Ω = HW θ = /HVFRQGLWLRQV θ = ω HW θ π Ω =
π Ω
/HVFRQGLWLRQVDX[OLPLWHV I ′ = θ = ω HW I π Ω = GRQQHQWOHVGHX[UHODWLRQV % + % + % =
/¶LQWpJUDWLRQGH DSUqVUHPSODFHPHQWGH VLQ θ GRQQH ⎧ ⎪θ = ⎪ ⎨ ⎪ ⎪θ = ⎩
TXLFRPPH VLQ θ W HVWLPSDLUHQXOOHSRXU W = HWGHGpULYpHQXOOHSRXU W =
π GRQQHQW
ω % FRV ΩW + % FRV ΩW + % FRV ΩW Ω ω % VLQ ΩW + % VLQ ΩW + % FRV ΩW Ω
OHVFRQVWDQWHVG¶LQWpJUDWLRQVRQWQXOOHVjFDXVHGHVFRQGLWLRQV θ π Ω = HW θ = /HVFRQGLWLRQV θ = ω HW θ π Ω =
π Ω Ω HW % − % + % = ω ω
% + % + % =
π GRQQHQW
π Ω Ω HW % − % + % = ω ω
- 126 -
- 126 -
)LJXUH
)LJXUH
3RXU FHOD UHPSODoRQV VLQ θ GDQV SDU XQH IRQFWLRQ GH W SDUWLHOOHPHQW GpWHUPLQpH HW VDWLVIDLVDQWDXPD[LPXPGHFRQGLWLRQVLPSRVpHV
3RXU FHOD UHPSODoRQV VLQ θ GDQV SDU XQH IRQFWLRQ GH W SDUWLHOOHPHQW GpWHUPLQpH HW VDWLVIDLVDQWDXPD[LPXPGHFRQGLWLRQVLPSRVpHV
1RXVSUHQGURQVODIRQFWLRQ
1RXVSUHQGURQVODIRQFWLRQ
I W = % VLQ ΩW + % VLQ ΩW + % VLQ ΩW
I W = % VLQ ΩW + % VLQ ΩW + % VLQ ΩW
TXLFRPPH VLQ θ W HVWLPSDLUHQXOOHSRXU W = HWGHGpULYpHQXOOHSRXU W =
π Ω
/HVFRQGLWLRQVDX[OLPLWHV I ′ = θ = ω HW I π Ω = GRQQHQWOHVGHX[UHODWLRQV % + % + % =
ω HW % − % + % = Ω
/¶LQWpJUDWLRQGH DSUqVUHPSODFHPHQWGH VLQ θ GRQQH ⎧ ⎪θ = ⎪ ⎨ ⎪ ⎪θ = ⎩
ω % FRV ΩW + % FRV ΩW + % FRV ΩW Ω ω % VLQ ΩW + % VLQ ΩW + % FRV ΩW Ω
% + % + % =
π GRQQHQW
π Ω Ω HW % − % + % = ω ω - 126 -
π Ω
/HVFRQGLWLRQVDX[OLPLWHV I ′ = θ = ω HW I π Ω = GRQQHQWOHVGHX[UHODWLRQV % + % + % =
ω HW % − % + % = Ω
/¶LQWpJUDWLRQGH DSUqVUHPSODFHPHQWGH VLQ θ GRQQH
OHVFRQVWDQWHVG¶LQWpJUDWLRQVRQWQXOOHVjFDXVHGHVFRQGLWLRQV θ π Ω = HW θ = /HVFRQGLWLRQV θ = ω HW θ π Ω =
TXLFRPPH VLQ θ W HVWLPSDLUHQXOOHSRXU W = HWGHGpULYpHQXOOHSRXU W =
⎧ ⎪θ = ⎪ ⎨ ⎪ ⎪θ = ⎩
ω % FRV ΩW + % FRV ΩW + % FRV ΩW Ω ω % VLQ ΩW + % VLQ ΩW + % FRV ΩW Ω
OHVFRQVWDQWHVG¶LQWpJUDWLRQVRQWQXOOHVjFDXVHGHVFRQGLWLRQV θ π Ω = HW θ = /HVFRQGLWLRQV θ = ω HW θ π Ω = % + % + % =
π GRQQHQW
π Ω Ω HW % − % + % = ω ω - 126 -
/D IRQFWLRQ IW SHXW DORUV rWUH HQWLqUHPHQW GpWHUPLQpH JUkFH DX[ pTXDWLRQV VXLYDQWHV j LQFRQQXHV % % % Ω ⎧ ⎪% + % + % = ⎪ ⎪ ⎪⎪% − % + % = ⎨ ⎪% + % + % = ⎪ ⎪ ⎪% − % + % = π Ω ⎪⎩ ω
/D IRQFWLRQ IW SHXW DORUV rWUH HQWLqUHPHQW GpWHUPLQpH JUkFH DX[ pTXDWLRQV VXLYDQWHV j LQFRQQXHV % % % Ω ⎧ ⎪% + % + % = ⎪ ⎪ ⎪⎪% − % + % = ⎨ ⎪% + % + % = ⎪ ⎪ ⎪% − % + % = π Ω ⎪⎩ ω
ω Ω
Ω ω
ω Ω
Ω ω
2QREWLHQWDORUV Ω = ω % = % = % =
2QREWLHQWDORUV Ω = ω % = % = % =
π π = GH SOXV LPSRUWDQWH TXH FHOOH GHV SHWLWHV Ω ω ⎛ 7 7⎞ RVFLOODWLRQVHWODORLKRUDLUHDSRXUH[SUHVVLRQDSSURFKpHGDQVO¶LQWHUYDOOH ⎜ − ⎟ ⎝ ⎠
π π = GH SOXV LPSRUWDQWH TXH FHOOH GHV SHWLWHV Ω ω ⎛ 7 7⎞ RVFLOODWLRQVHWODORLKRUDLUHDSRXUH[SUHVVLRQDSSURFKpHGDQVO¶LQWHUYDOOH ⎜ − ⎟ ⎝ ⎠
θ = $UF VLQ [ VLQ ΩW + VLQ ΩW + VLQ ΩW ]
θ = $UF VLQ [ VLQ ΩW + VLQ ΩW + VLQ ΩW ]
/D SpULRGH HVW GRQF 7 =
/D SpULRGH HVW GRQF 7 =
±'LVVLSDWLRQQRQYLVTXHXVH
±'LVVLSDWLRQQRQYLVTXHXVH
/HV IRUFHV G¶DPRUWLVVHPHQW FRQVLGpUpHV GDQV OHV SDUDJUDSKHV SUpFpGHQWV pWDLHQW GX W\SH YLVTXHXVHV OLQpDLUHV F¶HVW j GLUH TX¶HOOHV WHQGDLHQW j V¶RSSRVHU DX PRXYHPHQW SURSRUWLRQ QHOOHPHQW j OD YLWHVVH GH FHOXLFL HOOHV pWDLHQW UHVSRQVDEOHV GX WHUPH & T GH O¶pTXDWLRQ JpQpUDOH 'DQVODSUDWLTXHRQSHXWUHQFRQWUHUG¶DXWUHVW\SHVGHIRUFHVGLVVLSDWLYHVFLWRQV OHV IRUFHV SURSRUWLRQQHOOHV DX FDUUp GH OD YLWHVVH OHV IRUFHV GH IURWWHPHQW VHF RX GH &RXORPE
/HV IRUFHV G¶DPRUWLVVHPHQW FRQVLGpUpHV GDQV OHV SDUDJUDSKHV SUpFpGHQWV pWDLHQW GX W\SH YLVTXHXVHV OLQpDLUHV F¶HVW j GLUH TX¶HOOHV WHQGDLHQW j V¶RSSRVHU DX PRXYHPHQW SURSRUWLRQ QHOOHPHQW j OD YLWHVVH GH FHOXLFL HOOHV pWDLHQW UHVSRQVDEOHV GX WHUPH & T GH O¶pTXDWLRQ JpQpUDOH 'DQVODSUDWLTXHRQSHXWUHQFRQWUHUG¶DXWUHVW\SHVGHIRUFHVGLVVLSDWLYHVFLWRQV OHV IRUFHV SURSRUWLRQQHOOHV DX FDUUp GH OD YLWHVVH OHV IRUFHV GH IURWWHPHQW VHF RX GH &RXORPE
([HPSOHUHSUHQRQVOHPRGqOHGHODILJXUHDXHQVXSSULPDQWO¶DPRUWLVVHXUYLVTXHX[HW HQ VXSSRVDQW TXH OH SDYp GH PDVVH 0 JOLVVH DYHF IURWWHPHQW VHF VXU OH VROLGH GH UpIpUHQFH 6
([HPSOHUHSUHQRQVOHPRGqOHGHODILJXUHDXHQVXSSULPDQWO¶DPRUWLVVHXUYLVTXHX[HW HQ VXSSRVDQW TXH OH SDYp GH PDVVH 0 JOLVVH DYHF IURWWHPHQW VHF VXU OH VROLGH GH UpIpUHQFH 6
)LJXUH
)LJXUH
- 127 -
- 127 -
/D IRQFWLRQ IW SHXW DORUV rWUH HQWLqUHPHQW GpWHUPLQpH JUkFH DX[ pTXDWLRQV VXLYDQWHV j LQFRQQXHV % % % Ω
/D IRQFWLRQ IW SHXW DORUV rWUH HQWLqUHPHQW GpWHUPLQpH JUkFH DX[ pTXDWLRQV VXLYDQWHV j LQFRQQXHV % % % Ω
⎧ ⎪% + % + % = ⎪ ⎪ ⎪⎪% − % + % = ⎨ ⎪% + % + % = ⎪ ⎪ ⎪% − % + % = π Ω ω ⎩⎪
⎧ ⎪% + % + % = ⎪ ⎪ ⎪⎪% − % + % = ⎨ ⎪% + % + % = ⎪ ⎪ ⎪% − % + % = π Ω ω ⎩⎪
ω Ω
Ω ω
ω Ω
Ω ω
2QREWLHQWDORUV Ω = ω % = % = % =
2QREWLHQWDORUV Ω = ω % = % = % =
π π = GH SOXV LPSRUWDQWH TXH FHOOH GHV SHWLWHV Ω ω ⎛ 7 7⎞ RVFLOODWLRQVHWODORLKRUDLUHDSRXUH[SUHVVLRQDSSURFKpHGDQVO¶LQWHUYDOOH ⎜ − ⎟ ⎝ ⎠
π π = GH SOXV LPSRUWDQWH TXH FHOOH GHV SHWLWHV Ω ω ⎛ 7 7⎞ RVFLOODWLRQVHWODORLKRUDLUHDSRXUH[SUHVVLRQDSSURFKpHGDQVO¶LQWHUYDOOH ⎜ − ⎟ ⎝ ⎠
θ = $UF VLQ [ VLQ ΩW + VLQ ΩW + VLQ ΩW ]
θ = $UF VLQ [ VLQ ΩW + VLQ ΩW + VLQ ΩW ]
/D SpULRGH HVW GRQF 7 =
/D SpULRGH HVW GRQF 7 =
±'LVVLSDWLRQQRQYLVTXHXVH
±'LVVLSDWLRQQRQYLVTXHXVH
/HV IRUFHV G¶DPRUWLVVHPHQW FRQVLGpUpHV GDQV OHV SDUDJUDSKHV SUpFpGHQWV pWDLHQW GX W\SH YLVTXHXVHV OLQpDLUHV F¶HVW j GLUH TX¶HOOHV WHQGDLHQW j V¶RSSRVHU DX PRXYHPHQW SURSRUWLRQ QHOOHPHQW j OD YLWHVVH GH FHOXLFL HOOHV pWDLHQW UHVSRQVDEOHV GX WHUPH & T GH O¶pTXDWLRQ JpQpUDOH 'DQVODSUDWLTXHRQSHXWUHQFRQWUHUG¶DXWUHVW\SHVGHIRUFHVGLVVLSDWLYHVFLWRQV OHV IRUFHV SURSRUWLRQQHOOHV DX FDUUp GH OD YLWHVVH OHV IRUFHV GH IURWWHPHQW VHF RX GH &RXORPE
/HV IRUFHV G¶DPRUWLVVHPHQW FRQVLGpUpHV GDQV OHV SDUDJUDSKHV SUpFpGHQWV pWDLHQW GX W\SH YLVTXHXVHV OLQpDLUHV F¶HVW j GLUH TX¶HOOHV WHQGDLHQW j V¶RSSRVHU DX PRXYHPHQW SURSRUWLRQ QHOOHPHQW j OD YLWHVVH GH FHOXLFL HOOHV pWDLHQW UHVSRQVDEOHV GX WHUPH & T GH O¶pTXDWLRQ JpQpUDOH 'DQVODSUDWLTXHRQSHXWUHQFRQWUHUG¶DXWUHVW\SHVGHIRUFHVGLVVLSDWLYHVFLWRQV OHV IRUFHV SURSRUWLRQQHOOHV DX FDUUp GH OD YLWHVVH OHV IRUFHV GH IURWWHPHQW VHF RX GH &RXORPE
([HPSOHUHSUHQRQVOHPRGqOHGHODILJXUHDXHQVXSSULPDQWO¶DPRUWLVVHXUYLVTXHX[HW HQ VXSSRVDQW TXH OH SDYp GH PDVVH 0 JOLVVH DYHF IURWWHPHQW VHF VXU OH VROLGH GH UpIpUHQFH 6
([HPSOHUHSUHQRQVOHPRGqOHGHODILJXUHDXHQVXSSULPDQWO¶DPRUWLVVHXUYLVTXHX[HW HQ VXSSRVDQW TXH OH SDYp GH PDVVH 0 JOLVVH DYHF IURWWHPHQW VHF VXU OH VROLGH GH UpIpUHQFH 6
)LJXUH
)LJXUH
- 127 -
- 127 -
/H UHVVRUW D SRXU UDLGHXU . WDQW HQ H[WHQVLRQ TX¶HQ FRPSUHVVLRQ VD SRVLWLRQ QHXWUH GH UHSRV FRUUHVSRQG j [ = I GpVLJQH OD FRHIILFLHQW GH IURWWHPHQW VHF HQWUH 0 HW 6 6XSSRVRQV TXH O¶RQ DEDQGRQQH OH VROLGH 0 j O¶LQVWDQW W = GH OD SRVLWLRQ [ > VDQV G YLWHVVHLQLWLDOH [ = /DIRUFHGHUDSSHOYDXWDORUV − . [ ODUpDFWLRQ 5 GH 6 VXU0 G DSRXUFRPSRVDQWHYHUWLFDOH − 0J HWSRXUFRPSRVDQWHKRUL]RQWDOH 0J ⋅ WJ ϕ
/H UHVVRUW D SRXU UDLGHXU . WDQW HQ H[WHQVLRQ TX¶HQ FRPSUHVVLRQ VD SRVLWLRQ QHXWUH GH UHSRV FRUUHVSRQG j [ = I GpVLJQH OD FRHIILFLHQW GH IURWWHPHQW VHF HQWUH 0 HW 6 6XSSRVRQV TXH O¶RQ DEDQGRQQH OH VROLGH 0 j O¶LQVWDQW W = GH OD SRVLWLRQ [ > VDQV G YLWHVVHLQLWLDOH [ = /DIRUFHGHUDSSHOYDXWDORUV − . [ ODUpDFWLRQ 5 GH 6 VXU0 G DSRXUFRPSRVDQWHYHUWLFDOH − 0J HWSRXUFRPSRVDQWHKRUL]RQWDOH 0J ⋅ WJ ϕ
6LO¶RQD . [ ≤ 0J I 0 QHVHPHWSDVHQPRXYHPHQW
6LO¶RQD . [ ≤ 0J I 0 QHVHPHWSDVHQPRXYHPHQW
6LO¶RQD . [ > 0J I 0 VHPHWHQPRXYHPHQWHWOHSULQFLSHIRQGDPHQWDOGHODG\QDPLTXH V¶pFULW
6LO¶RQD . [ > 0J I 0 VHPHWHQPRXYHPHQWHWOHSULQFLSHIRQGDPHQWDOGHODG\QDPLTXH V¶pFULW
− . [ + 0J I = 0 [ RX 0 [ + . [ = 0J I
− . [ + 0J I = 0 [ RX 0 [ + . [ = 0J I
2QDXQHIIHWGH©VHXLOªFDUDFWpULVWLTXHGXIURWWHPHQWVHFODIRUFHGHUDSSHOGRLWGpSDVVHUOH VHXLO 0J I SRXU SURYRTXHU OH PRXYHPHQW F¶HVW j GLUH SRXU YDLQFUH OH IURWWHPHQW HQVXLWH SHQGDQWOHPRXYHPHQWODIRUFHKRUL]RQWDOHGHIURWWHPHQWHQVXLWHSHQGDQWOHPRXYHPHQWOD IRUFHKRUL]RQWDOHGHIURWWHPHQWUHVWHpJDOHj 0J I
2QDXQHIIHWGH©VHXLOªFDUDFWpULVWLTXHGXIURWWHPHQWVHFODIRUFHGHUDSSHOGRLWGpSDVVHUOH VHXLO 0J I SRXU SURYRTXHU OH PRXYHPHQW F¶HVW j GLUH SRXU YDLQFUH OH IURWWHPHQW HQVXLWH SHQGDQWOHPRXYHPHQWODIRUFHKRUL]RQWDOHGHIURWWHPHQWHQVXLWHSHQGDQWOHPRXYHPHQWOD IRUFHKRUL]RQWDOHGHIURWWHPHQWUHVWHpJDOHj 0J I
/¶LQWpJUDWLRQGDQVXQHSUHPLqUHSKDVHGRQQHFRPSWHWHQXGHVFRQGLWLRQVLQLWLDOHV
/¶LQWpJUDWLRQGDQVXQHSUHPLqUHSKDVHGRQQHFRPSWHWHQXGHVFRQGLWLRQVLQLWLDOHV
. JI ⎞ JI ⎛ [ = ⎜ [ − ⎟ FRV ωW + DYHF ω = 0 ω ⎠ ω ⎝
G¶R
⎛ JI ⎞ [ = ⎜ − ω [ ⎟ VLQ ωW ω ⎝ ⎠
&HWWHYLWHVVHV¶DQQXOHjO¶LQVWDQW W =
π JI OHVROLGHVHWURXYDQWGDQVODSRVLWLRQ [ = − [ ω ω
0J I 0J I FHPRXYHPHQWFHVVHODIRUFHGHUDSSHO − . [ VRLW [ ≤ . . 0J I 0J I OH GRQF [ > QH SRXYDQW SDV YDLQFUH OH IURWWHPHQW 6XSSRVRQV [ < − . . PRXYHPHQWUHSUHQGHQVHQVLQYHUVHVXLYDQWO¶pTXDWLRQ 0 [ + . [ = − 0J I
. JI ⎞ JI ⎛ [ = ⎜ [ − ⎟ FRV ωW + DYHF ω = 0 ω ⎠ ω ⎝
G¶R
⎛ JI ⎞ [ = ⎜ − ω [ ⎟ VLQ ωW ω ⎝ ⎠
&HWWHYLWHVVHV¶DQQXOHjO¶LQVWDQW W =
π JI OHVROLGHVHWURXYDQWGDQVODSRVLWLRQ [ = − [ ω ω
0J I 0J I FHPRXYHPHQWFHVVHODIRUFHGHUDSSHO − . [ VRLW [ ≤ . . 0J I 0J I OH GRQF [ > QH SRXYDQW SDV YDLQFUH OH IURWWHPHQW 6XSSRVRQV [ < − . . PRXYHPHQWUHSUHQGHQVHQVLQYHUVHVXLYDQWO¶pTXDWLRQ 0 [ + . [ = − 0J I
6LDORUVRQD [ ≥ −
6LDORUVRQD [ ≥ −
/DVROXWLRQFRPSWHWHQXGHVFRQGLWLRQVjO¶LQVWDQW W V¶pFULW
/DVROXWLRQFRPSWHWHQXGHVFRQGLWLRQVjO¶LQVWDQW W V¶pFULW
0J I ⎛ [ = ⎜ [ − . ⎝
G¶RO¶RQWLUH
0J I ⎞ ⎟ FRV ωW − . ⎠
⎛ 0J I ⎞ [ = ω ⎜ − [ ⎟ VLQ ωW . ⎝ ⎠
0J I ⎛ [ = ⎜ [ − . ⎝
G¶RO¶RQWLUH
0J I ⎞ ⎟ FRV ωW − . ⎠
⎛ 0J I ⎞ [ = ω ⎜ − [ ⎟ VLQ ωW . ⎝ ⎠
- 128 -
- 128 -
/H UHVVRUW D SRXU UDLGHXU . WDQW HQ H[WHQVLRQ TX¶HQ FRPSUHVVLRQ VD SRVLWLRQ QHXWUH GH UHSRV FRUUHVSRQG j [ = I GpVLJQH OD FRHIILFLHQW GH IURWWHPHQW VHF HQWUH 0 HW 6 6XSSRVRQV TXH O¶RQ DEDQGRQQH OH VROLGH 0 j O¶LQVWDQW W = GH OD SRVLWLRQ [ > VDQV G YLWHVVHLQLWLDOH [ = /DIRUFHGHUDSSHOYDXWDORUV − . [ ODUpDFWLRQ 5 GH 6 VXU0 G DSRXUFRPSRVDQWHYHUWLFDOH − 0J HWSRXUFRPSRVDQWHKRUL]RQWDOH 0J ⋅ WJ ϕ
/H UHVVRUW D SRXU UDLGHXU . WDQW HQ H[WHQVLRQ TX¶HQ FRPSUHVVLRQ VD SRVLWLRQ QHXWUH GH UHSRV FRUUHVSRQG j [ = I GpVLJQH OD FRHIILFLHQW GH IURWWHPHQW VHF HQWUH 0 HW 6 6XSSRVRQV TXH O¶RQ DEDQGRQQH OH VROLGH 0 j O¶LQVWDQW W = GH OD SRVLWLRQ [ > VDQV G YLWHVVHLQLWLDOH [ = /DIRUFHGHUDSSHOYDXWDORUV − . [ ODUpDFWLRQ 5 GH 6 VXU0 G DSRXUFRPSRVDQWHYHUWLFDOH − 0J HWSRXUFRPSRVDQWHKRUL]RQWDOH 0J ⋅ WJ ϕ
6LO¶RQD . [ ≤ 0J I 0 QHVHPHWSDVHQPRXYHPHQW
6LO¶RQD . [ ≤ 0J I 0 QHVHPHWSDVHQPRXYHPHQW
6LO¶RQD . [ > 0J I 0 VHPHWHQPRXYHPHQWHWOHSULQFLSHIRQGDPHQWDOGHODG\QDPLTXH V¶pFULW
6LO¶RQD . [ > 0J I 0 VHPHWHQPRXYHPHQWHWOHSULQFLSHIRQGDPHQWDOGHODG\QDPLTXH V¶pFULW
− . [ + 0J I = 0 [ RX 0 [ + . [ = 0J I
− . [ + 0J I = 0 [ RX 0 [ + . [ = 0J I
2QDXQHIIHWGH©VHXLOªFDUDFWpULVWLTXHGXIURWWHPHQWVHFODIRUFHGHUDSSHOGRLWGpSDVVHUOH VHXLO 0J I SRXU SURYRTXHU OH PRXYHPHQW F¶HVW j GLUH SRXU YDLQFUH OH IURWWHPHQW HQVXLWH SHQGDQWOHPRXYHPHQWODIRUFHKRUL]RQWDOHGHIURWWHPHQWHQVXLWHSHQGDQWOHPRXYHPHQWOD IRUFHKRUL]RQWDOHGHIURWWHPHQWUHVWHpJDOHj 0J I
2QDXQHIIHWGH©VHXLOªFDUDFWpULVWLTXHGXIURWWHPHQWVHFODIRUFHGHUDSSHOGRLWGpSDVVHUOH VHXLO 0J I SRXU SURYRTXHU OH PRXYHPHQW F¶HVW j GLUH SRXU YDLQFUH OH IURWWHPHQW HQVXLWH SHQGDQWOHPRXYHPHQWODIRUFHKRUL]RQWDOHGHIURWWHPHQWHQVXLWHSHQGDQWOHPRXYHPHQWOD IRUFHKRUL]RQWDOHGHIURWWHPHQWUHVWHpJDOHj 0J I
/¶LQWpJUDWLRQGDQVXQHSUHPLqUHSKDVHGRQQHFRPSWHWHQXGHVFRQGLWLRQVLQLWLDOHV
/¶LQWpJUDWLRQGDQVXQHSUHPLqUHSKDVHGRQQHFRPSWHWHQXGHVFRQGLWLRQVLQLWLDOHV
. JI ⎞ JI ⎛ [ = ⎜ [ − ⎟ FRV ωW + DYHF ω = 0 ω ⎠ ω ⎝
G¶R
⎛ JI ⎞ [ = ⎜ − ω [ ⎟ VLQ ωW ⎝ω ⎠
&HWWHYLWHVVHV¶DQQXOHjO¶LQVWDQW W =
π JI OHVROLGHVHWURXYDQWGDQVODSRVLWLRQ [ = − [ ω ω
0J I 0J I FHPRXYHPHQWFHVVHODIRUFHGHUDSSHO − . [ VRLW [ ≤ . . 0J I 0J I OH GRQF [ > QH SRXYDQW SDV YDLQFUH OH IURWWHPHQW 6XSSRVRQV [ < − . . PRXYHPHQWUHSUHQGHQVHQVLQYHUVHVXLYDQWO¶pTXDWLRQ 0 [ + . [ = − 0J I
. JI ⎞ JI ⎛ [ = ⎜ [ − ⎟ FRV ωW + DYHF ω = 0 ω ⎠ ω ⎝
G¶R
⎛ JI ⎞ [ = ⎜ − ω [ ⎟ VLQ ωW ⎝ω ⎠
&HWWHYLWHVVHV¶DQQXOHjO¶LQVWDQW W =
π JI OHVROLGHVHWURXYDQWGDQVODSRVLWLRQ [ = − [ ω ω
0J I 0J I FHPRXYHPHQWFHVVHODIRUFHGHUDSSHO − . [ VRLW [ ≤ . . 0J I 0J I OH GRQF [ > QH SRXYDQW SDV YDLQFUH OH IURWWHPHQW 6XSSRVRQV [ < − . . PRXYHPHQWUHSUHQGHQVHQVLQYHUVHVXLYDQWO¶pTXDWLRQ 0 [ + . [ = − 0J I
6LDORUVRQD [ ≥ −
6LDORUVRQD [ ≥ −
/DVROXWLRQFRPSWHWHQXGHVFRQGLWLRQVjO¶LQVWDQW W V¶pFULW
/DVROXWLRQFRPSWHWHQXGHVFRQGLWLRQVjO¶LQVWDQW W V¶pFULW
0J I ⎞ 0J I ⎛ [ = ⎜ [ − ⎟ FRV ωW − . ⎠ . ⎝
G¶RO¶RQWLUH
⎛ 0J I ⎞ [ = ω ⎜ − [ ⎟ VLQ ωW ⎝ . ⎠ - 128 -
0J I ⎞ 0J I ⎛ [ = ⎜ [ − ⎟ FRV ωW − . ⎠ . ⎝
G¶RO¶RQWLUH
⎛ 0J I ⎞ [ = ω ⎜ − [ ⎟ VLQ ωW ⎝ . ⎠ - 128 -
&HWWH GHX[LqPH SKDVH RX GHX[LqPH GHPLRVFLOODWLRQ SUHQG ILQ j O¶LQVWDQW W = V¶DQQXOHDYHF [ = [ −
0J I .
π R [ ω
&HWWH GHX[LqPH SKDVH RX GHX[LqPH GHPLRVFLOODWLRQ SUHQG ILQ j O¶LQVWDQW W = V¶DQQXOHDYHF [ = [ −
0J I .
π R [ ω
/H PRXYHPHQW QH UHSUHQG SRXU XQH WURLVLqPH GHPLRVFLOODWLRQ TXH VL . [ > 0J I VRLW 0J I [ > HWDLQVLGHVXLWH .
/H PRXYHPHQW QH UHSUHQG SRXU XQH WURLVLqPH GHPLRVFLOODWLRQ TXH VL . [ > 0J I VRLW 0J I [ > HWDLQVLGHVXLWH .
0J I Q + 0J I RQ DXUD Q GHPL < [ ≤ . . RVFLOODWLRQVQSKDVHV DSUqVTXRLODVWUXFWXUHV¶LPPRELOLVHUDGDQVODSRVLWLRQ
0J I Q + 0J I RQ DXUD Q GHPL < [ ≤ . . RVFLOODWLRQVQSKDVHV DSUqVTXRLODVWUXFWXUHV¶LPPRELOLVHUDGDQVODSRVLWLRQ
0J I ⎞ ⎛ [ Q = − Q ⎜ [ − Q ⎟ . ⎠ ⎝
0J I ⎞ ⎛ [ Q = − Q ⎜ [ − Q ⎟ . ⎠ ⎝
'¶XQH IDoRQ JpQpUDOH VL O¶RQ D Q −
)LJXUH
'¶XQH IDoRQ JpQpUDOH VL O¶RQ D Q −
)LJXUH
/DILJXUHUHSUpVHQWHOHJUDSKHGHODIRQFWLRQ ωW → [ GDQVOHFDV Q =
/DILJXUHUHSUpVHQWHOHJUDSKHGHODIRQFWLRQ ωW → [ GDQVOHFDV Q =
/¶DPSOLWXGHGHVRVFLOODWLRQVGpFURvWOLQpDLUHPHQWGDQVOHWHPSVO¶pQHUJLHGLVVLSpHDXFRXUV GHODQLqPHGHPLRVFLOODWLRQHVW 0J I ⎞ ⎛ ( G Q = 0J I [ Q − [ Q − VRLW ( G Q = 0J I ⎜ [ − Q − ⎟ . ⎠ ⎝
/¶DPSOLWXGHGHVRVFLOODWLRQVGpFURvWOLQpDLUHPHQWGDQVOHWHPSVO¶pQHUJLHGLVVLSpHDXFRXUV GHODQLqPHGHPLRVFLOODWLRQHVW 0J I ⎞ ⎛ ( G Q = 0J I [ Q − [ Q − VRLW ( G Q = 0J I ⎜ [ − Q − ⎟ . ⎠ ⎝
0J I ⎞ ⎛ ( G + + ! + Q = Q 0J I ⎜ [ − Q ⎟ . ⎠ ⎝
0J I ⎞ ⎛ ( G + + ! + Q = Q 0J I ⎜ [ − Q ⎟ . ⎠ ⎝
- 129 -
- 129 -
&HWWH GHX[LqPH SKDVH RX GHX[LqPH GHPLRVFLOODWLRQ SUHQG ILQ j O¶LQVWDQW W = V¶DQQXOHDYHF [ = [ −
0J I .
π R [ ω
&HWWH GHX[LqPH SKDVH RX GHX[LqPH GHPLRVFLOODWLRQ SUHQG ILQ j O¶LQVWDQW W = V¶DQQXOHDYHF [ = [ −
0J I .
π R [ ω
/H PRXYHPHQW QH UHSUHQG SRXU XQH WURLVLqPH GHPLRVFLOODWLRQ TXH VL . [ > 0J I VRLW 0J I [ > HWDLQVLGHVXLWH .
/H PRXYHPHQW QH UHSUHQG SRXU XQH WURLVLqPH GHPLRVFLOODWLRQ TXH VL . [ > 0J I VRLW 0J I [ > HWDLQVLGHVXLWH .
0J I Q + 0J I RQ DXUD Q GHPL < [ ≤ . . RVFLOODWLRQVQSKDVHV DSUqVTXRLODVWUXFWXUHV¶LPPRELOLVHUDGDQVODSRVLWLRQ
0J I Q + 0J I RQ DXUD Q GHPL < [ ≤ . . RVFLOODWLRQVQSKDVHV DSUqVTXRLODVWUXFWXUHV¶LPPRELOLVHUDGDQVODSRVLWLRQ
0J I ⎞ ⎛ [ Q = − Q ⎜ [ − Q ⎟ . ⎠ ⎝
0J I ⎞ ⎛ [ Q = − Q ⎜ [ − Q ⎟ . ⎠ ⎝
'¶XQH IDoRQ JpQpUDOH VL O¶RQ D Q −
)LJXUH
'¶XQH IDoRQ JpQpUDOH VL O¶RQ D Q −
)LJXUH
/DILJXUHUHSUpVHQWHOHJUDSKHGHODIRQFWLRQ ωW → [ GDQVOHFDV Q =
/DILJXUHUHSUpVHQWHOHJUDSKHGHODIRQFWLRQ ωW → [ GDQVOHFDV Q =
/¶DPSOLWXGHGHVRVFLOODWLRQVGpFURvWOLQpDLUHPHQWGDQVOHWHPSVO¶pQHUJLHGLVVLSpHDXFRXUV GHODQLqPHGHPLRVFLOODWLRQHVW 0J I ⎞ ⎛ ( G Q = 0J I [ Q − [ Q − VRLW ( G Q = 0J I ⎜ [ − Q − ⎟ . ⎠ ⎝
/¶DPSOLWXGHGHVRVFLOODWLRQVGpFURvWOLQpDLUHPHQWGDQVOHWHPSVO¶pQHUJLHGLVVLSpHDXFRXUV GHODQLqPHGHPLRVFLOODWLRQHVW 0J I ⎞ ⎛ ( G Q = 0J I [ Q − [ Q − VRLW ( G Q = 0J I ⎜ [ − Q − ⎟ . ⎠ ⎝
0J I ⎞ ⎛ ( G + + ! + Q = Q 0J I ⎜ [ − Q ⎟ . ⎠ ⎝
0J I ⎞ ⎛ ( G + + ! + Q = Q 0J I ⎜ [ − Q ⎟ . ⎠ ⎝
- 129 -
- 129 -
- 130 -
- 130 -
- 130 -
- 130 -
&+$3,75(9,,
&+$3,75(9,,
6758&785(6¬3/86,(856'(*5e6'(/,%(57e
6758&785(6¬3/86,(856'(*5e6'(/,%(57e
8QHVWUXFWXUHHVWGLWHjQGHJUpVGHOLEHUWpVLVDFRQILJXUDWLRQjXQLQVWDQWWTXHOFRQTXHHVW SDUIDLWHPHQW GpILQLH SDU OHV YDOHXUV GH Q SDUDPqWUHV LQGpSHQGDQWV T T ! T Q &HV SDUDPqWUHVIRQFWLRQVGXWHPSVVHQRPPHQWFRRUGRQQpHVJpQpUDOLVpHVRXHQFRUHSDUDPqWUHV GHFRQILJXUDWLRQ
8QHVWUXFWXUHHVWGLWHjQGHJUpVGHOLEHUWpVLVDFRQILJXUDWLRQjXQLQVWDQWWTXHOFRQTXHHVW SDUIDLWHPHQW GpILQLH SDU OHV YDOHXUV GH Q SDUDPqWUHV LQGpSHQGDQWV T T ! T Q &HV SDUDPqWUHVIRQFWLRQVGXWHPSVVHQRPPHQWFRRUGRQQpHVJpQpUDOLVpHVRXHQFRUHSDUDPqWUHV GHFRQILJXUDWLRQ
,OV FRQVWLWXHQW XQ V\VWqPH GH FRRUGRQQpHV G¶XQH YDULpWp SRQFWXHOOH GH GLPHQVLRQ Q GLWH HVSDFHGHFRQILJXUDWLRQDXPRXYHPHQWGHODVWUXFWXUHRQDVVRFLHGHIDoRQELMHFWLYHFHOXL GXSRLQWILJXUDWLITTXLGpFULWDYHFOHWHPSVXQHFRXUEHGHFHWWHYDULpWp
,OV FRQVWLWXHQW XQ V\VWqPH GH FRRUGRQQpHV G¶XQH YDULpWp SRQFWXHOOH GH GLPHQVLRQ Q GLWH HVSDFHGHFRQILJXUDWLRQDXPRXYHPHQWGHODVWUXFWXUHRQDVVRFLHGHIDoRQELMHFWLYHFHOXL GXSRLQWILJXUDWLITTXLGpFULWDYHFOHWHPSVXQHFRXUEHGHFHWWHYDULpWp
8QHWHOOHVWUXFWXUHFRPSRUWHXQRXSOXVLHXUVVROLGHVLQGpIRUPDEOHVVRXPLVjXQHQVHPEOHGH OLDLVRQV
8QHWHOOHVWUXFWXUHFRPSRUWHXQRXSOXVLHXUVVROLGHVLQGpIRUPDEOHVVRXPLVjXQHQVHPEOHGH OLDLVRQV
±/,$,6216
±/,$,6216
$X FKDSLWUH 9 GX WRPH , QRXV DYRQV FRQVDFUp WRXW OH SUHPLHU SDUDJUDSKH j O¶DQDO\VH GHV OLDLVRQV
$X FKDSLWUH 9 GX WRPH , QRXV DYRQV FRQVDFUp WRXW OH SUHPLHU SDUDJUDSKH j O¶DQDO\VH GHV OLDLVRQV
3RXUO¶pWXGHG\QDPLTXHG¶XQHVWUXFWXUHQRXVDOORQVPDLQWHQDQWUHYHQLUVXUFHWWHDQDO\VHHWOD FRPSOpWHU
3RXUO¶pWXGHG\QDPLTXHG¶XQHVWUXFWXUHQRXVDOORQVPDLQWHQDQWUHYHQLUVXUFHWWHDQDO\VHHWOD FRPSOpWHU
±/LDLVRQVELODWpUDOHVHWOLDLVRQVXQLODWpUDOHV
±/LDLVRQVELODWpUDOHVHWOLDLVRQVXQLODWpUDOHV
/DFRQILJXUDWLRQG¶XQVROLGH 6 SDUUDSSRUWjXQVROLGH 6 HVWGpILQLHSDUOHVYDOHXUVGHVVL[
/DFRQILJXUDWLRQG¶XQVROLGH 6 SDUUDSSRUWjXQVROLGH 6 HVWGpILQLHSDUOHVYDOHXUVGHVVL[
SDUDPqWUHVGHFRQILJXUDWLRQ T T ! T SDUH[HPSOHOHVWURLVFRRUGRQQpHVFDUWpVLHQQHVGX FHQWUHG¶LQHUWLH*GH 6 TXLGpILQLVVHQWVDSRVLWLRQHWOHVWURLVDQJOHVG¶(XOHUTXLGpILQLVVHQW VRQ©DWWLWXGHªRX©RULHQWDWLRQª
SDUDPqWUHVGHFRQILJXUDWLRQ T T ! T SDUH[HPSOHOHVWURLVFRRUGRQQpHVFDUWpVLHQQHVGX FHQWUHG¶LQHUWLH*GH 6 TXLGpILQLVVHQWVDSRVLWLRQHWOHVWURLVDQJOHVG¶(XOHUTXLGpILQLVVHQW VRQ©DWWLWXGHªRX©RULHQWDWLRQª
8QH OLDLVRQ SK\VLTXH HQWUH 6 HW 6 GH QDWXUH SXUHPHQW JpRPpWULTXH j P GHJUpV GH OLEHUWpDYHF ≤ P ≤ V¶H[SULPHPDWKpPDWLTXHPHQWDXPR\HQGHPUHODWLRQVLQGpSHQGDQWHV HQWUHOHV T L HWpYHQWXHOOHPHQWOHWHPSVTXHO¶RQSHXWpFULUH
8QH OLDLVRQ SK\VLTXH HQWUH 6 HW 6 GH QDWXUH SXUHPHQW JpRPpWULTXH j P GHJUpV GH OLEHUWpDYHF ≤ P ≤ V¶H[SULPHPDWKpPDWLTXHPHQWDXPR\HQGHPUHODWLRQVLQGpSHQGDQWHV HQWUHOHV T L HWpYHQWXHOOHPHQWOHWHPSVTXHO¶RQSHXWpFULUH
I M T T ! T W = DYHF M = ! P
I M T T ! T W = DYHF M = ! P
HWTXHO¶RQQRPPHUHODWLRQVRXFRQGLWLRQV GHOLDLVRQV
HWTXHO¶RQQRPPHUHODWLRQVRXFRQGLWLRQV GHOLDLVRQV
&HV UHODWLRQV VRQW G¶DLOOHXUV VRXYHQW WUqV VLPSOHV SDU H[HPSOH OLQpDLUHV RX PrPH GX W\SH T L = F WH
&HV UHODWLRQV VRQW G¶DLOOHXUV VRXYHQW WUqV VLPSOHV SDU H[HPSOH OLQpDLUHV RX PrPH GX W\SH T L = F WH
- 131 -
- 131 -
&+$3,75(9,,
&+$3,75(9,,
6758&785(6¬3/86,(856'(*5e6'(/,%(57e
6758&785(6¬3/86,(856'(*5e6'(/,%(57e
8QHVWUXFWXUHHVWGLWHjQGHJUpVGHOLEHUWpVLVDFRQILJXUDWLRQjXQLQVWDQWWTXHOFRQTXHHVW SDUIDLWHPHQW GpILQLH SDU OHV YDOHXUV GH Q SDUDPqWUHV LQGpSHQGDQWV T T ! T Q &HV SDUDPqWUHVIRQFWLRQVGXWHPSVVHQRPPHQWFRRUGRQQpHVJpQpUDOLVpHVRXHQFRUHSDUDPqWUHV GHFRQILJXUDWLRQ
8QHVWUXFWXUHHVWGLWHjQGHJUpVGHOLEHUWpVLVDFRQILJXUDWLRQjXQLQVWDQWWTXHOFRQTXHHVW SDUIDLWHPHQW GpILQLH SDU OHV YDOHXUV GH Q SDUDPqWUHV LQGpSHQGDQWV T T ! T Q &HV SDUDPqWUHVIRQFWLRQVGXWHPSVVHQRPPHQWFRRUGRQQpHVJpQpUDOLVpHVRXHQFRUHSDUDPqWUHV GHFRQILJXUDWLRQ
,OV FRQVWLWXHQW XQ V\VWqPH GH FRRUGRQQpHV G¶XQH YDULpWp SRQFWXHOOH GH GLPHQVLRQ Q GLWH HVSDFHGHFRQILJXUDWLRQDXPRXYHPHQWGHODVWUXFWXUHRQDVVRFLHGHIDoRQELMHFWLYHFHOXL GXSRLQWILJXUDWLITTXLGpFULWDYHFOHWHPSVXQHFRXUEHGHFHWWHYDULpWp
,OV FRQVWLWXHQW XQ V\VWqPH GH FRRUGRQQpHV G¶XQH YDULpWp SRQFWXHOOH GH GLPHQVLRQ Q GLWH HVSDFHGHFRQILJXUDWLRQDXPRXYHPHQWGHODVWUXFWXUHRQDVVRFLHGHIDoRQELMHFWLYHFHOXL GXSRLQWILJXUDWLITTXLGpFULWDYHFOHWHPSVXQHFRXUEHGHFHWWHYDULpWp
8QHWHOOHVWUXFWXUHFRPSRUWHXQRXSOXVLHXUVVROLGHVLQGpIRUPDEOHVVRXPLVjXQHQVHPEOHGH OLDLVRQV
8QHWHOOHVWUXFWXUHFRPSRUWHXQRXSOXVLHXUVVROLGHVLQGpIRUPDEOHVVRXPLVjXQHQVHPEOHGH OLDLVRQV
±/,$,6216
±/,$,6216
$X FKDSLWUH 9 GX WRPH , QRXV DYRQV FRQVDFUp WRXW OH SUHPLHU SDUDJUDSKH j O¶DQDO\VH GHV OLDLVRQV
$X FKDSLWUH 9 GX WRPH , QRXV DYRQV FRQVDFUp WRXW OH SUHPLHU SDUDJUDSKH j O¶DQDO\VH GHV OLDLVRQV
3RXUO¶pWXGHG\QDPLTXHG¶XQHVWUXFWXUHQRXVDOORQVPDLQWHQDQWUHYHQLUVXUFHWWHDQDO\VHHWOD FRPSOpWHU
3RXUO¶pWXGHG\QDPLTXHG¶XQHVWUXFWXUHQRXVDOORQVPDLQWHQDQWUHYHQLUVXUFHWWHDQDO\VHHWOD FRPSOpWHU
±/LDLVRQVELODWpUDOHVHWOLDLVRQVXQLODWpUDOHV
±/LDLVRQVELODWpUDOHVHWOLDLVRQVXQLODWpUDOHV
/DFRQILJXUDWLRQG¶XQVROLGH 6 SDUUDSSRUWjXQVROLGH 6 HVWGpILQLHSDUOHVYDOHXUVGHVVL[
/DFRQILJXUDWLRQG¶XQVROLGH 6 SDUUDSSRUWjXQVROLGH 6 HVWGpILQLHSDUOHVYDOHXUVGHVVL[
SDUDPqWUHVGHFRQILJXUDWLRQ T T ! T SDUH[HPSOHOHVWURLVFRRUGRQQpHVFDUWpVLHQQHVGX FHQWUHG¶LQHUWLH*GH 6 TXLGpILQLVVHQWVDSRVLWLRQHWOHVWURLVDQJOHVG¶(XOHUTXLGpILQLVVHQW VRQ©DWWLWXGHªRX©RULHQWDWLRQª
SDUDPqWUHVGHFRQILJXUDWLRQ T T ! T SDUH[HPSOHOHVWURLVFRRUGRQQpHVFDUWpVLHQQHVGX FHQWUHG¶LQHUWLH*GH 6 TXLGpILQLVVHQWVDSRVLWLRQHWOHVWURLVDQJOHVG¶(XOHUTXLGpILQLVVHQW VRQ©DWWLWXGHªRX©RULHQWDWLRQª
8QH OLDLVRQ SK\VLTXH HQWUH 6 HW 6 GH QDWXUH SXUHPHQW JpRPpWULTXH j P GHJUpV GH OLEHUWpDYHF ≤ P ≤ V¶H[SULPHPDWKpPDWLTXHPHQWDXPR\HQGHPUHODWLRQVLQGpSHQGDQWHV HQWUHOHV T L HWpYHQWXHOOHPHQWOHWHPSVTXHO¶RQSHXWpFULUH
8QH OLDLVRQ SK\VLTXH HQWUH 6 HW 6 GH QDWXUH SXUHPHQW JpRPpWULTXH j P GHJUpV GH OLEHUWpDYHF ≤ P ≤ V¶H[SULPHPDWKpPDWLTXHPHQWDXPR\HQGHPUHODWLRQVLQGpSHQGDQWHV HQWUHOHV T L HWpYHQWXHOOHPHQWOHWHPSVTXHO¶RQSHXWpFULUH
I M T T ! T W = DYHF M = ! P
I M T T ! T W = DYHF M = ! P
HWTXHO¶RQQRPPHUHODWLRQVRXFRQGLWLRQV GHOLDLVRQV
HWTXHO¶RQQRPPHUHODWLRQVRXFRQGLWLRQV GHOLDLVRQV
&HV UHODWLRQV VRQW G¶DLOOHXUV VRXYHQW WUqV VLPSOHV SDU H[HPSOH OLQpDLUHV RX PrPH GX W\SH T L = F WH
&HV UHODWLRQV VRQW G¶DLOOHXUV VRXYHQW WUqV VLPSOHV SDU H[HPSOH OLQpDLUHV RX PrPH GX W\SH T L = F WH
- 131 -
- 131 -
3DUIRLVVXLYDQWOHVHIIRUWVHWFRQGLWLRQVLQLWLDOHVLPSRVpHVjODVWUXFWXUHXQHOLDLVRQSHXWRX QRQH[LVWHUHOOHVHWUDGXLWDORUVSDUGHVLQpJDOLWpVGHODIRUPH
I M T T ! T W ≥
2Q GLW TX¶LO V¶DJLW G¶XQH OLDLVRQ XQLODWpUDOH XQH WHOOH OLDLVRQ DJLW FRPPH XQH EXWpH TXL LQWHUGLWO¶LQWHUSpQpWUDWLRQGHVGHX[VROLGHVF¶HVWOHFDVSDUH[HPSOHORUVTXH 6 HVWDVVXMHWWLj UHVWHU G¶XQH PrPH F{Wp G¶XQH VXUIDFH PDWpULHOOH 6 DYHF I M = V¶LO \ D FRQWDFW HW I M > VLQRQ 6L j O¶LQVWDQW W RQ D OHV pJDOLWpV I M = RQ GLW TXH OD OLDLVRQ FRUUHVSRQGDQWH HVW
3DUIRLVVXLYDQWOHVHIIRUWVHWFRQGLWLRQVLQLWLDOHVLPSRVpHVjODVWUXFWXUHXQHOLDLVRQSHXWRX QRQH[LVWHUHOOHVHWUDGXLWDORUVSDUGHVLQpJDOLWpVGHODIRUPH
I M T T ! T W ≥
2Q GLW TX¶LO V¶DJLW G¶XQH OLDLVRQ XQLODWpUDOH XQH WHOOH OLDLVRQ DJLW FRPPH XQH EXWpH TXL LQWHUGLWO¶LQWHUSpQpWUDWLRQGHVGHX[VROLGHVF¶HVWOHFDVSDUH[HPSOHORUVTXH 6 HVWDVVXMHWWLj UHVWHU G¶XQH PrPH F{Wp G¶XQH VXUIDFH PDWpULHOOH 6 DYHF I M = V¶LO \ D FRQWDFW HW I M > VLQRQ 6L j O¶LQVWDQW W RQ D OHV pJDOLWpV I M = RQ GLW TXH OD OLDLVRQ FRUUHVSRQGDQWH HVW
HIIHFWLYHPHQWUpDOLVpHjFHWLQVWDQWHOOHSHXWDXVVLSHUVLVWHUGDQVXQODSVGHWHPSV W W + τ 7RXWHOLDLVRQQRQXQLODWpUDOHHVWGLWHELODWpUDOHHWVDWLVIDLWDX[FRQGLWLRQVGHW\SH
HIIHFWLYHPHQWUpDOLVpHjFHWLQVWDQWHOOHSHXWDXVVLSHUVLVWHUGDQVXQODSVGHWHPSV W W + τ 7RXWHOLDLVRQQRQXQLODWpUDOHHVWGLWHELODWpUDOHHWVDWLVIDLWDX[FRQGLWLRQVGHW\SH
6XUODVWUXFWXUHSODQHGHODILJXUHOHSLYRWG¶D[HR]RXDUWLFXODWLRQF\OLQGULTXHRXHQFRUH DUWLFXODWLRQ URWRwGH FRQVWLWXH XQH OLDLVRQ ELODWpUDOH O¶DSSXL VLPSOH $ FRQVWLWXH XQH OLDLVRQ XQLODWpUDOHH[SULPpHSDUODUHODWLRQGHW\SH θ ≥ DYHF θ = VLO¶DSSXLHVWHIIHFWLYHPHQW UpDOLVpHW θ > GDQVOHFDVFRQWUDLUH
6XUODVWUXFWXUHSODQHGHODILJXUHOHSLYRWG¶D[HR]RXDUWLFXODWLRQF\OLQGULTXHRXHQFRUH DUWLFXODWLRQ URWRwGH FRQVWLWXH XQH OLDLVRQ ELODWpUDOH O¶DSSXL VLPSOH $ FRQVWLWXH XQH OLDLVRQ XQLODWpUDOHH[SULPpHSDUODUHODWLRQGHW\SH θ ≥ DYHF θ = VLO¶DSSXLHVWHIIHFWLYHPHQW UpDOLVpHW θ > GDQVOHFDVFRQWUDLUH
/DUpDFWLRQGH 6 VXU 6 HQ$VDWLVIDLWjODFRQGLWLRQ 5 <$ ≥ DYHF 5 <$ = VL θ >
/DUpDFWLRQGH 6 VXU 6 HQ$VDWLVIDLWjODFRQGLWLRQ 5 <$ ≥ DYHF 5 <$ = VL θ >
)LJXUH
)LJXUH
±/LDLVRQVKRORQRPHVHWOLDLVRQVQRQKRORQRPHV
±/LDLVRQVKRORQRPHVHWOLDLVRQVQRQKRORQRPHV
8QHFRQGLWLRQGHOLDLVRQELODWpUDOHHVWGLWHKRORQRPHVLHOOHHVWGXW\SH F¶HVWjGLUHUHOLH OHVSDUDPqWUHVGHFRQILJXUDWLRQ TL HWOHWHPSVWpYHQWXHOOHPHQWQHIDLVDQWSDVLQWHUYHQLUOHV GpULYpHV T L SDU UDSSRUW DX WHPSV GH FHV SDUDPqWUHV 6L OHV P UHODWLRQV PRGpOLVDQW XQH OLDLVRQVRQWKRORQRPHVFHWWHOLDLVRQHVWGLWHKRORQRPH
8QHFRQGLWLRQGHOLDLVRQELODWpUDOHHVWGLWHKRORQRPHVLHOOHHVWGXW\SH F¶HVWjGLUHUHOLH OHVSDUDPqWUHVGHFRQILJXUDWLRQ TL HWOHWHPSVWpYHQWXHOOHPHQWQHIDLVDQWSDVLQWHUYHQLUOHV GpULYpHV T L SDU UDSSRUW DX WHPSV GH FHV SDUDPqWUHV 6L OHV P UHODWLRQV PRGpOLVDQW XQH OLDLVRQVRQWKRORQRPHVFHWWHOLDLVRQHVWGLWHKRORQRPH
8QHFRQGLWLRQGHOLDLVRQELODWpUDOHHVWGLWHQRQKRORQRPHVLHOOHHVWGHODIRUPH
8QHFRQGLWLRQGHOLDLVRQELODWpUDOHHVWGLWHQRQKRORQRPHVLHOOHHVWGHODIRUPH
I T T ! T T T ! T W =
I T T ! T T T ! T W =
F¶HVWjGLUHTX¶HOOHIDLWDXVVLLQWHUYHQLUOHVYLWHVVHV T L
F¶HVWjGLUHTX¶HOOHIDLWDXVVLLQWHUYHQLUOHVYLWHVVHV T L
/DOLDLVRQHVWDORUVGLWHHOOHPrPHQRQKRORQRPH
/DOLDLVRQHVWDORUVGLWHHOOHPrPHQRQKRORQRPH
- 132 -
- 132 -
3DUIRLVVXLYDQWOHVHIIRUWVHWFRQGLWLRQVLQLWLDOHVLPSRVpHVjODVWUXFWXUHXQHOLDLVRQSHXWRX QRQH[LVWHUHOOHVHWUDGXLWDORUVSDUGHVLQpJDOLWpVGHODIRUPH
3DUIRLVVXLYDQWOHVHIIRUWVHWFRQGLWLRQVLQLWLDOHVLPSRVpHVjODVWUXFWXUHXQHOLDLVRQSHXWRX QRQH[LVWHUHOOHVHWUDGXLWDORUVSDUGHVLQpJDOLWpVGHODIRUPH
I M T T ! T W ≥
2Q GLW TX¶LO V¶DJLW G¶XQH OLDLVRQ XQLODWpUDOH XQH WHOOH OLDLVRQ DJLW FRPPH XQH EXWpH TXL LQWHUGLWO¶LQWHUSpQpWUDWLRQGHVGHX[VROLGHVF¶HVWOHFDVSDUH[HPSOHORUVTXH 6 HVWDVVXMHWWLj UHVWHU G¶XQH PrPH F{Wp G¶XQH VXUIDFH PDWpULHOOH 6 DYHF I M = V¶LO \ D FRQWDFW HW I M > VLQRQ 6L j O¶LQVWDQW W RQ D OHV pJDOLWpV I M = RQ GLW TXH OD OLDLVRQ FRUUHVSRQGDQWH HVW
I M T T ! T W ≥
2Q GLW TX¶LO V¶DJLW G¶XQH OLDLVRQ XQLODWpUDOH XQH WHOOH OLDLVRQ DJLW FRPPH XQH EXWpH TXL LQWHUGLWO¶LQWHUSpQpWUDWLRQGHVGHX[VROLGHVF¶HVWOHFDVSDUH[HPSOHORUVTXH 6 HVWDVVXMHWWLj UHVWHU G¶XQH PrPH F{Wp G¶XQH VXUIDFH PDWpULHOOH 6 DYHF I M = V¶LO \ D FRQWDFW HW I M > VLQRQ 6L j O¶LQVWDQW W RQ D OHV pJDOLWpV I M = RQ GLW TXH OD OLDLVRQ FRUUHVSRQGDQWH HVW
HIIHFWLYHPHQWUpDOLVpHjFHWLQVWDQWHOOHSHXWDXVVLSHUVLVWHUGDQVXQODSVGHWHPSV W W + τ 7RXWHOLDLVRQQRQXQLODWpUDOHHVWGLWHELODWpUDOHHWVDWLVIDLWDX[FRQGLWLRQVGHW\SH
HIIHFWLYHPHQWUpDOLVpHjFHWLQVWDQWHOOHSHXWDXVVLSHUVLVWHUGDQVXQODSVGHWHPSV W W + τ 7RXWHOLDLVRQQRQXQLODWpUDOHHVWGLWHELODWpUDOHHWVDWLVIDLWDX[FRQGLWLRQVGHW\SH
6XUODVWUXFWXUHSODQHGHODILJXUHOHSLYRWG¶D[HR]RXDUWLFXODWLRQF\OLQGULTXHRXHQFRUH DUWLFXODWLRQ URWRwGH FRQVWLWXH XQH OLDLVRQ ELODWpUDOH O¶DSSXL VLPSOH $ FRQVWLWXH XQH OLDLVRQ XQLODWpUDOHH[SULPpHSDUODUHODWLRQGHW\SH θ ≥ DYHF θ = VLO¶DSSXLHVWHIIHFWLYHPHQW UpDOLVpHW θ > GDQVOHFDVFRQWUDLUH
6XUODVWUXFWXUHSODQHGHODILJXUHOHSLYRWG¶D[HR]RXDUWLFXODWLRQF\OLQGULTXHRXHQFRUH DUWLFXODWLRQ URWRwGH FRQVWLWXH XQH OLDLVRQ ELODWpUDOH O¶DSSXL VLPSOH $ FRQVWLWXH XQH OLDLVRQ XQLODWpUDOHH[SULPpHSDUODUHODWLRQGHW\SH θ ≥ DYHF θ = VLO¶DSSXLHVWHIIHFWLYHPHQW UpDOLVpHW θ > GDQVOHFDVFRQWUDLUH
/DUpDFWLRQGH 6 VXU 6 HQ$VDWLVIDLWjODFRQGLWLRQ 5 <$ ≥ DYHF 5 <$ = VL θ >
/DUpDFWLRQGH 6 VXU 6 HQ$VDWLVIDLWjODFRQGLWLRQ 5 <$ ≥ DYHF 5 <$ = VL θ >
)LJXUH
)LJXUH
±/LDLVRQVKRORQRPHVHWOLDLVRQVQRQKRORQRPHV
±/LDLVRQVKRORQRPHVHWOLDLVRQVQRQKRORQRPHV
8QHFRQGLWLRQGHOLDLVRQELODWpUDOHHVWGLWHKRORQRPHVLHOOHHVWGXW\SH F¶HVWjGLUHUHOLH OHVSDUDPqWUHVGHFRQILJXUDWLRQ TL HWOHWHPSVWpYHQWXHOOHPHQWQHIDLVDQWSDVLQWHUYHQLUOHV GpULYpHV T L SDU UDSSRUW DX WHPSV GH FHV SDUDPqWUHV 6L OHV P UHODWLRQV PRGpOLVDQW XQH OLDLVRQVRQWKRORQRPHVFHWWHOLDLVRQHVWGLWHKRORQRPH
8QHFRQGLWLRQGHOLDLVRQELODWpUDOHHVWGLWHKRORQRPHVLHOOHHVWGXW\SH F¶HVWjGLUHUHOLH OHVSDUDPqWUHVGHFRQILJXUDWLRQ TL HWOHWHPSVWpYHQWXHOOHPHQWQHIDLVDQWSDVLQWHUYHQLUOHV GpULYpHV T L SDU UDSSRUW DX WHPSV GH FHV SDUDPqWUHV 6L OHV P UHODWLRQV PRGpOLVDQW XQH OLDLVRQVRQWKRORQRPHVFHWWHOLDLVRQHVWGLWHKRORQRPH
8QHFRQGLWLRQGHOLDLVRQELODWpUDOHHVWGLWHQRQKRORQRPHVLHOOHHVWGHODIRUPH
8QHFRQGLWLRQGHOLDLVRQELODWpUDOHHVWGLWHQRQKRORQRPHVLHOOHHVWGHODIRUPH
I T T ! T T T ! T W =
I T T ! T T T ! T W =
F¶HVWjGLUHTX¶HOOHIDLWDXVVLLQWHUYHQLUOHVYLWHVVHV T L
F¶HVWjGLUHTX¶HOOHIDLWDXVVLLQWHUYHQLUOHVYLWHVVHV T L
/DOLDLVRQHVWDORUVGLWHHOOHPrPHQRQKRORQRPH
/DOLDLVRQHVWDORUVGLWHHOOHPrPHQRQKRORQRPH
- 132 -
- 132 -
&¶HVWOHFDVSDUH[HPSOHRODOLDLVRQFRQVLVWHHQXQFRQWDFWSRQFWXHOUXJXHX[HQWUH 6 HW 6 LQWHUGLVDQWWRXWJOLVVHPHQWjXQLQVWDQWWTXHOFRQTXHRQLPSRVHDORUVjODSDUWLFXOH,GH 6 HQFRQWDFWDYHF 6 G¶DYRLUXQYHFWHXUYLWHVVHQXOSDUUDSSRUWj 6 FHTXLVHWUDGXLWSDUGHX[ UHODWLRQV GX W\SH VL O¶RQ LPSRVH HQ SOXV OH QRQSLYRWHPHQW FHOD DMRXWH XQH WURLVLqPH FRQGLWLRQQRQKRORQRPHGXW\SH 'DQVODSOXSDUWGHVFDVXQHFRQGLWLRQGHOLDLVRQQRQ KRORQRPHSHXWV¶pFULUH D T + D T + !! + D T + = E
&¶HVWOHFDVSDUH[HPSOHRODOLDLVRQFRQVLVWHHQXQFRQWDFWSRQFWXHOUXJXHX[HQWUH 6 HW 6 LQWHUGLVDQWWRXWJOLVVHPHQWjXQLQVWDQWWTXHOFRQTXHRQLPSRVHDORUVjODSDUWLFXOH,GH 6 HQFRQWDFWDYHF 6 G¶DYRLUXQYHFWHXUYLWHVVHQXOSDUUDSSRUWj 6 FHTXLVHWUDGXLWSDUGHX[ UHODWLRQV GX W\SH VL O¶RQ LPSRVH HQ SOXV OH QRQSLYRWHPHQW FHOD DMRXWH XQH WURLVLqPH FRQGLWLRQQRQKRORQRPHGXW\SH 'DQVODSOXSDUWGHVFDVXQHFRQGLWLRQGHOLDLVRQQRQ KRORQRPHSHXWV¶pFULUH D T + D T + !! + D T + = E
/HVFRHIILFLHQWV D M HWEpWDQWGHVIRQFWLRQVFRQQXHVGHV T L HWpYHQWXHOOHPHQWGHW
/HVFRHIILFLHQWV D M HWEpWDQWGHVIRQFWLRQVFRQQXHVGHV T L HWpYHQWXHOOHPHQWGHW
3DUIRLV XQH LQWpJUDWLRQ GH O¶pTXDWLRQ RX GH O¶pTXDWLRQ SDU UDSSRUW DX WHPSV HVW SRVVLEOH D SULRUL IDLVDQW GLVSDUDvWUH OHV T L F¶HVW j GLUH SHUPHWWDQW G¶DERXWLU j XQH UHODWLRQ KRORQRPHGXW\SH /DFRQGLWLRQGHOLDLVRQDLQVLLQWpJUDEOHHVWGLWHVHPLKRORQRPHF¶HVW j GLUH TX¶HOOH Q¶HVW TX¶DSSDUHPPHQW QRQ KRORQRPH TX¶HOOH HVW pTXLYDOHQWH j XQH FRQGLWLRQ KRORQRPHGDQVFHFDVQRXVQHFRQVLGpUHURQVTXHODFRQGLWLRQKRORQRPHpTXLYDOHQWH
3DUIRLV XQH LQWpJUDWLRQ GH O¶pTXDWLRQ RX GH O¶pTXDWLRQ SDU UDSSRUW DX WHPSV HVW SRVVLEOH D SULRUL IDLVDQW GLVSDUDvWUH OHV T L F¶HVW j GLUH SHUPHWWDQW G¶DERXWLU j XQH UHODWLRQ KRORQRPHGXW\SH /DFRQGLWLRQGHOLDLVRQDLQVLLQWpJUDEOHHVWGLWHVHPLKRORQRPHF¶HVW j GLUH TX¶HOOH Q¶HVW TX¶DSSDUHPPHQW QRQ KRORQRPH TX¶HOOH HVW pTXLYDOHQWH j XQH FRQGLWLRQ KRORQRPHGDQVFHFDVQRXVQHFRQVLGpUHURQVTXHODFRQGLWLRQKRORQRPHpTXLYDOHQWH
&¶HVW OH FDV GH OD VWUXFWXUH SODQH GH OD ILJXUH TXL FRQVLVWH HQ XQ GLVTXH 6 GH UD\RQ 5 DVWUHLQWjURXOHUVDQVJOLVVHUVXUXQHEDQGHUHFWLOLJQH 6
&¶HVW OH FDV GH OD VWUXFWXUH SODQH GH OD ILJXUH TXL FRQVLVWH HQ XQ GLVTXH 6 GH UD\RQ 5 DVWUHLQWjURXOHUVDQVJOLVVHUVXUXQHEDQGHUHFWLOLJQH 6
)LJXUH
)LJXUH
6L O¶RQ SUHQG FRPPH SDUDPqWUHV GH FRQILJXUDWLRQ OHV FRRUGRQQpHV [ F HW \F GH F GDQV OH
6L O¶RQ SUHQG FRPPH SDUDPqWUHV GH FRQILJXUDWLRQ OHV FRRUGRQQpHV [ F HW \F GH F GDQV OH
UHSqUH { [ \ }GH 6 DLQVLTXHO¶DQJOHSRODLUH θ GXUHSqUH {& [ \}GH 6 RQD T = [ F
UHSqUH { [ \ }GH 6 DLQVLTXHO¶DQJOHSRODLUH θ GXUHSqUH {& [ \}GH 6 RQD T = [ F
6 GDQVOHSODQ 6 /DOLDLVRQTXHO¶RQLPSRVHELODWpUDOHGH 6 DYHF 6 V¶H[SULPHSDUOHV VRLW \ = 5 HW [ + 5 θ = RX GHX[ FRQGLWLRQV T = \ = 5 HW
6 GDQVOHSODQ 6 /DOLDLVRQTXHO¶RQLPSRVHELODWpUDOHGH 6 DYHF 6 V¶H[SULPHSDUOHV VRLW \ = 5 HW [ + 5 θ = RX GHX[ FRQGLWLRQV T = \ = 5 HW
T = 5 HW T + 5 T =
T = 5 HW T + 5 T =
T = \ F T = θ ,OIDXWELHQHQHIIHWWURLVSDUDPqWUHVSRXU©SRVLWLRQQHUªOHVROLGHSODQGH
F
F
F
T = \ F T = θ ,OIDXWELHQHQHIIHWWURLVSDUDPqWUHVSRXU©SRVLWLRQQHUªOHVROLGHSODQGH
F
F
F
/DSUHPLqUHGHFHVGHX[FRQGLWLRQVHVWKRORQRPHODVHFRQGHHVWVHPLKRORQRPHSXLVTXHVRQ LQWpJUDWLRQ D SULRUL HVW SRVVLEOH HW GRQQH [ F + 5 θ = F WH RX T + 5 T = F WH $LQVL ILQDOHPHQWODOLDLVRQ 6 6 Q¶DXWRULVHTX¶XQVHXOGHJUpGHOLEHUWp
/DSUHPLqUHGHFHVGHX[FRQGLWLRQVHVWKRORQRPHODVHFRQGHHVWVHPLKRORQRPHSXLVTXHVRQ LQWpJUDWLRQ D SULRUL HVW SRVVLEOH HW GRQQH [ F + 5 θ = F WH RX T + 5 T = F WH $LQVL ILQDOHPHQWODOLDLVRQ 6 6 Q¶DXWRULVHTX¶XQVHXOGHJUpGHOLEHUWp
- 133 -
- 133 -
&¶HVWOHFDVSDUH[HPSOHRODOLDLVRQFRQVLVWHHQXQFRQWDFWSRQFWXHOUXJXHX[HQWUH 6 HW 6 LQWHUGLVDQWWRXWJOLVVHPHQWjXQLQVWDQWWTXHOFRQTXHRQLPSRVHDORUVjODSDUWLFXOH,GH 6 HQFRQWDFWDYHF 6 G¶DYRLUXQYHFWHXUYLWHVVHQXOSDUUDSSRUWj 6 FHTXLVHWUDGXLWSDUGHX[ UHODWLRQV GX W\SH VL O¶RQ LPSRVH HQ SOXV OH QRQSLYRWHPHQW FHOD DMRXWH XQH WURLVLqPH FRQGLWLRQQRQKRORQRPHGXW\SH 'DQVODSOXSDUWGHVFDVXQHFRQGLWLRQGHOLDLVRQQRQ KRORQRPHSHXWV¶pFULUH D T + D T + !! + D T + = E
&¶HVWOHFDVSDUH[HPSOHRODOLDLVRQFRQVLVWHHQXQFRQWDFWSRQFWXHOUXJXHX[HQWUH 6 HW 6 LQWHUGLVDQWWRXWJOLVVHPHQWjXQLQVWDQWWTXHOFRQTXHRQLPSRVHDORUVjODSDUWLFXOH,GH 6 HQFRQWDFWDYHF 6 G¶DYRLUXQYHFWHXUYLWHVVHQXOSDUUDSSRUWj 6 FHTXLVHWUDGXLWSDUGHX[ UHODWLRQV GX W\SH VL O¶RQ LPSRVH HQ SOXV OH QRQSLYRWHPHQW FHOD DMRXWH XQH WURLVLqPH FRQGLWLRQQRQKRORQRPHGXW\SH 'DQVODSOXSDUWGHVFDVXQHFRQGLWLRQGHOLDLVRQQRQ KRORQRPHSHXWV¶pFULUH D T + D T + !! + D T + = E
/HVFRHIILFLHQWV D M HWEpWDQWGHVIRQFWLRQVFRQQXHVGHV T L HWpYHQWXHOOHPHQWGHW
/HVFRHIILFLHQWV D M HWEpWDQWGHVIRQFWLRQVFRQQXHVGHV T L HWpYHQWXHOOHPHQWGHW
3DUIRLV XQH LQWpJUDWLRQ GH O¶pTXDWLRQ RX GH O¶pTXDWLRQ SDU UDSSRUW DX WHPSV HVW SRVVLEOH D SULRUL IDLVDQW GLVSDUDvWUH OHV T L F¶HVW j GLUH SHUPHWWDQW G¶DERXWLU j XQH UHODWLRQ KRORQRPHGXW\SH /DFRQGLWLRQGHOLDLVRQDLQVLLQWpJUDEOHHVWGLWHVHPLKRORQRPHF¶HVW j GLUH TX¶HOOH Q¶HVW TX¶DSSDUHPPHQW QRQ KRORQRPH TX¶HOOH HVW pTXLYDOHQWH j XQH FRQGLWLRQ KRORQRPHGDQVFHFDVQRXVQHFRQVLGpUHURQVTXHODFRQGLWLRQKRORQRPHpTXLYDOHQWH
3DUIRLV XQH LQWpJUDWLRQ GH O¶pTXDWLRQ RX GH O¶pTXDWLRQ SDU UDSSRUW DX WHPSV HVW SRVVLEOH D SULRUL IDLVDQW GLVSDUDvWUH OHV T L F¶HVW j GLUH SHUPHWWDQW G¶DERXWLU j XQH UHODWLRQ KRORQRPHGXW\SH /DFRQGLWLRQGHOLDLVRQDLQVLLQWpJUDEOHHVWGLWHVHPLKRORQRPHF¶HVW j GLUH TX¶HOOH Q¶HVW TX¶DSSDUHPPHQW QRQ KRORQRPH TX¶HOOH HVW pTXLYDOHQWH j XQH FRQGLWLRQ KRORQRPHGDQVFHFDVQRXVQHFRQVLGpUHURQVTXHODFRQGLWLRQKRORQRPHpTXLYDOHQWH
&¶HVW OH FDV GH OD VWUXFWXUH SODQH GH OD ILJXUH TXL FRQVLVWH HQ XQ GLVTXH 6 GH UD\RQ 5 DVWUHLQWjURXOHUVDQVJOLVVHUVXUXQHEDQGHUHFWLOLJQH 6
&¶HVW OH FDV GH OD VWUXFWXUH SODQH GH OD ILJXUH TXL FRQVLVWH HQ XQ GLVTXH 6 GH UD\RQ 5 DVWUHLQWjURXOHUVDQVJOLVVHUVXUXQHEDQGHUHFWLOLJQH 6
)LJXUH
)LJXUH
6L O¶RQ SUHQG FRPPH SDUDPqWUHV GH FRQILJXUDWLRQ OHV FRRUGRQQpHV [ F HW \F GH F GDQV OH UHSqUH { [ \ }GH 6 DLQVLTXHO¶DQJOHSRODLUH θ GXUHSqUH {& [ \}GH 6 RQD T = [ F
6L O¶RQ SUHQG FRPPH SDUDPqWUHV GH FRQILJXUDWLRQ OHV FRRUGRQQpHV [ F HW \F GH F GDQV OH UHSqUH { [ \ }GH 6 DLQVLTXHO¶DQJOHSRODLUH θ GXUHSqUH {& [ \}GH 6 RQD T = [ F
6 GDQVOHSODQ 6 /DOLDLVRQTXHO¶RQLPSRVHELODWpUDOHGH 6 DYHF 6 V¶H[SULPHSDUOHV VRLW \ = 5 HW [ + 5 θ = RX GHX[ FRQGLWLRQV T = \ = 5 HW
6 GDQVOHSODQ 6 /DOLDLVRQTXHO¶RQLPSRVHELODWpUDOHGH 6 DYHF 6 V¶H[SULPHSDUOHV VRLW \ = 5 HW [ + 5 θ = RX GHX[ FRQGLWLRQV T = \ = 5 HW
T = 5 HW T + 5 T =
T = 5 HW T + 5 T =
T = \ F T = θ ,OIDXWELHQHQHIIHWWURLVSDUDPqWUHVSRXU©SRVLWLRQQHUªOHVROLGHSODQGH
F
F
F
T = \ F T = θ ,OIDXWELHQHQHIIHWWURLVSDUDPqWUHVSRXU©SRVLWLRQQHUªOHVROLGHSODQGH
F
F
F
/DSUHPLqUHGHFHVGHX[FRQGLWLRQVHVWKRORQRPHODVHFRQGHHVWVHPLKRORQRPHSXLVTXHVRQ LQWpJUDWLRQ D SULRUL HVW SRVVLEOH HW GRQQH [ F + 5 θ = F WH RX T + 5 T = F WH $LQVL ILQDOHPHQWODOLDLVRQ 6 6 Q¶DXWRULVHTX¶XQVHXOGHJUpGHOLEHUWp
/DSUHPLqUHGHFHVGHX[FRQGLWLRQVHVWKRORQRPHODVHFRQGHHVWVHPLKRORQRPHSXLVTXHVRQ LQWpJUDWLRQ D SULRUL HVW SRVVLEOH HW GRQQH [ F + 5 θ = F WH RX T + 5 T = F WH $LQVL ILQDOHPHQWODOLDLVRQ 6 6 Q¶DXWRULVHTX¶XQVHXOGHJUpGHOLEHUWp
- 133 -
- 133 -
±/LDLVRQVVWDWLRQQDLUHVHWOLDLVRQVLQVWDWLRQQDLUHV
±/LDLVRQVVWDWLRQQDLUHVHWOLDLVRQVLQVWDWLRQQDLUHV
6L GDQV XQH FRQGLWLRQ GH OLDLVRQ GH W\SH RX OH SDUDPqWUH W QH ILJXUH SDV H[SOLFLWHPHQW FHWWH FRQGLWLRQ HVW GLWH LQGpSHQGDQWH GX WHPSV RX VWDWLRQQDLUH RX HQFRUH VFOpURQ{PH VLOHVPUHODWLRQVDVVRFLpHVjXQHOLDLVRQVRQWWRXWHVVWDWLRQQDLUHVODOLDLVRQHVW DORUVGLWHHOOHPrPHVWDWLRQQDLUH
6L GDQV XQH FRQGLWLRQ GH OLDLVRQ GH W\SH RX OH SDUDPqWUH W QH ILJXUH SDV H[SOLFLWHPHQW FHWWH FRQGLWLRQ HVW GLWH LQGpSHQGDQWH GX WHPSV RX VWDWLRQQDLUH RX HQFRUH VFOpURQ{PH VLOHVPUHODWLRQVDVVRFLpHVjXQHOLDLVRQVRQWWRXWHVVWDWLRQQDLUHVODOLDLVRQHVW DORUVGLWHHOOHPrPHVWDWLRQQDLUH
6L O¶XQH DX PRLQV GH FHV P UHODWLRQV HVW LQVWDWLRQQDLUH F¶HVW j GLUH TX¶HOOH IDLW ILJXUHU H[SOLFLWHPHQW OH SDUDPqWUH W OD OLDLVRQ HVW GLWH LQVWDWLRQQDLUH RX GpSHQGDQWH GX WHPSV RX HQFRUHUKpRQ{PH
6L O¶XQH DX PRLQV GH FHV P UHODWLRQV HVW LQVWDWLRQQDLUH F¶HVW j GLUH TX¶HOOH IDLW ILJXUHU H[SOLFLWHPHQW OH SDUDPqWUH W OD OLDLVRQ HVW GLWH LQVWDWLRQQDLUH RX GpSHQGDQWH GX WHPSV RX HQFRUHUKpRQ{PH
5HPDUTXH OHV QRWLRQV GH OLDLVRQ XQL RX ELODWpUDOH KRORQRPH RX QRQKRORQRPH RQW XQH YDOHXULQWULQVqTXHF¶HVWjGLUHLQGpSHQGDQWHGXUHSqUHFKRLVLLOQ¶HQHVWSDVDLQVLSRXUOHV QRWLRQVGHOLDLVRQVWDWLRQQDLUHRXLQVWDWLRQQDLUHTXLHOOHVGpSHQGHQWGXUHSqUHVLHQHIIHW RQ SUHQG XQ QRXYHDX UHSqUH HQ PRXYHPHQW SDU UDSSRUW DX SUHPLHU XQH OLDLVRQ TXL pWDLW LQGpSHQGDQWHGXWHPSVGDQVOHSUHPLHUSHXWHQGHYHQLUGpSHQGDQWHGDQVOHVHFRQG
5HPDUTXH OHV QRWLRQV GH OLDLVRQ XQL RX ELODWpUDOH KRORQRPH RX QRQKRORQRPH RQW XQH YDOHXULQWULQVqTXHF¶HVWjGLUHLQGpSHQGDQWHGXUHSqUHFKRLVLLOQ¶HQHVWSDVDLQVLSRXUOHV QRWLRQVGHOLDLVRQVWDWLRQQDLUHRXLQVWDWLRQQDLUHTXLHOOHVGpSHQGHQWGXUHSqUHVLHQHIIHW RQ SUHQG XQ QRXYHDX UHSqUH HQ PRXYHPHQW SDU UDSSRUW DX SUHPLHU XQH OLDLVRQ TXL pWDLW LQGpSHQGDQWHGXWHPSVGDQVOHSUHPLHUSHXWHQGHYHQLUGpSHQGDQWHGDQVOHVHFRQG
±/LDLVRQVSDVVLYHVHWOLDLVRQVDFWLYHV
±/LDLVRQVSDVVLYHVHWOLDLVRQVDFWLYHV
,OVHSHXWTXHO¶RQYHXLOOHH[HUFHUGHO¶H[WpULHXUXQFRQWU{OHVXUOHPRXYHPHQWGHODVWUXFWXUH F¶HVW j GLUH O¶DVVHUYLU RQ GpFLGH DORUV G¶LPSRVHU j FH PRXYHPHQW FHUWDLQHV FRQGLWLRQV HQ DSSOLTXDQW GHV HIIRUWV H[WpULHXUV D SULRUL LQFRQQXV QRWDPPHQW DX QLYHDX GHV OLDLVRQV GLVSRQLEOHVHWDGDSWpVjFKDTXHLQVWDQWSRXUUpDOLVHUFHVFRQGLWLRQV2QSHXWDJLUDLQVLVXUXQH OLDLVRQ DX PR\HQ GH FRPPDQGHV RX DFWLRQQHXUV HQ pFKDQJHDQW JpQpUDOHPHQW GH OD SXLVVDQFHDYHFHOOHXQHWHOOHOLDLVRQHVWGLWHDFWLYH/HVDVVHUYLVVHPHQWVSUpVHQWHQWXQJUDQG LQWpUrWSRXUOHVSLORWHVDXWRPDWLTXHVPDQLSXODWHXUVHWURERWV8QHOLDLVRQTXLQ¶HVWSDVDFWLYH HVWGLWHSDVVLYH
,OVHSHXWTXHO¶RQYHXLOOHH[HUFHUGHO¶H[WpULHXUXQFRQWU{OHVXUOHPRXYHPHQWGHODVWUXFWXUH F¶HVW j GLUH O¶DVVHUYLU RQ GpFLGH DORUV G¶LPSRVHU j FH PRXYHPHQW FHUWDLQHV FRQGLWLRQV HQ DSSOLTXDQW GHV HIIRUWV H[WpULHXUV D SULRUL LQFRQQXV QRWDPPHQW DX QLYHDX GHV OLDLVRQV GLVSRQLEOHVHWDGDSWpVjFKDTXHLQVWDQWSRXUUpDOLVHUFHVFRQGLWLRQV2QSHXWDJLUDLQVLVXUXQH OLDLVRQ DX PR\HQ GH FRPPDQGHV RX DFWLRQQHXUV HQ pFKDQJHDQW JpQpUDOHPHQW GH OD SXLVVDQFHDYHFHOOHXQHWHOOHOLDLVRQHVWGLWHDFWLYH/HVDVVHUYLVVHPHQWVSUpVHQWHQWXQJUDQG LQWpUrWSRXUOHVSLORWHVDXWRPDWLTXHVPDQLSXODWHXUVHWURERWV8QHOLDLVRQTXLQ¶HVWSDVDFWLYH HVWGLWHSDVVLYH
±/LDLVRQVFRQVHUYDWLYHVHWOLDLVRQVGLVVLSDWLYHV
±/LDLVRQVFRQVHUYDWLYHVHWOLDLVRQVGLVVLSDWLYHV
/RUVG¶XQPRXYHPHQWGHODVWUXFWXUHORUVTX¶XQHOLDLVRQMRXHF¶HVWjGLUHTXHOHVGHJUpVGH OLEHUWp TX¶HOOH DXWRULVH VRQW HIIHFWLYHPHQW ©DOLPHQWpVª HOOH SHXW GLVVLSHU GH O¶pQHUJLH SDU H[HPSOHSDUYLVFRVLWpRXSDUIURWWHPHQWVHFXQHWHOOHOLDLVRQHVWGLWHGLVVLSDWLYH
/RUVG¶XQPRXYHPHQWGHODVWUXFWXUHORUVTX¶XQHOLDLVRQMRXHF¶HVWjGLUHTXHOHVGHJUpVGH OLEHUWp TX¶HOOH DXWRULVH VRQW HIIHFWLYHPHQW ©DOLPHQWpVª HOOH SHXW GLVVLSHU GH O¶pQHUJLH SDU H[HPSOHSDUYLVFRVLWpRXSDUIURWWHPHQWVHFXQHWHOOHOLDLVRQHVWGLWHGLVVLSDWLYH
6L DX FRQWUDLUH HOOH QH GLVVLSH DXFXQH pQHUJLH HOOH HVW GLWH FRQVHUYDWULFH 6L GH SOXV HOOH Q¶RSSRVHDXFXQHUpVLVWDQFHDXPRXYHPHQWHOOHHVWGLWHQRQWUDYDLOODQWH
6L DX FRQWUDLUH HOOH QH GLVVLSH DXFXQH pQHUJLH HOOH HVW GLWH FRQVHUYDWULFH 6L GH SOXV HOOH Q¶RSSRVHDXFXQHUpVLVWDQFHDXPRXYHPHQWHOOHHVWGLWHQRQWUDYDLOODQWH
8QHOLDLVRQFRQVHUYDWULFHpODVWLTXHRSSRVHXQHUpVLVWDQFHDXPRXYHPHQWUHODWLIGHVVROLGHV TX¶HOOHOLHUpVLVWDQFHTLFURvWDYHFO¶DPSOLWXGHGHFHPRXYHPHQWHOOHUHoRLWDLQVLXQWUDYDLO TX¶HOOHHPPDJDVLQHVRXVIRUPHG¶pQHUJLHGHGpIRUPDWLRQHWTX¶HOOHUHVWLWXHLQWpJUDOHPHQWDX FRXUV GX PRXYHPHQW LQYHUVH 8QH WHOOH OLDLVRQ FRPSRUWH GHV UHVVRUWV TXL MRXHQW FH U{OH G¶DFFXPXODWHXUVG¶pQHUJLH
8QHOLDLVRQFRQVHUYDWULFHpODVWLTXHRSSRVHXQHUpVLVWDQFHDXPRXYHPHQWUHODWLIGHVVROLGHV TX¶HOOHOLHUpVLVWDQFHTLFURvWDYHFO¶DPSOLWXGHGHFHPRXYHPHQWHOOHUHoRLWDLQVLXQWUDYDLO TX¶HOOHHPPDJDVLQHVRXVIRUPHG¶pQHUJLHGHGpIRUPDWLRQHWTX¶HOOHUHVWLWXHLQWpJUDOHPHQWDX FRXUV GX PRXYHPHQW LQYHUVH 8QH WHOOH OLDLVRQ FRPSRUWH GHV UHVVRUWV TXL MRXHQW FH U{OH G¶DFFXPXODWHXUVG¶pQHUJLH
6XU O¶H[HPSOH GH OD ILJXUH DX FKDSLWUH SUpFpGHQW OHV GHX[ OLDLVRQV H[WHUQHV RQW pWp VXSSRVpHV QRQWUDYDLOODQWHV OD OLDLVRQ LQWHUQH HQWUH OHV GHX[ EDUUHV HVW XQ SLYRW pODVWLTXH OLQpDLUHFDUOHFRXSOHGHUDSSHOHVWSURSRUWLRQQHOjO¶DQJOHTXHIRQWOHVGHX[EDUUHV
6XU O¶H[HPSOH GH OD ILJXUH DX FKDSLWUH SUpFpGHQW OHV GHX[ OLDLVRQV H[WHUQHV RQW pWp VXSSRVpHV QRQWUDYDLOODQWHV OD OLDLVRQ LQWHUQH HQWUH OHV GHX[ EDUUHV HVW XQ SLYRW pODVWLTXH OLQpDLUHFDUOHFRXSOHGHUDSSHOHVWSURSRUWLRQQHOjO¶DQJOHTXHIRQWOHVGHX[EDUUHV
1RXVQRPPHURQVOLDLVRQSDUIDLWHXQHOLDLVRQELODWpUDOHKRQRQRPHHWFRQVHUYDWULFH
1RXVQRPPHURQVOLDLVRQSDUIDLWHXQHOLDLVRQELODWpUDOHKRQRQRPHHWFRQVHUYDWULFH
- 134 -
- 134 -
±/LDLVRQVVWDWLRQQDLUHVHWOLDLVRQVLQVWDWLRQQDLUHV
±/LDLVRQVVWDWLRQQDLUHVHWOLDLVRQVLQVWDWLRQQDLUHV
6L GDQV XQH FRQGLWLRQ GH OLDLVRQ GH W\SH RX OH SDUDPqWUH W QH ILJXUH SDV H[SOLFLWHPHQW FHWWH FRQGLWLRQ HVW GLWH LQGpSHQGDQWH GX WHPSV RX VWDWLRQQDLUH RX HQFRUH VFOpURQ{PH VLOHVPUHODWLRQVDVVRFLpHVjXQHOLDLVRQVRQWWRXWHVVWDWLRQQDLUHVODOLDLVRQHVW DORUVGLWHHOOHPrPHVWDWLRQQDLUH
6L GDQV XQH FRQGLWLRQ GH OLDLVRQ GH W\SH RX OH SDUDPqWUH W QH ILJXUH SDV H[SOLFLWHPHQW FHWWH FRQGLWLRQ HVW GLWH LQGpSHQGDQWH GX WHPSV RX VWDWLRQQDLUH RX HQFRUH VFOpURQ{PH VLOHVPUHODWLRQVDVVRFLpHVjXQHOLDLVRQVRQWWRXWHVVWDWLRQQDLUHVODOLDLVRQHVW DORUVGLWHHOOHPrPHVWDWLRQQDLUH
6L O¶XQH DX PRLQV GH FHV P UHODWLRQV HVW LQVWDWLRQQDLUH F¶HVW j GLUH TX¶HOOH IDLW ILJXUHU H[SOLFLWHPHQW OH SDUDPqWUH W OD OLDLVRQ HVW GLWH LQVWDWLRQQDLUH RX GpSHQGDQWH GX WHPSV RX HQFRUHUKpRQ{PH
6L O¶XQH DX PRLQV GH FHV P UHODWLRQV HVW LQVWDWLRQQDLUH F¶HVW j GLUH TX¶HOOH IDLW ILJXUHU H[SOLFLWHPHQW OH SDUDPqWUH W OD OLDLVRQ HVW GLWH LQVWDWLRQQDLUH RX GpSHQGDQWH GX WHPSV RX HQFRUHUKpRQ{PH
5HPDUTXH OHV QRWLRQV GH OLDLVRQ XQL RX ELODWpUDOH KRORQRPH RX QRQKRORQRPH RQW XQH YDOHXULQWULQVqTXHF¶HVWjGLUHLQGpSHQGDQWHGXUHSqUHFKRLVLLOQ¶HQHVWSDVDLQVLSRXUOHV QRWLRQVGHOLDLVRQVWDWLRQQDLUHRXLQVWDWLRQQDLUHTXLHOOHVGpSHQGHQWGXUHSqUHVLHQHIIHW RQ SUHQG XQ QRXYHDX UHSqUH HQ PRXYHPHQW SDU UDSSRUW DX SUHPLHU XQH OLDLVRQ TXL pWDLW LQGpSHQGDQWHGXWHPSVGDQVOHSUHPLHUSHXWHQGHYHQLUGpSHQGDQWHGDQVOHVHFRQG
5HPDUTXH OHV QRWLRQV GH OLDLVRQ XQL RX ELODWpUDOH KRORQRPH RX QRQKRORQRPH RQW XQH YDOHXULQWULQVqTXHF¶HVWjGLUHLQGpSHQGDQWHGXUHSqUHFKRLVLLOQ¶HQHVWSDVDLQVLSRXUOHV QRWLRQVGHOLDLVRQVWDWLRQQDLUHRXLQVWDWLRQQDLUHTXLHOOHVGpSHQGHQWGXUHSqUHVLHQHIIHW RQ SUHQG XQ QRXYHDX UHSqUH HQ PRXYHPHQW SDU UDSSRUW DX SUHPLHU XQH OLDLVRQ TXL pWDLW LQGpSHQGDQWHGXWHPSVGDQVOHSUHPLHUSHXWHQGHYHQLUGpSHQGDQWHGDQVOHVHFRQG
±/LDLVRQVSDVVLYHVHWOLDLVRQVDFWLYHV
±/LDLVRQVSDVVLYHVHWOLDLVRQVDFWLYHV
,OVHSHXWTXHO¶RQYHXLOOHH[HUFHUGHO¶H[WpULHXUXQFRQWU{OHVXUOHPRXYHPHQWGHODVWUXFWXUH F¶HVW j GLUH O¶DVVHUYLU RQ GpFLGH DORUV G¶LPSRVHU j FH PRXYHPHQW FHUWDLQHV FRQGLWLRQV HQ DSSOLTXDQW GHV HIIRUWV H[WpULHXUV D SULRUL LQFRQQXV QRWDPPHQW DX QLYHDX GHV OLDLVRQV GLVSRQLEOHVHWDGDSWpVjFKDTXHLQVWDQWSRXUUpDOLVHUFHVFRQGLWLRQV2QSHXWDJLUDLQVLVXUXQH OLDLVRQ DX PR\HQ GH FRPPDQGHV RX DFWLRQQHXUV HQ pFKDQJHDQW JpQpUDOHPHQW GH OD SXLVVDQFHDYHFHOOHXQHWHOOHOLDLVRQHVWGLWHDFWLYH/HVDVVHUYLVVHPHQWVSUpVHQWHQWXQJUDQG LQWpUrWSRXUOHVSLORWHVDXWRPDWLTXHVPDQLSXODWHXUVHWURERWV8QHOLDLVRQTXLQ¶HVWSDVDFWLYH HVWGLWHSDVVLYH
,OVHSHXWTXHO¶RQYHXLOOHH[HUFHUGHO¶H[WpULHXUXQFRQWU{OHVXUOHPRXYHPHQWGHODVWUXFWXUH F¶HVW j GLUH O¶DVVHUYLU RQ GpFLGH DORUV G¶LPSRVHU j FH PRXYHPHQW FHUWDLQHV FRQGLWLRQV HQ DSSOLTXDQW GHV HIIRUWV H[WpULHXUV D SULRUL LQFRQQXV QRWDPPHQW DX QLYHDX GHV OLDLVRQV GLVSRQLEOHVHWDGDSWpVjFKDTXHLQVWDQWSRXUUpDOLVHUFHVFRQGLWLRQV2QSHXWDJLUDLQVLVXUXQH OLDLVRQ DX PR\HQ GH FRPPDQGHV RX DFWLRQQHXUV HQ pFKDQJHDQW JpQpUDOHPHQW GH OD SXLVVDQFHDYHFHOOHXQHWHOOHOLDLVRQHVWGLWHDFWLYH/HVDVVHUYLVVHPHQWVSUpVHQWHQWXQJUDQG LQWpUrWSRXUOHVSLORWHVDXWRPDWLTXHVPDQLSXODWHXUVHWURERWV8QHOLDLVRQTXLQ¶HVWSDVDFWLYH HVWGLWHSDVVLYH
±/LDLVRQVFRQVHUYDWLYHVHWOLDLVRQVGLVVLSDWLYHV
±/LDLVRQVFRQVHUYDWLYHVHWOLDLVRQVGLVVLSDWLYHV
/RUVG¶XQPRXYHPHQWGHODVWUXFWXUHORUVTX¶XQHOLDLVRQMRXHF¶HVWjGLUHTXHOHVGHJUpVGH OLEHUWp TX¶HOOH DXWRULVH VRQW HIIHFWLYHPHQW ©DOLPHQWpVª HOOH SHXW GLVVLSHU GH O¶pQHUJLH SDU H[HPSOHSDUYLVFRVLWpRXSDUIURWWHPHQWVHFXQHWHOOHOLDLVRQHVWGLWHGLVVLSDWLYH
/RUVG¶XQPRXYHPHQWGHODVWUXFWXUHORUVTX¶XQHOLDLVRQMRXHF¶HVWjGLUHTXHOHVGHJUpVGH OLEHUWp TX¶HOOH DXWRULVH VRQW HIIHFWLYHPHQW ©DOLPHQWpVª HOOH SHXW GLVVLSHU GH O¶pQHUJLH SDU H[HPSOHSDUYLVFRVLWpRXSDUIURWWHPHQWVHFXQHWHOOHOLDLVRQHVWGLWHGLVVLSDWLYH
6L DX FRQWUDLUH HOOH QH GLVVLSH DXFXQH pQHUJLH HOOH HVW GLWH FRQVHUYDWULFH 6L GH SOXV HOOH Q¶RSSRVHDXFXQHUpVLVWDQFHDXPRXYHPHQWHOOHHVWGLWHQRQWUDYDLOODQWH
6L DX FRQWUDLUH HOOH QH GLVVLSH DXFXQH pQHUJLH HOOH HVW GLWH FRQVHUYDWULFH 6L GH SOXV HOOH Q¶RSSRVHDXFXQHUpVLVWDQFHDXPRXYHPHQWHOOHHVWGLWHQRQWUDYDLOODQWH
8QHOLDLVRQFRQVHUYDWULFHpODVWLTXHRSSRVHXQHUpVLVWDQFHDXPRXYHPHQWUHODWLIGHVVROLGHV TX¶HOOHOLHUpVLVWDQFHTLFURvWDYHFO¶DPSOLWXGHGHFHPRXYHPHQWHOOHUHoRLWDLQVLXQWUDYDLO TX¶HOOHHPPDJDVLQHVRXVIRUPHG¶pQHUJLHGHGpIRUPDWLRQHWTX¶HOOHUHVWLWXHLQWpJUDOHPHQWDX FRXUV GX PRXYHPHQW LQYHUVH 8QH WHOOH OLDLVRQ FRPSRUWH GHV UHVVRUWV TXL MRXHQW FH U{OH G¶DFFXPXODWHXUVG¶pQHUJLH
8QHOLDLVRQFRQVHUYDWULFHpODVWLTXHRSSRVHXQHUpVLVWDQFHDXPRXYHPHQWUHODWLIGHVVROLGHV TX¶HOOHOLHUpVLVWDQFHTLFURvWDYHFO¶DPSOLWXGHGHFHPRXYHPHQWHOOHUHoRLWDLQVLXQWUDYDLO TX¶HOOHHPPDJDVLQHVRXVIRUPHG¶pQHUJLHGHGpIRUPDWLRQHWTX¶HOOHUHVWLWXHLQWpJUDOHPHQWDX FRXUV GX PRXYHPHQW LQYHUVH 8QH WHOOH OLDLVRQ FRPSRUWH GHV UHVVRUWV TXL MRXHQW FH U{OH G¶DFFXPXODWHXUVG¶pQHUJLH
6XU O¶H[HPSOH GH OD ILJXUH DX FKDSLWUH SUpFpGHQW OHV GHX[ OLDLVRQV H[WHUQHV RQW pWp VXSSRVpHV QRQWUDYDLOODQWHV OD OLDLVRQ LQWHUQH HQWUH OHV GHX[ EDUUHV HVW XQ SLYRW pODVWLTXH OLQpDLUHFDUOHFRXSOHGHUDSSHOHVWSURSRUWLRQQHOjO¶DQJOHTXHIRQWOHVGHX[EDUUHV
6XU O¶H[HPSOH GH OD ILJXUH DX FKDSLWUH SUpFpGHQW OHV GHX[ OLDLVRQV H[WHUQHV RQW pWp VXSSRVpHV QRQWUDYDLOODQWHV OD OLDLVRQ LQWHUQH HQWUH OHV GHX[ EDUUHV HVW XQ SLYRW pODVWLTXH OLQpDLUHFDUOHFRXSOHGHUDSSHOHVWSURSRUWLRQQHOjO¶DQJOHTXHIRQWOHVGHX[EDUUHV
1RXVQRPPHURQVOLDLVRQSDUIDLWHXQHOLDLVRQELODWpUDOHKRQRQRPHHWFRQVHUYDWULFH
1RXVQRPPHURQVOLDLVRQSDUIDLWHXQHOLDLVRQELODWpUDOHKRQRQRPHHWFRQVHUYDWULFH
- 134 -
- 134 -
±e48$7,216'(/$*5$1*(
±e48$7,216'(/$*5$1*(
/DVWUXFWXUHpWXGLpHpWDQWFRQVWLWXpHGHVVROLGHVLQGpIRUPDEOHVWRXWHFRQILJXUDWLRQGHFHOOH FLSHXWrWUHGpILQLHSDUODGRQQpHGHV SDUDPqWUHV1RXVVXSSRVHURQVTXHOHVOLDLVRQVWDQW LQWHUQH TX¶H[WHUQHV VRQW WRXWHV KRORQRPHV HW ELODWpUDOHV FHV OLDLVRQV LQWURGXLVHQW DORUV P UHODWLRQVLQGpSHQGDQWHVGXW\SH HQWUHOHVTXHOOHVRQSHXWpOLPLQHUPSDUDPqWUHVSDUPLOHV V 7RXWHFRQILJXUDWLRQGHODVWUXFWXUHHVWGHFHIDLWSDUIDLWHPHQWGpILQLHSDUQSDUDPqWUHV LQGpSHQGDQWVQRWpV T T ! T Q DYHF Q = V − P
/DVWUXFWXUHpWXGLpHpWDQWFRQVWLWXpHGHVVROLGHVLQGpIRUPDEOHVWRXWHFRQILJXUDWLRQGHFHOOH FLSHXWrWUHGpILQLHSDUODGRQQpHGHV SDUDPqWUHV1RXVVXSSRVHURQVTXHOHVOLDLVRQVWDQW LQWHUQH TX¶H[WHUQHV VRQW WRXWHV KRORQRPHV HW ELODWpUDOHV FHV OLDLVRQV LQWURGXLVHQW DORUV P UHODWLRQVLQGpSHQGDQWHVGXW\SH HQWUHOHVTXHOOHVRQSHXWpOLPLQHUPSDUDPqWUHVSDUPLOHV V 7RXWHFRQILJXUDWLRQGHODVWUXFWXUHHVWGHFHIDLWSDUIDLWHPHQWGpILQLHSDUQSDUDPqWUHV LQGpSHQGDQWVQRWpV T T ! T Q DYHF Q = V − P
,O H[LVWH SOXVLHXUV SDUDPpWUDJHV SRVVLEOHV G¶XQH VWUXFWXUH j Q GHJUpV GH OLEHUWp QRXV FKRLVLURQV WRXMRXUV XQ SDUDPpWUDJH DVVXUDQW XQH FRUUHVSRQGDQFH ELMHFWLYH HQWUH OD FRQILJXUDWLRQ HW OH YHFWHXU SRVLWLRQ {T} XQ WHO SDUDPpWUDJH HVW GLW FRPSOHW 1RXV OH FKRLVLURQVpJDOHPHQWGHIDoRQjDYRLU T = T = ! T Q = F¶HVWjGLUH {T}= {}GDQVOD FRQILJXUDWLRQG¶pTXLOLEUHVWDEOHDXYRLVLQDJHGHODTXHOOHDOLHXOHPRXYHPHQW
,O H[LVWH SOXVLHXUV SDUDPpWUDJHV SRVVLEOHV G¶XQH VWUXFWXUH j Q GHJUpV GH OLEHUWp QRXV FKRLVLURQV WRXMRXUV XQ SDUDPpWUDJH DVVXUDQW XQH FRUUHVSRQGDQFH ELMHFWLYH HQWUH OD FRQILJXUDWLRQ HW OH YHFWHXU SRVLWLRQ {T} XQ WHO SDUDPpWUDJH HVW GLW FRPSOHW 1RXV OH FKRLVLURQVpJDOHPHQWGHIDoRQjDYRLU T = T = ! T Q = F¶HVWjGLUH {T}= {}GDQVOD FRQILJXUDWLRQG¶pTXLOLEUHVWDEOHDXYRLVLQDJHGHODTXHOOHDOLHXOHPRXYHPHQW
/HEXWHVWGHGpWHUPLQHUOHVQIRQFWLRQV T L W GHIDoRQjFRQQDvWUHODFRQILJXUDWLRQjFKDTXH LQVWDQW F¶HVW j GLUH OD SRVLWLRQ GH FKDTXH SDUWLFXOH GH FKDTXH VROLGH FRQVWLWXDQW 2Q SHXW DWWHLQGUHFHEXWHQLQWpJUDQWOHVpTXDWLRQV/DJUDQJH
/HEXWHVWGHGpWHUPLQHUOHVQIRQFWLRQV T L W GHIDoRQjFRQQDvWUHODFRQILJXUDWLRQjFKDTXH LQVWDQW F¶HVW j GLUH OD SRVLWLRQ GH FKDTXH SDUWLFXOH GH FKDTXH VROLGH FRQVWLWXDQW 2Q SHXW DWWHLQGUHFHEXWHQLQWpJUDQWOHVpTXDWLRQV/DJUDQJH
±/HWKpRUqPHGHVWUDYDX[YLUWXHOVHQG\QDPLTXH
±/HWKpRUqPHGHVWUDYDX[YLUWXHOVHQG\QDPLTXH
G &RQVLGpURQVXQHSDUWLFXOH3GHPDVVHQVRXPLVHjGHVIRUFHVGHUpVXOWDQWH ) jO¶LQVWDQWWj G FHWLQVWDQWHOOHSRVVqGHXQHDFFpOpUDWLRQ Γ WHOOHTXH G G G G G ) = P Γ RX ) + −P Γ =
G &RQVLGpURQVXQHSDUWLFXOH3GHPDVVHQVRXPLVHjGHVIRUFHVGHUpVXOWDQWH ) jO¶LQVWDQWWj G FHWLQVWDQWHOOHSRVVqGHXQHDFFpOpUDWLRQ Γ WHOOHTXH G G G G G ) = P Γ RX ) + −P Γ =
&HWWH pTXDWLRQ WUDGXLW OH SULQFLSH IRQGDPHQWDO GH OD G\QDPLTXH O¶DFFpOpUDWLRQ HVW LFL FRQVLGpUpHSDUUDSSRUWjXQUHSqUHJDOLOpHQ
&HWWH pTXDWLRQ WUDGXLW OH SULQFLSH IRQGDPHQWDO GH OD G\QDPLTXH O¶DFFpOpUDWLRQ HVW LFL FRQVLGpUpHSDUUDSSRUWjXQUHSqUHJDOLOpHQ
G G (QDSSHODQW ) UpVXOWDQWHGHVIRUFHVUpHOOHVHWHQFRQVLGpUDQW −P Γ FRPPHXQHIRUFHILFWLYH TXHQRXVDSSHOOHURQVIRUFHG¶LQHUWLHGHODSDUWLFXOHFHSULQFLSHIRQGDPHQWDOSHXWV¶pQRQFHU
G G (QDSSHODQW ) UpVXOWDQWHGHVIRUFHVUpHOOHVHWHQFRQVLGpUDQW −P Γ FRPPHXQHIRUFHILFWLYH TXHQRXVDSSHOOHURQVIRUFHG¶LQHUWLHGHODSDUWLFXOHFHSULQFLSHIRQGDPHQWDOSHXWV¶pQRQFHU
$ FKDTXH LQVWDQW GX PRXYHPHQW GH OD SDUWLFXOH OD VRPPH YHFWRULHOOH GHV IRUFHV UpHOOHV DJLVVDQWVXUFHOOHFLHWGHVDIRUFHG¶LQHUWLHHVWpJDOHj]pUR
$ FKDTXH LQVWDQW GX PRXYHPHQW GH OD SDUWLFXOH OD VRPPH YHFWRULHOOH GHV IRUFHV UpHOOHV DJLVVDQWVXUFHOOHFLHWGHVDIRUFHG¶LQHUWLHHVWpJDOHj]pUR
1RXVSRXYRQVGRQQHUjO¶pQRQFpSUpFpGHQWXQHDXWUHIRUPHpTXLYDOHQWHHQLQWURGXLVDQWOHV G QRWLRQVGHGpSODFHPHQWYLUWXHO δ 3 HWWUDYDLOYLUWXHO δ :
1RXVSRXYRQVGRQQHUjO¶pQRQFpSUpFpGHQWXQHDXWUHIRUPHpTXLYDOHQWHHQLQWURGXLVDQWOHV G QRWLRQVGHGpSODFHPHQWYLUWXHO δ 3 HWWUDYDLOYLUWXHO δ :
$FKDTXHLQVWDQWGXPRXYHPHQWGHODSDUWLFXOH3ODVRPPHGHVWUDYDX[YLUWXHOVGHVIRUFHV G UpHOOHVHWG¶LQHUWLHDJLVVDQWVXUHOOHHVWQXOOHTXHOTXHVRLWOHGpSODFHPHQWYLUWXHO δ 3 LPDJLQp jFHWLQVWDQW
$FKDTXHLQVWDQWGXPRXYHPHQWGHODSDUWLFXOH3ODVRPPHGHVWUDYDX[YLUWXHOVGHVIRUFHV G UpHOOHVHWG¶LQHUWLHDJLVVDQWVXUHOOHHVWQXOOHTXHOTXHVRLWOHGpSODFHPHQWYLUWXHO δ 3 LPDJLQp jFHWLQVWDQW
/HVIRUPXOHV VRQWDLQVLpTXLYDOHQWHVj G G G G G δ : = ) ⋅ δ 3 + −P Γ ⋅ δ 3 = ∀ δ 3
/HVIRUPXOHV VRQWDLQVLpTXLYDOHQWHVj G G G G G δ : = ) ⋅ δ 3 + −P Γ ⋅ δ 3 = ∀ δ 3
- 135 -
- 135 -
±e48$7,216'(/$*5$1*(
±e48$7,216'(/$*5$1*(
/DVWUXFWXUHpWXGLpHpWDQWFRQVWLWXpHGHVVROLGHVLQGpIRUPDEOHVWRXWHFRQILJXUDWLRQGHFHOOH FLSHXWrWUHGpILQLHSDUODGRQQpHGHV SDUDPqWUHV1RXVVXSSRVHURQVTXHOHVOLDLVRQVWDQW LQWHUQH TX¶H[WHUQHV VRQW WRXWHV KRORQRPHV HW ELODWpUDOHV FHV OLDLVRQV LQWURGXLVHQW DORUV P UHODWLRQVLQGpSHQGDQWHVGXW\SH HQWUHOHVTXHOOHVRQSHXWpOLPLQHUPSDUDPqWUHVSDUPLOHV V 7RXWHFRQILJXUDWLRQGHODVWUXFWXUHHVWGHFHIDLWSDUIDLWHPHQWGpILQLHSDUQSDUDPqWUHV LQGpSHQGDQWVQRWpV T T ! T Q DYHF Q = V − P
/DVWUXFWXUHpWXGLpHpWDQWFRQVWLWXpHGHVVROLGHVLQGpIRUPDEOHVWRXWHFRQILJXUDWLRQGHFHOOH FLSHXWrWUHGpILQLHSDUODGRQQpHGHV SDUDPqWUHV1RXVVXSSRVHURQVTXHOHVOLDLVRQVWDQW LQWHUQH TX¶H[WHUQHV VRQW WRXWHV KRORQRPHV HW ELODWpUDOHV FHV OLDLVRQV LQWURGXLVHQW DORUV P UHODWLRQVLQGpSHQGDQWHVGXW\SH HQWUHOHVTXHOOHVRQSHXWpOLPLQHUPSDUDPqWUHVSDUPLOHV V 7RXWHFRQILJXUDWLRQGHODVWUXFWXUHHVWGHFHIDLWSDUIDLWHPHQWGpILQLHSDUQSDUDPqWUHV LQGpSHQGDQWVQRWpV T T ! T Q DYHF Q = V − P
,O H[LVWH SOXVLHXUV SDUDPpWUDJHV SRVVLEOHV G¶XQH VWUXFWXUH j Q GHJUpV GH OLEHUWp QRXV FKRLVLURQV WRXMRXUV XQ SDUDPpWUDJH DVVXUDQW XQH FRUUHVSRQGDQFH ELMHFWLYH HQWUH OD FRQILJXUDWLRQ HW OH YHFWHXU SRVLWLRQ {T} XQ WHO SDUDPpWUDJH HVW GLW FRPSOHW 1RXV OH FKRLVLURQVpJDOHPHQWGHIDoRQjDYRLU T = T = ! T Q = F¶HVWjGLUH {T}= {}GDQVOD FRQILJXUDWLRQG¶pTXLOLEUHVWDEOHDXYRLVLQDJHGHODTXHOOHDOLHXOHPRXYHPHQW
,O H[LVWH SOXVLHXUV SDUDPpWUDJHV SRVVLEOHV G¶XQH VWUXFWXUH j Q GHJUpV GH OLEHUWp QRXV FKRLVLURQV WRXMRXUV XQ SDUDPpWUDJH DVVXUDQW XQH FRUUHVSRQGDQFH ELMHFWLYH HQWUH OD FRQILJXUDWLRQ HW OH YHFWHXU SRVLWLRQ {T} XQ WHO SDUDPpWUDJH HVW GLW FRPSOHW 1RXV OH FKRLVLURQVpJDOHPHQWGHIDoRQjDYRLU T = T = ! T Q = F¶HVWjGLUH {T}= {}GDQVOD FRQILJXUDWLRQG¶pTXLOLEUHVWDEOHDXYRLVLQDJHGHODTXHOOHDOLHXOHPRXYHPHQW
/HEXWHVWGHGpWHUPLQHUOHVQIRQFWLRQV T L W GHIDoRQjFRQQDvWUHODFRQILJXUDWLRQjFKDTXH LQVWDQW F¶HVW j GLUH OD SRVLWLRQ GH FKDTXH SDUWLFXOH GH FKDTXH VROLGH FRQVWLWXDQW 2Q SHXW DWWHLQGUHFHEXWHQLQWpJUDQWOHVpTXDWLRQV/DJUDQJH
/HEXWHVWGHGpWHUPLQHUOHVQIRQFWLRQV T L W GHIDoRQjFRQQDvWUHODFRQILJXUDWLRQjFKDTXH LQVWDQW F¶HVW j GLUH OD SRVLWLRQ GH FKDTXH SDUWLFXOH GH FKDTXH VROLGH FRQVWLWXDQW 2Q SHXW DWWHLQGUHFHEXWHQLQWpJUDQWOHVpTXDWLRQV/DJUDQJH
±/HWKpRUqPHGHVWUDYDX[YLUWXHOVHQG\QDPLTXH
±/HWKpRUqPHGHVWUDYDX[YLUWXHOVHQG\QDPLTXH
G &RQVLGpURQVXQHSDUWLFXOH3GHPDVVHQVRXPLVHjGHVIRUFHVGHUpVXOWDQWH ) jO¶LQVWDQWWj G FHWLQVWDQWHOOHSRVVqGHXQHDFFpOpUDWLRQ Γ WHOOHTXH G G G G G ) = P Γ RX ) + −P Γ =
G &RQVLGpURQVXQHSDUWLFXOH3GHPDVVHQVRXPLVHjGHVIRUFHVGHUpVXOWDQWH ) jO¶LQVWDQWWj G FHWLQVWDQWHOOHSRVVqGHXQHDFFpOpUDWLRQ Γ WHOOHTXH G G G G G ) = P Γ RX ) + −P Γ =
&HWWH pTXDWLRQ WUDGXLW OH SULQFLSH IRQGDPHQWDO GH OD G\QDPLTXH O¶DFFpOpUDWLRQ HVW LFL FRQVLGpUpHSDUUDSSRUWjXQUHSqUHJDOLOpHQ
&HWWH pTXDWLRQ WUDGXLW OH SULQFLSH IRQGDPHQWDO GH OD G\QDPLTXH O¶DFFpOpUDWLRQ HVW LFL FRQVLGpUpHSDUUDSSRUWjXQUHSqUHJDOLOpHQ
G G (QDSSHODQW ) UpVXOWDQWHGHVIRUFHVUpHOOHVHWHQFRQVLGpUDQW −P Γ FRPPHXQHIRUFHILFWLYH TXHQRXVDSSHOOHURQVIRUFHG¶LQHUWLHGHODSDUWLFXOHFHSULQFLSHIRQGDPHQWDOSHXWV¶pQRQFHU
G G (QDSSHODQW ) UpVXOWDQWHGHVIRUFHVUpHOOHVHWHQFRQVLGpUDQW −P Γ FRPPHXQHIRUFHILFWLYH TXHQRXVDSSHOOHURQVIRUFHG¶LQHUWLHGHODSDUWLFXOHFHSULQFLSHIRQGDPHQWDOSHXWV¶pQRQFHU
$ FKDTXH LQVWDQW GX PRXYHPHQW GH OD SDUWLFXOH OD VRPPH YHFWRULHOOH GHV IRUFHV UpHOOHV DJLVVDQWVXUFHOOHFLHWGHVDIRUFHG¶LQHUWLHHVWpJDOHj]pUR
$ FKDTXH LQVWDQW GX PRXYHPHQW GH OD SDUWLFXOH OD VRPPH YHFWRULHOOH GHV IRUFHV UpHOOHV DJLVVDQWVXUFHOOHFLHWGHVDIRUFHG¶LQHUWLHHVWpJDOHj]pUR
1RXVSRXYRQVGRQQHUjO¶pQRQFpSUpFpGHQWXQHDXWUHIRUPHpTXLYDOHQWHHQLQWURGXLVDQWOHV G QRWLRQVGHGpSODFHPHQWYLUWXHO δ 3 HWWUDYDLOYLUWXHO δ :
1RXVSRXYRQVGRQQHUjO¶pQRQFpSUpFpGHQWXQHDXWUHIRUPHpTXLYDOHQWHHQLQWURGXLVDQWOHV G QRWLRQVGHGpSODFHPHQWYLUWXHO δ 3 HWWUDYDLOYLUWXHO δ :
$FKDTXHLQVWDQWGXPRXYHPHQWGHODSDUWLFXOH3ODVRPPHGHVWUDYDX[YLUWXHOVGHVIRUFHV G UpHOOHVHWG¶LQHUWLHDJLVVDQWVXUHOOHHVWQXOOHTXHOTXHVRLWOHGpSODFHPHQWYLUWXHO δ 3 LPDJLQp jFHWLQVWDQW
$FKDTXHLQVWDQWGXPRXYHPHQWGHODSDUWLFXOH3ODVRPPHGHVWUDYDX[YLUWXHOVGHVIRUFHV G UpHOOHVHWG¶LQHUWLHDJLVVDQWVXUHOOHHVWQXOOHTXHOTXHVRLWOHGpSODFHPHQWYLUWXHO δ 3 LPDJLQp jFHWLQVWDQW
/HVIRUPXOHV VRQWDLQVLpTXLYDOHQWHVj G G G G G δ : = ) ⋅ δ 3 + −P Γ ⋅ δ 3 = ∀ δ 3
/HVIRUPXOHV VRQWDLQVLpTXLYDOHQWHVj G G G G G δ : = ) ⋅ δ 3 + −P Γ ⋅ δ 3 = ∀ δ 3
- 135 -
- 135 -
(Q VRPPDQW j WRXWHV OHV SDUWLFXOHV GH OD VWUXFWXUH RQ REWLHQW OH WKpRUqPH GHV WUDYDX[ YLUWXHOVVRXVVDIRUPHSUDWLTXH
(Q VRPPDQW j WRXWHV OHV SDUWLFXOHV GH OD VWUXFWXUH RQ REWLHQW OH WKpRUqPH GHV WUDYDX[ YLUWXHOVVRXVVDIRUPHSUDWLTXH
$FKDTXHLQVWDQWGXPRXYHPHQWGHODVWUXFWXUHODVRPPHGHVWUDYDX[YLUWXHOVGHWRXWHVOHV IRUFHV UpHOOHV HW G¶LQHUWLH TXL OXL VRQW DSSOLTXpHV HVW QXOOH SRXU XQ FKDPS DUELWUDLUH GH GpSODFHPHQWVYLUWXHOVGHVHVSDUWLFXOHV
$FKDTXHLQVWDQWGXPRXYHPHQWGHODVWUXFWXUHODVRPPHGHVWUDYDX[YLUWXHOVGHWRXWHVOHV IRUFHV UpHOOHV HW G¶LQHUWLH TXL OXL VRQW DSSOLTXpHV HVW QXOOH SRXU XQ FKDPS DUELWUDLUH GH GpSODFHPHQWVYLUWXHOVGHVHVSDUWLFXOHV
5HPDUTXHjO¶LQVWDQWWXQFKDPSGHGpSODFHPHQWVYLUWXHOVGHVSDUWLFXOHVFRPSDWLEOHDYHF OHVOLDLVRQVHWO¶LQGpIRUPDELOLWpGHVVROLGHVFRQVWLWXDQWVFRQVLVWHHQXQFKDQJHPHQWYLUWXHOGH FRQILJXUDWLRQ GH OD VWUXFWXUH HW HVW GpILQL SDU OHV YDULDWLRQV YLUWXHOOHV δ T L GHV T L /H GpSODFHPHQWYLUWXHOGHODSDUWLFXOHFRXUDQW3VLOHV δ T L VRQWLQILQLPHQWSHWLWVHVWGRQQpSDU ODIRUPXOH G G G G ∂3 ∂3 ∂3 δ3 = ⋅ δ T + ⋅ δ T + !! + ⋅ δ TQ ∂ T ∂ T ∂ TQ
5HPDUTXHjO¶LQVWDQWWXQFKDPSGHGpSODFHPHQWVYLUWXHOVGHVSDUWLFXOHVFRPSDWLEOHDYHF OHVOLDLVRQVHWO¶LQGpIRUPDELOLWpGHVVROLGHVFRQVWLWXDQWVFRQVLVWHHQXQFKDQJHPHQWYLUWXHOGH FRQILJXUDWLRQ GH OD VWUXFWXUH HW HVW GpILQL SDU OHV YDULDWLRQV YLUWXHOOHV δ T L GHV T L /H GpSODFHPHQWYLUWXHOGHODSDUWLFXOHFRXUDQW3VLOHV δ T L VRQWLQILQLPHQWSHWLWVHVWGRQQpSDU ODIRUPXOH G G G G ∂3 ∂3 ∂3 δ3 = ⋅ δ T + ⋅ δ T + !! + ⋅ δ TQ ∂ T ∂ T ∂ TQ
±(TXDWLRQVGH/DJUDQJHFDVJpQpUDO
±(TXDWLRQVGH/DJUDQJHFDVJpQpUDO
1RXV DOORQV PDLQWHQDQW WUDGXLUH DOJpEULTXHPHQW OH WKpRUqPH GHV WUDYDX[ YLUWXHOV QRXV DXURQVjpYDOXHUSRXUFHODGHX[VRUWHVGHWUDYDX[YLUWXHOVGDQVOHFKDQJHPHQWpOpPHQWDLUHGH FRQILJXUDWLRQGpILQLSDUOHV δ T L
1RXV DOORQV PDLQWHQDQW WUDGXLUH DOJpEULTXHPHQW OH WKpRUqPH GHV WUDYDX[ YLUWXHOV QRXV DXURQVjpYDOXHUSRXUFHODGHX[VRUWHVGHWUDYDX[YLUWXHOVGDQVOHFKDQJHPHQWpOpPHQWDLUHGH FRQILJXUDWLRQGpILQLSDUOHV δ T L
±/HWUDYDLOYLUWXHOGHVIRUFHVUpHOOHV
±/HWUDYDLOYLUWXHOGHVIRUFHVUpHOOHV
&HOXLFLVHPHWVRXVODIRUPH G G Σ ) ⋅ δ 3 = 4 ⋅ δ T + 4 ⋅ δ T + ! + 4 Q ⋅ δ T Q
&HOXLFLVHPHWVRXVODIRUPH G G Σ ) ⋅ δ 3 = 4 ⋅ δ T + 4 ⋅ δ T + ! + 4 Q ⋅ δ T Q
HQSRVDQWG¶DSUqVODIRUPXOH
G G ∂3 4L = Σ ) ⋅ ∂ TL
HQSRVDQWG¶DSUqVODIRUPXOH
G G ∂3 4L = Σ ) ⋅ ∂ TL
Σ GpVLJQHODVRPPDWLRQpWHQGXHjWRXWHVOHVSDUWLFXOHVGHODVWUXFWXUH
Σ GpVLJQHODVRPPDWLRQpWHQGXHjWRXWHVOHVSDUWLFXOHVGHODVWUXFWXUH
3RXUFDOFXOHUOHVQFRHIILFLHQWV 4L QRPPpVFRPSRVDQWHVGHODIRUFHJpQpUDOLVpH4OHSOXV VLPSOH VHUD GH OHV pYDOXHU VpSDUpPHQW DLQVL RQ GRQQHUD j T L XQH YDULDWLRQ YLUWXHOOH pOpPHQWDLUH δ T L VDQV HQ GRQQHU j DXFXQ GHV DXWUHV SDUDPqWUHV GH FRQILJXUDWLRQ HW RQ FDOFXOHUDOHWUDYDLO 4L ⋅ δ TL FRUUHVSRQGDQW
3RXUFDOFXOHUOHVQFRHIILFLHQWV 4L QRPPpVFRPSRVDQWHVGHODIRUFHJpQpUDOLVpH4OHSOXV VLPSOH VHUD GH OHV pYDOXHU VpSDUpPHQW DLQVL RQ GRQQHUD j T L XQH YDULDWLRQ YLUWXHOOH pOpPHQWDLUH δ T L VDQV HQ GRQQHU j DXFXQ GHV DXWUHV SDUDPqWUHV GH FRQILJXUDWLRQ HW RQ FDOFXOHUDOHWUDYDLO 4L ⋅ δ TL FRUUHVSRQGDQW
±/HWUDYDLOYLUWXHOGHVIRUFHVG¶LQHUWLH
±/HWUDYDLOYLUWXHOGHVIRUFHVG¶LQHUWLH
&HOXLFLSRXUUDGHPrPHV¶pFULUH G G Σ −P Γ ⋅ δ 3 = 1 ⋅ δ T + 1 ⋅ δ T + ! + 1 Q ⋅ δ T Q
&HOXLFLSRXUUDGHPrPHV¶pFULUH G G Σ −P Γ ⋅ δ 3 = 1 ⋅ δ T + 1 ⋅ δ T + ! + 1 Q ⋅ δ T Q
HQSRVDQWWRXMRXUVG¶DSUqVODIRUPXOH
G G ⎛ GY ∂3 ⎞ ⎟⎟ ⋅ 1L = Σ ⎜⎜ P ⎝ G W ∂ TL ⎠
HQSRVDQWWRXMRXUVG¶DSUqVODIRUPXOH
G G ⎛ GY ∂3 ⎞ ⎟⎟ ⋅ 1L = Σ ⎜⎜ P ⎝ G W ∂ TL ⎠
- 136 -
- 136 -
(Q VRPPDQW j WRXWHV OHV SDUWLFXOHV GH OD VWUXFWXUH RQ REWLHQW OH WKpRUqPH GHV WUDYDX[ YLUWXHOVVRXVVDIRUPHSUDWLTXH
(Q VRPPDQW j WRXWHV OHV SDUWLFXOHV GH OD VWUXFWXUH RQ REWLHQW OH WKpRUqPH GHV WUDYDX[ YLUWXHOVVRXVVDIRUPHSUDWLTXH
$FKDTXHLQVWDQWGXPRXYHPHQWGHODVWUXFWXUHODVRPPHGHVWUDYDX[YLUWXHOVGHWRXWHVOHV IRUFHV UpHOOHV HW G¶LQHUWLH TXL OXL VRQW DSSOLTXpHV HVW QXOOH SRXU XQ FKDPS DUELWUDLUH GH GpSODFHPHQWVYLUWXHOVGHVHVSDUWLFXOHV
$FKDTXHLQVWDQWGXPRXYHPHQWGHODVWUXFWXUHODVRPPHGHVWUDYDX[YLUWXHOVGHWRXWHVOHV IRUFHV UpHOOHV HW G¶LQHUWLH TXL OXL VRQW DSSOLTXpHV HVW QXOOH SRXU XQ FKDPS DUELWUDLUH GH GpSODFHPHQWVYLUWXHOVGHVHVSDUWLFXOHV
5HPDUTXHjO¶LQVWDQWWXQFKDPSGHGpSODFHPHQWVYLUWXHOVGHVSDUWLFXOHVFRPSDWLEOHDYHF OHVOLDLVRQVHWO¶LQGpIRUPDELOLWpGHVVROLGHVFRQVWLWXDQWVFRQVLVWHHQXQFKDQJHPHQWYLUWXHOGH FRQILJXUDWLRQ GH OD VWUXFWXUH HW HVW GpILQL SDU OHV YDULDWLRQV YLUWXHOOHV δ T L GHV T L /H GpSODFHPHQWYLUWXHOGHODSDUWLFXOHFRXUDQW3VLOHV δ T L VRQWLQILQLPHQWSHWLWVHVWGRQQpSDU ODIRUPXOH G G G G ∂3 ∂3 ∂3 δ3 = ⋅ δ T + ⋅ δ T + !! + ⋅ δ TQ ∂ T ∂ T ∂ TQ
5HPDUTXHjO¶LQVWDQWWXQFKDPSGHGpSODFHPHQWVYLUWXHOVGHVSDUWLFXOHVFRPSDWLEOHDYHF OHVOLDLVRQVHWO¶LQGpIRUPDELOLWpGHVVROLGHVFRQVWLWXDQWVFRQVLVWHHQXQFKDQJHPHQWYLUWXHOGH FRQILJXUDWLRQ GH OD VWUXFWXUH HW HVW GpILQL SDU OHV YDULDWLRQV YLUWXHOOHV δ T L GHV T L /H GpSODFHPHQWYLUWXHOGHODSDUWLFXOHFRXUDQW3VLOHV δ T L VRQWLQILQLPHQWSHWLWVHVWGRQQpSDU ODIRUPXOH G G G G ∂3 ∂3 ∂3 δ3 = ⋅ δ T + ⋅ δ T + !! + ⋅ δ TQ ∂ T ∂ T ∂ TQ
±(TXDWLRQVGH/DJUDQJHFDVJpQpUDO
±(TXDWLRQVGH/DJUDQJHFDVJpQpUDO
1RXV DOORQV PDLQWHQDQW WUDGXLUH DOJpEULTXHPHQW OH WKpRUqPH GHV WUDYDX[ YLUWXHOV QRXV DXURQVjpYDOXHUSRXUFHODGHX[VRUWHVGHWUDYDX[YLUWXHOVGDQVOHFKDQJHPHQWpOpPHQWDLUHGH FRQILJXUDWLRQGpILQLSDUOHV δ T L
1RXV DOORQV PDLQWHQDQW WUDGXLUH DOJpEULTXHPHQW OH WKpRUqPH GHV WUDYDX[ YLUWXHOV QRXV DXURQVjpYDOXHUSRXUFHODGHX[VRUWHVGHWUDYDX[YLUWXHOVGDQVOHFKDQJHPHQWpOpPHQWDLUHGH FRQILJXUDWLRQGpILQLSDUOHV δ T L
±/HWUDYDLOYLUWXHOGHVIRUFHVUpHOOHV
±/HWUDYDLOYLUWXHOGHVIRUFHVUpHOOHV
&HOXLFLVHPHWVRXVODIRUPH G G Σ ) ⋅ δ 3 = 4 ⋅ δ T + 4 ⋅ δ T + ! + 4 Q ⋅ δ T Q
&HOXLFLVHPHWVRXVODIRUPH G G Σ ) ⋅ δ 3 = 4 ⋅ δ T + 4 ⋅ δ T + ! + 4 Q ⋅ δ T Q
HQSRVDQWG¶DSUqVODIRUPXOH
G G ∂3 4L = Σ ) ⋅ ∂ TL
HQSRVDQWG¶DSUqVODIRUPXOH
G G ∂3 4L = Σ ) ⋅ ∂ TL
Σ GpVLJQHODVRPPDWLRQpWHQGXHjWRXWHVOHVSDUWLFXOHVGHODVWUXFWXUH
Σ GpVLJQHODVRPPDWLRQpWHQGXHjWRXWHVOHVSDUWLFXOHVGHODVWUXFWXUH
3RXUFDOFXOHUOHVQFRHIILFLHQWV 4L QRPPpVFRPSRVDQWHVGHODIRUFHJpQpUDOLVpH4OHSOXV VLPSOH VHUD GH OHV pYDOXHU VpSDUpPHQW DLQVL RQ GRQQHUD j T L XQH YDULDWLRQ YLUWXHOOH pOpPHQWDLUH δ T L VDQV HQ GRQQHU j DXFXQ GHV DXWUHV SDUDPqWUHV GH FRQILJXUDWLRQ HW RQ FDOFXOHUDOHWUDYDLO 4L ⋅ δ TL FRUUHVSRQGDQW
3RXUFDOFXOHUOHVQFRHIILFLHQWV 4L QRPPpVFRPSRVDQWHVGHODIRUFHJpQpUDOLVpH4OHSOXV VLPSOH VHUD GH OHV pYDOXHU VpSDUpPHQW DLQVL RQ GRQQHUD j T L XQH YDULDWLRQ YLUWXHOOH pOpPHQWDLUH δ T L VDQV HQ GRQQHU j DXFXQ GHV DXWUHV SDUDPqWUHV GH FRQILJXUDWLRQ HW RQ FDOFXOHUDOHWUDYDLO 4L ⋅ δ TL FRUUHVSRQGDQW
±/HWUDYDLOYLUWXHOGHVIRUFHVG¶LQHUWLH
±/HWUDYDLOYLUWXHOGHVIRUFHVG¶LQHUWLH
&HOXLFLSRXUUDGHPrPHV¶pFULUH G G Σ −P Γ ⋅ δ 3 = 1 ⋅ δ T + 1 ⋅ δ T + ! + 1 Q ⋅ δ T Q
&HOXLFLSRXUUDGHPrPHV¶pFULUH G G Σ −P Γ ⋅ δ 3 = 1 ⋅ δ T + 1 ⋅ δ T + ! + 1 Q ⋅ δ T Q
HQSRVDQWWRXMRXUVG¶DSUqVODIRUPXOH
G G ⎛ GY ∂3 ⎞ ⎟⎟ ⎜ ⋅ 1L = Σ ⎜ P ⎝ G W ∂ TL ⎠
- 136 -
HQSRVDQWWRXMRXUVG¶DSUqVODIRUPXOH
G G ⎛ GY ∂3 ⎞ ⎟⎟ ⎜ ⋅ 1L = Σ ⎜ P ⎝ G W ∂ TL ⎠
- 136 -
&HWWHGHUQLqUHIRUPXOHSHXWDXVVLV¶pFULUH
&HWWHGHUQLqUHIRUPXOHSHXWDXVVLV¶pFULUH
G G G ∂3 ⎞ G G ∂3 G ⎛ ⎟ − ΣP9 ⋅ ⎜ΣP9 ⋅ 1L = G W ⎜⎝ G W ∂ TL ∂ TL ⎠⎟
/H VHFRQG WHUPH GX VHFRQG PHPEUH SHXW HQFRUH V¶pFULUH OHV RSpUDWHXUV SHUPXWDEOHV
G ∂ HW pWDQW GW ∂ TL
G G ∂9 ∂ (F F¶HVWjGLUH − − ΣP9 ⋅ ∂ TL ∂ TL
G GW
(F =
⎞ ⎛ ⎜ Σ P 9 ⋅ ∂ 9 ⎟ F¶HVWjGLUH G ∂ ( F ⎜ G W ∂ T L ∂ T L ⎟⎠ ⎝
2QDDLQVLILQDOHPHQW 1L =
G ∂ HW pWDQW GW ∂ TL
G G ∂9 ∂ (F F¶HVWjGLUH − − ΣP9 ⋅ ∂ TL ∂ TL
Σ P 9
G ∂9 ∂3 VL ELHQ TXH OH SUHPLHU WHUPH GX 'H RQ GpGXLW LPPpGLDWHPHQW O¶pJDOLWp = ∂ T L ∂ T L VHFRQGPHPEUHGH SHXWSUHQGUHODIRUPH 1L =
SHUPXWDEOHV
SXLVTXHO¶pQHUJLHFLQpWLTXH ( F GHODVWUXFWXUHVDWLVIDLWjODGpILQLWLRQ
'DQVFHVIRUPXOHV 9 GpVLJQHOHYHFWHXUYLWHVVHGHODSDUWLFXOH3HWO¶RQDGRQF G G G G G G3 ∂3 ∂3 ∂3 ∂3 9= = T + T + ! + T Q + G W ∂ T ∂ T ∂ TQ ∂W G ∂3 pWDQWQXOVLOHVOLDLVRQVVRQWWRXWHVLQGpSHQGDQWHVGXWHPSV OHGHUQLHUWHUPH ∂W
G G G ∂3 ⎞ G G ∂3 ⎛ ⎟ − ΣP9 ⋅ ⎜⎜ Σ P 9 ⋅ G W ∂ TL ∂ TL ⎠⎟ ⎝
/H VHFRQG WHUPH GX VHFRQG PHPEUH SHXW HQFRUH V¶pFULUH OHV RSpUDWHXUV
SXLVTXHO¶pQHUJLHFLQpWLTXH ( F GHODVWUXFWXUHVDWLVIDLWjODGpILQLWLRQ (F =
G 1L = GW
'DQVFHVIRUPXOHV 9 GpVLJQHOHYHFWHXUYLWHVVHGHODSDUWLFXOH3HWO¶RQDGRQF G G G G G G3 ∂3 ∂3 ∂3 ∂3 9= = T + T + ! + T Q + G W ∂ T ∂ T ∂ TQ ∂W G ∂3 pWDQWQXOVLOHVOLDLVRQVVRQWWRXWHVLQGpSHQGDQWHVGXWHPSV OHGHUQLHUWHUPH ∂W
1L =
G GW
⎞ ⎛ ⎜ Σ P 9 ⋅ ∂ 9 ⎟ F¶HVWjGLUH G ∂ ( F ⎜ G W ∂ T L ∂ T L ⎟⎠ ⎝
2QDDLQVLILQDOHPHQW
G ∂9 ∂3 VL ELHQ TXH OH SUHPLHU WHUPH GX 'H RQ GpGXLW LPPpGLDWHPHQW O¶pJDOLWp = ∂ T L ∂ T L VHFRQGPHPEUHGH SHXWSUHQGUHODIRUPH
G ∂ (F ∂ (F − G W ∂ T L ∂ T L
Σ P 9
1L =
G ∂ (F ∂ (F − G W ∂ T L ∂ T L
'¶DSUqVOHWKpRUqPHGHVWUDYDX[YLUWXHOVODVRPPHGHFHVGHX[FDWpJRULHVGHWUDYDX[YLUWXHOV VRLW HW GRLWrWUHQXOOHTXHOOHVTXHVRLHQWOHVYDOHXUVGHV δ T L 2QDGRQF
'¶DSUqVOHWKpRUqPHGHVWUDYDX[YLUWXHOVODVRPPHGHFHVGHX[FDWpJRULHVGHWUDYDX[YLUWXHOV VRLW HW GRLWrWUHQXOOHTXHOOHVTXHVRLHQWOHVYDOHXUVGHV δ T L 2QDGRQF
4L = 1 L SRXU L = ! Q
4L = 1 L SRXU L = ! Q
G ∂ (F − ∂ (F = 4 L G W ∂ TL ∂ TL
6RLW
G ∂ (F − ∂ (F = 4 L G W ∂ TL ∂ TL
6RLW
7HOOHV VRQW OHV pTXDWLRQV GH /DJUDQJH TXL FRQVWLWXHQW XQ V\VWqPH GH Q pTXDWLRQV GLIIpUHQWLHOOHVHWSHUPHWWHQWGHGpWHUPLQHUO¶pYROXWLRQHQIRQFWLRQGXWHPSVGHVQSDUDPqWUHV
7HOOHV VRQW OHV pTXDWLRQV GH /DJUDQJH TXL FRQVWLWXHQW XQ V\VWqPH GH Q pTXDWLRQV GLIIpUHQWLHOOHVHWSHUPHWWHQWGHGpWHUPLQHUO¶pYROXWLRQHQIRQFWLRQGXWHPSVGHVQSDUDPqWUHV
- 137 -
- 137 -
&HWWHGHUQLqUHIRUPXOHSHXWDXVVLV¶pFULUH
&HWWHGHUQLqUHIRUPXOHSHXWDXVVLV¶pFULUH
G G G ∂3 ⎞ G G ∂3 G ⎛ ⎟ ⎜ 1L = − ΣP9 ⋅ ΣP9 ⋅ G W ⎜⎝ G W ∂ TL ∂ TL ⎠⎟
/H VHFRQG WHUPH GX VHFRQG PHPEUH SHXW HQFRUH V¶pFULUH OHV RSpUDWHXUV SHUPXWDEOHV
G ∂ HW pWDQW GW ∂ TL
G G ∂9 ∂ (F F¶HVWjGLUH − − ΣP9 ⋅ ∂ TL ∂ TL
2QDDLQVLILQDOHPHQW
1L =
G GW
G ∂ HW pWDQW GW ∂ TL
G G ∂9 ∂ (F F¶HVWjGLUH − − ΣP9 ⋅ ∂ TL ∂ TL
(F =
⎞ ⎛ ⎜ Σ P 9 ⋅ ∂ 9 ⎟ F¶HVWjGLUH G ∂ ( F ⎜ G W ∂ T L ∂ T L ⎟⎠ ⎝
G ∂ (F ∂ (F 1L = − G W ∂ T L ∂ T L
SXLVTXHO¶pQHUJLHFLQpWLTXH ( F GHODVWUXFWXUHVDWLVIDLWjODGpILQLWLRQ
G ∂9 ∂3 VL ELHQ TXH OH SUHPLHU WHUPH GX 'H RQ GpGXLW LPPpGLDWHPHQW O¶pJDOLWp = ∂ T L ∂ T L VHFRQGPHPEUHGH SHXWSUHQGUHODIRUPH
SHUPXWDEOHV
Σ P 9
'DQVFHVIRUPXOHV 9 GpVLJQHOHYHFWHXUYLWHVVHGHODSDUWLFXOH3HWO¶RQDGRQF G G G G G G3 ∂3 ∂3 ∂3 ∂3 9= = T + T + ! + TQ + G W ∂ T ∂ T ∂ TQ ∂W G ∂3 pWDQWQXOVLOHVOLDLVRQVVRQWWRXWHVLQGpSHQGDQWHVGXWHPSV OHGHUQLHUWHUPH ∂W
G G G ∂3 ⎞ G G ∂3 ⎛ ⎟⎟ − Σ P 9 ⋅ ⎜⎜ Σ P 9 ⋅ G W ∂ TL ∂ TL ⎠ ⎝
/H VHFRQG WHUPH GX VHFRQG PHPEUH SHXW HQFRUH V¶pFULUH OHV RSpUDWHXUV
SXLVTXHO¶pQHUJLHFLQpWLTXH ( F GHODVWUXFWXUHVDWLVIDLWjODGpILQLWLRQ (F =
G 1L = GW
'DQVFHVIRUPXOHV 9 GpVLJQHOHYHFWHXUYLWHVVHGHODSDUWLFXOH3HWO¶RQDGRQF G G G G G G3 ∂3 ∂3 ∂3 ∂3 9= = T + T + ! + TQ + G W ∂ T ∂ T ∂ TQ ∂W G ∂3 pWDQWQXOVLOHVOLDLVRQVVRQWWRXWHVLQGpSHQGDQWHVGXWHPSV OHGHUQLHUWHUPH ∂W
G ∂9 ∂3 VL ELHQ TXH OH SUHPLHU WHUPH GX 'H RQ GpGXLW LPPpGLDWHPHQW O¶pJDOLWp = ∂ T L ∂ T L VHFRQGPHPEUHGH SHXWSUHQGUHODIRUPH
1L =
G GW
⎞ ⎛ ⎜ Σ P 9 ⋅ ∂ 9 ⎟ F¶HVWjGLUH G ∂ ( F ⎜ G W ∂ T L ∂ T L ⎟⎠ ⎝
2QDDLQVLILQDOHPHQW
Σ P 9
1L =
G ∂ (F ∂ (F − G W ∂ T L ∂ T L
'¶DSUqVOHWKpRUqPHGHVWUDYDX[YLUWXHOVODVRPPHGHFHVGHX[FDWpJRULHVGHWUDYDX[YLUWXHOV VRLW HW GRLWrWUHQXOOHTXHOOHVTXHVRLHQWOHVYDOHXUVGHV δ T L 2QDGRQF
'¶DSUqVOHWKpRUqPHGHVWUDYDX[YLUWXHOVODVRPPHGHFHVGHX[FDWpJRULHVGHWUDYDX[YLUWXHOV VRLW HW GRLWrWUHQXOOHTXHOOHVTXHVRLHQWOHVYDOHXUVGHV δ T L 2QDGRQF
4L = 1 L SRXU L = ! Q
4L = 1 L SRXU L = ! Q
6RLW
G ∂ (F − ∂ (F = 4 L G W ∂ TL ∂ TL
6RLW
G ∂ (F − ∂ (F = 4 L G W ∂ TL ∂ TL
7HOOHV VRQW OHV pTXDWLRQV GH /DJUDQJH TXL FRQVWLWXHQW XQ V\VWqPH GH Q pTXDWLRQV GLIIpUHQWLHOOHVHWSHUPHWWHQWGHGpWHUPLQHUO¶pYROXWLRQHQIRQFWLRQGXWHPSVGHVQSDUDPqWUHV
7HOOHV VRQW OHV pTXDWLRQV GH /DJUDQJH TXL FRQVWLWXHQW XQ V\VWqPH GH Q pTXDWLRQV GLIIpUHQWLHOOHVHWSHUPHWWHQWGHGpWHUPLQHUO¶pYROXWLRQHQIRQFWLRQGXWHPSVGHVQSDUDPqWUHV
- 137 -
- 137 -
GH FRQILJXUDWLRQ T L OHV VROXWLRQV SDUWLFXOLqUHV j UHWHQLU pWDQW SUpFLVpHV SDU OHV FRQGLWLRQV LQLWLDOHVGHODVWUXFWXUHSRVLWLRQVHWYLWHVVHV
GH FRQILJXUDWLRQ T L OHV VROXWLRQV SDUWLFXOLqUHV j UHWHQLU pWDQW SUpFLVpHV SDU OHV FRQGLWLRQV LQLWLDOHVGHODVWUXFWXUHSRVLWLRQVHWYLWHVVHV
±/DJUDQJLHQG¶XQHVWUXFWXUH
±/DJUDQJLHQG¶XQHVWUXFWXUH
(QJpQpUDOFHUWDLQHVIRUFHVDSSOLTXpHVjXQHVWUXFWXUHVRQWFRQVHUYDWLYHVF¶HVWjGLUHGpULYHQW G¶XQ SRWHQWLHO GH SRVLWLRQ QRWpH ( S /D IRUFH JpQpUDOLVpH FRUUHVSRQGDQWH HVW QRWpH 4F HW
(QJpQpUDOFHUWDLQHVIRUFHVDSSOLTXpHVjXQHVWUXFWXUHVRQWFRQVHUYDWLYHVF¶HVWjGLUHGpULYHQW G¶XQ SRWHQWLHO GH SRVLWLRQ QRWpH ( S /D IRUFH JpQpUDOLVpH FRUUHVSRQGDQWH HVW QRWpH 4F HW
O¶RQD
O¶RQD
4F = −JUDG ( S VRLW 4F L = −
∂ (S ∂ TL
4F = −JUDG ( S VRLW 4F L = −
∂ (S ∂ TL
&¶HVWOHFDVGHO¶pQHUJLHSRWHQWLHOOHGHJUDYLWDWLRQF¶HVWOHFDVDXVVLGHO¶pQHUJLHSRWHQWLHOOH HPPDJDVLQpHGDQVXQUHVVRUWpODVWLTXH
&¶HVWOHFDVGHO¶pQHUJLHSRWHQWLHOOHGHJUDYLWDWLRQF¶HVWOHFDVDXVVLGHO¶pQHUJLHSRWHQWLHOOH HPPDJDVLQpHGDQVXQUHVVRUWpODVWLTXH
2Q QRPPH DORUV ODJUDQJLHQ GH OD VWUXFWXUH OD IRQFWLRQ / = ( F − ( S HW OHV pTXDWLRQV GH
2Q QRPPH DORUV ODJUDQJLHQ GH OD VWUXFWXUH OD IRQFWLRQ / = ( F − ( S HW OHV pTXDWLRQV GH
/DJUDQJHSHXYHQWDXVVLV¶pFULUH
/DJUDQJHSHXYHQWDXVVLV¶pFULUH
G ∂/ ∂/ − = 4L L = ! Q G W ∂ T L ∂ T L
G ∂/ ∂/ − = 4L L = ! Q G W ∂ T L ∂ T L
'DQV FHV pTXDWLRQV OHV 4L GpVLJQHQW OHV FRPSRVDQWHV GH OD UpVXOWDQWH 4 GHV IRUFHV UpHOOHV JpQpUDOLVpHVQHGpULYDQWSDVGXSRWHQWLHO ( S
'DQV FHV pTXDWLRQV OHV 4L GpVLJQHQW OHV FRPSRVDQWHV GH OD UpVXOWDQWH 4 GHV IRUFHV UpHOOHV JpQpUDOLVpHVQHGpULYDQWSDVGXSRWHQWLHO ( S
±)RQFWLRQGHGLVVLSDWLRQGH5D\OHLJK
±)RQFWLRQGHGLVVLSDWLRQGH5D\OHLJK
3DUPL OHV IRUFHV GLVVLSDWLYHV DSSOLTXpHV j XQH VWUXFWXUH RQ UHQFRQWUH VRXYHQW GHV IRUFHV YLVTXHXVHVTXLVRQWGRQFGHVIRQFWLRQVOLQpDLUHVGHVYLWHVVHV
3DUPL OHV IRUFHV GLVVLSDWLYHV DSSOLTXpHV j XQH VWUXFWXUH RQ UHQFRQWUH VRXYHQW GHV IRUFHV YLVTXHXVHVTXLVRQWGRQFGHVIRQFWLRQVOLQpDLUHVGHVYLWHVVHV
6LO¶RQDSSHOOH 4 Y ODIRUFHYLVTXHXVHJpQpUDOLVpHVRQSHXWGpILQLUODIRQFWLRQGHGLVVLSDWLRQ GH5D\OHLJKKRPRJqQHjXQHSXLVVDQFHQRWpH 5 T L T L W HWHOOHTXH
6LO¶RQDSSHOOH 4 Y ODIRUFHYLVTXHXVHJpQpUDOLVpHVRQSHXWGpILQLUODIRQFWLRQGHGLVVLSDWLRQ GH5D\OHLJKKRPRJqQHjXQHSXLVVDQFHQRWpH 5 T L T L W HWHOOHTXH
4 Y L = −
∂5 ∂ T L
/HVpTXDWLRQVGH/DJUDQJH SHXYHQWDORUVV¶pFULUH
4 Y L = −
∂5 ∂ T L
/HVpTXDWLRQVGH/DJUDQJH SHXYHQWDORUVV¶pFULUH
G ∂/ ∂/ ∂5 − + = 4L L = ! Q G W ∂ T L ∂ T L ∂ T L
G ∂/ ∂/ ∂5 − + = 4L L = ! Q G W ∂ T L ∂ T L ∂ T L
'DQV FHV pTXDWLRQV OHV 4L GpVLJQHQW OHV FRPSRVDQWHV GH OD UpVXOWDQWH 4 GHV IRUFHV JpQpUDOLVpHVQHGpULYDQWQLGH ( S QLGH5
'DQV FHV pTXDWLRQV OHV 4L GpVLJQHQW OHV FRPSRVDQWHV GH OD UpVXOWDQWH 4 GHV IRUFHV JpQpUDOLVpHVQHGpULYDQWQLGH ( S QLGH5
- 138 -
- 138 -
GH FRQILJXUDWLRQ T L OHV VROXWLRQV SDUWLFXOLqUHV j UHWHQLU pWDQW SUpFLVpHV SDU OHV FRQGLWLRQV LQLWLDOHVGHODVWUXFWXUHSRVLWLRQVHWYLWHVVHV
GH FRQILJXUDWLRQ T L OHV VROXWLRQV SDUWLFXOLqUHV j UHWHQLU pWDQW SUpFLVpHV SDU OHV FRQGLWLRQV LQLWLDOHVGHODVWUXFWXUHSRVLWLRQVHWYLWHVVHV
±/DJUDQJLHQG¶XQHVWUXFWXUH
±/DJUDQJLHQG¶XQHVWUXFWXUH
(QJpQpUDOFHUWDLQHVIRUFHVDSSOLTXpHVjXQHVWUXFWXUHVRQWFRQVHUYDWLYHVF¶HVWjGLUHGpULYHQW G¶XQ SRWHQWLHO GH SRVLWLRQ QRWpH ( S /D IRUFH JpQpUDOLVpH FRUUHVSRQGDQWH HVW QRWpH 4F HW
(QJpQpUDOFHUWDLQHVIRUFHVDSSOLTXpHVjXQHVWUXFWXUHVRQWFRQVHUYDWLYHVF¶HVWjGLUHGpULYHQW G¶XQ SRWHQWLHO GH SRVLWLRQ QRWpH ( S /D IRUFH JpQpUDOLVpH FRUUHVSRQGDQWH HVW QRWpH 4F HW
O¶RQD
O¶RQD
4F = −JUDG ( S VRLW 4F L = −
∂ (S ∂ TL
4F = −JUDG ( S VRLW 4F L = −
∂ (S ∂ TL
&¶HVWOHFDVGHO¶pQHUJLHSRWHQWLHOOHGHJUDYLWDWLRQF¶HVWOHFDVDXVVLGHO¶pQHUJLHSRWHQWLHOOH HPPDJDVLQpHGDQVXQUHVVRUWpODVWLTXH
&¶HVWOHFDVGHO¶pQHUJLHSRWHQWLHOOHGHJUDYLWDWLRQF¶HVWOHFDVDXVVLGHO¶pQHUJLHSRWHQWLHOOH HPPDJDVLQpHGDQVXQUHVVRUWpODVWLTXH
2Q QRPPH DORUV ODJUDQJLHQ GH OD VWUXFWXUH OD IRQFWLRQ / = ( F − ( S HW OHV pTXDWLRQV GH
2Q QRPPH DORUV ODJUDQJLHQ GH OD VWUXFWXUH OD IRQFWLRQ / = ( F − ( S HW OHV pTXDWLRQV GH
/DJUDQJHSHXYHQWDXVVLV¶pFULUH
/DJUDQJHSHXYHQWDXVVLV¶pFULUH
G ∂/ ∂/ − = 4L L = ! Q G W ∂ T L ∂ T L
G ∂/ ∂/ − = 4L L = ! Q G W ∂ T L ∂ T L
'DQV FHV pTXDWLRQV OHV 4L GpVLJQHQW OHV FRPSRVDQWHV GH OD UpVXOWDQWH 4 GHV IRUFHV UpHOOHV JpQpUDOLVpHVQHGpULYDQWSDVGXSRWHQWLHO ( S
'DQV FHV pTXDWLRQV OHV 4L GpVLJQHQW OHV FRPSRVDQWHV GH OD UpVXOWDQWH 4 GHV IRUFHV UpHOOHV JpQpUDOLVpHVQHGpULYDQWSDVGXSRWHQWLHO ( S
±)RQFWLRQGHGLVVLSDWLRQGH5D\OHLJK
±)RQFWLRQGHGLVVLSDWLRQGH5D\OHLJK
3DUPL OHV IRUFHV GLVVLSDWLYHV DSSOLTXpHV j XQH VWUXFWXUH RQ UHQFRQWUH VRXYHQW GHV IRUFHV YLVTXHXVHVTXLVRQWGRQFGHVIRQFWLRQVOLQpDLUHVGHVYLWHVVHV
3DUPL OHV IRUFHV GLVVLSDWLYHV DSSOLTXpHV j XQH VWUXFWXUH RQ UHQFRQWUH VRXYHQW GHV IRUFHV YLVTXHXVHVTXLVRQWGRQFGHVIRQFWLRQVOLQpDLUHVGHVYLWHVVHV
6LO¶RQDSSHOOH 4 Y ODIRUFHYLVTXHXVHJpQpUDOLVpHVRQSHXWGpILQLUODIRQFWLRQGHGLVVLSDWLRQ GH5D\OHLJKKRPRJqQHjXQHSXLVVDQFHQRWpH 5 T L T L W HWHOOHTXH
6LO¶RQDSSHOOH 4 Y ODIRUFHYLVTXHXVHJpQpUDOLVpHVRQSHXWGpILQLUODIRQFWLRQGHGLVVLSDWLRQ GH5D\OHLJKKRPRJqQHjXQHSXLVVDQFHQRWpH 5 T L T L W HWHOOHTXH
4 Y L = −
∂5 ∂ T L
/HVpTXDWLRQVGH/DJUDQJH SHXYHQWDORUVV¶pFULUH
G ∂/ ∂/ ∂5 − + = 4L L = ! Q G W ∂ T L ∂ T L ∂ T L
4 Y L = −
∂5 ∂ T L
/HVpTXDWLRQVGH/DJUDQJH SHXYHQWDORUVV¶pFULUH
G ∂/ ∂/ ∂5 − + = 4L L = ! Q G W ∂ T L ∂ T L ∂ T L
'DQV FHV pTXDWLRQV OHV 4L GpVLJQHQW OHV FRPSRVDQWHV GH OD UpVXOWDQWH 4 GHV IRUFHV JpQpUDOLVpHVQHGpULYDQWQLGH ( S QLGH5
'DQV FHV pTXDWLRQV OHV 4L GpVLJQHQW OHV FRPSRVDQWHV GH OD UpVXOWDQWH 4 GHV IRUFHV JpQpUDOLVpHVQHGpULYDQWQLGH ( S QLGH5
- 138 -
- 138 -
±8WLOLVDWLRQG¶XQUHSqUHQRQJDOLOpHQ
±8WLOLVDWLRQG¶XQUHSqUHQRQJDOLOpHQ
'DQV FH TXL SUpFqGH j QRXV DYRQV VXSSRVp OD VWUXFWXUH OLpH j XQ VROLGH GH UpIpUHQFH 6 JDOLOpHQ SDU UDSSRUW DXTXHO pWDLHQW GpILQLV OHV GLIIpUHQWV SDUDPqWUHV GX SUREOqPH
'DQV FH TXL SUpFqGH j QRXV DYRQV VXSSRVp OD VWUXFWXUH OLpH j XQ VROLGH GH UpIpUHQFH 6 JDOLOpHQ SDU UDSSRUW DXTXHO pWDLHQW GpILQLV OHV GLIIpUHQWV SDUDPqWUHV GX SUREOqPH
6L FH VROLGH 6 Q¶HVW SDV JDOLOpHQ QRXV SRXYRQV DYRLU UHFRXUV j O¶XQH GHV GHX[ PpWKRGHV VXLYDQWHV
6L FH VROLGH 6 Q¶HVW SDV JDOLOpHQ QRXV SRXYRQV DYRLU UHFRXUV j O¶XQH GHV GHX[ PpWKRGHV VXLYDQWHV
UHPpWKRGHWUDYDLOOHUGDQVXQUHSqUHJDOLOpHQSDUUDSSRUWDXTXHOOHPRXYHPHQWGH 6 HVW FRQQXHQH[SULPDQWSDUFKDQJHPHQWG¶D[HVWRXVOHVSDUDPqWUHVGXSUREOqPH T L T L ( F !
UHPpWKRGHWUDYDLOOHUGDQVXQUHSqUHJDOLOpHQSDUUDSSRUWDXTXHOOHPRXYHPHQWGH 6 HVW FRQQXHQH[SULPDQWSDUFKDQJHPHQWG¶D[HVWRXVOHVSDUDPqWUHVGXSUREOqPH T L T L ( F !
GDQVFHJDOLOpHQ
GDQVFHJDOLOpHQ
H PpWKRGH WUDYDLOOHU GDQV XQ UHSqUH QRQ JDOLOpHQ OLp j 6 PDLV SUHQGUH HQ FRPSWH DX PrPHWLWUHTXHOHVIRUFHVUpHOOHVOHVIRUFHVG¶LQHUWLHG¶HQWUDvQHPHQWHWGH&RULROLVDJLVVDQWVXU OHVSDUWLFXOHVGHODVWUXFWXUH
H PpWKRGH WUDYDLOOHU GDQV XQ UHSqUH QRQ JDOLOpHQ OLp j 6 PDLV SUHQGUH HQ FRPSWH DX PrPHWLWUHTXHOHVIRUFHVUpHOOHVOHVIRUFHVG¶LQHUWLHG¶HQWUDvQHPHQWHWGH&RULROLVDJLVVDQWVXU OHVSDUWLFXOHVGHODVWUXFWXUH
±$33/,&$7,216'(6e48$7,216'(/$*5$1*(
±$33/,&$7,216'(6e48$7,216'(/$*5$1*(
'DQVFHSDUDJUDSKHQRXVDOORQVPHWWUHHQpTXDWLRQVOHVPRXYHPHQWVGHTXHOTXHVVWUXFWXUHVj QGHJUpVGHOLEHUWpDXPR\HQGHVpTXDWLRQVGH/DJUDQJHSRXUHQLOOXVWUHUGLIIpUHQWVDVSHFWV
'DQVFHSDUDJUDSKHQRXVDOORQVPHWWUHHQpTXDWLRQVOHVPRXYHPHQWVGHTXHOTXHVVWUXFWXUHVj QGHJUpVGHOLEHUWpDXPR\HQGHVpTXDWLRQVGH/DJUDQJHSRXUHQLOOXVWUHUGLIIpUHQWVDVSHFWV
±3DUWLFXOHOLEUHLVROpHGDQVO¶HVSDFH
±3DUWLFXOHOLEUHLVROpHGDQVO¶HVSDFH
)LJXUH
)LJXUH
- 139 -
- 139 -
±8WLOLVDWLRQG¶XQUHSqUHQRQJDOLOpHQ
±8WLOLVDWLRQG¶XQUHSqUHQRQJDOLOpHQ
'DQV FH TXL SUpFqGH j QRXV DYRQV VXSSRVp OD VWUXFWXUH OLpH j XQ VROLGH GH UpIpUHQFH 6 JDOLOpHQ SDU UDSSRUW DXTXHO pWDLHQW GpILQLV OHV GLIIpUHQWV SDUDPqWUHV GX SUREOqPH
'DQV FH TXL SUpFqGH j QRXV DYRQV VXSSRVp OD VWUXFWXUH OLpH j XQ VROLGH GH UpIpUHQFH 6 JDOLOpHQ SDU UDSSRUW DXTXHO pWDLHQW GpILQLV OHV GLIIpUHQWV SDUDPqWUHV GX SUREOqPH
6L FH VROLGH 6 Q¶HVW SDV JDOLOpHQ QRXV SRXYRQV DYRLU UHFRXUV j O¶XQH GHV GHX[ PpWKRGHV VXLYDQWHV
6L FH VROLGH 6 Q¶HVW SDV JDOLOpHQ QRXV SRXYRQV DYRLU UHFRXUV j O¶XQH GHV GHX[ PpWKRGHV VXLYDQWHV
UHPpWKRGHWUDYDLOOHUGDQVXQUHSqUHJDOLOpHQSDUUDSSRUWDXTXHOOHPRXYHPHQWGH 6 HVW FRQQXHQH[SULPDQWSDUFKDQJHPHQWG¶D[HVWRXVOHVSDUDPqWUHVGXSUREOqPH T L T L ( F !
UHPpWKRGHWUDYDLOOHUGDQVXQUHSqUHJDOLOpHQSDUUDSSRUWDXTXHOOHPRXYHPHQWGH 6 HVW FRQQXHQH[SULPDQWSDUFKDQJHPHQWG¶D[HVWRXVOHVSDUDPqWUHVGXSUREOqPH T L T L ( F !
GDQVFHJDOLOpHQ
GDQVFHJDOLOpHQ
H PpWKRGH WUDYDLOOHU GDQV XQ UHSqUH QRQ JDOLOpHQ OLp j 6 PDLV SUHQGUH HQ FRPSWH DX PrPHWLWUHTXHOHVIRUFHVUpHOOHVOHVIRUFHVG¶LQHUWLHG¶HQWUDvQHPHQWHWGH&RULROLVDJLVVDQWVXU OHVSDUWLFXOHVGHODVWUXFWXUH
H PpWKRGH WUDYDLOOHU GDQV XQ UHSqUH QRQ JDOLOpHQ OLp j 6 PDLV SUHQGUH HQ FRPSWH DX PrPHWLWUHTXHOHVIRUFHVUpHOOHVOHVIRUFHVG¶LQHUWLHG¶HQWUDvQHPHQWHWGH&RULROLVDJLVVDQWVXU OHVSDUWLFXOHVGHODVWUXFWXUH
±$33/,&$7,216'(6e48$7,216'(/$*5$1*(
±$33/,&$7,216'(6e48$7,216'(/$*5$1*(
'DQVFHSDUDJUDSKHQRXVDOORQVPHWWUHHQpTXDWLRQVOHVPRXYHPHQWVGHTXHOTXHVVWUXFWXUHVj QGHJUpVGHOLEHUWpDXPR\HQGHVpTXDWLRQVGH/DJUDQJHSRXUHQLOOXVWUHUGLIIpUHQWVDVSHFWV
'DQVFHSDUDJUDSKHQRXVDOORQVPHWWUHHQpTXDWLRQVOHVPRXYHPHQWVGHTXHOTXHVVWUXFWXUHVj QGHJUpVGHOLEHUWpDXPR\HQGHVpTXDWLRQVGH/DJUDQJHSRXUHQLOOXVWUHUGLIIpUHQWVDVSHFWV
±3DUWLFXOHOLEUHLVROpHGDQVO¶HVSDFH
±3DUWLFXOHOLEUHLVROpHGDQVO¶HVSDFH
)LJXUH
- 139 -
)LJXUH
- 139 -
8QH SDUWLFXOH 3 GH PDVVH P HVW HQ PRXYHPHQW GDQV OH UHSqUH JDOLOpHQ {2 [\]} VRXV G O¶DFWLRQGHIRUFHVGHUpVXOWDQWHV ) (OOHFRQVWLWXHXQH©VWUXFWXUHj''/ªDYHF T = [ T = \ T = ]
8QH SDUWLFXOH 3 GH PDVVH P HVW HQ PRXYHPHQW GDQV OH UHSqUH JDOLOpHQ {2 [\]} VRXV G O¶DFWLRQGHIRUFHVGHUpVXOWDQWHV ) (OOHFRQVWLWXHXQH©VWUXFWXUHj''/ªDYHF T = [ T = \ T = ]
/¶pQHUJLHFLQpWLTXHjO¶LQVWDQWWDSRXUH[SUHVVLRQ
/¶pQHUJLHFLQpWLTXHjO¶LQVWDQWWDSRXUH[SUHVVLRQ
(F =
P [ + \ + ]
(F =
P [ + \ + ]
G 2Q D G¶DXWUH SDUW SRXU OH WUDYDLO YLUWXHO pOpPHQWDLUH GH OD IRUFH UpHOOH ) G G δ : = ) ⋅ δ 3 = )[ ⋅ δ [ + )\ ⋅ δ \ + )] ⋅ δ ] GRQF 4 = )[ 4 = )\ 4 = )]
G 2Q D G¶DXWUH SDUW SRXU OH WUDYDLO YLUWXHO pOpPHQWDLUH GH OD IRUFH UpHOOH ) G G δ : = ) ⋅ δ 3 = )[ ⋅ δ [ + )\ ⋅ δ \ + )] ⋅ δ ] GRQF 4 = )[ 4 = )\ 4 = )]
/HVpTXDWLRQVGH/DJUDQJH V¶pFULYHQWDORUV
/HVpTXDWLRQVGH/DJUDQJH V¶pFULYHQWDORUV
)[ = P [ )\ = P \ )] = P ]
)[ = P [ )\ = P \ )] = P ]
±3HQGXOHVLPSOHGDQVXQZDJRQ
±3HQGXOHVLPSOHGDQVXQZDJRQ
)LJXUH
)LJXUH
8QZDJRQGHPDVVH0SRVVqGHXQGHJUpGHOLEHUWpHQWUDQVODWLRQKRUL]RQWDOHLOHVWOLpDX VROLGHGHUpIpUHQFHJDOLOpHQ 6 SDUO¶LQWHUPpGLDLUHG¶XQUHVVRUWpODVWLTXHOLQpDLUHGHUDLGHXU .HWGHPDVVHQpJOLJHDEOH
8QZDJRQGHPDVVH0SRVVqGHXQGHJUpGHOLEHUWpHQWUDQVODWLRQKRUL]RQWDOHLOHVWOLpDX VROLGHGHUpIpUHQFHJDOLOpHQ 6 SDUO¶LQWHUPpGLDLUHG¶XQUHVVRUWpODVWLTXHOLQpDLUHGHUDLGHXU .HWGHPDVVHQpJOLJHDEOH
$XSODIRQGGXZDJRQHVWDUWLFXOpHQ$XQSHQGXOHGHPDVVHPGHPRPHQWG¶LQHUWLH,DXWRXU GH VRQ D[H GH URWDWLRQ $] &HWWH VWUXFWXUH SRVVqGH ''/ QRXV SUHQGURQV FRPPH SDUDPqWUHVGHFRQILJXUDWLRQO¶DEVFLVVH[GXZDJRQHWO¶DQJOH θ GXSHQGXOHDYHF [ = = θ GDQVODFRQILJXUDWLRQG¶pTXLOLEUHVWDWLTXHVWDEOHUHVVRUWDXUHSRVHW$*YHUWLFDO 6LjSDUWLU G¶XQHFRQILJXUDWLRQ [ θ RQVHGRQQHOHVYDULDWLRQVYLUWXHOOHV δ [ δ θ VHXOHVWUDYDLOOHQWOD WHQVLRQGXUHVVRUWHWOHSRLGVGXSHQGXOHDSSOLTXpHQVRQFHQWUHGHJUDYLWp*&HVGHX[IRUFHV GpFULYHQW GHV SRWHQWLHOV ( SL = . [ pQHUJLH SRWHQWLHOOH LQWHUQH ( SH = PJD − FRV θ pQHUJLHSRWHQWLHOOHH[WHUQH 2QDGRQF
$XSODIRQGGXZDJRQHVWDUWLFXOpHQ$XQSHQGXOHGHPDVVHPGHPRPHQWG¶LQHUWLH,DXWRXU GH VRQ D[H GH URWDWLRQ $] &HWWH VWUXFWXUH SRVVqGH ''/ QRXV SUHQGURQV FRPPH SDUDPqWUHVGHFRQILJXUDWLRQO¶DEVFLVVH[GXZDJRQHWO¶DQJOH θ GXSHQGXOHDYHF [ = = θ GDQVODFRQILJXUDWLRQG¶pTXLOLEUHVWDWLTXHVWDEOHUHVVRUWDXUHSRVHW$*YHUWLFDO 6LjSDUWLU G¶XQHFRQILJXUDWLRQ [ θ RQVHGRQQHOHVYDULDWLRQVYLUWXHOOHV δ [ δ θ VHXOHVWUDYDLOOHQWOD WHQVLRQGXUHVVRUWHWOHSRLGVGXSHQGXOHDSSOLTXpHQVRQFHQWUHGHJUDYLWp*&HVGHX[IRUFHV GpFULYHQW GHV SRWHQWLHOV ( SL = . [ pQHUJLH SRWHQWLHOOH LQWHUQH ( SH = PJD − FRV θ pQHUJLHSRWHQWLHOOHH[WHUQH 2QDGRQF
( S = ( SL = ( SH =
. [ + PJD − FRV θ
( S = ( SL = ( SH =
. [ + PJD − FRV θ
- 140 -
- 140 -
8QH SDUWLFXOH 3 GH PDVVH P HVW HQ PRXYHPHQW GDQV OH UHSqUH JDOLOpHQ {2 [\]} VRXV G O¶DFWLRQGHIRUFHVGHUpVXOWDQWHV ) (OOHFRQVWLWXHXQH©VWUXFWXUHj''/ªDYHF T = [ T = \ T = ]
8QH SDUWLFXOH 3 GH PDVVH P HVW HQ PRXYHPHQW GDQV OH UHSqUH JDOLOpHQ {2 [\]} VRXV G O¶DFWLRQGHIRUFHVGHUpVXOWDQWHV ) (OOHFRQVWLWXHXQH©VWUXFWXUHj''/ªDYHF T = [ T = \ T = ]
/¶pQHUJLHFLQpWLTXHjO¶LQVWDQWWDSRXUH[SUHVVLRQ
/¶pQHUJLHFLQpWLTXHjO¶LQVWDQWWDSRXUH[SUHVVLRQ
(F =
P [ + \ + ]
(F =
P [ + \ + ]
G 2Q D G¶DXWUH SDUW SRXU OH WUDYDLO YLUWXHO pOpPHQWDLUH GH OD IRUFH UpHOOH ) G G δ : = ) ⋅ δ 3 = )[ ⋅ δ [ + )\ ⋅ δ \ + )] ⋅ δ ] GRQF 4 = )[ 4 = )\ 4 = )]
G 2Q D G¶DXWUH SDUW SRXU OH WUDYDLO YLUWXHO pOpPHQWDLUH GH OD IRUFH UpHOOH ) G G δ : = ) ⋅ δ 3 = )[ ⋅ δ [ + )\ ⋅ δ \ + )] ⋅ δ ] GRQF 4 = )[ 4 = )\ 4 = )]
/HVpTXDWLRQVGH/DJUDQJH V¶pFULYHQWDORUV
/HVpTXDWLRQVGH/DJUDQJH V¶pFULYHQWDORUV
)[ = P [ )\ = P \ )] = P ]
)[ = P [ )\ = P \ )] = P ]
±3HQGXOHVLPSOHGDQVXQZDJRQ
±3HQGXOHVLPSOHGDQVXQZDJRQ
)LJXUH
)LJXUH
8QZDJRQGHPDVVH0SRVVqGHXQGHJUpGHOLEHUWpHQWUDQVODWLRQKRUL]RQWDOHLOHVWOLpDX VROLGHGHUpIpUHQFHJDOLOpHQ 6 SDUO¶LQWHUPpGLDLUHG¶XQUHVVRUWpODVWLTXHOLQpDLUHGHUDLGHXU .HWGHPDVVHQpJOLJHDEOH
8QZDJRQGHPDVVH0SRVVqGHXQGHJUpGHOLEHUWpHQWUDQVODWLRQKRUL]RQWDOHLOHVWOLpDX VROLGHGHUpIpUHQFHJDOLOpHQ 6 SDUO¶LQWHUPpGLDLUHG¶XQUHVVRUWpODVWLTXHOLQpDLUHGHUDLGHXU .HWGHPDVVHQpJOLJHDEOH
$XSODIRQGGXZDJRQHVWDUWLFXOpHQ$XQSHQGXOHGHPDVVHPGHPRPHQWG¶LQHUWLH,DXWRXU GH VRQ D[H GH URWDWLRQ $] &HWWH VWUXFWXUH SRVVqGH ''/ QRXV SUHQGURQV FRPPH SDUDPqWUHVGHFRQILJXUDWLRQO¶DEVFLVVH[GXZDJRQHWO¶DQJOH θ GXSHQGXOHDYHF [ = = θ GDQVODFRQILJXUDWLRQG¶pTXLOLEUHVWDWLTXHVWDEOHUHVVRUWDXUHSRVHW$*YHUWLFDO 6LjSDUWLU G¶XQHFRQILJXUDWLRQ [ θ RQVHGRQQHOHVYDULDWLRQVYLUWXHOOHV δ [ δ θ VHXOHVWUDYDLOOHQWOD WHQVLRQGXUHVVRUWHWOHSRLGVGXSHQGXOHDSSOLTXpHQVRQFHQWUHGHJUDYLWp*&HVGHX[IRUFHV GpFULYHQW GHV SRWHQWLHOV ( SL = . [ pQHUJLH SRWHQWLHOOH LQWHUQH ( SH = PJD − FRV θ pQHUJLHSRWHQWLHOOHH[WHUQH 2QDGRQF
$XSODIRQGGXZDJRQHVWDUWLFXOpHQ$XQSHQGXOHGHPDVVHPGHPRPHQWG¶LQHUWLH,DXWRXU GH VRQ D[H GH URWDWLRQ $] &HWWH VWUXFWXUH SRVVqGH ''/ QRXV SUHQGURQV FRPPH SDUDPqWUHVGHFRQILJXUDWLRQO¶DEVFLVVH[GXZDJRQHWO¶DQJOH θ GXSHQGXOHDYHF [ = = θ GDQVODFRQILJXUDWLRQG¶pTXLOLEUHVWDWLTXHVWDEOHUHVVRUWDXUHSRVHW$*YHUWLFDO 6LjSDUWLU G¶XQHFRQILJXUDWLRQ [ θ RQVHGRQQHOHVYDULDWLRQVYLUWXHOOHV δ [ δ θ VHXOHVWUDYDLOOHQWOD WHQVLRQGXUHVVRUWHWOHSRLGVGXSHQGXOHDSSOLTXpHQVRQFHQWUHGHJUDYLWp*&HVGHX[IRUFHV GpFULYHQW GHV SRWHQWLHOV ( SL = . [ pQHUJLH SRWHQWLHOOH LQWHUQH ( SH = PJD − FRV θ pQHUJLHSRWHQWLHOOHH[WHUQH 2QDGRQF
( S = ( SL = ( SH =
. [ + PJD − FRV θ
- 140 -
( S = ( SL = ( SH =
. [ + PJD − FRV θ
- 140 -
'¶DXWUHSDUWO¶pQHUJLHFLQpWLTXHGHODVWUXFWXUHjO¶LQVWDQWWDSRXUH[SUHVVLRQ (F =
'¶DXWUHSDUWO¶pQHUJLHFLQpWLTXHGHODVWUXFWXUHjO¶LQVWDQWWDSRXUH[SUHVVLRQ
0 + P [ + P D FRV θ ⋅ [ θ + , θ
(F =
0 + P [ + P D FRV θ ⋅ [ θ + , θ
2Q D GRQF O¶H[SUHVVLRQ GX ODJUDQJLHQ GH OD VWUXFWXUH / = ( F − ( S HW OHV pTXDWLRQV GH
2Q D GRQF O¶H[SUHVVLRQ GX ODJUDQJLHQ GH OD VWUXFWXUH / = ( F − ( S HW OHV pTXDWLRQV GH
/DJUDQJH V¶pFULYHQW
/DJUDQJH V¶pFULYHQW
G ∂/ ∂/ G ∂/ ∂/ − = HW − = VRLW G W ∂ [ ∂ [ G W ∂ θ ∂ θ
G ∂/ ∂/ G ∂/ ∂/ − = HW − = VRLW G W ∂ [ ∂ [ G W ∂ θ ∂ θ
⎧0 + P [ + PD FRV θ ⋅ θ − PD VLQ θ ⋅ θ + . [ = ⎪ ⎨ ⎪PD FRV θ ⋅ [ + , ⋅ θ − PD [ θ VLQ θ + PJD VLQ θ = ⎩
⎧0 + P [ + PD FRV θ ⋅ θ − PD VLQ θ ⋅ θ + . [ = ⎪ ⎨ ⎪PD FRV θ ⋅ [ + , ⋅ θ − PD [ θ VLQ θ + PJD VLQ θ = ⎩
±&KDULRWVFRXSOpVSDUXQDPRUWLVVHXUYLVTXHX[
±&KDULRWVFRXSOpVSDUXQDPRUWLVVHXUYLVTXHX[
)LJXUH
)LJXUH
2Q SUHQG FRPPH SDUDPqWUHV GH FRQILJXUDWLRQ OHV DEVFLVVHV [ HW [ GHV FKDULRWV DYHF [ = [ = GDQVODFRQILJXUDWLRQG¶pTXLOLEUHVWDWLTXHUHVVRUWVDXUHSRV 2QDLFL
2Q SUHQG FRPPH SDUDPqWUHV GH FRQILJXUDWLRQ OHV DEVFLVVHV [ HW [ GHV FKDULRWV DYHF [ = [ = GDQVODFRQILJXUDWLRQG¶pTXLOLEUHVWDWLTXHUHVVRUWVDXUHSRV 2QDLFL
⎧ ⎪( F = 0 [ + 0 [ ⎪ ⎪ ⎪ ⎨( S = . [ + . [ ⎪ ⎪ ⎪5 = & [ − [ ⎪⎩
⎧ ⎪( F = 0 [ + 0 [ ⎪ ⎪ ⎪ ⎨( S = . [ + . [ ⎪ ⎪ ⎪5 = & [ − [ ⎪⎩
(QHIIHWODIRUFHYLVTXHXVHDSSOLTXpHVXU 0 HVW 4 Y = − & [ − [ = −
'HPrPHVXU 0 4 Y = − & [ − [ = −
(QHIIHWODIRUFHYLVTXHXVHDSSOLTXpHVXU 0 HVW ∂5 ∂ [
4 Y = − & [ − [ = −
∂5 ∂ [
'HPrPHVXU 0 4 Y = − & [ − [ = −
- 141 -
∂5 ∂ [
- 141 -
'¶DXWUHSDUWO¶pQHUJLHFLQpWLTXHGHODVWUXFWXUHjO¶LQVWDQWWDSRXUH[SUHVVLRQ (F =
∂5 ∂ [
'¶DXWUHSDUWO¶pQHUJLHFLQpWLTXHGHODVWUXFWXUHjO¶LQVWDQWWDSRXUH[SUHVVLRQ
0 + P [ + P D FRV θ ⋅ [ θ + , θ
(F =
0 + P [ + P D FRV θ ⋅ [ θ + , θ
2Q D GRQF O¶H[SUHVVLRQ GX ODJUDQJLHQ GH OD VWUXFWXUH / = ( F − ( S HW OHV pTXDWLRQV GH
2Q D GRQF O¶H[SUHVVLRQ GX ODJUDQJLHQ GH OD VWUXFWXUH / = ( F − ( S HW OHV pTXDWLRQV GH
/DJUDQJH V¶pFULYHQW
/DJUDQJH V¶pFULYHQW
G ∂/ ∂/ G ∂/ ∂/ − = HW − = VRLW G W ∂ [ ∂ [ G W ∂ θ ∂ θ
G ∂/ ∂/ G ∂/ ∂/ − = HW − = VRLW G W ∂ [ ∂ [ G W ∂ θ ∂ θ
⎧0 + P [ + PD FRV θ ⋅ θ − PD VLQ θ ⋅ θ + . [ = ⎪ ⎨ ⎪PD FRV θ ⋅ [ + , ⋅ θ − PD [ θ VLQ θ + PJD VLQ θ = ⎩
⎧0 + P [ + PD FRV θ ⋅ θ − PD VLQ θ ⋅ θ + . [ = ⎪ ⎨ ⎪PD FRV θ ⋅ [ + , ⋅ θ − PD [ θ VLQ θ + PJD VLQ θ = ⎩
±&KDULRWVFRXSOpVSDUXQDPRUWLVVHXUYLVTXHX[
±&KDULRWVFRXSOpVSDUXQDPRUWLVVHXUYLVTXHX[
)LJXUH
)LJXUH
2Q SUHQG FRPPH SDUDPqWUHV GH FRQILJXUDWLRQ OHV DEVFLVVHV [ HW [ GHV FKDULRWV DYHF [ = [ = GDQVODFRQILJXUDWLRQG¶pTXLOLEUHVWDWLTXHUHVVRUWVDXUHSRV 2QDLFL
2Q SUHQG FRPPH SDUDPqWUHV GH FRQILJXUDWLRQ OHV DEVFLVVHV [ HW [ GHV FKDULRWV DYHF [ = [ = GDQVODFRQILJXUDWLRQG¶pTXLOLEUHVWDWLTXHUHVVRUWVDXUHSRV 2QDLFL
⎧ ⎪( F = 0 [ + 0 [ ⎪ ⎪ ⎪ ⎨( S = . [ + . [ ⎪ ⎪ ⎪5 = & [ − [ ⎩⎪
⎧ ⎪( F = 0 [ + 0 [ ⎪ ⎪ ⎪ ⎨( S = . [ + . [ ⎪ ⎪ ⎪5 = & [ − [ ⎩⎪
(QHIIHWODIRUFHYLVTXHXVHDSSOLTXpHVXU 0 HVW 4 Y = − & [ − [ = −
'HPrPHVXU 0 4 Y = − & [ − [ = −
∂5 ∂ [
- 141 -
(QHIIHWODIRUFHYLVTXHXVHDSSOLTXpHVXU 0 HVW ∂5 ∂ [
4 Y = − & [ − [ = −
'HPrPHVXU 0 4 Y = − & [ − [ = −
∂5 ∂ [
- 141 -
∂5 ∂ [
/HVpTXDWLRQVGH/DJUDQJH V¶pFULYHQWLFL
/HVpTXDWLRQVGH/DJUDQJH V¶pFULYHQWLFL
G ∂/ ∂/ ∂5 − + = L = VRLW G W ∂ [ L ∂ [ L ∂ [ L
G ∂/ ∂/ ∂5 − + = L = VRLW G W ∂ [ L ∂ [ L ∂ [ L
⎧⎪0 [ + & [ − [ + . [ = ⎨ ⎪⎩0 [ + & [ − [ + . [ =
⎧⎪0 [ + & [ − [ + . [ = ⎨ ⎪⎩0 [ + & [ − [ + . [ =
±/HSHQGXOHGH)RXFDXOW
±/HSHQGXOHGH)RXFDXOW
1RXVQRXVSURSRVRQVGHUHSUHQGUHLFLO¶pWXGHGHVSHWLWHVRVFLOODWLRQVG¶XQSHQGXOHVLPSOHHQ 0pFDQLTXH7HUUHVWUHGHSUpFLVLRQF¶HVWjGLUHHQWHQDQWFRPSWHGHVIRUFHVG¶LQHUWLHG¶HQWUDv QHPHQWHWGH&RULROLVGXHVjODURWDWLRQSURSUHGHODWHUUH
1RXVQRXVSURSRVRQVGHUHSUHQGUHLFLO¶pWXGHGHVSHWLWHVRVFLOODWLRQVG¶XQSHQGXOHVLPSOHHQ 0pFDQLTXH7HUUHVWUHGHSUpFLVLRQF¶HVWjGLUHHQWHQDQWFRPSWHGHVIRUFHVG¶LQHUWLHG¶HQWUDv QHPHQWHWGH&RULROLVGXHVjODURWDWLRQSURSUHGHODWHUUH
6RLWGRQFXQODERUDWRLUHVLWXpHQXQOLHXGHODWLWXGH λ DWWDFKRQVOXLXQWULqGUH {R [\]}OLpj OD WHUUH GRQW R] HVW OD YHUWLFDOH DVFHQGDQWH R[ KRUL]RQWDO GDQV OH SODQ PpULGLHQ GX OLHX HW RULHQWp YHUV OH VXG O¶D[H R\ FRPSOpWDQW OH WULqGUH WULUHFWDQJOH GLUHFW F¶HVW j GLUH WDQJHQW DX SDUDOOqOHGXOLHXHWRULHQWpYHUVO¶HVW
6RLWGRQFXQODERUDWRLUHVLWXpHQXQOLHXGHODWLWXGH λ DWWDFKRQVOXLXQWULqGUH {R [\]}OLpj OD WHUUH GRQW R] HVW OD YHUWLFDOH DVFHQGDQWH R[ KRUL]RQWDO GDQV OH SODQ PpULGLHQ GX OLHX HW RULHQWp YHUV OH VXG O¶D[H R\ FRPSOpWDQW OH WULqGUH WULUHFWDQJOH GLUHFW F¶HVW j GLUH WDQJHQW DX SDUDOOqOHGXOLHXHWRULHQWpYHUVO¶HVW
/HSHQGXOHHVWFRQVWLWXpG¶XQILOLQH[WHQVLEOHGHPDVVHQpJOLJHDEOHGHORQJXHXU/VXVSHQGX DXSRLQWHWDXERXWGXTXHOHVWIL[pHXQHVSKqUHGHPDVVHPDVVLPLODEOHjXQHSDUWLFXOH3
/HSHQGXOHHVWFRQVWLWXpG¶XQILOLQH[WHQVLEOHGHPDVVHQpJOLJHDEOHGHORQJXHXU/VXVSHQGX DXSRLQWHWDXERXWGXTXHOHVWIL[pHXQHVSKqUHGHPDVVHPDVVLPLODEOHjXQHSDUWLFXOH3
1RXV SUHQGURQV FRPPH SDUDPqWUHV GH SRVLWLRQ OHV FRRUGRQQpHV FDUWpVLHQQHV [ HW \ GH 3 FRQVLGpUpVFRPPHLQILQLPHQWSHWLWVGXSUHPLHURUGUHSDUUDSSRUWj/2QSHXWDORUVpFULUHOD FRWH]GH3
1RXV SUHQGURQV FRPPH SDUDPqWUHV GH SRVLWLRQ OHV FRRUGRQQpHV FDUWpVLHQQHV [ HW \ GH 3 FRQVLGpUpVFRPPHLQILQLPHQWSHWLWVGXSUHPLHURUGUHSDUUDSSRUWj/2QSHXWDORUVpFULUHOD FRWH]GH3
] = −/ −
[ + \ /
≈ −/ +
[ + \ /
/¶pQHUJLHFLQpWLTXHDDLQVLSRXUSDUWLHSULQFLSDOH (F =
[ + \ /
≈ −/ +
[ + \ /
/¶pQHUJLHFLQpWLTXHDDLQVLSRXUSDUWLHSULQFLSDOH
P [ + \
/¶pQHUJLH SRWHQWLHOOH GH SHVDQWHXU TXH O¶RQ pFULW ] + / SRXU TX¶HOOH V¶DQQXOH GDQV OD SRVLWLRQG¶pTXLOLEUHVWDWLTXH [ = \ = ] = −/ DSRXUSDUWLHSULQFLSDOH (S =
] = −/ −
(F =
/¶pQHUJLH SRWHQWLHOOH GH SHVDQWHXU TXH O¶RQ pFULW ] + / SRXU TX¶HOOH V¶DQQXOH GDQV OD SRVLWLRQG¶pTXLOLEUHVWDWLTXH [ = \ = ] = −/ DSRXUSDUWLHSULQFLSDOH
PJ [ + \ /
3UpFLVRQV PDLQWHQDQW OHV IRUFHV DSSOLTXpHV j OD VSKqUH 3 GH PDVVH P RVFLOODQW GDQV XQH HQFHLQWHYLGHVDQVDLU ⎧⎪±DWWUDFWLRQWHUUHVWUHPJ ± )RUFHVUpHOOHV ⎨ ⎪⎩±WHQVLRQGXILO
P [ + \
(S =
PJ [ + \ /
3UpFLVRQV PDLQWHQDQW OHV IRUFHV DSSOLTXpHV j OD VSKqUH 3 GH PDVVH P RVFLOODQW GDQV XQH HQFHLQWHYLGHVDQVDLU ⎧⎪±DWWUDFWLRQWHUUHVWUHPJ ± )RUFHVUpHOOHV ⎨ ⎪⎩±WHQVLRQGXILO
- 142 -
- 142 -
/HVpTXDWLRQVGH/DJUDQJH V¶pFULYHQWLFL
/HVpTXDWLRQVGH/DJUDQJH V¶pFULYHQWLFL
G ∂/ ∂/ ∂5 − + = L = VRLW G W ∂ [ L ∂ [ L ∂ [ L
G ∂/ ∂/ ∂5 − + = L = VRLW G W ∂ [ L ∂ [ L ∂ [ L
⎧⎪0 [ + & [ − [ + . [ = ⎨ ⎪⎩0 [ + & [ − [ + . [ =
⎧⎪0 [ + & [ − [ + . [ = ⎨ ⎪⎩0 [ + & [ − [ + . [ =
±/HSHQGXOHGH)RXFDXOW
±/HSHQGXOHGH)RXFDXOW
1RXVQRXVSURSRVRQVGHUHSUHQGUHLFLO¶pWXGHGHVSHWLWHVRVFLOODWLRQVG¶XQSHQGXOHVLPSOHHQ 0pFDQLTXH7HUUHVWUHGHSUpFLVLRQF¶HVWjGLUHHQWHQDQWFRPSWHGHVIRUFHVG¶LQHUWLHG¶HQWUDv QHPHQWHWGH&RULROLVGXHVjODURWDWLRQSURSUHGHODWHUUH
1RXVQRXVSURSRVRQVGHUHSUHQGUHLFLO¶pWXGHGHVSHWLWHVRVFLOODWLRQVG¶XQSHQGXOHVLPSOHHQ 0pFDQLTXH7HUUHVWUHGHSUpFLVLRQF¶HVWjGLUHHQWHQDQWFRPSWHGHVIRUFHVG¶LQHUWLHG¶HQWUDv QHPHQWHWGH&RULROLVGXHVjODURWDWLRQSURSUHGHODWHUUH
6RLWGRQFXQODERUDWRLUHVLWXpHQXQOLHXGHODWLWXGH λ DWWDFKRQVOXLXQWULqGUH {R [\]}OLpj OD WHUUH GRQW R] HVW OD YHUWLFDOH DVFHQGDQWH R[ KRUL]RQWDO GDQV OH SODQ PpULGLHQ GX OLHX HW RULHQWp YHUV OH VXG O¶D[H R\ FRPSOpWDQW OH WULqGUH WULUHFWDQJOH GLUHFW F¶HVW j GLUH WDQJHQW DX SDUDOOqOHGXOLHXHWRULHQWpYHUVO¶HVW
6RLWGRQFXQODERUDWRLUHVLWXpHQXQOLHXGHODWLWXGH λ DWWDFKRQVOXLXQWULqGUH {R [\]}OLpj OD WHUUH GRQW R] HVW OD YHUWLFDOH DVFHQGDQWH R[ KRUL]RQWDO GDQV OH SODQ PpULGLHQ GX OLHX HW RULHQWp YHUV OH VXG O¶D[H R\ FRPSOpWDQW OH WULqGUH WULUHFWDQJOH GLUHFW F¶HVW j GLUH WDQJHQW DX SDUDOOqOHGXOLHXHWRULHQWpYHUVO¶HVW
/HSHQGXOHHVWFRQVWLWXpG¶XQILOLQH[WHQVLEOHGHPDVVHQpJOLJHDEOHGHORQJXHXU/VXVSHQGX DXSRLQWHWDXERXWGXTXHOHVWIL[pHXQHVSKqUHGHPDVVHPDVVLPLODEOHjXQHSDUWLFXOH3
/HSHQGXOHHVWFRQVWLWXpG¶XQILOLQH[WHQVLEOHGHPDVVHQpJOLJHDEOHGHORQJXHXU/VXVSHQGX DXSRLQWHWDXERXWGXTXHOHVWIL[pHXQHVSKqUHGHPDVVHPDVVLPLODEOHjXQHSDUWLFXOH3
1RXV SUHQGURQV FRPPH SDUDPqWUHV GH SRVLWLRQ OHV FRRUGRQQpHV FDUWpVLHQQHV [ HW \ GH 3 FRQVLGpUpVFRPPHLQILQLPHQWSHWLWVGXSUHPLHURUGUHSDUUDSSRUWj/2QSHXWDORUVpFULUHOD FRWH]GH3
1RXV SUHQGURQV FRPPH SDUDPqWUHV GH SRVLWLRQ OHV FRRUGRQQpHV FDUWpVLHQQHV [ HW \ GH 3 FRQVLGpUpVFRPPHLQILQLPHQWSHWLWVGXSUHPLHURUGUHSDUUDSSRUWj/2QSHXWDORUVpFULUHOD FRWH]GH3
] = −/ −
[ + \ /
≈ −/ +
[ + \ /
/¶pQHUJLHFLQpWLTXHDDLQVLSRXUSDUWLHSULQFLSDOH (F =
P [ + \
/¶pQHUJLH SRWHQWLHOOH GH SHVDQWHXU TXH O¶RQ pFULW ] + / SRXU TX¶HOOH V¶DQQXOH GDQV OD SRVLWLRQG¶pTXLOLEUHVWDWLTXH [ = \ = ] = −/ DSRXUSDUWLHSULQFLSDOH (S =
PJ [ + \ /
3UpFLVRQV PDLQWHQDQW OHV IRUFHV DSSOLTXpHV j OD VSKqUH 3 GH PDVVH P RVFLOODQW GDQV XQH HQFHLQWHYLGHVDQVDLU ⎧⎪±DWWUDFWLRQWHUUHVWUHPJ ± )RUFHVUpHOOHV ⎨ ⎪⎩±WHQVLRQGXILO
- 142 -
] = −/ −
[ + \ /
≈ −/ +
[ + \ /
/¶pQHUJLHFLQpWLTXHDDLQVLSRXUSDUWLHSULQFLSDOH (F =
P [ + \
/¶pQHUJLH SRWHQWLHOOH GH SHVDQWHXU TXH O¶RQ pFULW ] + / SRXU TX¶HOOH V¶DQQXOH GDQV OD SRVLWLRQG¶pTXLOLEUHVWDWLTXH [ = \ = ] = −/ DSRXUSDUWLHSULQFLSDOH (S =
PJ [ + \ /
3UpFLVRQV PDLQWHQDQW OHV IRUFHV DSSOLTXpHV j OD VSKqUH 3 GH PDVVH P RVFLOODQW GDQV XQH HQFHLQWHYLGHVDQVDLU ⎧⎪±DWWUDFWLRQWHUUHVWUHPJ ± )RUFHVUpHOOHV ⎨ ⎪⎩±WHQVLRQGXILO
- 142 -
±)RUFHVG¶LQHUWLH
±)RUFHVG¶LQHUWLH
)LJXUH
)LJXUH
/DILJXUHUHSUpVHQWHXQHFRXSHPpULGLHQQHGHODWHUUHVXSSRVpHVSKpULTXHHWKRPRJqQHGH UD\RQ5
/DILJXUHUHSUpVHQWHXQHFRXSHPpULGLHQQHGHODWHUUHVXSSRVpHVSKpULTXHHWKRPRJqQHGH UD\RQ5
/¶DWWUDFWLRQ WHUUHVWUH J HVW GLULJpH YHUV OH FHQWUH 7 GH OD WHUUH HW VRQ LQWHQVLWp P J HVW
/¶DWWUDFWLRQ WHUUHVWUH J HVW GLULJpH YHUV OH FHQWUH 7 GH OD WHUUH HW VRQ LQWHQVLWp P J HVW
LQGpSHQGDQWH GH OD SRVLWLRQ GX ODERUDWRLUH j OD VXUIDFH GH FHOOHFL /D IRUFH G¶LQHUWLH G G¶HQWUDvQHPHQW − P ΓH D SRXU LQWHQVLWp P Ω U U pWDQW OH UD\RQ GX SDUDOOqOH GX OLHX VRLW
LQGpSHQGDQWH GH OD SRVLWLRQ GX ODERUDWRLUH j OD VXUIDFH GH FHOOHFL /D IRUFH G¶LQHUWLH G G¶HQWUDvQHPHQW − P ΓH D SRXU LQWHQVLWp P Ω U U pWDQW OH UD\RQ GX SDUDOOqOH GX OLHX VRLW
U = 5 FRV λ − α FHGHUQLHUYHFWHXUHVWQXODXS{OHHWODYDOHXUPHVXUpHGH J HQFHSRLQW
U = 5 FRV λ − α FHGHUQLHUYHFWHXUHVWQXODXS{OHHWODYDOHXUPHVXUpHGH J HQFHSRLQW
HVW P V
HVW P V
/D SRVLWLRQ G¶pTXLOLEUH VWDWLTXH GX SHQGXOH GRQQH OD GLUHFWLRQ YHUWLFDOH ORFDOH FHOOH GH OD G G SHVDQWHXU J UpVXOWDQWH GH J HW −ΓH /D ODWLWXGH λ GX ODERUDWRLUH HVW O¶DQJOH GH OD
/D SRVLWLRQ G¶pTXLOLEUH VWDWLTXH GX SHQGXOH GRQQH OD GLUHFWLRQ YHUWLFDOH ORFDOH FHOOH GH OD G G SHVDQWHXU J UpVXOWDQWH GH J HW −ΓH /D ODWLWXGH λ GX ODERUDWRLUH HVW O¶DQJOH GH OD
YHUWLFDOH ORFDOH DYHF OH SODQ GH O¶pTXDWHXU QRXV OD SUHQGURQV SRVLWLYH GDQV O¶KpPLVSKqUH G G QRUG2QDSSHOOHUD α O¶DQJOHGH J HW J (QSURMHWDQWO¶pTXDWLRQYHFWRULHOOH J = J − ΓH VXU
YHUWLFDOH ORFDOH DYHF OH SODQ GH O¶pTXDWHXU QRXV OD SUHQGURQV SRVLWLYH GDQV O¶KpPLVSKqUH G G QRUG2QDSSHOOHUD α O¶DQJOHGH J HW J (QSURMHWDQWO¶pTXDWLRQYHFWRULHOOH J = J − ΓH VXU
ODYHUWLFDOHHWOHSODQKRUL]RQWDORQREWLHQWOHVGHX[pTXDWLRQV
ODYHUWLFDOHHWOHSODQKRUL]RQWDORQREWLHQWOHVGHX[pTXDWLRQV
⎧⎪J = FRV α − Ω 5 FRV λ FRV λ − α ⎨ ⎪⎩ = VLQ α − Ω 5 VLQ λ FRV λ − α
⎧⎪J = FRV α − Ω 5 FRV λ FRV λ − α ⎨ ⎪⎩ = VLQ α − Ω 5 VLQ λ FRV λ − α
- 143 -
- 143 -
±)RUFHVG¶LQHUWLH
±)RUFHVG¶LQHUWLH
)LJXUH
)LJXUH
/DILJXUHUHSUpVHQWHXQHFRXSHPpULGLHQQHGHODWHUUHVXSSRVpHVSKpULTXHHWKRPRJqQHGH UD\RQ5
/DILJXUHUHSUpVHQWHXQHFRXSHPpULGLHQQHGHODWHUUHVXSSRVpHVSKpULTXHHWKRPRJqQHGH UD\RQ5
/¶DWWUDFWLRQ WHUUHVWUH J HVW GLULJpH YHUV OH FHQWUH 7 GH OD WHUUH HW VRQ LQWHQVLWp P J HVW
/¶DWWUDFWLRQ WHUUHVWUH J HVW GLULJpH YHUV OH FHQWUH 7 GH OD WHUUH HW VRQ LQWHQVLWp P J HVW
LQGpSHQGDQWH GH OD SRVLWLRQ GX ODERUDWRLUH j OD VXUIDFH GH FHOOHFL /D IRUFH G¶LQHUWLH G G¶HQWUDvQHPHQW − P ΓH D SRXU LQWHQVLWp P Ω U U pWDQW OH UD\RQ GX SDUDOOqOH GX OLHX VRLW
LQGpSHQGDQWH GH OD SRVLWLRQ GX ODERUDWRLUH j OD VXUIDFH GH FHOOHFL /D IRUFH G¶LQHUWLH G G¶HQWUDvQHPHQW − P ΓH D SRXU LQWHQVLWp P Ω U U pWDQW OH UD\RQ GX SDUDOOqOH GX OLHX VRLW
HVW P V
HVW P V
/D SRVLWLRQ G¶pTXLOLEUH VWDWLTXH GX SHQGXOH GRQQH OD GLUHFWLRQ YHUWLFDOH ORFDOH FHOOH GH OD G G SHVDQWHXU J UpVXOWDQWH GH J HW −ΓH /D ODWLWXGH λ GX ODERUDWRLUH HVW O¶DQJOH GH OD
/D SRVLWLRQ G¶pTXLOLEUH VWDWLTXH GX SHQGXOH GRQQH OD GLUHFWLRQ YHUWLFDOH ORFDOH FHOOH GH OD G G SHVDQWHXU J UpVXOWDQWH GH J HW −ΓH /D ODWLWXGH λ GX ODERUDWRLUH HVW O¶DQJOH GH OD
YHUWLFDOH ORFDOH DYHF OH SODQ GH O¶pTXDWHXU QRXV OD SUHQGURQV SRVLWLYH GDQV O¶KpPLVSKqUH G G QRUG2QDSSHOOHUD α O¶DQJOHGH J HW J (QSURMHWDQWO¶pTXDWLRQYHFWRULHOOH J = J − ΓH VXU
YHUWLFDOH ORFDOH DYHF OH SODQ GH O¶pTXDWHXU QRXV OD SUHQGURQV SRVLWLYH GDQV O¶KpPLVSKqUH G G QRUG2QDSSHOOHUD α O¶DQJOHGH J HW J (QSURMHWDQWO¶pTXDWLRQYHFWRULHOOH J = J − ΓH VXU
ODYHUWLFDOHHWOHSODQKRUL]RQWDORQREWLHQWOHVGHX[pTXDWLRQV
ODYHUWLFDOHHWOHSODQKRUL]RQWDORQREWLHQWOHVGHX[pTXDWLRQV
U = 5 FRV λ − α FHGHUQLHUYHFWHXUHVWQXODXS{OHHWODYDOHXUPHVXUpHGH J HQFHSRLQW
U = 5 FRV λ − α FHGHUQLHUYHFWHXUHVWQXODXS{OHHWODYDOHXUPHVXUpHGH J HQFHSRLQW
⎧⎪J = FRV α − Ω 5 FRV λ FRV λ − α ⎨ ⎪⎩ = VLQ α − Ω 5 VLQ λ FRV λ − α
⎧⎪J = FRV α − Ω 5 FRV λ FRV λ − α ⎨ ⎪⎩ = VLQ α − Ω 5 VLQ λ FRV λ − α
- 143 -
- 143 -
/¶DQJOH α pWDQWSHWLWGHYDQWXQUDGLDQRQWLUHGHFHVpTXDWLRQ Ω 5 ⎛ ⎞ = α = VLQ λ FRV λ J = ⎜ − FRV λ ⎟ J ⎝ ⎠
/D IRUFH G¶LQHUWLH GH &RULROLV − P
9U RX GpVLJQH OH YHFWHXU URWDWLRQ SURSUH GH OD
WHUUHHW 9U ODYLWHVVHGH3GDQV { [\]}DSRXUFRPSRVDQWHVGDQVFHPrPHUHSqUH
−P
/¶DQJOH α pWDQWSHWLWGHYDQWXQUDGLDQRQWLUHGHFHVpTXDWLRQ Ω 5 ⎛ ⎞ = α = VLQ λ FRV λ J = ⎜ − FRV λ ⎟ J ⎝ ⎠
/D IRUFH G¶LQHUWLH GH &RULROLV − P
9U RX GpVLJQH OH YHFWHXU URWDWLRQ SURSUH GH OD
WHUUHHW 9U ODYLWHVVHGH3GDQV { [\]}DSRXUFRPSRVDQWHVGDQVFHPrPHUHSqUH
⎧ P Ω VLQ λ ⋅ \ ⎪⎪ 9U ⎨− P Ω VLQ λ ⋅ [ ⎪ ⎩⎪ P Ω FRV⋅ \
−P
⎧ P Ω VLQ λ ⋅ \ ⎪⎪ 9U ⎨− P Ω VLQ λ ⋅ [ ⎪ ⎩⎪ P Ω FRV⋅ \
6LQRXVGRQQRQVj3XQGpSODFHPHQWYLUWXHOpOpPHQWDLUH δ [ δ \ FRPSWHWHQXGHFHTXH δ ] = [ δ [ + \ δ \ HVWLQILQLPHQWSHWLWSDUUDSSRUWj δ [ HW δ \ OHWUDYDLOYLUWXHOGHODIRUFH GH&RULROLVDSRXUSDUWLHSULQFLSDOH
6LQRXVGRQQRQVj3XQGpSODFHPHQWYLUWXHOpOpPHQWDLUH δ [ δ \ FRPSWHWHQXGHFHTXH δ ] = [ δ [ + \ δ \ HVWLQILQLPHQWSHWLWSDUUDSSRUWj δ [ HW δ \ OHWUDYDLOYLUWXHOGHODIRUFH GH&RULROLVDSRXUSDUWLHSULQFLSDOH
P Ω VLQ λ \ δ [ − [ δ \
P Ω VLQ λ \ δ [ − [ δ \
/¶DSSOLFDWLRQ GHV pTXDWLRQV GH /DJUDQJH GRQQH DORUV GHX[ pTXDWLRQV GLIIpUHQWLHOOHV OLQpDLUHVKRPRJqQHVHWjFRHIILFLHQWVFRQVWDQWV
/¶DSSOLFDWLRQ GHV pTXDWLRQV GH /DJUDQJH GRQQH DORUV GHX[ pTXDWLRQV GLIIpUHQWLHOOHV OLQpDLUHVKRPRJqQHVHWjFRHIILFLHQWVFRQVWDQWV
J ⎧ ⎪⎪[ − Ω VLQ λ ⋅ \ + / [ = ⎨ ⎪\ + Ω VLQ λ ⋅ [ + J \ = / ⎩⎪
J ⎧ ⎪⎪[ − Ω VLQ λ ⋅ \ + / [ = ⎨ ⎪\ + Ω VLQ λ ⋅ [ + J \ = / ⎩⎪
(QSRVDQW ξ = [ + L \ FHGHX[pTXDWLRQVpTXLYDOHQWjXQHpTXDWLRQGLIIpUHQWLHOOHHQ ξ
(QSRVDQW ξ = [ + L \ FHGHX[pTXDWLRQVpTXLYDOHQWjXQHpTXDWLRQGLIIpUHQWLHOOHHQ ξ
ξ + L Ω VLQ λ ξ + J ξ = /
ξ + L Ω VLQ λ ξ + J ξ = /
GRQWO¶pTXDWLRQFDUDFWpULVWLTXH V + L Ω VLQ λ ⋅ V +
J = DGHX[UDFLQHVLPDJLQDLUHVSXUHV / J J V = L −Ω VLQ λ ± N HQSRVDQW N = Ω VLQ λ + WUqVYRLVLQGH / /
GRQWO¶pTXDWLRQFDUDFWpULVWLTXH V + L Ω VLQ λ ⋅ V +
J = DGHX[UDFLQHVLPDJLQDLUHVSXUHV / J J V = L −Ω VLQ λ ± N HQSRVDQW N = Ω VLQ λ + WUqVYRLVLQGH / /
/DVROXWLRQJpQpUDOHV¶pFULW
/DVROXWLRQJpQpUDOHV¶pFULW
ξ = H −LΩW VLQ λ & FRV N W + ' VLQ N W &DOFXORQVOHVFRQVWDQWHVFRPSOH[HV &HW'GDQVGHX[W\SHVGHFRQGLWLRQVLQLWLDOHV
ξ = H −LΩW VLQ λ & FRV N W + ' VLQ N W &DOFXORQVOHVFRQVWDQWHVFRPSOH[HV &HW'GDQVGHX[W\SHVGHFRQGLWLRQVLQLWLDOHV
- 144 -
/¶DQJOH α pWDQWSHWLWGHYDQWXQUDGLDQRQWLUHGHFHVpTXDWLRQ Ω 5 ⎛ ⎞ = α = VLQ λ FRV λ J = ⎜ − FRV λ ⎟ J ⎝ ⎠
/D IRUFH G¶LQHUWLH GH &RULROLV − P
9U RX GpVLJQH OH YHFWHXU URWDWLRQ SURSUH GH OD
WHUUHHW 9U ODYLWHVVHGH3GDQV { [\]}DSRXUFRPSRVDQWHVGDQVFHPrPHUHSqUH
−P
- 144 -
/¶DQJOH α pWDQWSHWLWGHYDQWXQUDGLDQRQWLUHGHFHVpTXDWLRQ Ω 5 ⎛ ⎞ = α = VLQ λ FRV λ J = ⎜ − FRV λ ⎟ J ⎝ ⎠
/D IRUFH G¶LQHUWLH GH &RULROLV − P
9U RX GpVLJQH OH YHFWHXU URWDWLRQ SURSUH GH OD
WHUUHHW 9U ODYLWHVVHGH3GDQV { [\]}DSRXUFRPSRVDQWHVGDQVFHPrPHUHSqUH
⎧ P Ω VLQ λ ⋅ \ ⎪⎪ 9U ⎨− P Ω VLQ λ ⋅ [ ⎪ ⎪⎩ P Ω FRV⋅ \
−P
⎧ P Ω VLQ λ ⋅ \ ⎪⎪ 9U ⎨− P Ω VLQ λ ⋅ [ ⎪ ⎪⎩ P Ω FRV⋅ \
6LQRXVGRQQRQVj3XQGpSODFHPHQWYLUWXHOpOpPHQWDLUH δ [ δ \ FRPSWHWHQXGHFHTXH δ ] = [ δ [ + \ δ \ HVWLQILQLPHQWSHWLWSDUUDSSRUWj δ [ HW δ \ OHWUDYDLOYLUWXHOGHODIRUFH GH&RULROLVDSRXUSDUWLHSULQFLSDOH
6LQRXVGRQQRQVj3XQGpSODFHPHQWYLUWXHOpOpPHQWDLUH δ [ δ \ FRPSWHWHQXGHFHTXH δ ] = [ δ [ + \ δ \ HVWLQILQLPHQWSHWLWSDUUDSSRUWj δ [ HW δ \ OHWUDYDLOYLUWXHOGHODIRUFH GH&RULROLVDSRXUSDUWLHSULQFLSDOH
P Ω VLQ λ \ δ [ − [ δ \
P Ω VLQ λ \ δ [ − [ δ \
/¶DSSOLFDWLRQ GHV pTXDWLRQV GH /DJUDQJH GRQQH DORUV GHX[ pTXDWLRQV GLIIpUHQWLHOOHV OLQpDLUHVKRPRJqQHVHWjFRHIILFLHQWVFRQVWDQWV
/¶DSSOLFDWLRQ GHV pTXDWLRQV GH /DJUDQJH GRQQH DORUV GHX[ pTXDWLRQV GLIIpUHQWLHOOHV OLQpDLUHVKRPRJqQHVHWjFRHIILFLHQWVFRQVWDQWV
J ⎧ ⎪⎪[ − Ω VLQ λ ⋅ \ + / [ = ⎨ ⎪\ + Ω VLQ λ ⋅ [ + J \ = ⎪⎩ /
J ⎧ ⎪⎪[ − Ω VLQ λ ⋅ \ + / [ = ⎨ ⎪\ + Ω VLQ λ ⋅ [ + J \ = ⎪⎩ /
(QSRVDQW ξ = [ + L \ FHGHX[pTXDWLRQVpTXLYDOHQWjXQHpTXDWLRQGLIIpUHQWLHOOHHQ ξ
(QSRVDQW ξ = [ + L \ FHGHX[pTXDWLRQVpTXLYDOHQWjXQHpTXDWLRQGLIIpUHQWLHOOHHQ ξ
ξ + L Ω VLQ λ ξ + J ξ = /
ξ + L Ω VLQ λ ξ + J ξ = /
GRQWO¶pTXDWLRQFDUDFWpULVWLTXH V + L Ω VLQ λ ⋅ V +
J = DGHX[UDFLQHVLPDJLQDLUHVSXUHV / J J V = L −Ω VLQ λ ± N HQSRVDQW N = Ω VLQ λ + WUqVYRLVLQGH / /
GRQWO¶pTXDWLRQFDUDFWpULVWLTXH V + L Ω VLQ λ ⋅ V +
/DVROXWLRQJpQpUDOHV¶pFULW
/DVROXWLRQJpQpUDOHV¶pFULW
ξ = H −LΩW VLQ λ & FRV N W + ' VLQ N W &DOFXORQVOHVFRQVWDQWHVFRPSOH[HV &HW'GDQVGHX[W\SHVGHFRQGLWLRQVLQLWLDOHV
- 144 -
J = DGHX[UDFLQHVLPDJLQDLUHVSXUHV / J J V = L −Ω VLQ λ ± N HQSRVDQW N = Ω VLQ λ + WUqVYRLVLQGH / /
ξ = H −LΩW VLQ λ & FRV N W + ' VLQ N W &DOFXORQVOHVFRQVWDQWHVFRPSOH[HV &HW'GDQVGHX[W\SHVGHFRQGLWLRQVLQLWLDOHV
- 144 -
±/DQFHPHQWSDULPSXOVLRQjSDUWLUGHO¶pTXLOLEUH
±/DQFHPHQWSDULPSXOVLRQjSDUWLUGHO¶pTXLOLEUH
3RXU W = ξ = ξ = 9 H Lθ
3RXU W = ξ = ξ = 9 H Lθ
2QHQWLUH & = HW ' =
9 Lθ H G¶RODVROXWLRQ N ξ=
2QHQWLUH & = HW ' =
9 Lθ H G¶RODVROXWLRQ N
9 L θ − ΩW VLQ λ H VLQ N W N
ξ=
9 L θ − ΩW VLQ λ H VLQ N W N
&HWWHIRUPXOHV¶LQWHUSUqWHIDFLOHPHQWHQFRQVLGpUDQWO¶D[HR;G¶DQJOHSRODLUH θ − ΩW VLQ λ SDU UDSSRUW j R[ GDQV OH SODQ KRUL]RQWDO [R\ ILJXUH OH SHQGXOH RVFLOOH GDQV OH SODQ π / WUqVYRLVLQHGH π ;R] DYHFXQPRXYHPHQWKDUPRQLTXHGHSpULRGH 7 = N J
&HWWHIRUPXOHV¶LQWHUSUqWHIDFLOHPHQWHQFRQVLGpUDQWO¶D[HR;G¶DQJOHSRODLUH θ − ΩW VLQ λ SDU UDSSRUW j R[ GDQV OH SODQ KRUL]RQWDO [R\ ILJXUH OH SHQGXOH RVFLOOH GDQV OH SODQ π / WUqVYRLVLQHGH π ;R] DYHFXQPRXYHPHQWKDUPRQLTXHGHSpULRGH 7 = N J
&H SODQ ;R] WRXUQH DXWRXU GH R] DYHF OD YLWHVVH DQJXODLUH FRQVWDQWH −Ω VLQ λ FH TXL FRUUHVSRQGSRXUO¶KpPLVSKqUHQRUGjXQHURWDWLRQDOODQWGHO¶HVWYHUVOHVXG
&H SODQ ;R] WRXUQH DXWRXU GH R] DYHF OD YLWHVVH DQJXODLUH FRQVWDQWH −Ω VLQ λ FH TXL FRUUHVSRQGSRXUO¶KpPLVSKqUHQRUGjXQHURWDWLRQDOODQWGHO¶HVWYHUVOHVXG
)LJXUH
)LJXUH
)LJXUH
)LJXUH
±/DQFHPHQWVDQVYLWHVVHLQLWLDOHSDUpFDUWGHODSRVLWLRQG¶pTXLOLEUH
±/DQFHPHQWVDQVYLWHVVHLQLWLDOHSDUpFDUWGHODSRVLWLRQG¶pTXLOLEUH
3RXU W = ξ = D HLθ ξ =
3RXU W = ξ = D HLθ ξ =
2QHQWLUH & = D HLθ HW ' =
D Ω VLQ λ Lθ L H G¶RODVROXWLRQ N
2QHQWLUH & = D HLθ HW ' =
D Ω VLQ λ Lθ L H G¶RODVROXWLRQ N
D Ω VLQ λ ⎛ ⎞ VLQ N W ⎟ ξ = HL θ − ΩW VLQ λ ⎜ D FRV N W + L N ⎝ ⎠
D Ω VLQ λ ⎛ ⎞ VLQ N W ⎟ ξ = HL θ − ΩW VLQ λ ⎜ D FRV N W + L N ⎝ ⎠
- 145 -
- 145 -
±/DQFHPHQWSDULPSXOVLRQjSDUWLUGHO¶pTXLOLEUH
±/DQFHPHQWSDULPSXOVLRQjSDUWLUGHO¶pTXLOLEUH
3RXU W = ξ = ξ = 9 H Lθ
3RXU W = ξ = ξ = 9 H Lθ
2QHQWLUH & = HW ' =
9 Lθ H G¶RODVROXWLRQ N ξ=
2QHQWLUH & = HW ' =
9 Lθ H G¶RODVROXWLRQ N
9 L θ − ΩW VLQ λ H VLQ N W N
ξ=
9 L θ − ΩW VLQ λ H VLQ N W N
&HWWHIRUPXOHV¶LQWHUSUqWHIDFLOHPHQWHQFRQVLGpUDQWO¶D[HR;G¶DQJOHSRODLUH θ − ΩW VLQ λ SDU UDSSRUW j R[ GDQV OH SODQ KRUL]RQWDO [R\ ILJXUH OH SHQGXOH RVFLOOH GDQV OH SODQ π / WUqVYRLVLQHGH π ;R] DYHFXQPRXYHPHQWKDUPRQLTXHGHSpULRGH 7 = N J
&HWWHIRUPXOHV¶LQWHUSUqWHIDFLOHPHQWHQFRQVLGpUDQWO¶D[HR;G¶DQJOHSRODLUH θ − ΩW VLQ λ SDU UDSSRUW j R[ GDQV OH SODQ KRUL]RQWDO [R\ ILJXUH OH SHQGXOH RVFLOOH GDQV OH SODQ π / WUqVYRLVLQHGH π ;R] DYHFXQPRXYHPHQWKDUPRQLTXHGHSpULRGH 7 = N J
&H SODQ ;R] WRXUQH DXWRXU GH R] DYHF OD YLWHVVH DQJXODLUH FRQVWDQWH −Ω VLQ λ FH TXL FRUUHVSRQGSRXUO¶KpPLVSKqUHQRUGjXQHURWDWLRQDOODQWGHO¶HVWYHUVOHVXG
&H SODQ ;R] WRXUQH DXWRXU GH R] DYHF OD YLWHVVH DQJXODLUH FRQVWDQWH −Ω VLQ λ FH TXL FRUUHVSRQGSRXUO¶KpPLVSKqUHQRUGjXQHURWDWLRQDOODQWGHO¶HVWYHUVOHVXG
)LJXUH
)LJXUH
)LJXUH
)LJXUH
±/DQFHPHQWVDQVYLWHVVHLQLWLDOHSDUpFDUWGHODSRVLWLRQG¶pTXLOLEUH
±/DQFHPHQWVDQVYLWHVVHLQLWLDOHSDUpFDUWGHODSRVLWLRQG¶pTXLOLEUH
3RXU W = ξ = D HLθ ξ =
3RXU W = ξ = D HLθ ξ =
2QHQWLUH & = D HLθ HW ' =
D Ω VLQ λ Lθ L H G¶RODVROXWLRQ N
2QHQWLUH & = D HLθ HW ' =
D Ω VLQ λ Lθ L H G¶RODVROXWLRQ N
D Ω VLQ λ ⎛ ⎞ VLQ N W ⎟ ξ = HL θ − ΩW VLQ λ ⎜ D FRV N W + L N ⎝ ⎠
D Ω VLQ λ ⎛ ⎞ VLQ N W ⎟ ξ = HL θ − ΩW VLQ λ ⎜ D FRV N W + L N ⎝ ⎠
- 145 -
- 145 -
,QWURGXLVRQV FRPPH SUpFpGHPPHQW O¶D[H 2; GX SODQ KRUL]RQWDO G¶DQJOH SRODLUH θ − ΩW VLQ λ HWO¶D[H2<GLUHFWHPHQWSHUSHQGLFXODLUH'DQV {R [\]}3DSRXUFRRUGRQQpHV D Ω VLQ λ ; = D FRV N W < = VLQ N W GDQV;2< ODWUDMHFWRLUHGH3HVWGRQFXQHHOOLSVHGH N D Ω VLQ λ GHPLJUDQGD[HDSRUWpSDU2;HWGHGHPLSHWLWD[H WUqVSHWLWGHYDQWD HOOLSVH N GpFULWHGDQVOHVHQVSRVLWLISRXUO¶KpPLVSKqUHQRUG/HSODQ;2< WRXUQHGHSOXVDXWRXUGH R]DYHFODYLWHVVHDQJXODLUHFRQVWDQWH − Ω VLQ λ GHO¶HVWYHUVOHVXGGDQVO¶KpPLVSKqUHQRUG ILJXUH
,QWURGXLVRQV FRPPH SUpFpGHPPHQW O¶D[H 2; GX SODQ KRUL]RQWDO G¶DQJOH SRODLUH θ − ΩW VLQ λ HWO¶D[H2<GLUHFWHPHQWSHUSHQGLFXODLUH'DQV {R [\]}3DSRXUFRRUGRQQpHV D Ω VLQ λ ; = D FRV N W < = VLQ N W GDQV;2< ODWUDMHFWRLUHGH3HVWGRQFXQHHOOLSVHGH N D Ω VLQ λ GHPLJUDQGD[HDSRUWpSDU2;HWGHGHPLSHWLWD[H WUqVSHWLWGHYDQWD HOOLSVH N GpFULWHGDQVOHVHQVSRVLWLISRXUO¶KpPLVSKqUHQRUG/HSODQ;2< WRXUQHGHSOXVDXWRXUGH R]DYHFODYLWHVVHDQJXODLUHFRQVWDQWH − Ω VLQ λ GHO¶HVWYHUVOHVXGGDQVO¶KpPLVSKqUHQRUG ILJXUH
/¶H[SpULHQFH D pWp UpDOLVpH SDU )RXFDXOW DX 3DQWKpRQ HQ VXLYDQW FH VHFRQG W\SH GH ODQFHPHQW DYHF XQ SHQGXOH GH P GH ORQJXHXU XQ pFDUW LQLWLDO D P OD ODWLWXGH HVW λ = °′ OHGHPLSHWLWD[HpWDLWE PPODGXUpHG¶XQWRXUFRPSOHWDXWRXUGHR]pWDLW GHKPQVHQWHPSVVLGpUDO
/¶H[SpULHQFH D pWp UpDOLVpH SDU )RXFDXOW DX 3DQWKpRQ HQ VXLYDQW FH VHFRQG W\SH GH ODQFHPHQW DYHF XQ SHQGXOH GH P GH ORQJXHXU XQ pFDUW LQLWLDO D P OD ODWLWXGH HVW λ = °′ OHGHPLSHWLWD[HpWDLWE PPODGXUpHG¶XQWRXUFRPSOHWDXWRXUGHR]pWDLW GHKPQVHQWHPSVVLGpUDO
±6758&785(6/,1e$,5(6¬Q''/
±6758&785(6/,1e$,5(6¬Q''/
6XSSRVRQVTX¶XQHVWUXFWXUHjQ''/REpLVVDQWDX[pTXDWLRQVGH/DJUDQJH VDWLVIDVVH DX[TXDWUHFRQGLWLRQVVXLYDQWHV
6XSSRVRQVTX¶XQHVWUXFWXUHjQ''/REpLVVDQWDX[pTXDWLRQVGH/DJUDQJH VDWLVIDVVH DX[TXDWUHFRQGLWLRQVVXLYDQWHV
± O¶pQHUJLH FLQpWLTXH ( F HVW XQH IRUPH TXDGUDWLTXH j FRHIILFLHQWV FRQVWDQWV GHV YLWHVVHV JpQpUDOLVpHV T L VRLW ( F = {T }W [0 ]{T }
± O¶pQHUJLH FLQpWLTXH ( F HVW XQH IRUPH TXDGUDWLTXH j FRHIILFLHQWV FRQVWDQWV GHV YLWHVVHV JpQpUDOLVpHV T L VRLW ( F = {T }W [0 ]{T }
± O¶pQHUJLH SRWHQWLHOOH ( S WRWDOH LQWpULHXUH HW H[WpULHXUH HVW XQH IRUPH TXDGUDWLTXH j
± O¶pQHUJLH SRWHQWLHOOH ( S WRWDOH LQWpULHXUH HW H[WpULHXUH HVW XQH IRUPH TXDGUDWLTXH j
FRHIILFLHQWVFRQVWDQWVGHFRRUGRQQpHVJpQpUDOLVpHV T L VRLW ( S = {T}W [. ]{T}
FRHIILFLHQWVFRQVWDQWVGHFRRUGRQQpHVJpQpUDOLVpHV T L VRLW ( S =
W {T} [. ]{T}
± ODIRQFWLRQGHGLVVLSDWLRQGH5D\OHLJK5HVWXQHIRUPHTXDGUDWLTXHjFRHIILFLHQWVFRQVWDQWV GHV T L VRLW 5 = {T }W [&]{T }
± ODIRQFWLRQGHGLVVLSDWLRQGH5D\OHLJK5HVWXQHIRUPHTXDGUDWLTXHjFRHIILFLHQWVFRQVWDQWV GHV T L VRLW 5 = {T }W [&]{T }
± OHV IRUFHV JpQpUDOLVpHV 4L ILJXUDQW DX[ VHFRQGV PHPEUHV GH VRQW GHV IRUFHV H[FLWDWULFHV F¶HVW j GLUH GHV IRUFHV GRQQpHV H[SOLFLWHPHQW HQ IRQFWLRQ GX WHPSV RQ OHV QRWHUD )L HWO¶RQDXUDGRQF {4}= {)}
± OHV IRUFHV JpQpUDOLVpHV 4L ILJXUDQW DX[ VHFRQGV PHPEUHV GH VRQW GHV IRUFHV H[FLWDWULFHV F¶HVW j GLUH GHV IRUFHV GRQQpHV H[SOLFLWHPHQW HQ IRQFWLRQ GX WHPSV RQ OHV QRWHUD )L HWO¶RQDXUDGRQF {4}= {)}
'DQVFHFDVOHVpTXDWLRQVGH/DJUDQJH V¶pFULYHQWVRXVIRUPHPDWULFLHOOH
'DQVFHFDVOHVpTXDWLRQVGH/DJUDQJH V¶pFULYHQWVRXVIRUPHPDWULFLHOOH
[0]{T}+ [&]{T }+ [. ]{T}= {)}
[0]{T}+ [&]{T }+ [. ]{T}= {)}
'DQVFHWWHpTXDWLRQOHVPDWULFHVXQLFRORQQHVjQOLJQHV {T} {T } {T}VHQRPPHQWPDWULFHVGH SRVLWLRQ GH YLWHVVH G¶DFFpOpUDWLRQ UHVS OHV PDWULFHV FDUUpHV V\PpWULTXHV Q[Q [0 ] [&] [. ] VH QRPPHQW PDWULFHV GH PDVVH RX G¶LQHUWLH G¶DPRUWLVVHPHQW GH ULJLGLWp RX GH UDLGHXU {)}GpVLJQHODPDWULFHFRORQQHGHVIRUFHVH[FLWDWULFHV
'DQVFHWWHpTXDWLRQOHVPDWULFHVXQLFRORQQHVjQOLJQHV {T} {T } {T}VHQRPPHQWPDWULFHVGH SRVLWLRQ GH YLWHVVH G¶DFFpOpUDWLRQ UHVS OHV PDWULFHV FDUUpHV V\PpWULTXHV Q[Q [0 ] [&] [. ] VH QRPPHQW PDWULFHV GH PDVVH RX G¶LQHUWLH G¶DPRUWLVVHPHQW GH ULJLGLWp RX GH UDLGHXU {)}GpVLJQHODPDWULFHFRORQQHGHVIRUFHVH[FLWDWULFHV
- 146 -
- 146 -
,QWURGXLVRQV FRPPH SUpFpGHPPHQW O¶D[H 2; GX SODQ KRUL]RQWDO G¶DQJOH SRODLUH θ − ΩW VLQ λ HWO¶D[H2<GLUHFWHPHQWSHUSHQGLFXODLUH'DQV {R [\]}3DSRXUFRRUGRQQpHV D Ω VLQ λ ; = D FRV N W < = VLQ N W GDQV;2< ODWUDMHFWRLUHGH3HVWGRQFXQHHOOLSVHGH N D Ω VLQ λ GHPLJUDQGD[HDSRUWpSDU2;HWGHGHPLSHWLWD[H WUqVSHWLWGHYDQWD HOOLSVH N GpFULWHGDQVOHVHQVSRVLWLISRXUO¶KpPLVSKqUHQRUG/HSODQ;2< WRXUQHGHSOXVDXWRXUGH R]DYHFODYLWHVVHDQJXODLUHFRQVWDQWH − Ω VLQ λ GHO¶HVWYHUVOHVXGGDQVO¶KpPLVSKqUHQRUG ILJXUH
,QWURGXLVRQV FRPPH SUpFpGHPPHQW O¶D[H 2; GX SODQ KRUL]RQWDO G¶DQJOH SRODLUH θ − ΩW VLQ λ HWO¶D[H2<GLUHFWHPHQWSHUSHQGLFXODLUH'DQV {R [\]}3DSRXUFRRUGRQQpHV D Ω VLQ λ ; = D FRV N W < = VLQ N W GDQV;2< ODWUDMHFWRLUHGH3HVWGRQFXQHHOOLSVHGH N D Ω VLQ λ GHPLJUDQGD[HDSRUWpSDU2;HWGHGHPLSHWLWD[H WUqVSHWLWGHYDQWD HOOLSVH N GpFULWHGDQVOHVHQVSRVLWLISRXUO¶KpPLVSKqUHQRUG/HSODQ;2< WRXUQHGHSOXVDXWRXUGH R]DYHFODYLWHVVHDQJXODLUHFRQVWDQWH − Ω VLQ λ GHO¶HVWYHUVOHVXGGDQVO¶KpPLVSKqUHQRUG ILJXUH
/¶H[SpULHQFH D pWp UpDOLVpH SDU )RXFDXOW DX 3DQWKpRQ HQ VXLYDQW FH VHFRQG W\SH GH ODQFHPHQW DYHF XQ SHQGXOH GH P GH ORQJXHXU XQ pFDUW LQLWLDO D P OD ODWLWXGH HVW λ = °′ OHGHPLSHWLWD[HpWDLWE PPODGXUpHG¶XQWRXUFRPSOHWDXWRXUGHR]pWDLW GHKPQVHQWHPSVVLGpUDO
/¶H[SpULHQFH D pWp UpDOLVpH SDU )RXFDXOW DX 3DQWKpRQ HQ VXLYDQW FH VHFRQG W\SH GH ODQFHPHQW DYHF XQ SHQGXOH GH P GH ORQJXHXU XQ pFDUW LQLWLDO D P OD ODWLWXGH HVW λ = °′ OHGHPLSHWLWD[HpWDLWE PPODGXUpHG¶XQWRXUFRPSOHWDXWRXUGHR]pWDLW GHKPQVHQWHPSVVLGpUDO
±6758&785(6/,1e$,5(6¬Q''/
±6758&785(6/,1e$,5(6¬Q''/
6XSSRVRQVTX¶XQHVWUXFWXUHjQ''/REpLVVDQWDX[pTXDWLRQVGH/DJUDQJH VDWLVIDVVH DX[TXDWUHFRQGLWLRQVVXLYDQWHV
6XSSRVRQVTX¶XQHVWUXFWXUHjQ''/REpLVVDQWDX[pTXDWLRQVGH/DJUDQJH VDWLVIDVVH DX[TXDWUHFRQGLWLRQVVXLYDQWHV
± O¶pQHUJLH FLQpWLTXH ( F HVW XQH IRUPH TXDGUDWLTXH j FRHIILFLHQWV FRQVWDQWV GHV YLWHVVHV JpQpUDOLVpHV T L VRLW ( F = {T }W [0 ]{T }
± O¶pQHUJLH FLQpWLTXH ( F HVW XQH IRUPH TXDGUDWLTXH j FRHIILFLHQWV FRQVWDQWV GHV YLWHVVHV JpQpUDOLVpHV T L VRLW ( F = {T }W [0 ]{T }
± O¶pQHUJLH SRWHQWLHOOH ( S WRWDOH LQWpULHXUH HW H[WpULHXUH HVW XQH IRUPH TXDGUDWLTXH j
± O¶pQHUJLH SRWHQWLHOOH ( S WRWDOH LQWpULHXUH HW H[WpULHXUH HVW XQH IRUPH TXDGUDWLTXH j
FRHIILFLHQWVFRQVWDQWVGHFRRUGRQQpHVJpQpUDOLVpHV T L VRLW ( S =
W {T} [. ]{T}
FRHIILFLHQWVFRQVWDQWVGHFRRUGRQQpHVJpQpUDOLVpHV T L VRLW ( S =
W {T} [. ]{T}
± ODIRQFWLRQGHGLVVLSDWLRQGH5D\OHLJK5HVWXQHIRUPHTXDGUDWLTXHjFRHIILFLHQWVFRQVWDQWV GHV T L VRLW 5 = {T }W [&]{T }
± ODIRQFWLRQGHGLVVLSDWLRQGH5D\OHLJK5HVWXQHIRUPHTXDGUDWLTXHjFRHIILFLHQWVFRQVWDQWV GHV T L VRLW 5 = {T }W [&]{T }
± OHV IRUFHV JpQpUDOLVpHV 4L ILJXUDQW DX[ VHFRQGV PHPEUHV GH VRQW GHV IRUFHV H[FLWDWULFHV F¶HVW j GLUH GHV IRUFHV GRQQpHV H[SOLFLWHPHQW HQ IRQFWLRQ GX WHPSV RQ OHV QRWHUD )L HWO¶RQDXUDGRQF {4}= {)}
± OHV IRUFHV JpQpUDOLVpHV 4L ILJXUDQW DX[ VHFRQGV PHPEUHV GH VRQW GHV IRUFHV H[FLWDWULFHV F¶HVW j GLUH GHV IRUFHV GRQQpHV H[SOLFLWHPHQW HQ IRQFWLRQ GX WHPSV RQ OHV QRWHUD )L HWO¶RQDXUDGRQF {4}= {)}
'DQVFHFDVOHVpTXDWLRQVGH/DJUDQJH V¶pFULYHQWVRXVIRUPHPDWULFLHOOH
'DQVFHFDVOHVpTXDWLRQVGH/DJUDQJH V¶pFULYHQWVRXVIRUPHPDWULFLHOOH
[0]{T}+ [&]{T }+ [. ]{T}= {)}
[0]{T}+ [&]{T }+ [. ]{T}= {)}
'DQVFHWWHpTXDWLRQOHVPDWULFHVXQLFRORQQHVjQOLJQHV {T} {T } {T}VHQRPPHQWPDWULFHVGH SRVLWLRQ GH YLWHVVH G¶DFFpOpUDWLRQ UHVS OHV PDWULFHV FDUUpHV V\PpWULTXHV Q[Q [0 ] [&] [. ] VH QRPPHQW PDWULFHV GH PDVVH RX G¶LQHUWLH G¶DPRUWLVVHPHQW GH ULJLGLWp RX GH UDLGHXU {)}GpVLJQHODPDWULFHFRORQQHGHVIRUFHVH[FLWDWULFHV
'DQVFHWWHpTXDWLRQOHVPDWULFHVXQLFRORQQHVjQOLJQHV {T} {T } {T}VHQRPPHQWPDWULFHVGH SRVLWLRQ GH YLWHVVH G¶DFFpOpUDWLRQ UHVS OHV PDWULFHV FDUUpHV V\PpWULTXHV Q[Q [0 ] [&] [. ] VH QRPPHQW PDWULFHV GH PDVVH RX G¶LQHUWLH G¶DPRUWLVVHPHQW GH ULJLGLWp RX GH UDLGHXU {)}GpVLJQHODPDWULFHFRORQQHGHVIRUFHVH[FLWDWULFHV
- 146 -
- 146 -
5HPDUTXHSDUGpILQLWLRQGHO¶pQHUJLHFLQpWLTXH Σ QpFHVVDLUHPHQWGpILQLHSRVLWLYH
P 9 ODIRUPHTXDGUDWLTXH ( F HVW
5HPDUTXHSDUGpILQLWLRQGHO¶pQHUJLHFLQpWLTXH Σ QpFHVVDLUHPHQWGpILQLHSRVLWLYH
P 9 ODIRUPHTXDGUDWLTXH ( F HVW
5HPDUTXH OHV PRXYHPHQWV GH OD VWUXFWXUH pWDQW FRQVLGpUpV DXWRXU G¶XQH FRQILJXUDWLRQ G¶pTXLOLEUH VWDEOH OD IRUPH TXDGUDWLTXH ( S HVW QpFHVVDLUHPHQW GpILQLH SRVLWLYH G¶DSUqV OH
5HPDUTXH OHV PRXYHPHQWV GH OD VWUXFWXUH pWDQW FRQVLGpUpV DXWRXU G¶XQH FRQILJXUDWLRQ G¶pTXLOLEUH VWDEOH OD IRUPH TXDGUDWLTXH ( S HVW QpFHVVDLUHPHQW GpILQLH SRVLWLYH G¶DSUqV OH
WKpRUqPHGH/HMHXQH'LULFKOHWSRXU T = ( S = HVWXQPLQLPXPVWULFW
WKpRUqPHGH/HMHXQH'LULFKOHWSRXU T = ( S = HVWXQPLQLPXPVWULFW
'pILQLWLRQ
'pILQLWLRQ
(QG\QDPLTXHRQDSSHOOHVWUXFWXUHOLQpDLUHjQ''/XQHVWUXFWXUHGRQWOHQSDUDPqWUHVGH FRQILJXUDWLRQ [[ REpLVVHQW DX V\VWqPH GLIIpUHQWLHO GX VHFRQG RUGUH OLQpDLUH j FRHIILFLHQWV FRQVWDQWV &HUWDLQHV VWUXFWXUHV VDWLVIRQW ULJRXUHXVHPHQW j FHV GpILQLWLRQV GH OLQpDULWpODSOXSDUWQHVRQWSDVULJRXUHXVHPHQWOLQpDLUHVPDLVVRQWOLQpDULVDEOHVPR\HQQDQW FHUWDLQHVK\SRWKqVHVFRPPHO¶K\SRWKqVHGHVSHWLWVPRXYHPHQWVF¶HVWOHFDVGXSHQGXOHGH )RXFDXOWWUDLWpSOXVKDXW
(QG\QDPLTXHRQDSSHOOHVWUXFWXUHOLQpDLUHjQ''/XQHVWUXFWXUHGRQWOHQSDUDPqWUHVGH FRQILJXUDWLRQ [[ REpLVVHQW DX V\VWqPH GLIIpUHQWLHO GX VHFRQG RUGUH OLQpDLUH j FRHIILFLHQWV FRQVWDQWV &HUWDLQHV VWUXFWXUHV VDWLVIRQW ULJRXUHXVHPHQW j FHV GpILQLWLRQV GH OLQpDULWpODSOXSDUWQHVRQWSDVULJRXUHXVHPHQWOLQpDLUHVPDLVVRQWOLQpDULVDEOHVPR\HQQDQW FHUWDLQHVK\SRWKqVHVFRPPHO¶K\SRWKqVHGHVSHWLWVPRXYHPHQWVF¶HVWOHFDVGXSHQGXOHGH )RXFDXOWWUDLWpSOXVKDXW
&RPPH GDQV OH FDV GHV VWUXFWXUHV j ''/ RQ SHXW FODVVHU XQH VWUXFWXUH GDQV O¶XQH GHV TXDWUHFDVHVGXWDEOHDXVXLYDQW
&RPPH GDQV OH FDV GHV VWUXFWXUHV j ''/ RQ SHXW FODVVHU XQH VWUXFWXUH GDQV O¶XQH GHV TXDWUHFDVHVGXWDEOHDXVXLYDQW
6WUXFWXUH
FRQVHUYDWLYH
GLVVLSDWLYH
/LEUH
([FLWpH
6WUXFWXUH
FRQVHUYDWLYH
GLVVLSDWLYH
/LEUH
([FLWpH
1RXV DOORQV pWXGLHU PDLQWHQDQW VXFFHVVLYHPHQW FKDFXQ GH FHV TXDWUH FDV VDFKDQW TXH OD VWUXFWXUHHVWGLWH
1RXV DOORQV pWXGLHU PDLQWHQDQW VXFFHVVLYHPHQW FKDFXQ GH FHV TXDWUH FDV VDFKDQW TXH OD VWUXFWXUHHVWGLWH
± OLEUHVL {)}= H[FLWpHVL {)}≠ {}
± OLEUHVL {)}= H[FLWpHVL {)}≠ {}
± FRQVHUYDWLYHVL [&] = GLVVLSDWLYHVL [&] ≠ []
± FRQVHUYDWLYHVL [&] = GLVVLSDWLYHVL [&] ≠ []
±6758&785(/,1e$,5(&216(59$7,9(/,%5(
±6758&785(/,1e$,5(&216(59$7,9(/,%5(
(OOHREpLWjO¶pTXDWLRQGLIIpUHQWLHOOHPDWULFLHOOH
(OOHREpLWjO¶pTXDWLRQGLIIpUHQWLHOOHPDWULFLHOOH
[0]{T}+ [. ]{T}= {}
[0]{T}+ [. ]{T}= {}
3RXUODUpVRXGUHUDSSHORQV
3RXUODUpVRXGUHUDSSHORQV
± G¶XQH SDUW TXH WRXWH IRUPH TXDGUDWLTXH HVW GLDJRQDOLVDEOH G¶XQH LQILQLWp GH IDoRQV SDU FKDQJHPHQWGHEDVH
± G¶XQH SDUW TXH WRXWH IRUPH TXDGUDWLTXH HVW GLDJRQDOLVDEOH G¶XQH LQILQLWp GH IDoRQV SDU FKDQJHPHQWGHEDVH
± G¶DXWUH SDUW TX¶pWDQW GRQQp GHX[ IRUPHV TXDGUDWLTXHV GDQV OH FDV SUpVHQW ( F HW ( S LO
± G¶DXWUH SDUW TX¶pWDQW GRQQp GHX[ IRUPHV TXDGUDWLTXHV GDQV OH FDV SUpVHQW ( F HW ( S LO
H[LVWHWRXMRXUVDXPRLQVXQFKDQJHPHQWGHEDVHTXLOHVGLDJRQDOLVHWRXWHVGHX[
H[LVWHWRXMRXUVDXPRLQVXQFKDQJHPHQWGHEDVHTXLOHVGLDJRQDOLVHWRXWHVGHX[
- 147 -
5HPDUTXHSDUGpILQLWLRQGHO¶pQHUJLHFLQpWLTXH Σ QpFHVVDLUHPHQWGpILQLHSRVLWLYH
- 147 -
P 9 ODIRUPHTXDGUDWLTXH ( F HVW
5HPDUTXHSDUGpILQLWLRQGHO¶pQHUJLHFLQpWLTXH Σ QpFHVVDLUHPHQWGpILQLHSRVLWLYH
P 9 ODIRUPHTXDGUDWLTXH ( F HVW
5HPDUTXH OHV PRXYHPHQWV GH OD VWUXFWXUH pWDQW FRQVLGpUpV DXWRXU G¶XQH FRQILJXUDWLRQ G¶pTXLOLEUH VWDEOH OD IRUPH TXDGUDWLTXH ( S HVW QpFHVVDLUHPHQW GpILQLH SRVLWLYH G¶DSUqV OH
5HPDUTXH OHV PRXYHPHQWV GH OD VWUXFWXUH pWDQW FRQVLGpUpV DXWRXU G¶XQH FRQILJXUDWLRQ G¶pTXLOLEUH VWDEOH OD IRUPH TXDGUDWLTXH ( S HVW QpFHVVDLUHPHQW GpILQLH SRVLWLYH G¶DSUqV OH
WKpRUqPHGH/HMHXQH'LULFKOHWSRXU T = ( S = HVWXQPLQLPXPVWULFW
WKpRUqPHGH/HMHXQH'LULFKOHWSRXU T = ( S = HVWXQPLQLPXPVWULFW
'pILQLWLRQ
'pILQLWLRQ
(QG\QDPLTXHRQDSSHOOHVWUXFWXUHOLQpDLUHjQ''/XQHVWUXFWXUHGRQWOHQSDUDPqWUHVGH FRQILJXUDWLRQ [[ REpLVVHQW DX V\VWqPH GLIIpUHQWLHO GX VHFRQG RUGUH OLQpDLUH j FRHIILFLHQWV FRQVWDQWV &HUWDLQHV VWUXFWXUHV VDWLVIRQW ULJRXUHXVHPHQW j FHV GpILQLWLRQV GH OLQpDULWpODSOXSDUWQHVRQWSDVULJRXUHXVHPHQWOLQpDLUHVPDLVVRQWOLQpDULVDEOHVPR\HQQDQW FHUWDLQHVK\SRWKqVHVFRPPHO¶K\SRWKqVHGHVSHWLWVPRXYHPHQWVF¶HVWOHFDVGXSHQGXOHGH )RXFDXOWWUDLWpSOXVKDXW
(QG\QDPLTXHRQDSSHOOHVWUXFWXUHOLQpDLUHjQ''/XQHVWUXFWXUHGRQWOHQSDUDPqWUHVGH FRQILJXUDWLRQ [[ REpLVVHQW DX V\VWqPH GLIIpUHQWLHO GX VHFRQG RUGUH OLQpDLUH j FRHIILFLHQWV FRQVWDQWV &HUWDLQHV VWUXFWXUHV VDWLVIRQW ULJRXUHXVHPHQW j FHV GpILQLWLRQV GH OLQpDULWpODSOXSDUWQHVRQWSDVULJRXUHXVHPHQWOLQpDLUHVPDLVVRQWOLQpDULVDEOHVPR\HQQDQW FHUWDLQHVK\SRWKqVHVFRPPHO¶K\SRWKqVHGHVSHWLWVPRXYHPHQWVF¶HVWOHFDVGXSHQGXOHGH )RXFDXOWWUDLWpSOXVKDXW
&RPPH GDQV OH FDV GHV VWUXFWXUHV j ''/ RQ SHXW FODVVHU XQH VWUXFWXUH GDQV O¶XQH GHV TXDWUHFDVHVGXWDEOHDXVXLYDQW
&RPPH GDQV OH FDV GHV VWUXFWXUHV j ''/ RQ SHXW FODVVHU XQH VWUXFWXUH GDQV O¶XQH GHV TXDWUHFDVHVGXWDEOHDXVXLYDQW
6WUXFWXUH
FRQVHUYDWLYH
GLVVLSDWLYH
/LEUH
([FLWpH
6WUXFWXUH
FRQVHUYDWLYH
GLVVLSDWLYH
/LEUH
([FLWpH
1RXV DOORQV pWXGLHU PDLQWHQDQW VXFFHVVLYHPHQW FKDFXQ GH FHV TXDWUH FDV VDFKDQW TXH OD VWUXFWXUHHVWGLWH
1RXV DOORQV pWXGLHU PDLQWHQDQW VXFFHVVLYHPHQW FKDFXQ GH FHV TXDWUH FDV VDFKDQW TXH OD VWUXFWXUHHVWGLWH
± OLEUHVL {)}= H[FLWpHVL {)}≠ {}
± OLEUHVL {)}= H[FLWpHVL {)}≠ {}
± FRQVHUYDWLYHVL [&] = GLVVLSDWLYHVL [&] ≠ []
± FRQVHUYDWLYHVL [&] = GLVVLSDWLYHVL [&] ≠ []
±6758&785(/,1e$,5(&216(59$7,9(/,%5(
±6758&785(/,1e$,5(&216(59$7,9(/,%5(
(OOHREpLWjO¶pTXDWLRQGLIIpUHQWLHOOHPDWULFLHOOH
(OOHREpLWjO¶pTXDWLRQGLIIpUHQWLHOOHPDWULFLHOOH
[0]{T}+ [. ]{T}= {}
[0]{T}+ [. ]{T}= {}
3RXUODUpVRXGUHUDSSHORQV
3RXUODUpVRXGUHUDSSHORQV
± G¶XQH SDUW TXH WRXWH IRUPH TXDGUDWLTXH HVW GLDJRQDOLVDEOH G¶XQH LQILQLWp GH IDoRQV SDU FKDQJHPHQWGHEDVH
± G¶XQH SDUW TXH WRXWH IRUPH TXDGUDWLTXH HVW GLDJRQDOLVDEOH G¶XQH LQILQLWp GH IDoRQV SDU FKDQJHPHQWGHEDVH
± G¶DXWUH SDUW TX¶pWDQW GRQQp GHX[ IRUPHV TXDGUDWLTXHV GDQV OH FDV SUpVHQW ( F HW ( S LO
± G¶DXWUH SDUW TX¶pWDQW GRQQp GHX[ IRUPHV TXDGUDWLTXHV GDQV OH FDV SUpVHQW ( F HW ( S LO
H[LVWHWRXMRXUVDXPRLQVXQFKDQJHPHQWGHEDVHTXLOHVGLDJRQDOLVHWRXWHVGHX[
- 147 -
H[LVWHWRXMRXUVDXPRLQVXQFKDQJHPHQWGHEDVHTXLOHVGLDJRQDOLVHWRXWHVGHX[
- 147 -
6RLW [3 ]ODPDWULFHGHSDVVDJHG¶XQWHOFKDQJHPHQWGHEDVH2QDDLQVLOHVIRUPXOHV
6RLW [3 ]ODPDWULFHGHSDVVDJHG¶XQWHOFKDQJHPHQWGHEDVH2QDDLQVLOHVIRUPXOHV
{T}= [3]{T}HW {T}= [3]− {T}
[0 ]= [ 3 W ]
[. ]= [ 3 W ]
⎡P ⎢ [0 ] [3] = ⎢⎢ ⎢2 ⎣
⎡ N ⎢ [. ] [3] = ⎢ ⎢ ⎢2 ⎣
{T}= [3]{T}HW {T}= [3]− {T}
2⎤
⎥ ⎥ P ⎥ % PQ ⎥ ⎦
2⎤
⎥ ⎥ N ⎥ % NQ ⎥ ⎦
[0 ]= [ 3 W ]
[. ]= [ 3 W ]
⎡P ⎢ [0 ] [3] = ⎢⎢ ⎢2 ⎣
⎡ N ⎢ [. ] [3] = ⎢ ⎢ ⎢2 ⎣
2⎤
P %
⎥ ⎥ ⎥ PQ ⎥ ⎦
2⎤
N
⎥ ⎥ ⎥ % NQ ⎥ ⎦
/HVSDUDPqWUHVVXUOLJQpVVRQWUHODWLIVjODQRXYHOOHEDVHGLWHEDVHSULQFLSDOHGHODVWUXFWXUH RXEDVHSURSUHRXHQFRUHEDVHQRUPDOH
/HVSDUDPqWUHVVXUOLJQpVVRQWUHODWLIVjODQRXYHOOHEDVHGLWHEDVHSULQFLSDOHGHODVWUXFWXUH RXEDVHSURSUHRXHQFRUHEDVHQRUPDOH
/HVIRUPHVTXDGUDWLTXHV ( F HW ( S pWDQWGpILQLHVSRVLWLYHVWRXVOHVFRHIILFLHQWV PL HW N L VRQW
/HVIRUPHVTXDGUDWLTXHV ( F HW ( S pWDQWGpILQLHVSRVLWLYHVWRXVOHVFRHIILFLHQWV PL HW N L VRQW
VWULFWHPHQWSRVLWLIV
VWULFWHPHQWSRVLWLIV
'DQVODEDVHSULQFLSDOHO¶pTXDWLRQ V¶pFULW
'DQVODEDVHSULQFLSDOHO¶pTXDWLRQ V¶pFULW
[0 ]{T}+ [. ]{T}= {} − RXHQFRUHHQSUpPXOWLSOLDQWOHVGHX[PHPEUHVSDU [0 ] {T}+ [0 ]−⋅ [. ]{T}= {}
DYHF
/HV FRHIILFLHQWV ωL =
⎡ω ⎤ ⎥ ⎢ ⎢ ⎥ − [0 ] ⋅ [. ]= ⎢ 2 ⎥ = Ω ω ⎢ ⎥ % ⎢ ⎥ ⎢ 2 ωQ ⎥ ⎣ ⎦ NL VH QRPPHQW SXOVDWLRQV SURSUHV GH OD VWUXFWXUH RX SXOVDWLRQV PL
[ ]
[0 ]{T}+ [. ]{T}= {} − RXHQFRUHHQSUpPXOWLSOLDQWOHVGHX[PHPEUHVSDU [0 ] {T}+ [0 ]−⋅ [. ]{T}= {}
DYHF
/HV FRHIILFLHQWV ωL =
⎡ω ⎤ ⎥ ⎢ ⎢ ⎥ − [0 ] ⋅ [. ]= ⎢ 2 ⎥ = Ω ω ⎢ ⎥ % ⎢ ⎥ ⎢ 2 ωQ ⎥ ⎣ ⎦ NL VH QRPPHQW SXOVDWLRQV SURSUHV GH OD VWUXFWXUH RX SXOVDWLRQV PL
[ ]
QDWXUHOOHV
QDWXUHOOHV
3DUFHFKDQJHPHQWGHEDVHRQDGpFRXSOpOHVQpTXDWLRQVVFDODLUHV SXLVTX¶RQDREWHQX OHVQpTXDWLRQVGLIIpUHQWLHOOHVLQWpJUDEOHVVpSDUpPHQW
3DUFHFKDQJHPHQWGHEDVHRQDGpFRXSOpOHVQpTXDWLRQVVFDODLUHV SXLVTX¶RQDREWHQX OHVQpTXDWLRQVGLIIpUHQWLHOOHVLQWpJUDEOHVVpSDUpPHQW
TL + ωL TL = L = ! Q
/HVVROXWLRQVJpQpUDOHVV¶pFULYHQW TL W = D L FRV ωL W + ϕL = $ L FRV ωL W + %L VLQ ωL W
TL + ωL TL = L = ! Q
/HVVROXWLRQVJpQpUDOHVV¶pFULYHQW TL W = D L FRV ωL W + ϕL = $ L FRV ωL W + %L VLQ ωL W
/HV FRQVWDQWHV G¶LQWpJUDWLRQ D L ϕL RX $ L %L VH GpWHUPLQHQW j O¶DLGH GHV FRQGLWLRQV LQLWLDOHVGHSRVLWLRQVHWYLWHVVHV
/HV FRQVWDQWHV G¶LQWpJUDWLRQ D L ϕL RX $ L %L VH GpWHUPLQHQW j O¶DLGH GHV FRQGLWLRQV LQLWLDOHVGHSRVLWLRQVHWYLWHVVHV
- 148 -
- 148 -
6RLW [3 ]ODPDWULFHGHSDVVDJHG¶XQWHOFKDQJHPHQWGHEDVH2QDDLQVLOHVIRUPXOHV
6RLW [3 ]ODPDWULFHGHSDVVDJHG¶XQWHOFKDQJHPHQWGHEDVH2QDDLQVLOHVIRUPXOHV
{T}= [3]{T}HW {T}= [3]− {T}
[0 ]= [ 3 W ]
[. ]= [ 3 W ]
⎡P ⎢ [0 ] [3] = ⎢⎢ ⎢2 ⎣
⎡ N ⎢ [. ] [3] = ⎢ ⎢ ⎢2 ⎣
{T}= [3]{T}HW {T}= [3]− {T}
2⎤
⎥ ⎥ P ⎥ % PQ ⎥ ⎦
2⎤
⎥ ⎥ N ⎥ % NQ ⎥ ⎦
[0 ]= [ 3 W ]
[. ]= [ 3 W ]
⎡P ⎢ [0 ] [3] = ⎢⎢ ⎢2 ⎣
⎡ N ⎢ [. ] [3] = ⎢ ⎢ ⎢2 ⎣
2⎤
P %
⎥ ⎥ ⎥ PQ ⎥ ⎦
2⎤
N
⎥ ⎥ ⎥ % NQ ⎥ ⎦
/HVSDUDPqWUHVVXUOLJQpVVRQWUHODWLIVjODQRXYHOOHEDVHGLWHEDVHSULQFLSDOHGHODVWUXFWXUH RXEDVHSURSUHRXHQFRUHEDVHQRUPDOH
/HVSDUDPqWUHVVXUOLJQpVVRQWUHODWLIVjODQRXYHOOHEDVHGLWHEDVHSULQFLSDOHGHODVWUXFWXUH RXEDVHSURSUHRXHQFRUHEDVHQRUPDOH
/HVIRUPHVTXDGUDWLTXHV ( F HW ( S pWDQWGpILQLHVSRVLWLYHVWRXVOHVFRHIILFLHQWV PL HW N L VRQW
/HVIRUPHVTXDGUDWLTXHV ( F HW ( S pWDQWGpILQLHVSRVLWLYHVWRXVOHVFRHIILFLHQWV PL HW N L VRQW
VWULFWHPHQWSRVLWLIV
VWULFWHPHQWSRVLWLIV
'DQVODEDVHSULQFLSDOHO¶pTXDWLRQ V¶pFULW
'DQVODEDVHSULQFLSDOHO¶pTXDWLRQ V¶pFULW
[0 ]{T}+ [. ]{T}= {} − RXHQFRUHHQSUpPXOWLSOLDQWOHVGHX[PHPEUHVSDU [0 ] {T}+ [0 ]−⋅ [. ]{T}= {}
DYHF
/HV FRHIILFLHQWV ωL =
⎡ω ⎤ ⎢ ⎥ ⎢ ⎥ − [0 ] ⋅ [. ]= ⎢ 2 ⎥ = Ω ω ⎢ ⎥ % ⎢ ⎥ ⎢ 2 ωQ ⎥ ⎣ ⎦ NL VH QRPPHQW SXOVDWLRQV SURSUHV GH OD VWUXFWXUH RX SXOVDWLRQV PL
[ ]
[0 ]{T}+ [. ]{T}= {} − RXHQFRUHHQSUpPXOWLSOLDQWOHVGHX[PHPEUHVSDU [0 ] {T}+ [0 ]−⋅ [. ]{T}= {}
DYHF
/HV FRHIILFLHQWV ωL =
⎡ω ⎤ ⎢ ⎥ ⎢ ⎥ − [0 ] ⋅ [. ]= ⎢ 2 ⎥ = Ω ω ⎢ ⎥ % ⎢ ⎥ ⎢ 2 ωQ ⎥ ⎣ ⎦ NL VH QRPPHQW SXOVDWLRQV SURSUHV GH OD VWUXFWXUH RX SXOVDWLRQV PL
[ ]
QDWXUHOOHV
QDWXUHOOHV
3DUFHFKDQJHPHQWGHEDVHRQDGpFRXSOpOHVQpTXDWLRQVVFDODLUHV SXLVTX¶RQDREWHQX OHVQpTXDWLRQVGLIIpUHQWLHOOHVLQWpJUDEOHVVpSDUpPHQW
3DUFHFKDQJHPHQWGHEDVHRQDGpFRXSOpOHVQpTXDWLRQVVFDODLUHV SXLVTX¶RQDREWHQX OHVQpTXDWLRQVGLIIpUHQWLHOOHVLQWpJUDEOHVVpSDUpPHQW
TL + ωL TL = L = ! Q
/HVVROXWLRQVJpQpUDOHVV¶pFULYHQW TL W = D L FRV ωL W + ϕL = $ L FRV ωL W + %L VLQ ωL W
TL + ωL TL = L = ! Q
/HVVROXWLRQVJpQpUDOHVV¶pFULYHQW TL W = D L FRV ωL W + ϕL = $ L FRV ωL W + %L VLQ ωL W
/HV FRQVWDQWHV G¶LQWpJUDWLRQ D L ϕL RX $ L %L VH GpWHUPLQHQW j O¶DLGH GHV FRQGLWLRQV LQLWLDOHVGHSRVLWLRQVHWYLWHVVHV
/HV FRQVWDQWHV G¶LQWpJUDWLRQ D L ϕL RX $ L %L VH GpWHUPLQHQW j O¶DLGH GHV FRQGLWLRQV LQLWLDOHVGHSRVLWLRQVHWYLWHVVHV
- 148 -
- 148 -
5(0$548(6
5(0$548(6
±&KDQJHPHQWGHEDVH
±&KDQJHPHQWGHEDVH
/HVIRUPXOHV SHUPHWWHQWGHSDVVHUGHODEDVHLQLWLDOHjODEDVHQRUPDOHRQQRWHTXHOHV PDWULFHV [0 ]HW [0 ]VRQWFRQJUXHQWHVHWGHPrPH [. ]HW [. ]RQDSDUFRQWUH
/HVIRUPXOHV SHUPHWWHQWGHSDVVHUGHODEDVHLQLWLDOHjODEDVHQRUPDOHRQQRWHTXHOHV PDWULFHV [0 ]HW [0 ]VRQWFRQJUXHQWHVHWGHPrPH [. ]HW [. ]RQDSDUFRQWUH
[ Ω ]= [0 ]
−
/HVPDWULFHV [0 ]
−
[ Ω ]= [0 ]
[. ]= [3]− [0]− [. ] [3]
−
/HVPDWULFHV [0 ]
[. ]HW [0]− [. ]VRQWGRQFVHPEODEOHV
−
[. ]= [3]− [0]− [. ] [3]
[. ]HW [0]− [. ]VRQWGRQFVHPEODEOHV
±9HFWHXUVSURSUHVHWYDOHXUVSURSUHV
±9HFWHXUVSURSUHVHWYDOHXUVSURSUHV
%LHQTXH [0 ] [0 ]− HW [. ]VRLHQWV\PpWULTXHV [0 ]− [. ]Q¶HVWSDVHQJpQpUDOXQHPDWULFH V\PpWULTXH,OHVWUHPDUTXDEOHTX¶HOOHVRLWGLDJRQDOLVDEOHGDQVXQHEDVHGHYHFWHXUVSURSUHV HWTXHVHQYDOHXUVSURSUHVQRWpHV ω L VRLHQWWRXWHVUpHOOHVVWULFWHPHQWSRVLWLYHV
%LHQTXH [0 ] [0 ]− HW [. ]VRLHQWV\PpWULTXHV [0 ]− [. ]Q¶HVWSDVHQJpQpUDOXQHPDWULFH V\PpWULTXH,OHVWUHPDUTXDEOHTX¶HOOHVRLWGLDJRQDOLVDEOHGDQVXQHEDVHGHYHFWHXUVSURSUHV HWTXHVHQYDOHXUVSURSUHVQRWpHV ω L VRLHQWWRXWHVUpHOOHVVWULFWHPHQWSRVLWLYHV
/HV SXOVDWLRQV SURSUHV ω L SHXYHQW VH FDOFXOHU SDU UpVROXWLRQ GH O¶pTXDWLRQ FDUDFWpULVWLTXH
/HV SXOVDWLRQV SURSUHV ω L SHXYHQW VH FDOFXOHU SDU UpVROXWLRQ GH O¶pTXDWLRQ FDUDFWpULVWLTXH
GLWHpTXDWLRQDX[SXOVDWLRQVSURSUHVVRXVO¶XQHGHVGHX[IRUPHVpTXLYDOHQWHV
GLWHpTXDWLRQDX[SXOVDWLRQVSURSUHVVRXVO¶XQHGHVGHX[IRUPHVpTXLYDOHQWHV
(
(
)
)
GHW [. ]− ω [0 ] = RX GHW [0 ]− [. ]− ω [,] =
/HV Q SDUDPqWUHV 7L =
UHVS GHODVWUXFWXUH
ω π HW I L = L VH QRPPHQW SpULRGHV SURSUHV HW IUpTXHQFHV SURSUHV π ωL
±)RUPHVSURSUHVHWPRGHVSURSUHV
(
(
)
)
GHW [. ]− ω [0 ] = RX GHW [0 ]− [. ]− ω [,] =
/HV Q SDUDPqWUHV 7L =
UHVS GHODVWUXFWXUH
ω π HW I L = L VH QRPPHQW SpULRGHV SURSUHV HW IUpTXHQFHV SURSUHV π ωL
±)RUPHVSURSUHVHWPRGHVSURSUHV
/D PDWULFH GH SDVVDJH [3 ] GH OD EDVH LQLWLDOH j OD EDVH QRUPDOH Q¶HVW SDV HQ JpQpUDO XQH PDWULFH RUWKRJRQDOH SXLVTXH VHV YHFWHXUVFRORQQHV YHFWHXUV SURSUHV GH [0 ] DXVVLIRUPHVSURSUHV QHVRQWSDVGHX[jGHX[RUWKRJRQDX[HQJpQpUDO
−
[. ] RQ GLW
/D PDWULFH GH SDVVDJH [3 ] GH OD EDVH LQLWLDOH j OD EDVH QRUPDOH Q¶HVW SDV HQ JpQpUDO XQH
PDWULFH RUWKRJRQDOH SXLVTXH VHV YHFWHXUVFRORQQHV YHFWHXUV SURSUHV GH [0 ]− [. ] RQ GLW DXVVLIRUPHVSURSUHV QHVRQWSDVGHX[jGHX[RUWKRJRQDX[HQJpQpUDO
3DU FRQWUH OHV PDWULFHV [0 ] HW [. ] pWDQW DVVRFLpHV j GHV IRUPHV TXDGUDWLTXHV GpILQLHV
3DU FRQWUH OHV PDWULFHV [0 ] HW [. ] pWDQW DVVRFLpHV j GHV IRUPHV TXDGUDWLTXHV GpILQLHV
SRVLWLYHV GpILQLVVHQW GHX[ SURGXLWV VFDODLUHV HXFOLGLHQV RU OHV pJDOLWpV [0 ]= 3 W [0] [3] HW [. ]= 3 W [. ] [3] pTXLYDOHQW DX[ UHODWLRQV VXLYDQWHV HQWUH YHFWHXUV SURSUHV {3α }HW 3β
SRVLWLYHV GpILQLVVHQW GHX[ SURGXLWV VFDODLUHV HXFOLGLHQV RU OHV pJDOLWpV [0 ]= 3 W [0] [3] HW [. ]= 3 W [. ] [3] pTXLYDOHQW DX[ UHODWLRQV VXLYDQWHV HQWUH YHFWHXUV SURSUHV {3α }HW 3β
[ ]
[ ]
{ }
{3α }W [0 ]{3β }= ⎫
{3α }
W
⎧{3α }W [0 ]{3α }= P α ⎪ ⎪ VL α = β ⎬ VL α ≠ β HW ⎨ W ⎪ ⎪ [0 ] 3β = ⎭ ⎩{3α } [0 ]{3α }= N α
{ }
[ ]
[ ]
{ }
{3α }W [0 ]{3β }= ⎫
{3α }
W
⎧{3α }W [0 ]{3α }= P α ⎪ ⎪ VL α = β ⎬ VL α ≠ β HW ⎨ W ⎪ ⎪ [0 ] 3β = ⎭ ⎩{3α } [0 ]{3α }= N α
{ }
&HVpJDOLWpVWUDGXLVHQWODSURSULpWpLPSRUWDQWHG¶RUWKRJRQDOLWpGHVIRUPHVSURSUHV {3α }YLV jYLVGHFKDFXQGHVGHX[SURGXLWVVFDODLUHVGpILQLVSDU [0 ]HW [. ]
&HVpJDOLWpVWUDGXLVHQWODSURSULpWpLPSRUWDQWHG¶RUWKRJRQDOLWpGHVIRUPHVSURSUHV {3α }YLV jYLVGHFKDFXQGHVGHX[SURGXLWVVFDODLUHVGpILQLVSDU [0 ]HW [. ]
- 149 -
- 149 -
5(0$548(6
5(0$548(6
±&KDQJHPHQWGHEDVH
±&KDQJHPHQWGHEDVH
/HVIRUPXOHV SHUPHWWHQWGHSDVVHUGHODEDVHLQLWLDOHjODEDVHQRUPDOHRQQRWHTXHOHV PDWULFHV [0 ]HW [0 ]VRQWFRQJUXHQWHVHWGHPrPH [. ]HW [. ]RQDSDUFRQWUH
/HVIRUPXOHV SHUPHWWHQWGHSDVVHUGHODEDVHLQLWLDOHjODEDVHQRUPDOHRQQRWHTXHOHV PDWULFHV [0 ]HW [0 ]VRQWFRQJUXHQWHVHWGHPrPH [. ]HW [. ]RQDSDUFRQWUH
[ Ω ]= [0 ]
−
/HVPDWULFHV [0 ]
−
[ Ω ]= [0 ]
[. ]= [3]− [0]− [. ] [3]
−
/HVPDWULFHV [0 ]
[. ]HW [0]− [. ]VRQWGRQFVHPEODEOHV
−
[. ]= [3]− [0]− [. ] [3]
[. ]HW [0]− [. ]VRQWGRQFVHPEODEOHV
±9HFWHXUVSURSUHVHWYDOHXUVSURSUHV
±9HFWHXUVSURSUHVHWYDOHXUVSURSUHV
%LHQTXH [0 ] [0 ]− HW [. ]VRLHQWV\PpWULTXHV [0 ]− [. ]Q¶HVWSDVHQJpQpUDOXQHPDWULFH V\PpWULTXH,OHVWUHPDUTXDEOHTX¶HOOHVRLWGLDJRQDOLVDEOHGDQVXQHEDVHGHYHFWHXUVSURSUHV HWTXHVHQYDOHXUVSURSUHVQRWpHV ω L VRLHQWWRXWHVUpHOOHVVWULFWHPHQWSRVLWLYHV
%LHQTXH [0 ] [0 ]− HW [. ]VRLHQWV\PpWULTXHV [0 ]− [. ]Q¶HVWSDVHQJpQpUDOXQHPDWULFH V\PpWULTXH,OHVWUHPDUTXDEOHTX¶HOOHVRLWGLDJRQDOLVDEOHGDQVXQHEDVHGHYHFWHXUVSURSUHV HWTXHVHQYDOHXUVSURSUHVQRWpHV ω L VRLHQWWRXWHVUpHOOHVVWULFWHPHQWSRVLWLYHV
/HV SXOVDWLRQV SURSUHV ω L SHXYHQW VH FDOFXOHU SDU UpVROXWLRQ GH O¶pTXDWLRQ FDUDFWpULVWLTXH
/HV SXOVDWLRQV SURSUHV ω L SHXYHQW VH FDOFXOHU SDU UpVROXWLRQ GH O¶pTXDWLRQ FDUDFWpULVWLTXH
GLWHpTXDWLRQDX[SXOVDWLRQVSURSUHVVRXVO¶XQHGHVGHX[IRUPHVpTXLYDOHQWHV
GLWHpTXDWLRQDX[SXOVDWLRQVSURSUHVVRXVO¶XQHGHVGHX[IRUPHVpTXLYDOHQWHV
(
(
)
)
GHW [. ]− ω [0 ] = RX GHW [0 ]− [. ]− ω [,] =
/HV Q SDUDPqWUHV 7L =
UHVS GHODVWUXFWXUH
ω π HW I L = L VH QRPPHQW SpULRGHV SURSUHV HW IUpTXHQFHV SURSUHV π ωL
±)RUPHVSURSUHVHWPRGHVSURSUHV
(
(
)
)
GHW [. ]− ω [0 ] = RX GHW [0 ]− [. ]− ω [,] =
/HV Q SDUDPqWUHV 7L =
UHVS GHODVWUXFWXUH
ω π HW I L = L VH QRPPHQW SpULRGHV SURSUHV HW IUpTXHQFHV SURSUHV π ωL
±)RUPHVSURSUHVHWPRGHVSURSUHV
/D PDWULFH GH SDVVDJH [3 ] GH OD EDVH LQLWLDOH j OD EDVH QRUPDOH Q¶HVW SDV HQ JpQpUDO XQH PDWULFH RUWKRJRQDOH SXLVTXH VHV YHFWHXUVFRORQQHV YHFWHXUV SURSUHV GH [0 ] DXVVLIRUPHVSURSUHV QHVRQWSDVGHX[jGHX[RUWKRJRQDX[HQJpQpUDO
−
[. ] RQ GLW
/D PDWULFH GH SDVVDJH [3 ] GH OD EDVH LQLWLDOH j OD EDVH QRUPDOH Q¶HVW SDV HQ JpQpUDO XQH
PDWULFH RUWKRJRQDOH SXLVTXH VHV YHFWHXUVFRORQQHV YHFWHXUV SURSUHV GH [0 ]− [. ] RQ GLW DXVVLIRUPHVSURSUHV QHVRQWSDVGHX[jGHX[RUWKRJRQDX[HQJpQpUDO
3DU FRQWUH OHV PDWULFHV [0 ] HW [. ] pWDQW DVVRFLpHV j GHV IRUPHV TXDGUDWLTXHV GpILQLHV
3DU FRQWUH OHV PDWULFHV [0 ] HW [. ] pWDQW DVVRFLpHV j GHV IRUPHV TXDGUDWLTXHV GpILQLHV
SRVLWLYHV GpILQLVVHQW GHX[ SURGXLWV VFDODLUHV HXFOLGLHQV RU OHV pJDOLWpV [0 ]= 3 W [0] [3] HW [. ]= 3 W [. ] [3] pTXLYDOHQW DX[ UHODWLRQV VXLYDQWHV HQWUH YHFWHXUV SURSUHV {3α }HW 3β
SRVLWLYHV GpILQLVVHQW GHX[ SURGXLWV VFDODLUHV HXFOLGLHQV RU OHV pJDOLWpV [0 ]= 3 W [0] [3] HW [. ]= 3 W [. ] [3] pTXLYDOHQW DX[ UHODWLRQV VXLYDQWHV HQWUH YHFWHXUV SURSUHV {3α }HW 3β
[ ]
[ ]
{ }
{3α }W [0 ]{3β }= ⎫ {3α }W
⎧{3α }W [0 ]{3α }= P α ⎪ ⎪ VL α = β ⎬ VL α ≠ β HW ⎨ ⎪{3 }W [0 ]{3 }= N [0 ] 3β = ⎪⎭ α α ⎩ α
{ }
[ ]
[ ]
{ }
{3α }W [0 ]{3β }= ⎫ {3α }W
⎧{3α }W [0 ]{3α }= P α ⎪ ⎪ VL α = β ⎬ VL α ≠ β HW ⎨ ⎪{3 }W [0 ]{3 }= N [0 ] 3β = ⎪⎭ α α ⎩ α
{ }
&HVpJDOLWpVWUDGXLVHQWODSURSULpWpLPSRUWDQWHG¶RUWKRJRQDOLWpGHVIRUPHVSURSUHV {3α }YLV jYLVGHFKDFXQGHVGHX[SURGXLWVVFDODLUHVGpILQLVSDU [0 ]HW [. ]
&HVpJDOLWpVWUDGXLVHQWODSURSULpWpLPSRUWDQWHG¶RUWKRJRQDOLWpGHVIRUPHVSURSUHV {3α }YLV jYLVGHFKDFXQGHVGHX[SURGXLWVVFDODLUHVGpILQLVSDU [0 ]HW [. ]
- 149 -
- 149 -
/HVQPRXYHPHQWVSDUWLFXOLHUVGpILQLVSDU
/HVQPRXYHPHQWVSDUWLFXOLHUVGpILQLVSDU
{T}= {3α }FRV ωα W + ϕα
{T}= {3α }FRV ωα W + ϕα
VHQRPPHQWPRGHVSURSUHVGHYLEUDWLRQGHODVWUXFWXUH
VHQRPPHQWPRGHVSURSUHVGHYLEUDWLRQGHODVWUXFWXUH
±6ROXWLRQJpQpUDOHGHO¶pTXDWLRQ
±6ROXWLRQJpQpUDOHGHO¶pTXDWLRQ
/H PRXYHPHQW OH SOXV JpQpUDO HVW DORUV GpILQL DX PR\HQ GH O¶XQH GHV GHX[ IRUPXOHV pTXLYDOHQWHV
/H PRXYHPHQW OH SOXV JpQpUDO HVW DORUV GpILQL DX PR\HQ GH O¶XQH GHV GHX[ IRUPXOHV pTXLYDOHQWHV
Q
{T}= ∑ D α {3α }FRV ωα W + ϕα
Q
α =
{T}= ∑ {3α }$ α FRV ωα W + %α VLQ ωα W
α =
Q
{T}= ∑ D α {3α }FRV ωα W + ϕα Q
α =
{T}= ∑ {3α }$ α FRV ωα W + %α VLQ ωα W
α =
±(QHUJLHPpFDQLTXHGHODVWUXFWXUH
±(QHUJLHPpFDQLTXHGHODVWUXFWXUH
'DQV OH FDV SUpVHQW G¶XQH VWUXFWXUH OLQpDLUH FRQVHUYDWLYH OLEUH OH WKpRUqPH GH O¶pQHUJLH FLQpWLTXHQRXVSHUPHWG¶DIILUPHUTXHO¶pQHUJLHPpFDQLTXH ( P = ( F + ( S UHVWHFRQVWDQWHGDQV
'DQV OH FDV SUpVHQW G¶XQH VWUXFWXUH OLQpDLUH FRQVHUYDWLYH OLEUH OH WKpRUqPH GH O¶pQHUJLH FLQpWLTXHQRXVSHUPHWG¶DIILUPHUTXHO¶pQHUJLHPpFDQLTXH ( P = ( F + ( S UHVWHFRQVWDQWHGDQV
OHWHPSV
OHWHPSV
([HPSOHFRQVLGpURQVO¶DVVHPEODJHGHWURLVEDUUHSULVPDWLTXHVLGHQWLTXHVUHSUpVHQWpVXUOD ILJXUH VXVFHSWLEOHV GH VH PRXYRLU GDQV OH SODQ [R\ /D ILJXUH D FRUUHVSRQG j OD FRQILJXUDWLRQ G¶pTXLOLEUH VWDEOH VRLW HQ O¶DEVHQFH GH SHVDQWHXU UHVVRUWV DX UHSRV VRLW VRXV O¶DFWLRQGHODSHVDQWHXUSDUXQHSUpWHQVLRQGHVUHVVRUWV
([HPSOHFRQVLGpURQVO¶DVVHPEODJHGHWURLVEDUUHSULVPDWLTXHVLGHQWLTXHVUHSUpVHQWpVXUOD ILJXUH VXVFHSWLEOHV GH VH PRXYRLU GDQV OH SODQ [R\ /D ILJXUH D FRUUHVSRQG j OD FRQILJXUDWLRQ G¶pTXLOLEUH VWDEOH VRLW HQ O¶DEVHQFH GH SHVDQWHXU UHVVRUWV DX UHSRV VRLW VRXV O¶DFWLRQGHODSHVDQWHXUSDUXQHSUpWHQVLRQGHVUHVVRUWV
/DILJXUHEGRQQHXQHFRQILJXUDWLRQTXHOFRQTXHjO¶LQVWDQWW
/DILJXUHEGRQQHXQHFRQILJXUDWLRQTXHOFRQTXHjO¶LQVWDQWW
)LJXUHD
)LJXUHE
)LJXUHE
- 150 -
- 150 -
/HVQPRXYHPHQWVSDUWLFXOLHUVGpILQLVSDU
/HVQPRXYHPHQWVSDUWLFXOLHUVGpILQLVSDU
{T}= {3α }FRV ωα W + ϕα
)LJXUHD
{T}= {3α }FRV ωα W + ϕα
VHQRPPHQWPRGHVSURSUHVGHYLEUDWLRQGHODVWUXFWXUH
VHQRPPHQWPRGHVSURSUHVGHYLEUDWLRQGHODVWUXFWXUH
±6ROXWLRQJpQpUDOHGHO¶pTXDWLRQ
±6ROXWLRQJpQpUDOHGHO¶pTXDWLRQ
/H PRXYHPHQW OH SOXV JpQpUDO HVW DORUV GpILQL DX PR\HQ GH O¶XQH GHV GHX[ IRUPXOHV pTXLYDOHQWHV
/H PRXYHPHQW OH SOXV JpQpUDO HVW DORUV GpILQL DX PR\HQ GH O¶XQH GHV GHX[ IRUPXOHV pTXLYDOHQWHV
Q
{T}= ∑ D α {3α }FRV ωα W + ϕα
Q
α =
{T}= ∑ {3α }$ α FRV ωα W + %α VLQ ωα W
α =
Q
{T}= ∑ D α {3α }FRV ωα W + ϕα Q
α =
{T}= ∑ {3α }$ α FRV ωα W + %α VLQ ωα W
α =
±(QHUJLHPpFDQLTXHGHODVWUXFWXUH
±(QHUJLHPpFDQLTXHGHODVWUXFWXUH
'DQV OH FDV SUpVHQW G¶XQH VWUXFWXUH OLQpDLUH FRQVHUYDWLYH OLEUH OH WKpRUqPH GH O¶pQHUJLH FLQpWLTXHQRXVSHUPHWG¶DIILUPHUTXHO¶pQHUJLHPpFDQLTXH ( P = ( F + ( S UHVWHFRQVWDQWHGDQV
'DQV OH FDV SUpVHQW G¶XQH VWUXFWXUH OLQpDLUH FRQVHUYDWLYH OLEUH OH WKpRUqPH GH O¶pQHUJLH FLQpWLTXHQRXVSHUPHWG¶DIILUPHUTXHO¶pQHUJLHPpFDQLTXH ( P = ( F + ( S UHVWHFRQVWDQWHGDQV
OHWHPSV
OHWHPSV
([HPSOHFRQVLGpURQVO¶DVVHPEODJHGHWURLVEDUUHSULVPDWLTXHVLGHQWLTXHVUHSUpVHQWpVXUOD ILJXUH VXVFHSWLEOHV GH VH PRXYRLU GDQV OH SODQ [R\ /D ILJXUH D FRUUHVSRQG j OD FRQILJXUDWLRQ G¶pTXLOLEUH VWDEOH VRLW HQ O¶DEVHQFH GH SHVDQWHXU UHVVRUWV DX UHSRV VRLW VRXV O¶DFWLRQGHODSHVDQWHXUSDUXQHSUpWHQVLRQGHVUHVVRUWV
([HPSOHFRQVLGpURQVO¶DVVHPEODJHGHWURLVEDUUHSULVPDWLTXHVLGHQWLTXHVUHSUpVHQWpVXUOD ILJXUH VXVFHSWLEOHV GH VH PRXYRLU GDQV OH SODQ [R\ /D ILJXUH D FRUUHVSRQG j OD FRQILJXUDWLRQ G¶pTXLOLEUH VWDEOH VRLW HQ O¶DEVHQFH GH SHVDQWHXU UHVVRUWV DX UHSRV VRLW VRXV O¶DFWLRQGHODSHVDQWHXUSDUXQHSUpWHQVLRQGHVUHVVRUWV
/DILJXUHEGRQQHXQHFRQILJXUDWLRQTXHOFRQTXHjO¶LQVWDQWW
/DILJXUHEGRQQHXQHFRQILJXUDWLRQTXHOFRQTXHjO¶LQVWDQWW
)LJXUHD
)LJXUHE
- 150 -
)LJXUHD
)LJXUHE
- 150 -
/HV OLDLVRQV VRQW GHV SLYRWV G¶D[HV SDUDOOqOHV j R] HQ $ HW % FHV SLYRWV VRQW pODVWLTXHV OLQpDLUHVGHUDLGHXUN
/HV OLDLVRQV VRQW GHV SLYRWV G¶D[HV SDUDOOqOHV j R] HQ $ HW % FHV SLYRWV VRQW pODVWLTXHV OLQpDLUHVGHUDLGHXUN
/D SURMHFWLRQ VXU R\ GH O¶pJDOLWp YHFWRULHOOH 2& = 2$ + $% + %& GRQQH VLQ θ + VLQ θ + VLQ θ = F¶HVW j GLUH HQ QRXV OLPLWDQW j O¶pWXGH GHV YLEUDWLRQV GH IDLEOHV
/D SURMHFWLRQ VXU R\ GH O¶pJDOLWp YHFWRULHOOH 2& = 2$ + $% + %& GRQQH VLQ θ + VLQ θ + VLQ θ = F¶HVW j GLUH HQ QRXV OLPLWDQW j O¶pWXGH GHV YLEUDWLRQV GH IDLEOHV
/HVpQHUJLHVFLQpWLTXHHWSRWHQWLHOOHRQWSRXUH[SUHVVLRQV
/HVpQHUJLHVFLQpWLTXHHWSRWHQWLHOOHRQWSRXUH[SUHVVLRQV
DPSOLWXGHV θ + θ + θ = /DVWUXFWXUHSRVVqGHGHX[GHJUpVGHOLEHUWpHWQRXVDGRSWHURQV OHSDUDPpWUDJHVXLYDQW T = θ T = θ
[
]
DPSOLWXGHV θ + θ + θ = /DVWUXFWXUHSRVVqGHGHX[GHJUpVGHOLEHUWpHWQRXVDGRSWHURQV OHSDUDPpWUDJHVXLYDQW T = θ T = θ
[
]
(F =
P / θ − θ θ + θ
(F =
P / θ − θ θ + θ
(S =
N θ + θ θ + θ
(S =
N θ + θ θ + θ
[
]
2QHQGpGXLWOHVPDWULFHVGHPDVVHHWGHUDLGHXU
[0 ] = P /
SXLVO¶pTXDWLRQDX[SXOVDWLRQVSURSUHV GHUDFLQHV
]
2QHQGpGXLWOHVPDWULFHVGHPDVVHHWGHUDLGHXU
⎡ − ⎤ ⎡ ⎤ ⎢ ⎥ HW [. ] = N ⎢ ⎥ ⎣⎢− ⎦⎥ ⎣⎢ ⎥⎦
[
[0 ] = P /
SXLVO¶pTXDWLRQDX[SXOVDWLRQVSURSUHV
⎛ P / ⎟⎞ ⎛ ⎞ ω = ⎜ N − P / ω ⎟ − ⎜⎜ N − ⎟ ⎝ ⎠ ⎝ ⎠ N N HW ω = ω = P/ P/
⎡ − ⎤ ⎡ ⎤ ⎢ ⎥ HW [. ] = N ⎢ ⎥ ⎣⎢− ⎦⎥ ⎣⎢ ⎥⎦
GHUDFLQHV
/HVYHFWHXUVSURSUHVRXIRUPHVSURSUHV VRQW
⎛ P / ⎟⎞ ⎛ ⎞ ω = ⎜ N − P / ω ⎟ − ⎜⎜ N − ⎟ ⎝ ⎠ ⎝ ⎠ N N HW ω = ω = P/ P/
/HVYHFWHXUVSURSUHVRXIRUPHVSURSUHV VRQW
⎡ ⎤ ⎧ ⎫⎪ ⎧⎪⎫⎪ ⎥ ⎬ HW {3 }= ⎨ ⎬ G¶R [3 ] = ⎢ ⎪⎩− ⎪⎭ ⎪⎩⎪⎭ ⎢⎣− ⎥⎦
⎡ ⎤ ⎧ ⎫⎪ ⎧⎪⎫⎪ ⎥ ⎬ HW {3 }= ⎨ ⎬ G¶R [3 ] = ⎢ ⎪⎩− ⎪⎭ ⎪⎩⎪⎭ ⎢⎣− ⎥⎦
{3}= ⎪⎨
{3}= ⎪⎨
/HVPRGHVSURSUHVFRUUHVSRQGDQWVVRQWGRQQpVSDU
/HVPRGHVSURSUHVFRUUHVSRQGDQWVVRQWGRQQpVSDU
⎧⎪θ ⎫⎪ ⎧⎪ ⎫⎪ ⎧⎪θ ⎫⎪ ⎧⎪⎫⎪ ⎨ ⎬ = ⎨ ⎬ FRV ω W + ϕ HW ⎨ ⎬ = ⎨ ⎬ FRV ω W + ϕ ⎪⎩θ ⎪⎭ ⎪⎩− ⎪⎭ ⎪⎩θ ⎪⎭ ⎪⎩⎪⎭ VRLW θ = − θ θ = HW θ = θ = − θ
⎧⎪θ ⎫⎪ ⎧⎪ ⎫⎪ ⎧⎪θ ⎫⎪ ⎧⎪⎫⎪ ⎨ ⎬ = ⎨ ⎬ FRV ω W + ϕ HW ⎨ ⎬ = ⎨ ⎬ FRV ω W + ϕ ⎪⎩θ ⎪⎭ ⎪⎩− ⎪⎭ ⎪⎩θ ⎪⎭ ⎪⎩⎪⎭ VRLW θ = − θ θ = HW θ = θ = − θ
)LJXUH
)LJXUH
- 151 -
- 151 -
/HV OLDLVRQV VRQW GHV SLYRWV G¶D[HV SDUDOOqOHV j R] HQ $ HW % FHV SLYRWV VRQW pODVWLTXHV OLQpDLUHVGHUDLGHXUN
/HV OLDLVRQV VRQW GHV SLYRWV G¶D[HV SDUDOOqOHV j R] HQ $ HW % FHV SLYRWV VRQW pODVWLTXHV OLQpDLUHVGHUDLGHXUN
/D SURMHFWLRQ VXU R\ GH O¶pJDOLWp YHFWRULHOOH 2& = 2$ + $% + %& GRQQH VLQ θ + VLQ θ + VLQ θ = F¶HVW j GLUH HQ QRXV OLPLWDQW j O¶pWXGH GHV YLEUDWLRQV GH IDLEOHV
/D SURMHFWLRQ VXU R\ GH O¶pJDOLWp YHFWRULHOOH 2& = 2$ + $% + %& GRQQH VLQ θ + VLQ θ + VLQ θ = F¶HVW j GLUH HQ QRXV OLPLWDQW j O¶pWXGH GHV YLEUDWLRQV GH IDLEOHV
/HVpQHUJLHVFLQpWLTXHHWSRWHQWLHOOHRQWSRXUH[SUHVVLRQV
/HVpQHUJLHVFLQpWLTXHHWSRWHQWLHOOHRQWSRXUH[SUHVVLRQV
DPSOLWXGHV θ + θ + θ = /DVWUXFWXUHSRVVqGHGHX[GHJUpVGHOLEHUWpHWQRXVDGRSWHURQV OHSDUDPpWUDJHVXLYDQW T = θ T = θ
[ θ
]
(F =
P/
(S =
N θ + θ θ + θ
− θ θ + θ
[
]
2QHQGpGXLWOHVPDWULFHVGHPDVVHHWGHUDLGHXU
[0 ] = P /
GHUDFLQHV
P / θ − θ θ + θ
(S =
N θ + θ θ + θ
[0 ] = P /
[
]
⎡ − ⎤ ⎡ ⎤ ⎢ ⎥ HW [. ] = N ⎢ ⎥ ⎣⎢− ⎦⎥ ⎣⎢ ⎥⎦
SXLVO¶pTXDWLRQDX[SXOVDWLRQVSURSUHV
GHUDFLQHV
/HVYHFWHXUVSURSUHVRXIRUPHVSURSUHV VRQW
⎛ P / ⎟⎞ ⎛ ⎞ ω = ⎜ N − P / ω ⎟ − ⎜⎜ N − ⎟ ⎝ ⎠ ⎝ ⎠ N N HW ω = ω = P/ P/
/HVYHFWHXUVSURSUHVRXIRUPHVSURSUHV VRQW
⎡ ⎤ ⎧ ⎫⎪ ⎧⎪⎫⎪ ⎥ ⎬ HW {3 }= ⎨ ⎬ G¶R [3 ] = ⎢ ⎪⎩− ⎪⎭ ⎪⎩⎪⎭ ⎣⎢− ⎦⎥
⎡ ⎤ ⎧ ⎫⎪ ⎧⎪⎫⎪ ⎥ ⎬ HW {3 }= ⎨ ⎬ G¶R [3 ] = ⎢ ⎪⎩− ⎪⎭ ⎪⎩⎪⎭ ⎣⎢− ⎦⎥
{3}= ⎪⎨
{3}= ⎪⎨
/HVPRGHVSURSUHVFRUUHVSRQGDQWVVRQWGRQQpVSDU
/HVPRGHVSURSUHVFRUUHVSRQGDQWVVRQWGRQQpVSDU
⎧⎪θ ⎫⎪ ⎧⎪ ⎫⎪ ⎧⎪θ ⎫⎪ ⎧⎪⎫⎪ ⎨ ⎬ = ⎨ ⎬ FRV ω W + ϕ HW ⎨ ⎬ = ⎨ ⎬ FRV ω W + ϕ ⎪⎩θ ⎪⎭ ⎪⎩− ⎪⎭ ⎪⎩θ ⎪⎭ ⎪⎩⎪⎭ VRLW θ = − θ θ = HW θ = θ = − θ
- 151 -
]
(F =
2QHQGpGXLWOHVPDWULFHVGHPDVVHHWGHUDLGHXU
⎛ P / ⎟⎞ ⎛ ⎞ ω = ⎜ N − P / ω ⎟ − ⎜⎜ N − ⎟ ⎝ ⎠ ⎝ ⎠ N N HW ω = ω = P/ P/
)LJXUH
[
⎡ − ⎤ ⎡ ⎤ ⎢ ⎥ HW [. ] = N ⎢ ⎥ ⎣⎢− ⎦⎥ ⎣⎢ ⎥⎦
SXLVO¶pTXDWLRQDX[SXOVDWLRQVSURSUHV
DPSOLWXGHV θ + θ + θ = /DVWUXFWXUHSRVVqGHGHX[GHJUpVGHOLEHUWpHWQRXVDGRSWHURQV OHSDUDPpWUDJHVXLYDQW T = θ T = θ
⎧⎪θ ⎫⎪ ⎧⎪ ⎫⎪ ⎧⎪θ ⎫⎪ ⎧⎪⎫⎪ ⎨ ⎬ = ⎨ ⎬ FRV ω W + ϕ HW ⎨ ⎬ = ⎨ ⎬ FRV ω W + ϕ ⎪⎩θ ⎪⎭ ⎪⎩− ⎪⎭ ⎪⎩θ ⎪⎭ ⎪⎩⎪⎭ VRLW θ = − θ θ = HW θ = θ = − θ
)LJXUH
- 151 -
/DVROXWLRQJpQpUDOHVµpFULWG¶DSUqV
/DVROXWLRQJpQpUDOHVµpFULWG¶DSUqV
⎧⎪θ ⎫⎪ ⎧⎪ ⎫⎪ ⎨ ⎬ = D ⎨ ⎬ FRV ω W + ϕ + D ⎪⎩− ⎪⎭ ⎪⎩θ ⎪⎭
⎧⎪θ ⎫⎪ ⎧⎪ ⎫⎪ ⎨ ⎬ = D ⎨ ⎬ FRV ω W + ϕ + D ⎪⎩− ⎪⎭ ⎪⎩θ ⎪⎭
⎧⎪⎫⎪ ⎨ ⎬ FRV ω W + ϕ ⎪⎩⎪⎭
⎧⎪⎫⎪ ⎨ ⎬ FRV ω W + ϕ ⎪⎩⎪⎭
D D ϕ ϕ VRQWGHVFRQVWDQWHVG¶LQWpJUDWLRQ
D D ϕ ϕ VRQWGHVFRQVWDQWHVG¶LQWpJUDWLRQ
±6758&785(/,1e$,5(',66,3$7,9(/,%5(
±6758&785(/,1e$,5(',66,3$7,9(/,%5(
(OOHREpLWjO¶pTXDWLRQGLIIpUHQWLHOOHPDWULFLHOOH
(OOHREpLWjO¶pTXDWLRQGLIIpUHQWLHOOHPDWULFLHOOH
[0]{T}+ [&]{T }+ [. ]{T}= {}
RXHQSUpPXOWLSOLDQWSDU [0 ]−
RXHQSUpPXOWLSOLDQWSDU [0 ]−
{T}+ [0]− [&]{T }+ [0 ]− [. ]{T}= {}
[0]{T}+ [&]{T }+ [. ]{T}= {}
{T}+ [0]− [&]{T }+ [0 ]− [. ]{T}= {}
±&DVSDUWLFXOLHUGH%DVLOH
±&DVSDUWLFXOLHUGH%DVLOH
&¶HVWOHFDVVLPSOHDVVH]UpSDQGXROHVWURLVPDWULFHV [0 ] [&] [. ]VRQWGLDJRQDOLVDEOHV SDUOHPrPHFKDQJHPHQWGHEDVHGHPDWULFH [3]2QDDORUVOHVIRUPXOHV
&¶HVWOHFDVVLPSOHDVVH]UpSDQGXROHVWURLVPDWULFHV [0 ] [&] [. ]VRQWGLDJRQDOLVDEOHV SDUOHPrPHFKDQJHPHQWGHEDVHGHPDWULFH [3]2QDDORUVOHVIRUPXOHV
{T}= [3]{T} {T }= [3]{T } {T}= [3]{T}HW
{T}= [3]{T} {T }= [3]{T } {T}= [3]{T}HW
⎤ ⎡ & ⎥ ⎢ [&] [3] = ⎢ & 2 ⎥ ⎢ % ⎥ ⎢⎣ 2 & Q ⎥⎦
[& ]= [ 3 W ]
/D IRUPH TXDGUDWLTXH 5 =
W {T } [&]{T } pWDQW SRVLWLYH PDLV SDV QpFHVVDLUHPHQW GpILQLH
SRVLWLYHRQD &L ≥
/¶pTXDWLRQ pTXLYDXWDORUVjQpTXDWLRQVGpFRXSOpHVHWGRQFLQWpJUDEOHVVpSDUpPHQW PL TL + &L T L + N L TL = L = ! Q
⎤ ⎡ & ⎥ ⎢ [&] [3] = ⎢ & 2 ⎥ ⎢ % ⎥ ⎢⎣ 2 & Q ⎥⎦
[& ]= [ 3 W ]
/D IRUPH TXDGUDWLTXH 5 =
W {T } [&]{T } pWDQW SRVLWLYH PDLV SDV QpFHVVDLUHPHQW GpILQLH
SRVLWLYHRQD &L ≥
/¶pTXDWLRQ pTXLYDXWDORUVjQpTXDWLRQVGpFRXSOpHVHWGRQFLQWpJUDEOHVVpSDUpPHQW
PL TL + &L T L + N L TL = L = ! Q
3RXU FKDFXQH GH FHV pTXDWLRQV RQ HVW UDPHQp DX GX FKDSLWUH SUpFpGHQW DYHF OHV WURLV W\SHVG¶DPRUWLVVHPHQWSRVVLEOHVIRUWFULWLTXHIDLEOH
3RXU FKDFXQH GH FHV pTXDWLRQV RQ HVW UDPHQp DX GX FKDSLWUH SUpFpGHQW DYHF OHV WURLV W\SHVG¶DPRUWLVVHPHQWSRVVLEOHVIRUWFULWLTXHIDLEOH
'DQV OD EDVH QRUPDOH EDVH SURSUH FRPPXQH GH [0 ]− [&] HW [0 ]− [. ] OD VWUXFWXUH j Q ''/ SURSRVpH SHXW rWUH FRQVLGpUpH FRPPH OD MX[WDSRVLWLRQ GH Q VWUXFWXUHV j XQ ''/ LQGpSHQGDQWHVGpFRXSOpHVWUDLWDEOHVVpSDUpPHQW
'DQV OD EDVH QRUPDOH EDVH SURSUH FRPPXQH GH [0 ]− [&] HW [0 ]− [. ] OD VWUXFWXUH j Q ''/ SURSRVpH SHXW rWUH FRQVLGpUpH FRPPH OD MX[WDSRVLWLRQ GH Q VWUXFWXUHV j XQ ''/ LQGpSHQGDQWHVGpFRXSOpHVWUDLWDEOHVVpSDUpPHQW
- 152 -
- 152 -
/DVROXWLRQJpQpUDOHVµpFULWG¶DSUqV
/DVROXWLRQJpQpUDOHVµpFULWG¶DSUqV
⎧⎪θ ⎫⎪ ⎧⎪ ⎫⎪ ⎨ ⎬ = D ⎨ ⎬ FRV ω W + ϕ + D ⎪⎩− ⎪⎭ ⎪⎩θ ⎪⎭
⎧⎪θ ⎫⎪ ⎧⎪ ⎫⎪ ⎨ ⎬ = D ⎨ ⎬ FRV ω W + ϕ + D ⎪⎩− ⎪⎭ ⎪⎩θ ⎪⎭
⎧⎪⎫⎪ ⎨ ⎬ FRV ω W + ϕ ⎪⎩⎪⎭
⎧⎪⎫⎪ ⎨ ⎬ FRV ω W + ϕ ⎪⎩⎪⎭
D D ϕ ϕ VRQWGHVFRQVWDQWHVG¶LQWpJUDWLRQ
D D ϕ ϕ VRQWGHVFRQVWDQWHVG¶LQWpJUDWLRQ
±6758&785(/,1e$,5(',66,3$7,9(/,%5(
±6758&785(/,1e$,5(',66,3$7,9(/,%5(
(OOHREpLWjO¶pTXDWLRQGLIIpUHQWLHOOHPDWULFLHOOH
(OOHREpLWjO¶pTXDWLRQGLIIpUHQWLHOOHPDWULFLHOOH
[0]{T}+ [&]{T }+ [. ]{T}= {}
RXHQSUpPXOWLSOLDQWSDU [0 ]−
[0]{T}+ [&]{T }+ [. ]{T}= {}
RXHQSUpPXOWLSOLDQWSDU [0 ]−
{T}+ [0]− [&]{T }+ [0 ]− [. ]{T}= {}
{T}+ [0]− [&]{T }+ [0 ]− [. ]{T}= {}
±&DVSDUWLFXOLHUGH%DVLOH
±&DVSDUWLFXOLHUGH%DVLOH
&¶HVWOHFDVVLPSOHDVVH]UpSDQGXROHVWURLVPDWULFHV [0 ] [&] [. ]VRQWGLDJRQDOLVDEOHV SDUOHPrPHFKDQJHPHQWGHEDVHGHPDWULFH [3]2QDDORUVOHVIRUPXOHV
&¶HVWOHFDVVLPSOHDVVH]UpSDQGXROHVWURLVPDWULFHV [0 ] [&] [. ]VRQWGLDJRQDOLVDEOHV SDUOHPrPHFKDQJHPHQWGHEDVHGHPDWULFH [3]2QDDORUVOHVIRUPXOHV
{T}= [3]{T} {T }= [3]{T } {T}= [3]{T}HW
{T}= [3]{T} {T }= [3]{T } {T}= [3]{T}HW
⎤ ⎡ & ⎥ ⎢ [&] [3] = ⎢ & 2 ⎥ ⎢ % ⎥ ⎢⎣ 2 & Q ⎥⎦
[& ]= [ 3 ]
/D IRUPH TXDGUDWLTXH 5 =
W {T } [&]{T } pWDQW SRVLWLYH PDLV SDV QpFHVVDLUHPHQW GpILQLH
SRVLWLYHRQD &L ≥
W
/¶pTXDWLRQ pTXLYDXWDORUVjQpTXDWLRQVGpFRXSOpHVHWGRQFLQWpJUDEOHVVpSDUpPHQW
PL TL + &L T L + N L TL = L = ! Q
⎤ ⎡ & ⎥ ⎢ [&] [3] = ⎢ & 2 ⎥ ⎢ % ⎥ ⎢⎣ 2 & Q ⎥⎦
[& ]= [ 3 ]
/D IRUPH TXDGUDWLTXH 5 =
W {T } [&]{T } pWDQW SRVLWLYH PDLV SDV QpFHVVDLUHPHQW GpILQLH
SRVLWLYHRQD &L ≥
W
/¶pTXDWLRQ pTXLYDXWDORUVjQpTXDWLRQVGpFRXSOpHVHWGRQFLQWpJUDEOHVVpSDUpPHQW
PL TL + &L T L + N L TL = L = ! Q
3RXU FKDFXQH GH FHV pTXDWLRQV RQ HVW UDPHQp DX GX FKDSLWUH SUpFpGHQW DYHF OHV WURLV W\SHVG¶DPRUWLVVHPHQWSRVVLEOHVIRUWFULWLTXHIDLEOH
3RXU FKDFXQH GH FHV pTXDWLRQV RQ HVW UDPHQp DX GX FKDSLWUH SUpFpGHQW DYHF OHV WURLV W\SHVG¶DPRUWLVVHPHQWSRVVLEOHVIRUWFULWLTXHIDLEOH
'DQV OD EDVH QRUPDOH EDVH SURSUH FRPPXQH GH [0 ]− [&] HW [0 ]− [. ] OD VWUXFWXUH j Q ''/ SURSRVpH SHXW rWUH FRQVLGpUpH FRPPH OD MX[WDSRVLWLRQ GH Q VWUXFWXUHV j XQ ''/ LQGpSHQGDQWHVGpFRXSOpHVWUDLWDEOHVVpSDUpPHQW
'DQV OD EDVH QRUPDOH EDVH SURSUH FRPPXQH GH [0 ]− [&] HW [0 ]− [. ] OD VWUXFWXUH j Q ''/ SURSRVpH SHXW rWUH FRQVLGpUpH FRPPH OD MX[WDSRVLWLRQ GH Q VWUXFWXUHV j XQ ''/ LQGpSHQGDQWHVGpFRXSOpHVWUDLWDEOHVVpSDUpPHQW
- 152 -
- 152 -
2QFDOFXOHGRQFOHVQSDUDPqWUHVQRUPDX[ TL W SDULQWpJUDWLRQGHVIRUPXOHV HWFRPSWH WHQX GHV UpVXOWDWV GX GX FKDSLWUH 9, (Q UHYHQDQW j OD EDVH LQLWLDOH OD VROXWLRQ JpQpUDOH V¶pFULWHQDSSHODQW {3α }OHVYHFWHXUVFRORQQHVGH [3 ]
{T}= {3}T W + {3 }T W + !! + {3Q }TQ W
([HPSOHUHSUHQRQVOHHH[HPSOHGXDYHF . = . = . HW 0 = 0 = 0 /¶pTXDWLRQ V¶pFULWLFL ⎡0 2 ⎤ ⎧⎪ [ ⎫⎪ ⎡ & − &⎤ ⎧⎪ [ ⎫⎪ ⎡. 2⎤ ⎧⎪ [ ⎫⎪ ⎧⎪⎫⎪ ⎢ ⎥ ⎨ ⎬+ ⎢ ⎥ ⎨ ⎬+ ⎢ ⎥ ⎨ ⎬ = ⎨ ⎬ ⎢⎣ 2 0 ⎥⎦ ⎪⎩[ ⎪⎭ ⎢⎣− & &⎥⎦ ⎪⎩[ ⎪⎭ ⎢⎣ 2 . ⎥⎦ ⎪⎩[ ⎪⎭ ⎪⎩⎪⎭ /HVGHX[SXOVDWLRQVQDWXUHOOHVVRQWpJDOHV ω = ω =
. /HVYHFWHXUVSURSUHVFRPPXQV 0
2QFDOFXOHGRQFOHVQSDUDPqWUHVQRUPDX[ TL W SDULQWpJUDWLRQGHVIRUPXOHV HWFRPSWH WHQX GHV UpVXOWDWV GX GX FKDSLWUH 9, (Q UHYHQDQW j OD EDVH LQLWLDOH OD VROXWLRQ JpQpUDOH V¶pFULWHQDSSHODQW {3α }OHVYHFWHXUVFRORQQHVGH [3 ]
{T}= {3}T W + {3 }T W + !! + {3Q }TQ W
([HPSOHUHSUHQRQVOHHH[HPSOHGXDYHF . = . = . HW 0 = 0 = 0 /¶pTXDWLRQ V¶pFULWLFL ⎡0 2 ⎤ ⎧⎪ [ ⎫⎪ ⎡ & − &⎤ ⎧⎪ [ ⎫⎪ ⎡. 2⎤ ⎧⎪ [ ⎫⎪ ⎧⎪⎫⎪ ⎢ ⎥ ⎨ ⎬+ ⎢ ⎥ ⎨ ⎬+ ⎢ ⎥ ⎨ ⎬ = ⎨ ⎬ ⎢⎣ 2 0 ⎥⎦ ⎪⎩[ ⎪⎭ ⎢⎣− & &⎥⎦ ⎪⎩[ ⎪⎭ ⎢⎣ 2 . ⎥⎦ ⎪⎩[ ⎪⎭ ⎪⎩⎪⎭ /HVGHX[SXOVDWLRQVQDWXUHOOHVVRQWpJDOHV ω = ω =
. /HVYHFWHXUVSURSUHVFRPPXQV 0
DX[WURLVPDWULFHVVRQW ⎡ ⎤ ⎧⎫ ⎧ ⎫ {3}= ⎪⎨ ⎪⎬ HW {3 }= ⎪⎨ ⎪⎬ G¶RODPDWULFHGHSDVVDJH [3] = ⎢ ⎥ ⎪⎩⎪⎭ ⎪⎩− ⎪⎭ ⎢⎣ − ⎥⎦
DX[WURLVPDWULFHVVRQW ⎡ ⎤ ⎧⎫ ⎧ ⎫ {3}= ⎪⎨ ⎪⎬ HW {3 }= ⎪⎨ ⎪⎬ G¶RODPDWULFHGHSDVVDJH [3] = ⎢ ⎥ ⎪⎩⎪⎭ ⎪⎩− ⎪⎭ ⎢⎣ − ⎥⎦
/HVpTXDWLRQV V¶pFULYHQWLFL 0 T + . T = HW 0 T + & T + . T =
/HVpTXDWLRQV V¶pFULYHQWLFL 0 T + . T = HW 0 T + & T + . T =
6XSSRVRQVXQDPRUWLVVHPHQWIDLEOH & < .0
6XSSRVRQVXQDPRUWLVVHPHQWIDLEOH & < .0
2QDDORUV
T W = D FRV ω W + ϕ
2QDDORUV
T W = D FRV ω W + ϕ
(W
T W = D H −λωW FRV Ω W + ϕ
(W
T W = D H −λωW FRV Ω W + ϕ
DYHF
ω=
. λ = 0
& Ω = ω − λ .0
DYHF
HWHQILQGDQVODEDVHLQLWLDOHODVROXWLRQJpQpUDOH
ω=
. λ = 0
& Ω = ω − λ .0
HWHQILQGDQVODEDVHLQLWLDOHODVROXWLRQJpQpUDOH
⎧⎪ [ = D FRV ωW + ϕ + D H −λωW FRV Ω W + ϕ ⎨ ⎪⎩[ = D FRV ωW + ϕ − D H − λωW FRV Ω W + ϕ
⎧⎪ [ = D FRV ωW + ϕ + D H −λωW FRV Ω W + ϕ ⎨ ⎪⎩[ = D FRV ωW + ϕ − D H − λωW FRV Ω W + ϕ
/H SUHPLHU PRGH SURSUH GH YLEUDWLRQ FRUUHVSRQG j D = OHV GHX[ FKDULRWV RQW GHV PRXYHPHQWVKDUPRQLTXHVLGHQWLTXHVFRPPHV¶LOVFRQVWLWXDLHQWXQVHXOVROLGH/¶DPRUWLVVHXU HVW LQRSpUDQW /H VHFRQG PRGH SURSUH FRUUHVSRQG j D = OHV GHX[ FKDULRWV RQW GHV PRXYHPHQWVV\PpWULTXHV [ = − [ ∀W
/H SUHPLHU PRGH SURSUH GH YLEUDWLRQ FRUUHVSRQG j D = OHV GHX[ FKDULRWV RQW GHV PRXYHPHQWVKDUPRQLTXHVLGHQWLTXHVFRPPHV¶LOVFRQVWLWXDLHQWXQVHXOVROLGH/¶DPRUWLVVHXU HVW LQRSpUDQW /H VHFRQG PRGH SURSUH FRUUHVSRQG j D = OHV GHX[ FKDULRWV RQW GHV PRXYHPHQWVV\PpWULTXHV [ = − [ ∀W
±&DVJpQpUDO
±&DVJpQpUDO
2Q QH SHXW SDV WURXYHU XQ FKDQJHPHQW GH EDVH TXL GLDJRQDOLVH OHV WURLV PDWULFHV [0 ] [&] [. ]
2Q QH SHXW SDV WURXYHU XQ FKDQJHPHQW GH EDVH TXL GLDJRQDOLVH OHV WURLV PDWULFHV [0 ] [&] [. ]
- 153 -
- 153 -
2QFDOFXOHGRQFOHVQSDUDPqWUHVQRUPDX[ TL W SDULQWpJUDWLRQGHVIRUPXOHV HWFRPSWH WHQX GHV UpVXOWDWV GX GX FKDSLWUH 9, (Q UHYHQDQW j OD EDVH LQLWLDOH OD VROXWLRQ JpQpUDOH V¶pFULWHQDSSHODQW {3α }OHVYHFWHXUVFRORQQHVGH [3 ]
2QFDOFXOHGRQFOHVQSDUDPqWUHVQRUPDX[ TL W SDULQWpJUDWLRQGHVIRUPXOHV HWFRPSWH WHQX GHV UpVXOWDWV GX GX FKDSLWUH 9, (Q UHYHQDQW j OD EDVH LQLWLDOH OD VROXWLRQ JpQpUDOH V¶pFULWHQDSSHODQW {3α }OHVYHFWHXUVFRORQQHVGH [3 ]
{T}= {3}T W + {3 }T W + !! + {3Q }TQ W
([HPSOHUHSUHQRQVOHHH[HPSOHGXDYHF . = . = . HW 0 = 0 = 0 /¶pTXDWLRQ V¶pFULWLFL ⎡0 2 ⎤ ⎧⎪ [ ⎫⎪ ⎡ & − &⎤ ⎧⎪ [ ⎫⎪ ⎡. 2⎤ ⎧⎪ [ ⎫⎪ ⎧⎪⎫⎪ ⎢ ⎥ ⎨ ⎬+ ⎢ ⎥ ⎨ ⎬+ ⎢ ⎥ ⎨ ⎬ = ⎨ ⎬ ⎢⎣ 2 0 ⎥⎦ ⎪⎩[ ⎪⎭ ⎢⎣− & &⎥⎦ ⎪⎩[ ⎪⎭ ⎢⎣ 2 . ⎥⎦ ⎪⎩[ ⎪⎭ ⎪⎩⎪⎭ /HVGHX[SXOVDWLRQVQDWXUHOOHVVRQWpJDOHV ω = ω =
. /HVYHFWHXUVSURSUHVFRPPXQV 0
{T}= {3}T W + {3 }T W + !! + {3Q }TQ W
([HPSOHUHSUHQRQVOHHH[HPSOHGXDYHF . = . = . HW 0 = 0 = 0 /¶pTXDWLRQ V¶pFULWLFL ⎡0 2 ⎤ ⎧⎪ [ ⎫⎪ ⎡ & − &⎤ ⎧⎪ [ ⎫⎪ ⎡. 2⎤ ⎧⎪ [ ⎫⎪ ⎧⎪⎫⎪ ⎢ ⎥ ⎨ ⎬+ ⎢ ⎥ ⎨ ⎬+ ⎢ ⎥ ⎨ ⎬ = ⎨ ⎬ ⎢⎣ 2 0 ⎥⎦ ⎪⎩[ ⎪⎭ ⎢⎣− & &⎥⎦ ⎪⎩[ ⎪⎭ ⎢⎣ 2 . ⎥⎦ ⎪⎩[ ⎪⎭ ⎪⎩⎪⎭ /HVGHX[SXOVDWLRQVQDWXUHOOHVVRQWpJDOHV ω = ω =
. /HVYHFWHXUVSURSUHVFRPPXQV 0
DX[WURLVPDWULFHVVRQW ⎡ ⎤ ⎧⎫ ⎧ ⎫ {3}= ⎪⎨ ⎪⎬ HW {3 }= ⎪⎨ ⎪⎬ G¶RODPDWULFHGHSDVVDJH [3] = ⎢ ⎥ ⎪⎩⎪⎭ ⎪⎩− ⎪⎭ ⎢⎣ − ⎥⎦
DX[WURLVPDWULFHVVRQW ⎡ ⎤ ⎧⎫ ⎧ ⎫ {3}= ⎪⎨ ⎪⎬ HW {3 }= ⎪⎨ ⎪⎬ G¶RODPDWULFHGHSDVVDJH [3] = ⎢ ⎥ ⎪⎩⎪⎭ ⎪⎩− ⎪⎭ ⎢⎣ − ⎥⎦
/HVpTXDWLRQV V¶pFULYHQWLFL 0 T + . T = HW 0 T + & T + . T =
/HVpTXDWLRQV V¶pFULYHQWLFL 0 T + . T = HW 0 T + & T + . T =
6XSSRVRQVXQDPRUWLVVHPHQWIDLEOH & < .0
6XSSRVRQVXQDPRUWLVVHPHQWIDLEOH & < .0
2QDDORUV
T W = D FRV ω W + ϕ
2QDDORUV
T W = D FRV ω W + ϕ
(W
T W = D H −λωW FRV Ω W + ϕ
(W
T W = D H −λωW FRV Ω W + ϕ
DYHF
ω=
. λ = 0
& Ω = ω − λ .0
HWHQILQGDQVODEDVHLQLWLDOHODVROXWLRQJpQpUDOH
DYHF
ω=
. λ = 0
& Ω = ω − λ .0
HWHQILQGDQVODEDVHLQLWLDOHODVROXWLRQJpQpUDOH
⎧⎪ [ = D FRV ωW + ϕ + D H −λωW FRV Ω W + ϕ ⎨ ⎪⎩[ = D FRV ωW + ϕ − D H − λωW FRV Ω W + ϕ
⎧⎪ [ = D FRV ωW + ϕ + D H −λωW FRV Ω W + ϕ ⎨ ⎪⎩[ = D FRV ωW + ϕ − D H − λωW FRV Ω W + ϕ
/H SUHPLHU PRGH SURSUH GH YLEUDWLRQ FRUUHVSRQG j D = OHV GHX[ FKDULRWV RQW GHV PRXYHPHQWVKDUPRQLTXHVLGHQWLTXHVFRPPHV¶LOVFRQVWLWXDLHQWXQVHXOVROLGH/¶DPRUWLVVHXU HVW LQRSpUDQW /H VHFRQG PRGH SURSUH FRUUHVSRQG j D = OHV GHX[ FKDULRWV RQW GHV PRXYHPHQWVV\PpWULTXHV [ = − [ ∀W
/H SUHPLHU PRGH SURSUH GH YLEUDWLRQ FRUUHVSRQG j D = OHV GHX[ FKDULRWV RQW GHV PRXYHPHQWVKDUPRQLTXHVLGHQWLTXHVFRPPHV¶LOVFRQVWLWXDLHQWXQVHXOVROLGH/¶DPRUWLVVHXU HVW LQRSpUDQW /H VHFRQG PRGH SURSUH FRUUHVSRQG j D = OHV GHX[ FKDULRWV RQW GHV PRXYHPHQWVV\PpWULTXHV [ = − [ ∀W
±&DVJpQpUDO
±&DVJpQpUDO
2Q QH SHXW SDV WURXYHU XQ FKDQJHPHQW GH EDVH TXL GLDJRQDOLVH OHV WURLV PDWULFHV [0 ] [&] [. ]
2Q QH SHXW SDV WURXYHU XQ FKDQJHPHQW GH EDVH TXL GLDJRQDOLVH OHV WURLV PDWULFHV [0 ] [&] [. ]
- 153 -
- 153 -
/HSUREOqPHHVWDORUVFRPSOH[HHWQRXVSURSRVRQVGHX[PpWKRGHVGHUpVROXWLRQ
/HSUREOqPHHVWDORUVFRPSOH[HHWQRXVSURSRVRQVGHX[PpWKRGHVGHUpVROXWLRQ
UHPpWKRGHODVROXWLRQJpQpUDOH {T}GHO¶pTXDWLRQ HVWQpFHVVDLUHPHQWXQHFRPELQDLVRQ OLQpDLUHHWKRPRJqQHGHQVROXWLRQVSDUWLFXOLqUHVTXHOFRQTXHVLQGpSHQGDQWHVHOOHVHVWGRQF GXW\SH
UHPpWKRGHODVROXWLRQJpQpUDOH {T}GHO¶pTXDWLRQ HVWQpFHVVDLUHPHQWXQHFRPELQDLVRQ OLQpDLUHHWKRPRJqQHGHQVROXWLRQVSDUWLFXOLqUHVTXHOFRQTXHVLQGpSHQGDQWHVHOOHVHVWGRQF GXW\SH
{T}= ∑ $ α {T α W }
{T}= ∑ $ α {T α W }
Q
Q
α =
α =
2Q SHXW SDUIRLV GpWHUPLQHU OHV {T α W } HQ ©HVVD\DQWª GHV IRQFWLRQV HW HQ OHV ©DMXVWDQWª SRXU TX¶HOOHV FRQVWLWXHQW HIIHFWLYHPHQW GHV VROXWLRQV GH /HV Q FRHIILFLHQW $ α
2Q SHXW SDUIRLV GpWHUPLQHU OHV {T α W } HQ ©HVVD\DQWª GHV IRQFWLRQV HW HQ OHV ©DMXVWDQWª SRXU TX¶HOOHV FRQVWLWXHQW HIIHFWLYHPHQW GHV VROXWLRQV GH /HV Q FRHIILFLHQW $ α
LQLWLDOHV T L HW T L
LQLWLDOHV T L HW T L
⎧⎪{T}⎫⎪ HPpWKRGHDSSHORQV {;}= ⎨ ⎬ ODPDWULFHFRORQQHjQ OLJQHVGHFRPSRVDQWHVGH {T}HW ⎪⎩{T }⎪⎭ {T }UpXQLHV
⎧⎪{T}⎫⎪ HPpWKRGHDSSHORQV {;}= ⎨ ⎬ ODPDWULFHFRORQQHjQ OLJQHVGHFRPSRVDQWHVGH {T}HW ⎪⎩{T }⎪⎭ {T }UpXQLHV
/¶pTXDWLRQ HVW DORUV pTXLYDOHQWH j O¶pTXDWLRQ GLIIpUHQWLHOOH PDWULFLHOOH OLQpDLUH GX SUHPLHURUGUHjFRHIILFLHQWVFRQVWDQWV
/¶pTXDWLRQ HVW DORUV pTXLYDOHQWH j O¶pTXDWLRQ GLIIpUHQWLHOOH PDWULFLHOOH OLQpDLUH GX SUHPLHURUGUHjFRHIILFLHQWVFRQVWDQWV
⎧{T }⎫ ⎡ [2] [,] ⎤ ⎧{T}⎫ ⎥⎪ ⎪ ⎪ ⎪ ⎢ {;}= ⎨ ⎬ = ⎢ ⎥ ⎨ ⎬ = [$ ]{;} ⎪{T}⎪ ⎢ ⎪ ⎪ − − ⎩ ⎭ ⎣ − [0 ] [. ] − [0 ] [&]⎥⎦ ⎩{T }⎭
⎧{T }⎫ ⎡ [2] [,] ⎤ ⎧{T}⎫ ⎥⎪ ⎪ ⎪ ⎪ ⎢ {;}= ⎨ ⎬ = ⎢ ⎥ ⎨ ⎬ = [$ ]{;} ⎪{T}⎪ ⎢ ⎪ ⎪ − − ⎩ ⎭ ⎣ − [0 ] [. ] − [0 ] [&]⎥⎦ ⎩{T }⎭
FRPSRVDQWHV GH {T} GDQV OD EDVH GHV {T α } VH GpWHUPLQHQW DX PR\HQ GHV Q FRQGLWLRQV
2QFKHUFKHHQVXLWHjUpGXLUHODPDWULFH [$ ]FDUUpHGHGLPHQVLRQQ[Q jXQHIRUPHDXVVL VLPSOHTXHSRVVLEOHSDUFKDQJHPHQWGHEDVH/DIRUPHODSOXVVLPSOHHVWODIRUPHGLDJRQDOH PDLV HOOH Q¶H[LVWH SDV WRXMRXUV 3DU FRQWUH RQ SHXW WRXMRXUV UpGXLUH [$ ] j XQ IRUPH ©WULDQJXODLUHª [$ ]F¶HVWjGLUHQHFRPSRUWDQWTXHGHV]pURVDXGHVVXVRXDXGHVVRXV GHOD GLDJRQDOHSULQFLSDOH6L [3 ]HVWODPDWULFHGHSDVVDJHRQDOHVIRUPXOHV
{;}= [3]{;}
{; }= [3]{; } [$ ]= [3]− [$][3]
{}
FRPSRVDQWHV GH {T} GDQV OD EDVH GHV {T α } VH GpWHUPLQHQW DX PR\HQ GHV Q FRQGLWLRQV
2QFKHUFKHHQVXLWHjUpGXLUHODPDWULFH [$ ]FDUUpHGHGLPHQVLRQQ[Q jXQHIRUPHDXVVL VLPSOHTXHSRVVLEOHSDUFKDQJHPHQWGHEDVH/DIRUPHODSOXVVLPSOHHVWODIRUPHGLDJRQDOH PDLV HOOH Q¶H[LVWH SDV WRXMRXUV 3DU FRQWUH RQ SHXW WRXMRXUV UpGXLUH [$ ] j XQ IRUPH ©WULDQJXODLUHª [$ ]F¶HVWjGLUHQHFRPSRUWDQWTXHGHV]pURVDXGHVVXVRXDXGHVVRXV GHOD GLDJRQDOHSULQFLSDOH6L [3 ]HVWODPDWULFHGHSDVVDJHRQDOHVIRUPXOHV
{;}= [3]{;}
{; }= [3]{; } [$ ]= [3]− [$][3]
= [$ ]{;}VHUpVRXW©HQFDVFDGHª 'DQVODQRXYHOOHEDVHO¶pTXDWLRQ ;
±6758&785(/,1e$,5(&216(59$7,9((;&,7e(
±6758&785(/,1e$,5(&216(59$7,9((;&,7e(
(OOHREpLWjO¶pTXDWLRQGLIIpUHQWLHOOHPDWULFLHOOH
(OOHREpLWjO¶pTXDWLRQGLIIpUHQWLHOOHPDWULFLHOOH
[0]{T}+ [. ]{T}= {) W }
{}
= [$ ]{;}VHUpVRXW©HQFDVFDGHª 'DQVODQRXYHOOHEDVHO¶pTXDWLRQ ;
[0]{T}+ [. ]{T}= {) W }
/D VROXWLRQ JpQpUDOH GH O¶pTXDWLRQ FRPSOqWH V¶REWLHQW HQ DMRXWDQW j OD VROXWLRQ JpQpUDOH KRPRJqQH RX VDQV VHFRQG PHPEUH XQH VROXWLRQ SDUWLFXOLqUH TXHOFRQTXH GH O¶pTXDWLRQ JpQpUDOH
/D VROXWLRQ JpQpUDOH GH O¶pTXDWLRQ FRPSOqWH V¶REWLHQW HQ DMRXWDQW j OD VROXWLRQ JpQpUDOH KRPRJqQH RX VDQV VHFRQG PHPEUH XQH VROXWLRQ SDUWLFXOLqUH TXHOFRQTXH GH O¶pTXDWLRQ JpQpUDOH
- 154 -
- 154 -
/HSUREOqPHHVWDORUVFRPSOH[HHWQRXVSURSRVRQVGHX[PpWKRGHVGHUpVROXWLRQ
/HSUREOqPHHVWDORUVFRPSOH[HHWQRXVSURSRVRQVGHX[PpWKRGHVGHUpVROXWLRQ
UHPpWKRGHODVROXWLRQJpQpUDOH {T}GHO¶pTXDWLRQ HVWQpFHVVDLUHPHQWXQHFRPELQDLVRQ OLQpDLUHHWKRPRJqQHGHQVROXWLRQVSDUWLFXOLqUHVTXHOFRQTXHVLQGpSHQGDQWHVHOOHVHVWGRQF GXW\SH
UHPpWKRGHODVROXWLRQJpQpUDOH {T}GHO¶pTXDWLRQ HVWQpFHVVDLUHPHQWXQHFRPELQDLVRQ OLQpDLUHHWKRPRJqQHGHQVROXWLRQVSDUWLFXOLqUHVTXHOFRQTXHVLQGpSHQGDQWHVHOOHVHVWGRQF GXW\SH
Q
{T}= ∑ $ α {T α W }
Q
{T}= ∑ $ α {T α W }
α =
α =
2Q SHXW SDUIRLV GpWHUPLQHU OHV {T α W } HQ ©HVVD\DQWª GHV IRQFWLRQV HW HQ OHV ©DMXVWDQWª SRXU TX¶HOOHV FRQVWLWXHQW HIIHFWLYHPHQW GHV VROXWLRQV GH /HV Q FRHIILFLHQW $ α FRPSRVDQWHV GH {T} GDQV OD EDVH GHV {T α } VH GpWHUPLQHQW DX PR\HQ GHV Q FRQGLWLRQV LQLWLDOHV T L HW T L
2Q SHXW SDUIRLV GpWHUPLQHU OHV {T α W } HQ ©HVVD\DQWª GHV IRQFWLRQV HW HQ OHV ©DMXVWDQWª SRXU TX¶HOOHV FRQVWLWXHQW HIIHFWLYHPHQW GHV VROXWLRQV GH /HV Q FRHIILFLHQW $ α FRPSRVDQWHV GH {T} GDQV OD EDVH GHV {T α } VH GpWHUPLQHQW DX PR\HQ GHV Q FRQGLWLRQV LQLWLDOHV T L HW T L
⎧⎪{T}⎫⎪ HPpWKRGHDSSHORQV {;}= ⎨ ⎬ ODPDWULFHFRORQQHjQ OLJQHVGHFRPSRVDQWHVGH {T}HW ⎪⎩{T }⎪⎭ {T }UpXQLHV
⎧⎪{T}⎫⎪ HPpWKRGHDSSHORQV {;}= ⎨ ⎬ ODPDWULFHFRORQQHjQ OLJQHVGHFRPSRVDQWHVGH {T}HW ⎪⎩{T }⎪⎭ {T }UpXQLHV
/¶pTXDWLRQ HVW DORUV pTXLYDOHQWH j O¶pTXDWLRQ GLIIpUHQWLHOOH PDWULFLHOOH OLQpDLUH GX SUHPLHURUGUHjFRHIILFLHQWVFRQVWDQWV
/¶pTXDWLRQ HVW DORUV pTXLYDOHQWH j O¶pTXDWLRQ GLIIpUHQWLHOOH PDWULFLHOOH OLQpDLUH GX SUHPLHURUGUHjFRHIILFLHQWVFRQVWDQWV
⎧{T }⎫ ⎡ [2] [,] ⎤ ⎧{T}⎫ ⎥⎪ ⎪ ⎪ ⎪ ⎢ {;}= ⎨ ⎬ = ⎢ ⎥ ⎨ ⎬ = [$ ]{;} ⎪{T}⎪ ⎢ ⎪ ⎪ − − ⎩ ⎭ ⎣ − [0 ] [. ] − [0 ] [&]⎥⎦ ⎩{T }⎭
⎧{T }⎫ ⎡ [2] [,] ⎤ ⎧{T}⎫ ⎥⎪ ⎪ ⎪ ⎪ ⎢ {;}= ⎨ ⎬ = ⎢ ⎥ ⎨ ⎬ = [$ ]{;} ⎪{T}⎪ ⎢ ⎪ ⎪ − − ⎩ ⎭ ⎣ − [0 ] [. ] − [0 ] [&]⎥⎦ ⎩{T }⎭
2QFKHUFKHHQVXLWHjUpGXLUHODPDWULFH [$ ]FDUUpHGHGLPHQVLRQQ[Q jXQHIRUPHDXVVL VLPSOHTXHSRVVLEOHSDUFKDQJHPHQWGHEDVH/DIRUPHODSOXVVLPSOHHVWODIRUPHGLDJRQDOH PDLV HOOH Q¶H[LVWH SDV WRXMRXUV 3DU FRQWUH RQ SHXW WRXMRXUV UpGXLUH [$ ] j XQ IRUPH ©WULDQJXODLUHª [$ ]F¶HVWjGLUHQHFRPSRUWDQWTXHGHV]pURVDXGHVVXVRXDXGHVVRXV GHOD GLDJRQDOHSULQFLSDOH6L [3 ]HVWODPDWULFHGHSDVVDJHRQDOHVIRUPXOHV
{;}= [3]{;}
{; }= [3]{; } [$ ]= [3]− [$][3]
{}
2QFKHUFKHHQVXLWHjUpGXLUHODPDWULFH [$ ]FDUUpHGHGLPHQVLRQQ[Q jXQHIRUPHDXVVL VLPSOHTXHSRVVLEOHSDUFKDQJHPHQWGHEDVH/DIRUPHODSOXVVLPSOHHVWODIRUPHGLDJRQDOH PDLV HOOH Q¶H[LVWH SDV WRXMRXUV 3DU FRQWUH RQ SHXW WRXMRXUV UpGXLUH [$ ] j XQ IRUPH ©WULDQJXODLUHª [$ ]F¶HVWjGLUHQHFRPSRUWDQWTXHGHV]pURVDXGHVVXVRXDXGHVVRXV GHOD GLDJRQDOHSULQFLSDOH6L [3 ]HVWODPDWULFHGHSDVVDJHRQDOHVIRUPXOHV
{;}= [3]{;}
{; }= [3]{; } [$ ]= [3]− [$][3]
= [$ ]{;}VHUpVRXW©HQFDVFDGHª 'DQVODQRXYHOOHEDVHO¶pTXDWLRQ ;
±6758&785(/,1e$,5(&216(59$7,9((;&,7e(
±6758&785(/,1e$,5(&216(59$7,9((;&,7e(
(OOHREpLWjO¶pTXDWLRQGLIIpUHQWLHOOHPDWULFLHOOH
(OOHREpLWjO¶pTXDWLRQGLIIpUHQWLHOOHPDWULFLHOOH
[0]{T}+ [. ]{T}= {) W }
{}
= [$ ]{;}VHUpVRXW©HQFDVFDGHª 'DQVODQRXYHOOHEDVHO¶pTXDWLRQ ;
[0]{T}+ [. ]{T}= {) W }
/D VROXWLRQ JpQpUDOH GH O¶pTXDWLRQ FRPSOqWH V¶REWLHQW HQ DMRXWDQW j OD VROXWLRQ JpQpUDOH KRPRJqQH RX VDQV VHFRQG PHPEUH XQH VROXWLRQ SDUWLFXOLqUH TXHOFRQTXH GH O¶pTXDWLRQ JpQpUDOH
/D VROXWLRQ JpQpUDOH GH O¶pTXDWLRQ FRPSOqWH V¶REWLHQW HQ DMRXWDQW j OD VROXWLRQ JpQpUDOH KRPRJqQH RX VDQV VHFRQG PHPEUH XQH VROXWLRQ SDUWLFXOLqUH TXHOFRQTXH GH O¶pTXDWLRQ JpQpUDOH
- 154 -
- 154 -
/DVROXWLRQJpQpUDOHGHO¶pTXDWLRQKRPRJqQH GLWHYLEUDWLRQQDWXUHOOHHVWGRQQpHSDUOHV IRUPXOHV HW ODVROXWLRQSDUWLFXOLqUHGHO¶pTXDWLRQFRPSOqWHQRPPpHUpSRQVHIRUFpH HWQRWpH T∗ VHGpWHUPLQHHQJpQpUDOHQVHSODoDQWGDQVODEDVHQRUPDOHRXO¶pTXDWLRQ V¶pFULW
/DVROXWLRQJpQpUDOHGHO¶pTXDWLRQKRPRJqQH GLWHYLEUDWLRQQDWXUHOOHHVWGRQQpHSDUOHV IRUPXOHV HW ODVROXWLRQSDUWLFXOLqUHGHO¶pTXDWLRQFRPSOqWHQRPPpHUpSRQVHIRUFpH HWQRWpH T∗ VHGpWHUPLQHHQJpQpUDOHQVHSODoDQWGDQVODEDVHQRUPDOHRXO¶pTXDWLRQ V¶pFULW
{ }
[0]{T}+ [. ]{T}= [3 W ]{)}= {)}
RX
{T}+ [Ω ]{T}= [3] [0 ] {)}= [0 ] {)}
−
−
−
RX
/HSUREOqPHHVWDLQVLGpFRXSOpSXLVTX¶RQDOHVQpTXDWLRQVVFDODLUHV
PL TL + N L TL = )L W
{ }
[0]{T}+ [. ]{T}= [3 W ]{)}= {)}
{T}+ [Ω ]{T}= [3]− [0 ]− {)}= [0 ]− {)}
/HSUREOqPHHVWDLQVLGpFRXSOpSXLVTX¶RQDOHVQpTXDWLRQVVFDODLUHV
RX
PL TL + N L TL = )L W
TL + ωL TL = )L W PL
RX TL + ωL TL = )L W PL
2QHVWUDPHQpjO¶pWXGHGHQVWUXFWXUHVLQGpSHQGDQWHVj''/FDVWUDLWpDXFKDSLWUH9, 2Q SHXW UHQFRQWUHU ELHQ VU OHV WURLV W\SHV GH IRUFHV H[FLWDWULFHV KDUPRQLTXHV SpULRGLTXHVQRQKDUPRQLTXHVHWQRQSpULRGLTXHV
2QHVWUDPHQpjO¶pWXGHGHQVWUXFWXUHVLQGpSHQGDQWHVj''/FDVWUDLWpDXFKDSLWUH9, 2Q SHXW UHQFRQWUHU ELHQ VU OHV WURLV W\SHV GH IRUFHV H[FLWDWULFHV KDUPRQLTXHV SpULRGLTXHVQRQKDUPRQLTXHVHWQRQSpULRGLTXHV
±6758&785(/,1e$,5(',66,3$7,9((;&,7e(
±6758&785(/,1e$,5(',66,3$7,9((;&,7e(
(OOHREpLWjO¶pTXDWLRQGLIIpUHQWLHOOHPDWULFLHOOH
(OOHREpLWjO¶pTXDWLRQGLIIpUHQWLHOOHPDWULFLHOOH
[0]{T}+ [&]{T }+ [. ]{T}= {)}
[0]{T}+ [&]{T }+ [. ]{T}= {)}
&RPPH GDQV OH FDV GX SDUDJUDSKH SUpFpGHQW OD VROXWLRQ JpQpUDOH GH O¶pTXDWLRQ FRPSOqWH V¶REWLHQW HQ DMRXWDQW j OD VROXWLRQ JpQpUDOH GH O¶pTXDWLRQ VDQV VHFRQG PHPEUH XQH VROXWLRQ SDUWLFXOLqUHTXHOFRQTXHGHO¶pTXDWLRQFRPSOqWH1RXVDYRQVYXFRPPHQWREWHQLUODVROXWLRQ JpQpUDOHGHO¶pTXDWLRQVDQVVHFRQGPHPEUHTXLGRQQHOHPRXYHPHQWQDWXUHOGHODVWUXFWXUH SRXUREWHQLUXQHVROXWLRQSDUWLFXOLqUHGHO¶pTXDWLRQFRPSOqWHUpSRQVHIRUFpH GHX[FDVVRQWj HQYLVDJHUFRPPHDX
&RPPH GDQV OH FDV GX SDUDJUDSKH SUpFpGHQW OD VROXWLRQ JpQpUDOH GH O¶pTXDWLRQ FRPSOqWH V¶REWLHQW HQ DMRXWDQW j OD VROXWLRQ JpQpUDOH GH O¶pTXDWLRQ VDQV VHFRQG PHPEUH XQH VROXWLRQ SDUWLFXOLqUHTXHOFRQTXHGHO¶pTXDWLRQFRPSOqWH1RXVDYRQVYXFRPPHQWREWHQLUODVROXWLRQ JpQpUDOHGHO¶pTXDWLRQVDQVVHFRQGPHPEUHTXLGRQQHOHPRXYHPHQWQDWXUHOGHODVWUXFWXUH SRXUREWHQLUXQHVROXWLRQSDUWLFXOLqUHGHO¶pTXDWLRQFRPSOqWHUpSRQVHIRUFpH GHX[FDVVRQWj HQYLVDJHUFRPPHDX
±/HFDVGH%DVLOH
±/HFDVGH%DVLOH
'DQVODEDVHQRUPDOHO¶pTXDWLRQ GHYLHQW
'DQVODEDVHQRUPDOHO¶pTXDWLRQ GHYLHQW
[0 ]{T}+ [& ]{T }+ [. ]{T}= {)}= [3 W ]{)}
(OOHpTXLYDXWDX[QpTXDWLRQVVFDODLUHVGpFRXSOpHV
(OOHpTXLYDXWDX[QpTXDWLRQVVFDODLUHVGpFRXSOpHV
PL TL + &L T L + N L TL = )L W
[0 ]{T}+ [& ]{T }+ [. ]{T}= {)}= [3 W ]{)}
FDVWUDLWpDXFKDSLWUH9,
PL TL + &L T L + N L TL = )L W
FDVWUDLWpDXFKDSLWUH9,
- 155 -
- 155 -
/DVROXWLRQJpQpUDOHGHO¶pTXDWLRQKRPRJqQH GLWHYLEUDWLRQQDWXUHOOHHVWGRQQpHSDUOHV IRUPXOHV HW ODVROXWLRQSDUWLFXOLqUHGHO¶pTXDWLRQFRPSOqWHQRPPpHUpSRQVHIRUFpH HWQRWpH T∗ VHGpWHUPLQHHQJpQpUDOHQVHSODoDQWGDQVODEDVHQRUPDOHRXO¶pTXDWLRQ V¶pFULW
/DVROXWLRQJpQpUDOHGHO¶pTXDWLRQKRPRJqQH GLWHYLEUDWLRQQDWXUHOOHHVWGRQQpHSDUOHV IRUPXOHV HW ODVROXWLRQSDUWLFXOLqUHGHO¶pTXDWLRQFRPSOqWHQRPPpHUpSRQVHIRUFpH HWQRWpH T∗ VHGpWHUPLQHHQJpQpUDOHQVHSODoDQWGDQVODEDVHQRUPDOHRXO¶pTXDWLRQ V¶pFULW
{ }
RX
[0]{T}+ [. ]{T}= [3 W ]{)}= {)}
{T}+ [Ω ]{T}= [3] [0 ] {)}= [0 ] {)}
−
−
−
RX
/HSUREOqPHHVWDLQVLGpFRXSOpSXLVTX¶RQDOHVQpTXDWLRQVVFDODLUHV
PL TL + N L TL = )L W
{ }
[0]{T}+ [. ]{T}= [3 W ]{)}= {)}
{T}+ [Ω ]{T}= [3]− [0 ]− {)}= [0 ]− {)}
/HSUREOqPHHVWDLQVLGpFRXSOpSXLVTX¶RQDOHVQpTXDWLRQVVFDODLUHV
RX
PL TL + N L TL = )L W
TL + ωL TL = )L W PL
RX TL + ωL TL = )L W PL
2QHVWUDPHQpjO¶pWXGHGHQVWUXFWXUHVLQGpSHQGDQWHVj''/FDVWUDLWpDXFKDSLWUH9, 2Q SHXW UHQFRQWUHU ELHQ VU OHV WURLV W\SHV GH IRUFHV H[FLWDWULFHV KDUPRQLTXHV SpULRGLTXHVQRQKDUPRQLTXHVHWQRQSpULRGLTXHV
2QHVWUDPHQpjO¶pWXGHGHQVWUXFWXUHVLQGpSHQGDQWHVj''/FDVWUDLWpDXFKDSLWUH9, 2Q SHXW UHQFRQWUHU ELHQ VU OHV WURLV W\SHV GH IRUFHV H[FLWDWULFHV KDUPRQLTXHV SpULRGLTXHVQRQKDUPRQLTXHVHWQRQSpULRGLTXHV
±6758&785(/,1e$,5(',66,3$7,9((;&,7e(
±6758&785(/,1e$,5(',66,3$7,9((;&,7e(
(OOHREpLWjO¶pTXDWLRQGLIIpUHQWLHOOHPDWULFLHOOH
(OOHREpLWjO¶pTXDWLRQGLIIpUHQWLHOOHPDWULFLHOOH
[0]{T}+ [&]{T }+ [. ]{T}= {)}
[0]{T}+ [&]{T }+ [. ]{T}= {)}
&RPPH GDQV OH FDV GX SDUDJUDSKH SUpFpGHQW OD VROXWLRQ JpQpUDOH GH O¶pTXDWLRQ FRPSOqWH V¶REWLHQW HQ DMRXWDQW j OD VROXWLRQ JpQpUDOH GH O¶pTXDWLRQ VDQV VHFRQG PHPEUH XQH VROXWLRQ SDUWLFXOLqUHTXHOFRQTXHGHO¶pTXDWLRQFRPSOqWH1RXVDYRQVYXFRPPHQWREWHQLUODVROXWLRQ JpQpUDOHGHO¶pTXDWLRQVDQVVHFRQGPHPEUHTXLGRQQHOHPRXYHPHQWQDWXUHOGHODVWUXFWXUH SRXUREWHQLUXQHVROXWLRQSDUWLFXOLqUHGHO¶pTXDWLRQFRPSOqWHUpSRQVHIRUFpH GHX[FDVVRQWj HQYLVDJHUFRPPHDX
&RPPH GDQV OH FDV GX SDUDJUDSKH SUpFpGHQW OD VROXWLRQ JpQpUDOH GH O¶pTXDWLRQ FRPSOqWH V¶REWLHQW HQ DMRXWDQW j OD VROXWLRQ JpQpUDOH GH O¶pTXDWLRQ VDQV VHFRQG PHPEUH XQH VROXWLRQ SDUWLFXOLqUHTXHOFRQTXHGHO¶pTXDWLRQFRPSOqWH1RXVDYRQVYXFRPPHQWREWHQLUODVROXWLRQ JpQpUDOHGHO¶pTXDWLRQVDQVVHFRQGPHPEUHTXLGRQQHOHPRXYHPHQWQDWXUHOGHODVWUXFWXUH SRXUREWHQLUXQHVROXWLRQSDUWLFXOLqUHGHO¶pTXDWLRQFRPSOqWHUpSRQVHIRUFpH GHX[FDVVRQWj HQYLVDJHUFRPPHDX
±/HFDVGH%DVLOH
±/HFDVGH%DVLOH
'DQVODEDVHQRUPDOHO¶pTXDWLRQ GHYLHQW
'DQVODEDVHQRUPDOHO¶pTXDWLRQ GHYLHQW
[0 ]{T}+ [& ]{T }+ [. ]{T}= {)}= [3 W ]{)}
(OOHpTXLYDXWDX[QpTXDWLRQVVFDODLUHVGpFRXSOpHV
PL TL + &L T L + N L TL = )L W
FDVWUDLWpDXFKDSLWUH9,
[0 ]{T}+ [& ]{T }+ [. ]{T}= {)}= [3 W ]{)}
(OOHpTXLYDXWDX[QpTXDWLRQVVFDODLUHVGpFRXSOpHV
PL TL + &L T L + N L TL = )L W
FDVWUDLWpDXFKDSLWUH9,
- 155 -
- 155 -
±/HFDVJpQpUDO
±/HFDVJpQpUDO
/H GpFRXSODJH Q¶HVW DORUV SRVVLEOH RQ SHXW GpWHUPLQHU OD UpSRQVH IRUFpH j SDUWLU GH OD IRUPXOH SDUXQHPpWKRGHGH©YDULDWLRQVGHVFRQVWDQWHVª $ α F¶HVWjGLUHHQFKHUFKDQW QIRQFWLRQV $ α W WHOOHVTXH
/H GpFRXSODJH Q¶HVW DORUV SRVVLEOH RQ SHXW GpWHUPLQHU OD UpSRQVH IRUFpH j SDUWLU GH OD IRUPXOH SDUXQHPpWKRGHGH©YDULDWLRQVGHVFRQVWDQWHVª $ α F¶HVWjGLUHHQFKHUFKDQW QIRQFWLRQV $ α W WHOOHVTXH
Q
Q
{T}= ∑ $α {T α W }VRLWVROXWLRQGH
{T}= ∑ $α {T α W }VRLWVROXWLRQGH
α =
α =
- 156 -
- 156 -
±/HFDVJpQpUDO
±/HFDVJpQpUDO
/H GpFRXSODJH Q¶HVW DORUV SRVVLEOH RQ SHXW GpWHUPLQHU OD UpSRQVH IRUFpH j SDUWLU GH OD IRUPXOH SDUXQHPpWKRGHGH©YDULDWLRQVGHVFRQVWDQWHVª $ α F¶HVWjGLUHHQFKHUFKDQW QIRQFWLRQV $ α W WHOOHVTXH
/H GpFRXSODJH Q¶HVW DORUV SRVVLEOH RQ SHXW GpWHUPLQHU OD UpSRQVH IRUFpH j SDUWLU GH OD IRUPXOH SDUXQHPpWKRGHGH©YDULDWLRQVGHVFRQVWDQWHVª $ α F¶HVWjGLUHHQFKHUFKDQW QIRQFWLRQV $ α W WHOOHVTXH
Q
Q
{T}= ∑ $α {T α W }VRLWVROXWLRQGH
{T}= ∑ $α {T α W }VRLWVROXWLRQGH
α =
α =
- 156 -
- 156 -
&+$3,75(9,,,
&+$3,75(9,,,
'<1$0,48('(60,/,(8;&217,18662/,'(6
'<1$0,48('(60,/,(8;&217,18662/,'(6
1RXV UHSUHQRQV PDLQWHQDQW OD SUHPLqUH SDUWLH GX WRPH , FRQVDFUpH DX[ VROLGHV pODVWLTXHV SRXU HQ pWHQGUH OHV UpVXOWDWV DX[ FDV G\QDPLTXHV F¶HVW j GLUH DX[ FDV R OHV GLIIpUHQWV SDUDPqWUHV GX SUREOqPH VRQW HQ IRQFWLRQ GX WHPSV 6DXI LQGLFDWLRQ FRQWUDLUH QRXV HQ JDUGHURQV OHV K\SRWKqVHV JpQpUDOHV FRPSRUWHPHQW OLQpDLUH SULQFLSH GH 6DLQW9HQDQW SHWLWHVVHGHVGpSODFHPHQWVHWGHVGpIRUPDWLRQV
1RXV UHSUHQRQV PDLQWHQDQW OD SUHPLqUH SDUWLH GX WRPH , FRQVDFUpH DX[ VROLGHV pODVWLTXHV SRXU HQ pWHQGUH OHV UpVXOWDWV DX[ FDV G\QDPLTXHV F¶HVW j GLUH DX[ FDV R OHV GLIIpUHQWV SDUDPqWUHV GX SUREOqPH VRQW HQ IRQFWLRQ GX WHPSV 6DXI LQGLFDWLRQ FRQWUDLUH QRXV HQ JDUGHURQV OHV K\SRWKqVHV JpQpUDOHV FRPSRUWHPHQW OLQpDLUH SULQFLSH GH 6DLQW9HQDQW SHWLWHVVHGHVGpSODFHPHQWVHWGHVGpIRUPDWLRQV
±'e3/$&(0(17(7'e)250$7,21'¶81'20$,1(e/e0(17$,5(
±'e3/$&(0(17(7'e)250$7,21'¶81'20$,1(e/e0(17$,5(
{R [\]}GpVLJQDQWXQUHSqUHRUWKRQRUPpOLpjODVWUXFWXUHLVRORQVSDUODSHQVpHDXVHLQG¶XQ VROLGH XQ GRPDLQH ' pOpPHQWDLUH GH FHQWUH 3 HW GH SDUWLFXOH FRXUDQWH 4 'DQV OD FRQILJXUDWLRQ G¶pTXLOLEUH VWDEOH SULVH FRPPH UpIpUHQFH 3 RFFXSH OD SRVLWLRQ 3 GH FRRUGRQQpHV [\] HW OD SDUWLFXOH YRLVLQH 4 OD SRVLWLRQ 4 GH FRRUGRQQpHV [ + G[ \ + G\ ] + G] 1RWRQVELHQTXH[\]QHVRQWSDVGHVIRQFWLRQVGXWHPSV
{R [\]}GpVLJQDQWXQUHSqUHRUWKRQRUPpOLpjODVWUXFWXUHLVRORQVSDUODSHQVpHDXVHLQG¶XQ VROLGH XQ GRPDLQH ' pOpPHQWDLUH GH FHQWUH 3 HW GH SDUWLFXOH FRXUDQWH 4 'DQV OD FRQILJXUDWLRQ G¶pTXLOLEUH VWDEOH SULVH FRPPH UpIpUHQFH 3 RFFXSH OD SRVLWLRQ 3 GH FRRUGRQQpHV [\] HW OD SDUWLFXOH YRLVLQH 4 OD SRVLWLRQ 4 GH FRRUGRQQpHV [ + G[ \ + G\ ] + G] 1RWRQVELHQTXH[\]QHVRQWSDVGHVIRQFWLRQVGXWHPSV
$XQLQVWDQWWFHVSDUWLFXOHV3HW4RQWGHVFRRUGRQQpHVGLWHVLQVWDQWDQpHVTXHO¶RQQRWHUD
$XQLQVWDQWWFHVSDUWLFXOHV3HW4RQWGHVFRRUGRQQpHVGLWHVLQVWDQWDQpHVTXHO¶RQQRWHUD
⎧[ + X [ \ ] W ⎧[ + X + G[ + GX ⎪⎪ ⎪⎪ 3 W ⎨ \ + Y [ \ ] W 4 W ⎨ \ + Y + G\ + GY ⎪ ⎪ ⎪⎩] + Z [ \ ] W ⎪⎩] + Z + G] + GZ
⎧[ + X [ \ ] W ⎧[ + X + G[ + GX ⎪⎪ ⎪⎪ 3 W ⎨ \ + Y [ \ ] W 4 W ⎨ \ + Y + G\ + GY ⎪ ⎪ ⎪⎩] + Z [ \ ] W ⎪⎩] + Z + G] + GZ
1RXV DGRSWHURQV OH SRLQW GH YXH GH /DJUDQJH TXL FRQVLVWH j VXLYUH XQH SDUWLFXOH RX XQ GRPDLQHPDWpULHOGDQVVRQPRXYHPHQWOHVYDULDEOHV[\]WGLWHVGH/DJUDQJHVRQWGRQF LQGpSHQGDQWHV
1RXV DGRSWHURQV OH SRLQW GH YXH GH /DJUDQJH TXL FRQVLVWH j VXLYUH XQH SDUWLFXOH RX XQ GRPDLQHPDWpULHOGDQVVRQPRXYHPHQWOHVYDULDEOHV[\]WGLWHVGH/DJUDQJHVRQWGRQF LQGpSHQGDQWHV
$WRXWLQVWDQWWOHYHFWHXUWUDQVODWLRQ 4 4 HVWUHOLpj 3R3 SDUODIRUPXOH
$WRXWLQVWDQWWOHYHFWHXUWUDQVODWLRQ 4 4 HVWUHOLpj 3R3 SDUODIRUPXOH
{4 4}= {3R3}+ [JUDG 3R3]{3 4 }
/DGpFRPSRVLWLRQFDQRQLTXHGXWHQVHXU JUDG 3R3 HQSDUWLHV\PpWULTXH E HWDQWLV\PpWULTXH Ω SHUPHWG¶pFULUH VRXVODIRUPH
{4 4}= {3R3}+ [Ω]{3 4 }+ [E]{3 4 }
{4 4}= {3R3}+ [JUDG 3R3]{3 4 }
/DGpFRPSRVLWLRQFDQRQLTXHGXWHQVHXU JUDG 3R3 HQSDUWLHV\PpWULTXH E HWDQWLV\PpWULTXH Ω SHUPHWG¶pFULUH VRXVODIRUPH
{4 4}= {3R3}+ [Ω]{3 4 }+ [E]{3 4 }
- 157 -
- 157 -
&+$3,75(9,,,
&+$3,75(9,,,
'<1$0,48('(60,/,(8;&217,18662/,'(6
'<1$0,48('(60,/,(8;&217,18662/,'(6
1RXV UHSUHQRQV PDLQWHQDQW OD SUHPLqUH SDUWLH GX WRPH , FRQVDFUpH DX[ VROLGHV pODVWLTXHV SRXU HQ pWHQGUH OHV UpVXOWDWV DX[ FDV G\QDPLTXHV F¶HVW j GLUH DX[ FDV R OHV GLIIpUHQWV SDUDPqWUHV GX SUREOqPH VRQW HQ IRQFWLRQ GX WHPSV 6DXI LQGLFDWLRQ FRQWUDLUH QRXV HQ JDUGHURQV OHV K\SRWKqVHV JpQpUDOHV FRPSRUWHPHQW OLQpDLUH SULQFLSH GH 6DLQW9HQDQW SHWLWHVVHGHVGpSODFHPHQWVHWGHVGpIRUPDWLRQV
1RXV UHSUHQRQV PDLQWHQDQW OD SUHPLqUH SDUWLH GX WRPH , FRQVDFUpH DX[ VROLGHV pODVWLTXHV SRXU HQ pWHQGUH OHV UpVXOWDWV DX[ FDV G\QDPLTXHV F¶HVW j GLUH DX[ FDV R OHV GLIIpUHQWV SDUDPqWUHV GX SUREOqPH VRQW HQ IRQFWLRQ GX WHPSV 6DXI LQGLFDWLRQ FRQWUDLUH QRXV HQ JDUGHURQV OHV K\SRWKqVHV JpQpUDOHV FRPSRUWHPHQW OLQpDLUH SULQFLSH GH 6DLQW9HQDQW SHWLWHVVHGHVGpSODFHPHQWVHWGHVGpIRUPDWLRQV
±'e3/$&(0(17(7'e)250$7,21'¶81'20$,1(e/e0(17$,5(
±'e3/$&(0(17(7'e)250$7,21'¶81'20$,1(e/e0(17$,5(
{R [\]}GpVLJQDQWXQUHSqUHRUWKRQRUPpOLpjODVWUXFWXUHLVRORQVSDUODSHQVpHDXVHLQG¶XQ
{R [\]}GpVLJQDQWXQUHSqUHRUWKRQRUPpOLpjODVWUXFWXUHLVRORQVSDUODSHQVpHDXVHLQG¶XQ
VROLGH XQ GRPDLQH ' pOpPHQWDLUH GH FHQWUH 3 HW GH SDUWLFXOH FRXUDQWH 4 'DQV OD FRQILJXUDWLRQ G¶pTXLOLEUH VWDEOH SULVH FRPPH UpIpUHQFH 3 RFFXSH OD SRVLWLRQ 3 GH FRRUGRQQpHV [\] HW OD SDUWLFXOH YRLVLQH 4 OD SRVLWLRQ 4 GH FRRUGRQQpHV [ + G[ \ + G\ ] + G] 1RWRQVELHQTXH[\]QHVRQWSDVGHVIRQFWLRQVGXWHPSV
VROLGH XQ GRPDLQH ' pOpPHQWDLUH GH FHQWUH 3 HW GH SDUWLFXOH FRXUDQWH 4 'DQV OD FRQILJXUDWLRQ G¶pTXLOLEUH VWDEOH SULVH FRPPH UpIpUHQFH 3 RFFXSH OD SRVLWLRQ 3 GH FRRUGRQQpHV [\] HW OD SDUWLFXOH YRLVLQH 4 OD SRVLWLRQ 4 GH FRRUGRQQpHV [ + G[ \ + G\ ] + G] 1RWRQVELHQTXH[\]QHVRQWSDVGHVIRQFWLRQVGXWHPSV
$XQLQVWDQWWFHVSDUWLFXOHV3HW4RQWGHVFRRUGRQQpHVGLWHVLQVWDQWDQpHVTXHO¶RQQRWHUD
$XQLQVWDQWWFHVSDUWLFXOHV3HW4RQWGHVFRRUGRQQpHVGLWHVLQVWDQWDQpHVTXHO¶RQQRWHUD
⎧[ + X [ \ ] W ⎧[ + X + G[ + GX ⎪⎪ ⎪⎪ 3 W ⎨ \ + Y [ \ ] W 4 W ⎨ \ + Y + G\ + GY ⎪ ⎪ ⎩⎪] + Z [ \ ] W ⎩⎪] + Z + G] + GZ
⎧[ + X [ \ ] W ⎧[ + X + G[ + GX ⎪⎪ ⎪⎪ 3 W ⎨ \ + Y [ \ ] W 4 W ⎨ \ + Y + G\ + GY ⎪ ⎪ ⎩⎪] + Z [ \ ] W ⎩⎪] + Z + G] + GZ
1RXV DGRSWHURQV OH SRLQW GH YXH GH /DJUDQJH TXL FRQVLVWH j VXLYUH XQH SDUWLFXOH RX XQ GRPDLQHPDWpULHOGDQVVRQPRXYHPHQWOHVYDULDEOHV[\]WGLWHVGH/DJUDQJHVRQWGRQF LQGpSHQGDQWHV
1RXV DGRSWHURQV OH SRLQW GH YXH GH /DJUDQJH TXL FRQVLVWH j VXLYUH XQH SDUWLFXOH RX XQ GRPDLQHPDWpULHOGDQVVRQPRXYHPHQWOHVYDULDEOHV[\]WGLWHVGH/DJUDQJHVRQWGRQF LQGpSHQGDQWHV
$WRXWLQVWDQWWOHYHFWHXUWUDQVODWLRQ 4 4 HVWUHOLpj 3R3 SDUODIRUPXOH
$WRXWLQVWDQWWOHYHFWHXUWUDQVODWLRQ 4 4 HVWUHOLpj 3R3 SDUODIRUPXOH
{4 4}= {3R3}+ [JUDG 3R3]{3 4 }
/DGpFRPSRVLWLRQFDQRQLTXHGXWHQVHXU JUDG 3R3 HQSDUWLHV\PpWULTXH E HWDQWLV\PpWULTXH Ω SHUPHWG¶pFULUH VRXVODIRUPH
{4 4}= {3R3}+ [Ω]{3 4 }+ [E]{3 4 } - 157 -
{4 4}= {3R3}+ [JUDG 3R3]{3 4 }
/DGpFRPSRVLWLRQFDQRQLTXHGXWHQVHXU JUDG 3R3 HQSDUWLHV\PpWULTXH E HWDQWLV\PpWULTXH Ω SHUPHWG¶pFULUH VRXVODIRUPH
{4 4}= {3R3}+ [Ω]{3 4 }+ [E]{3 4 } - 157 -
/H YRLVLQDJH GH 3 SDVVH GRQF HQWUH O¶pWDW GH UpIpUHQFH HW O¶pWDW DFWXHO W GH OD FRQILJXUDWLRQ ' jODFRQILJXUDWLRQ'SDUOHVWURLVWUDQVIRUPDWLRQVVXLYDQWHV
/H YRLVLQDJH GH 3 SDVVH GRQF HQWUH O¶pWDW GH UpIpUHQFH HW O¶pWDW DFWXHO W GH OD FRQILJXUDWLRQ ' jODFRQILJXUDWLRQ'SDUOHVWURLVWUDQVIRUPDWLRQVVXLYDQWHV
± XQHWUDQVODWLRQGHYHFWHXUGLUHFWHXU 3R3
± XQHWUDQVODWLRQGHYHFWHXUGLUHFWHXU 3R3
± XQHURWDWLRQDXWRXUGH3GpILQLHSDU
± XQHURWDWLRQDXWRXUGH3GpILQLHSDU
± XQHGpIRUPDWLRQSXUHFDUDFWpULVpHSDUOHWHQVHXU E
± XQHGpIRUPDWLRQSXUHFDUDFWpULVpHSDUOHWHQVHXU E
7RXWHVOHVSURSULpWpVHWDSSOLFDWLRQVGXWHQVHXUGpIRUPDWLRQ E H[DPLQpHVDXWRPH,FKDSLWUH SUHPLHUUHVWHQWYDODEOHVQDWXUHOOHPHQWHQ'\QDPLTXHO¶pWDWILQDO GHYDQWVLPSOHPHQWrWUH UHPSODFpSDUO¶pWDWLQVWDQWDQpW
7RXWHVOHVSURSULpWpVHWDSSOLFDWLRQVGXWHQVHXUGpIRUPDWLRQ E H[DPLQpHVDXWRPH,FKDSLWUH SUHPLHUUHVWHQWYDODEOHVQDWXUHOOHPHQWHQ'\QDPLTXHO¶pWDWILQDO GHYDQWVLPSOHPHQWrWUH UHPSODFpSDUO¶pWDWLQVWDQWDQpW
5HPDUTXHYLWHVVHVHWDFFpOpUDWLRQV
5HPDUTXHYLWHVVHVHWDFFpOpUDWLRQV
'DQV OH UHSqUH {R [\]} HW j O¶LQVWDQW W OHV YHFWHXUV YLWHVVH 9 = Γ=
∂ 3R3 HW DFFpOpUDWLRQ ∂W
∂9 RQWSRXUFRPSRVDQWHVUHVSHFWLYHPHQW ∂W
'DQV OH UHSqUH {R [\]} HW j O¶LQVWDQW W OHV YHFWHXUV YLWHVVH 9 = Γ=
∂9 RQWSRXUFRPSRVDQWHVUHVSHFWLYHPHQW ∂W
∂ X ∂ Y ∂ Z ∂X ∂Y ∂Z HW ∂W ∂W ∂W ∂W ∂W ∂W /HVGpULYpHVSDUWLHOOHV ∂E = JUDG 9 + JUDG W 9 = 6\P ⋅ JUDG 9 ∂W ∂Ω = JUDG 9 − JUDG W 9 = $QWLV\P ⋅ JUDG 9 ∂W
GpVLJQHQW OHV WHQVHXUV YLWHVVH GH GpIRUPDWLRQ HW YLWHVVH GH URWDWLRQ GX GRPDLQH ' HQ 3 j O¶LQVWDQWW 6HPEODEOHPHQW
⎛ ∂ E⎞ ∂H ∂ = WU E = WU ⎜⎜ ⎟⎟ GpVLJQH ODYLWHVVH GHGLODWDWLRQ YROXPLTXH UHODWLYH ∂W ∂W ⎝ ∂W ⎠
∂ 3R3 HW DFFpOpUDWLRQ ∂W
∂ X ∂ Y ∂ Z ∂X ∂Y ∂Z HW ∂W ∂W ∂W ∂W ∂W ∂W /HVGpULYpHVSDUWLHOOHV ∂E = JUDG 9 + JUDG W 9 = 6\P ⋅ JUDG 9 ∂W ∂Ω = JUDG 9 − JUDG W 9 = $QWLV\P ⋅ JUDG 9 ∂W
GpVLJQHQW OHV WHQVHXUV YLWHVVH GH GpIRUPDWLRQ HW YLWHVVH GH URWDWLRQ GX GRPDLQH ' HQ 3 j O¶LQVWDQWW 6HPEODEOHPHQW
⎛ ∂ E⎞ ∂H ∂ = WU E = WU ⎜⎜ ⎟⎟ GpVLJQH ODYLWHVVH GHGLODWDWLRQ YROXPLTXH UHODWLYH ∂W ∂W ⎝ ∂W ⎠
GXGRPDLQH'
GXGRPDLQH'
±&2175$,17(6(7)25&(6'(92/80(
±&2175$,17(6(7)25&(6'(92/80(
/HVGpILQLWLRQVHWSURSULpWpVGRQQpHVHQ6WDWLTXHDXFKDSLWUH,,GXWRPH,UHVWHQWYDODEOHVHQ G '\QDPLTXH OH YHFWHXU FRQWUDLQWH & HW OH WHQVHXU FRQWUDLQWH Σ pWDQW PDLQWHQDQW DXVVL IRQFWLRQGXWHPSV G /¶pTXLOLEUH ORFDO HQWUH FRQWUDLQWHV Σ HW IRUFHV YROXPLTXHV I UHVWH DXVVL YpULILp j FKDTXH G G LQVWDQWHWV¶pFULW I + GLY Σ =
/HVGpILQLWLRQVHWSURSULpWpVGRQQpHVHQ6WDWLTXHDXFKDSLWUH,,GXWRPH,UHVWHQWYDODEOHVHQ G '\QDPLTXH OH YHFWHXU FRQWUDLQWH & HW OH WHQVHXU FRQWUDLQWH Σ pWDQW PDLQWHQDQW DXVVL IRQFWLRQGXWHPSV G /¶pTXLOLEUH ORFDO HQWUH FRQWUDLQWHV Σ HW IRUFHV YROXPLTXHV I UHVWH DXVVL YpULILp j FKDTXH G G LQVWDQWHWV¶pFULW I + GLY Σ =
'DQV OH FDV OH SOXV JpQpUDO HQ '\QDPLTXH OD IRUFH YROXPLTXH UpVXOWDQWH GHV IRUFHV GH SHVDQWHXUHWG¶LQHUWLHV¶pFULW G G I = ρ J − ΓU − ΓH − ΓF DYHF
'DQV OH FDV OH SOXV JpQpUDO HQ '\QDPLTXH OD IRUFH YROXPLTXH UpVXOWDQWH GHV IRUFHV GH SHVDQWHXUHWG¶LQHUWLHV¶pFULW G G I = ρ J − ΓU − ΓH − ΓF DYHF
- 158 -
- 158 -
/H YRLVLQDJH GH 3 SDVVH GRQF HQWUH O¶pWDW GH UpIpUHQFH HW O¶pWDW DFWXHO W GH OD FRQILJXUDWLRQ ' jODFRQILJXUDWLRQ'SDUOHVWURLVWUDQVIRUPDWLRQVVXLYDQWHV
/H YRLVLQDJH GH 3 SDVVH GRQF HQWUH O¶pWDW GH UpIpUHQFH HW O¶pWDW DFWXHO W GH OD FRQILJXUDWLRQ ' jODFRQILJXUDWLRQ'SDUOHVWURLVWUDQVIRUPDWLRQVVXLYDQWHV
± XQHWUDQVODWLRQGHYHFWHXUGLUHFWHXU 3R3
± XQHWUDQVODWLRQGHYHFWHXUGLUHFWHXU 3R3
± XQHURWDWLRQDXWRXUGH3GpILQLHSDU
± XQHURWDWLRQDXWRXUGH3GpILQLHSDU
± XQHGpIRUPDWLRQSXUHFDUDFWpULVpHSDUOHWHQVHXU E
± XQHGpIRUPDWLRQSXUHFDUDFWpULVpHSDUOHWHQVHXU E
7RXWHVOHVSURSULpWpVHWDSSOLFDWLRQVGXWHQVHXUGpIRUPDWLRQ E H[DPLQpHVDXWRPH,FKDSLWUH SUHPLHUUHVWHQWYDODEOHVQDWXUHOOHPHQWHQ'\QDPLTXHO¶pWDWILQDO GHYDQWVLPSOHPHQWrWUH UHPSODFpSDUO¶pWDWLQVWDQWDQpW
7RXWHVOHVSURSULpWpVHWDSSOLFDWLRQVGXWHQVHXUGpIRUPDWLRQ E H[DPLQpHVDXWRPH,FKDSLWUH SUHPLHUUHVWHQWYDODEOHVQDWXUHOOHPHQWHQ'\QDPLTXHO¶pWDWILQDO GHYDQWVLPSOHPHQWrWUH UHPSODFpSDUO¶pWDWLQVWDQWDQpW
5HPDUTXHYLWHVVHVHWDFFpOpUDWLRQV
5HPDUTXHYLWHVVHVHWDFFpOpUDWLRQV
∂ 3R3 HW DFFpOpUDWLRQ 'DQV OH UHSqUH {R [\]} HW j O¶LQVWDQW W OHV YHFWHXUV YLWHVVH 9 = ∂W
'DQV OH UHSqUH {R [\]} HW j O¶LQVWDQW W OHV YHFWHXUV YLWHVVH 9 =
Γ=
∂9 RQWSRXUFRPSRVDQWHVUHVSHFWLYHPHQW ∂W
Γ=
∂9 RQWSRXUFRPSRVDQWHVUHVSHFWLYHPHQW ∂W
∂ X ∂ Y ∂ Z ∂X ∂Y ∂Z HW ∂W ∂W ∂W ∂W ∂W ∂W /HVGpULYpHVSDUWLHOOHV ∂E = JUDG 9 + JUDG W 9 = 6\P ⋅ JUDG 9 ∂W
∂Ω = JUDG 9 − JUDG W 9 = $QWLV\P ⋅ JUDG 9 ∂W
GpVLJQHQW OHV WHQVHXUV YLWHVVH GH GpIRUPDWLRQ HW YLWHVVH GH URWDWLRQ GX GRPDLQH ' HQ 3 j O¶LQVWDQWW 6HPEODEOHPHQW
⎛ ∂ E⎞ ∂H ∂ = WU E = WU ⎜⎜ ⎟⎟ GpVLJQH ODYLWHVVH GHGLODWDWLRQ YROXPLTXH UHODWLYH ∂W ∂W ⎝ ∂W ⎠
∂ 3R3 HW DFFpOpUDWLRQ ∂W
∂ X ∂ Y ∂ Z ∂X ∂Y ∂Z HW ∂W ∂W ∂W ∂W ∂W ∂W /HVGpULYpHVSDUWLHOOHV ∂E = JUDG 9 + JUDG W 9 = 6\P ⋅ JUDG 9 ∂W
∂Ω = JUDG 9 − JUDG W 9 = $QWLV\P ⋅ JUDG 9 ∂W
GpVLJQHQW OHV WHQVHXUV YLWHVVH GH GpIRUPDWLRQ HW YLWHVVH GH URWDWLRQ GX GRPDLQH ' HQ 3 j O¶LQVWDQWW 6HPEODEOHPHQW
⎛ ∂ E⎞ ∂H ∂ = WU E = WU ⎜⎜ ⎟⎟ GpVLJQH ODYLWHVVH GHGLODWDWLRQ YROXPLTXH UHODWLYH ∂W ∂W ⎝ ∂W ⎠
GXGRPDLQH'
GXGRPDLQH'
±&2175$,17(6(7)25&(6'(92/80(
±&2175$,17(6(7)25&(6'(92/80(
/HVGpILQLWLRQVHWSURSULpWpVGRQQpHVHQ6WDWLTXHDXFKDSLWUH,,GXWRPH,UHVWHQWYDODEOHVHQ G '\QDPLTXH OH YHFWHXU FRQWUDLQWH & HW OH WHQVHXU FRQWUDLQWH Σ pWDQW PDLQWHQDQW DXVVL IRQFWLRQGXWHPSV G /¶pTXLOLEUH ORFDO HQWUH FRQWUDLQWHV Σ HW IRUFHV YROXPLTXHV I UHVWH DXVVL YpULILp j FKDTXH G G LQVWDQWHWV¶pFULW I + GLY Σ =
/HVGpILQLWLRQVHWSURSULpWpVGRQQpHVHQ6WDWLTXHDXFKDSLWUH,,GXWRPH,UHVWHQWYDODEOHVHQ G '\QDPLTXH OH YHFWHXU FRQWUDLQWH & HW OH WHQVHXU FRQWUDLQWH Σ pWDQW PDLQWHQDQW DXVVL IRQFWLRQGXWHPSV G /¶pTXLOLEUH ORFDO HQWUH FRQWUDLQWHV Σ HW IRUFHV YROXPLTXHV I UHVWH DXVVL YpULILp j FKDTXH G G LQVWDQWHWV¶pFULW I + GLY Σ =
'DQV OH FDV OH SOXV JpQpUDO HQ '\QDPLTXH OD IRUFH YROXPLTXH UpVXOWDQWH GHV IRUFHV GH SHVDQWHXUHWG¶LQHUWLHV¶pFULW G G I = ρ J − ΓU − ΓH − ΓF DYHF
'DQV OH FDV OH SOXV JpQpUDO HQ '\QDPLTXH OD IRUFH YROXPLTXH UpVXOWDQWH GHV IRUFHV GH SHVDQWHXUHWG¶LQHUWLHV¶pFULW G G I = ρ J − ΓU − ΓH − ΓF DYHF
- 158 -
- 158 -
± ρ PDVVHYROXPLTXHGXPDWpULDX G ± J FKDPSGHJUDYLWDWLRQ
± ΓU DFFpOpUDWLRQ UHODWLYH GH OD SDUWLFXOH 3 F¶HVW j GLUH GDQV OH UHSqUH {R [\]} OLp j OD VWUXFWXUH ± ΓH DFFpOpUDWLRQG¶HQWUDvQHPHQWGH3SDUUDSSRUWjXQUHSqUHJDOLOpHQ DFFpOpUDWLRQGH&RULROLVGH3 GpVLJQHOHYHFWHXUYLWHVVHGHURWDWLRQ
±
± ρ PDVVHYROXPLTXHGXPDWpULDX G ± J FKDPSGHJUDYLWDWLRQ
± ΓU DFFpOpUDWLRQ UHODWLYH GH OD SDUWLFXOH 3 F¶HVW j GLUH GDQV OH UHSqUH {R [\]} OLp j OD VWUXFWXUH ± ΓH DFFpOpUDWLRQG¶HQWUDvQHPHQWGH3SDUUDSSRUWjXQUHSqUHJDOLOpHQ DFFpOpUDWLRQGH&RULROLVGH3 GpVLJQHOHYHFWHXUYLWHVVHGHURWDWLRQ
±
LQVWDQWDQpH GH {R [\]} SDU UDSSRUW DX JDOLOpHQ HW 9U OD YLWHVVH UHODWLYH GH 3 GRQF GDQV {R [\]}
LQVWDQWDQpH GH {R [\]} SDU UDSSRUW DX JDOLOpHQ HW 9U OD YLWHVVH UHODWLYH GH 3 GRQF GDQV {R [\]}
%LHQHQWHQGXVL {R [\]}HVWOXLPrPHJDOLOpHQRQD ΓU = = ΓH
%LHQHQWHQGXVL {R [\]}HVWOXLPrPHJDOLOpHQRQD ΓU = = ΓH
/¶pTXDWLRQYHFWRULHOOHGHO¶pTXLOLEUHORFDOV¶pFULWGRQF G ρ J + GLY Σ = ρ ΓU + ΓH + ΓF
/¶pTXDWLRQYHFWRULHOOHGHO¶pTXLOLEUHORFDOV¶pFULWGRQF G ρ J + GLY Σ = ρ ΓU + ΓH + ΓF
±e48$7,216'80289(0(17e/$67,48(
±e48$7,216'80289(0(17e/$67,48(
6LOHPDWpULDXVXLWODORLGH+RRNHF¶HVWjGLUHSRVVqGHXQFRPSRUWHPHQWpODVWLTXHOLQpDLUH RQD Σ = λ H , + µ E
6LOHPDWpULDXVXLWODORLGH+RRNHF¶HVWjGLUHSRVVqGHXQFRPSRUWHPHQWpODVWLTXHOLQpDLUH RQD Σ = λ H , + µ E
⎧λ HW µ FRHIILFLHQWGH/DPp ⎪ ⎪ ⎨H = GLY3R3 = WU E ⎪ W ⎪⎩ E = JUDG 3R3 + JUDG 3R3
⎧λ HW µ FRHIILFLHQWGH/DPp ⎪ ⎪ ⎨H = GLY3R3 = WU E ⎪ W ⎪⎩ E = JUDG 3R3 + JUDG 3R3
DYHF
DYHF
(Q SRUWDQW FHV H[SUHVVLRQV GDQV O¶pTXDWLRQ G¶pTXLOLEUH RQ REWLHQW O¶pTXDWLRQ GX PRXYHPHQWGH1DYLHUTXLSHXWV¶pFULUHVRXVOHVGHX[IRUPHVpTXLYDOHQWHVVXLYDQWHV
(Q SRUWDQW FHV H[SUHVVLRQV GDQV O¶pTXDWLRQ G¶pTXLOLEUH RQ REWLHQW O¶pTXDWLRQ GX PRXYHPHQWGH1DYLHUTXLSHXWV¶pFULUHVRXVOHVGHX[IRUPHVpTXLYDOHQWHVVXLYDQWHV
/¶LQWpJUDWLRQ GH FHWWH pTXDWLRQ GRQQH OH YHFWHXU WUDQVODWLRQ 3R3 GH FKDTXH SDUWLFXOH 3 j FKDTXHLQVWDQW
/¶LQWpJUDWLRQ GH FHWWH pTXDWLRQ GRQQH OH YHFWHXU WUDQVODWLRQ 3R3 GH FKDTXH SDUWLFXOH 3 j FKDTXHLQVWDQW
/HV FRQVWDQWHV G¶LQWpJUDWLRQ VH GpWHUPLQHQW j O¶DLGH GHV FRQGLWLRQV DX[ OLPLWHV HW GHV FRQGLWLRQVLQLWLDOHV
/HV FRQVWDQWHV G¶LQWpJUDWLRQ VH GpWHUPLQHQW j O¶DLGH GHV FRQGLWLRQV DX[ OLPLWHV HW GHV FRQGLWLRQVLQLWLDOHV
$\DQWREWHQXO¶H[SUHVVLRQGXYHFWHXU 3R3 RQHQGpGXLWFHOOHGXSVHXGRYHFWHXUURWDWLRQ HWGXWHQVHXUGpIRUPDWLRQ E SDUGpULYDWLRQVSXLVFHOOHGXWHQVHXUFRQWUDLQWH Σ DXPR\HQGH ODORLGH+RRNH
$\DQWREWHQXO¶H[SUHVVLRQGXYHFWHXU 3R3 RQHQGpGXLWFHOOHGXSVHXGRYHFWHXUURWDWLRQ HWGXWHQVHXUGpIRUPDWLRQ E SDUGpULYDWLRQVSXLVFHOOHGXWHQVHXUFRQWUDLQWH Σ DXPR\HQGH ODORLGH+RRNH
- 159 -
- 159 -
± ρ PDVVHYROXPLTXHGXPDWpULDX G ± J FKDPSGHJUDYLWDWLRQ
± ΓU DFFpOpUDWLRQ UHODWLYH GH OD SDUWLFXOH 3 F¶HVW j GLUH GDQV OH UHSqUH {R [\]} OLp j OD VWUXFWXUH ± ΓH DFFpOpUDWLRQG¶HQWUDvQHPHQWGH3SDUUDSSRUWjXQUHSqUHJDOLOpHQ DFFpOpUDWLRQGH&RULROLVGH3 GpVLJQHOHYHFWHXUYLWHVVHGHURWDWLRQ
±
± ρ PDVVHYROXPLTXHGXPDWpULDX G ± J FKDPSGHJUDYLWDWLRQ
± ΓU DFFpOpUDWLRQ UHODWLYH GH OD SDUWLFXOH 3 F¶HVW j GLUH GDQV OH UHSqUH {R [\]} OLp j OD VWUXFWXUH ± ΓH DFFpOpUDWLRQG¶HQWUDvQHPHQWGH3SDUUDSSRUWjXQUHSqUHJDOLOpHQ DFFpOpUDWLRQGH&RULROLVGH3 GpVLJQHOHYHFWHXUYLWHVVHGHURWDWLRQ
±
LQVWDQWDQpH GH {R [\]} SDU UDSSRUW DX JDOLOpHQ HW 9U OD YLWHVVH UHODWLYH GH 3 GRQF GDQV {R [\]}
LQVWDQWDQpH GH {R [\]} SDU UDSSRUW DX JDOLOpHQ HW 9U OD YLWHVVH UHODWLYH GH 3 GRQF GDQV {R [\]}
%LHQHQWHQGXVL {R [\]}HVWOXLPrPHJDOLOpHQRQD ΓU = = ΓH
%LHQHQWHQGXVL {R [\]}HVWOXLPrPHJDOLOpHQRQD ΓU = = ΓH
/¶pTXDWLRQYHFWRULHOOHGHO¶pTXLOLEUHORFDOV¶pFULWGRQF G ρ J + GLY Σ = ρ ΓU + ΓH + ΓF
/¶pTXDWLRQYHFWRULHOOHGHO¶pTXLOLEUHORFDOV¶pFULWGRQF G ρ J + GLY Σ = ρ ΓU + ΓH + ΓF
±e48$7,216'80289(0(17e/$67,48(
±e48$7,216'80289(0(17e/$67,48(
6LOHPDWpULDXVXLWODORLGH+RRNHF¶HVWjGLUHSRVVqGHXQFRPSRUWHPHQWpODVWLTXHOLQpDLUH RQD Σ = λ H , + µ E
6LOHPDWpULDXVXLWODORLGH+RRNHF¶HVWjGLUHSRVVqGHXQFRPSRUWHPHQWpODVWLTXHOLQpDLUH RQD Σ = λ H , + µ E
⎧λ HW µ FRHIILFLHQWGH/DPp ⎪ ⎪ ⎨H = GLY3R3 = WU E ⎪ W ⎪⎩ E = JUDG 3R3 + JUDG 3R3
⎧λ HW µ FRHIILFLHQWGH/DPp ⎪ ⎪ ⎨H = GLY3R3 = WU E ⎪ W ⎪⎩ E = JUDG 3R3 + JUDG 3R3
DYHF
DYHF
(Q SRUWDQW FHV H[SUHVVLRQV GDQV O¶pTXDWLRQ G¶pTXLOLEUH RQ REWLHQW O¶pTXDWLRQ GX PRXYHPHQWGH1DYLHUTXLSHXWV¶pFULUHVRXVOHVGHX[IRUPHVpTXLYDOHQWHVVXLYDQWHV
(Q SRUWDQW FHV H[SUHVVLRQV GDQV O¶pTXDWLRQ G¶pTXLOLEUH RQ REWLHQW O¶pTXDWLRQ GX PRXYHPHQWGH1DYLHUTXLSHXWV¶pFULUHVRXVOHVGHX[IRUPHVpTXLYDOHQWHVVXLYDQWHV
/¶LQWpJUDWLRQ GH FHWWH pTXDWLRQ GRQQH OH YHFWHXU WUDQVODWLRQ 3R3 GH FKDTXH SDUWLFXOH 3 j FKDTXHLQVWDQW
/¶LQWpJUDWLRQ GH FHWWH pTXDWLRQ GRQQH OH YHFWHXU WUDQVODWLRQ 3R3 GH FKDTXH SDUWLFXOH 3 j FKDTXHLQVWDQW
/HV FRQVWDQWHV G¶LQWpJUDWLRQ VH GpWHUPLQHQW j O¶DLGH GHV FRQGLWLRQV DX[ OLPLWHV HW GHV FRQGLWLRQVLQLWLDOHV
/HV FRQVWDQWHV G¶LQWpJUDWLRQ VH GpWHUPLQHQW j O¶DLGH GHV FRQGLWLRQV DX[ OLPLWHV HW GHV FRQGLWLRQVLQLWLDOHV
$\DQWREWHQXO¶H[SUHVVLRQGXYHFWHXU 3R3 RQHQGpGXLWFHOOHGXSVHXGRYHFWHXUURWDWLRQ HWGXWHQVHXUGpIRUPDWLRQ E SDUGpULYDWLRQVSXLVFHOOHGXWHQVHXUFRQWUDLQWH Σ DXPR\HQGH ODORLGH+RRNH
$\DQWREWHQXO¶H[SUHVVLRQGXYHFWHXU 3R3 RQHQGpGXLWFHOOHGXSVHXGRYHFWHXUURWDWLRQ HWGXWHQVHXUGpIRUPDWLRQ E SDUGpULYDWLRQVSXLVFHOOHGXWHQVHXUFRQWUDLQWH Σ DXPR\HQGH ODORLGH+RRNH
- 159 -
- 159 -
±21'(6e/$67,48(6
±21'(6e/$67,48(6
2QVHSURSRVHG¶pWXGLHUOHPRXYHPHQWGHODSDUWLFXOH3GDQVOHFDVROHUHSqUH {R [\]}HVW JDOLOpHQHWHQO¶DEVHQFHGHJUDYLWDWLRQ/HVpTXDWLRQVGH1DYLHU V¶pFULYHQWDORUV
2QVHSURSRVHG¶pWXGLHUOHPRXYHPHQWGHODSDUWLFXOH3GDQVOHFDVROHUHSqUH {R [\]}HVW JDOLOpHQHWHQO¶DEVHQFHGHJUDYLWDWLRQ/HVpTXDWLRQVGH1DYLHU V¶pFULYHQWDORUV
5DSSHORQV OH WKpRUqPH GH &OHEVFK+HOPKROW] HQ DQDO\VH YHFWRULHOOH WRXW FKDPS GH YHFWHXUVXQLYRTXHHWFRQWLQXWHQGDQWYHUV]pURjO¶LQILQLSHXWrWUHGpFRPSRVpHQODVRPPH G¶XQ FKDPS LUURWDWLRQQHO GLW DXVVL ODPHOODLUH HW G¶XQ FKDPS GH GLYHUJHQFH QXOOH GLW DXVVL VROpQRwGDO
5DSSHORQV OH WKpRUqPH GH &OHEVFK+HOPKROW] HQ DQDO\VH YHFWRULHOOH WRXW FKDPS GH YHFWHXUVXQLYRTXHHWFRQWLQXWHQGDQWYHUV]pURjO¶LQILQLSHXWrWUHGpFRPSRVpHQODVRPPH G¶XQ FKDPS LUURWDWLRQQHO GLW DXVVL ODPHOODLUH HW G¶XQ FKDPS GH GLYHUJHQFH QXOOH GLW DXVVL VROpQRwGDO
3RXUOHFKDPSGHGpSODFHPHQW 3R3 RQDGRQFjFKDTXHLQVWDQW
3RXUOHFKDPSGHGpSODFHPHQW 3R3 RQDGRQFjFKDTXHLQVWDQW
⎧⎪URW 8 / = 3R3 = 8 / + 8 7 DYHF ⎨ ⎪⎩GLY 8 7 =
8 / GpULYHDORUVG¶XQSRWHQWLHOVFDODLUH φ HW 8 7 G¶XQSRWHQWLHOYHFWHXU 2QDDLQVL
⎧⎪ 8 / = JUDG φ ⎨ ⎪⎩ 8 7 =
=
⎧⎪ 8 / = JUDG φ ⎨ ⎪⎩ 8 7 =
[ \ ] W
1RWRQVTXHODGpFRPSRVLWLRQ Q¶HVWSDVXQLTXHSXLVTX¶RQDDXVVL
) (
)
(
[ \ ] W
)
(
) (
)
3R3 = 8 / + JUDG χ + 8 7 − JUDG χ
(
)
)
(
)
DYHF 8 / + JUDG χ = HW GLY 8 7 − JUDG χ =
DYHF 8 / + JUDG χ = HW GLY 8 7 − JUDG χ =
TXHOOHTXHVRLWODIRQFWLRQ χ [ \ ] W WHOOHTXH ∆ χ =
TXHOOHTXHVRLWODIRQFWLRQ χ [ \ ] W WHOOHTXH ∆ χ =
(WXGLRQVPDLQWHQDQWFKDFXQGHFHVGHX[FKDPSV
(WXGLRQVPDLQWHQDQWFKDFXQGHFHVGHX[FKDPSV
±&KDPSLUURWDWLRQQHORXODPHOODLUH
±&KDPSLUURWDWLRQQHORXODPHOODLUH
,OVDWLVIDLWjO¶pTXDWLRQGXPRXYHPHQW
,OVDWLVIDLWjO¶pTXDWLRQGXPRXYHPHQW
G ∂ 8/ λ + µ − ν ( ∆ 8/ = = DYHF & / = ρ + ν − ν ρ &/ ∂ W
=
1RWRQVTXHODGpFRPSRVLWLRQ Q¶HVWSDVXQLTXHSXLVTX¶RQDDXVVL
3R3 = 8 / + JUDG χ + 8 7 − JUDG χ
(
φ = φ [ \ ] W
GLY 3R3 = GLY 8 / = ∆ φ G 8 7 = − ∆ ⋅ 3R3 =
K SXLVTXH ∆ = GLY ⋅ JUDG HW ∆ = JUDG ⋅ GLY −
(
8 / GpULYHDORUVG¶XQSRWHQWLHOVFDODLUH φ HW 8 7 G¶XQSRWHQWLHOYHFWHXU 2QDDLQVL
φ = φ [ \ ] W
GLY 3R3 = GLY 8 / = ∆ φ G 8 7 = − ∆ ⋅ 3R3 =
K SXLVTXH ∆ = GLY ⋅ JUDG HW ∆ = JUDG ⋅ GLY −
⎧⎪URW 8 / = 3R3 = 8 / + 8 7 DYHF ⎨ ⎪⎩GLY 8 7 =
G ∂ 8/ λ + µ − ν ( ∆ 8/ = = DYHF & / = ρ + ν − ν ρ &/ ∂ W
- 160 -
- 160 -
±21'(6e/$67,48(6
±21'(6e/$67,48(6
2QVHSURSRVHG¶pWXGLHUOHPRXYHPHQWGHODSDUWLFXOH3GDQVOHFDVROHUHSqUH {R [\]}HVW JDOLOpHQHWHQO¶DEVHQFHGHJUDYLWDWLRQ/HVpTXDWLRQVGH1DYLHU V¶pFULYHQWDORUV
2QVHSURSRVHG¶pWXGLHUOHPRXYHPHQWGHODSDUWLFXOH3GDQVOHFDVROHUHSqUH {R [\]}HVW JDOLOpHQHWHQO¶DEVHQFHGHJUDYLWDWLRQ/HVpTXDWLRQVGH1DYLHU V¶pFULYHQWDORUV
5DSSHORQV OH WKpRUqPH GH &OHEVFK+HOPKROW] HQ DQDO\VH YHFWRULHOOH WRXW FKDPS GH YHFWHXUVXQLYRTXHHWFRQWLQXWHQGDQWYHUV]pURjO¶LQILQLSHXWrWUHGpFRPSRVpHQODVRPPH G¶XQ FKDPS LUURWDWLRQQHO GLW DXVVL ODPHOODLUH HW G¶XQ FKDPS GH GLYHUJHQFH QXOOH GLW DXVVL VROpQRwGDO
5DSSHORQV OH WKpRUqPH GH &OHEVFK+HOPKROW] HQ DQDO\VH YHFWRULHOOH WRXW FKDPS GH YHFWHXUVXQLYRTXHHWFRQWLQXWHQGDQWYHUV]pURjO¶LQILQLSHXWrWUHGpFRPSRVpHQODVRPPH G¶XQ FKDPS LUURWDWLRQQHO GLW DXVVL ODPHOODLUH HW G¶XQ FKDPS GH GLYHUJHQFH QXOOH GLW DXVVL VROpQRwGDO
3RXUOHFKDPSGHGpSODFHPHQW 3R3 RQDGRQFjFKDTXHLQVWDQW
3RXUOHFKDPSGHGpSODFHPHQW 3R3 RQDGRQFjFKDTXHLQVWDQW
⎧⎪URW 8 / = 3R3 = 8 / + 8 7 DYHF ⎨ ⎪⎩GLY 8 7 =
8 / GpULYHDORUVG¶XQSRWHQWLHOVFDODLUH φ HW 8 7 G¶XQSRWHQWLHOYHFWHXU 2QDDLQVL
⎧⎪ 8 / = JUDG φ ⎨ ⎪⎩ 8 7 =
=
⎧⎪ 8 / = JUDG φ ⎨ ⎪⎩ 8 7 =
[ \ ] W
1RWRQVTXHODGpFRPSRVLWLRQ Q¶HVWSDVXQLTXHSXLVTX¶RQDDXVVL
) (
)
(
)
(
) (
(
)
(
)
DYHF 8 / + JUDG χ = HW GLY 8 7 − JUDG χ =
TXHOOHTXHVRLWODIRQFWLRQ χ [ \ ] W WHOOHTXH ∆ χ =
TXHOOHTXHVRLWODIRQFWLRQ χ [ \ ] W WHOOHTXH ∆ χ =
(WXGLRQVPDLQWHQDQWFKDFXQGHFHVGHX[FKDPSV
(WXGLRQVPDLQWHQDQWFKDFXQGHFHVGHX[FKDPSV
±&KDPSLUURWDWLRQQHORXODPHOODLUH
±&KDPSLUURWDWLRQQHORXODPHOODLUH
,OVDWLVIDLWjO¶pTXDWLRQGXPRXYHPHQW
,OVDWLVIDLWjO¶pTXDWLRQGXPRXYHPHQW
- 160 -
)
3R3 = 8 / + JUDG χ + 8 7 − JUDG χ
)
G ∂ 8/ λ + µ − ν ( ∆ 8/ = = DYHF & / = ρ + ν − ν ρ &/ ∂ W
[ \ ] W
DYHF 8 / + JUDG χ = HW GLY 8 7 − JUDG χ =
=
1RWRQVTXHODGpFRPSRVLWLRQ Q¶HVWSDVXQLTXHSXLVTX¶RQDDXVVL
3R3 = 8 / + JUDG χ + 8 7 − JUDG χ
(
φ = φ [ \ ] W
GLY 3R3 = GLY 8 / = ∆ φ G 8 7 = − ∆ ⋅ 3R3 =
K SXLVTXH ∆ = GLY ⋅ JUDG HW ∆ = JUDG ⋅ GLY −
(
8 / GpULYHDORUVG¶XQSRWHQWLHOVFDODLUH φ HW 8 7 G¶XQSRWHQWLHOYHFWHXU 2QDDLQVL
φ = φ [ \ ] W
GLY 3R3 = GLY 8 / = ∆ φ G 8 7 = − ∆ ⋅ 3R3 =
K SXLVTXH ∆ = GLY ⋅ JUDG HW ∆ = JUDG ⋅ GLY −
⎧⎪URW 8 / = 3R3 = 8 / + 8 7 DYHF ⎨ ⎪⎩GLY 8 7 =
G ∂ 8/ λ + µ − ν ( ∆ 8/ = = DYHF & / = ρ + ν − ν ρ &/ ∂ W
- 160 -
TX¶RQpFULWDXVVL GpVLJQDQWO¶RSpUDWHXUGDOHPEHUWLHQ
TX¶RQpFULWDXVVL GpVLJQDQWO¶RSpUDWHXUGDOHPEHUWLHQ
G ⎛ ∂ ⎞⎟ ⋅ 8/ = ⎜ ∆ − ⋅ 8/ = ⎟ ⎜ &/ ∂ W ⎠ ⎝
G ⎛ ∂ ⎞⎟ ⋅ 8/ = ⎜ ∆ − ⋅ 8/ = ⎟ ⎜ &/ ∂ W ⎠ ⎝
&HWWH pTXDWLRQ DX[ GpULYpHV SDUWLHOOHV VHFRQGHV OLQpDLUH j FRHIILFLHQWV FRQVWDQWV GH W\SH K\SHUEROLTXHVHQRPPHpTXDWLRQG¶RQGHGHG¶$OHPEHUW2QDSSHOOHRQGHWRXWHVROXWLRQGH FHWWHpTXDWLRQ/HFRHIILFLHQW & / KRPRJqQHjXQHYLWHVVHVHQRPPHFpOpULWpGHO¶RQGH
&HWWH pTXDWLRQ DX[ GpULYpHV SDUWLHOOHV VHFRQGHV OLQpDLUH j FRHIILFLHQWV FRQVWDQWV GH W\SH K\SHUEROLTXHVHQRPPHpTXDWLRQG¶RQGHGHG¶$OHPEHUW2QDSSHOOHRQGHWRXWHVROXWLRQGH FHWWHpTXDWLRQ/HFRHIILFLHQW & / KRPRJqQHjXQHYLWHVVHVHQRPPHFpOpULWpGHO¶RQGH
/D GLODWDWLRQ YROXPLTXH UHODWLYH H = GLY 8 / REpLW DXVVL G¶DSUqV j XQH pTXDWLRQ GH G¶$OHPEHUW ∂ H ∆H − = RX H = &/ ∂ W
/D GLODWDWLRQ YROXPLTXH UHODWLYH H = GLY 8 / REpLW DXVVL G¶DSUqV j XQH pTXDWLRQ GH G¶$OHPEHUW ∂ H ∆H − = RX H = &/ ∂ W
6DVROXWLRQFRQVWLWXHO¶RQGHGHGLODWDWLRQ
6DVROXWLRQFRQVWLWXHO¶RQGHGHGLODWDWLRQ
/DIRQFWLRQG¶RQGH φ [ \ ] W VDWLVIDLWG¶DSUqV jO¶pTXDWLRQ
/DIRQFWLRQG¶RQGH φ [ \ ] W VDWLVIDLWG¶DSUqV jO¶pTXDWLRQ
⎛ ∂ φ ⎞⎟ JUDG ⎜ ∆ φ − = ⎜ & / ∂ W ⎟⎠ ⎝
6RLW ∆ φ −
⎛ ∂ φ ⎞⎟ JUDG ⎜ ∆ φ − = ⎜ & / ∂ W ⎟⎠ ⎝
∂ φ = J W IRQFWLRQDUELWUDLUHGXWHPSV &/ ∂ W
6RLW ∆ φ −
∂ φ = J W IRQFWLRQDUELWUDLUHGXWHPSV &/ ∂ W
JW GpVLJQH XQH IRQFWLRQ DUELWUDLUH GX WHPSV TXH O¶RQ SHXW SUHQGUH QXOOH SXLVTXH φ Q¶HVW GpILQLHTX¶jXQHIRQFWLRQGXWHPSVSUqV
JW GpVLJQH XQH IRQFWLRQ DUELWUDLUH GX WHPSV TXH O¶RQ SHXW SUHQGUH QXOOH SXLVTXH φ Q¶HVW GpILQLHTX¶jXQHIRQFWLRQGXWHPSVSUqV
φ REpLWDORUVDXVVLjXQHpTXDWLRQGHG¶$OHPEHUW
φ REpLWDORUVDXVVLjXQHpTXDWLRQGHG¶$OHPEHUW
∆ φ−
∂ φ = RX φ = &/ ∂ W
∆ φ−
∂ φ = RX φ = &/ ∂ W
±&KDPSVDQVGLYHUJHQFHRXVROpQRwGDO
±&KDPSVDQVGLYHUJHQFHRXVROpQRwGDO
,OVDWLVIDLWG¶DSUqV jO¶pTXDWLRQGHG¶$OHPEHUW
,OVDWLVIDLWG¶DSUqV jO¶pTXDWLRQGHG¶$OHPEHUW
∆ 87 −
∂ 87 = RX ⋅ 8 7 = &7 ∂ W
µ ( &7 KRPRJqQH j XQH YLWHVVH VH QRPPH FpOpULWp GH O¶RQGH /H ρ ρ + ν SVHXGRYHFWHXU = 8 7 REpLWDXVVLG¶DSUqV jXQHpTXDWLRQGHG¶$OHPEHUW
DYHF &7 =
RX =
6DVROXWLRQFRQVWLWXHO¶RQGHGHURWDWLRQ
∆ 87 −
∂ 87 = RX ⋅ 8 7 = &7 ∂ W
µ ( &7 KRPRJqQH j XQH YLWHVVH VH QRPPH FpOpULWp GH O¶RQGH /H ρ ρ + ν SVHXGRYHFWHXU = 8 7 REpLWDXVVLG¶DSUqV jXQHpTXDWLRQGHG¶$OHPEHUW
DYHF &7 =
RX =
6DVROXWLRQFRQVWLWXHO¶RQGHGHURWDWLRQ - 161 -
- 161 -
TX¶RQpFULWDXVVL GpVLJQDQWO¶RSpUDWHXUGDOHPEHUWLHQ
TX¶RQpFULWDXVVL GpVLJQDQWO¶RSpUDWHXUGDOHPEHUWLHQ
G ⎛ ∂ ⎞⎟ ⋅ 8/ = ⎜ ∆ − ⋅ 8/ = ⎜ &/ ∂ W ⎠⎟ ⎝
G ⎛ ∂ ⎞⎟ ⋅ 8/ = ⎜ ∆ − ⋅ 8/ = ⎜ &/ ∂ W ⎠⎟ ⎝
&HWWH pTXDWLRQ DX[ GpULYpHV SDUWLHOOHV VHFRQGHV OLQpDLUH j FRHIILFLHQWV FRQVWDQWV GH W\SH K\SHUEROLTXHVHQRPPHpTXDWLRQG¶RQGHGHG¶$OHPEHUW2QDSSHOOHRQGHWRXWHVROXWLRQGH FHWWHpTXDWLRQ/HFRHIILFLHQW & / KRPRJqQHjXQHYLWHVVHVHQRPPHFpOpULWpGHO¶RQGH
&HWWH pTXDWLRQ DX[ GpULYpHV SDUWLHOOHV VHFRQGHV OLQpDLUH j FRHIILFLHQWV FRQVWDQWV GH W\SH K\SHUEROLTXHVHQRPPHpTXDWLRQG¶RQGHGHG¶$OHPEHUW2QDSSHOOHRQGHWRXWHVROXWLRQGH FHWWHpTXDWLRQ/HFRHIILFLHQW & / KRPRJqQHjXQHYLWHVVHVHQRPPHFpOpULWpGHO¶RQGH
/D GLODWDWLRQ YROXPLTXH UHODWLYH H = GLY 8 / REpLW DXVVL G¶DSUqV j XQH pTXDWLRQ GH G¶$OHPEHUW ∂ H ∆H − = RX H = &/ ∂ W
/D GLODWDWLRQ YROXPLTXH UHODWLYH H = GLY 8 / REpLW DXVVL G¶DSUqV j XQH pTXDWLRQ GH G¶$OHPEHUW ∂ H ∆H − = RX H = &/ ∂ W
6DVROXWLRQFRQVWLWXHO¶RQGHGHGLODWDWLRQ
6DVROXWLRQFRQVWLWXHO¶RQGHGHGLODWDWLRQ
/DIRQFWLRQG¶RQGH φ [ \ ] W VDWLVIDLWG¶DSUqV jO¶pTXDWLRQ
/DIRQFWLRQG¶RQGH φ [ \ ] W VDWLVIDLWG¶DSUqV jO¶pTXDWLRQ
⎛ ∂ φ ⎞⎟ JUDG ⎜ ∆ φ − = ⎜ & / ∂ W ⎟⎠ ⎝
6RLW ∆ φ −
⎛ ∂ φ ⎞⎟ JUDG ⎜ ∆ φ − = ⎜ & / ∂ W ⎟⎠ ⎝
∂ φ = J W IRQFWLRQDUELWUDLUHGXWHPSV &/ ∂ W
6RLW ∆ φ −
∂ φ = J W IRQFWLRQDUELWUDLUHGXWHPSV &/ ∂ W
JW GpVLJQH XQH IRQFWLRQ DUELWUDLUH GX WHPSV TXH O¶RQ SHXW SUHQGUH QXOOH SXLVTXH φ Q¶HVW GpILQLHTX¶jXQHIRQFWLRQGXWHPSVSUqV
JW GpVLJQH XQH IRQFWLRQ DUELWUDLUH GX WHPSV TXH O¶RQ SHXW SUHQGUH QXOOH SXLVTXH φ Q¶HVW GpILQLHTX¶jXQHIRQFWLRQGXWHPSVSUqV
φ REpLWDORUVDXVVLjXQHpTXDWLRQGHG¶$OHPEHUW
φ REpLWDORUVDXVVLjXQHpTXDWLRQGHG¶$OHPEHUW
∆ φ−
∂ φ = RX φ = &/ ∂ W
∆ φ−
∂ φ = RX φ = &/ ∂ W
±&KDPSVDQVGLYHUJHQFHRXVROpQRwGDO
±&KDPSVDQVGLYHUJHQFHRXVROpQRwGDO
,OVDWLVIDLWG¶DSUqV jO¶pTXDWLRQGHG¶$OHPEHUW
,OVDWLVIDLWG¶DSUqV jO¶pTXDWLRQGHG¶$OHPEHUW
∆ 87 −
∂ 87 = RX ⋅ 8 7 = &7 ∂ W
µ ( &7 KRPRJqQH j XQH YLWHVVH VH QRPPH FpOpULWp GH O¶RQGH /H ρ ρ + ν SVHXGRYHFWHXU = 8 7 REpLWDXVVLG¶DSUqV jXQHpTXDWLRQGHG¶$OHPEHUW
DYHF &7 =
RX =
6DVROXWLRQFRQVWLWXHO¶RQGHGHURWDWLRQ
∆ 87 −
∂ 87 = RX ⋅ 8 7 = &7 ∂ W
µ ( &7 KRPRJqQH j XQH YLWHVVH VH QRPPH FpOpULWp GH O¶RQGH /H ρ ρ + ν SVHXGRYHFWHXU = 8 7 REpLWDXVVLG¶DSUqV jXQHpTXDWLRQGHG¶$OHPEHUW
DYHF &7 =
RX =
6DVROXWLRQFRQVWLWXHO¶RQGHGHURWDWLRQ - 161 -
- 161 -
5HYHQRQV DX FDV JpQpUDO R 3R3 = 8 / + 8 7 RQ D DORUV GHX[ RQGHV GH GpSODFHPHQWV GH QDWXUHVGLIIpUHQWHVGHFpOpULWpV &/ HW &7
5HYHQRQV DX FDV JpQpUDO R 3R3 = 8 / + 8 7 RQ D DORUV GHX[ RQGHV GH GpSODFHPHQWV GH QDWXUHVGLIIpUHQWHVGHFpOpULWpV &/ HW &7
⎛& ⎞ λ + µ − ν = DYHF ⎜⎜ / ⎟⎟ = & µ − ν ⎝ 7⎠
⎛& ⎞ λ + µ − ν = DYHF ⎜⎜ / ⎟⎟ = & µ − ν ⎝ 7⎠
(WDQWGRQQpXQHRQGH ϕ [ \ ] W F¶HVWjGLUHXQHIRQFWLRQVFDODLUHRXYHFWRULHOOH VROXWLRQ G¶XQHpTXDWLRQGHG¶$OHPEHUWOHVSRLQWV[\] TXLjXQLQVWDQWGRQQpFRQIqUHQWj ϕ XQH PrPHYDOHXUGRQQpHVHWURXYHQWVXUGHVVXUIDFHVDSSHOpHVVXUIDFHVG¶RQGHVTXLSHXYHQWVH GpSODFHUHWVHGpIRUPHUTXDQGOHWHPSVYDULH
(WDQWGRQQpXQHRQGH ϕ [ \ ] W F¶HVWjGLUHXQHIRQFWLRQVFDODLUHRXYHFWRULHOOH VROXWLRQ G¶XQHpTXDWLRQGHG¶$OHPEHUWOHVSRLQWV[\] TXLjXQLQVWDQWGRQQpFRQIqUHQWj ϕ XQH PrPHYDOHXUGRQQpHVHWURXYHQWVXUGHVVXUIDFHVDSSHOpHVVXUIDFHVG¶RQGHVTXLSHXYHQWVH GpSODFHUHWVHGpIRUPHUTXDQGOHWHPSVYDULH
/HV RQGHV LUURWDWLRQQHOOHV GH FpOpULWp &/ TXL SURSDJHQW OD SDUWLH ODPHOODLUH 8 / HW OD GLODWDWLRQYROXPLTXHHVRQWDXVVLDSSHOpHVORQJLWXGLQDOHVG¶RO¶LQGLFH/ FDUODSURSDJDWLRQ VHIDLWGDQVODGLUHFWLRQGH 8 /
/HV RQGHV LUURWDWLRQQHOOHV GH FpOpULWp &/ TXL SURSDJHQW OD SDUWLH ODPHOODLUH 8 / HW OD GLODWDWLRQYROXPLTXHHVRQWDXVVLDSSHOpHVORQJLWXGLQDOHVG¶RO¶LQGLFH/ FDUODSURSDJDWLRQ VHIDLWGDQVODGLUHFWLRQGH 8 /
/HV RQGHV VDQV GLYHUJHQFH GH FpOpULWp &7 TXL SURSDJHQW OD SDUWLH VROpQRwGDOH 8 7 HW OH SVHXGRYHFWHXUURWDWLRQ VRQWDXVVLDSSHOpHVWUDQVYHUVDOHVG¶RO¶LQGLFH7 FDUOHVYHFWHXUV 8 7 HW VRQWQRUPDX[jODGLUHFWLRQGHSURSDJDWLRQ
/HV RQGHV VDQV GLYHUJHQFH GH FpOpULWp &7 TXL SURSDJHQW OD SDUWLH VROpQRwGDOH 8 7 HW OH SVHXGRYHFWHXUURWDWLRQ VRQWDXVVLDSSHOpHVWUDQVYHUVDOHVG¶RO¶LQGLFH7 FDUOHVYHFWHXUV 8 7 HW VRQWQRUPDX[jODGLUHFWLRQGHSURSDJDWLRQ
1RXVDOORQVPDLQWHQDQWDSSOLTXHUOHVUpVXOWDWVSUpFpGHQWVjTXHOTXHVFDVLPSRUWDQWVVDFKDQW TXH OD VROXWLRQ GX SUREOqPH HVW XQLTXH ORUVTXH OHV FRQGLWLRQV DX[ OLPLWHV HW OHV FRQGLWLRQV LQLWLDOHVSRVLWLRQVHWYLWHVVHV VRQWGRQQpHV
1RXVDOORQVPDLQWHQDQWDSSOLTXHUOHVUpVXOWDWVSUpFpGHQWVjTXHOTXHVFDVLPSRUWDQWVVDFKDQW TXH OD VROXWLRQ GX SUREOqPH HVW XQLTXH ORUVTXH OHV FRQGLWLRQV DX[ OLPLWHV HW OHV FRQGLWLRQV LQLWLDOHVSRVLWLRQVHWYLWHVVHV VRQWGRQQpHV
±21'(6e/$67,48(63/$1(6
±21'(6e/$67,48(63/$1(6
&¶HVW OH FDV SDU GpILQLWLRQ R LO H[LVWH XQ D[H R[ OLp DX VROLGH WHO TXH GDQV OH UHSqUH R [\ ] OHYHFWHXUWUDQVODWLRQ 3R3 QHVRLWIRQFWLRQTXHGH[HWGHWSDVGH\QLGH]2QD DORUV
&¶HVW OH FDV SDU GpILQLWLRQ R LO H[LVWH XQ D[H R[ OLp DX VROLGH WHO TXH GDQV OH UHSqUH R [\ ] OHYHFWHXUWUDQVODWLRQ 3R3 QHVRLWIRQFWLRQTXHGH[HWGHWSDVGH\QLGH]2QD DORUV
⎧ ⎧X [ W ⎪ω[ = ⎪ ⎪ ⎪ ⎪⎪ 3R3 = 8 [ W ⎨Y [ W ⎨ω\ = − ⎪ ⎪ ⎪ ⎪ ⎪⎩Z [ W ⎪ω] = − ⎩
⎧ ⎧ ∂X ⎪γ \] = ⎪ε [ = ∂ [ ⎪ ⎪ ⎪ ⎪ ε = ⎨γ ][ = ⎨ \ ⎪ ⎪ ⎪ ⎪ ⎪γ [\ = ⎪ε ] = ⎩ ⎩
∂Z ∂[ ∂Y ∂[
∂Z ∂X HWH = GLY 8 = ε [ = ∂[ ∂[ ∂Y ∂[
⎧ ⎧X [ W ⎪ω[ = ⎪ ⎪ ⎪ ⎪⎪ 3R3 = 8 [ W ⎨Y [ W ⎨ω\ = − ⎪ ⎪ ⎪ ⎪ ⎪⎩Z [ W ⎪ω] = − ⎩
⎧ ⎧ ∂X ⎪γ \] = ⎪ε [ = ∂ [ ⎪ ⎪ ⎪ ⎪ ε = ⎨γ ][ = ⎨ \ ⎪ ⎪ ⎪ ⎪ ⎪γ [\ = ⎪ε ] = ⎩ ⎩
∂Z ∂[ ∂Y ∂[
∂Z ∂X HWH = GLY 8 = ε [ = ∂[ ∂[ ∂Y ∂[
- 162 -
- 162 -
5HYHQRQV DX FDV JpQpUDO R 3R3 = 8 / + 8 7 RQ D DORUV GHX[ RQGHV GH GpSODFHPHQWV GH QDWXUHVGLIIpUHQWHVGHFpOpULWpV &/ HW &7
5HYHQRQV DX FDV JpQpUDO R 3R3 = 8 / + 8 7 RQ D DORUV GHX[ RQGHV GH GpSODFHPHQWV GH QDWXUHVGLIIpUHQWHVGHFpOpULWpV &/ HW &7
⎛& ⎞ λ + µ − ν = DYHF ⎜⎜ / ⎟⎟ = & µ − ν ⎝ 7⎠
⎛& ⎞ λ + µ − ν = DYHF ⎜⎜ / ⎟⎟ = & µ − ν ⎝ 7⎠
(WDQWGRQQpXQHRQGH ϕ [ \ ] W F¶HVWjGLUHXQHIRQFWLRQVFDODLUHRXYHFWRULHOOH VROXWLRQ G¶XQHpTXDWLRQGHG¶$OHPEHUWOHVSRLQWV[\] TXLjXQLQVWDQWGRQQpFRQIqUHQWj ϕ XQH PrPHYDOHXUGRQQpHVHWURXYHQWVXUGHVVXUIDFHVDSSHOpHVVXUIDFHVG¶RQGHVTXLSHXYHQWVH GpSODFHUHWVHGpIRUPHUTXDQGOHWHPSVYDULH
(WDQWGRQQpXQHRQGH ϕ [ \ ] W F¶HVWjGLUHXQHIRQFWLRQVFDODLUHRXYHFWRULHOOH VROXWLRQ G¶XQHpTXDWLRQGHG¶$OHPEHUWOHVSRLQWV[\] TXLjXQLQVWDQWGRQQpFRQIqUHQWj ϕ XQH PrPHYDOHXUGRQQpHVHWURXYHQWVXUGHVVXUIDFHVDSSHOpHVVXUIDFHVG¶RQGHVTXLSHXYHQWVH GpSODFHUHWVHGpIRUPHUTXDQGOHWHPSVYDULH
/HV RQGHV LUURWDWLRQQHOOHV GH FpOpULWp &/ TXL SURSDJHQW OD SDUWLH ODPHOODLUH 8 / HW OD GLODWDWLRQYROXPLTXHHVRQWDXVVLDSSHOpHVORQJLWXGLQDOHVG¶RO¶LQGLFH/ FDUODSURSDJDWLRQ VHIDLWGDQVODGLUHFWLRQGH 8 /
/HV RQGHV LUURWDWLRQQHOOHV GH FpOpULWp &/ TXL SURSDJHQW OD SDUWLH ODPHOODLUH 8 / HW OD GLODWDWLRQYROXPLTXHHVRQWDXVVLDSSHOpHVORQJLWXGLQDOHVG¶RO¶LQGLFH/ FDUODSURSDJDWLRQ VHIDLWGDQVODGLUHFWLRQGH 8 /
/HV RQGHV VDQV GLYHUJHQFH GH FpOpULWp &7 TXL SURSDJHQW OD SDUWLH VROpQRwGDOH 8 7 HW OH SVHXGRYHFWHXUURWDWLRQ VRQWDXVVLDSSHOpHVWUDQVYHUVDOHVG¶RO¶LQGLFH7 FDUOHVYHFWHXUV 8 7 HW VRQWQRUPDX[jODGLUHFWLRQGHSURSDJDWLRQ
/HV RQGHV VDQV GLYHUJHQFH GH FpOpULWp &7 TXL SURSDJHQW OD SDUWLH VROpQRwGDOH 8 7 HW OH SVHXGRYHFWHXUURWDWLRQ VRQWDXVVLDSSHOpHVWUDQVYHUVDOHVG¶RO¶LQGLFH7 FDUOHVYHFWHXUV 8 7 HW VRQWQRUPDX[jODGLUHFWLRQGHSURSDJDWLRQ
1RXVDOORQVPDLQWHQDQWDSSOLTXHUOHVUpVXOWDWVSUpFpGHQWVjTXHOTXHVFDVLPSRUWDQWVVDFKDQW TXH OD VROXWLRQ GX SUREOqPH HVW XQLTXH ORUVTXH OHV FRQGLWLRQV DX[ OLPLWHV HW OHV FRQGLWLRQV LQLWLDOHVSRVLWLRQVHWYLWHVVHV VRQWGRQQpHV
1RXVDOORQVPDLQWHQDQWDSSOLTXHUOHVUpVXOWDWVSUpFpGHQWVjTXHOTXHVFDVLPSRUWDQWVVDFKDQW TXH OD VROXWLRQ GX SUREOqPH HVW XQLTXH ORUVTXH OHV FRQGLWLRQV DX[ OLPLWHV HW OHV FRQGLWLRQV LQLWLDOHVSRVLWLRQVHWYLWHVVHV VRQWGRQQpHV
±21'(6e/$67,48(63/$1(6
±21'(6e/$67,48(63/$1(6
&¶HVW OH FDV SDU GpILQLWLRQ R LO H[LVWH XQ D[H R[ OLp DX VROLGH WHO TXH GDQV OH UHSqUH R [\ ] OHYHFWHXUWUDQVODWLRQ 3R3 QHVRLWIRQFWLRQTXHGH[HWGHWSDVGH\QLGH]2QD DORUV
&¶HVW OH FDV SDU GpILQLWLRQ R LO H[LVWH XQ D[H R[ OLp DX VROLGH WHO TXH GDQV OH UHSqUH R [\ ] OHYHFWHXUWUDQVODWLRQ 3R3 QHVRLWIRQFWLRQTXHGH[HWGHWSDVGH\QLGH]2QD DORUV
⎧ ⎧X [ W ⎪ω[ = ⎪ ⎪ ⎪⎪ ⎪ 3R3 = 8 [ W ⎨Y [ W ⎨ω\ = − ⎪ ⎪ ⎪ ⎪ ⎪⎩Z [ W ⎪ω] = − ⎩
⎧ ⎧ ∂X ⎪γ \] = ⎪ε [ = ∂ [ ⎪ ⎪ ⎪ ⎪ ⎨ε \ = ⎨γ ][ = ⎪ ⎪ ⎪ ⎪ ⎪γ [\ = ⎪ε ] = ⎩ ⎩ - 162 -
∂Z ∂[ ∂Y ∂[
∂Z ∂X HWH = GLY 8 = ε [ = ∂[ ∂[ ∂Y ∂[
⎧ ⎧X [ W ⎪ω[ = ⎪ ⎪ ⎪⎪ ⎪ 3R3 = 8 [ W ⎨Y [ W ⎨ω\ = − ⎪ ⎪ ⎪ ⎪ ⎪⎩Z [ W ⎪ω] = − ⎩
⎧ ⎧ ∂X ⎪γ \] = ⎪ε [ = ∂ [ ⎪ ⎪ ⎪ ⎪ ⎨ε \ = ⎨γ ][ = ⎪ ⎪ ⎪ ⎪ ⎪γ [\ = ⎪ε ] = ⎩ ⎩ - 162 -
∂Z ∂[ ∂Y ∂[
∂Z ∂X HWH = GLY 8 = ε [ = ∂[ ∂[ ∂Y ∂[
G /HVVXUIDFHVG¶RQGHVVRQWGHVSODQVRUWKRJRQDX[jR[/DSDUWLHLUURWDWLRQQHOOHHVW 8 / = X L G G G G G L XQLWDLUHGHR[ ODSDUWLHVROpQRwGDOHHVW 8 7 = Y M + Z N M HW N XQLWDLUHVGHR\HWR]
G /HVVXUIDFHVG¶RQGHVVRQWGHVSODQVRUWKRJRQDX[jR[/DSDUWLHLUURWDWLRQQHOOHHVW 8 / = X L G G G G G L XQLWDLUHGHR[ ODSDUWLHVROpQRwGDOHHVW 8 7 = Y M + Z N M HW N XQLWDLUHVGHR\HWR]
([HPSOH XQ PLOLHX pODVWLTXH RFFXSH WRXW O¶HVSDFH FRPSULV HQWUH OHV SODQV [ = HW [ = K > OH SODQ OLPLWH [ = HVW IL[H HW JDOLOpHQ OH SODQ OLPLWH [ = K HVW OLEUH
([HPSOH XQ PLOLHX pODVWLTXH RFFXSH WRXW O¶HVSDFH FRPSULV HQWUH OHV SODQV [ = HW [ = K > OH SODQ OLPLWH [ = HVW IL[H HW JDOLOpHQ OH SODQ OLPLWH [ = K HVW OLEUH
YHFWHXUFRQWUDLQWH & [ QXO
YHFWHXUFRQWUDLQWH & [ QXO
)LJXUH
)LJXUH
(WXGLRQV OHV YLEUDWLRQV ORQJLWXGLQDOHV OLEUHV RX QDWXUHOOHV VXLYDQW R[ /H GpSODFHPHQW X[W VDWLVIDLWjO¶pTXDWLRQGHG¶$OHPEHUW
(WXGLRQV OHV YLEUDWLRQV ORQJLWXGLQDOHV OLEUHV RX QDWXUHOOHV VXLYDQW R[ /H GpSODFHPHQW X[W VDWLVIDLWjO¶pTXDWLRQGHG¶$OHPEHUW
λ + µ ( − ν ∂ X ∂ X DYHF & = = = ρ ρ + ν − ν ∂[ & ∂W
3RXUODUpVRXGUHFKHUFKRQVG¶DERUGGHVVROXWLRQVSDUWLFXOLqUHVGHODIRUPH X = I [ ⋅ J W
F
2QGRLWDYRLU
I ′′ J = I J
λ + µ ( − ν ∂ X ∂ X DYHF & = = = ρ ρ + ν − ν ∂[ & ∂W
3RXUODUpVRXGUHFKHUFKRQVG¶DERUGGHVVROXWLRQVSDUWLFXOLqUHVGHODIRUPH X = I [ ⋅ J W
F
2QGRLWDYRLU
I ′′ J = I J
/DYDOHXUFRPPXQHGHFHVGHX[UDSSRUWVHVWGRQFXQHFRQVWDQWHQpFHVVDLUHPHQWQpJDWLYHHQ UDLVRQGXFDUDFWqUHRVFLOODWRLUHGXPRXYHPHQWFRQVWDQWHTXHQRXVQRWRQV − ω
/DYDOHXUFRPPXQHGHFHVGHX[UDSSRUWVHVWGRQFXQHFRQVWDQWHQpFHVVDLUHPHQWQpJDWLYHHQ UDLVRQGXFDUDFWqUHRVFLOODWRLUHGXPRXYHPHQWFRQVWDQWHTXHQRXVQRWRQV − ω
2QDDORUVOHVpTXDWLRQVGLIIpUHQWLHOOHVGpFRXSOpHV
2QDDORUVOHVpTXDWLRQVGLIIpUHQWLHOOHVGpFRXSOpHV
I ′′ [ + F − ω I [ = HW J W + ω ⋅ J W =
I ′′ [ + F − ω I [ = HW J W + ω ⋅ J W =
/HVVROXWLRQVJpQpUDOHVV¶pFULYHQW I [ = α FRV
/HVVROXWLRQVJpQpUDOHVV¶pFULYHQW
ω[ ω[ + β VLQ HW J [ = $ FRV ω W + % VLQ ω W F F
I [ = α FRV
ω[ ω[ + β VLQ HW J [ = $ FRV ω W + % VLQ ω W F F
([SULPRQVOHVFRQGLWLRQVDX[OLPLWHV
([SULPRQVOHVFRQGLWLRQVDX[OLPLWHV
± HQ [ = X = ∀ W ⇒ I = ⇒ α =
± HQ [ = X = ∀ W ⇒ I = ⇒ α =
- 163 -
- 163 -
G /HVVXUIDFHVG¶RQGHVVRQWGHVSODQVRUWKRJRQDX[jR[/DSDUWLHLUURWDWLRQQHOOHHVW 8 / = X L G G G G G L XQLWDLUHGHR[ ODSDUWLHVROpQRwGDOHHVW 8 7 = Y M + Z N M HW N XQLWDLUHVGHR\HWR]
G /HVVXUIDFHVG¶RQGHVVRQWGHVSODQVRUWKRJRQDX[jR[/DSDUWLHLUURWDWLRQQHOOHHVW 8 / = X L G G G G G L XQLWDLUHGHR[ ODSDUWLHVROpQRwGDOHHVW 8 7 = Y M + Z N M HW N XQLWDLUHVGHR\HWR]
([HPSOH XQ PLOLHX pODVWLTXH RFFXSH WRXW O¶HVSDFH FRPSULV HQWUH OHV SODQV [ = HW [ = K > OH SODQ OLPLWH [ = HVW IL[H HW JDOLOpHQ OH SODQ OLPLWH [ = K HVW OLEUH
([HPSOH XQ PLOLHX pODVWLTXH RFFXSH WRXW O¶HVSDFH FRPSULV HQWUH OHV SODQV [ = HW [ = K > OH SODQ OLPLWH [ = HVW IL[H HW JDOLOpHQ OH SODQ OLPLWH [ = K HVW OLEUH
YHFWHXUFRQWUDLQWH & [ QXO
YHFWHXUFRQWUDLQWH & [ QXO
)LJXUH
)LJXUH
(WXGLRQV OHV YLEUDWLRQV ORQJLWXGLQDOHV OLEUHV RX QDWXUHOOHV VXLYDQW R[ /H GpSODFHPHQW X[W VDWLVIDLWjO¶pTXDWLRQGHG¶$OHPEHUW
(WXGLRQV OHV YLEUDWLRQV ORQJLWXGLQDOHV OLEUHV RX QDWXUHOOHV VXLYDQW R[ /H GpSODFHPHQW X[W VDWLVIDLWjO¶pTXDWLRQGHG¶$OHPEHUW
λ + µ ( − ν ∂ X ∂ X DYHF & = = = ρ ρ + ν − ν ∂[ & ∂W
3RXUODUpVRXGUHFKHUFKRQVG¶DERUGGHVVROXWLRQVSDUWLFXOLqUHVGHODIRUPH X = I [ ⋅ J W
F
2QGRLWDYRLU
I ′′ J = I J
λ + µ ( − ν ∂ X ∂ X DYHF & = = = ρ ρ + ν − ν ∂[ & ∂W
3RXUODUpVRXGUHFKHUFKRQVG¶DERUGGHVVROXWLRQVSDUWLFXOLqUHVGHODIRUPH X = I [ ⋅ J W
F
2QGRLWDYRLU
I ′′ J = I J
/DYDOHXUFRPPXQHGHFHVGHX[UDSSRUWVHVWGRQFXQHFRQVWDQWHQpFHVVDLUHPHQWQpJDWLYHHQ UDLVRQGXFDUDFWqUHRVFLOODWRLUHGXPRXYHPHQWFRQVWDQWHTXHQRXVQRWRQV − ω
/DYDOHXUFRPPXQHGHFHVGHX[UDSSRUWVHVWGRQFXQHFRQVWDQWHQpFHVVDLUHPHQWQpJDWLYHHQ UDLVRQGXFDUDFWqUHRVFLOODWRLUHGXPRXYHPHQWFRQVWDQWHTXHQRXVQRWRQV − ω
2QDDORUVOHVpTXDWLRQVGLIIpUHQWLHOOHVGpFRXSOpHV
2QDDORUVOHVpTXDWLRQVGLIIpUHQWLHOOHVGpFRXSOpHV
I ′′ [ + F − ω I [ = HW J W + ω ⋅ J W = /HVVROXWLRQVJpQpUDOHVV¶pFULYHQW I [ = α FRV
I ′′ [ + F − ω I [ = HW J W + ω ⋅ J W = /HVVROXWLRQVJpQpUDOHVV¶pFULYHQW
ω[ ω[ + β VLQ HW J [ = $ FRV ω W + % VLQ ω W F F
I [ = α FRV
ω[ ω[ + β VLQ HW J [ = $ FRV ω W + % VLQ ω W F F
([SULPRQVOHVFRQGLWLRQVDX[OLPLWHV
([SULPRQVOHVFRQGLWLRQVDX[OLPLWHV
± HQ [ = X = ∀ W ⇒ I = ⇒ α =
± HQ [ = X = ∀ W ⇒ I = ⇒ α =
- 163 -
- 163 -
⎛ ∂X ⎞ βω ωK ⎟⎟ = ∀ W ⇒ I ′K = ⇒ FRV = ± HQ [ = K σ [ = ∀ W ⇒ ε [ = ⎜⎜ F F ∂ [ ⎝ ⎠K
⎛ ∂X ⎞ βω ωK ⎟⎟ = ∀ W ⇒ I ′K = ⇒ FRV = ± HQ [ = K σ [ = ∀ W ⇒ ε [ = ⎜⎜ F F ∂ [ ⎝ ⎠K
⎛ βω ⎞ ⎛ ωK ⎞ (OLPLQRQVODVROXWLRQ ⎜ = ⎟ TXLFRUUHVSRQGDXUHSRVRQGRLWGRQFDYRLU FRV ⎜ ⎟ = F ⎝ ⎠ ⎝ F ⎠ Q + F HW ω HVWXQQRPEUHGHODVXLWH ωQ = π Q ∈ 1 K
⎛ βω ⎞ ⎛ ωK ⎞ (OLPLQRQVODVROXWLRQ ⎜ = ⎟ TXLFRUUHVSRQGDXUHSRVRQGRLWGRQFDYRLU FRV ⎜ ⎟ = F ⎝ ⎠ ⎝ F ⎠ Q + F HW ω HVWXQQRPEUHGHODVXLWH ωQ = π Q ∈ 1 K
2QSHXWSUHQGUH β = HWpFULUHODVROXWLRQpOpPHQWDLUHGHUDQJQGLWHKDUPRQLTXHGHUDQJQ
2QSHXWSUHQGUH β = HWpFULUHODVROXWLRQpOpPHQWDLUHGHUDQJQGLWHKDUPRQLTXHGHUDQJQ
Q + F W Q + F W ⎞ ⎛ Q + [ ⎞ ⎛ X Q [ W = VLQ ⎜ π ⎟ ⎜ $ Q FRV π + %Q VLQ π ⎟ K⎠⎝ K K⎠ ⎝
Q + F W Q + F W ⎞ ⎛ Q + [ ⎞ ⎛ X Q [ W = VLQ ⎜ π ⎟ ⎜ $ Q FRV π + %Q VLQ π ⎟ K⎠⎝ K K⎠ ⎝
&HVKDUPRQLTXHVFRQVWLWXHQWOHVPRGHVSURSUHVGHYLEUDWLRQGXPLOLHXVROLGHOHV ωQ HQVRQW ω π OHVSpULRGHVSURSUHVOHV Q OHVIUpTXHQFHVSURSUHV OHVSXOVDWLRQVSURSUHVOHV 7Q = π ωQ
&HVKDUPRQLTXHVFRQVWLWXHQWOHVPRGHVSURSUHVGHYLEUDWLRQGXPLOLHXVROLGHOHV ωQ HQVRQW ω π OHVSpULRGHVSURSUHVOHV Q OHVIUpTXHQFHVSURSUHV OHVSXOVDWLRQVSURSUHVOHV 7Q = π ωQ
6XSSRVRQV TXH O¶RVFLOODWLRQ DLW OLHX VXLYDQW OH PRGH SURSUH QXPpUR Q GRQF TXH X = X Q = I Q [ ⋅ J Q W
6XSSRVRQV TXH O¶RVFLOODWLRQ DLW OLHX VXLYDQW OH PRGH SURSUH QXPpUR Q GRQF TXH X = X Q = I Q [ ⋅ J Q W
/H SODQ PDWpULHO SDUDOOqOH j \R] HW G¶DEVFLVVH [ GDQV O¶pWDW GH UHSRV FRQILJXUDWLRQ G¶pTXLOLEUH VWDWLTXH VWDEOH SRVVqGH O¶DEVFLVVH [ + X Q j O¶LQVWDQW W HW OD YLWHVVH ∂ XQ = I Q [ ⋅ J W ∂W
/H SODQ PDWpULHO SDUDOOqOH j \R] HW G¶DEVFLVVH [ GDQV O¶pWDW GH UHSRV FRQILJXUDWLRQ G¶pTXLOLEUH VWDWLTXH VWDEOH SRVVqGH O¶DEVFLVVH [ + X Q j O¶LQVWDQW W HW OD YLWHVVH ∂ XQ = I Q [ ⋅ J W ∂W
/HV SODQV PDWpULHOV SDUDOOqOHV j \R] GRQW OHV DEVFLVVHV [ P =
P K DQQXOHQW Q +
Q + [ π UHVWHQWIL[HVLOVFRQVWLWXHQWOHVQ°XGVGHODYLEUDWLRQ/¶RQGH {X Q } K HVWDLQVLXQHRQGHVWDWLRQQDLUH I Q [ = VLQ
S + K UHQGHQW I Q [ Q + H[WUpPDOHVLSSDLU±VLSLPSDLU VRQWFHX[TXLYLEUHQWDYHFO¶DPSOLWXGHPD[LPDOHLOV FRQVWLWXHQW OHV YHQWUHV GH O¶RQGH VWDWLRQQDLUH /HV Q°XGV VRQW UpJXOLqUHPHQW HVSDFpV GH ⎛ K ⎞ ⎜ ⎟ LOHQHVWGHPrPHGHVYHQWUHV ⎝ Q + ⎠
/HV SODQV PDWpULHOV SDUDOOqOHV j \R] GRQW OHV DEVFLVVHV [ S =
/D©SpULRGHVSDWLDOHª λ Q =
UHPDUTXHTXHOHUDSSRUW
K SpULRGHGHODIRQFWLRQ I Q [ HVWODORQJXHXUG¶RQGHRQ Q +
λQ HVWpJDOj&FpOpULWpGHO¶RQGHHWQHGpSHQGSDVGHQ 7Q
/HV SODQV PDWpULHOV SDUDOOqOHV j \R] GRQW OHV DEVFLVVHV [ P =
P K DQQXOHQW Q +
Q + [ π UHVWHQWIL[HVLOVFRQVWLWXHQWOHVQ°XGVGHODYLEUDWLRQ/¶RQGH {X Q } K HVWDLQVLXQHRQGHVWDWLRQQDLUH I Q [ = VLQ
S + K UHQGHQW I Q [ Q + H[WUpPDOHVLSSDLU±VLSLPSDLU VRQWFHX[TXLYLEUHQWDYHFO¶DPSOLWXGHPD[LPDOHLOV FRQVWLWXHQW OHV YHQWUHV GH O¶RQGH VWDWLRQQDLUH /HV Q°XGV VRQW UpJXOLqUHPHQW HVSDFpV GH ⎛ K ⎞ ⎜ ⎟ LOHQHVWGHPrPHGHVYHQWUHV ⎝ Q + ⎠
/HV SODQV PDWpULHOV SDUDOOqOHV j \R] GRQW OHV DEVFLVVHV [ S =
/D©SpULRGHVSDWLDOHª λ Q =
UHPDUTXHTXHOHUDSSRUW
K SpULRGHGHODIRQFWLRQ I Q [ HVWODORQJXHXUG¶RQGHRQ Q +
λQ HVWpJDOj&FpOpULWpGHO¶RQGHHWQHGpSHQGSDVGHQ 7Q
- 164 -
- 164 -
⎛ ∂X ⎞ βω ωK ⎟⎟ = ∀ W ⇒ I ′K = ⇒ FRV = ± HQ [ = K σ [ = ∀ W ⇒ ε [ = ⎜⎜ F F ∂ [ ⎝ ⎠K
⎛ ∂X ⎞ βω ωK ⎟⎟ = ∀ W ⇒ I ′K = ⇒ FRV = ± HQ [ = K σ [ = ∀ W ⇒ ε [ = ⎜⎜ F F ∂ [ ⎝ ⎠K
⎛ βω ⎞ ⎛ ωK ⎞ (OLPLQRQVODVROXWLRQ ⎜ = ⎟ TXLFRUUHVSRQGDXUHSRVRQGRLWGRQFDYRLU FRV ⎜ ⎟ = ⎝ F ⎠ ⎝ F ⎠ Q + F HW ω HVWXQQRPEUHGHODVXLWH ωQ = π Q ∈ 1 K
⎛ βω ⎞ ⎛ ωK ⎞ (OLPLQRQVODVROXWLRQ ⎜ = ⎟ TXLFRUUHVSRQGDXUHSRVRQGRLWGRQFDYRLU FRV ⎜ ⎟ = ⎝ F ⎠ ⎝ F ⎠ Q + F HW ω HVWXQQRPEUHGHODVXLWH ωQ = π Q ∈ 1 K
2QSHXWSUHQGUH β = HWpFULUHODVROXWLRQpOpPHQWDLUHGHUDQJQGLWHKDUPRQLTXHGHUDQJQ
2QSHXWSUHQGUH β = HWpFULUHODVROXWLRQpOpPHQWDLUHGHUDQJQGLWHKDUPRQLTXHGHUDQJQ
Q + F W Q + F W ⎞ ⎛ Q + [ ⎞ ⎛ X Q [ W = VLQ ⎜ π ⎟ ⎜ $ Q FRV π + %Q VLQ π ⎟ K⎠⎝ K K⎠ ⎝
Q + F W Q + F W ⎞ ⎛ Q + [ ⎞ ⎛ X Q [ W = VLQ ⎜ π ⎟ ⎜ $ Q FRV π + %Q VLQ π ⎟ K⎠⎝ K K⎠ ⎝
&HVKDUPRQLTXHVFRQVWLWXHQWOHVPRGHVSURSUHVGHYLEUDWLRQGXPLOLHXVROLGHOHV ωQ HQVRQW ω π OHVSpULRGHVSURSUHVOHV Q OHVIUpTXHQFHVSURSUHV OHVSXOVDWLRQVSURSUHVOHV 7Q = π ωQ
&HVKDUPRQLTXHVFRQVWLWXHQWOHVPRGHVSURSUHVGHYLEUDWLRQGXPLOLHXVROLGHOHV ωQ HQVRQW ω π OHVSpULRGHVSURSUHVOHV Q OHVIUpTXHQFHVSURSUHV OHVSXOVDWLRQVSURSUHVOHV 7Q = π ωQ
6XSSRVRQV TXH O¶RVFLOODWLRQ DLW OLHX VXLYDQW OH PRGH SURSUH QXPpUR Q GRQF TXH X = X Q = I Q [ ⋅ J Q W
6XSSRVRQV TXH O¶RVFLOODWLRQ DLW OLHX VXLYDQW OH PRGH SURSUH QXPpUR Q GRQF TXH X = X Q = I Q [ ⋅ J Q W
/H SODQ PDWpULHO SDUDOOqOH j \R] HW G¶DEVFLVVH [ GDQV O¶pWDW GH UHSRV FRQILJXUDWLRQ G¶pTXLOLEUH VWDWLTXH VWDEOH SRVVqGH O¶DEVFLVVH [ + X Q j O¶LQVWDQW W HW OD YLWHVVH ∂ XQ = I Q [ ⋅ J W ∂W
/H SODQ PDWpULHO SDUDOOqOH j \R] HW G¶DEVFLVVH [ GDQV O¶pWDW GH UHSRV FRQILJXUDWLRQ G¶pTXLOLEUH VWDWLTXH VWDEOH SRVVqGH O¶DEVFLVVH [ + X Q j O¶LQVWDQW W HW OD YLWHVVH ∂ XQ = I Q [ ⋅ J W ∂W
/HV SODQV PDWpULHOV SDUDOOqOHV j \R] GRQW OHV DEVFLVVHV [ P =
P K DQQXOHQW Q +
Q + [ π UHVWHQWIL[HVLOVFRQVWLWXHQWOHVQ°XGVGHODYLEUDWLRQ/¶RQGH {X Q } K HVWDLQVLXQHRQGHVWDWLRQQDLUH I Q [ = VLQ
S + K UHQGHQW I Q [ Q + H[WUpPDOHVLSSDLU±VLSLPSDLU VRQWFHX[TXLYLEUHQWDYHFO¶DPSOLWXGHPD[LPDOHLOV FRQVWLWXHQW OHV YHQWUHV GH O¶RQGH VWDWLRQQDLUH /HV Q°XGV VRQW UpJXOLqUHPHQW HVSDFpV GH ⎛ K ⎞ ⎜ ⎟ LOHQHVWGHPrPHGHVYHQWUHV ⎝ Q + ⎠
/HV SODQV PDWpULHOV SDUDOOqOHV j \R] GRQW OHV DEVFLVVHV [ S =
/D©SpULRGHVSDWLDOHª λ Q =
UHPDUTXHTXHOHUDSSRUW
K SpULRGHGHODIRQFWLRQ I Q [ HVWODORQJXHXUG¶RQGHRQ Q +
λQ HVWpJDOj&FpOpULWpGHO¶RQGHHWQHGpSHQGSDVGHQ 7Q
- 164 -
/HV SODQV PDWpULHOV SDUDOOqOHV j \R] GRQW OHV DEVFLVVHV [ P =
P K DQQXOHQW Q +
Q + [ π UHVWHQWIL[HVLOVFRQVWLWXHQWOHVQ°XGVGHODYLEUDWLRQ/¶RQGH {X Q } K HVWDLQVLXQHRQGHVWDWLRQQDLUH I Q [ = VLQ
S + K UHQGHQW I Q [ Q + H[WUpPDOHVLSSDLU±VLSLPSDLU VRQWFHX[TXLYLEUHQWDYHFO¶DPSOLWXGHPD[LPDOHLOV FRQVWLWXHQW OHV YHQWUHV GH O¶RQGH VWDWLRQQDLUH /HV Q°XGV VRQW UpJXOLqUHPHQW HVSDFpV GH ⎛ K ⎞ ⎜ ⎟ LOHQHVWGHPrPHGHVYHQWUHV ⎝ Q + ⎠
/HV SODQV PDWpULHOV SDUDOOqOHV j \R] GRQW OHV DEVFLVVHV [ S =
/D©SpULRGHVSDWLDOHª λ Q =
UHPDUTXHTXHOHUDSSRUW
K SpULRGHGHODIRQFWLRQ I Q [ HVWODORQJXHXUG¶RQGHRQ Q +
λQ HVWpJDOj&FpOpULWpGHO¶RQGHHWQHGpSHQGSDVGHQ 7Q
- 164 -
/DVROXWLRQJpQpUDOHVHSUpVHQWHFRPPHODVRPPHG¶XQHGRXEOHVpULHGH)RXULHUSDUUDSSRUW j[HWW ∞
X [ W =
∑
∞
X Q [ W =
Q =
∑
/DVROXWLRQJpQpUDOHVHSUpVHQWHFRPPHODVRPPHG¶XQHGRXEOHVpULHGH)RXULHUSDUUDSSRUW j[HWW ∞
IQ [ ⋅ J Q W
X [ W =
Q =
∑
∞
X Q [ W =
Q =
∑ I [ ⋅ J W Q
Q
Q =
/HVFRQVWDQWHV $ Q HW %Q VHGpWHUPLQHQWjO¶DLGHGHVFRQGLWLRQVLQLWLDOHVGHSRVLWLRQHWYLWHVVH FRQGLWLRQV GH &DXFK\ F¶HVW j GLUH j O¶DLGH GHV IRQFWLRQV GRQQpHV ϕ [ = X [ R HW
/HVFRQVWDQWHV $ Q HW %Q VHGpWHUPLQHQWjO¶DLGHGHVFRQGLWLRQVLQLWLDOHVGHSRVLWLRQHWYLWHVVH FRQGLWLRQV GH &DXFK\ F¶HVW j GLUH j O¶DLGH GHV IRQFWLRQV GRQQpHV ϕ [ = X [ R HW
⎛ ∂ X ψ [ = ⎜⎜ ⎝ ∂ W
⎛ ∂ X ψ [ = ⎜⎜ ⎝ ∂ W
⎞ ⎟⎟ ⎠W= ∞ ⎧ ⎛ Q + [ ⎞ ⎪X [ R = π ⎟ = ϕ [ $ Q VLQ ⎜ K⎠ ⎝ ⎪ = Q ⎪ ⎨ ∞ ⎪⎛ ⎞ Q + F ⎛ Q + [ ⎞ ⎪⎜ ∂ X ⎟ π VLQ ⎜ π ⎟ = ψ [ K⎠ K ⎪⎜⎝ ∂ W ⎟⎠ W = ⎝ Q = ⎩
∞ ⎧ ⎛ Q + [ ⎞ ⎪X [ R = π ⎟ = ϕ [ $ Q VLQ ⎜ K⎠ ⎝ ⎪ = Q ⎪ ⎨ ∞ ⎪⎛ ⎞ Q + F ⎛ Q + [ ⎞ ⎪⎜ ∂ X ⎟ π VLQ ⎜ π ⎟ = ψ [ K⎠ K ⎪⎜⎝ ∂ W ⎟⎠ W = ⎝ Q = ⎩
∑
∑
∑
2QHQGpGXLWSDUODPpWKRGHFODVVLTXHGHFDOFXOGHVFRHIILFLHQWVGH)RXULHU
⎞ ⎟⎟ ⎠W=
∑
2QHQGpGXLWSDUODPpWKRGHFODVVLTXHGHFDOFXOGHVFRHIILFLHQWVGH)RXULHU
K ⎧ ⎪$ Q = K ϕ [ ⋅ VLQ ⎛⎜ Q + π [ ⎞⎟ ⋅ G [ ⎪ K⎠ ⎝ ⎪ ⎨ K ⎪ ⎛ Q + [ ⎞ ⎪% Q = ψ [ ⋅ VLQ ⎜ π ⎟⋅G[ Q + π & K⎠ ⎪ ⎝ ⎩
K ⎧ ⎪$ Q = K ϕ [ ⋅ VLQ ⎛⎜ Q + π [ ⎞⎟ ⋅ G [ ⎪ K⎠ ⎝ ⎪ ⎨ K ⎪ ⎛ Q + [ ⎞ ⎪% Q = ψ [ ⋅ VLQ ⎜ π ⎟⋅G[ Q + π & K⎠ ⎪ ⎝ ⎩
3DUH[HPSOHVLj W = RQDEDQGRQQHOHVROLGHVDQVYLWHVVHLQLWLDOH ψ = DYHFOHFKDPSGH X [ GpSODFHPHQWVWDWLTXH ϕ [ = X RQWURXYH %Q = HW $ Q = − Q K Q + π
3DUH[HPSOHVLj W = RQDEDQGRQQHOHVROLGHVDQVYLWHVVHLQLWLDOH ψ = DYHFOHFKDPSGH X [ GpSODFHPHQWVWDWLTXH ϕ [ = X RQWURXYH %Q = HW $ Q = − Q K Q + π
/HV UpVXOWDWV TXH QRXV YHQRQV G¶REWHQLU SRXU O¶RQGH ORQJLWXGLQDOH {X [ W } VH WUDQVSRVHQW LPPpGLDWHPHQW DX[ RQGHV WUDQVYHUVDOHV {Y [ W } HW {Z [ W } HQ SUHQDQW FRPPH FpOpULWp &7 DXOLHXGH & /
/HV UpVXOWDWV TXH QRXV YHQRQV G¶REWHQLU SRXU O¶RQGH ORQJLWXGLQDOH {X [ W } VH WUDQVSRVHQW LPPpGLDWHPHQW DX[ RQGHV WUDQVYHUVDOHV {Y [ W } HW {Z [ W } HQ SUHQDQW FRPPH FpOpULWp &7 DXOLHXGH & /
±21'(6&,1'5,48(6
±21'(6&,1'5,48(6
&¶HVW SDU GpILQLWLRQ OH FDV R LO H[LVWH XQ D[H R] OLp DX VROLGH WHO TXH HQ FRRUGRQQpHV F\OLQGULTXHV U θ ] G¶D[HR]OHYHFWHXUGpSODFHPHQWQHVRLWIRQFWLRQTXHGHUHWGHWSDVGH θ QLGH]2QDDORUV ⎧X U W GpSODFHPHQWUDGLDO ⎪⎪ 3R3 = 8 U W ⎨Y U W GpSODFHPHQWFLUFRQIpUHQWLHO ⎪ ⎪⎩Z U W GpSODFHPHQWD[LDO
&¶HVW SDU GpILQLWLRQ OH FDV R LO H[LVWH XQ D[H R] OLp DX VROLGH WHO TXH HQ FRRUGRQQpHV F\OLQGULTXHV U θ ] G¶D[HR]OHYHFWHXUGpSODFHPHQWQHVRLWIRQFWLRQTXHGHUHWGHWSDVGH θ QLGH]2QDDORUV ⎧X U W GpSODFHPHQWUDGLDO ⎪⎪ 3R3 = 8 U W ⎨Y U W GpSODFHPHQWFLUFRQIpUHQWLHO ⎪ ⎪⎩Z U W GpSODFHPHQWD[LDO
- 165 -
- 165 -
/DVROXWLRQJpQpUDOHVHSUpVHQWHFRPPHODVRPPHG¶XQHGRXEOHVpULHGH)RXULHUSDUUDSSRUW j[HWW
/DVROXWLRQJpQpUDOHVHSUpVHQWHFRPPHODVRPPHG¶XQHGRXEOHVpULHGH)RXULHUSDUUDSSRUW j[HWW
∫
∫
∫
∞
X [ W =
∑
∞
X Q [ W =
Q =
∑
∫
∞
IQ [ ⋅ J Q W
X [ W =
Q =
∑
∞
X Q [ W =
Q =
∑ I [ ⋅ J W Q
Q
Q =
/HVFRQVWDQWHV $ Q HW %Q VHGpWHUPLQHQWjO¶DLGHGHVFRQGLWLRQVLQLWLDOHVGHSRVLWLRQHWYLWHVVH FRQGLWLRQV GH &DXFK\ F¶HVW j GLUH j O¶DLGH GHV IRQFWLRQV GRQQpHV ϕ [ = X [ R HW
/HVFRQVWDQWHV $ Q HW %Q VHGpWHUPLQHQWjO¶DLGHGHVFRQGLWLRQVLQLWLDOHVGHSRVLWLRQHWYLWHVVH FRQGLWLRQV GH &DXFK\ F¶HVW j GLUH j O¶DLGH GHV IRQFWLRQV GRQQpHV ϕ [ = X [ R HW
⎛ ∂ X ψ [ = ⎜⎜ ⎝ ∂ W
⎛ ∂ X ψ [ = ⎜⎜ ⎝ ∂ W
⎞ ⎟⎟ ⎠W= ∞ ⎧ ⎛ Q + [ ⎞ ⎪X [ R = π ⎟ = ϕ [ $ Q VLQ ⎜ K⎠ ⎝ ⎪ = Q ⎪ ⎨ ∞ ⎪⎛ ⎞ Q + F ⎛ Q + [ ⎞ ⎪⎜ ∂ X ⎟ π VLQ ⎜ π ⎟ = ψ [ ⎜ ⎟ K⎠ K ⎪⎝ ∂ W ⎠ W = ⎝ Q = ⎩
∑
∑
2QHQGpGXLWSDUODPpWKRGHFODVVLTXHGHFDOFXOGHVFRHIILFLHQWVGH)RXULHU
⎞ ⎟⎟ ⎠W= ∞ ⎧ ⎛ Q + [ ⎞ ⎪X [ R = π ⎟ = ϕ [ $ Q VLQ ⎜ K⎠ ⎝ ⎪ = Q ⎪ ⎨ ∞ ⎪⎛ ⎞ Q + F ⎛ Q + [ ⎞ ⎪⎜ ∂ X ⎟ π VLQ ⎜ π ⎟ = ψ [ ⎜ ⎟ K⎠ K ⎪⎝ ∂ W ⎠ W = ⎝ Q = ⎩
∑
∑
2QHQGpGXLWSDUODPpWKRGHFODVVLTXHGHFDOFXOGHVFRHIILFLHQWVGH)RXULHU
K ⎧ ⎪$ Q = K ϕ [ ⋅ VLQ ⎛⎜ Q + π [ ⎞⎟ ⋅ G [ ⎪ K⎠ ⎝ ⎪ ⎨ K ⎪ ⎛ Q + [ ⎞ ⎪% Q = ψ [ ⋅ VLQ ⎜ π ⎟⋅G[ Q + π & K⎠ ⎪ ⎝ ⎩
K ⎧ ⎪$ Q = K ϕ [ ⋅ VLQ ⎛⎜ Q + π [ ⎞⎟ ⋅ G [ ⎪ K⎠ ⎝ ⎪ ⎨ K ⎪ ⎛ Q + [ ⎞ ⎪% Q = ψ [ ⋅ VLQ ⎜ π ⎟⋅G[ Q + π & K⎠ ⎪ ⎝ ⎩
3DUH[HPSOHVLj W = RQDEDQGRQQHOHVROLGHVDQVYLWHVVHLQLWLDOH ψ = DYHFOHFKDPSGH X [ GpSODFHPHQWVWDWLTXH ϕ [ = X RQWURXYH %Q = HW $ Q = − Q K Q + π
3DUH[HPSOHVLj W = RQDEDQGRQQHOHVROLGHVDQVYLWHVVHLQLWLDOH ψ = DYHFOHFKDPSGH X [ GpSODFHPHQWVWDWLTXH ϕ [ = X RQWURXYH %Q = HW $ Q = − Q K Q + π
/HV UpVXOWDWV TXH QRXV YHQRQV G¶REWHQLU SRXU O¶RQGH ORQJLWXGLQDOH {X [ W } VH WUDQVSRVHQW LPPpGLDWHPHQW DX[ RQGHV WUDQVYHUVDOHV {Y [ W } HW {Z [ W } HQ SUHQDQW FRPPH FpOpULWp &7 DXOLHXGH & /
/HV UpVXOWDWV TXH QRXV YHQRQV G¶REWHQLU SRXU O¶RQGH ORQJLWXGLQDOH {X [ W } VH WUDQVSRVHQW LPPpGLDWHPHQW DX[ RQGHV WUDQVYHUVDOHV {Y [ W } HW {Z [ W } HQ SUHQDQW FRPPH FpOpULWp &7 DXOLHXGH & /
±21'(6&,1'5,48(6
±21'(6&,1'5,48(6
&¶HVW SDU GpILQLWLRQ OH FDV R LO H[LVWH XQ D[H R] OLp DX VROLGH WHO TXH HQ FRRUGRQQpHV F\OLQGULTXHV U θ ] G¶D[HR]OHYHFWHXUGpSODFHPHQWQHVRLWIRQFWLRQTXHGHUHWGHWSDVGH θ QLGH]2QDDORUV ⎧X U W GpSODFHPHQWUDGLDO ⎪⎪ 3R3 = 8 U W ⎨Y U W GpSODFHPHQWFLUFRQIpUHQWLHO ⎪ ⎪⎩Z U W GpSODFHPHQWD[LDO
&¶HVW SDU GpILQLWLRQ OH FDV R LO H[LVWH XQ D[H R] OLp DX VROLGH WHO TXH HQ FRRUGRQQpHV F\OLQGULTXHV U θ ] G¶D[HR]OHYHFWHXUGpSODFHPHQWQHVRLWIRQFWLRQTXHGHUHWGHWSDVGH θ QLGH]2QDDORUV ⎧X U W GpSODFHPHQWUDGLDO ⎪⎪ 3R3 = 8 U W ⎨Y U W GpSODFHPHQWFLUFRQIpUHQWLHO ⎪ ⎪⎩Z U W GpSODFHPHQWD[LDO
- 165 -
- 165 -
∫
∫
∫
∫
'¶R
⎧ ⎧ ∂X ⎪γ θ] = ⎪ε U = ∂ U ⎪ ⎪ ⎪ X ⎪ ⎨γ ]U = ⎨εθ = U ⎪ ⎪ ⎪ ⎪ ⎪ε ] = ⎪γ Uθ = ⎩ ⎩
'¶R ⎧ ⎪ωU = ⎪ ⎪ ∂Z ∂Z ⎨ωθ = − ∂U ∂U ⎪ ⎪ ⎛∂Y Y⎞ ⎛∂Y ⎜⎜ + − ⎟⎟ ⎪ω] = ⎜⎜ ⎝ ∂U ∂ U U ⎝ ⎠ ⎩
H = GLY 8 = ε U + εθ + ε ] =
HW
Y⎞ ⎟ U ⎟⎠
∂X X + ∂U U
⎧ ⎧ ∂X ⎪γ θ] = ⎪ε U = ∂ U ⎪ ⎪ ⎪ X ⎪ ⎨γ ]U = ⎨εθ = U ⎪ ⎪ ⎪ ⎪ ⎪ε ] = ⎪γ Uθ = ⎩ ⎩
⎧ ⎪ωU = ⎪ ⎪ ∂Z ∂Z ⎨ωθ = − ∂U ∂U ⎪ ⎪ ⎛∂Y Y⎞ ⎛∂Y ⎜⎜ + − ⎟⎟ ⎪ω] = ⎜⎜ ⎝ ∂U ∂ U U ⎝ ⎠ ⎩
H = GLY 8 = ε U + εθ + ε ] =
HW
Y⎞ ⎟ U ⎟⎠
∂X X + ∂U U
2QDDLQVLWURLVW\SHVG¶RQGHVF\OLQGULTXHV
2QDDLQVLWURLVW\SHVG¶RQGHVF\OLQGULTXHV
G ±/HVRQGHVF\OLQGULTXHVUDGLDOHV {X}
G ±/HVRQGHVF\OLQGULTXHVUDGLDOHV {X}
G /HV RQGHV F\OLQGULTXHV UDGLDOHV {X} SRXU OHVTXHOOHV Y = = Z FH VRQW GHV RQGHV ORQJLWXGLQDOHVGHGLODWDWLRQ OHVVXUIDFHVG¶RQGHVVRQWGHVF\OLQGUHVGHUpYROXWLRQG¶D[HR] DXFRXUVGHODYLEUDWLRQOHVF\OLQGUHVPDWpULHOVG¶D[HR]QHVHGpSODFHQWSDVQLWUDQVODWLRQQL URWDWLRQ LOV ©UHVSLUHQWª F¶HVW j GLUH VH GLODWHQW HW VH FRQWUDFWHQW DOWHUQDWLYHPHQW GDQV OD GLUHFWLRQUDGLDOH/¶pTXDWLRQG¶RQGHFRUUHVSRQGDQWHV¶pFULW
G /HV RQGHV F\OLQGULTXHV UDGLDOHV {X} SRXU OHVTXHOOHV Y = = Z FH VRQW GHV RQGHV ORQJLWXGLQDOHVGHGLODWDWLRQ OHVVXUIDFHVG¶RQGHVVRQWGHVF\OLQGUHVGHUpYROXWLRQG¶D[HR] DXFRXUVGHODYLEUDWLRQOHVF\OLQGUHVPDWpULHOVG¶D[HR]QHVHGpSODFHQWSDVQLWUDQVODWLRQQL URWDWLRQ LOV ©UHVSLUHQWª F¶HVW j GLUH VH GLODWHQW HW VH FRQWUDFWHQW DOWHUQDWLYHPHQW GDQV OD GLUHFWLRQUDGLDOH/¶pTXDWLRQG¶RQGHFRUUHVSRQGDQWHV¶pFULW
⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩
∂ X ∂ U
+
∂X X ∂ X − = ⋅ U ∂U U &/ ∂ W
∂ ∂U
⎛∂X X ⎞ ∂ X ⎜⎜ + ⎟⎟ = ⎝ ∂ U U ⎠ &/ ∂ W
∂ ∂U
⎞ ⎛ ∂ ∂ X ⎜⎜ U X ⎟⎟ = ⎠ &/ ∂ W ⎝ U ∂U
RXELHQ RXHQFRUH
⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩
∂ X ∂ U
+
∂X X ∂ X − = ⋅ U ∂U U &/ ∂ W
∂ ∂U
⎛∂X X ⎞ ∂ X ⎜⎜ + ⎟⎟ = ⎝ ∂ U U ⎠ &/ ∂ W
∂ ∂U
⎞ ⎛ ∂ ∂ X ⎜⎜ U X ⎟⎟ = ⎠ &/ ∂ W ⎝ U ∂U
RXELHQ RXHQFRUH
G ±/HVRQGHVF\OLQGULTXHVFLUFRQIpUHQWLHOOHV {Y}
G ±/HVRQGHVF\OLQGULTXHVFLUFRQIpUHQWLHOOHV {Y}
G /HVRQGHVF\OLQGULTXHVFLUFRQIpUHQWLHOOHV {Y}SRXUOHVTXHOOHV X = = Z FHVRQWGHVRQGHV WUDQVYHUVDOHVGHJOLVVHPHQW DXFRXUVGHODYLEUDWLRQOHVF\OLQGUHVPDWpULHOVG¶D[HR]QHVH GpIRUPHQW SDV LOV VXELVVHQW GHV URWDWLRQV DOWHUQpHV DXWRXU GH R] /¶pTXDWLRQ G¶RQGH FRUUHVSRQGDQWHV¶pFULW
G /HVRQGHVF\OLQGULTXHVFLUFRQIpUHQWLHOOHV {Y}SRXUOHVTXHOOHV X = = Z FHVRQWGHVRQGHV WUDQVYHUVDOHVGHJOLVVHPHQW DXFRXUVGHODYLEUDWLRQOHVF\OLQGUHVPDWpULHOVG¶D[HR]QHVH GpIRUPHQW SDV LOV VXELVVHQW GHV URWDWLRQV DOWHUQpHV DXWRXU GH R] /¶pTXDWLRQ G¶RQGH FRUUHVSRQGDQWHV¶pFULW
⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩
∂ Y ∂ Y Y ∂ Y + − = ⋅ ∂ U U ∂ U U &7 ∂ W Y ⎞ ∂ Y ⎟= U ⎟⎠ &7 ∂ W
∂ ∂U
⎛∂Y ⎜⎜ + ⎝ ∂U
∂ ∂U
⎛ ∂ ⎞ ∂ Y ⎜⎜ U Y ⎟⎟ = ⎝ U ∂U ⎠ &7 ∂ W
RXELHQ RXHQFRUH
⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩
∂ Y ∂ Y Y ∂ Y + − = ⋅ ∂ U U ∂ U U &7 ∂ W Y ⎞ ∂ Y ⎟= U ⎟⎠ &7 ∂ W
∂ ∂U
⎛∂Y ⎜⎜ + ⎝ ∂U
∂ ∂U
⎛ ∂ ⎞ ∂ Y ⎜⎜ U Y ⎟⎟ = ⎝ U ∂U ⎠ &7 ∂ W
- 166 -
'¶R
⎧ ⎧ ∂X ⎪γ θ] = ⎪ε U = ∂ U ⎪ ⎪ ⎪ X ⎪ ⎨γ ]U = ⎨εθ = U ⎪ ⎪ ⎪ ⎪ ⎪ε ] = ⎪γ Uθ = ⎩ ⎩
RXHQFRUH
- 166 -
'¶R ⎧ ⎪ωU = ⎪ ⎪ ∂Z ∂Z ⎨ωθ = − ∂U ∂U ⎪ ⎪ ⎛∂Y Y⎞ ⎛∂Y ⎜⎜ + − ⎟⎟ ⎪ω] = ⎜⎜ ⎝ ∂U ⎝ ∂U U ⎠ ⎩
H = GLY 8 = ε U + εθ + ε ] =
HW
RXELHQ
Y⎞ ⎟ U ⎟⎠
∂X X + ∂U U
⎧ ⎧ ∂X ⎪γ θ] = ⎪ε U = ∂ U ⎪ ⎪ ⎪ X ⎪ ⎨γ ]U = ⎨εθ = U ⎪ ⎪ ⎪ ⎪ ⎪ε ] = ⎪γ Uθ = ⎩ ⎩
⎧ ⎪ωU = ⎪ ⎪ ∂Z ∂Z ⎨ωθ = − ∂U ∂U ⎪ ⎪ ⎛∂Y Y⎞ ⎛∂Y ⎜⎜ + − ⎟⎟ ⎪ω] = ⎜⎜ ⎝ ∂U ⎝ ∂U U ⎠ ⎩
H = GLY 8 = ε U + εθ + ε ] =
HW
Y⎞ ⎟ U ⎟⎠
∂X X + ∂U U
2QDDLQVLWURLVW\SHVG¶RQGHVF\OLQGULTXHV
2QDDLQVLWURLVW\SHVG¶RQGHVF\OLQGULTXHV
G ±/HVRQGHVF\OLQGULTXHVUDGLDOHV {X}
G ±/HVRQGHVF\OLQGULTXHVUDGLDOHV {X}
G /HV RQGHV F\OLQGULTXHV UDGLDOHV {X} SRXU OHVTXHOOHV Y = = Z FH VRQW GHV RQGHV ORQJLWXGLQDOHVGHGLODWDWLRQ OHVVXUIDFHVG¶RQGHVVRQWGHVF\OLQGUHVGHUpYROXWLRQG¶D[HR] DXFRXUVGHODYLEUDWLRQOHVF\OLQGUHVPDWpULHOVG¶D[HR]QHVHGpSODFHQWSDVQLWUDQVODWLRQQL URWDWLRQ LOV ©UHVSLUHQWª F¶HVW j GLUH VH GLODWHQW HW VH FRQWUDFWHQW DOWHUQDWLYHPHQW GDQV OD GLUHFWLRQUDGLDOH/¶pTXDWLRQG¶RQGHFRUUHVSRQGDQWHV¶pFULW
G /HV RQGHV F\OLQGULTXHV UDGLDOHV {X} SRXU OHVTXHOOHV Y = = Z FH VRQW GHV RQGHV ORQJLWXGLQDOHVGHGLODWDWLRQ OHVVXUIDFHVG¶RQGHVVRQWGHVF\OLQGUHVGHUpYROXWLRQG¶D[HR] DXFRXUVGHODYLEUDWLRQOHVF\OLQGUHVPDWpULHOVG¶D[HR]QHVHGpSODFHQWSDVQLWUDQVODWLRQQL URWDWLRQ LOV ©UHVSLUHQWª F¶HVW j GLUH VH GLODWHQW HW VH FRQWUDFWHQW DOWHUQDWLYHPHQW GDQV OD GLUHFWLRQUDGLDOH/¶pTXDWLRQG¶RQGHFRUUHVSRQGDQWHV¶pFULW
⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩
∂ X ∂ U
+
∂X X ∂ X − = ⋅ U ∂U U &/ ∂ W
∂ ∂U
⎛∂X X ⎞ ∂ X ⎜⎜ + ⎟⎟ = ⎝ ∂ U U ⎠ &/ ∂ W
∂ ∂U
⎞ ⎛ ∂ ∂ X ⎜⎜ U X ⎟⎟ = ⎠ &/ ∂ W ⎝ U ∂U
RXELHQ RXHQFRUH
⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩
∂ X ∂ U
+
∂X X ∂ X − = ⋅ U ∂U U &/ ∂ W
∂ ∂U
⎛∂X X ⎞ ∂ X ⎜⎜ + ⎟⎟ = ⎝ ∂ U U ⎠ &/ ∂ W
∂ ∂U
⎞ ⎛ ∂ ∂ X ⎜⎜ U X ⎟⎟ = ⎠ &/ ∂ W ⎝ U ∂U
RXELHQ RXHQFRUH
G ±/HVRQGHVF\OLQGULTXHVFLUFRQIpUHQWLHOOHV {Y}
G ±/HVRQGHVF\OLQGULTXHVFLUFRQIpUHQWLHOOHV {Y}
G /HVRQGHVF\OLQGULTXHVFLUFRQIpUHQWLHOOHV {Y}SRXUOHVTXHOOHV X = = Z FHVRQWGHVRQGHV WUDQVYHUVDOHVGHJOLVVHPHQW DXFRXUVGHODYLEUDWLRQOHVF\OLQGUHVPDWpULHOVG¶D[HR]QHVH GpIRUPHQW SDV LOV VXELVVHQW GHV URWDWLRQV DOWHUQpHV DXWRXU GH R] /¶pTXDWLRQ G¶RQGH FRUUHVSRQGDQWHV¶pFULW
G /HVRQGHVF\OLQGULTXHVFLUFRQIpUHQWLHOOHV {Y}SRXUOHVTXHOOHV X = = Z FHVRQWGHVRQGHV WUDQVYHUVDOHVGHJOLVVHPHQW DXFRXUVGHODYLEUDWLRQOHVF\OLQGUHVPDWpULHOVG¶D[HR]QHVH GpIRUPHQW SDV LOV VXELVVHQW GHV URWDWLRQV DOWHUQpHV DXWRXU GH R] /¶pTXDWLRQ G¶RQGH FRUUHVSRQGDQWHV¶pFULW
⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩
∂ Y ∂ Y Y ∂ Y + − = ⋅ ∂ U U ∂ U U &7 ∂ W Y ⎞ ∂ Y ⎟= U ⎟⎠ &7 ∂ W
∂ ∂U
⎛∂Y ⎜⎜ + ⎝ ∂U
∂ ∂U
⎛ ∂ ⎞ ∂ Y ⎜⎜ U ∂ U U Y ⎟⎟ = ⎝ ⎠ &7 ∂ W
- 166 -
RXELHQ RXHQFRUH
⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩
∂ Y ∂ Y Y ∂ Y + − = ⋅ ∂ U U ∂ U U &7 ∂ W Y ⎞ ∂ Y ⎟= U ⎟⎠ &7 ∂ W
∂ ∂U
⎛∂Y ⎜⎜ + ⎝ ∂U
∂ ∂U
⎛ ∂ ⎞ ∂ Y ⎜⎜ U ∂ U U Y ⎟⎟ = ⎝ ⎠ &7 ∂ W
- 166 -
RXELHQ RXHQFRUH
G ±/HVRQGHVF\OLQGULTXHVD[LDOHV {Z} G /HV RQGHV F\OLQGULTXHV D[LDOHV {Z} SRXU OHVTXHOOHV X = = Y FH VRQW GHV RQGHV WUDQVYHUVDOHV GH JOLVVHPHQW OHV F\OLQGUHV PDWpULHOV G¶D[H R] YLEUHQW HQ WUDQVODWLRQ SDUDOOqOHPHQWjR]VDQVVHGpIRUPHU/¶pTXDWLRQG¶RQGHV¶pFULW ∂ Z ∂ Z ∂ Z + = ⋅ U ∂ U &7 ∂ W ∂U
G ±/HVRQGHVF\OLQGULTXHVD[LDOHV {Z} G /HV RQGHV F\OLQGULTXHV D[LDOHV {Z} SRXU OHVTXHOOHV X = = Y FH VRQW GHV RQGHV WUDQVYHUVDOHV GH JOLVVHPHQW OHV F\OLQGUHV PDWpULHOV G¶D[H R] YLEUHQW HQ WUDQVODWLRQ SDUDOOqOHPHQWjR]VDQVVHGpIRUPHU/¶pTXDWLRQG¶RQGHV¶pFULW ∂ Z ∂ Z ∂ Z + = ⋅ U ∂ U &7 ∂ W ∂U
±21'(663+e5,48(6
±21'(663+e5,48(6
&¶HVWOHFDVSDUGpILQLWLRQRLOH[LVWHXQUHSqUHRUWKRQRUPp {R [\]}OLpDXVROLGHWHOTXHHQ FRRUGRQQpHV VSKpULTXHV GH S{OH R OH YHFWHXU GpSODFHPHQW GH OD SDUWLFXOH FRXUDQWH 3 VRLW SXUHPHQWUDGLDOFROLQpDLUHj 23 HWIRQFWLRQVHXOHPHQWGHU 23HWW
&¶HVWOHFDVSDUGpILQLWLRQRLOH[LVWHXQUHSqUHRUWKRQRUPp {R [\]}OLpDXVROLGHWHOTXHHQ FRRUGRQQpHV VSKpULTXHV GH S{OH R OH YHFWHXU GpSODFHPHQW GH OD SDUWLFXOH FRXUDQWH 3 VRLW SXUHPHQWUDGLDOFROLQpDLUHj 23 HWIRQFWLRQVHXOHPHQWGHU 23HWW
2QDDORUV U ϕ θ GpVLJQDQWOHVFRRUGRQQpHVVSKpULTXHVGH 3 GDQV {R [\]}
2QDDORUV U ϕ θ GpVLJQDQWOHVFRRUGRQQpHVVSKpULTXHVGH 3 GDQV {R [\]}
)LJXUH
)LJXUH
⎧ X U W UDGLDO ⎪⎪ G 3R3 = X U W ⎨ VXLYDQWϕ G ⎪ VXLYDQWθ ⎪⎩
⎧ X U W UDGLDO ⎪⎪ G 3R3 = X U W ⎨ VXLYDQWϕ G ⎪ VXLYDQWθ ⎪⎩
⎧ ∂X ⎪ε U = ∂ U ⎧γ ϕθ = ⎪ ⎪ X ⎪ ⎪ ⎨ γ θ U = ⎨εθ = U ⎪ ⎪ ⎪⎩ γ Uϕ = ⎪ε = X ⎪ ϕ U ⎩
⎧ ∂X ⎪ε U = ∂ U ⎧γ ϕθ = ⎪ ⎪ X ⎪ ⎪ ⎨ γ θ U = ⎨εθ = U ⎪ ⎪ ⎪⎩ γ Uϕ = ⎪ε = X ⎪ ϕ U ⎩
- 167 -
- 167 -
G ±/HVRQGHVF\OLQGULTXHVD[LDOHV {Z} G /HV RQGHV F\OLQGULTXHV D[LDOHV {Z} SRXU OHVTXHOOHV X = = Y FH VRQW GHV RQGHV WUDQVYHUVDOHV GH JOLVVHPHQW OHV F\OLQGUHV PDWpULHOV G¶D[H R] YLEUHQW HQ WUDQVODWLRQ SDUDOOqOHPHQWjR]VDQVVHGpIRUPHU/¶pTXDWLRQG¶RQGHV¶pFULW
G ±/HVRQGHVF\OLQGULTXHVD[LDOHV {Z} G /HV RQGHV F\OLQGULTXHV D[LDOHV {Z} SRXU OHVTXHOOHV X = = Y FH VRQW GHV RQGHV WUDQVYHUVDOHV GH JOLVVHPHQW OHV F\OLQGUHV PDWpULHOV G¶D[H R] YLEUHQW HQ WUDQVODWLRQ SDUDOOqOHPHQWjR]VDQVVHGpIRUPHU/¶pTXDWLRQG¶RQGHV¶pFULW
∂ Z ∂ Z ∂ Z + = ⋅ U ∂ U &7 ∂ W ∂U
∂ Z ∂ Z ∂ Z + = ⋅ U ∂ U &7 ∂ W ∂U
±21'(663+e5,48(6
±21'(663+e5,48(6
&¶HVWOHFDVSDUGpILQLWLRQRLOH[LVWHXQUHSqUHRUWKRQRUPp {R [\]}OLpDXVROLGHWHOTXHHQ FRRUGRQQpHV VSKpULTXHV GH S{OH R OH YHFWHXU GpSODFHPHQW GH OD SDUWLFXOH FRXUDQWH 3 VRLW SXUHPHQWUDGLDOFROLQpDLUHj 23 HWIRQFWLRQVHXOHPHQWGHU 23HWW
&¶HVWOHFDVSDUGpILQLWLRQRLOH[LVWHXQUHSqUHRUWKRQRUPp {R [\]}OLpDXVROLGHWHOTXHHQ FRRUGRQQpHV VSKpULTXHV GH S{OH R OH YHFWHXU GpSODFHPHQW GH OD SDUWLFXOH FRXUDQWH 3 VRLW SXUHPHQWUDGLDOFROLQpDLUHj 23 HWIRQFWLRQVHXOHPHQWGHU 23HWW
2QDDORUV U ϕ θ GpVLJQDQWOHVFRRUGRQQpHVVSKpULTXHVGH 3 GDQV {R [\]}
2QDDORUV U ϕ θ GpVLJQDQWOHVFRRUGRQQpHVVSKpULTXHVGH 3 GDQV {R [\]}
)LJXUH
)LJXUH
⎧ X U W UDGLDO ⎪⎪ G 3R3 = X U W ⎨ VXLYDQWϕ G ⎪ VXLYDQWθ ⎩⎪
⎧ ∂X ⎪ε U = ∂ U ⎧γ ϕθ = ⎪ ⎪ X ⎪ ⎪ ⎨ γ θ U = ⎨εθ = U ⎪ ⎪ ⎪⎩ γ Uϕ = ⎪ε = X ⎪ ϕ U ⎩
- 167 -
⎧ X U W UDGLDO ⎪⎪ G 3R3 = X U W ⎨ VXLYDQWϕ G ⎪ VXLYDQWθ ⎩⎪
⎧ ∂X ⎪ε U = ∂ U ⎧γ ϕθ = ⎪ ⎪ X ⎪ ⎪ ⎨ γ θ U = ⎨εθ = U ⎪ ⎪ ⎪⎩ γ Uϕ = ⎪ε = X ⎪ ϕ U ⎩
- 167 -
G /¶RQGHVSKpULTXH {X}HVWGRQFXQHRQGHORQJLWXGLQDOHGHGLODWDWLRQ /HVVXUIDFHVG¶RQGHV VRQWGHVVSKqUHVGHFHQWUHDXFRXUVGHODYLEUDWLRQOHVVSKqUHVPDWpULHOOHVGHFHQWUHQHVH GpSODFHQW SDV HOOHV ©UHVSLUHQWª F¶HVW j GLUH VH GLODWHQW HW VH FRQWUDFWHQW DOWHUQDWLYHPHQW /¶pTXDWLRQG¶RQGHSHXWV¶pFULUHVRXVOHVWURLVIRUPHVpTXLYDOHQWHVVXLYDQWHV
⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩
G /¶RQGHVSKpULTXH {X}HVWGRQFXQHRQGHORQJLWXGLQDOHGHGLODWDWLRQ /HVVXUIDFHVG¶RQGHV VRQWGHVVSKqUHVGHFHQWUHDXFRXUVGHODYLEUDWLRQOHVVSKqUHVPDWpULHOOHVGHFHQWUHQHVH GpSODFHQW SDV HOOHV ©UHVSLUHQWª F¶HVW j GLUH VH GLODWHQW HW VH FRQWUDFWHQW DOWHUQDWLYHPHQW /¶pTXDWLRQG¶RQGHSHXWV¶pFULUHVRXVOHVWURLVIRUPHVpTXLYDOHQWHVVXLYDQWHV
∂ X ∂ X X ∂ X + − = ∂ U U ∂ U U &/ ∂ W ∂ ∂U
⎛∂X X ⎞ ∂ X ⎜⎜ + ⎟⎟ = U ⎠ &/ ∂ W ⎝ ∂U
∂ ⎡ ∂ ∂ X ⎤ = X U ⎥ ∂ U ⎢⎣ U ∂ U ⎦ &/ ∂ W
⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩
∂ X ∂ X X ∂ X + − = ∂ U U ∂ U U &/ ∂ W ∂ ∂U
⎛∂X X ⎞ ∂ X ⎜⎜ + ⎟⎟ = U ⎠ &/ ∂ W ⎝ ∂U
∂ ⎡ ∂ ∂ X ⎤ = X U ⎥ ∂ U ⎢⎣ U ∂ U ⎦ &/ ∂ W
±)21&7,21'(%(66(/
±)21&7,21'(%(66(/
/HV VROXWLRQV GH O¶pTXDWLRQ GH G¶$OHPEHUW VRQW VRXYHQW GHV IRQFWLRQV GH %HVVHO (Q HIIHW FHWWHpTXDWLRQV¶pFULW
/HV VROXWLRQV GH O¶pTXDWLRQ GH G¶$OHPEHUW VRQW VRXYHQW GHV IRQFWLRQV GH %HVVHO (Q HIIHW FHWWHpTXDWLRQV¶pFULW
± SRXUO¶RQGHF\OLQGULTXHGHYLEUDWLRQUDGLDOH
± SRXUO¶RQGHF\OLQGULTXHGHYLEUDWLRQUDGLDOH
∂ X ∂ X X ∂ X + − = ∂ U U ∂ U U & / ∂ W
FDV
± SRXUO¶RQGHF\OLQGULTXHGHYLEUDWLRQFLUFRQIpUHQWLHOOH FDV
± SRXUO¶RQGHF\OLQGULTXHGHYLEUDWLRQD[LDOH FDV
± SRXUO¶RQGHVSKpULTXHQpFHVVDLUHPHQWUDGLDOH
FDV
∂ Z ∂ Z ∂ Z + = ∂ U U ∂ U &7 ∂ W
FDV
± SRXUO¶RQGHVSKpULTXHQpFHVVDLUHPHQWUDGLDOH
∂ X ∂ X X ∂ X + − = ∂ U U ∂ U U & / ∂ W
∂ Y ∂ Y Y ∂ Y + − = ∂ U U ∂ U U &7 ∂ W
± SRXUO¶RQGHF\OLQGULTXHGHYLEUDWLRQD[LDOH
∂ Z ∂ Z ∂ Z + = ∂ U U ∂ U &7 ∂ W
FDV
± SRXUO¶RQGHF\OLQGULTXHGHYLEUDWLRQFLUFRQIpUHQWLHOOH
∂ Y ∂ Y Y ∂ Y + − = ∂ U U ∂ U U &7 ∂ W
∂ X ∂ X X ∂ X + − = ∂ U U ∂ U U & / ∂ W
FDV
∂ X ∂ X X ∂ X + − = ∂ U U ∂ U U & / ∂ W
FDV
2QFKHUFKHSRXUXYRXZGHVVROXWLRQVSDUWLFXOLqUHVGHODIRUPH I U ⋅ J W ODIRQFWLRQJW VDWLVIDLWjO¶pTXDWLRQGLIIpUHQWLHOOHFODVVLTXH
2QFKHUFKHSRXUXYRXZGHVVROXWLRQVSDUWLFXOLqUHVGHODIRUPH I U ⋅ J W ODIRQFWLRQJW VDWLVIDLWjO¶pTXDWLRQGLIIpUHQWLHOOHFODVVLTXH
J + ω J =
J + ω J =
- 168 -
- 168 -
G /¶RQGHVSKpULTXH {X}HVWGRQFXQHRQGHORQJLWXGLQDOHGHGLODWDWLRQ /HVVXUIDFHVG¶RQGHV VRQWGHVVSKqUHVGHFHQWUHDXFRXUVGHODYLEUDWLRQOHVVSKqUHVPDWpULHOOHVGHFHQWUHQHVH GpSODFHQW SDV HOOHV ©UHVSLUHQWª F¶HVW j GLUH VH GLODWHQW HW VH FRQWUDFWHQW DOWHUQDWLYHPHQW /¶pTXDWLRQG¶RQGHSHXWV¶pFULUHVRXVOHVWURLVIRUPHVpTXLYDOHQWHVVXLYDQWHV
G /¶RQGHVSKpULTXH {X}HVWGRQFXQHRQGHORQJLWXGLQDOHGHGLODWDWLRQ /HVVXUIDFHVG¶RQGHV VRQWGHVVSKqUHVGHFHQWUHDXFRXUVGHODYLEUDWLRQOHVVSKqUHVPDWpULHOOHVGHFHQWUHQHVH GpSODFHQW SDV HOOHV ©UHVSLUHQWª F¶HVW j GLUH VH GLODWHQW HW VH FRQWUDFWHQW DOWHUQDWLYHPHQW /¶pTXDWLRQG¶RQGHSHXWV¶pFULUHVRXVOHVWURLVIRUPHVpTXLYDOHQWHVVXLYDQWHV
⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩
∂ X ∂ X X ∂ X + − = ∂ U U ∂ U U &/ ∂ W ∂ ∂U
⎛∂X X ⎞ ∂ X ⎜⎜ + ⎟⎟ = U ⎠ &/ ∂ W ⎝ ∂U
∂ ⎡ ∂ ∂ X ⎤ = X U ⎢ ⎥ ∂ U ⎣ U ∂ U ⎦ &/ ∂ W
⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩
∂ X ∂ X X ∂ X + − = ∂ U U ∂ U U &/ ∂ W ∂ ∂U
⎛∂X X ⎞ ∂ X ⎜⎜ + ⎟⎟ = U ⎠ &/ ∂ W ⎝ ∂U
∂ ⎡ ∂ ∂ X ⎤ = X U ⎢ ⎥ ∂ U ⎣ U ∂ U ⎦ &/ ∂ W
±)21&7,21'(%(66(/
±)21&7,21'(%(66(/
/HV VROXWLRQV GH O¶pTXDWLRQ GH G¶$OHPEHUW VRQW VRXYHQW GHV IRQFWLRQV GH %HVVHO (Q HIIHW FHWWHpTXDWLRQV¶pFULW
/HV VROXWLRQV GH O¶pTXDWLRQ GH G¶$OHPEHUW VRQW VRXYHQW GHV IRQFWLRQV GH %HVVHO (Q HIIHW FHWWHpTXDWLRQV¶pFULW
± SRXUO¶RQGHF\OLQGULTXHGHYLEUDWLRQUDGLDOH
± SRXUO¶RQGHF\OLQGULTXHGHYLEUDWLRQUDGLDOH
∂ X ∂ X X ∂ X + − = ∂ U U ∂ U U & / ∂ W
FDV
± SRXUO¶RQGHF\OLQGULTXHGHYLEUDWLRQFLUFRQIpUHQWLHOOH
∂ Y ∂ Y Y ∂ Y + − = ∂ U U ∂ U U &7 ∂ W
∂ Z ∂ Z ∂ Z + = ∂ U U ∂ U &7 ∂ W
FDV
∂ X ∂ X X ∂ X + − = ∂ U U ∂ U U & / ∂ W
FDV
∂ Y ∂ Y Y ∂ Y + − = ∂ U U ∂ U U &7 ∂ W
FDV
± SRXUO¶RQGHF\OLQGULTXHGHYLEUDWLRQD[LDOH FDV
± SRXUO¶RQGHVSKpULTXHQpFHVVDLUHPHQWUDGLDOH
∂ X ∂ X X ∂ X + − = ∂ U U ∂ U U & / ∂ W
± SRXUO¶RQGHF\OLQGULTXHGHYLEUDWLRQFLUFRQIpUHQWLHOOH
± SRXUO¶RQGHF\OLQGULTXHGHYLEUDWLRQD[LDOH
∂ Z ∂ Z ∂ Z + = ∂ U U ∂ U &7 ∂ W
FDV
± SRXUO¶RQGHVSKpULTXHQpFHVVDLUHPHQWUDGLDOH FDV
∂ X ∂ X X ∂ X + − = ∂ U U ∂ U U & / ∂ W
FDV
2QFKHUFKHSRXUXYRXZGHVVROXWLRQVSDUWLFXOLqUHVGHODIRUPH I U ⋅ J W ODIRQFWLRQJW VDWLVIDLWjO¶pTXDWLRQGLIIpUHQWLHOOHFODVVLTXH
2QFKHUFKHSRXUXYRXZGHVVROXWLRQVSDUWLFXOLqUHVGHODIRUPH I U ⋅ J W ODIRQFWLRQJW VDWLVIDLWjO¶pTXDWLRQGLIIpUHQWLHOOHFODVVLTXH
J + ω J =
J + ω J =
- 168 -
- 168 -
/DIRQFWLRQIU HVWDORUVVROXWLRQG¶XQHpTXDWLRQGLIIpUHQWLHOOHGXVHFRQGRUGUHOLQpDLUHVDQV VHFRQGPHPEUHGXW\SHGH%HVVHOPRGLILpH ⎧ ⎛ ω ⎞ ⎪I ′′U + I ′U + ⎜⎜ − ⎟⎟ I U = U U ⎠ ⎪ ⎝& ⎪ ω ⎪ ⎨I ′′U + I ′U + ⋅ I U = U F ⎪ ⎪ ⎪I ′′U + I ′U + ⎛⎜ ω − ⎞⎟ I U = ⎪ ⎜ F U ⎟ U ⎠ ⎝ ⎩
/DIRQFWLRQIU HVWDORUVVROXWLRQG¶XQHpTXDWLRQGLIIpUHQWLHOOHGXVHFRQGRUGUHOLQpDLUHVDQV VHFRQGPHPEUHGXW\SHGH%HVVHOPRGLILpH ⎧ ⎛ ω ⎞ ⎪I ′′U + I ′U + ⎜⎜ − ⎟⎟ I U = U U ⎠ ⎪ ⎝& ⎪ ω ⎪ ⎨I ′′U + I ′U + ⋅ I U = U F ⎪ ⎪ ⎪I ′′U + I ′U + ⎛⎜ ω − ⎞⎟ I U = ⎪ ⎜ F U ⎟ U ⎠ ⎝ ⎩
FDVHW FDV FDV
FDVHW FDV FDV
5DSSHORQV TXHOTXHV UpVXOWDWV LPSRUWDQWV UHODWLIV DX[ pTXDWLRQV HW IRQFWLRQV GH %HVVHO OD WKpRULHpWDQWODUJHPHQWGpYHORSSpHGDQVOHVGHX[RXYUDJHVpGLWpVSDU0DVVRQHW&LH ± -%DVV&RXUVGHPDWKpPDWLTXHVWRPH,, ± $QJRW&RPSOpPHQWVGHPDWKpPDWLTXHV
5DSSHORQV TXHOTXHV UpVXOWDWV LPSRUWDQWV UHODWLIV DX[ pTXDWLRQV HW IRQFWLRQV GH %HVVHO OD WKpRULHpWDQWODUJHPHQWGpYHORSSpHGDQVOHVGHX[RXYUDJHVpGLWpVSDU0DVVRQHW&LH ± -%DVV&RXUVGHPDWKpPDWLTXHVWRPH,, ± $QJRW&RPSOpPHQWVGHPDWKpPDWLTXHV
2QDSSHOOHpTXDWLRQGLIIpUHQWLHOOHGH%HVVHOO¶pTXDWLRQ
2QDSSHOOHpTXDWLRQGLIIpUHQWLHOOHGH%HVVHOO¶pTXDWLRQ
I ′′ [ +
⎛ λ ⎞ I ′ [ + ⎜ − ⎟ I [ = DYHF λ ∈ 5 ⎟ ⎜ [ ⎝ [ ⎠
2QDSSHOOHIRQFWLRQGH%HVVHOG¶RUGUH λ ODIRQFWLRQ
⎛[⎞ -λ [ = ⎜ ⎟ ⎝⎠
λ
I ′′ [ +
⎛ λ ⎞ I ′ [ + ⎜ − ⎟ I [ = DYHF λ ∈ 5 ⎟ ⎜ [ ⎝ [ ⎠
2QDSSHOOHIRQFWLRQGH%HVVHOG¶RUGUH λ ODIRQFWLRQ
Q ⎡ ⎤ − Q ⎛ [ ⎞ + !!⎥ + !! + ⎢ ⎜ ⎟ Q ⎝ ⎠ Γ λ + Q + ⎢⎣ Γ λ + ⎥⎦
GDQVODTXHOOH Γ GpVLJQHODIRQFWLRQHXOHULHQQH
⎛[⎞ -λ [ = ⎜ ⎟ ⎝⎠
λ
Q ⎡ ⎤ − Q ⎛ [ ⎞ + !!⎥ + !! + ⎢ ⎜ ⎟ Q ⎝ ⎠ Γ λ + Q + ⎢⎣ Γ λ + ⎥⎦
Γ [ =
∫X
GDQVODTXHOOH Γ GpVLJQHODIRQFWLRQHXOHULHQQH
∞
∞ [ − − X
H
GX
Γ [ =
∫X
[ − − X
H
GX
DSSHOpHDXVVLIRQFWLRQIDFWRULHOOHFDU Γ Q = Q −
DSSHOpHDXVVLIRQFWLRQIDFWRULHOOHFDU Γ Q = Q −
6L λ HVWQRQHQWLHU - λ [ HW - − λ [ FRQVWLWXHQWGHX[VROXWLRQVLQGpSHQGDQWHVGHO¶pTXDWLRQ GRQWRQHXWDORUVpFULUHODVROXWLRQJpQpUDOHDYHFGHX[FRQVWDQWHV & HW &
6L λ HVWQRQHQWLHU - λ [ HW - − λ [ FRQVWLWXHQWGHX[VROXWLRQVLQGpSHQGDQWHVGHO¶pTXDWLRQ GRQWRQHXWDORUVpFULUHODVROXWLRQJpQpUDOHDYHFGHX[FRQVWDQWHV & HW &
I [ = & - λ [ + & - − λ [
I [ = & - λ [ + & - − λ [
6L λ HVWHQWLHUSRVLWLIQpJDWLIRXQXO RQD - λ = − λ - − λ - λ HW - − λ QHVRQWGRQFSOXVGHV IRQFWLRQVLQGpSHQGDQWHV
6L λ HVWHQWLHUSRVLWLIQpJDWLIRXQXO RQD - λ = − λ - − λ - λ HW - − λ QHVRQWGRQFSOXVGHV IRQFWLRQVLQGpSHQGDQWHV
3DUFRQWUHODIRQFWLRQ[[ GpILQLHSDUODIRUPXOH
3DUFRQWUHODIRQFWLRQ[[ GpILQLHSDUODIRUPXOH
1 λ [ = OLPε →
- λ + ε [ − − λ - − λ − ε [ πε
1 λ [ = OLPε →
- λ + ε [ − − λ - − λ − ε [ πε
- 169 -
- 169 -
/DIRQFWLRQIU HVWDORUVVROXWLRQG¶XQHpTXDWLRQGLIIpUHQWLHOOHGXVHFRQGRUGUHOLQpDLUHVDQV VHFRQGPHPEUHGXW\SHGH%HVVHOPRGLILpH
/DIRQFWLRQIU HVWDORUVVROXWLRQG¶XQHpTXDWLRQGLIIpUHQWLHOOHGXVHFRQGRUGUHOLQpDLUHVDQV VHFRQGPHPEUHGXW\SHGH%HVVHOPRGLILpH
⎧ ⎛ ω ⎞ ⎪I ′′U + I ′U + ⎜⎜ − ⎟⎟ I U = U U ⎠ ⎪ ⎝& ⎪ ω ⎪ ⎨I ′′U + I ′U + ⋅ I U = U F ⎪ ⎪ ⎪I ′′U + I ′U + ⎛⎜ ω − ⎞⎟ I U = ⎪ ⎜F U U ⎟⎠ ⎝ ⎩
⎧ ⎛ ω ⎞ ⎪I ′′U + I ′U + ⎜⎜ − ⎟⎟ I U = U U ⎠ ⎪ ⎝& ⎪ ω ⎪ ⎨I ′′U + I ′U + ⋅ I U = U F ⎪ ⎪ ⎪I ′′U + I ′U + ⎛⎜ ω − ⎞⎟ I U = ⎪ ⎜F U U ⎟⎠ ⎝ ⎩
FDVHW FDV FDV
FDVHW FDV FDV
5DSSHORQV TXHOTXHV UpVXOWDWV LPSRUWDQWV UHODWLIV DX[ pTXDWLRQV HW IRQFWLRQV GH %HVVHO OD WKpRULHpWDQWODUJHPHQWGpYHORSSpHGDQVOHVGHX[RXYUDJHVpGLWpVSDU0DVVRQHW&LH ± -%DVV&RXUVGHPDWKpPDWLTXHVWRPH,, ± $QJRW&RPSOpPHQWVGHPDWKpPDWLTXHV
5DSSHORQV TXHOTXHV UpVXOWDWV LPSRUWDQWV UHODWLIV DX[ pTXDWLRQV HW IRQFWLRQV GH %HVVHO OD WKpRULHpWDQWODUJHPHQWGpYHORSSpHGDQVOHVGHX[RXYUDJHVpGLWpVSDU0DVVRQHW&LH ± -%DVV&RXUVGHPDWKpPDWLTXHVWRPH,, ± $QJRW&RPSOpPHQWVGHPDWKpPDWLTXHV
2QDSSHOOHpTXDWLRQGLIIpUHQWLHOOHGH%HVVHOO¶pTXDWLRQ
2QDSSHOOHpTXDWLRQGLIIpUHQWLHOOHGH%HVVHOO¶pTXDWLRQ
I ′′ [ +
⎛ λ ⎞ I ′ [ + ⎜ − ⎟ I [ = DYHF λ ∈ 5 ⎟ ⎜ [ ⎝ [ ⎠
2QDSSHOOHIRQFWLRQGH%HVVHOG¶RUGUH λ ODIRQFWLRQ
I ′′ [ +
⎛ λ ⎞ I ′ [ + ⎜ − ⎟ I [ = DYHF λ ∈ 5 ⎟ ⎜ [ ⎝ [ ⎠
2QDSSHOOHIRQFWLRQGH%HVVHOG¶RUGUH λ ODIRQFWLRQ
λ Q ⎤ − Q ⎛ [ ⎞ ⎛[⎞ ⎡ + !!⎥ -λ [ = ⎜ ⎟ ⎢ + !! + ⎜ ⎟ Q ⎝ ⎠ Γ λ + Q + ⎝ ⎠ ⎣⎢ Γ λ + ⎦⎥
GDQVODTXHOOH Γ GpVLJQHODIRQFWLRQHXOHULHQQH
λ Q ⎤ − Q ⎛ [ ⎞ ⎛[⎞ ⎡ + !!⎥ -λ [ = ⎜ ⎟ ⎢ + !! + ⎜ ⎟ Q ⎝ ⎠ Γ λ + Q + ⎝ ⎠ ⎣⎢ Γ λ + ⎦⎥
Γ [ =
∫
GDQVODTXHOOH Γ GpVLJQHODIRQFWLRQHXOHULHQQH
∞
∞
X [ − H − X G X
Γ [ =
∫X
[ − − X
H
GX
DSSHOpHDXVVLIRQFWLRQIDFWRULHOOHFDU Γ Q = Q −
DSSHOpHDXVVLIRQFWLRQIDFWRULHOOHFDU Γ Q = Q −
6L λ HVWQRQHQWLHU - λ [ HW - − λ [ FRQVWLWXHQWGHX[VROXWLRQVLQGpSHQGDQWHVGHO¶pTXDWLRQ GRQWRQHXWDORUVpFULUHODVROXWLRQJpQpUDOHDYHFGHX[FRQVWDQWHV & HW &
6L λ HVWQRQHQWLHU - λ [ HW - − λ [ FRQVWLWXHQWGHX[VROXWLRQVLQGpSHQGDQWHVGHO¶pTXDWLRQ GRQWRQHXWDORUVpFULUHODVROXWLRQJpQpUDOHDYHFGHX[FRQVWDQWHV & HW &
I [ = & - λ [ + & - − λ [
I [ = & - λ [ + & - − λ [
6L λ HVWHQWLHUSRVLWLIQpJDWLIRXQXO RQD - λ = − λ - − λ - λ HW - − λ QHVRQWGRQFSOXVGHV IRQFWLRQVLQGpSHQGDQWHV
6L λ HVWHQWLHUSRVLWLIQpJDWLIRXQXO RQD - λ = − λ - − λ - λ HW - − λ QHVRQWGRQFSOXVGHV IRQFWLRQVLQGpSHQGDQWHV
3DUFRQWUHODIRQFWLRQ[[ GpILQLHSDUODIRUPXOH
3DUFRQWUHODIRQFWLRQ[[ GpILQLHSDUODIRUPXOH
1 λ [ = OLPε →
λ
- λ + ε [ − − - − λ − ε [ πε
- 169 -
1 λ [ = OLPε →
- λ + ε [ − − λ - − λ − ε [ πε
- 169 -
HVWLQGpSHQGDQWHGH - λ [ HWHVWVROXWLRQGH RQO¶DSSHOOHIRQFWLRQGH%HVVHOGHVHFRQGH HVSqFHG¶RUGUH λ /DVROXWLRQJpQpUDOHGH SHXWDORUVV¶pFULUH I [ = & - λ [ + & 1 λ [
/HV IRQFWLRQV GH %HVVHO VRQW ©DSSUR[LPDWLYHPHQW SpULRGLTXHV HW DPRUWLHVª OD ILJXUH GRQQHODUHSUpVHQWDWLRQJUDSKLTXHGH - [ SRXUIL[HUOHVLGpHV
HVWLQGpSHQGDQWHGH - λ [ HWHVWVROXWLRQGH RQO¶DSSHOOHIRQFWLRQGH%HVVHOGHVHFRQGH HVSqFHG¶RUGUH λ /DVROXWLRQJpQpUDOHGH SHXWDORUVV¶pFULUH I [ = & - λ [ + & 1 λ [
/HV IRQFWLRQV GH %HVVHO VRQW ©DSSUR[LPDWLYHPHQW SpULRGLTXHV HW DPRUWLHVª OD ILJXUH GRQQHODUHSUpVHQWDWLRQJUDSKLTXHGH - [ SRXUIL[HUOHVLGpHV
)RQFWLRQGH%HVVHO - )LJXUH
)RQFWLRQGH%HVVHO - )LJXUH
/HV pTXDWLRQV GLIIpUHQWLHOOHV GHV FDV pFULWHV SOXV KDXW QH VRQW SDV LGHQWLTXHV j O¶pTXDWLRQGH%HVVHO PDLVSHXYHQWV¶\UDPHQHUGHODIDoRQVXLYDQWH(OOHVVRQWWRXWHVGX W\SH ⎛ ω α − λ ⎞ α + ⎟ I U = I ′′U + I ′U + ⎜ + ⎜ U U ⎟⎠ ⎝&
/HV pTXDWLRQV GLIIpUHQWLHOOHV GHV FDV pFULWHV SOXV KDXW QH VRQW SDV LGHQWLTXHV j O¶pTXDWLRQGH%HVVHO PDLVSHXYHQWV¶\UDPHQHUGHODIDoRQVXLYDQWH(OOHVVRQWWRXWHVGX W\SH ⎛ ω α − λ ⎞ α + ⎟ I U = I ′′U + I ′U + ⎜ + ⎜ U U ⎟⎠ ⎝&
3RVDQW U =
F[ HOOHVGHYLHQQHQW ω
I ′′ [ +
3RVDQW U =
⎛ α − λ ⎞ α + ⎟ I U = I ′ [ + ⎜ + ⎟ ⎜ [ [ ⎝ ⎠
GDQV OH FDV VSKpULTXH (Q SRVDQW I [ = [ −α K [ RQREWLHQWO¶pTXDWLRQGH%HVVHO
DYHF α = GDQV OHV FDV F\OLQGULTXHV HW α =
K′′ [ +
G 1λ λ G -λ λ = 1 λ − 1 λ + = - λ − - λ + HW G[ [ G[ [
I ′′ [ +
⎛ α − λ ⎞ α + ⎟ I U = I ′ [ + ⎜ + ⎟ ⎜ [ [ ⎝ ⎠
GDQV OH FDV VSKpULTXH (Q SRVDQW I [ = [ −α K [ RQREWLHQWO¶pTXDWLRQGH%HVVHO
DYHF α = GDQV OHV FDV F\OLQGULTXHV HW α =
⎛ λ ⎞ K′ [ + ⎜ − ⎟ K [ = ⎜ [ ⎟ [ ⎝ ⎠
K′′ [ +
/HVIRQFWLRQVGH%HVVHOVDWLVIRQWDX[IRUPXOHVGHGpULYDWLRQVXLYDQWHV
F[ HOOHVGHYLHQQHQW ω
⎛ λ ⎞ K′ [ + ⎜ − ⎟ K [ = ⎜ [ ⎟ [ ⎝ ⎠
/HVIRQFWLRQVGH%HVVHOVDWLVIRQWDX[IRUPXOHVGHGpULYDWLRQVXLYDQWHV
G 1λ λ G -λ λ = 1 λ − 1 λ + = - λ − - λ + HW G[ [ G[ [
- 170 -
- 170 -
HVWLQGpSHQGDQWHGH - λ [ HWHVWVROXWLRQGH RQO¶DSSHOOHIRQFWLRQGH%HVVHOGHVHFRQGH HVSqFHG¶RUGUH λ /DVROXWLRQJpQpUDOHGH SHXWDORUVV¶pFULUH
HVWLQGpSHQGDQWHGH - λ [ HWHVWVROXWLRQGH RQO¶DSSHOOHIRQFWLRQGH%HVVHOGHVHFRQGH HVSqFHG¶RUGUH λ /DVROXWLRQJpQpUDOHGH SHXWDORUVV¶pFULUH
I [ = & - λ [ + & 1 λ [
/HV IRQFWLRQV GH %HVVHO VRQW ©DSSUR[LPDWLYHPHQW SpULRGLTXHV HW DPRUWLHVª OD ILJXUH GRQQHODUHSUpVHQWDWLRQJUDSKLTXHGH - [ SRXUIL[HUOHVLGpHV
I [ = & - λ [ + & 1 λ [
/HV IRQFWLRQV GH %HVVHO VRQW ©DSSUR[LPDWLYHPHQW SpULRGLTXHV HW DPRUWLHVª OD ILJXUH GRQQHODUHSUpVHQWDWLRQJUDSKLTXHGH - [ SRXUIL[HUOHVLGpHV
)RQFWLRQGH%HVVHO - )LJXUH
)RQFWLRQGH%HVVHO - )LJXUH
/HV pTXDWLRQV GLIIpUHQWLHOOHV GHV FDV pFULWHV SOXV KDXW QH VRQW SDV LGHQWLTXHV j O¶pTXDWLRQGH%HVVHO PDLVSHXYHQWV¶\UDPHQHUGHODIDoRQVXLYDQWH(OOHVVRQWWRXWHVGX W\SH ⎛ ω α − λ ⎞ α + ⎟ I U = I ′′U + I ′U + ⎜ + ⎜ U U ⎟⎠ ⎝&
/HV pTXDWLRQV GLIIpUHQWLHOOHV GHV FDV pFULWHV SOXV KDXW QH VRQW SDV LGHQWLTXHV j O¶pTXDWLRQGH%HVVHO PDLVSHXYHQWV¶\UDPHQHUGHODIDoRQVXLYDQWH(OOHVVRQWWRXWHVGX W\SH ⎛ ω α − λ ⎞ α + ⎟ I U = I ′′U + I ′U + ⎜ + ⎜ U U ⎟⎠ ⎝&
3RVDQW U =
F[ HOOHVGHYLHQQHQW ω
I ′′ [ +
3RVDQW U =
⎛ α − λ ⎞ α + ⎟ I U = I ′ [ + ⎜ + ⎜ [ [ ⎟⎠ ⎝
GDQV OH FDV VSKpULTXH (Q SRVDQW I [ = [ −α K [ RQREWLHQWO¶pTXDWLRQGH%HVVHO
DYHF α = GDQV OHV FDV F\OLQGULTXHV HW α =
K′′ [ +
G 1λ λ G -λ λ = 1 λ − 1 λ + = - λ − - λ + HW G[ [ G[ [
- 170 -
I ′′ [ +
⎛ α − λ ⎞ α + ⎟ I U = I ′ [ + ⎜ + ⎜ [ [ ⎟⎠ ⎝
GDQV OH FDV VSKpULTXH (Q SRVDQW I [ = [ −α K [ RQREWLHQWO¶pTXDWLRQGH%HVVHO
DYHF α = GDQV OHV FDV F\OLQGULTXHV HW α =
⎛ λ ⎞ K′ [ + ⎜ − ⎟ K [ = ⎜ [ ⎟ [ ⎝ ⎠
K′′ [ +
/HVIRQFWLRQVGH%HVVHOVDWLVIRQWDX[IRUPXOHVGHGpULYDWLRQVXLYDQWHV
F[ HOOHVGHYLHQQHQW ω
⎛ λ ⎞ K′ [ + ⎜ − ⎟ K [ = ⎜ [ ⎟ [ ⎝ ⎠
/HVIRQFWLRQVGH%HVVHOVDWLVIRQWDX[IRUPXOHVGHGpULYDWLRQVXLYDQWHV
G 1λ λ G -λ λ = 1 λ − 1 λ + = - λ − - λ + HW G[ [ G[ [
- 170 -
±9,6&2e/$67,&,7e/,1e$,5(
±9,6&2e/$67,&,7e/,1e$,5(
'DQV OHV PRXYHPHQWV pODVWLTXHV TXH QRXV YHQRQV G¶pWXGLHU O¶DPRUWLVVHPHQW pWDLW VXSSRVp QXO8QHWHOOHPRGpOLVDWLRQHVWHIIHFWLYHPHQWVXIILVDQWHGDQVGHQRPEUHX[SUREOqPHVPDLVHQ UpDOLWp WRXWH GpIRUPDWLRQ VWUXFWXUDOH V¶DFFRPSDJQH G¶XQH GLVVLSDWLRQ G¶pQHUJLH F¶HVW j GLUH G¶XQ DPRUWLVVHPHQW &HW DPRUWLVVHPHQW SHXW rWUH H[WHUQH SDU H[HPSOH ORUVTXH OD VWUXFWXUH EDLJQHGDQVXQIOXLGHO¶DPRUWLVVHPHQWLQWHUQHFRQVLVWHHQXQHSURGXFWLRQGHFKDOHXUDXVHLQ GHV VROLGHV GXHV j OHXUV GpIRUPDWLRQV F¶HVW j GLUH DX[ IURWWHPHQWV PXWXHOV GHV SDUWLFXOHV 0rPHRVFLOODQWOLEUHPHQWGDQVXQYLGHSDUIDLWXQSHQGXOHGHWRUVLRQILQLWSDUV¶LPPRELOLVHU
'DQV OHV PRXYHPHQWV pODVWLTXHV TXH QRXV YHQRQV G¶pWXGLHU O¶DPRUWLVVHPHQW pWDLW VXSSRVp QXO8QHWHOOHPRGpOLVDWLRQHVWHIIHFWLYHPHQWVXIILVDQWHGDQVGHQRPEUHX[SUREOqPHVPDLVHQ UpDOLWp WRXWH GpIRUPDWLRQ VWUXFWXUDOH V¶DFFRPSDJQH G¶XQH GLVVLSDWLRQ G¶pQHUJLH F¶HVW j GLUH G¶XQ DPRUWLVVHPHQW &HW DPRUWLVVHPHQW SHXW rWUH H[WHUQH SDU H[HPSOH ORUVTXH OD VWUXFWXUH EDLJQHGDQVXQIOXLGHO¶DPRUWLVVHPHQWLQWHUQHFRQVLVWHHQXQHSURGXFWLRQGHFKDOHXUDXVHLQ GHV VROLGHV GXHV j OHXUV GpIRUPDWLRQV F¶HVW j GLUH DX[ IURWWHPHQWV PXWXHOV GHV SDUWLFXOHV 0rPHRVFLOODQWOLEUHPHQWGDQVXQYLGHSDUIDLWXQSHQGXOHGHWRUVLRQILQLWSDUV¶LPPRELOLVHU
3RXU OHV PDWpULDX[ VWUXFWXUDX[ XVXHOV O¶DPRUWLVVHPHQW LQWHUQH HVW GX W\SH YLVTXHX[ F¶HVW j GLUHTX¶jFKDTXHLQVWDQWHWHQFKDTXHSRLQWDX[FRQWUDLQWHVGLWHVpODVWLTXHVTXLV¶RSSRVHQW DX[GpIRUPDWLRQVV¶DMRXWHQWGHVFRQWUDLQWHVGLWHVYLVTXHXVHVTXLV¶RSSRVHQWDX[YLWHVVHVGH GpIRUPDWLRQ
3RXU OHV PDWpULDX[ VWUXFWXUDX[ XVXHOV O¶DPRUWLVVHPHQW LQWHUQH HVW GX W\SH YLVTXHX[ F¶HVW j GLUHTX¶jFKDTXHLQVWDQWHWHQFKDTXHSRLQWDX[FRQWUDLQWHVGLWHVpODVWLTXHVTXLV¶RSSRVHQW DX[GpIRUPDWLRQVV¶DMRXWHQWGHVFRQWUDLQWHVGLWHVYLVTXHXVHVTXLV¶RSSRVHQWDX[YLWHVVHVGH GpIRUPDWLRQ
2QDDLQVL
Σ = Σ( + ΣY
2QDDLQVL
Σ = Σ( + ΣY
/HWHQVHXUGHVFRQWUDLQWHVpODVWLTXHV Σ ( HVWOLpDXWHQVHXUGHVGpIRUPDWLRQV E SDUODORLGH +RRNH ⎧⎪λ µ =FRHIILFLHQWGH/DPp Σ ( = λ H , + µ E DYHF ⎨ ⎪⎩H = GLY 3R3 = WU E
/HWHQVHXUGHVFRQWUDLQWHVpODVWLTXHV Σ ( HVWOLpDXWHQVHXUGHVGpIRUPDWLRQV E SDUODORLGH +RRNH ⎧⎪λ µ =FRHIILFLHQWGH/DPp Σ ( = λ H , + µ E DYHF ⎨ ⎪⎩H = GLY 3R3 = WU E
3RXU PHWWUH HQ pYLGHQFH OH WHQVHXU GHV FRQWUDLQWHV YLVTXHXVHV Σ Y RQ V¶DSSXLHUD VXU GHX[ H[SpULHQFHVVLPSOHV
3RXU PHWWUH HQ pYLGHQFH OH WHQVHXU GHV FRQWUDLQWHV YLVTXHXVHV Σ Y RQ V¶DSSXLHUD VXU GHX[ H[SpULHQFHVVLPSOHV
±7UDFWLRQFRPSUHVVLRQG\QDPLTXHG¶XQEDUUHDX
±7UDFWLRQFRPSUHVVLRQG\QDPLTXHG¶XQEDUUHDX
&RQVLGpURQV XQH pSURXYHWWH SULVPDWLTXH ORQJXH GH VHFWLRQ 6 TXH O¶RQ SUHQG HQWUH OHV PkFKRLUHVG¶XQHPDFKLQHGHWUDFWLRQ
&RQVLGpURQV XQH pSURXYHWWH SULVPDWLTXH ORQJXH GH VHFWLRQ 6 TXH O¶RQ SUHQG HQWUH OHV PkFKRLUHVG¶XQHPDFKLQHGHWUDFWLRQ
)LJXUH
)LJXUH
&HWWHPDFKLQHSHUPHWG¶DSSOLTXHUXQHGLODWDWLRQORQJLWXGLQDOH ε [ = ε W VXLYDQWGLYHUVHVORLV KRUDLUHV W → ε W SLORWDEOHV FHWWH GpIRUPDWLRQ XQLIRUPH GDQV OH EDUUHDX HVW PHVXUpH O¶DLGH GH MDXJHV H[WHQVRPpWULTXHV D[LDOHV HW HQUHJLVWUpHV HQ IRQFWLRQ GX WHPSV VXU XQ ∂ε GLDJUDPPH W ε TXL SHUPHW G¶DYRLU j FKDTXH LQVWDQW OD YDOHXU GH OD GpULYpH ∂W
&HWWHPDFKLQHSHUPHWG¶DSSOLTXHUXQHGLODWDWLRQORQJLWXGLQDOH ε [ = ε W VXLYDQWGLYHUVHVORLV KRUDLUHV W → ε W SLORWDEOHV FHWWH GpIRUPDWLRQ XQLIRUPH GDQV OH EDUUHDX HVW PHVXUpH O¶DLGH GH MDXJHV H[WHQVRPpWULTXHV D[LDOHV HW HQUHJLVWUpHV HQ IRQFWLRQ GX WHPSV VXU XQ ∂ε GLDJUDPPH W ε TXL SHUPHW G¶DYRLU j FKDTXH LQVWDQW OD YDOHXU GH OD GpULYpH ∂W
- 171 -
- 171 -
±9,6&2e/$67,&,7e/,1e$,5(
±9,6&2e/$67,&,7e/,1e$,5(
'DQV OHV PRXYHPHQWV pODVWLTXHV TXH QRXV YHQRQV G¶pWXGLHU O¶DPRUWLVVHPHQW pWDLW VXSSRVp QXO8QHWHOOHPRGpOLVDWLRQHVWHIIHFWLYHPHQWVXIILVDQWHGDQVGHQRPEUHX[SUREOqPHVPDLVHQ UpDOLWp WRXWH GpIRUPDWLRQ VWUXFWXUDOH V¶DFFRPSDJQH G¶XQH GLVVLSDWLRQ G¶pQHUJLH F¶HVW j GLUH G¶XQ DPRUWLVVHPHQW &HW DPRUWLVVHPHQW SHXW rWUH H[WHUQH SDU H[HPSOH ORUVTXH OD VWUXFWXUH EDLJQHGDQVXQIOXLGHO¶DPRUWLVVHPHQWLQWHUQHFRQVLVWHHQXQHSURGXFWLRQGHFKDOHXUDXVHLQ GHV VROLGHV GXHV j OHXUV GpIRUPDWLRQV F¶HVW j GLUH DX[ IURWWHPHQWV PXWXHOV GHV SDUWLFXOHV 0rPHRVFLOODQWOLEUHPHQWGDQVXQYLGHSDUIDLWXQSHQGXOHGHWRUVLRQILQLWSDUV¶LPPRELOLVHU
'DQV OHV PRXYHPHQWV pODVWLTXHV TXH QRXV YHQRQV G¶pWXGLHU O¶DPRUWLVVHPHQW pWDLW VXSSRVp QXO8QHWHOOHPRGpOLVDWLRQHVWHIIHFWLYHPHQWVXIILVDQWHGDQVGHQRPEUHX[SUREOqPHVPDLVHQ UpDOLWp WRXWH GpIRUPDWLRQ VWUXFWXUDOH V¶DFFRPSDJQH G¶XQH GLVVLSDWLRQ G¶pQHUJLH F¶HVW j GLUH G¶XQ DPRUWLVVHPHQW &HW DPRUWLVVHPHQW SHXW rWUH H[WHUQH SDU H[HPSOH ORUVTXH OD VWUXFWXUH EDLJQHGDQVXQIOXLGHO¶DPRUWLVVHPHQWLQWHUQHFRQVLVWHHQXQHSURGXFWLRQGHFKDOHXUDXVHLQ GHV VROLGHV GXHV j OHXUV GpIRUPDWLRQV F¶HVW j GLUH DX[ IURWWHPHQWV PXWXHOV GHV SDUWLFXOHV 0rPHRVFLOODQWOLEUHPHQWGDQVXQYLGHSDUIDLWXQSHQGXOHGHWRUVLRQILQLWSDUV¶LPPRELOLVHU
3RXU OHV PDWpULDX[ VWUXFWXUDX[ XVXHOV O¶DPRUWLVVHPHQW LQWHUQH HVW GX W\SH YLVTXHX[ F¶HVW j GLUHTX¶jFKDTXHLQVWDQWHWHQFKDTXHSRLQWDX[FRQWUDLQWHVGLWHVpODVWLTXHVTXLV¶RSSRVHQW DX[GpIRUPDWLRQVV¶DMRXWHQWGHVFRQWUDLQWHVGLWHVYLVTXHXVHVTXLV¶RSSRVHQWDX[YLWHVVHVGH GpIRUPDWLRQ
3RXU OHV PDWpULDX[ VWUXFWXUDX[ XVXHOV O¶DPRUWLVVHPHQW LQWHUQH HVW GX W\SH YLVTXHX[ F¶HVW j GLUHTX¶jFKDTXHLQVWDQWHWHQFKDTXHSRLQWDX[FRQWUDLQWHVGLWHVpODVWLTXHVTXLV¶RSSRVHQW DX[GpIRUPDWLRQVV¶DMRXWHQWGHVFRQWUDLQWHVGLWHVYLVTXHXVHVTXLV¶RSSRVHQWDX[YLWHVVHVGH GpIRUPDWLRQ
2QDDLQVL
Σ = Σ( + ΣY
2QDDLQVL
Σ = Σ( + ΣY
/HWHQVHXUGHVFRQWUDLQWHVpODVWLTXHV Σ ( HVWOLpDXWHQVHXUGHVGpIRUPDWLRQV E SDUODORLGH +RRNH ⎧⎪λ µ =FRHIILFLHQWGH/DPp Σ ( = λ H , + µ E DYHF ⎨ ⎪⎩H = GLY 3R3 = WU E
/HWHQVHXUGHVFRQWUDLQWHVpODVWLTXHV Σ ( HVWOLpDXWHQVHXUGHVGpIRUPDWLRQV E SDUODORLGH +RRNH ⎧⎪λ µ =FRHIILFLHQWGH/DPp Σ ( = λ H , + µ E DYHF ⎨ ⎪⎩H = GLY 3R3 = WU E
3RXU PHWWUH HQ pYLGHQFH OH WHQVHXU GHV FRQWUDLQWHV YLVTXHXVHV Σ Y RQ V¶DSSXLHUD VXU GHX[ H[SpULHQFHVVLPSOHV
3RXU PHWWUH HQ pYLGHQFH OH WHQVHXU GHV FRQWUDLQWHV YLVTXHXVHV Σ Y RQ V¶DSSXLHUD VXU GHX[ H[SpULHQFHVVLPSOHV
±7UDFWLRQFRPSUHVVLRQG\QDPLTXHG¶XQEDUUHDX
±7UDFWLRQFRPSUHVVLRQG\QDPLTXHG¶XQEDUUHDX
&RQVLGpURQV XQH pSURXYHWWH SULVPDWLTXH ORQJXH GH VHFWLRQ 6 TXH O¶RQ SUHQG HQWUH OHV PkFKRLUHVG¶XQHPDFKLQHGHWUDFWLRQ
&RQVLGpURQV XQH pSURXYHWWH SULVPDWLTXH ORQJXH GH VHFWLRQ 6 TXH O¶RQ SUHQG HQWUH OHV PkFKRLUHVG¶XQHPDFKLQHGHWUDFWLRQ
)LJXUH
)LJXUH
&HWWHPDFKLQHSHUPHWG¶DSSOLTXHUXQHGLODWDWLRQORQJLWXGLQDOH ε [ = ε W VXLYDQWGLYHUVHVORLV KRUDLUHV W → ε W SLORWDEOHV FHWWH GpIRUPDWLRQ XQLIRUPH GDQV OH EDUUHDX HVW PHVXUpH O¶DLGH GH MDXJHV H[WHQVRPpWULTXHV D[LDOHV HW HQUHJLVWUpHV HQ IRQFWLRQ GX WHPSV VXU XQ ∂ε GLDJUDPPH W ε TXL SHUPHW G¶DYRLU j FKDTXH LQVWDQW OD YDOHXU GH OD GpULYpH ∂W
&HWWHPDFKLQHSHUPHWG¶DSSOLTXHUXQHGLODWDWLRQORQJLWXGLQDOH ε [ = ε W VXLYDQWGLYHUVHVORLV KRUDLUHV W → ε W SLORWDEOHV FHWWH GpIRUPDWLRQ XQLIRUPH GDQV OH EDUUHDX HVW PHVXUpH O¶DLGH GH MDXJHV H[WHQVRPpWULTXHV D[LDOHV HW HQUHJLVWUpHV HQ IRQFWLRQ GX WHPSV VXU XQ ∂ε GLDJUDPPH W ε TXL SHUPHW G¶DYRLU j FKDTXH LQVWDQW OD YDOHXU GH OD GpULYpH ∂W
- 171 -
- 171 -
3DUDOOqOHPHQW OD IRUFH ) = 6 ⋅ σ [ PHVXUpH DX PR\HQ G¶XQ G\QDPRPqWUH SHUPHW DXVVL O¶HQUHJLVWUHPHQWGHODFRQWUDLQWH σ HQIRQFWLRQGXWHPSV
3DUDOOqOHPHQW OD IRUFH ) = 6 ⋅ σ [ PHVXUpH DX PR\HQ G¶XQ G\QDPRPqWUH SHUPHW DXVVL O¶HQUHJLVWUHPHQWGHODFRQWUDLQWH σ HQIRQFWLRQGXWHPSV
3RXUXQHPRQWpHHQFKDUJHOHQWHRQHVWHQUpJLPHTXDVLVWDWLTXHOHVFRQWUDLQWHVYLVTXHXVHV VRQWQpJOLJHDEOHVHWO¶RQREWLHQWOHVUpVXOWDWVGpFULWVDXWRPH,FKDSLWUH,,,F¶HVWjGLUH HVVHQWLHOOHPHQWODUHODWLRQ σ = ( ⋅ ε TXLGRQQHOHPRGXOHG¶
3RXUXQHPRQWpHHQFKDUJHOHQWHRQHVWHQUpJLPHTXDVLVWDWLTXHOHVFRQWUDLQWHVYLVTXHXVHV VRQWQpJOLJHDEOHVHWO¶RQREWLHQWOHVUpVXOWDWVGpFULWVDXWRPH,FKDSLWUH,,,F¶HVWjGLUH HVVHQWLHOOHPHQWODUHODWLRQ σ = ( ⋅ ε TXLGRQQHOHPRGXOHG¶
3RXU XQH PLVH HQ FKDUJH EUXWDOH GX W\SH FKRF RQ FUpH GHV RQGHV ORQJLWXGLQDOHV IDLVDQW LQWHUYHQLUO¶LQHUWLHLQWHUQHGXPDWpULDXFHTXLSHUWXUEHOHVPHVXUHVHWGRLWrWUHpYLWp
3RXU XQH PLVH HQ FKDUJH EUXWDOH GX W\SH FKRF RQ FUpH GHV RQGHV ORQJLWXGLQDOHV IDLVDQW LQWHUYHQLUO¶LQHUWLHLQWHUQHGXPDWpULDXFHTXLSHUWXUEHOHVPHVXUHVHWGRLWrWUHpYLWp
/HV HVVDLV VHURQW GRQF HIIHFWXpV DYHF GHV YLWHVVHV GH FKDUJHPHQW PR\HQQHV F¶HVW j GLUH pYLWDQWFHVGHX[FDVH[WUrPHV2QWURXYHDORUVXQFRPSRUWHPHQWGHO¶pSURXYHWWHTXHO¶RQSHXW WUDGXLUHSDUODORL
/HV HVVDLV VHURQW GRQF HIIHFWXpV DYHF GHV YLWHVVHV GH FKDUJHPHQW PR\HQQHV F¶HVW j GLUH pYLWDQWFHVGHX[FDVH[WUrPHV2QWURXYHDORUVXQFRPSRUWHPHQWGHO¶pSURXYHWWHTXHO¶RQSHXW WUDGXLUHSDUODORL
σ = ( ε + (′
∂ε ∂W
σ = ( ε + (′
∂ε ∂W
F¶HVWjGLUHSDUFRQVpTXHQW σ = σ ( + σ Y DYHF
F¶HVWjGLUHSDUFRQVpTXHQW σ = σ ( + σ Y DYHF
∂ε FRQWUDLQWH YLVTXHXVH TXL IDLW DSSDUDvWUH OH ∂W FRHIILFLHQWGHYLVFRVLWpORQJLWXGLQDOH (′ FDUDFWpULVWLTXHGXPDWpULDX
∂ε FRQWUDLQWH YLVTXHXVH TXL IDLW DSSDUDvWUH OH ∂W FRHIILFLHQWGHYLVFRVLWpORQJLWXGLQDOH (′ FDUDFWpULVWLTXHGXPDWpULDX
±7RUVLRQG\QDPLTXHG¶XQWXEHPLQFHFLUFXODLUH
±7RUVLRQG\QDPLTXHG¶XQWXEHPLQFHFLUFXODLUH
/¶pSURXYHWWH UpDOLVpH GDQV OH PrPH PDWpULDX VWUXFWXUDO D SRXU UD\RQ PR\HQ 5 HW SRXU pSDLVVHXU K OD PDFKLQH OXL LPSRVH XQH WRUVLRQ DXWRXU GH VRQ D[H R[ /D GpIRUPDWLRQ GH WRUVLRQ γ [θ = γ W HVW PHVXUpH j O¶DLGH GH MDXJHV H[WHQVRPpWULTXHV FROOpHV j GHV JpQpUDWULFHVHWHQUHJLVWUpHVXUXQGLDJUDPPH W γ TXLSHUPHWGRQFG¶DYRLUjFKDTXHLQVWDQW ∂γ OD YDOHXU GH OD GpULYpH /H FRXSOH GH WRUVLRQ 0 W GRQF DXVVL OD FRQWUDLQWH GH WRUVLRQ ∂W
/¶pSURXYHWWH UpDOLVpH GDQV OH PrPH PDWpULDX VWUXFWXUDO D SRXU UD\RQ PR\HQ 5 HW SRXU pSDLVVHXU K OD PDFKLQH OXL LPSRVH XQH WRUVLRQ DXWRXU GH VRQ D[H R[ /D GpIRUPDWLRQ GH WRUVLRQ γ [θ = γ W HVW PHVXUpH j O¶DLGH GH MDXJHV H[WHQVRPpWULTXHV FROOpHV j GHV JpQpUDWULFHVHWHQUHJLVWUpHVXUXQGLDJUDPPH W γ TXLSHUPHWGRQFG¶DYRLUjFKDTXHLQVWDQW ∂γ OD YDOHXU GH OD GpULYpH /H FRXSOH GH WRUVLRQ 0 W GRQF DXVVL OD FRQWUDLQWH GH WRUVLRQ ∂W
0W VRQW HQUHJLVWUpV HQ IRQFWLRQ GX WHPSV (Q HIIHFWXDQW GHV HVVDLV DYHF π 5 K GLYHUVHVORLVKRUDLUHVGHPLVHHQFKDUJHRQWURXYHXQHORLGHFRPSRUWHPHQWGHODIRUPH
0W VRQW HQUHJLVWUpV HQ IRQFWLRQ GX WHPSV (Q HIIHFWXDQW GHV HVVDLV DYHF π 5 K GLYHUVHVORLVKRUDLUHVGHPLVHHQFKDUJHRQWURXYHXQHORLGHFRPSRUWHPHQWGHODIRUPH
σ ( = ( ε FRQWUDLQWH pODVWLTXH HW σ Y = (′
τ [θ = τ =
τ = * γ + *′
∂γ ∂W
F¶HVWjGLUH
σ ( = ( ε FRQWUDLQWH pODVWLTXH HW σ Y = (′
τ [θ = τ =
τ = * γ + *′
∂γ ∂W
F¶HVWjGLUH
τ( = * γ FRQWUDLQWHpODVWLTXH HW τ Y = *′
∂γ FRQWUDLQWHYLVTXHXVH ∂W
τ( = * γ FRQWUDLQWHpODVWLTXH HW τ Y = *′
∂γ FRQWUDLQWHYLVTXHXVH ∂W
/HVUHODWLRQV HW PRQWUHQWTXHOHVFRQWUDLQWHVYLVTXHXVHVVRQWIRQFWLRQGHVYLWHVVHV GHGpIRUPDWLRQH[DFWHPHQWFRPPHOHVFRQWUDLQWHVpODVWLTXHVVRQWIRQFWLRQGHVGpIRUPDWLRQV
/HVUHODWLRQV HW PRQWUHQWTXHOHVFRQWUDLQWHVYLVTXHXVHVVRQWIRQFWLRQGHVYLWHVVHV GHGpIRUPDWLRQH[DFWHPHQWFRPPHOHVFRQWUDLQWHVpODVWLTXHVVRQWIRQFWLRQGHVGpIRUPDWLRQV
- 172 -
- 172 -
3DUDOOqOHPHQW OD IRUFH ) = 6 ⋅ σ [ PHVXUpH DX PR\HQ G¶XQ G\QDPRPqWUH SHUPHW DXVVL O¶HQUHJLVWUHPHQWGHODFRQWUDLQWH σ HQIRQFWLRQGXWHPSV
3DUDOOqOHPHQW OD IRUFH ) = 6 ⋅ σ [ PHVXUpH DX PR\HQ G¶XQ G\QDPRPqWUH SHUPHW DXVVL O¶HQUHJLVWUHPHQWGHODFRQWUDLQWH σ HQIRQFWLRQGXWHPSV
3RXUXQHPRQWpHHQFKDUJHOHQWHRQHVWHQUpJLPHTXDVLVWDWLTXHOHVFRQWUDLQWHVYLVTXHXVHV VRQWQpJOLJHDEOHVHWO¶RQREWLHQWOHVUpVXOWDWVGpFULWVDXWRPH,FKDSLWUH,,,F¶HVWjGLUH HVVHQWLHOOHPHQWODUHODWLRQ σ = ( ⋅ ε TXLGRQQHOHPRGXOHG¶
3RXUXQHPRQWpHHQFKDUJHOHQWHRQHVWHQUpJLPHTXDVLVWDWLTXHOHVFRQWUDLQWHVYLVTXHXVHV VRQWQpJOLJHDEOHVHWO¶RQREWLHQWOHVUpVXOWDWVGpFULWVDXWRPH,FKDSLWUH,,,F¶HVWjGLUH HVVHQWLHOOHPHQWODUHODWLRQ σ = ( ⋅ ε TXLGRQQHOHPRGXOHG¶
3RXU XQH PLVH HQ FKDUJH EUXWDOH GX W\SH FKRF RQ FUpH GHV RQGHV ORQJLWXGLQDOHV IDLVDQW LQWHUYHQLUO¶LQHUWLHLQWHUQHGXPDWpULDXFHTXLSHUWXUEHOHVPHVXUHVHWGRLWrWUHpYLWp
3RXU XQH PLVH HQ FKDUJH EUXWDOH GX W\SH FKRF RQ FUpH GHV RQGHV ORQJLWXGLQDOHV IDLVDQW LQWHUYHQLUO¶LQHUWLHLQWHUQHGXPDWpULDXFHTXLSHUWXUEHOHVPHVXUHVHWGRLWrWUHpYLWp
/HV HVVDLV VHURQW GRQF HIIHFWXpV DYHF GHV YLWHVVHV GH FKDUJHPHQW PR\HQQHV F¶HVW j GLUH pYLWDQWFHVGHX[FDVH[WUrPHV2QWURXYHDORUVXQFRPSRUWHPHQWGHO¶pSURXYHWWHTXHO¶RQSHXW WUDGXLUHSDUODORL
/HV HVVDLV VHURQW GRQF HIIHFWXpV DYHF GHV YLWHVVHV GH FKDUJHPHQW PR\HQQHV F¶HVW j GLUH pYLWDQWFHVGHX[FDVH[WUrPHV2QWURXYHDORUVXQFRPSRUWHPHQWGHO¶pSURXYHWWHTXHO¶RQSHXW WUDGXLUHSDUODORL
σ = ( ε + (′
∂ε ∂W
σ = ( ε + (′
∂ε ∂W
F¶HVWjGLUHSDUFRQVpTXHQW σ = σ ( + σ Y DYHF
F¶HVWjGLUHSDUFRQVpTXHQW σ = σ ( + σ Y DYHF
∂ε FRQWUDLQWH YLVTXHXVH TXL IDLW DSSDUDvWUH OH ∂W FRHIILFLHQWGHYLVFRVLWpORQJLWXGLQDOH (′ FDUDFWpULVWLTXHGXPDWpULDX
∂ε FRQWUDLQWH YLVTXHXVH TXL IDLW DSSDUDvWUH OH ∂W FRHIILFLHQWGHYLVFRVLWpORQJLWXGLQDOH (′ FDUDFWpULVWLTXHGXPDWpULDX
±7RUVLRQG\QDPLTXHG¶XQWXEHPLQFHFLUFXODLUH
±7RUVLRQG\QDPLTXHG¶XQWXEHPLQFHFLUFXODLUH
/¶pSURXYHWWH UpDOLVpH GDQV OH PrPH PDWpULDX VWUXFWXUDO D SRXU UD\RQ PR\HQ 5 HW SRXU pSDLVVHXU K OD PDFKLQH OXL LPSRVH XQH WRUVLRQ DXWRXU GH VRQ D[H R[ /D GpIRUPDWLRQ GH WRUVLRQ γ [θ = γ W HVW PHVXUpH j O¶DLGH GH MDXJHV H[WHQVRPpWULTXHV FROOpHV j GHV JpQpUDWULFHVHWHQUHJLVWUpHVXUXQGLDJUDPPH W γ TXLSHUPHWGRQFG¶DYRLUjFKDTXHLQVWDQW ∂γ OD YDOHXU GH OD GpULYpH /H FRXSOH GH WRUVLRQ 0 W GRQF DXVVL OD FRQWUDLQWH GH WRUVLRQ ∂W
/¶pSURXYHWWH UpDOLVpH GDQV OH PrPH PDWpULDX VWUXFWXUDO D SRXU UD\RQ PR\HQ 5 HW SRXU pSDLVVHXU K OD PDFKLQH OXL LPSRVH XQH WRUVLRQ DXWRXU GH VRQ D[H R[ /D GpIRUPDWLRQ GH WRUVLRQ γ [θ = γ W HVW PHVXUpH j O¶DLGH GH MDXJHV H[WHQVRPpWULTXHV FROOpHV j GHV JpQpUDWULFHVHWHQUHJLVWUpHVXUXQGLDJUDPPH W γ TXLSHUPHWGRQFG¶DYRLUjFKDTXHLQVWDQW ∂γ OD YDOHXU GH OD GpULYpH /H FRXSOH GH WRUVLRQ 0 W GRQF DXVVL OD FRQWUDLQWH GH WRUVLRQ ∂W
0W VRQW HQUHJLVWUpV HQ IRQFWLRQ GX WHPSV (Q HIIHFWXDQW GHV HVVDLV DYHF π 5 K GLYHUVHVORLVKRUDLUHVGHPLVHHQFKDUJHRQWURXYHXQHORLGHFRPSRUWHPHQWGHODIRUPH
0W VRQW HQUHJLVWUpV HQ IRQFWLRQ GX WHPSV (Q HIIHFWXDQW GHV HVVDLV DYHF π 5 K GLYHUVHVORLVKRUDLUHVGHPLVHHQFKDUJHRQWURXYHXQHORLGHFRPSRUWHPHQWGHODIRUPH
σ ( = ( ε FRQWUDLQWH pODVWLTXH HW σ Y = (′
τ [θ = τ =
τ = * γ + *′
∂γ ∂W
F¶HVWjGLUH
σ ( = ( ε FRQWUDLQWH pODVWLTXH HW σ Y = (′
τ [θ = τ =
τ = * γ + *′
∂γ ∂W
F¶HVWjGLUH
τ( = * γ FRQWUDLQWHpODVWLTXH HW τ Y = *′
∂γ FRQWUDLQWHYLVTXHXVH ∂W
τ( = * γ FRQWUDLQWHpODVWLTXH HW τ Y = *′
∂γ FRQWUDLQWHYLVTXHXVH ∂W
/HVUHODWLRQV HW PRQWUHQWTXHOHVFRQWUDLQWHVYLVTXHXVHVVRQWIRQFWLRQGHVYLWHVVHV GHGpIRUPDWLRQH[DFWHPHQWFRPPHOHVFRQWUDLQWHVpODVWLTXHVVRQWIRQFWLRQGHVGpIRUPDWLRQV
/HVUHODWLRQV HW PRQWUHQWTXHOHVFRQWUDLQWHVYLVTXHXVHVVRQWIRQFWLRQGHVYLWHVVHV GHGpIRUPDWLRQH[DFWHPHQWFRPPHOHVFRQWUDLQWHVpODVWLTXHVVRQWIRQFWLRQGHVGpIRUPDWLRQV
- 172 -
- 172 -
&HVUpVXOWDWVVXJJqUHQWTXHO¶RQpFULYHODORLGXFRPSRUWHPHQWYLVFRpODVWLTXHOLQpDLUH
⎛ ∂H ∂ E⎞ ⎟ Σ = (λ H , + µ E) + ⎜⎜ λ′ , + µ′
⎝ ∂W ∂ W ⎟⎠
Σ( ΣY
&HVUpVXOWDWVVXJJqUHQWTXHO¶RQpFULYHODORLGXFRPSRUWHPHQWYLVFRpODVWLTXHOLQpDLUH
⎛ ∂H ∂ E⎞ ⎟ Σ = (λ H , + µ E) + ⎜⎜ λ′ , + µ′
⎝ ∂W ∂ W ⎟⎠
Σ( ΣY
&HWWHORL HVW YpULILpH SDU G¶DXWUHV HVVDLV TXH FHX[ GpFULWV SOXV KDXW F¶HVW j GLUH VXU G¶DXWUHV W\SHVG¶pSURXYHWWHVDYHFG¶DXWUHVFKDUJHPHQWV
&HWWHORL HVW YpULILpH SDU G¶DXWUHV HVVDLV TXH FHX[ GpFULWV SOXV KDXW F¶HVW j GLUH VXU G¶DXWUHV W\SHVG¶pSURXYHWWHVDYHFG¶DXWUHVFKDUJHPHQWV
λ HW µ VRQW OHV FRHIILFLHQWV G¶pODVWLFLWp GH /DPp λ′ HW µ′ VH QRPPHQW FRHIILFLHQWV GH YLVFRVLWpGH6WRNHV
λ HW µ VRQW OHV FRHIILFLHQWV G¶pODVWLFLWp GH /DPp λ′ HW µ′ VH QRPPHQW FRHIILFLHQWV GH YLVFRVLWpGH6WRNHV
'HPrPHTX¶RQD * = µ RQD *′ = µ′
'HPrPHTX¶RQD * = µ RQD *′ = µ′
3DU H[WHQVLRQ GHV IRUPXOHV OHV pTXDWLRQV GX PRXYHPHQW YLVFRpODVWLTXH V¶pFULYHQW VRXV OHVGHX[IRUPHVpTXLYDOHQWHV
3DU H[WHQVLRQ GHV IRUPXOHV OHV pTXDWLRQV GX PRXYHPHQW YLVFRpODVWLTXH V¶pFULYHQW VRXV OHVGHX[IRUPHVpTXLYDOHQWHV
5HPDUTXH FRPPH HQ O¶DEVHQFH GH YLVFRVLWp OH YHFWHXU WUDQVODWLRQ 3R3 SHXW rWUH FRQVLGpUp FRPPH OD VXSHUSRVLWLRQ G¶XQ FKDPS LUURWDWLRQQHO HW G¶XQ FKDPS GH GLYHUJHQFH QXOOH
5HPDUTXH FRPPH HQ O¶DEVHQFH GH YLVFRVLWp OH YHFWHXU WUDQVODWLRQ 3R3 SHXW rWUH FRQVLGpUp FRPPH OD VXSHUSRVLWLRQ G¶XQ FKDPS LUURWDWLRQQHO HW G¶XQ FKDPS GH GLYHUJHQFH QXOOH
5HPDUTXH OH PRXYHPHQW VH IDLW HQ JpQpUDO DX YRLVLQDJH GH OD FRQILJXUDWLRQ G¶pTXLOLEUH VWDWLTXH GDQV ODTXHOOH OD VWUXFWXUH HVW GpMj VRXPLVH DX FKDPS GH JUDYLWDWLRQ GDQV OHV G G pTXDWLRQVGHPRXYHPHQW RX RQDDORUV J =
5HPDUTXH OH PRXYHPHQW VH IDLW HQ JpQpUDO DX YRLVLQDJH GH OD FRQILJXUDWLRQ G¶pTXLOLEUH VWDWLTXH GDQV ODTXHOOH OD VWUXFWXUH HVW GpMj VRXPLVH DX FKDPS GH JUDYLWDWLRQ GDQV OHV G G pTXDWLRQVGHPRXYHPHQW RX RQDDORUV J =
±21'(69,6&2e/$67,48(6
±21'(69,6&2e/$67,48(6
&¶HVWOHFDVROHUHSqUH {R [\]}OLpjODVWUXFWXUHHVWJDOLOpHQHWRO¶RQD J = 2QUHWURXYH OHVGHX[W\SHVG¶RQGHVpWXGLpHVDX
&¶HVWOHFDVROHUHSqUH {R [\]}OLpjODVWUXFWXUHHVWJDOLOpHQHWRO¶RQD J = 2QUHWURXYH OHVGHX[W\SHVG¶RQGHVpWXGLpHVDX
± O¶RQGHORQJLWXGLQDOHTXLREpLWjO¶pTXDWLRQ
± O¶RQGHORQJLWXGLQDOHTXLREpLWjO¶pTXDWLRQ
⎛ ∂ 8/ ⎞ ⎟ = ρ ∂ 8/ λ + µ ∆ 8 / + λ′ + µ′ ∆ ⎜⎜ ⎟ ∂ W ⎝ ∂W ⎠
⎛ ∂ 8/ ⎞ ⎟ = ρ ∂ 8/ λ + µ ∆ 8 / + λ′ + µ′ ∆ ⎜⎜ ⎟ ∂ W ⎝ ∂W ⎠
- 173 -
- 173 -
&HVUpVXOWDWVVXJJqUHQWTXHO¶RQpFULYHODORLGXFRPSRUWHPHQWYLVFRpODVWLTXHOLQpDLUH
⎛ ∂H ∂ E⎞ ⎟ Σ = (λ H , + µ E) + ⎜⎜ λ′ , + µ′
⎝ ∂W ∂ W ⎟⎠
Σ( ΣY
&HVUpVXOWDWVVXJJqUHQWTXHO¶RQpFULYHODORLGXFRPSRUWHPHQWYLVFRpODVWLTXHOLQpDLUH
⎛ ∂H ∂ E⎞ ⎟ Σ = (λ H , + µ E) + ⎜⎜ λ′ , + µ′
⎝ ∂W ∂ W ⎟⎠
Σ( ΣY
&HWWHORL HVW YpULILpH SDU G¶DXWUHV HVVDLV TXH FHX[ GpFULWV SOXV KDXW F¶HVW j GLUH VXU G¶DXWUHV W\SHVG¶pSURXYHWWHVDYHFG¶DXWUHVFKDUJHPHQWV
&HWWHORL HVW YpULILpH SDU G¶DXWUHV HVVDLV TXH FHX[ GpFULWV SOXV KDXW F¶HVW j GLUH VXU G¶DXWUHV W\SHVG¶pSURXYHWWHVDYHFG¶DXWUHVFKDUJHPHQWV
λ HW µ VRQW OHV FRHIILFLHQWV G¶pODVWLFLWp GH /DPp λ′ HW µ′ VH QRPPHQW FRHIILFLHQWV GH YLVFRVLWpGH6WRNHV
λ HW µ VRQW OHV FRHIILFLHQWV G¶pODVWLFLWp GH /DPp λ′ HW µ′ VH QRPPHQW FRHIILFLHQWV GH YLVFRVLWpGH6WRNHV
'HPrPHTX¶RQD * = µ RQD *′ = µ′
'HPrPHTX¶RQD * = µ RQD *′ = µ′
3DU H[WHQVLRQ GHV IRUPXOHV OHV pTXDWLRQV GX PRXYHPHQW YLVFRpODVWLTXH V¶pFULYHQW VRXV OHVGHX[IRUPHVpTXLYDOHQWHV
3DU H[WHQVLRQ GHV IRUPXOHV OHV pTXDWLRQV GX PRXYHPHQW YLVFRpODVWLTXH V¶pFULYHQW VRXV OHVGHX[IRUPHVpTXLYDOHQWHV
5HPDUTXH FRPPH HQ O¶DEVHQFH GH YLVFRVLWp OH YHFWHXU WUDQVODWLRQ 3R3 SHXW rWUH FRQVLGpUp FRPPH OD VXSHUSRVLWLRQ G¶XQ FKDPS LUURWDWLRQQHO HW G¶XQ FKDPS GH GLYHUJHQFH QXOOH
5HPDUTXH FRPPH HQ O¶DEVHQFH GH YLVFRVLWp OH YHFWHXU WUDQVODWLRQ 3R3 SHXW rWUH FRQVLGpUp FRPPH OD VXSHUSRVLWLRQ G¶XQ FKDPS LUURWDWLRQQHO HW G¶XQ FKDPS GH GLYHUJHQFH QXOOH
5HPDUTXH OH PRXYHPHQW VH IDLW HQ JpQpUDO DX YRLVLQDJH GH OD FRQILJXUDWLRQ G¶pTXLOLEUH VWDWLTXH GDQV ODTXHOOH OD VWUXFWXUH HVW GpMj VRXPLVH DX FKDPS GH JUDYLWDWLRQ GDQV OHV G G pTXDWLRQVGHPRXYHPHQW RX RQDDORUV J =
5HPDUTXH OH PRXYHPHQW VH IDLW HQ JpQpUDO DX YRLVLQDJH GH OD FRQILJXUDWLRQ G¶pTXLOLEUH VWDWLTXH GDQV ODTXHOOH OD VWUXFWXUH HVW GpMj VRXPLVH DX FKDPS GH JUDYLWDWLRQ GDQV OHV G G pTXDWLRQVGHPRXYHPHQW RX RQDDORUV J =
±21'(69,6&2e/$67,48(6
±21'(69,6&2e/$67,48(6
&¶HVWOHFDVROHUHSqUH {R [\]}OLpjODVWUXFWXUHHVWJDOLOpHQHWRO¶RQD J = 2QUHWURXYH OHVGHX[W\SHVG¶RQGHVpWXGLpHVDX
&¶HVWOHFDVROHUHSqUH {R [\]}OLpjODVWUXFWXUHHVWJDOLOpHQHWRO¶RQD J = 2QUHWURXYH OHVGHX[W\SHVG¶RQGHVpWXGLpHVDX
± O¶RQGHORQJLWXGLQDOHTXLREpLWjO¶pTXDWLRQ
± O¶RQGHORQJLWXGLQDOHTXLREpLWjO¶pTXDWLRQ
⎛ ∂ 8/ ⎞ ⎟ = ρ ∂ 8/ λ + µ ∆ 8 / + λ′ + µ′ ∆ ⎜⎜ ⎟ ∂ W ⎝ ∂W ⎠
- 173 -
⎛ ∂ 8/ ⎞ ⎟ = ρ ∂ 8/ λ + µ ∆ 8 / + λ′ + µ′ ∆ ⎜⎜ ⎟ ∂ W ⎝ ∂W ⎠
- 173 -
± O¶RQGHWUDQVYHUVDOHTXLREpLWjO¶pTXDWLRQ ⎛ ∂ 87 ⎞ ⎟ = ρ ∂ 87 µ ∆ 8 7 + µ′ ∆ ⎜⎜ ⎟ ∂ W ⎝ ∂W ⎠
± O¶RQGHWUDQVYHUVDOHTXLREpLWjO¶pTXDWLRQ ⎛ ∂ 87 ⎞ ⎟ = ρ ∂ 87 µ ∆ 8 7 + µ′ ∆ ⎜⎜ ⎟ ∂ W ⎝ ∂W ⎠
,FLHQFRUHOHVRQGHVSODQHVORQJLWXGLQDOHVHWWUDQVYHUVDOHV OHVRQGHVF\OLQGULTXHVUDGLDOHV FLUFRQIpUHQWLHOOHVHWD[LDOHV HWOHVRQGHVVSKpULTXHVUDGLDOHV FRQVWLWXHQWGHVFDVSDUWLFXOLHUV LPSRUWDQWV
,FLHQFRUHOHVRQGHVSODQHVORQJLWXGLQDOHVHWWUDQVYHUVDOHV OHVRQGHVF\OLQGULTXHVUDGLDOHV FLUFRQIpUHQWLHOOHVHWD[LDOHV HWOHVRQGHVVSKpULTXHVUDGLDOHV FRQVWLWXHQWGHVFDVSDUWLFXOLHUV LPSRUWDQWV
5HSUHQRQVO¶H[HPSOHGXHQLQWURGXLVDQWODYLVFRVLWp
5HSUHQRQVO¶H[HPSOHGXHQLQWURGXLVDQWODYLVFRVLWp
([HPSOHRQGHVSODQHVORQJLWXGLQDOHVYLVFRpODVWLTXHVQDWXUHOOHV
([HPSOHRQGHVSODQHVORQJLWXGLQDOHVYLVFRpODVWLTXHVQDWXUHOOHV
5HSUHQDQW OHV PrPHV QRWDWLRQV RQ D HQ SRVDQW X [ W = I [ ⋅ J W O¶pTXDWLRQ GX PRXYHPHQW ρ J I ′′ = I λ + µ J + λ′ + µ′ J
5HSUHQDQW OHV PrPHV QRWDWLRQV RQ D HQ SRVDQW X [ W = I [ ⋅ J W O¶pTXDWLRQ GX PRXYHPHQW ρ J I ′′ = I λ + µ J + λ′ + µ′ J
/DYDOHXUFRPPXQHGHFHV GHX[ UDSSRUWV HVWGRQFXQHFRQVWDQWHQpFHVVDLUHPHQWQpJDWLYH ⎛ − ω ⎞ TXHQRXVDSSHORQV ⎜ ⎟ 2QDDORUV ⎟ ⎜ ⎝ & ⎠ ω[ ω[ ω + β VLQ I ′′ [ + I [ = VRLW I [ = α FRV F F F
/DYDOHXUFRPPXQH GH FHV GHX[ UDSSRUWV HVWGRQFXQHFRQVWDQWHQpFHVVDLUHPHQWQpJDWLYH ⎛ − ω ⎞ TXHQRXVDSSHORQV ⎜ ⎟ 2QDDORUV ⎟ ⎜ ⎝ & ⎠ ω[ ω[ ω + β VLQ I ′′ [ + I [ = VRLW I [ = α FRV F F F
HW & =
&′&5 =
J + Nω ⋅ J + ω ⋅ J = HQSRVDQW
HW
λ′ + µ′ FRHIILFLHQWG¶DPRUWLVVHPHQW ρ
& =
& FRHIILFLHQWG¶DPRUWLVVHPHQWFULWLTXH ω
⎛ &′ N = ⎜⎜ ⎝ &′&5
&′&5 =
⎞ ⎟⎟ FRHIILFLHQWG¶DPRUWLVVHPHQWUpGXLW ⎠
J + Nω ⋅ J + ω ⋅ J = HQSRVDQW
λ′ + µ′ FRHIILFLHQWG¶DPRUWLVVHPHQW ρ
& FRHIILFLHQWG¶DPRUWLVVHPHQWFULWLTXH ω
⎛ &′ N = ⎜⎜ ⎝ &′&5
⎞ ⎟⎟ FRHIILFLHQWG¶DPRUWLVVHPHQWUpGXLW ⎠
7URLVFDVGRLYHQWDORUVrWUHGLVWLQJXpV
7URLVFDVGRLYHQWDORUVrWUHGLVWLQJXpV
$PRUWLVVHPHQWIRUWN!
$PRUWLVVHPHQWIRUWN!
(QSRVDQW U = ω N − RQDOHVWURLVIRUPHVpTXLYDOHQWHV
(QSRVDQW U = ω N − RQDOHVWURLVIRUPHVpTXLYDOHQWHV
⎧ − NωW $ FK UW + % VK UW RX ⎪J W = H ⎪ ⎪ − Nω W FK UW + ϕ RXHQFRUH ⎨J W = D H ⎪ $ − % − UW ⎞ ⎪ − NωW ⎛ $ + % UW H ⎟ H + ⎜ ⎪J W = H ⎝ ⎠ ⎩
⎧ − NωW $ FK UW + % VK UW RX ⎪J W = H ⎪ ⎪ − Nω W FK UW + ϕ RXHQFRUH ⎨J W = D H ⎪ $ − % − UW ⎞ ⎪ − NωW ⎛ $ + % UW H ⎟ H + ⎜ ⎪J W = H ⎝ ⎠ ⎩
- 174 -
- 174 -
± O¶RQGHWUDQVYHUVDOHTXLREpLWjO¶pTXDWLRQ ⎛ ∂ 87 ⎞ ⎟ = ρ ∂ 87 µ ∆ 8 7 + µ′ ∆ ⎜⎜ ⎟ ∂ W ⎝ ∂W ⎠
± O¶RQGHWUDQVYHUVDOHTXLREpLWjO¶pTXDWLRQ ⎛ ∂ 87 ⎞ ⎟ = ρ ∂ 87 µ ∆ 8 7 + µ′ ∆ ⎜⎜ ⎟ ∂ W ⎝ ∂W ⎠
,FLHQFRUHOHVRQGHVSODQHVORQJLWXGLQDOHVHWWUDQVYHUVDOHV OHVRQGHVF\OLQGULTXHVUDGLDOHV FLUFRQIpUHQWLHOOHVHWD[LDOHV HWOHVRQGHVVSKpULTXHVUDGLDOHV FRQVWLWXHQWGHVFDVSDUWLFXOLHUV LPSRUWDQWV
,FLHQFRUHOHVRQGHVSODQHVORQJLWXGLQDOHVHWWUDQVYHUVDOHV OHVRQGHVF\OLQGULTXHVUDGLDOHV FLUFRQIpUHQWLHOOHVHWD[LDOHV HWOHVRQGHVVSKpULTXHVUDGLDOHV FRQVWLWXHQWGHVFDVSDUWLFXOLHUV LPSRUWDQWV
5HSUHQRQVO¶H[HPSOHGXHQLQWURGXLVDQWODYLVFRVLWp
5HSUHQRQVO¶H[HPSOHGXHQLQWURGXLVDQWODYLVFRVLWp
([HPSOHRQGHVSODQHVORQJLWXGLQDOHVYLVFRpODVWLTXHVQDWXUHOOHV
([HPSOHRQGHVSODQHVORQJLWXGLQDOHVYLVFRpODVWLTXHVQDWXUHOOHV
5HSUHQDQW OHV PrPHV QRWDWLRQV RQ D HQ SRVDQW X [ W = I [ ⋅ J W O¶pTXDWLRQ GX PRXYHPHQW ρ J I ′′ = I λ + µ J + λ′ + µ′ J
5HSUHQDQW OHV PrPHV QRWDWLRQV RQ D HQ SRVDQW X [ W = I [ ⋅ J W O¶pTXDWLRQ GX PRXYHPHQW ρ J I ′′ = I λ + µ J + λ′ + µ′ J
/DYDOHXUFRPPXQHGHFHV GHX[ UDSSRUWV HVWGRQFXQHFRQVWDQWHQpFHVVDLUHPHQWQpJDWLYH ⎛ − ω ⎞ TXHQRXVDSSHORQV ⎜ ⎟ 2QDDORUV ⎟ ⎜ ⎝ & ⎠ ω[ ω[ ω + β VLQ I ′′ [ + I [ = VRLW I [ = α FRV F F F
/DYDOHXUFRPPXQH GH FHV GHX[ UDSSRUWV HVWGRQFXQHFRQVWDQWHQpFHVVDLUHPHQWQpJDWLYH ⎛ − ω ⎞ TXHQRXVDSSHORQV ⎜ ⎟ 2QDDORUV ⎟ ⎜ ⎝ & ⎠ ω[ ω[ ω + β VLQ I ′′ [ + I [ = VRLW I [ = α FRV F F F
HW & =
&′&5 =
J + Nω ⋅ J + ω ⋅ J = HQSRVDQW
λ′ + µ′ FRHIILFLHQWG¶DPRUWLVVHPHQW ρ
& FRHIILFLHQWG¶DPRUWLVVHPHQWFULWLTXH ω
⎛ &′ N = ⎜⎜ ⎝ &′&5
⎞ ⎟⎟ FRHIILFLHQWG¶DPRUWLVVHPHQWUpGXLW ⎠
HW & =
&′&5 =
J + Nω ⋅ J + ω ⋅ J = HQSRVDQW
λ′ + µ′ FRHIILFLHQWG¶DPRUWLVVHPHQW ρ
& FRHIILFLHQWG¶DPRUWLVVHPHQWFULWLTXH ω
⎛ &′ N = ⎜⎜ ⎝ &′&5
⎞ ⎟⎟ FRHIILFLHQWG¶DPRUWLVVHPHQWUpGXLW ⎠
7URLVFDVGRLYHQWDORUVrWUHGLVWLQJXpV
7URLVFDVGRLYHQWDORUVrWUHGLVWLQJXpV
$PRUWLVVHPHQWIRUWN!
$PRUWLVVHPHQWIRUWN!
(QSRVDQW U = ω N − RQDOHVWURLVIRUPHVpTXLYDOHQWHV
(QSRVDQW U = ω N − RQDOHVWURLVIRUPHVpTXLYDOHQWHV
⎧ − NωW $ FK UW + % VK UW RX ⎪J W = H ⎪ ⎪ − Nω W FK UW + ϕ RXHQFRUH ⎨J W = D H ⎪ $ − % − UW ⎞ ⎪ − NωW ⎛ $ + % UW H ⎟ H + ⎜ ⎪J W = H ⎝ ⎠ ⎩
⎧ − NωW $ FK UW + % VK UW RX ⎪J W = H ⎪ ⎪ − Nω W FK UW + ϕ RXHQFRUH ⎨J W = D H ⎪ $ − % − UW ⎞ ⎪ − NωW ⎛ $ + % UW H ⎟ H + ⎜ ⎪J W = H ⎝ ⎠ ⎩
- 174 -
- 174 -
$PRUWLVVHPHQWFULWLTXHN
$PRUWLVVHPHQWFULWLTXHN
J W = H −ωW $ + %W
2QDDORUV
J W = H −ωW $ + %W
2QDDORUV
$PRUWLVVHPHQWIDLEOHN
$PRUWLVVHPHQWIDLEOHN
2QDDORUVHQSRVDQW Ω = ω − N
2QDDORUVHQSRVDQW Ω = ω − N
⎧⎪J W = H − NωW $ FRV ΩW + % VLQ ΩW RXELHQ [[ ⎨ ⎪⎩J W = D H − NωW FRV ΩW + ϕ
(QJDUGDQWOHVFRQGLWLRQVDX[OLPLWHVGHODILJXUHRQD α = β = SXLV ωQ = HWODVROXWLRQKDUPRQLTXHGHUDQJQV¶pFULW
⎧⎪J W = H − NωW $ FRV ΩW + % VLQ ΩW RXELHQ [[ ⎨ ⎪⎩J W = D H − NωW FRV ΩW + ϕ Q + F π K
⎛ Q + [ ⎞ 8 Q [ W = VLQ ⎜ π ⎟ ⋅ J Q W K⎠ ⎝
/DVROXWLRQJpQpUDOHV¶pFULWHQILQ
∑
HWODVROXWLRQKDUPRQLTXHGHUDQJQV¶pFULW
Q + F π K
⎛ Q + [ ⎞ 8 Q [ W = VLQ ⎜ π ⎟ ⋅ J Q W K⎠ ⎝
/DVROXWLRQJpQpUDOHV¶pFULWHQILQ
∞
X [ W =
(QJDUGDQWOHVFRQGLWLRQVDX[OLPLWHVGHODILJXUHRQD α = β = SXLV ωQ =
∞
X [ W =
8 Q [ W
Q =
∑8
Q [
W
Q =
/HVFRQVWDQWHVG¶LQWpJUDWLRQ $ Q HW %Q RX D Q HW ϕQ VHGpWHUPLQHQWjO¶DLGHGHVFRQGLWLRQV GH&DXFK\FRQGLWLRQVLQLWLDOHVGHSRVLWLRQVHWYLWHVVHV
/HVFRQVWDQWHVG¶LQWpJUDWLRQ $ Q HW %Q RX D Q HW ϕQ VHGpWHUPLQHQWjO¶DLGHGHVFRQGLWLRQV GH&DXFK\FRQGLWLRQVLQLWLDOHVGHSRVLWLRQVHWYLWHVVHV
±38,66$1&(',66,3e(3$5$0257,66(0(179,648(8;
±38,66$1&(',66,3e(3$5$0257,66(0(179,648(8;
&RQVLGpURQV j O¶LQVWDQW W DX VHLQ G¶XQ VROLGH XQ SDYp pOpPHQWDLUH GRQW OHV DUrWHV RQW OHV GLUHFWLRQVSULQFLSDOHVGXWHQVHXUFRQWUDLQWH Σ FRPPHOHPRQWUHODILJXUH
&RQVLGpURQV j O¶LQVWDQW W DX VHLQ G¶XQ VROLGH XQ SDYp pOpPHQWDLUH GRQW OHV DUrWHV RQW OHV GLUHFWLRQVSULQFLSDOHVGXWHQVHXUFRQWUDLQWH Σ FRPPHOHPRQWUHODILJXUH
)LJXUH
- 175 -
- 175 -
$PRUWLVVHPHQWFULWLTXHN
$PRUWLVVHPHQWFULWLTXHN
J W = H −ωW $ + %W
2QDDORUV
)LJXUH
J W = H −ωW $ + %W
2QDDORUV
$PRUWLVVHPHQWIDLEOHN
$PRUWLVVHPHQWIDLEOHN
2QDDORUVHQSRVDQW Ω = ω − N
2QDDORUVHQSRVDQW Ω = ω − N
⎧⎪J W = H − NωW $ FRV ΩW + % VLQ ΩW RXELHQ [[ ⎨ ⎪⎩J W = D H − NωW FRV ΩW + ϕ
(QJDUGDQWOHVFRQGLWLRQVDX[OLPLWHVGHODILJXUHRQD α = β = SXLV ωQ = HWODVROXWLRQKDUPRQLTXHGHUDQJQV¶pFULW
⎧⎪J W = H − NωW $ FRV ΩW + % VLQ ΩW RXELHQ [[ ⎨ ⎪⎩J W = D H − NωW FRV ΩW + ϕ Q + F π K
⎛ Q + [ ⎞ 8 Q [ W = VLQ ⎜ π ⎟ ⋅ J Q W K⎠ ⎝
/DVROXWLRQJpQpUDOHV¶pFULWHQILQ
∑
HWODVROXWLRQKDUPRQLTXHGHUDQJQV¶pFULW
Q + F π K
⎛ Q + [ ⎞ 8 Q [ W = VLQ ⎜ π ⎟ ⋅ J Q W K⎠ ⎝
/DVROXWLRQJpQpUDOHV¶pFULWHQILQ
∞
X [ W =
(QJDUGDQWOHVFRQGLWLRQVDX[OLPLWHVGHODILJXUHRQD α = β = SXLV ωQ =
∞
X [ W =
8 Q [ W
Q =
∑8
Q [
W
Q =
/HVFRQVWDQWHVG¶LQWpJUDWLRQ $ Q HW %Q RX D Q HW ϕQ VHGpWHUPLQHQWjO¶DLGHGHVFRQGLWLRQV GH&DXFK\FRQGLWLRQVLQLWLDOHVGHSRVLWLRQVHWYLWHVVHV
/HVFRQVWDQWHVG¶LQWpJUDWLRQ $ Q HW %Q RX D Q HW ϕQ VHGpWHUPLQHQWjO¶DLGHGHVFRQGLWLRQV GH&DXFK\FRQGLWLRQVLQLWLDOHVGHSRVLWLRQVHWYLWHVVHV
±38,66$1&(',66,3e(3$5$0257,66(0(179,648(8;
±38,66$1&(',66,3e(3$5$0257,66(0(179,648(8;
&RQVLGpURQV j O¶LQVWDQW W DX VHLQ G¶XQ VROLGH XQ SDYp pOpPHQWDLUH GRQW OHV DUrWHV RQW OHV GLUHFWLRQVSULQFLSDOHVGXWHQVHXUFRQWUDLQWH Σ FRPPHOHPRQWUHODILJXUH
&RQVLGpURQV j O¶LQVWDQW W DX VHLQ G¶XQ VROLGH XQ SDYp pOpPHQWDLUH GRQW OHV DUrWHV RQW OHV GLUHFWLRQVSULQFLSDOHVGXWHQVHXUFRQWUDLQWH Σ FRPPHOHPRQWUHODILJXUH
)LJXUH
- 175 -
)LJXUH
- 175 -
(QWUH OHV LQVWDQWV YRLVLQV W HW W + G W OHV DUrWHV GH ORQJXHXUV DX UHSRV G[G\G] VH VRQW ∂ ε\ ∂ ε[ ∂ ε] ⋅ G [ ⋅ G W DOORQJpHV GH ⋅ G \ ⋅ G W ⋅ G ] ⋅ G W /HV FRQWUDLQWHV σ [ σ \ σ ] ∂W ∂W ∂W DSSOLTXpHV VXU OHV IDFHWWHV RQW HIIHFWXp XQ WUDYDLO TXH QRXV SRXYRQV FDOFXOHU GDQV OH UHSqUH {3 ;<=} F¶HVW j GLUH HQ FRQVLGpUDQW FRPPH IL[HV OHV IDFHWWHV VLWXpHV GDQV OHV SODQV GH FRRUGRQQpHVRQVDLWHQHIIHWTXHOHWUDYDLOG¶XQWRUVHXUQXOQHGpSHQGSDVGXUHSqUH
(QWUH OHV LQVWDQWV YRLVLQV W HW W + G W OHV DUrWHV GH ORQJXHXUV DX UHSRV G[G\G] VH VRQW ∂ ε\ ∂ ε[ ∂ ε] ⋅ G [ ⋅ G W DOORQJpHV GH ⋅ G \ ⋅ G W ⋅ G ] ⋅ G W /HV FRQWUDLQWHV σ [ σ \ σ ] ∂W ∂W ∂W DSSOLTXpHV VXU OHV IDFHWWHV RQW HIIHFWXp XQ WUDYDLO TXH QRXV SRXYRQV FDOFXOHU GDQV OH UHSqUH {3 ;<=} F¶HVW j GLUH HQ FRQVLGpUDQW FRPPH IL[HV OHV IDFHWWHV VLWXpHV GDQV OHV SODQV GH FRRUGRQQpHVRQVDLWHQHIIHWTXHOHWUDYDLOG¶XQWRUVHXUQXOQHGpSHQGSDVGXUHSqUH
/DIRUFHDSSOLTXpHVXUODIDFHWWHG¶DEVFLVVHG[HIIHFWXHOHWUDYDLO
/DIRUFHDSSOLTXpHVXUODIDFHWWHG¶DEVFLVVHG[HIIHFWXHOHWUDYDLO
σ[ ⋅ G \ ⋅ G ] ⋅
∂ ε[ ⋅G[ ⋅GW ∂W
σ[ ⋅ G \ ⋅ G ] ⋅
,OHQHVWGHPrPHGHVDXWUHVIDFHWWHVVLELHQTXHO¶RQSHXWpFULUHOHWUDYDLOpOpPHQWDLUHWRWDO
∂ε ⎛ ∂ε ∂ε ⎞ ⎜⎜ σ [ ⋅ [ + σ \ ⋅ \ + σ ] ⋅ ] ⎟⎟ G [ ⋅ G \ ⋅ G ] ⋅ G W ∂ ∂ ∂W ⎠ W W ⎝
,OHQHVWGHPrPHGHVDXWUHVIDFHWWHVVLELHQTXHO¶RQSHXWpFULUHOHWUDYDLOpOpPHQWDLUHWRWDO
∂ε ⎛ ∂ε ∂ε ⎞ ⎜⎜ σ [ ⋅ [ + σ \ ⋅ \ + σ ] ⋅ ] ⎟⎟ G [ ⋅ G \ ⋅ G ] ⋅ G W ∂ ∂ ∂W ⎠ W W ⎝
⎛ ∂ E⎞ ⎟⎟ G 9 ⋅ G W WU ⎜⎜ Σ ⋅ ⎝ ∂W ⎠
RXHQFRUH
∂ ε[ ⋅G[ ⋅GW ∂W
⎛ ∂ E⎞ WU ⎜⎜ Σ ⋅ ⎟⎟ G 9 ⋅ G W ⎝ ∂W ⎠
RXHQFRUH
(QGpFRPSRVDQW Σ HQSDUWLHpODVWLTXH Σ ( HWSDUWLHYLVTXHXVH Σ Y RQSHXWpFULUHODSXLVVDQFH YROXPLTXH
(QGpFRPSRVDQW Σ HQSDUWLHpODVWLTXH Σ ( HWSDUWLHYLVTXHXVH Σ Y RQSHXWpFULUHODSXLVVDQFH YROXPLTXH
⎛ ⎛ ∂ E⎞ ∂ E⎞ ⎟ 3 = 3( + 3Y DYHF 3( = WU ⎜⎜ Σ ( ⋅ ⎟⎟ HW 3Y = WU ⎜⎜ Σ Y ⋅ ∂ W ⎟⎠ ∂ W ⎝ ⎝ ⎠
⎛ ⎛ ∂ E⎞ ∂ E⎞ ⎟ 3 = 3( + 3Y DYHF 3( = WU ⎜⎜ Σ ( ⋅ ⎟⎟ HW 3Y = WU ⎜⎜ Σ Y ⋅ ∂ W ⎟⎠ ∂ W ⎝ ⎝ ⎠
3Y UHSUpVHQWHODSXLVVDQFHYROXPLTXHGLVVLSpHDXSRLQW3jO¶LQVWDQWW&HVIRUPXOHVUHVWHQW YUDLHVGDQVXQHEDVHTXHOFRQTXHRO¶RQD
3Y UHSUpVHQWHODSXLVVDQFHYROXPLTXHGLVVLSpHDXSRLQW3jO¶LQVWDQWW&HVIRUPXOHVUHVWHQW YUDLHVGDQVXQHEDVHTXHOFRQTXHRO¶RQD
⎡⎛ ∂ ε ⎞ ⎛ ∂ ε ⎞ ⎛ ∂ ε ⎞ ⎤ ∂ ε \ ∂ ε] ⎞ ⎛ ∂ε ⎟⎟ + µ′ ⎢⎜⎜ [ ⎟⎟ + ⎜⎜ \ ⎟⎟ + ⎜⎜ ] ⎟⎟ ⎥ 3Y = λ′ ⎜⎜ [ + + ∂W ∂W ⎠ ⎢⎝ ∂ W ⎠ ⎝ ∂ W ⎠ ⎝ ∂ W ⎠ ⎥ ⎝ ∂W ⎣ ⎦
⎡⎛ ∂ γ ⎞ ⎛ ∂ γ ⎞ ⎛ ∂ γ ⎞ \] ⎟ + ⎜ ][ ⎟ + ⎜ [\ ⎟ ⎥ + µ′ ⎢⎜⎜ ⎢⎝ ∂ W ⎟⎠ ⎜⎝ ∂ W ⎟⎠ ⎜⎝ ∂ W ⎟⎠ ⎥ ⎣ ⎦
⎤
⎡⎛ ∂ ε ⎞ ⎛ ∂ ε ⎞ ⎛ ∂ ε ⎞ ⎤ ∂ ε \ ∂ ε] ⎞ ⎛ ∂ε ⎟⎟ + µ′ ⎢⎜⎜ [ ⎟⎟ + ⎜⎜ \ ⎟⎟ + ⎜⎜ ] ⎟⎟ ⎥ 3Y = λ′ ⎜⎜ [ + + ∂W ∂W ⎠ ⎢⎝ ∂ W ⎠ ⎝ ∂ W ⎠ ⎝ ∂ W ⎠ ⎥ ⎝ ∂W ⎣ ⎦
⎡⎛ ∂ γ ⎞ ⎛ ∂ γ ⎞ ⎛ ∂ γ ⎞ \] ⎟ + ⎜ ][ ⎟ + ⎜ [\ ⎟ ⎥ + µ′ ⎢⎜⎜ ⎢⎝ ∂ W ⎟⎠ ⎜⎝ ∂ W ⎟⎠ ⎜⎝ ∂ W ⎟⎠ ⎥ ⎣ ⎦
5HPDUTXH SXLVTXH 3Y HVW SRVLWLYH RX QXOOH HW FRPSWH WHQX GH O¶LQpJDOLWp
⎤
5HPDUTXH SXLVTXH 3Y HVW SRVLWLYH RX QXOOH HW FRPSWH WHQX GH O¶LQpJDOLWp
D + E + F < D + E + F ∀ D EFRQHQGpGXLWHQpFULYDQW GDQVODEDVHSULQFLSDOH λ′ + µ′ ≥ HQHQYLVDJHDQWWRXVOHVFDVGHFLVDLOOHPHQWSXURQHQGpGXLWDXVVL µ′ ≥
D + E + F < D + E + F ∀ D EFRQHQGpGXLWHQpFULYDQW GDQVODEDVHSULQFLSDOH λ′ + µ′ ≥ HQHQYLVDJHDQWWRXVOHVFDVGHFLVDLOOHPHQWSXURQHQGpGXLWDXVVL µ′ ≥
/HVFRHIIFLHQWVGHYLVFRVLWpOLQpDLUH λ′ HW µ′ VDWLVIRQWGRQFDX[LQpJDOLWpVGH6WRNHV
/HVFRHIIFLHQWVGHYLVFRVLWpOLQpDLUH λ′ HW µ′ VDWLVIRQWGRQFDX[LQpJDOLWpVGH6WRNHV
λ′ + µ′ ≥ µ′ ≥
λ′ + µ′ ≥ µ′ ≥
- 176 -
- 176 -
(QWUH OHV LQVWDQWV YRLVLQV W HW W + G W OHV DUrWHV GH ORQJXHXUV DX UHSRV G[G\G] VH VRQW ∂ ε\ ∂ ε[ ∂ ε] ⋅ G [ ⋅ G W DOORQJpHV GH ⋅ G \ ⋅ G W ⋅ G ] ⋅ G W /HV FRQWUDLQWHV σ [ σ \ σ ] ∂W ∂W ∂W DSSOLTXpHV VXU OHV IDFHWWHV RQW HIIHFWXp XQ WUDYDLO TXH QRXV SRXYRQV FDOFXOHU GDQV OH UHSqUH {3 ;<=} F¶HVW j GLUH HQ FRQVLGpUDQW FRPPH IL[HV OHV IDFHWWHV VLWXpHV GDQV OHV SODQV GH FRRUGRQQpHVRQVDLWHQHIIHWTXHOHWUDYDLOG¶XQWRUVHXUQXOQHGpSHQGSDVGXUHSqUH
(QWUH OHV LQVWDQWV YRLVLQV W HW W + G W OHV DUrWHV GH ORQJXHXUV DX UHSRV G[G\G] VH VRQW ∂ ε\ ∂ ε[ ∂ ε] ⋅ G [ ⋅ G W DOORQJpHV GH ⋅ G \ ⋅ G W ⋅ G ] ⋅ G W /HV FRQWUDLQWHV σ [ σ \ σ ] ∂W ∂W ∂W DSSOLTXpHV VXU OHV IDFHWWHV RQW HIIHFWXp XQ WUDYDLO TXH QRXV SRXYRQV FDOFXOHU GDQV OH UHSqUH {3 ;<=} F¶HVW j GLUH HQ FRQVLGpUDQW FRPPH IL[HV OHV IDFHWWHV VLWXpHV GDQV OHV SODQV GH FRRUGRQQpHVRQVDLWHQHIIHWTXHOHWUDYDLOG¶XQWRUVHXUQXOQHGpSHQGSDVGXUHSqUH
/DIRUFHDSSOLTXpHVXUODIDFHWWHG¶DEVFLVVHG[HIIHFWXHOHWUDYDLO
/DIRUFHDSSOLTXpHVXUODIDFHWWHG¶DEVFLVVHG[HIIHFWXHOHWUDYDLO
σ[ ⋅ G \ ⋅ G ] ⋅
∂ ε[ ⋅G[ ⋅GW ∂W
σ[ ⋅ G \ ⋅ G ] ⋅
,OHQHVWGHPrPHGHVDXWUHVIDFHWWHVVLELHQTXHO¶RQSHXWpFULUHOHWUDYDLOpOpPHQWDLUHWRWDO
∂ε ⎛ ∂ε ∂ε ⎞ ⎜⎜ σ [ ⋅ [ + σ \ ⋅ \ + σ ] ⋅ ] ⎟⎟ G [ ⋅ G \ ⋅ G ] ⋅ G W ∂ ∂ ∂W ⎠ W W ⎝
,OHQHVWGHPrPHGHVDXWUHVIDFHWWHVVLELHQTXHO¶RQSHXWpFULUHOHWUDYDLOpOpPHQWDLUHWRWDO
∂ε ⎛ ∂ε ∂ε ⎞ ⎜⎜ σ [ ⋅ [ + σ \ ⋅ \ + σ ] ⋅ ] ⎟⎟ G [ ⋅ G \ ⋅ G ] ⋅ G W ∂ ∂ ∂W ⎠ W W ⎝
⎛ ∂ E⎞ ⎟⎟ G 9 ⋅ G W WU ⎜⎜ Σ ⋅ ⎝ ∂W ⎠
RXHQFRUH
∂ ε[ ⋅G[ ⋅GW ∂W
⎛ ∂ E⎞ WU ⎜⎜ Σ ⋅ ⎟⎟ G 9 ⋅ G W ⎝ ∂W ⎠
RXHQFRUH
(QGpFRPSRVDQW Σ HQSDUWLHpODVWLTXH Σ ( HWSDUWLHYLVTXHXVH Σ Y RQSHXWpFULUHODSXLVVDQFH YROXPLTXH
(QGpFRPSRVDQW Σ HQSDUWLHpODVWLTXH Σ ( HWSDUWLHYLVTXHXVH Σ Y RQSHXWpFULUHODSXLVVDQFH YROXPLTXH
⎛ ⎛ ∂ E⎞ ∂ E⎞ ⎟ 3 = 3( + 3Y DYHF 3( = WU ⎜⎜ Σ ( ⋅ ⎟⎟ HW 3Y = WU ⎜⎜ Σ Y ⋅ ∂ W ⎟⎠ ∂W ⎠ ⎝ ⎝
⎛ ⎛ ∂ E⎞ ∂ E⎞ ⎟ 3 = 3( + 3Y DYHF 3( = WU ⎜⎜ Σ ( ⋅ ⎟⎟ HW 3Y = WU ⎜⎜ Σ Y ⋅ ∂ W ⎟⎠ ∂W ⎠ ⎝ ⎝
3Y UHSUpVHQWHODSXLVVDQFHYROXPLTXHGLVVLSpHDXSRLQW3jO¶LQVWDQWW&HVIRUPXOHVUHVWHQW YUDLHVGDQVXQHEDVHTXHOFRQTXHRO¶RQD
3Y UHSUpVHQWHODSXLVVDQFHYROXPLTXHGLVVLSpHDXSRLQW3jO¶LQVWDQWW&HVIRUPXOHVUHVWHQW YUDLHVGDQVXQHEDVHTXHOFRQTXHRO¶RQD
⎡⎛ ∂ ε ⎞ ⎛ ∂ ε ⎞ ⎛ ∂ ε ⎞ ⎤ ∂ ε \ ∂ ε] ⎞ ⎛ ∂ε ⎟⎟ + µ′ ⎢⎜⎜ [ ⎟⎟ + ⎜⎜ \ ⎟⎟ + ⎜⎜ ] ⎟⎟ ⎥ 3Y = λ′ ⎜⎜ [ + + ∂W ∂W ⎠ ⎢⎝ ∂ W ⎠ ⎝ ∂ W ⎠ ⎝ ∂ W ⎠ ⎥ ⎝ ∂W ⎣ ⎦
⎡⎛ ∂ γ ⎞ ⎛ ∂ γ ⎞ ⎛ ∂ γ ⎞ ⎤ \] ⎟ + ⎜ ][ ⎟ + ⎜ [\ ⎟ ⎥ + µ′ ⎢⎜⎜ ⎢⎝ ∂ W ⎟⎠ ⎜⎝ ∂ W ⎟⎠ ⎜⎝ ∂ W ⎟⎠ ⎥ ⎣ ⎦
⎡⎛ ∂ ε ⎞ ⎛ ∂ ε ⎞ ⎛ ∂ ε ⎞ ⎤ ∂ ε \ ∂ ε] ⎞ ⎛ ∂ε ⎟⎟ + µ′ ⎢⎜⎜ [ ⎟⎟ + ⎜⎜ \ ⎟⎟ + ⎜⎜ ] ⎟⎟ ⎥ 3Y = λ′ ⎜⎜ [ + + ∂W ∂W ⎠ ⎢⎝ ∂ W ⎠ ⎝ ∂ W ⎠ ⎝ ∂ W ⎠ ⎥ ⎝ ∂W ⎣ ⎦
⎡⎛ ∂ γ ⎞ ⎛ ∂ γ ⎞ ⎛ ∂ γ ⎞ ⎤ \] ⎟ + ⎜ ][ ⎟ + ⎜ [\ ⎟ ⎥ + µ′ ⎢⎜⎜ ⎢⎝ ∂ W ⎟⎠ ⎜⎝ ∂ W ⎟⎠ ⎜⎝ ∂ W ⎟⎠ ⎥ ⎣ ⎦
5HPDUTXH SXLVTXH 3Y HVW SRVLWLYH RX QXOOH HW FRPSWH WHQX GH O¶LQpJDOLWp
5HPDUTXH SXLVTXH 3Y HVW SRVLWLYH RX QXOOH HW FRPSWH WHQX GH O¶LQpJDOLWp
D + E + F < D + E + F ∀ D EFRQHQGpGXLWHQpFULYDQW GDQVODEDVHSULQFLSDOH λ′ + µ′ ≥ HQHQYLVDJHDQWWRXVOHVFDVGHFLVDLOOHPHQWSXURQHQGpGXLWDXVVL µ′ ≥
D + E + F < D + E + F ∀ D EFRQHQGpGXLWHQpFULYDQW GDQVODEDVHSULQFLSDOH λ′ + µ′ ≥ HQHQYLVDJHDQWWRXVOHVFDVGHFLVDLOOHPHQWSXURQHQGpGXLWDXVVL µ′ ≥
/HVFRHIIFLHQWVGHYLVFRVLWpOLQpDLUH λ′ HW µ′ VDWLVIRQWGRQFDX[LQpJDOLWpVGH6WRNHV
/HVFRHIIFLHQWVGHYLVFRVLWpOLQpDLUH λ′ HW µ′ VDWLVIRQWGRQFDX[LQpJDOLWpVGH6WRNHV
λ′ + µ′ ≥ µ′ ≥
λ′ + µ′ ≥ µ′ ≥
- 176 -
- 176 -
&+$3,75(,;
&+$3,75(,;
'<1$0,48('(632875(6
'<1$0,48('(632875(6
/H PRXYHPHQW G¶XQH VHFWLRQ GURLWH 6 GH SRXWUH SHXW WRXMRXUV rWUH FRQVLGpUp FRPPH OD FRPSRVLWLRQGHWURLVPRXYHPHQWVVLPSOHV
/H PRXYHPHQW G¶XQH VHFWLRQ GURLWH 6 GH SRXWUH SHXW WRXMRXUV rWUH FRQVLGpUp FRPPH OD FRPSRVLWLRQGHWURLVPRXYHPHQWVVLPSOHV
± OHPRXYHPHQWD[LDORXORQJLWXGLQDO TXLFRQVLVWHHQXQHWUDQVODWLRQGH6SDUDOOqOHPHQWj O¶D[HSULQFLSDOFHQWUDO*;WDQJHQWen* jODOLJQHPR\HQQHGHODSRXWUH
± OHPRXYHPHQWD[LDORXORQJLWXGLQDO TXLFRQVLVWHHQXQHWUDQVODWLRQGH6SDUDOOqOHPHQWj O¶D[HSULQFLSDOFHQWUDO*;WDQJHQWen* jODOLJQHPR\HQQHGHODSRXWUH
± OHPRXYHPHQWGHWRUVLRQTXLFRQVLVWHHQXQHURWDWLRQGH6DXWRXUGHVRQD[H
± OHPRXYHPHQWGHWRUVLRQTXLFRQVLVWHHQXQHURWDWLRQGH6DXWRXUGHVRQD[H
± OH PRXYHPHQW GH IOH[LRQ RX WUDQVYHUVDO TXL FRQVLVWH HQ XQH WUDQVODWLRQ GH 6 SHUSHQGLFXODLUHj*;DSSHOpHIOqFKHHWXQHURWDWLRQGH6DXWRXUG¶XQD[HGHVRQSODQ
± OH PRXYHPHQW GH IOH[LRQ RX WUDQVYHUVDO TXL FRQVLVWH HQ XQH WUDQVODWLRQ GH 6 SHUSHQGLFXODLUHj*;DSSHOpHIOqFKHHWXQHURWDWLRQGH6DXWRXUG¶XQD[HGHVRQSODQ
6HFWLRQGURLWHHWOLJQHPR\HQQH )LJXUH
6HFWLRQGURLWHHWOLJQHPR\HQQH )LJXUH
1RXV FRPPHQFHURQV SDU pWXGLHU FHV WURLV PRXYHPHQWV VLPSOHV VXU XQH SRXWUH SULVPDWLTXH 1RXV GRQQHURQV HQVXLWH OHV pTXDWLRQV HW PpWKRGHV JpQpUDOHV UHODWLYHV j XQH SRXWUH TXHOFRQTXH
1RXV FRPPHQFHURQV SDU pWXGLHU FHV WURLV PRXYHPHQWV VLPSOHV VXU XQH SRXWUH SULVPDWLTXH 1RXV GRQQHURQV HQVXLWH OHV pTXDWLRQV HW PpWKRGHV JpQpUDOHV UHODWLYHV j XQH SRXWUH TXHOFRQTXH
±9,%5$7,216/21*,78',1$/(6'¶81(32875(35,60$7,48(
±9,%5$7,216/21*,78',1$/(6'¶81(32875(35,60$7,48(
±9LEUDWLRQVQDWXUHOOHVQRQDPRUWLHV
±9LEUDWLRQVQDWXUHOOHVQRQDPRUWLHV
)LJXUH
)LJXUH
- 177 -
- 177 -
&+$3,75(,;
&+$3,75(,;
'<1$0,48('(632875(6
'<1$0,48('(632875(6
/H PRXYHPHQW G¶XQH VHFWLRQ GURLWH 6 GH SRXWUH SHXW WRXMRXUV rWUH FRQVLGpUp FRPPH OD FRPSRVLWLRQGHWURLVPRXYHPHQWVVLPSOHV
/H PRXYHPHQW G¶XQH VHFWLRQ GURLWH 6 GH SRXWUH SHXW WRXMRXUV rWUH FRQVLGpUp FRPPH OD FRPSRVLWLRQGHWURLVPRXYHPHQWVVLPSOHV
± OHPRXYHPHQWD[LDORXORQJLWXGLQDO TXLFRQVLVWHHQXQHWUDQVODWLRQGH6SDUDOOqOHPHQWj O¶D[HSULQFLSDOFHQWUDO*;WDQJHQWen* jODOLJQHPR\HQQHGHODSRXWUH
± OHPRXYHPHQWD[LDORXORQJLWXGLQDO TXLFRQVLVWHHQXQHWUDQVODWLRQGH6SDUDOOqOHPHQWj O¶D[HSULQFLSDOFHQWUDO*;WDQJHQWen* jODOLJQHPR\HQQHGHODSRXWUH
± OHPRXYHPHQWGHWRUVLRQTXLFRQVLVWHHQXQHURWDWLRQGH6DXWRXUGHVRQD[H
± OHPRXYHPHQWGHWRUVLRQTXLFRQVLVWHHQXQHURWDWLRQGH6DXWRXUGHVRQD[H
± OH PRXYHPHQW GH IOH[LRQ RX WUDQVYHUVDO TXL FRQVLVWH HQ XQH WUDQVODWLRQ GH 6 SHUSHQGLFXODLUHj*;DSSHOpHIOqFKHHWXQHURWDWLRQGH6DXWRXUG¶XQD[HGHVRQSODQ
± OH PRXYHPHQW GH IOH[LRQ RX WUDQVYHUVDO TXL FRQVLVWH HQ XQH WUDQVODWLRQ GH 6 SHUSHQGLFXODLUHj*;DSSHOpHIOqFKHHWXQHURWDWLRQGH6DXWRXUG¶XQD[HGHVRQSODQ
6HFWLRQGURLWHHWOLJQHPR\HQQH )LJXUH
6HFWLRQGURLWHHWOLJQHPR\HQQH )LJXUH
1RXV FRPPHQFHURQV SDU pWXGLHU FHV WURLV PRXYHPHQWV VLPSOHV VXU XQH SRXWUH SULVPDWLTXH 1RXV GRQQHURQV HQVXLWH OHV pTXDWLRQV HW PpWKRGHV JpQpUDOHV UHODWLYHV j XQH SRXWUH TXHOFRQTXH
1RXV FRPPHQFHURQV SDU pWXGLHU FHV WURLV PRXYHPHQWV VLPSOHV VXU XQH SRXWUH SULVPDWLTXH 1RXV GRQQHURQV HQVXLWH OHV pTXDWLRQV HW PpWKRGHV JpQpUDOHV UHODWLYHV j XQH SRXWUH TXHOFRQTXH
±9,%5$7,216/21*,78',1$/(6'¶81(32875(35,60$7,48(
±9,%5$7,216/21*,78',1$/(6'¶81(32875(35,60$7,48(
±9LEUDWLRQVQDWXUHOOHVQRQDPRUWLHV
±9LEUDWLRQVQDWXUHOOHVQRQDPRUWLHV
)LJXUH
- 177 -
)LJXUH
- 177 -
/¶pWDW GH UpIpUHQFH R HVW O¶pWDW G¶pTXLOLEUH VWDWLTXH GH OD SRXWUH GDQV VRQ UHSqUH {R [\]} VXSSRVp JDOLOpHQ /H PRXYHPHQW GH WRXWH VHFWLRQ GURLWH 6 G¶DEVFLVVH [ HVW XQH WUDQVODWLRQ X [ W SDUDOOqOHj [′[ 1 [ W GpVLJQDQWO¶HIIRUWQRUPDOVXU6HW ρ ODPDVVHYROXPLTXHGX PDWpULDX O¶pTXLOLEUH HW OD ORL GH +RRNH V¶pFULYHQW SRXU XQH WUDQFKH pOpPHQWDLUH 6 − 6′ G¶pSDLVVHXUG[
/¶pWDW GH UpIpUHQFH R HVW O¶pWDW G¶pTXLOLEUH VWDWLTXH GH OD SRXWUH GDQV VRQ UHSqUH {R [\]} VXSSRVp JDOLOpHQ /H PRXYHPHQW GH WRXWH VHFWLRQ GURLWH 6 G¶DEVFLVVH [ HVW XQH WUDQVODWLRQ X [ W SDUDOOqOHj [′[ 1 [ W GpVLJQDQWO¶HIIRUWQRUPDOVXU6HW ρ ODPDVVHYROXPLTXHGX PDWpULDX O¶pTXLOLEUH HW OD ORL GH +RRNH V¶pFULYHQW SRXU XQH WUDQFKH pOpPHQWDLUH 6 − 6′ G¶pSDLVVHXUG[
⎧ ∂1 ∂ X G[ = ρ 6 G[ ⎪− 1 + 1 + ∂[ ∂W ⎪ ⎨ ⎪ ∂X ⎪ 1 = 6 ⋅ σ [ = ( 6 ⋅ ε [ = (6 ∂ [ ⎩
⎧ ∂1 ∂ X G[ = ρ 6 G[ ⎪− 1 + 1 + ∂[ ∂W ⎪ ⎨ ⎪ ∂X ⎪ 1 = 6 ⋅ σ [ = ( 6 ⋅ ε [ = (6 ∂ [ ⎩
(OLPLQDQW1HQWUHOHVGHX[RQREWLHQWO¶pTXDWLRQGHPRXYHPHQW ( ∂ X ∂ X = DYHF & = ρ ∂[ & ∂W
(OLPLQDQW1HQWUHOHVGHX[RQREWLHQWO¶pTXDWLRQGHPRXYHPHQW
$X GX FKDSLWUH SUpFpGHQW QRXV DYRQV UpVROX FHWWH pTXDWLRQ GH G¶$OHPEHUW SRXU O¶RQGH SODQH QRXV JDUGHURQV OHV PrPHV FRQGLWLRQV DX[ OLPLWHV FRPPH OH PRQWUH OD ILJXUH H[WUpPLWp [ = HQFDVWUpHH[WUpPLWp [ = / OLEUH2QDDORUV ∞
X [ W =
∑
VLQ
Q =
Q + [ ⎛ Q + FW Q + FW ⎞ π ⎜ $ Q FRV π + %Q VLQ π ⎟ /⎝ / /⎠
/HVQ°XGVGHO¶KDUPRQLTXHGHUDQJQRQWSRXUDEVFLVVHVR
/DIUpTXHQFHHVW I Q =
( ∂ X ∂ X = DYHF & = ρ ∂[ & ∂W
$X GX FKDSLWUH SUpFpGHQW QRXV DYRQV UpVROX FHWWH pTXDWLRQ GH G¶$OHPEHUW SRXU O¶RQGH SODQH QRXV JDUGHURQV OHV PrPHV FRQGLWLRQV DX[ OLPLWHV FRPPH OH PRQWUH OD ILJXUH H[WUpPLWp [ = HQFDVWUpHH[WUpPLWp [ = / OLEUH2QDDORUV ∞
X [ W =
∑ VLQ Q =
/ / / « Q + Q + Q +
Q + [ ⎛ Q + FW Q + FW ⎞ π ⎜ $ Q FRV π + %Q VLQ π ⎟ /⎝ / /⎠
/HVQ°XGVGHO¶KDUPRQLTXHGHUDQJQRQWSRXUDEVFLVVHVR
Q + & /¶RQGHHVWVWDWLRQQDLUH /
/DIUpTXHQFHHVW I Q =
/ / / « Q + Q + Q +
Q + & /¶RQGHHVWVWDWLRQQDLUH /
/HVFRHIILFLHQWVGH)RXULHU $ Q HW %Q VHFDOFXOHQWjSDUWLUGHVFRQGLWLRQVLQLWLDOHVGHSRVLWLRQV HW YLWHVVHV RX FRQGLWLRQV GH &DXFK\ F¶HVW j GLUH j SDUWLU GHV IRQFWLRQV GRQQpHV ⎛∂X ⎞ ⎟⎟ ϕ [ = X [ R HW ψ [ = ⎜⎜ ⎝ ∂ W ⎠ W =
/HVFRHIILFLHQWVGH)RXULHU $ Q HW %Q VHFDOFXOHQWjSDUWLUGHVFRQGLWLRQVLQLWLDOHVGHSRVLWLRQV HW YLWHVVHV RX FRQGLWLRQV GH &DXFK\ F¶HVW j GLUH j SDUWLU GHV IRQFWLRQV GRQQpHV ⎛∂X ⎞ ⎟⎟ ϕ [ = X [ R HW ψ [ = ⎜⎜ ⎝ ∂ W ⎠ W =
/ ⎧ ⎪$ Q = ϕ [ VLQ ⎛⎜ Q + π [ ⎞⎟ ⋅ G[ ⎪ / /⎠ ⎝ ⎪ ⎨ / ⎪ ⎛ Q + [ ⎞ ψ [ VLQ ⎜ π ⎟ ⋅ G[ ⎪% Q = Q + π & /⎠ ⎝ ⎩⎪
/ ⎧ ⎪$ Q = ϕ [ VLQ ⎛⎜ Q + π [ ⎞⎟ ⋅ G[ ⎪ / /⎠ ⎝ ⎪ ⎨ / ⎪ ⎛ Q + [ ⎞ ψ [ VLQ ⎜ π ⎟ ⋅ G[ ⎪% Q = Q + π & /⎠ ⎝ ⎩⎪
- 178 -
- 178 -
/¶pWDW GH UpIpUHQFH R HVW O¶pWDW G¶pTXLOLEUH VWDWLTXH GH OD SRXWUH GDQV VRQ UHSqUH {R [\]} VXSSRVp JDOLOpHQ /H PRXYHPHQW GH WRXWH VHFWLRQ GURLWH 6 G¶DEVFLVVH [ HVW XQH WUDQVODWLRQ X [ W SDUDOOqOHj [′[ 1 [ W GpVLJQDQWO¶HIIRUWQRUPDOVXU6HW ρ ODPDVVHYROXPLTXHGX PDWpULDX O¶pTXLOLEUH HW OD ORL GH +RRNH V¶pFULYHQW SRXU XQH WUDQFKH pOpPHQWDLUH 6 − 6′ G¶pSDLVVHXUG[
/¶pWDW GH UpIpUHQFH R HVW O¶pWDW G¶pTXLOLEUH VWDWLTXH GH OD SRXWUH GDQV VRQ UHSqUH {R [\]} VXSSRVp JDOLOpHQ /H PRXYHPHQW GH WRXWH VHFWLRQ GURLWH 6 G¶DEVFLVVH [ HVW XQH WUDQVODWLRQ X [ W SDUDOOqOHj [′[ 1 [ W GpVLJQDQWO¶HIIRUWQRUPDOVXU6HW ρ ODPDVVHYROXPLTXHGX PDWpULDX O¶pTXLOLEUH HW OD ORL GH +RRNH V¶pFULYHQW SRXU XQH WUDQFKH pOpPHQWDLUH 6 − 6′ G¶pSDLVVHXUG[
⎧ ∂1 ∂ X G[ = ρ 6 G[ ⎪− 1 + 1 + ∂[ ∂W ⎪ ⎨ ⎪ ∂X ⎪ 1 = 6 ⋅ σ [ = ( 6 ⋅ ε [ = (6 ∂ [ ⎩
⎧ ∂1 ∂ X G[ = ρ 6 G[ ⎪− 1 + 1 + ∂[ ∂W ⎪ ⎨ ⎪ ∂X ⎪ 1 = 6 ⋅ σ [ = ( 6 ⋅ ε [ = (6 ∂ [ ⎩
∫
∫
∫
∫
(OLPLQDQW1HQWUHOHVGHX[RQREWLHQWO¶pTXDWLRQGHPRXYHPHQW ( ∂ X ∂ X = DYHF & = ρ ∂[ & ∂W
(OLPLQDQW1HQWUHOHVGHX[RQREWLHQWO¶pTXDWLRQGHPRXYHPHQW
$X GX FKDSLWUH SUpFpGHQW QRXV DYRQV UpVROX FHWWH pTXDWLRQ GH G¶$OHPEHUW SRXU O¶RQGH SODQH QRXV JDUGHURQV OHV PrPHV FRQGLWLRQV DX[ OLPLWHV FRPPH OH PRQWUH OD ILJXUH H[WUpPLWp [ = HQFDVWUpHH[WUpPLWp [ = / OLEUH2QDDORUV ∞
X [ W =
∑ Q =
VLQ
Q + [ ⎛ Q + FW Q + FW ⎞ π ⎜ $ Q FRV π + %Q VLQ π ⎟ /⎝ / /⎠
/HVQ°XGVGHO¶KDUPRQLTXHGHUDQJQRQWSRXUDEVFLVVHVR
/DIUpTXHQFHHVW I Q =
( ∂ X ∂ X = DYHF & = ρ ∂[ & ∂W
$X GX FKDSLWUH SUpFpGHQW QRXV DYRQV UpVROX FHWWH pTXDWLRQ GH G¶$OHPEHUW SRXU O¶RQGH SODQH QRXV JDUGHURQV OHV PrPHV FRQGLWLRQV DX[ OLPLWHV FRPPH OH PRQWUH OD ILJXUH H[WUpPLWp [ = HQFDVWUpHH[WUpPLWp [ = / OLEUH2QDDORUV ∞
/ / / « Q + Q + Q +
Q + & /¶RQGHHVWVWDWLRQQDLUH /
X [ W =
∑ VLQ Q =
Q + [ ⎛ Q + FW Q + FW ⎞ π ⎜ $ Q FRV π + %Q VLQ π ⎟ /⎝ / /⎠
/HVQ°XGVGHO¶KDUPRQLTXHGHUDQJQRQWSRXUDEVFLVVHVR
/DIUpTXHQFHHVW I Q =
/ / / « Q + Q + Q +
Q + & /¶RQGHHVWVWDWLRQQDLUH /
/HVFRHIILFLHQWVGH)RXULHU $ Q HW %Q VHFDOFXOHQWjSDUWLUGHVFRQGLWLRQVLQLWLDOHVGHSRVLWLRQV HW YLWHVVHV RX FRQGLWLRQV GH &DXFK\ F¶HVW j GLUH j SDUWLU GHV IRQFWLRQV GRQQpHV ⎛∂X ⎞ ϕ [ = X [ R HW ψ [ = ⎜⎜ ⎟⎟ ⎝ ∂ W ⎠ W =
/HVFRHIILFLHQWVGH)RXULHU $ Q HW %Q VHFDOFXOHQWjSDUWLUGHVFRQGLWLRQVLQLWLDOHVGHSRVLWLRQV HW YLWHVVHV RX FRQGLWLRQV GH &DXFK\ F¶HVW j GLUH j SDUWLU GHV IRQFWLRQV GRQQpHV ⎛∂X ⎞ ϕ [ = X [ R HW ψ [ = ⎜⎜ ⎟⎟ ⎝ ∂ W ⎠ W =
/ ⎧ ⎪$ Q = ϕ [ VLQ ⎛⎜ Q + π [ ⎞⎟ ⋅ G[ ⎪ / /⎠ ⎝ ⎪ ⎨ / ⎪ ⎛ Q + [ ⎞ ψ [ VLQ ⎜ π ⎟ ⋅ G[ ⎪% Q = Q + π & /⎠ ⎝ ⎪⎩
/ ⎧ ⎪$ Q = ϕ [ VLQ ⎛⎜ Q + π [ ⎞⎟ ⋅ G[ ⎪ / /⎠ ⎝ ⎪ ⎨ / ⎪ ⎛ Q + [ ⎞ ψ [ VLQ ⎜ π ⎟ ⋅ G[ ⎪% Q = Q + π & /⎠ ⎝ ⎪⎩
- 178 -
- 178 -
∫
∫
∫
∫
±9LEUDWLRQVQDWXUHOOHVDPRUWLHV
±9LEUDWLRQVQDWXUHOOHVDPRUWLHV
'¶DSUqVODIRUPXOH GXFKDSLWUHSUpFpGHQWODORLGHFRPSRUWHPHQWYLVFRpODVWLTXHOLQpDLUH V¶pFULW ∂X ∂ ⎛ ∂X ⎞ ⎟ 1 = (6 ⋅ + (′6 ⋅ ⎜⎜ ∂[ ∂ W ⎝ ∂ [ ⎟⎠
'¶DSUqVODIRUPXOH GXFKDSLWUHSUpFpGHQWODORLGHFRPSRUWHPHQWYLVFRpODVWLTXHOLQpDLUH V¶pFULW ∂X ∂ ⎛ ∂X ⎞ ⎟ 1 = (6 ⋅ + (′6 ⋅ ⎜⎜ ∂[ ∂ W ⎝ ∂ [ ⎟⎠
HWO¶pTXDWLRQGXPRXYHPHQW GHYLHQW
HWO¶pTXDWLRQGXPRXYHPHQW GHYLHQW
(
⎛ ∂ X ⎞ ∂ X ∂ X + (′ ⎜ ⎟ = ρ ⎟ ⎜ ∂W ∂[ ⎝∂[ ⎠
,FL QRXV SRVHURQV X = I [ ⋅ J W & =
⎛ &′ FULWLTXH N = ⎜⎜ ⎝ &′&5
( (′ &′ = &′ &5 = DPRUWLVVHPHQW ρ ρ ω&
⎞ ⎟⎟ DPRUWLVVHPHQWUpGXLW ⎠
(
⎛ ∂ X ⎞ ∂ X ∂ X + (′ ⎜ ⎟ = ρ ⎟ ⎜ ∂W ∂[ ⎝∂[ ⎠
,FL QRXV SRVHURQV X = I [ ⋅ J W & =
⎛ &′ FULWLTXH N = ⎜⎜ ⎝ &′&5
( (′ &′ = &′ &5 = DPRUWLVVHPHQW ρ ρ ω&
⎞ ⎟⎟ DPRUWLVVHPHQWUpGXLW ⎠
/DVXLWH {ωQ }GHVSXOVDWLRQVSURSUHVQRQDPRUWLHVHVWGRQQpHSDUOHVFRQGLWLRQVDX[OLPLWHV 3RXUFKDTXHKDUPRQLTXHWURLVFDVVRQWjGLVWLQJXHU
/DVXLWH {ωQ }GHVSXOVDWLRQVSURSUHVQRQDPRUWLHVHVWGRQQpHSDUOHVFRQGLWLRQVDX[OLPLWHV 3RXUFKDTXHKDUPRQLTXHWURLVFDVVRQWjGLVWLQJXHU
$PRUWLVVHPHQWIRUW N Q >
$PRUWLVVHPHQWIRUW N Q >
(QSRVDQW UQ = ωQ N Q − RQDOHVWURLVIRUPHVpTXLYDOHQWHV
(QSRVDQW UQ = ωQ N Q − RQDOHVWURLVIRUPHVpTXLYDOHQWHV
⎧ − N Q ωQ W ($ Q FK UQ W + %Q VKUQ W ) RXELHQ ⎪ J Q W = H ⎪ ⎪ −N ω W RXHQFRUH ⎨ J Q W = D Q H Q Q FK (UQ W + ϕQ ) ⎪ ⎪ $ − %Q − UQ W ⎞ − N Q ωQ W ⎛ $ Q + %Q UQ W H + Q H ⎜ ⎟ ⎪ J Q W = H ⎝ ⎠ ⎩
⎧ − N Q ωQ W ($ Q FK UQ W + %Q VKUQ W ) RXELHQ ⎪ J Q W = H ⎪ ⎪ −N ω W RXHQFRUH ⎨ J Q W = D Q H Q Q FK (UQ W + ϕQ ) ⎪ ⎪ $ − %Q − UQ W ⎞ − N Q ωQ W ⎛ $ Q + %Q UQ W H + Q H ⎜ ⎟ ⎪ J Q W = H ⎝ ⎠ ⎩
$PRUWLVVHPHQWFULWLTXH N Q =
$PRUWLVVHPHQWFULWLTXH N Q =
2QDDORUV
J Q W = H
− ωQ W
2QDDORUV
($ Q + %Q W )
J Q W = H −ωQ W ($ Q + %Q W )
$PRUWLVVHPHQWIDLEOH N Q <
$PRUWLVVHPHQWIDLEOH N Q <
(QSRVDQW Ω Q = ωQ − N Q RQDOHVGHX[IRUPHVpTXLYDOHQWHV
(QSRVDQW Ω Q = ωQ − N Q RQDOHVGHX[IRUPHVpTXLYDOHQWHV
⎧ J Q W = H − N Q ωQ W ($ Q FRV Ω Q W + %Q VLQ Ω Q W ) RX ⎪ ⎨ ⎪ J W = D H − N Q ωQ W FRV (Ω W + ϕ ) Q Q Q ⎩ Q
⎧ J Q W = H − N Q ωQ W ($ Q FRV Ω Q W + %Q VLQ Ω Q W ) RX ⎪ ⎨ ⎪ J W = D H − N Q ωQ W FRV (Ω W + ϕ ) Q Q Q ⎩ Q
- 179 -
- 179 -
±9LEUDWLRQVQDWXUHOOHVDPRUWLHV
±9LEUDWLRQVQDWXUHOOHVDPRUWLHV
'¶DSUqVODIRUPXOH GXFKDSLWUHSUpFpGHQWODORLGHFRPSRUWHPHQWYLVFRpODVWLTXHOLQpDLUH V¶pFULW ∂X ∂ ⎛ ∂X ⎞ ⎟ 1 = (6 ⋅ + (′6 ⋅ ⎜⎜ ∂[ ∂ W ⎝ ∂ [ ⎟⎠
'¶DSUqVODIRUPXOH GXFKDSLWUHSUpFpGHQWODORLGHFRPSRUWHPHQWYLVFRpODVWLTXHOLQpDLUH V¶pFULW ∂X ∂ ⎛ ∂X ⎞ ⎟ 1 = (6 ⋅ + (′6 ⋅ ⎜⎜ ∂[ ∂ W ⎝ ∂ [ ⎟⎠
HWO¶pTXDWLRQGXPRXYHPHQW GHYLHQW
HWO¶pTXDWLRQGXPRXYHPHQW GHYLHQW
(
⎛ ∂ X ⎞ ∂ X ⎟=ρ ∂ X ⎜ ′ ( + ⎜ ⎟ ∂ W ∂ [ ⎝∂[ ⎠
,FL QRXV SRVHURQV X = I [ ⋅ J W & =
⎛ &′ FULWLTXH N = ⎜⎜ ⎝ &′&5
( (′ &′ = &′ &5 = DPRUWLVVHPHQW ρ ρ ω&
⎞ ⎟⎟ DPRUWLVVHPHQWUpGXLW ⎠
(
⎛ ∂ X ⎞ ∂ X ⎟=ρ ∂ X ⎜ ′ ( + ⎜ ⎟ ∂ W ∂ [ ⎝∂[ ⎠
,FL QRXV SRVHURQV X = I [ ⋅ J W & =
⎛ &′ FULWLTXH N = ⎜⎜ ⎝ &′&5
( (′ &′ = &′ &5 = DPRUWLVVHPHQW ρ ρ ω&
⎞ ⎟⎟ DPRUWLVVHPHQWUpGXLW ⎠
/DVXLWH {ωQ }GHVSXOVDWLRQVSURSUHVQRQDPRUWLHVHVWGRQQpHSDUOHVFRQGLWLRQVDX[OLPLWHV 3RXUFKDTXHKDUPRQLTXHWURLVFDVVRQWjGLVWLQJXHU
/DVXLWH {ωQ }GHVSXOVDWLRQVSURSUHVQRQDPRUWLHVHVWGRQQpHSDUOHVFRQGLWLRQVDX[OLPLWHV 3RXUFKDTXHKDUPRQLTXHWURLVFDVVRQWjGLVWLQJXHU
$PRUWLVVHPHQWIRUW N Q >
$PRUWLVVHPHQWIRUW N Q >
(QSRVDQW UQ = ωQ N Q − RQDOHVWURLVIRUPHVpTXLYDOHQWHV
(QSRVDQW UQ = ωQ N Q − RQDOHVWURLVIRUPHVpTXLYDOHQWHV
⎧ − N Q ωQ W ($ Q FK UQ W + %Q VKUQ W ) RXELHQ ⎪ J Q W = H ⎪ ⎪ −N ω W RXHQFRUH ⎨ J Q W = D Q H Q Q FK (UQ W + ϕQ ) ⎪ ⎪ $ − %Q − UQ W ⎞ − N Q ωQ W ⎛ $ Q + %Q UQ W H + Q H ⎜ ⎟ ⎪ J Q W = H ⎝ ⎠ ⎩
$PRUWLVVHPHQWFULWLTXH N Q =
⎧ − N Q ωQ W ($ Q FK UQ W + %Q VKUQ W ) RXELHQ ⎪ J Q W = H ⎪ ⎪ −N ω W RXHQFRUH ⎨ J Q W = D Q H Q Q FK (UQ W + ϕQ ) ⎪ ⎪ $ − %Q − UQ W ⎞ − N Q ωQ W ⎛ $ Q + %Q UQ W H + Q H ⎜ ⎟ ⎪ J Q W = H ⎝ ⎠ ⎩
$PRUWLVVHPHQWFULWLTXH N Q =
2QDDORUV
J Q W = H
− ωQ W
($ Q + %Q W )
2QDDORUV
J Q W = H −ωQ W ($ Q + %Q W )
$PRUWLVVHPHQWIDLEOH N Q <
$PRUWLVVHPHQWIDLEOH N Q <
(QSRVDQW Ω Q = ωQ − N Q RQDOHVGHX[IRUPHVpTXLYDOHQWHV
(QSRVDQW Ω Q = ωQ − N Q RQDOHVGHX[IRUPHVpTXLYDOHQWHV
⎧ J Q W = H − N Q ωQ W ($ Q FRV Ω Q W + %Q VLQ Ω Q W ) RX ⎪ ⎨ ⎪ J W = D H − N Q ωQ W FRV (Ω W + ϕ ) Q Q Q ⎩ Q
⎧ J Q W = H − N Q ωQ W ($ Q FRV Ω Q W + %Q VLQ Ω Q W ) RX ⎪ ⎨ ⎪ J W = D H − N Q ωQ W FRV (Ω W + ϕ ) Q Q Q ⎩ Q
- 179 -
- 179 -
2QUHPDUTXHTXHO¶DPRUWLVVHPHQWFULWLTXHHWO¶DPRUWLVVHPHQWUpGXLWVRQWIRQFWLRQGXUDQJQ GHO¶KDUPRQLTXHFRQVLGpUpSXLVTXHO¶RQD
(&′&5 )Q =
( HW N Q = ρ ωQ
2QUHPDUTXHTXHO¶DPRUWLVVHPHQWFULWLTXHHWO¶DPRUWLVVHPHQWUpGXLWVRQWIRQFWLRQGXUDQJQ GHO¶KDUPRQLTXHFRQVLGpUpSXLVTXHO¶RQD
(′ ωQ (
(&′&5 )Q =
( HW N Q = ρ ωQ
(′ ωQ (
*DUGRQV OHV FRQGLWLRQV DX[ OLPLWHV GX FDV SUpFpGHQW QRQ DPRUWL RQ D DORUV Q + & ωQ = π HW N Q FURvWFRPPH Q $SDUWLUG¶XQFHUWDLQUDQJOHVPRGHVSURSUHVVRQW / GRQFIRUWHPHQWDPRUWLV N Q >
*DUGRQV OHV FRQGLWLRQV DX[ OLPLWHV GX FDV SUpFpGHQW QRQ DPRUWL RQ D DORUV Q + & ωQ = π HW N Q FURvWFRPPH Q $SDUWLUG¶XQFHUWDLQUDQJOHVPRGHVSURSUHVVRQW / GRQFIRUWHPHQWDPRUWLV N Q >
±9,%5$7,216'(7256,21'¶8132875(35,60$7,48(
±9,%5$7,216'(7256,21'¶8132875(35,60$7,48(
±9LEUDWLRQVQDWXUHOOHVQRQDPRUWLHV
±9LEUDWLRQVQDWXUHOOHVQRQDPRUWLHV
/H UHSqUH {R [\]} HVW JDOLOpHQ R[ GpVLJQH O¶D[H GH WRUVLRQ GH OD SRXWUH *- VD ULJLGLWp GH WRUVLRQ,G[OHPRPHQWG¶LQHUWLHSDUUDSSRUWjO¶D[HGHWRUVLRQG¶XQHWUDQFKHG¶pSDLVVHXUG[
/H UHSqUH {R [\]} HVW JDOLOpHQ R[ GpVLJQH O¶D[H GH WRUVLRQ GH OD SRXWUH *- VD ULJLGLWp GH WRUVLRQ,G[OHPRPHQWG¶LQHUWLHSDUUDSSRUWjO¶D[HGHWRUVLRQG¶XQHWUDQFKHG¶pSDLVVHXUG[
)LJXUH
)LJXUH
/HPRXYHPHQWGHODVHFWLRQGURLWHFRXUDQWH6G¶DEVFLVVH[HVWXQHURWDWLRQG¶DQJOH θ [ W W
/HPRXYHPHQWGHODVHFWLRQGURLWHFRXUDQWH6G¶DEVFLVVH[HVWXQHURWDWLRQG¶DQJOH θ [ W
DXWRXU GH O¶D[H GH WRUVLRQ [′[ 0 [ W GpVLJQDQW OH PRPHQW GH WRUVLRQ VXU 6 O¶pTXLOLEUH GHV PRPHQWV HW OD ORL GH FRPSRUWHPHQW V¶pFULYHQW SRXU XQH WUDQFKH pOpPHQWDLUH 6 − 6′ G¶pSDLVVHXUG[ ⎧ ∂ 0W ∂ θ W W G[ = , G[ ⎪−0 +0 + ∂[ ⎪ ∂W ⎨ ∂ θ ⎪ 0 W = *⎪⎩ ∂[
DXWRXU GH O¶D[H GH WRUVLRQ [′[ 0 W [ W GpVLJQDQW OH PRPHQW GH WRUVLRQ VXU 6 O¶pTXLOLEUH GHV PRPHQWV HW OD ORL GH FRPSRUWHPHQW V¶pFULYHQW SRXU XQH WUDQFKH pOpPHQWDLUH 6 − 6′ G¶pSDLVVHXUG[ ⎧ ∂ 0W ∂ θ W W G[ = , G[ ⎪−0 +0 + ∂[ ⎪ ∂W ⎨ ∂ θ ⎪ 0 W = *⎪⎩ ∂[
(OLPLQDQW 0 W HQWUHOHVGHX[RQREWLHQWO¶pTXDWLRQGHPRXYHPHQW
(OLPLQDQW 0 W HQWUHOHVGHX[RQREWLHQWO¶pTXDWLRQGHPRXYHPHQW
*∂ θ ∂ θ = DYHF & = , ∂[ & ∂W
*∂ θ ∂ θ = DYHF & = , ∂[ & ∂W
- 180 -
- 180 -
2QUHPDUTXHTXHO¶DPRUWLVVHPHQWFULWLTXHHWO¶DPRUWLVVHPHQWUpGXLWVRQWIRQFWLRQGXUDQJQ GHO¶KDUPRQLTXHFRQVLGpUpSXLVTXHO¶RQD
2QUHPDUTXHTXHO¶DPRUWLVVHPHQWFULWLTXHHWO¶DPRUWLVVHPHQWUpGXLWVRQWIRQFWLRQGXUDQJQ GHO¶KDUPRQLTXHFRQVLGpUpSXLVTXHO¶RQD
(&′&5 )Q =
( HW N Q = ρ ωQ
(′ ωQ (
(&′&5 )Q =
( HW N Q = ρ ωQ
(′ ωQ (
*DUGRQV OHV FRQGLWLRQV DX[ OLPLWHV GX FDV SUpFpGHQW QRQ DPRUWL RQ D DORUV Q + & ωQ = π HW N Q FURvWFRPPH Q $SDUWLUG¶XQFHUWDLQUDQJOHVPRGHVSURSUHVVRQW / GRQFIRUWHPHQWDPRUWLV N Q >
*DUGRQV OHV FRQGLWLRQV DX[ OLPLWHV GX FDV SUpFpGHQW QRQ DPRUWL RQ D DORUV Q + & ωQ = π HW N Q FURvWFRPPH Q $SDUWLUG¶XQFHUWDLQUDQJOHVPRGHVSURSUHVVRQW / GRQFIRUWHPHQWDPRUWLV N Q >
±9,%5$7,216'(7256,21'¶8132875(35,60$7,48(
±9,%5$7,216'(7256,21'¶8132875(35,60$7,48(
±9LEUDWLRQVQDWXUHOOHVQRQDPRUWLHV
±9LEUDWLRQVQDWXUHOOHVQRQDPRUWLHV
/H UHSqUH {R [\]} HVW JDOLOpHQ R[ GpVLJQH O¶D[H GH WRUVLRQ GH OD SRXWUH *- VD ULJLGLWp GH WRUVLRQ,G[OHPRPHQWG¶LQHUWLHSDUUDSSRUWjO¶D[HGHWRUVLRQG¶XQHWUDQFKHG¶pSDLVVHXUG[
/H UHSqUH {R [\]} HVW JDOLOpHQ R[ GpVLJQH O¶D[H GH WRUVLRQ GH OD SRXWUH *- VD ULJLGLWp GH WRUVLRQ,G[OHPRPHQWG¶LQHUWLHSDUUDSSRUWjO¶D[HGHWRUVLRQG¶XQHWUDQFKHG¶pSDLVVHXUG[
)LJXUH
)LJXUH
/HPRXYHPHQWGHODVHFWLRQGURLWHFRXUDQWH6G¶DEVFLVVH[HVWXQHURWDWLRQG¶DQJOH θ [ W W
/HPRXYHPHQWGHODVHFWLRQGURLWHFRXUDQWH6G¶DEVFLVVH[HVWXQHURWDWLRQG¶DQJOH θ [ W
DXWRXU GH O¶D[H GH WRUVLRQ [′[ 0 [ W GpVLJQDQW OH PRPHQW GH WRUVLRQ VXU 6 O¶pTXLOLEUH GHV PRPHQWV HW OD ORL GH FRPSRUWHPHQW V¶pFULYHQW SRXU XQH WUDQFKH pOpPHQWDLUH 6 − 6′ G¶pSDLVVHXUG[ ⎧ ∂ 0W ∂ θ W W G[ = , G[ ⎪−0 +0 + ∂[ ⎪ ∂W ⎨ ⎪ 0 W = *- ∂ θ ⎪⎩ ∂[
DXWRXU GH O¶D[H GH WRUVLRQ [′[ 0 W [ W GpVLJQDQW OH PRPHQW GH WRUVLRQ VXU 6 O¶pTXLOLEUH GHV PRPHQWV HW OD ORL GH FRPSRUWHPHQW V¶pFULYHQW SRXU XQH WUDQFKH pOpPHQWDLUH 6 − 6′ G¶pSDLVVHXUG[ ⎧ ∂ 0W ∂ θ W W G[ = , G[ ⎪−0 +0 + ∂[ ⎪ ∂W ⎨ ⎪ 0 W = *- ∂ θ ⎪⎩ ∂[
(OLPLQDQW 0 W HQWUHOHVGHX[RQREWLHQWO¶pTXDWLRQGHPRXYHPHQW
(OLPLQDQW 0 W HQWUHOHVGHX[RQREWLHQWO¶pTXDWLRQGHPRXYHPHQW
*∂ θ ∂ θ = DYHF & = , ∂[ & ∂W
- 180 -
*∂ θ ∂ θ = DYHF & = , ∂[ & ∂W
- 180 -
&HWWH pTXDWLRQ GH G¶$OHPEHUW HVW IRUPHOOHPHQW LGHQWLTXH j O¶pTXDWLRQ GX SDUDJUDSKH SUpFpGHQW (Q SRVDQW θ [ W = I [ ⋅ J W RQ REWLHQW DYHF OHV FRQGLWLRQV DX[ OLPLWHV GH OD ILJXUH θ = SRXU [ = HW [ = / OLDLVRQVJOLVVLqUHVDX[H[WUpPLWpVTXLHPSrFKHQWWRXWH URWDWLRQODLVVDQWOLEUHOHJDXFKLVVHPHQW ∞
θ [ W =
∑ Q =
&HWWH pTXDWLRQ GH G¶$OHPEHUW HVW IRUPHOOHPHQW LGHQWLTXH j O¶pTXDWLRQ GX SDUDJUDSKH SUpFpGHQW (Q SRVDQW θ [ W = I [ ⋅ J W RQ REWLHQW DYHF OHV FRQGLWLRQV DX[ OLPLWHV GH OD ILJXUH θ = SRXU [ = HW [ = / OLDLVRQVJOLVVLqUHVDX[H[WUpPLWpVTXLHPSrFKHQWWRXWH URWDWLRQODLVVDQWOLEUHOHJDXFKLVVHPHQW ∞
FW ⎞ FW [⎞ ⎛ ⎛ VLQ ⎜ Q π ⎟ ⋅ ⎜ $ Q FRV Q π + %Q VLQ Q π ⎟ /⎠ / /⎠ ⎝ ⎝
θ [ W =
∑ VLQ ⎛⎜⎝ Q π / ⎞⎟⎠ ⋅ ⎛⎜⎝ $ [
Q FRV
Qπ
Q =
/HVFRHIILFLHQWV $ Q HW %Q VHGpWHUPLQHQWjO¶DLGHGHVFRQGLWLRQVLQLWLDOHVGH&DXFK\
FW ⎞ FW + %Q VLQ Q π ⎟ /⎠ /
/HVFRHIILFLHQWV $ Q HW %Q VHGpWHUPLQHQWjO¶DLGHGHVFRQGLWLRQVLQLWLDOHVGH&DXFK\
/ ⎧ ⎪$ Q = ϕ [ ⋅ VLQ Q π [ ⋅ G[ ⎧ ⎪ / / ⎪ϕ [ = θ [ R ⎪ ⎪ DYHF ⎨ ⎨ ⎛ ∂θ⎞ / ⎪ ⎪ ψ [ = ⎜⎜ ⎟⎟ [ ⎪% Q = ⎪ ψ [ ⋅ VLQ Q π ⋅ G[ ⎝ ∂ W ⎠ W = ⎩ QπF / ⎪ ⎩
/ ⎧ ⎪$ Q = ϕ [ ⋅ VLQ Q π [ ⋅ G[ ⎧ ⎪ / / ⎪ϕ [ = θ [ R ⎪ ⎪ DYHF ⎨ ⎨ ⎛ ∂θ⎞ / ⎪ ⎪ ψ [ = ⎜⎜ ⎟⎟ [ ⎪% Q = ⎪ ψ [ ⋅ VLQ Q π ⋅ G[ ⎝ ∂ W ⎠ W = ⎩ QπF / ⎪ ⎩
6LSDUH[HPSOHRQDEDQGRQQHODSRXWUHjO¶LQVWDQW W = VDQVYLWHVVHLQLWLDOH ψ = DSUqV /⎞ ⎛/ ⎞ ⎛ DYRLULPSRVpHQVWDWLTXHXQHURWDWLRQ θ ⎜ R ⎟ = α jODVHFWLRQPpGLDQH ⎜ [ = ⎟ RQDOD ⎠ ⎝ ⎠ ⎝ IRQFWLRQ ϕ [ = θ [ R GRQQpHSDUODILJXUH
6LSDUH[HPSOHRQDEDQGRQQHODSRXWUHjO¶LQVWDQW W = VDQVYLWHVVHLQLWLDOH ψ = DSUqV /⎞ ⎛/ ⎞ ⎛ DYRLULPSRVpHQVWDWLTXHXQHURWDWLRQ θ ⎜ R ⎟ = α jODVHFWLRQPpGLDQH ⎜ [ = ⎟ RQDOD ⎠ ⎝ ⎠ ⎝ IRQFWLRQ ϕ [ = θ [ R GRQQpHSDUODILJXUH
∫
∫
∫
∫
)LJXUH
)LJXUH
2QHQGpGXLW
α α α $ = « $ = $ = $ = − $ = $ = π π π
HW %Q = ∀ Q G¶RODVROXWLRQ
2QHQGpGXLW $ =
HW %Q = ∀ Q G¶RODVROXWLRQ
α ⎛ [ π FW [ FW VLQ π ⋅ FRV − VLQ π ⋅ FRV π ⎜ / / / / π ⎝ [ FW [ FW ⎞ + VLQ π ⋅ FRV π − VLQ π ⋅ FRV π + !⎟ / / / / ⎠
α ⎛ [ π FW [ FW VLQ π ⋅ FRV − VLQ π ⋅ FRV π ⎜ / / / / π ⎝ [ FW [ FW ⎞ + VLQ π ⋅ FRV π − VLQ π ⋅ FRV π + !⎟ / / / / ⎠
θ [ W =
α α α $ = « $ = $ = $ = $ = − π π π
θ [ W =
- 181 -
- 181 -
&HWWH pTXDWLRQ GH G¶$OHPEHUW HVW IRUPHOOHPHQW LGHQWLTXH j O¶pTXDWLRQ GX SDUDJUDSKH SUpFpGHQW (Q SRVDQW θ [ W = I [ ⋅ J W RQ REWLHQW DYHF OHV FRQGLWLRQV DX[ OLPLWHV GH OD ILJXUH θ = SRXU [ = HW [ = / OLDLVRQVJOLVVLqUHVDX[H[WUpPLWpVTXLHPSrFKHQWWRXWH URWDWLRQODLVVDQWOLEUHOHJDXFKLVVHPHQW
&HWWH pTXDWLRQ GH G¶$OHPEHUW HVW IRUPHOOHPHQW LGHQWLTXH j O¶pTXDWLRQ GX SDUDJUDSKH SUpFpGHQW (Q SRVDQW θ [ W = I [ ⋅ J W RQ REWLHQW DYHF OHV FRQGLWLRQV DX[ OLPLWHV GH OD ILJXUH θ = SRXU [ = HW [ = / OLDLVRQVJOLVVLqUHVDX[H[WUpPLWpVTXLHPSrFKHQWWRXWH URWDWLRQODLVVDQWOLEUHOHJDXFKLVVHPHQW
∞
θ [ W =
∑ Q =
∞
FW ⎞ FW [⎞ ⎛ ⎛ VLQ ⎜ Q π ⎟ ⋅ ⎜ $ Q FRV Q π + %Q VLQ Q π ⎟ /⎠ / /⎠ ⎝ ⎝
θ [ W =
∑ VLQ ⎛⎜⎝ Q π / ⎞⎟⎠ ⋅ ⎛⎜⎝ $ [
Q FRV
Q =
/HVFRHIILFLHQWV $ Q HW %Q VHGpWHUPLQHQWjO¶DLGHGHVFRQGLWLRQVLQLWLDOHVGH&DXFK\
Qπ
FW ⎞ FW + %Q VLQ Q π ⎟ /⎠ /
/HVFRHIILFLHQWV $ Q HW %Q VHGpWHUPLQHQWjO¶DLGHGHVFRQGLWLRQVLQLWLDOHVGH&DXFK\
/ ⎧ ⎪$ Q = ϕ [ ⋅ VLQ Q π [ ⋅ G[ ⎧ ⎪ / / ⎪ϕ [ = θ [ R ⎪ ⎪ DYHF ⎨ ⎨ ⎛ ∂θ⎞ / ⎪ ⎪ ψ [ = ⎜⎜ ⎟⎟ [ ⎪% Q = ⎪ ψ [ ⋅ VLQ Q π ⋅ G[ ⎝ ∂ W ⎠ W = ⎩ Q F / π ⎪ ⎩
/ ⎧ ⎪$ Q = ϕ [ ⋅ VLQ Q π [ ⋅ G[ ⎧ ⎪ / / ⎪ϕ [ = θ [ R ⎪ ⎪ DYHF ⎨ ⎨ ⎛ ∂θ⎞ / ⎪ ⎪ ψ [ = ⎜⎜ ⎟⎟ [ ⎪% Q = ⎪ ψ [ ⋅ VLQ Q π ⋅ G[ ⎝ ∂ W ⎠ W = ⎩ Q F / π ⎪ ⎩
6LSDUH[HPSOHRQDEDQGRQQHODSRXWUHjO¶LQVWDQW W = VDQVYLWHVVHLQLWLDOH ψ = DSUqV /⎞ ⎛/ ⎞ ⎛ DYRLULPSRVpHQVWDWLTXHXQHURWDWLRQ θ ⎜ R ⎟ = α jODVHFWLRQPpGLDQH ⎜ [ = ⎟ RQDOD ⎠ ⎝ ⎠ ⎝ IRQFWLRQ ϕ [ = θ [ R GRQQpHSDUODILJXUH
6LSDUH[HPSOHRQDEDQGRQQHODSRXWUHjO¶LQVWDQW W = VDQVYLWHVVHLQLWLDOH ψ = DSUqV /⎞ ⎛/ ⎞ ⎛ DYRLULPSRVpHQVWDWLTXHXQHURWDWLRQ θ ⎜ R ⎟ = α jODVHFWLRQPpGLDQH ⎜ [ = ⎟ RQDOD ⎠ ⎝ ⎠ ⎝ IRQFWLRQ ϕ [ = θ [ R GRQQpHSDUODILJXUH
∫
∫
∫
∫
)LJXUH
2QHQGpGXLW
α α α $ = « $ = $ = $ = − $ = $ = π π π
HW %Q = ∀ Q G¶RODVROXWLRQ
)LJXUH
2QHQGpGXLW $ =
HW %Q = ∀ Q G¶RODVROXWLRQ
α ⎛ [ π FW [ FW − VLQ π ⋅ FRV π ⎜ VLQ π ⋅ FRV / / / / π ⎝ [ FW [ FW ⎞ + VLQ π ⋅ FRV π − VLQ π ⋅ FRV π + !⎟ / / / / ⎠
θ [ W =
α α α $ = « $ = $ = $ = $ = − π π π
- 181 -
α ⎛ [ π FW [ FW − VLQ π ⋅ FRV π ⎜ VLQ π ⋅ FRV / / / / π ⎝ [ FW [ FW ⎞ + VLQ π ⋅ FRV π − VLQ π ⋅ FRV π + !⎟ / / / / ⎠
θ [ W =
- 181 -
9LEUDWLRQVQDWXUHOOHVDPRUWLHV
9LEUDWLRQVQDWXUHOOHVDPRUWLHV
'¶DSUqVODIRUPXOH GXFKDSLWUHSUpFpGHQWODORLGXFRPSRUWHPHQWYLVFRpODVWLTXHV¶pFULW LFL
'¶DSUqVODIRUPXOH GXFKDSLWUHSUpFpGHQWODORLGXFRPSRUWHPHQWYLVFRpODVWLTXHV¶pFULW LFL
0W = * - ⋅
∂θ ∂ + *′ - ⋅ ∂[ ∂W
⎛ ∂θ ⎞ ⎜⎜ ⎟⎟ ⎝∂[ ⎠
0W = * - ⋅
HWO¶pTXDWLRQ GXPRXYHPHQWGHYLHQW *-⋅
⎛ &′ N = ⎜⎜ ⎝ &′&5
∂ θ ∂ + *′ - ⋅ ∂W ∂[
⎛ ∂ θ ⎞ ⎟=,∂ θ ⎜ ⎜ ⎟ ∂ W ⎝∂[ ⎠
**′ &′ = &′&5 = ⋅ & DPRUWLVVHPHQW FULWLTXH , , ω
∞
I Q [ ⋅ J Q W DYHF I Q [ = VLQ
Q =
(Q SRVDQW θ = I [ ⋅ J W F =
⎛ &′ N = ⎜⎜ ⎝ &′&5
/DVXLWH {ωQ }GHVSXOVDWLRQVSURSUHVQRQDPRUWLHVHVWGRQQpHSDUOHVFRQGLWLRQVDX[OLPLWHV
∑
*-⋅
∂ θ ∂ + *′ - ⋅ ∂W ∂[
⎛ ∂ θ ⎞ ⎟=,∂ θ ⎜ ⎜ ⎟ ∂ W ⎝∂[ ⎠
&HWWHGHUQLqUHHVWIRUPHOOHPHQWLGHQWLTXHj
⎞ ⎟⎟ DPRUWLVVHPHQWUpGXLW RQREWLHQWODVROXWLRQ θ [ W ⎠
⎛&⎞ LFL ωQ = Q π ⎜ ⎟ HW θ [ W = ⎝/⎠
⎛ ∂θ ⎞ ⎜⎜ ⎟⎟ ⎝∂[ ⎠
HWO¶pTXDWLRQ GXPRXYHPHQWGHYLHQW
&HWWHGHUQLqUHHVWIRUPHOOHPHQWLGHQWLTXHj (Q SRVDQW θ = I [ ⋅ J W F =
∂θ ∂ + *′ - ⋅ ∂[ ∂W
Q π[ /
**′ &′ = &′&5 = ⋅ & DPRUWLVVHPHQW FULWLTXH , , ω
⎞ ⎟⎟ DPRUWLVVHPHQWUpGXLW RQREWLHQWODVROXWLRQ θ [ W ⎠
/DVXLWH {ωQ }GHVSXOVDWLRQVSURSUHVQRQDPRUWLHVHVWGRQQpHSDUOHVFRQGLWLRQVDX[OLPLWHV ⎛&⎞ LFL ωQ = Q π ⎜ ⎟ HW θ [ W = ⎝/⎠
∞
∑ I [ ⋅ J W DYHF I [ = VLQ Q
Q =
3RXU J Q W WURLVFDVVRQWjGLVWLQJXHU
3RXU J Q W WURLVFDVVRQWjGLVWLQJXHU
$PRUWLVVHPHQWIRUW N Q >
$PRUWLVVHPHQWIRUW N Q >
J Q W = H − N Q ωQ W ($ Q FK UQ W + %Q VKUQ W )DYHF UQ = ωQ N Q −
Q
Q
Q π[ /
J Q W = H − N Q ωQ W ($ Q FK UQ W + %Q VKUQ W )DYHF UQ = ωQ N Q −
$PRUWLVVHPHQWFULWLTXH N Q =
$PRUWLVVHPHQWFULWLTXH N Q =
J Q W = H −ωQ W ($ Q + %Q W )
J Q W = H −ωQ W ($ Q + %Q W )
$PRUWLVVHPHQWIDLEOH N Q <
$PRUWLVVHPHQWIDLEOH N Q <
J Q W = H − N Q ωQ W ($ Q FRV Ω Q W + %Q VLQ Ω Q W )DYHF Ω Q = ωQ − N Q
J Q W = H − N Q ωQ W ($ Q FRV Ω Q W + %Q VLQ Ω Q W )DYHF Ω Q = ωQ − N Q
- 182 -
- 182 -
9LEUDWLRQVQDWXUHOOHVDPRUWLHV
9LEUDWLRQVQDWXUHOOHVDPRUWLHV
'¶DSUqVODIRUPXOH GXFKDSLWUHSUpFpGHQWODORLGXFRPSRUWHPHQWYLVFRpODVWLTXHV¶pFULW LFL
'¶DSUqVODIRUPXOH GXFKDSLWUHSUpFpGHQWODORLGXFRPSRUWHPHQWYLVFRpODVWLTXHV¶pFULW LFL
0W = * - ⋅
∂θ ∂ + *′ - ⋅ ∂[ ∂W
⎛ ∂θ ⎞ ⎜⎜ ⎟⎟ ⎝∂[ ⎠
0W = * - ⋅
HWO¶pTXDWLRQ GXPRXYHPHQWGHYLHQW *-⋅
⎛ &′ N = ⎜⎜ ⎝ &′&5
∂ θ ∂ + *′ - ⋅ ∂ W ∂[
⎛ ∂ θ ⎞ ⎟=,∂ θ ⎜ ⎟ ⎜ ∂ W ⎝∂[ ⎠
**′ &′ = &′&5 = ⋅ & DPRUWLVVHPHQW FULWLTXH , , ω
/DVXLWH {ωQ }GHVSXOVDWLRQVSURSUHVQRQDPRUWLHVHVWGRQQpHSDUOHVFRQGLWLRQVDX[OLPLWHV ∞
∑
I Q [ ⋅ J Q W DYHF I Q [ = VLQ
Q =
*-⋅
∂ θ ∂ + *′ - ⋅ ∂ W ∂[
⎛ ∂ θ ⎞ ⎟=,∂ θ ⎜ ⎟ ⎜ ∂ W ⎝∂[ ⎠
&HWWHGHUQLqUHHVWIRUPHOOHPHQWLGHQWLTXHj
⎞ ⎟⎟ DPRUWLVVHPHQWUpGXLW RQREWLHQWODVROXWLRQ θ [ W ⎠
⎛&⎞ LFL ωQ = Q π ⎜ ⎟ HW θ [ W = ⎝/⎠
⎛ ∂θ ⎞ ⎜⎜ ⎟⎟ ⎝∂[ ⎠
HWO¶pTXDWLRQ GXPRXYHPHQWGHYLHQW
&HWWHGHUQLqUHHVWIRUPHOOHPHQWLGHQWLTXHj (Q SRVDQW θ = I [ ⋅ J W F =
∂θ ∂ + *′ - ⋅ ∂[ ∂W
Q π[ /
(Q SRVDQW θ = I [ ⋅ J W F =
⎛ &′ N = ⎜⎜ ⎝ &′&5
**′ &′ = &′&5 = ⋅ & DPRUWLVVHPHQW FULWLTXH , , ω
⎞ ⎟⎟ DPRUWLVVHPHQWUpGXLW RQREWLHQWODVROXWLRQ θ [ W ⎠
/DVXLWH {ωQ }GHVSXOVDWLRQVSURSUHVQRQDPRUWLHVHVWGRQQpHSDUOHVFRQGLWLRQVDX[OLPLWHV ⎛&⎞ LFL ωQ = Q π ⎜ ⎟ HW θ [ W = ⎝/⎠
∞
∑ I [ ⋅ J W DYHF I [ = VLQ Q
Q =
3RXU J Q W WURLVFDVVRQWjGLVWLQJXHU
3RXU J Q W WURLVFDVVRQWjGLVWLQJXHU
$PRUWLVVHPHQWIRUW N Q >
$PRUWLVVHPHQWIRUW N Q >
J Q W = H − N Q ωQ W ($ Q FK UQ W + %Q VKUQ W )DYHF UQ = ωQ N Q − $PRUWLVVHPHQWFULWLTXH N Q =
Q
Q
Q π[ /
J Q W = H − N Q ωQ W ($ Q FK UQ W + %Q VKUQ W )DYHF UQ = ωQ N Q − $PRUWLVVHPHQWFULWLTXH N Q =
J Q W = H −ωQ W ($ Q + %Q W ) $PRUWLVVHPHQWIDLEOH N Q <
J Q W = H −ωQ W ($ Q + %Q W ) $PRUWLVVHPHQWIDLEOH N Q <
J Q W = H − N Q ωQ W ($ Q FRV Ω Q W + %Q VLQ Ω Q W )DYHF Ω Q = ωQ − N Q
J Q W = H − N Q ωQ W ($ Q FRV Ω Q W + %Q VLQ Ω Q W )DYHF Ω Q = ωQ − N Q
- 182 -
- 182 -
±9,%5$7,216'()/(;,21'¶81(32875(35,60$7,48(
±9,%5$7,216'()/(;,21'¶81(32875(35,60$7,48(
±9LEUDWLRQVQDWXUHOOHVQRQDPRUWLHV
±9LEUDWLRQVQDWXUHOOHVQRQDPRUWLHV
{R [\]}GpVLJQHOHUHSqUHJDOLOpHQOLpjODSRXWUHDYHFR[VXLYDQWODOLJQHPR\HQQH[R\ HW [R] VRQWSODQVSULQFLSDX[1RXVpWXGLRQVOHVYLEUDWLRQVSODQHVSDUDOOqOHPHQWDXSODQ[R\
{R [\]}GpVLJQHOHUHSqUHJDOLOpHQOLpjODSRXWUHDYHFR[VXLYDQWODOLJQHPR\HQQH[R\ HW [R] VRQWSODQVSULQFLSDX[1RXVpWXGLRQVOHVYLEUDWLRQVSODQHVSDUDOOqOHPHQWDXSODQ[R\
1RWDWLRQV Y [ W ∂Y ω= ∂[ (, = (, ] 7 = 7\ [ W
1RWDWLRQV Y [ W ∂Y ω= ∂[ (, = (, ] 7 = 7\ [ W
IOqFKHGHODVHFWLRQGURLWH6G¶DEVFLVVH[jO¶LQVWDQWW DQJOHGH6SDUUDSSRUWjR\ ULJLGLWpGHIOH[LRQGDQVOHSODQ[R\ HIIRUWWUDQFKDQW
0 = 0 ] [ W PRPHQWIOpFKLVVDQW ρ PDVVHYROXPLTXHGXPDWpULDX , = ,] PRPHQWTXDGUDWLTXHGHIOH[LRQ GH 6
)LJXUH
IOqFKHGHODVHFWLRQGURLWH6G¶DEVFLVVH[jO¶LQVWDQWW DQJOHGH6SDUUDSSRUWjR\ ULJLGLWpGHIOH[LRQGDQVOHSODQ[R\ HIIRUWWUDQFKDQW
0 = 0 ] [ W PRPHQWIOpFKLVVDQW ρ PDVVHYROXPLTXHGXPDWpULDX , = ,] PRPHQWTXDGUDWLTXHGHIOH[LRQ GH 6
)LJXUH
/HVpTXDWLRQVG¶pTXLOLEUHG¶XQHWUDQFKH 6 − 6′ G¶DEVFLVVH[G¶pSDLVVHXUG[V¶pFULYHQWSRXU OHVIRUFHVSDUDOOqOHVjR\HWOHVPRPHQWVDXWRXUGH*=UHVSHFWLYHPHQW
/HVpTXDWLRQVG¶pTXLOLEUHG¶XQHWUDQFKH 6 − 6′ G¶DEVFLVVH[G¶pSDLVVHXUG[V¶pFULYHQWSRXU OHVIRUFHVSDUDOOqOHVjR\HWOHVPRPHQWVDXWRXUGH*=UHVSHFWLYHPHQW
∂7 ∂ Y ∂0 ∂ ω] = ρ 6 HW 7 + =ρ, ∂[ ∂[ ∂W ∂ W
∂7 ∂ Y ∂0 ∂ ω] = ρ 6 HW 7 + =ρ, ∂[ ∂[ ∂W ∂ W
(Q QpJOLJHDQW OD IOqFKH GXH j O¶HIIRUW WUDQFKDQW FRPPH QRXV O¶DYRQV MXVWLILp DX WRPH ,, ∂ Y 0 ∂Y 2Q FKDSLWUH9RQDODORLGHFRPSRUWHPHQWHQIOH[LRQ = HWODUHODWLRQ ω] = (, ∂[ ∂[
(Q QpJOLJHDQW OD IOqFKH GXH j O¶HIIRUW WUDQFKDQW FRPPH QRXV O¶DYRQV MXVWLILp DX WRPH ,, ∂ Y 0 ∂Y 2Q FKDSLWUH9RQDODORLGHFRPSRUWHPHQWHQIOH[LRQ = HWODUHODWLRQ ω] = (, ∂[ ∂[
HQGpGXLWO¶pTXDWLRQGXPRXYHPHQW
HQGpGXLWO¶pTXDWLRQGXPRXYHPHQW
- 183 -
- 183 -
±9,%5$7,216'()/(;,21'¶81(32875(35,60$7,48(
±9,%5$7,216'()/(;,21'¶81(32875(35,60$7,48(
±9LEUDWLRQVQDWXUHOOHVQRQDPRUWLHV
±9LEUDWLRQVQDWXUHOOHVQRQDPRUWLHV
{R [\]}GpVLJQHOHUHSqUHJDOLOpHQOLpjODSRXWUHDYHFR[VXLYDQWODOLJQHPR\HQQH[R\ HW [R] VRQWSODQVSULQFLSDX[1RXVpWXGLRQVOHVYLEUDWLRQVSODQHVSDUDOOqOHPHQWDXSODQ[R\
{R [\]}GpVLJQHOHUHSqUHJDOLOpHQOLpjODSRXWUHDYHFR[VXLYDQWODOLJQHPR\HQQH[R\ HW [R] VRQWSODQVSULQFLSDX[1RXVpWXGLRQVOHVYLEUDWLRQVSODQHVSDUDOOqOHPHQWDXSODQ[R\
1RWDWLRQV Y [ W ∂Y ω= ∂[ (, = (, ] 7 = 7\ [ W
1RWDWLRQV Y [ W ∂Y ω= ∂[ (, = (, ] 7 = 7\ [ W
IOqFKHGHODVHFWLRQGURLWH6G¶DEVFLVVH[jO¶LQVWDQWW DQJOHGH6SDUUDSSRUWjR\ ULJLGLWpGHIOH[LRQGDQVOHSODQ[R\ HIIRUWWUDQFKDQW
0 = 0 ] [ W PRPHQWIOpFKLVVDQW ρ PDVVHYROXPLTXHGXPDWpULDX , = ,] PRPHQWTXDGUDWLTXHGHIOH[LRQ GH 6
)LJXUH
IOqFKHGHODVHFWLRQGURLWH6G¶DEVFLVVH[jO¶LQVWDQWW DQJOHGH6SDUUDSSRUWjR\ ULJLGLWpGHIOH[LRQGDQVOHSODQ[R\ HIIRUWWUDQFKDQW
0 = 0 ] [ W PRPHQWIOpFKLVVDQW ρ PDVVHYROXPLTXHGXPDWpULDX , = ,] PRPHQWTXDGUDWLTXHGHIOH[LRQ GH 6
)LJXUH
/HVpTXDWLRQVG¶pTXLOLEUHG¶XQHWUDQFKH 6 − 6′ G¶DEVFLVVH[G¶pSDLVVHXUG[V¶pFULYHQWSRXU OHVIRUFHVSDUDOOqOHVjR\HWOHVPRPHQWVDXWRXUGH*=UHVSHFWLYHPHQW
/HVpTXDWLRQVG¶pTXLOLEUHG¶XQHWUDQFKH 6 − 6′ G¶DEVFLVVH[G¶pSDLVVHXUG[V¶pFULYHQWSRXU OHVIRUFHVSDUDOOqOHVjR\HWOHVPRPHQWVDXWRXUGH*=UHVSHFWLYHPHQW
∂7 ∂ Y ∂0 ∂ ω] = ρ 6 HW 7 + =ρ, ∂[ ∂[ ∂W ∂ W
∂7 ∂ Y ∂0 ∂ ω] = ρ 6 HW 7 + =ρ, ∂[ ∂[ ∂W ∂ W
(Q QpJOLJHDQW OD IOqFKH GXH j O¶HIIRUW WUDQFKDQW FRPPH QRXV O¶DYRQV MXVWLILp DX WRPH ,, ∂ Y 0 ∂Y 2Q FKDSLWUH9RQDODORLGHFRPSRUWHPHQWHQIOH[LRQ = HWODUHODWLRQ ω] = (, ∂[ ∂[
(Q QpJOLJHDQW OD IOqFKH GXH j O¶HIIRUW WUDQFKDQW FRPPH QRXV O¶DYRQV MXVWLILp DX WRPH ,, ∂ Y 0 ∂Y 2Q FKDSLWUH9RQDODORLGHFRPSRUWHPHQWHQIOH[LRQ = HWODUHODWLRQ ω] = (, ∂[ ∂[
HQGpGXLWO¶pTXDWLRQGXPRXYHPHQW
HQGpGXLWO¶pTXDWLRQGXPRXYHPHQW
- 183 -
- 183 -
ρ6
∂ Y ∂ Y ∂ Y + (, =ρ, ∂W ∂[ ∂ [ ∂ W
ρ6
∂ Y ∂ Y ∂ Y + (, =ρ, ∂W ∂[ ∂ [ ∂ W
2QSHXWUpVRXGUHDQDO\WLTXHPHQWFHWWHpTXDWLRQ(QIDLWVDXISRXUOHVKDUPRQLTXHVGHUDQJ ⎛ ∂ ω] ⎞⎟ pOHYp OH FRXSOH LQHUWLHO ⎜ − ρ , G [ DSSOLTXp j OD WUDQFKH 6 − 6′ HW G j VRQ ⎜ ∂ W ⎠⎟ ⎝ ⎛ ∂0 ⎞ ⎟ G [ /¶pTXDWLRQ V¶pFULW DFFpOpUDWLRQDQJXODLUHHVWQpJOLJHDEOHGHYDQWOHFRXSOH ⎜⎜ 7 + ∂ [ ⎟⎠ ⎝
2QSHXWUpVRXGUHDQDO\WLTXHPHQWFHWWHpTXDWLRQ(QIDLWVDXISRXUOHVKDUPRQLTXHVGHUDQJ ⎛ ∂ ω] ⎞⎟ pOHYp OH FRXSOH LQHUWLHO ⎜ − ρ , G [ DSSOLTXp j OD WUDQFKH 6 − 6′ HW G j VRQ ⎜ ∂ W ⎠⎟ ⎝ ⎛ ∂0 ⎞ ⎟ G [ /¶pTXDWLRQ V¶pFULW DFFpOpUDWLRQDQJXODLUHHVWQpJOLJHDEOHGHYDQWOHFRXSOH ⎜⎜ 7 + ∂ [ ⎟⎠ ⎝
DORUV
DORUV
∂ Y ∂ Y ρ 6 + (, = ∂W ∂ [
1RXVODUpVRXGURQVGDQVFHFDVHQFKHUFKDQWGHVVROXWLRQVGHODIRUPH Y [ W = I [ ⋅ J W 2QGRLWDYRLU
ρ6
∂ Y ∂ Y + (, = ∂ W ∂ [
1RXVODUpVRXGURQVGDQVFHFDVHQFKHUFKDQWGHVVROXWLRQVGHODIRUPH Y [ W = I [ ⋅ J W 2QGRLWDYRLU
J (, I =− = −ω G¶R J ρ6 I
J (, I =− = −ω G¶R J ρ6 I
J W = $ FRV ωW + % VLQ ωW HW
J W = $ FRV ωW + % VLQ ωW HW
⎛ ρ6 ω ⎞ ⎛ ρ6 ω ⎞ I [ = α FRV ⎜ [ ⎟ + β VLQ ⎜ [⎟ ⎜ ⎟ ⎜ ⎟ (, (, ⎝ ⎠ ⎝ ⎠
⎛ ρ6 ω ⎞ ⎛ ρ6 ω ⎞ I [ = α FRV ⎜ [ ⎟ + β VLQ ⎜ [⎟ ⎜ ⎟ ⎜ ⎟ (, (, ⎝ ⎠ ⎝ ⎠
⎛ ρ6 ω ⎞ ⎛ ρ6 ω ⎞ + γ FK ⎜ [ ⎟ + δ VK ⎜ [⎟ ⎜ ⎟ ⎜ ⎟ (, (, ⎝ ⎠ ⎝ ⎠
⎛ ρ6 ω ⎞ ⎛ ρ6 ω ⎞ + γ FK ⎜ [ ⎟ + δ VK ⎜ [⎟ ⎜ ⎟ ⎜ ⎟ (, (, ⎝ ⎠ ⎝ ⎠
/DSRXWUHHVWVXSSRVpHVLPSOHPHQWDSSX\pHHQ2HW$FHTXLSHUPHWG¶pFULUHOHVFRQGLWLRQV DX[OLPLWHV ⎧ Y = SRXU [ = ⇒ I R = ⎪ ⎪⎪ Y = SRXU [ = / ⇒ I / = ∀W ⎨ ⎪ 0 = SRXU [ = ⇒ I ′′R = ⎪ ⎪⎩ 0 = SRXU [ = / ⇒ I ′′/ =
/DSRXWUHHVWVXSSRVpHVLPSOHPHQWDSSX\pHHQ2HW$FHTXLSHUPHWG¶pFULUHOHVFRQGLWLRQV DX[OLPLWHV ⎧ Y = SRXU [ = ⇒ I R = ⎪ ⎪⎪ Y = SRXU [ = / ⇒ I / = ∀W ⎨ ⎪ 0 = SRXU [ = ⇒ I ′′R = ⎪ ⎪⎩ 0 = SRXU [ = / ⇒ I ′′/ =
⎛ ρ6 ω ⎞ 2QHQWLUH α = γ = δ = ≠ β HW VLQ ⎜ /⎟ = ⎜ ⎟ (, ⎝ ⎠
⎛ ρ6 ω ⎞ 2QHQWLUH α = γ = δ = ≠ β HW VLQ ⎜ /⎟ = ⎜ ⎟ (, ⎝ ⎠
/DSXOVDWLRQ ω HVWGRQFO¶XQGHVQRPEUHVGHODVXLWH {ωQ }DYHF ωQ = Q
π (, ⋅ ρ6 /
/DSXOVDWLRQ ω HVWGRQFO¶XQGHVQRPEUHVGHODVXLWH {ωQ }DYHF ωQ = Q
- 184 -
ρ6
π (, ⋅ ρ6 /
- 184 -
∂ Y ∂ Y ∂ Y + (, =ρ, ∂W ∂[ ∂ [ ∂ W
ρ6
∂ Y ∂ Y ∂ Y + (, =ρ, ∂W ∂[ ∂ [ ∂ W
2QSHXWUpVRXGUHDQDO\WLTXHPHQWFHWWHpTXDWLRQ(QIDLWVDXISRXUOHVKDUPRQLTXHVGHUDQJ ⎛ ∂ ω] ⎞⎟ pOHYp OH FRXSOH LQHUWLHO ⎜ − ρ , G [ DSSOLTXp j OD WUDQFKH 6 − 6′ HW G j VRQ ⎜ ∂ W ⎠⎟ ⎝ ⎛ ∂0 ⎞ ⎟ G [ /¶pTXDWLRQ V¶pFULW DFFpOpUDWLRQDQJXODLUHHVWQpJOLJHDEOHGHYDQWOHFRXSOH ⎜⎜ 7 + ∂ [ ⎟⎠ ⎝
2QSHXWUpVRXGUHDQDO\WLTXHPHQWFHWWHpTXDWLRQ(QIDLWVDXISRXUOHVKDUPRQLTXHVGHUDQJ ⎛ ∂ ω] ⎞⎟ pOHYp OH FRXSOH LQHUWLHO ⎜ − ρ , G [ DSSOLTXp j OD WUDQFKH 6 − 6′ HW G j VRQ ⎜ ∂ W ⎠⎟ ⎝ ⎛ ∂0 ⎞ ⎟ G [ /¶pTXDWLRQ V¶pFULW DFFpOpUDWLRQDQJXODLUHHVWQpJOLJHDEOHGHYDQWOHFRXSOH ⎜⎜ 7 + ∂ [ ⎟⎠ ⎝
DORUV
DORUV
ρ6
∂ Y ∂ Y + (, = ∂W ∂ [
1RXVODUpVRXGURQVGDQVFHFDVHQFKHUFKDQWGHVVROXWLRQVGHODIRUPH Y [ W = I [ ⋅ J W 2QGRLWDYRLU
ρ6
∂ Y ∂ Y + (, = ∂ W ∂ [
1RXVODUpVRXGURQVGDQVFHFDVHQFKHUFKDQWGHVVROXWLRQVGHODIRUPH Y [ W = I [ ⋅ J W 2QGRLWDYRLU
J (, I =− = −ω G¶R J ρ6 I
J (, I =− = −ω G¶R J ρ6 I
J W = $ FRV ωW + % VLQ ωW HW
J W = $ FRV ωW + % VLQ ωW HW
⎛ ρ6 ω ⎞ ⎛ ρ6 ω ⎞ I [ = α FRV ⎜ [ ⎟ + β VLQ ⎜ [⎟ ⎜ ⎟ ⎜ ⎟ (, (, ⎝ ⎠ ⎝ ⎠
⎛ ρ6 ω ⎞ ⎛ ρ6 ω ⎞ I [ = α FRV ⎜ [ ⎟ + β VLQ ⎜ [⎟ ⎜ ⎟ ⎜ ⎟ (, (, ⎝ ⎠ ⎝ ⎠
⎛ ρ6 ω ⎞ ⎛ ρ6 ω ⎞ + γ FK ⎜ [ ⎟ + δ VK ⎜ [⎟ ⎜ ⎟ ⎜ ⎟ (, (, ⎝ ⎠ ⎝ ⎠
⎛ ρ6 ω ⎞ ⎛ ρ6 ω ⎞ + γ FK ⎜ [ ⎟ + δ VK ⎜ [⎟ ⎜ ⎟ ⎜ ⎟ (, (, ⎝ ⎠ ⎝ ⎠
/DSRXWUHHVWVXSSRVpHVLPSOHPHQWDSSX\pHHQ2HW$FHTXLSHUPHWG¶pFULUHOHVFRQGLWLRQV DX[OLPLWHV ⎧ Y = SRXU [ = ⇒ I R = ⎪ ⎪⎪ Y = SRXU [ = / ⇒ I / = ∀W ⎨ ⎪ 0 = SRXU [ = ⇒ I ′′R = ⎪ ⎩⎪ 0 = SRXU [ = / ⇒ I ′′/ =
/DSRXWUHHVWVXSSRVpHVLPSOHPHQWDSSX\pHHQ2HW$FHTXLSHUPHWG¶pFULUHOHVFRQGLWLRQV DX[OLPLWHV ⎧ Y = SRXU [ = ⇒ I R = ⎪ ⎪⎪ Y = SRXU [ = / ⇒ I / = ∀W ⎨ ⎪ 0 = SRXU [ = ⇒ I ′′R = ⎪ ⎩⎪ 0 = SRXU [ = / ⇒ I ′′/ =
⎛ ρ6 ω ⎞ 2QHQWLUH α = γ = δ = ≠ β HW VLQ ⎜ /⎟ = ⎜ ⎟ (, ⎝ ⎠
⎛ ρ6 ω ⎞ 2QHQWLUH α = γ = δ = ≠ β HW VLQ ⎜ /⎟ = ⎜ ⎟ (, ⎝ ⎠
/DSXOVDWLRQ ω HVWGRQFO¶XQGHVQRPEUHVGHODVXLWH {ωQ }DYHF ωQ = Q
- 184 -
π (, ⋅ ρ 6 /
/DSXOVDWLRQ ω HVWGRQFO¶XQGHVQRPEUHVGHODVXLWH {ωQ }DYHF ωQ = Q
- 184 -
π (, ⋅ ρ 6 /
2QSHXWDORUVSUHQGUH β = HWpFULUHODVROXWLRQKDUPRQLTXHGHUDQJQ Y Q [ W = VLQ Q π
2QSHXWDORUVSUHQGUH β = HWpFULUHODVROXWLRQKDUPRQLTXHGHUDQJQ
[ ⋅ $ Q FRV ωQ W + %Q VLQ ωQ W /
Y Q [ W = VLQ Q π
/DVROXWLRQJpQpUDOHV¶pFULW
[ ⋅ $ Q FRV ωQ W + %Q VLQ ωQ W /
/DVROXWLRQJpQpUDOHV¶pFULW ∞
Y [ W =
∑
∞
Y [ W =
Y Q [ W
Q =
∑ Y [ W Q
Q =
/HVFRQVWDQWHV $ Q HW %Q VHGpWHUPLQHQWDXPR\HQGHVFRQGLWLRQVLQLWLDOHVGH&DXFK\ F¶HVW
/HVFRQVWDQWHV $ Q HW %Q VHGpWHUPLQHQWDXPR\HQGHVFRQGLWLRQVLQLWLDOHVGH&DXFK\ F¶HVW
⎛∂Y⎞ ⎟⎟ 2QD jGLUHjSDUWLUGHVIRQFWLRQV ϕ [ = Y [ R HW ψ [ = ⎜⎜ ⎝ ∂ W ⎠ W =
⎛∂Y⎞ ⎟⎟ 2QD jGLUHjSDUWLUGHVIRQFWLRQV ϕ [ = Y [ R HW ψ [ = ⎜⎜ ⎝ ∂ W ⎠ W =
$Q =
/
/
∫
ϕ [ ⋅ VLQ
Q π[ ⋅ G[ HW %Q = / ωQ /
/
∫
ψ [ ⋅ VLQ
Q π[ ⋅ G[ /
$Q =
/
/
∫
ϕ [ ⋅ VLQ
Q π[ ⋅ G[ HW %Q = / ωQ /
/
∫ ψ [ ⋅ VLQ
Q π[ ⋅ G[ /
±9LEUDWLRQQDWXUHOOHDPRUWLH
±9LEUDWLRQQDWXUHOOHDPRUWLH
&RQVLGpURQV HQFRUH OD SRXWUH GH OD ILJXUH DYHF OHV PrPHV FRQGLWLRQV DX[ OLPLWHV (Q SUHQDQWHQFRPSWHXQDPRUWLVVHPHQWLQWHUQHYLVTXHX[ODORLGHFRPSRUWHPHQWHQIOH[LRQSHXW ∂ Y ∂ ⎛ ∂ Y ⎞ V¶pFULUH 0 = ( , ⋅ + (′ , ⋅ ⎜ ⎟ HWO¶pTXDWLRQGXPRXYHPHQW GHYLHQW ∂ W ⎜⎝ ∂ [ ⎠⎟ ∂[
&RQVLGpURQV HQFRUH OD SRXWUH GH OD ILJXUH DYHF OHV PrPHV FRQGLWLRQV DX[ OLPLWHV (Q SUHQDQWHQFRPSWHXQDPRUWLVVHPHQWLQWHUQHYLVTXHX[ODORLGHFRPSRUWHPHQWHQIOH[LRQSHXW ∂ Y ∂ ⎛ ∂ Y ⎞ V¶pFULUH 0 = ( , ⋅ + (′ , ⋅ ⎜ ⎟ HWO¶pTXDWLRQGXPRXYHPHQW GHYLHQW ∂ W ⎜⎝ ∂ [ ⎠⎟ ∂[
ρ6
∂ Y ∂ Y ∂ + + (′ , ⋅ (, ∂W ∂W ∂[
⎛ ∂ Y ⎞ ⎟ ⎜ ⎜ ∂ [ ⎟ ⎝ ⎠
$YHF Y [ W = I [ ⋅ J W RQD J (, I = −ω = (′ ρ6 I J + J (
−
2QDGRQFFRPPHGDQVOHFDVFRQVHUYDWLI
HW
J +
∂ Y ∂ Y ∂ + + (′ , ⋅ (, ∂W ∂W ∂[
⎛ ∂ Y ⎞ ⎟ ⎜ ⎜ ∂ [ ⎟ ⎝ ⎠
$YHF Y [ W = I [ ⋅ J W RQD −
ωQ = Q
ρ6
π /
J (, I = −ω = (′ ρ6 I J + J (
2QDGRQFFRPPHGDQVOHFDVFRQVHUYDWLI
π[ (, HW I Q [ = VLQ Q / ρ6
ωQ = Q
(′ ω ⋅ J + ω ⋅ J = RX J + Nω ⋅ J + ω ⋅ J = (
HW
J +
π /
π[ (, HW I Q [ = VLQ Q / ρ6
(′ ω ⋅ J + ω ⋅ J = RX J + Nω ⋅ J + ω ⋅ J = (
- 185 -
- 185 -
2QSHXWDORUVSUHQGUH β = HWpFULUHODVROXWLRQKDUPRQLTXHGHUDQJQ Y Q [ W = VLQ Q π
2QSHXWDORUVSUHQGUH β = HWpFULUHODVROXWLRQKDUPRQLTXHGHUDQJQ
[ ⋅ $ Q FRV ωQ W + %Q VLQ ωQ W /
Y Q [ W = VLQ Q π
/DVROXWLRQJpQpUDOHV¶pFULW
[ ⋅ $ Q FRV ωQ W + %Q VLQ ωQ W /
/DVROXWLRQJpQpUDOHV¶pFULW ∞
Y [ W =
∑
∞
Y [ W =
Y Q [ W
Q =
∑ Y [ W Q
Q =
/HVFRQVWDQWHV $ Q HW %Q VHGpWHUPLQHQWDXPR\HQGHVFRQGLWLRQVLQLWLDOHVGH&DXFK\ F¶HVW
/HVFRQVWDQWHV $ Q HW %Q VHGpWHUPLQHQWDXPR\HQGHVFRQGLWLRQVLQLWLDOHVGH&DXFK\ F¶HVW
⎛∂Y⎞ ⎟⎟ 2QD jGLUHjSDUWLUGHVIRQFWLRQV ϕ [ = Y [ R HW ψ [ = ⎜⎜ ⎝ ∂ W ⎠ W =
⎛∂Y⎞ ⎟⎟ 2QD jGLUHjSDUWLUGHVIRQFWLRQV ϕ [ = Y [ R HW ψ [ = ⎜⎜ ⎝ ∂ W ⎠ W =
$Q = /
/
∫
Q π[ ϕ [ ⋅ VLQ ⋅ G[ HW %Q = / ωQ /
/
∫
Q π[ ψ [ ⋅ VLQ ⋅ G[ /
$Q = /
/
∫
Q π[ ϕ [ ⋅ VLQ ⋅ G[ HW %Q = / ωQ /
/
∫ ψ [ ⋅ VLQ
Q π[ ⋅ G[ /
±9LEUDWLRQQDWXUHOOHDPRUWLH
±9LEUDWLRQQDWXUHOOHDPRUWLH
&RQVLGpURQV HQFRUH OD SRXWUH GH OD ILJXUH DYHF OHV PrPHV FRQGLWLRQV DX[ OLPLWHV (Q SUHQDQWHQFRPSWHXQDPRUWLVVHPHQWLQWHUQHYLVTXHX[ODORLGHFRPSRUWHPHQWHQIOH[LRQSHXW ∂ Y ∂ ⎛ ∂ Y ⎞ V¶pFULUH 0 = ( , ⋅ + (′ , ⋅ ⎜ ⎟ HWO¶pTXDWLRQGXPRXYHPHQW GHYLHQW ∂ W ⎜⎝ ∂ [ ⎠⎟ ∂[
&RQVLGpURQV HQFRUH OD SRXWUH GH OD ILJXUH DYHF OHV PrPHV FRQGLWLRQV DX[ OLPLWHV (Q SUHQDQWHQFRPSWHXQDPRUWLVVHPHQWLQWHUQHYLVTXHX[ODORLGHFRPSRUWHPHQWHQIOH[LRQSHXW ∂ Y ∂ ⎛ ∂ Y ⎞ V¶pFULUH 0 = ( , ⋅ + (′ , ⋅ ⎜ ⎟ HWO¶pTXDWLRQGXPRXYHPHQW GHYLHQW ∂ W ⎜⎝ ∂ [ ⎠⎟ ∂[
ρ6
∂ Y ∂ ∂ Y + (, + (′ , ⋅ ∂W ∂W ∂ [
⎛ ∂ Y ⎞ ⎟ ⎜ ⎜ ∂ [ ⎟ ⎝ ⎠
$YHF Y [ W = I [ ⋅ J W RQD
J (, I = −ω = (′ ρ6 I J + J (
2QDGRQFFRPPHGDQVOHFDVFRQVHUYDWLI
HW
J +
π /
ρ6
∂ Y ∂ ∂ Y + (, + (′ , ⋅ ∂W ∂W ∂ [
⎛ ∂ Y ⎞ ⎟ ⎜ ⎜ ∂ [ ⎟ ⎝ ⎠
$YHF Y [ W = I [ ⋅ J W RQD −
ωQ = Q
−
J (, I = −ω = (′ ρ6 I J + J (
2QDGRQFFRPPHGDQVOHFDVFRQVHUYDWLI
π[ (, HW I Q [ = VLQ Q / ρ6
(′ ω ⋅ J + ω ⋅ J = RX J + Nω ⋅ J + ω ⋅ J = (
- 185 -
ωQ = Q HW
J +
π /
π[ (, HW I Q [ = VLQ Q / ρ6
(′ ω ⋅ J + ω ⋅ J = RX J + Nω ⋅ J + ω ⋅ J = (
- 185 -
(′ ρ
3RVRQV
&′ =
&′&5 =
⎛ &′ N = ⎜⎜ ⎝ &′&5
&′ = FRHIILFLHQWG¶DPRUWLVVHPHQW
& FRHIILFLHQWG¶DPRUWLVVHPHQWFULWLTXH ω
&′ =
&′&5 =
⎛ &′ N = ⎜⎜ ⎝ &′&5
⎞ ⎟⎟ FRHIILFLHQWG¶DPRUWLVVHPHQWUpGXLW ⎠
(′ ρ
3RVRQV
&′ = FRHIILFLHQWG¶DPRUWLVVHPHQW
& FRHIILFLHQWG¶DPRUWLVVHPHQWFULWLTXH ω
⎞ ⎟⎟ FRHIILFLHQWG¶DPRUWLVVHPHQWUpGXLW ⎠
&RPPH SRXU OHV YLEUDWLRQV DPRUWLHV ORQJLWXGLQDOHV HW GH WRUVLRQ RQ GLVWLQJXH WURLV FDV VXLYDQWOHVYDOHXUVGHO¶DPRUWLVVHPHQWSRXUFKDTXHKDUPRQLTXH
&RPPH SRXU OHV YLEUDWLRQV DPRUWLHV ORQJLWXGLQDOHV HW GH WRUVLRQ RQ GLVWLQJXH WURLV FDV VXLYDQWOHVYDOHXUVGHO¶DPRUWLVVHPHQWSRXUFKDTXHKDUPRQLTXH
$PRUWLVVHPHQWIRUW N Q >
$PRUWLVVHPHQWIRUW N Q >
(QSRVDQW UQ = ωQ N Q − RQDOHVWURLVIRUPHVpTXLYDOHQWHV
(QSRVDQW UQ = ωQ N Q − RQDOHVWURLVIRUPHVpTXLYDOHQWHV
J Q W = H − N Q ωQ W ($ Q FK UQ W + %Q VK UQ W ) $PRUWLVVHPHQWFULWLTXH N Q =
J Q W = H
− ωQ W
($ Q + %Q W )
J Q W = H − N Q ωQ W ($ Q FK UQ W + %Q VK UQ W ) $PRUWLVVHPHQWFULWLTXH N Q =
J Q W = H −ωQ W ($ Q + %Q W )
$PRUWLVVHPHQWIDLEOH N Q <
$PRUWLVVHPHQWIDLEOH N Q <
(QSRVDQW Ω Q = ωQ − N Q RQD
(QSRVDQW Ω Q = ωQ − N Q RQD
J Q W = H − N Q ωQ W ($ Q FRV Ω Q W + %Q VLQ Ω Q W )
J Q W = H − N Q ωQ W ($ Q FRV Ω Q W + %Q VLQ Ω Q W )
5HPDUTXHVJpQpUDOHVQRXVYHQRQVG¶pWXGLHUOHVWURLVFDVSULQFLSDX[GHYLEUDWLRQVQDWXUHOOHV G¶XQHSRXWUHSULVPDWLTXHDYHFDPRUWLVVHPHQWLQWHUQHYLVTXHX['DQVOHVWURLVFDVODVROXWLRQ JpQpUDOHGHO¶pTXDWLRQGXPRXYHPHQWVHSUpVHQWHFRPPHODVRPPHG¶XQHVpULHGHODIRUPH [Σ I [ ⋅ J W ] GDQV ODTXHOOH FKDTXH WHUPH FRUUHVSRQG j XQ PRGH SURSUH GLW KDUPRQLTXH &KDFXQHGHVGHX[IRQFWLRQV I [ HW J W REpLWjXQHpTXDWLRQGLIIpUHQWLHOOH
5HPDUTXHVJpQpUDOHVQRXVYHQRQVG¶pWXGLHUOHVWURLVFDVSULQFLSDX[GHYLEUDWLRQVQDWXUHOOHV G¶XQHSRXWUHSULVPDWLTXHDYHFDPRUWLVVHPHQWLQWHUQHYLVTXHX['DQVOHVWURLVFDVODVROXWLRQ JpQpUDOHGHO¶pTXDWLRQGXPRXYHPHQWVHSUpVHQWHFRPPHODVRPPHG¶XQHVpULHGHODIRUPH [Σ I [ ⋅ J W ] GDQV ODTXHOOH FKDTXH WHUPH FRUUHVSRQG j XQ PRGH SURSUH GLW KDUPRQLTXH &KDFXQHGHVGHX[IRQFWLRQV I [ HW J W REpLWjXQHpTXDWLRQGLIIpUHQWLHOOH
/HV FRQGLWLRQV DX[ OLPLWHV HW GH OLDLVRQ SHUPHWWHQW GH GpWHUPLQHU HQ SUHPLHU OLHX OHV FRQVWDQWHV G¶LQWpJUDWLRQ ILJXUDQW GDQV O¶H[SUHVVLRQ GH I DLQVL TXH OD VXLWH GHV SXOVDWLRQV QDWXUHOOHVQRQDPRUWLHV {ωQ }
/HV FRQGLWLRQV DX[ OLPLWHV HW GH OLDLVRQ SHUPHWWHQW GH GpWHUPLQHU HQ SUHPLHU OLHX OHV FRQVWDQWHV G¶LQWpJUDWLRQ ILJXUDQW GDQV O¶H[SUHVVLRQ GH I DLQVL TXH OD VXLWH GHV SXOVDWLRQV QDWXUHOOHVQRQDPRUWLHV {ωQ }
/HV FRQGLWLRQV LQLWLDOHV RX FRQGLWLRQV GH &DXFK\ GH SRVLWLRQV HW YLWHVVHV SHUPHWWHQW GH GpWHUPLQHUHQVXLWHOHVGHX[FRQVWDQWHVG¶LQWpJUDWLRQ $ Q HW %Q RX D Q HW ϕQ ILJXUDQWGDQV J Q W
/HV FRQGLWLRQV LQLWLDOHV RX FRQGLWLRQV GH &DXFK\ GH SRVLWLRQV HW YLWHVVHV SHUPHWWHQW GH GpWHUPLQHUHQVXLWHOHVGHX[FRQVWDQWHVG¶LQWpJUDWLRQ $ Q HW %Q RX D Q HW ϕQ ILJXUDQWGDQV J Q W
6LO¶RQSUHQGHQFRPSWHO¶DPRUWLVVHPHQWLQWHUQHRQFRQVWDWHTXHO¶DPRUWLVVHPHQWUpGXLW N Q GXPRGHQQHVWXQHIRQFWLRQFURLVVDQWHGHQTXLGHYLHQWVXSpULHXUHjjSDUWLUG¶XQFHUWDLQ
6LO¶RQSUHQGHQFRPSWHO¶DPRUWLVVHPHQWLQWHUQHRQFRQVWDWHTXHO¶DPRUWLVVHPHQWUpGXLW N Q GXPRGHQQHVWXQHIRQFWLRQFURLVVDQWHGHQTXLGHYLHQWVXSpULHXUHjjSDUWLUG¶XQFHUWDLQ
- 186 -
- 186 -
(′ ρ
3RVRQV
&′ =
&′&5 =
⎛ &′ N = ⎜⎜ ⎝ &′&5
&′ = FRHIILFLHQWG¶DPRUWLVVHPHQW
& FRHIILFLHQWG¶DPRUWLVVHPHQWFULWLTXH ω
&′ =
&′&5 =
⎛ &′ N = ⎜⎜ ⎝ &′&5
⎞ ⎟⎟ FRHIILFLHQWG¶DPRUWLVVHPHQWUpGXLW ⎠
(′ ρ
3RVRQV
&′ = FRHIILFLHQWG¶DPRUWLVVHPHQW
& FRHIILFLHQWG¶DPRUWLVVHPHQWFULWLTXH ω
⎞ ⎟⎟ FRHIILFLHQWG¶DPRUWLVVHPHQWUpGXLW ⎠
&RPPH SRXU OHV YLEUDWLRQV DPRUWLHV ORQJLWXGLQDOHV HW GH WRUVLRQ RQ GLVWLQJXH WURLV FDV VXLYDQWOHVYDOHXUVGHO¶DPRUWLVVHPHQWSRXUFKDTXHKDUPRQLTXH
&RPPH SRXU OHV YLEUDWLRQV DPRUWLHV ORQJLWXGLQDOHV HW GH WRUVLRQ RQ GLVWLQJXH WURLV FDV VXLYDQWOHVYDOHXUVGHO¶DPRUWLVVHPHQWSRXUFKDTXHKDUPRQLTXH
$PRUWLVVHPHQWIRUW N Q >
$PRUWLVVHPHQWIRUW N Q >
(QSRVDQW UQ = ωQ N Q − RQDOHVWURLVIRUPHVpTXLYDOHQWHV
(QSRVDQW UQ = ωQ N Q − RQDOHVWURLVIRUPHVpTXLYDOHQWHV
J Q W = H − N Q ωQ W ($ Q FK UQ W + %Q VK UQ W ) $PRUWLVVHPHQWFULWLTXH N Q =
J Q W = H
− ωQ W
($ Q + %Q W )
J Q W = H − N Q ωQ W ($ Q FK UQ W + %Q VK UQ W ) $PRUWLVVHPHQWFULWLTXH N Q =
J Q W = H −ωQ W ($ Q + %Q W )
$PRUWLVVHPHQWIDLEOH N Q <
$PRUWLVVHPHQWIDLEOH N Q <
(QSRVDQW Ω Q = ωQ − N Q RQD
(QSRVDQW Ω Q = ωQ − N Q RQD
J Q W = H − N Q ωQ W ($ Q FRV Ω Q W + %Q VLQ Ω Q W )
J Q W = H − N Q ωQ W ($ Q FRV Ω Q W + %Q VLQ Ω Q W )
5HPDUTXHVJpQpUDOHVQRXVYHQRQVG¶pWXGLHUOHVWURLVFDVSULQFLSDX[GHYLEUDWLRQVQDWXUHOOHV G¶XQHSRXWUHSULVPDWLTXHDYHFDPRUWLVVHPHQWLQWHUQHYLVTXHX['DQVOHVWURLVFDVODVROXWLRQ JpQpUDOHGHO¶pTXDWLRQGXPRXYHPHQWVHSUpVHQWHFRPPHODVRPPHG¶XQHVpULHGHODIRUPH [Σ I [ ⋅ J W ] GDQV ODTXHOOH FKDTXH WHUPH FRUUHVSRQG j XQ PRGH SURSUH GLW KDUPRQLTXH &KDFXQHGHVGHX[IRQFWLRQV I [ HW J W REpLWjXQHpTXDWLRQGLIIpUHQWLHOOH
5HPDUTXHVJpQpUDOHVQRXVYHQRQVG¶pWXGLHUOHVWURLVFDVSULQFLSDX[GHYLEUDWLRQVQDWXUHOOHV G¶XQHSRXWUHSULVPDWLTXHDYHFDPRUWLVVHPHQWLQWHUQHYLVTXHX['DQVOHVWURLVFDVODVROXWLRQ JpQpUDOHGHO¶pTXDWLRQGXPRXYHPHQWVHSUpVHQWHFRPPHODVRPPHG¶XQHVpULHGHODIRUPH [Σ I [ ⋅ J W ] GDQV ODTXHOOH FKDTXH WHUPH FRUUHVSRQG j XQ PRGH SURSUH GLW KDUPRQLTXH &KDFXQHGHVGHX[IRQFWLRQV I [ HW J W REpLWjXQHpTXDWLRQGLIIpUHQWLHOOH
/HV FRQGLWLRQV DX[ OLPLWHV HW GH OLDLVRQ SHUPHWWHQW GH GpWHUPLQHU HQ SUHPLHU OLHX OHV FRQVWDQWHV G¶LQWpJUDWLRQ ILJXUDQW GDQV O¶H[SUHVVLRQ GH I DLQVL TXH OD VXLWH GHV SXOVDWLRQV QDWXUHOOHVQRQDPRUWLHV {ωQ }
/HV FRQGLWLRQV DX[ OLPLWHV HW GH OLDLVRQ SHUPHWWHQW GH GpWHUPLQHU HQ SUHPLHU OLHX OHV FRQVWDQWHV G¶LQWpJUDWLRQ ILJXUDQW GDQV O¶H[SUHVVLRQ GH I DLQVL TXH OD VXLWH GHV SXOVDWLRQV QDWXUHOOHVQRQDPRUWLHV {ωQ }
/HV FRQGLWLRQV LQLWLDOHV RX FRQGLWLRQV GH &DXFK\ GH SRVLWLRQV HW YLWHVVHV SHUPHWWHQW GH GpWHUPLQHUHQVXLWHOHVGHX[FRQVWDQWHVG¶LQWpJUDWLRQ $ Q HW %Q RX D Q HW ϕQ ILJXUDQWGDQV J Q W
/HV FRQGLWLRQV LQLWLDOHV RX FRQGLWLRQV GH &DXFK\ GH SRVLWLRQV HW YLWHVVHV SHUPHWWHQW GH GpWHUPLQHUHQVXLWHOHVGHX[FRQVWDQWHVG¶LQWpJUDWLRQ $ Q HW %Q RX D Q HW ϕQ ILJXUDQWGDQV J Q W
6LO¶RQSUHQGHQFRPSWHO¶DPRUWLVVHPHQWLQWHUQHRQFRQVWDWHTXHO¶DPRUWLVVHPHQWUpGXLW N Q GXPRGHQQHVWXQHIRQFWLRQFURLVVDQWHGHQTXLGHYLHQWVXSpULHXUHjjSDUWLUG¶XQFHUWDLQ
6LO¶RQSUHQGHQFRPSWHO¶DPRUWLVVHPHQWLQWHUQHRQFRQVWDWHTXHO¶DPRUWLVVHPHQWUpGXLW N Q GXPRGHQQHVWXQHIRQFWLRQFURLVVDQWHGHQTXLGHYLHQWVXSpULHXUHjjSDUWLUG¶XQFHUWDLQ
- 186 -
- 186 -
UDQJOHVPRGHVGHUDQJpOHYpVRQWGRQFIRUWHPHQWDPRUWLV1RXVQRWRQVpJDOHPHQWTXHOHV FRHIILFLHQWV G¶DPRUWLVVHPHQW LQWHUYLHQQHQW GDQV OHV H[SUHVVLRQV GH J Q W PDLV DEVROXPHQW SDVGDQVFHOOHVGH I Q [
UDQJOHVPRGHVGHUDQJpOHYpVRQWGRQFIRUWHPHQWDPRUWLV1RXVQRWRQVpJDOHPHQWTXHOHV FRHIILFLHQWV G¶DPRUWLVVHPHQW LQWHUYLHQQHQW GDQV OHV H[SUHVVLRQV GH J Q W PDLV DEVROXPHQW SDVGDQVFHOOHVGH I Q [
7RXV FHV UpVXOWDWV HQ SDUWLFXOLHU OH GpFRXSODJH GH OD IRQFWLRQ GH GpSODFHPHQW HQ I [ HW J W HW OD VWDWLRQQDULWp GHV RQGHV SURYLHQQHQW GX IDLW TXH OHV FRQGLWLRQV DX[ OLPLWHV HW GH OLDLVRQRQpWpSULVHVLQGpSHQGDQWHVGXWHPSVVWDWLRQQDLUHV HWTXHODVWUXFWXUHHVWOLEUHF¶HVWj GLUHQRQVRXPLVHjGHVIRUFHVH[FLWDWULFHV
7RXV FHV UpVXOWDWV HQ SDUWLFXOLHU OH GpFRXSODJH GH OD IRQFWLRQ GH GpSODFHPHQW HQ I [ HW J W HW OD VWDWLRQQDULWp GHV RQGHV SURYLHQQHQW GX IDLW TXH OHV FRQGLWLRQV DX[ OLPLWHV HW GH OLDLVRQRQpWpSULVHVLQGpSHQGDQWHVGXWHPSVVWDWLRQQDLUHV HWTXHODVWUXFWXUHHVWOLEUHF¶HVWj GLUHQRQVRXPLVHjGHVIRUFHVH[FLWDWULFHV
±9,%5$7,216'¶81(32875('()250(48(/&2148(
±9,%5$7,216'¶81(32875('()250(48(/&2148(
1RXVUHSUHQRQVOHVSULQFLSDX[UpVXOWDWVREWHQXVDXWRPH,,HQ6WDWLTXHGHV3RXWUHVSRXUOHV pWHQGUH j OD '\QDPLTXH QRWDPPHQW FHX[ TXL FRQFHUQHQW OD JpRPpWULH OHV YLVVHXUV OHV FRQWUDLQWHVOHVULJLGLWpV
1RXVUHSUHQRQVOHVSULQFLSDX[UpVXOWDWVREWHQXVDXWRPH,,HQ6WDWLTXHGHV3RXWUHVSRXUOHV pWHQGUH j OD '\QDPLTXH QRWDPPHQW FHX[ TXL FRQFHUQHQW OD JpRPpWULH OHV YLVVHXUV OHV FRQWUDLQWHVOHVULJLGLWpV
5DSSHORQVTXHGDQVODGpILQLWLRQG¶XQHSRXWUHRQVXSSRVH
5DSSHORQVTXHGDQVODGpILQLWLRQG¶XQHSRXWUHRQVXSSRVH
± TXHOHGLDPqWUHGHODVHFWLRQGURLWHFRXUDQWH6GHFHQWUH*HVWSHWLWGHYDQWODORQJXHXU/ GHODOLJQHPR\HQQHOHVUD\RQVGHFRXUEXUH5HWGHWRUVLRQ7GHFHWWHOLJQHHQ*
± TXHOHGLDPqWUHGHODVHFWLRQGURLWHFRXUDQWH6GHFHQWUH*HVWSHWLWGHYDQWODORQJXHXU/ GHODOLJQHPR\HQQHOHVUD\RQVGHFRXUEXUH5HWGHWRUVLRQ7GHFHWWHOLJQHHQ*
± TXHVLODVHFWLRQGURLWH6HVWpYROXWLYHVHVpYROXWLRQVWDLOOHIRUPHFDODJH VRQWFRQWLQXHV HWSURJUHVVLYHVORUVTXH*GpFULWODOLJQHPR\HQQH
± TXHVLODVHFWLRQGURLWH6HVWpYROXWLYHVHVpYROXWLRQVWDLOOHIRUPHFDODJH VRQWFRQWLQXHV HWSURJUHVVLYHVORUVTXH*GpFULWODOLJQHPR\HQQH
*UkFHjFHVK\SRWKqVHVRQSHXWFRQVLGpUHUFRPPHSULVPDWLTXHWRXWHWUDQFKHpOpPHQWDLUHGH SRXWUHVLWXpHHQWUHOHVVHFWLRQVGURLWHVYRLVLQHV6HW 6′ G¶DEVFLVVHVFXUYLOLJQHVVHW V + GV 2Q SRXUUDDLQVLFRQVLGpUHUTXHOHFHQWUHGHPDVVHG¶XQHWHOOHWUDQFKHLQILQLPHQWPLQFHVHWURXYH HQ*FHQWUHJpRPpWULTXHGH6DORUVTX¶HQWRXWHULJXHXULOVHWURXYHHQ *′ WHOTXH
*UkFHjFHVK\SRWKqVHVRQSHXWFRQVLGpUHUFRPPHSULVPDWLTXHWRXWHWUDQFKHpOpPHQWDLUHGH SRXWUHVLWXpHHQWUHOHVVHFWLRQVGURLWHVYRLVLQHV6HW 6′ G¶DEVFLVVHVFXUYLOLJQHVVHW V + GV 2Q SRXUUDDLQVLFRQVLGpUHUTXHOHFHQWUHGHPDVVHG¶XQHWHOOHWUDQFKHLQILQLPHQWPLQFHVHWURXYH HQ*FHQWUHJpRPpWULTXHGH6DORUVTX¶HQWRXWHULJXHXULOVHWURXYHHQ *′ WHOTXH
**′ = −
, \ VLQ ϕ , ] FRV ϕ -− . 56 56
±7UDQVODWLRQVURWDWLRQVGpIRUPDWLRQV
[
**′ = −
, \ VLQ ϕ , ] FRV ϕ -− . 56 56
±7UDQVODWLRQVURWDWLRQVGpIRUPDWLRQV
]
[
]
1RXV YRXORQV H[SOLFLWHU OD PDWULFH JUDG 3R3 GDQV OH UHSqUH {* ;<=} UHSqUH SULQFLSDO FHQWUDOGHODVHFWLRQ6
1RXV YRXORQV H[SOLFLWHU OD PDWULFH JUDG 3R3 GDQV OH UHSqUH {* ;<=} UHSqUH SULQFLSDO FHQWUDOGHODVHFWLRQ6
1RXV HQ GpGXLURQV HQVXLWH VD SDUWLH V\PpWULTXH OD PDWULFHGpIRUPDWLRQ E HW VD SDUWLH DQWLV\PpWULTXHODPDWULFHURWDWLRQ Ω
1RXV HQ GpGXLURQV HQVXLWH VD SDUWLH V\PpWULTXH OD PDWULFHGpIRUPDWLRQ E HW VD SDUWLH DQWLV\PpWULTXHODPDWULFHURWDWLRQ Ω
- 187 -
- 187 -
UDQJOHVPRGHVGHUDQJpOHYpVRQWGRQFIRUWHPHQWDPRUWLV1RXVQRWRQVpJDOHPHQWTXHOHV FRHIILFLHQWV G¶DPRUWLVVHPHQW LQWHUYLHQQHQW GDQV OHV H[SUHVVLRQV GH J Q W PDLV DEVROXPHQW SDVGDQVFHOOHVGH I Q [
UDQJOHVPRGHVGHUDQJpOHYpVRQWGRQFIRUWHPHQWDPRUWLV1RXVQRWRQVpJDOHPHQWTXHOHV FRHIILFLHQWV G¶DPRUWLVVHPHQW LQWHUYLHQQHQW GDQV OHV H[SUHVVLRQV GH J Q W PDLV DEVROXPHQW SDVGDQVFHOOHVGH I Q [
7RXV FHV UpVXOWDWV HQ SDUWLFXOLHU OH GpFRXSODJH GH OD IRQFWLRQ GH GpSODFHPHQW HQ I [ HW J W HW OD VWDWLRQQDULWp GHV RQGHV SURYLHQQHQW GX IDLW TXH OHV FRQGLWLRQV DX[ OLPLWHV HW GH OLDLVRQRQpWpSULVHVLQGpSHQGDQWHVGXWHPSVVWDWLRQQDLUHV HWTXHODVWUXFWXUHHVWOLEUHF¶HVWj GLUHQRQVRXPLVHjGHVIRUFHVH[FLWDWULFHV
7RXV FHV UpVXOWDWV HQ SDUWLFXOLHU OH GpFRXSODJH GH OD IRQFWLRQ GH GpSODFHPHQW HQ I [ HW J W HW OD VWDWLRQQDULWp GHV RQGHV SURYLHQQHQW GX IDLW TXH OHV FRQGLWLRQV DX[ OLPLWHV HW GH OLDLVRQRQpWpSULVHVLQGpSHQGDQWHVGXWHPSVVWDWLRQQDLUHV HWTXHODVWUXFWXUHHVWOLEUHF¶HVWj GLUHQRQVRXPLVHjGHVIRUFHVH[FLWDWULFHV
±9,%5$7,216'¶81(32875('()250(48(/&2148(
±9,%5$7,216'¶81(32875('()250(48(/&2148(
1RXVUHSUHQRQVOHVSULQFLSDX[UpVXOWDWVREWHQXVDXWRPH,,HQ6WDWLTXHGHV3RXWUHVSRXUOHV pWHQGUH j OD '\QDPLTXH QRWDPPHQW FHX[ TXL FRQFHUQHQW OD JpRPpWULH OHV YLVVHXUV OHV FRQWUDLQWHVOHVULJLGLWpV
1RXVUHSUHQRQVOHVSULQFLSDX[UpVXOWDWVREWHQXVDXWRPH,,HQ6WDWLTXHGHV3RXWUHVSRXUOHV pWHQGUH j OD '\QDPLTXH QRWDPPHQW FHX[ TXL FRQFHUQHQW OD JpRPpWULH OHV YLVVHXUV OHV FRQWUDLQWHVOHVULJLGLWpV
5DSSHORQVTXHGDQVODGpILQLWLRQG¶XQHSRXWUHRQVXSSRVH
5DSSHORQVTXHGDQVODGpILQLWLRQG¶XQHSRXWUHRQVXSSRVH
± TXHOHGLDPqWUHGHODVHFWLRQGURLWHFRXUDQWH6GHFHQWUH*HVWSHWLWGHYDQWODORQJXHXU/ GHODOLJQHPR\HQQHOHVUD\RQVGHFRXUEXUH5HWGHWRUVLRQ7GHFHWWHOLJQHHQ*
± TXHOHGLDPqWUHGHODVHFWLRQGURLWHFRXUDQWH6GHFHQWUH*HVWSHWLWGHYDQWODORQJXHXU/ GHODOLJQHPR\HQQHOHVUD\RQVGHFRXUEXUH5HWGHWRUVLRQ7GHFHWWHOLJQHHQ*
± TXHVLODVHFWLRQGURLWH6HVWpYROXWLYHVHVpYROXWLRQVWDLOOHIRUPHFDODJH VRQWFRQWLQXHV HWSURJUHVVLYHVORUVTXH*GpFULWODOLJQHPR\HQQH
± TXHVLODVHFWLRQGURLWH6HVWpYROXWLYHVHVpYROXWLRQVWDLOOHIRUPHFDODJH VRQWFRQWLQXHV HWSURJUHVVLYHVORUVTXH*GpFULWODOLJQHPR\HQQH
*UkFHjFHVK\SRWKqVHVRQSHXWFRQVLGpUHUFRPPHSULVPDWLTXHWRXWHWUDQFKHpOpPHQWDLUHGH SRXWUHVLWXpHHQWUHOHVVHFWLRQVGURLWHVYRLVLQHV6HW 6′ G¶DEVFLVVHVFXUYLOLJQHVVHW V + GV 2Q SRXUUDDLQVLFRQVLGpUHUTXHOHFHQWUHGHPDVVHG¶XQHWHOOHWUDQFKHLQILQLPHQWPLQFHVHWURXYH HQ*FHQWUHJpRPpWULTXHGH6DORUVTX¶HQWRXWHULJXHXULOVHWURXYHHQ *′ WHOTXH
*UkFHjFHVK\SRWKqVHVRQSHXWFRQVLGpUHUFRPPHSULVPDWLTXHWRXWHWUDQFKHpOpPHQWDLUHGH SRXWUHVLWXpHHQWUHOHVVHFWLRQVGURLWHVYRLVLQHV6HW 6′ G¶DEVFLVVHVFXUYLOLJQHVVHW V + GV 2Q SRXUUDDLQVLFRQVLGpUHUTXHOHFHQWUHGHPDVVHG¶XQHWHOOHWUDQFKHLQILQLPHQWPLQFHVHWURXYH HQ*FHQWUHJpRPpWULTXHGH6DORUVTX¶HQWRXWHULJXHXULOVHWURXYHHQ *′ WHOTXH
**′ = −
, \ VLQ ϕ , ] FRV ϕ -− . 56 56
±7UDQVODWLRQVURWDWLRQVGpIRUPDWLRQV
[
**′ = −
, \ VLQ ϕ , ] FRV ϕ -− . 56 56
±7UDQVODWLRQVURWDWLRQVGpIRUPDWLRQV
]
[
]
1RXV YRXORQV H[SOLFLWHU OD PDWULFH JUDG 3R3 GDQV OH UHSqUH {* ;<=} UHSqUH SULQFLSDO FHQWUDOGHODVHFWLRQ6
1RXV YRXORQV H[SOLFLWHU OD PDWULFH JUDG 3R3 GDQV OH UHSqUH {* ;<=} UHSqUH SULQFLSDO FHQWUDOGHODVHFWLRQ6
1RXV HQ GpGXLURQV HQVXLWH VD SDUWLH V\PpWULTXH OD PDWULFHGpIRUPDWLRQ E HW VD SDUWLH DQWLV\PpWULTXHODPDWULFHURWDWLRQ Ω
1RXV HQ GpGXLURQV HQVXLWH VD SDUWLH V\PpWULTXH OD PDWULFHGpIRUPDWLRQ E HW VD SDUWLH DQWLV\PpWULTXHODPDWULFHURWDWLRQ Ω
- 187 -
- 187 -
)LJXUH
)LJXUH
/D SDUWLFXOH FRXUDQWH 3 GH OD VHFWLRQ GURLWH 6 RFFXSH OD SRVLWLRQ 3 GDQV OD FRQILJXUDWLRQ G¶pTXLOLEUH VWDWLTXH R F¶HVW j GLUH DX UHSRV 3 HVW UHSpUpH SDU VHV WURLV FRRUGRQQpHV V<= R V GpVLJQH O¶DEVFLVVH FXUYLOLJQH GH * VXU OD OLJQH PR\HQQH $ O¶LQVWDQW W HOOH RFFXSHODSRVLWLRQ3HWOHYHFWHXUWUDQVODWLRQ 3R3 DSRXUFRPSRVDQWHVGDQV {* ;<=}XY Z IRQFWLRQV GH V < = W 8QH SDUWLFXOH YRLVLQH 4 RFFXSH GDQV O¶pWDW R OD SRVLWLRQ 4 = 3 + G 3 HWjO¶LQVWDQWWODSRVLWLRQ46RQYHFWHXUWUDQVODWLRQHVW 4 4 = 3R3 + G 3R3
/D SDUWLFXOH FRXUDQWH 3 GH OD VHFWLRQ GURLWH 6 RFFXSH OD SRVLWLRQ 3 GDQV OD FRQILJXUDWLRQ G¶pTXLOLEUH VWDWLTXH R F¶HVW j GLUH DX UHSRV 3 HVW UHSpUpH SDU VHV WURLV FRRUGRQQpHV V<= R V GpVLJQH O¶DEVFLVVH FXUYLOLJQH GH * VXU OD OLJQH PR\HQQH $ O¶LQVWDQW W HOOH RFFXSHODSRVLWLRQ3HWOHYHFWHXUWUDQVODWLRQ 3R3 DSRXUFRPSRVDQWHVGDQV {* ;<=}XY Z IRQFWLRQV GH V < = W 8QH SDUWLFXOH YRLVLQH 4 RFFXSH GDQV O¶pWDW R OD SRVLWLRQ 4 = 3 + G 3 HWjO¶LQVWDQWWODSRVLWLRQ46RQYHFWHXUWUDQVODWLRQHVW 4 4 = 3R3 + G 3R3
/H WHQVHXU JUDG 3R3 HVW SDU GpILQLWLRQ O¶HQGRPRUSKLVPH IDLVDQW FRUUHVSRQGUH DX YHFWHXU
/H WHQVHXU JUDG 3R3 HVW SDU GpILQLWLRQ O¶HQGRPRUSKLVPH IDLVDQW FRUUHVSRQGUH DX YHFWHXU
G 3 OHYHFWHXU G 3R3 VXLYDQWODIRUPXOH G 3R3 = JUDG 3R3 ⋅ G 3
G 3 OHYHFWHXU G 3R3 VXLYDQWODIRUPXOH G 3R3 = JUDG 3R3 ⋅ G 3
[
]
[
]
3RXUFRQVWUXLUHODPDWULFH JUDG 3R3 LOQRXVVXIILWGRQFG¶DYRLUOHVFRPSRVDQWHVGH G 3 HW
3RXUFRQVWUXLUHODPDWULFH JUDG 3R3 LOQRXVVXIILWGRQFG¶DYRLUOHVFRPSRVDQWHVGH G 3 HW
G 3R3 RQ WURXYH WRXV FDOFXOV IDLWV HW FRPSWH WHQX GHV IRUPXOHV GH GpULYDWLRQ GX WRPH,,FKDSLWUH,
G 3R3 RQ WURXYH WRXV FDOFXOV IDLWV HW FRPSWH WHQX GHV IRUPXOHV GH GpULYDWLRQ GX WRPH,,FKDSLWUH,
⎧ ⎛ < FRV ϕ = VLQ ϕ ⎞ + ⎟ GV ⎪ ⎜ − 5 5 ⎠ ⎪⎝ ⎪ ⎛ Gϕ⎞ ⎪ ⎟⎟ GV G 3 ⎨ G< − = ⎜⎜ + ⎝ 7 GV ⎠ ⎪ ⎪ ⎪ G= + < ⎛⎜ + G ϕ ⎞⎟ GV ⎜ 7 GV ⎟ ⎪ ⎝ ⎠ ⎩
⎧ ⎛ < FRV ϕ = VLQ ϕ ⎞ + ⎟ GV ⎪ ⎜ − 5 5 ⎠ ⎪⎝ ⎪ ⎛ Gϕ⎞ ⎪ ⎟⎟ GV G 3 ⎨ G< − = ⎜⎜ + ⎝ 7 GV ⎠ ⎪ ⎪ ⎪ G= + < ⎛⎜ + G ϕ ⎞⎟ GV ⎜ 7 GV ⎟ ⎪ ⎝ ⎠ ⎩
⎧ ⎛ ∂ X Y FRV ϕ Z VLQ ϕ ⎞ ∂X ∂X ⎟⎟ GV + − + G< + G= ⎪ ⎜⎜ ∂ V 5 5 < = ∂ ∂ ⎠ ⎪⎝ ⎪ ⎛ G ϕ ⎞⎞ ∂Y ∂Y ⎪ ⎛ ∂ Y X FRV ϕ ⎟⎟ ⎟⎟ GV + G 3R3 ⎨ ⎜⎜ G< + G= + − Z ⎜⎜ + 5 ∂< ∂= ⎝ 7 GV ⎠⎠ ⎪ ⎝ ∂V ⎪ ⎪ ⎛⎜ ∂ Z + X VLQ ϕ + Z ⎛⎜ + G ϕ ⎞⎟ ⎞⎟ GV + ∂ Z G < + ∂ Z G = ⎜ 7 GV ⎟⎟ ⎪ ⎜ ∂V 5 ∂< ∂= ⎝ ⎠⎠ ⎩⎝
⎧ ⎛ ∂ X Y FRV ϕ Z VLQ ϕ ⎞ ∂X ∂X ⎟⎟ GV + − + G< + G= ⎪ ⎜⎜ ∂ V 5 5 < = ∂ ∂ ⎠ ⎪⎝ ⎪ ⎛ G ϕ ⎞⎞ ∂Y ∂Y ⎪ ⎛ ∂ Y X FRV ϕ ⎟⎟ ⎟⎟ GV + G 3R3 ⎨ ⎜⎜ G< + G= + − Z ⎜⎜ + 5 ∂< ∂= ⎝ 7 GV ⎠⎠ ⎪ ⎝ ∂V ⎪ ⎪ ⎛⎜ ∂ Z + X VLQ ϕ + Z ⎛⎜ + G ϕ ⎞⎟ ⎞⎟ GV + ∂ Z G < + ∂ Z G = ⎜ 7 GV ⎟⎟ ⎪ ⎜ ∂V 5 ∂< ∂= ⎝ ⎠⎠ ⎩⎝
- 188 -
- 188 -
)LJXUH
)LJXUH
/D SDUWLFXOH FRXUDQWH 3 GH OD VHFWLRQ GURLWH 6 RFFXSH OD SRVLWLRQ 3 GDQV OD FRQILJXUDWLRQ G¶pTXLOLEUH VWDWLTXH R F¶HVW j GLUH DX UHSRV 3 HVW UHSpUpH SDU VHV WURLV FRRUGRQQpHV V<= R V GpVLJQH O¶DEVFLVVH FXUYLOLJQH GH * VXU OD OLJQH PR\HQQH $ O¶LQVWDQW W HOOH RFFXSHODSRVLWLRQ3HWOHYHFWHXUWUDQVODWLRQ 3R3 DSRXUFRPSRVDQWHVGDQV {* ;<=}XY Z IRQFWLRQV GH V < = W 8QH SDUWLFXOH YRLVLQH 4 RFFXSH GDQV O¶pWDW R OD SRVLWLRQ 4 = 3 + G 3 HWjO¶LQVWDQWWODSRVLWLRQ46RQYHFWHXUWUDQVODWLRQHVW 4 4 = 3R3 + G 3R3
/D SDUWLFXOH FRXUDQWH 3 GH OD VHFWLRQ GURLWH 6 RFFXSH OD SRVLWLRQ 3 GDQV OD FRQILJXUDWLRQ G¶pTXLOLEUH VWDWLTXH R F¶HVW j GLUH DX UHSRV 3 HVW UHSpUpH SDU VHV WURLV FRRUGRQQpHV V<= R V GpVLJQH O¶DEVFLVVH FXUYLOLJQH GH * VXU OD OLJQH PR\HQQH $ O¶LQVWDQW W HOOH RFFXSHODSRVLWLRQ3HWOHYHFWHXUWUDQVODWLRQ 3R3 DSRXUFRPSRVDQWHVGDQV {* ;<=}XY Z IRQFWLRQV GH V < = W 8QH SDUWLFXOH YRLVLQH 4 RFFXSH GDQV O¶pWDW R OD SRVLWLRQ 4 = 3 + G 3 HWjO¶LQVWDQWWODSRVLWLRQ46RQYHFWHXUWUDQVODWLRQHVW 4 4 = 3R3 + G 3R3
/H WHQVHXU JUDG 3R3 HVW SDU GpILQLWLRQ O¶HQGRPRUSKLVPH IDLVDQW FRUUHVSRQGUH DX YHFWHXU
/H WHQVHXU JUDG 3R3 HVW SDU GpILQLWLRQ O¶HQGRPRUSKLVPH IDLVDQW FRUUHVSRQGUH DX YHFWHXU
G 3 OHYHFWHXU G 3R3 VXLYDQWODIRUPXOH G 3R3 = JUDG 3R3 ⋅ G 3
G 3 OHYHFWHXU G 3R3 VXLYDQWODIRUPXOH G 3R3 = JUDG 3R3 ⋅ G 3
[
]
[
]
3RXUFRQVWUXLUHODPDWULFH JUDG 3R3 LOQRXVVXIILWGRQFG¶DYRLUOHVFRPSRVDQWHVGH G 3 HW
3RXUFRQVWUXLUHODPDWULFH JUDG 3R3 LOQRXVVXIILWGRQFG¶DYRLUOHVFRPSRVDQWHVGH G 3 HW
G 3R3 RQ WURXYH WRXV FDOFXOV IDLWV HW FRPSWH WHQX GHV IRUPXOHV GH GpULYDWLRQ GX WRPH,,FKDSLWUH,
G 3R3 RQ WURXYH WRXV FDOFXOV IDLWV HW FRPSWH WHQX GHV IRUPXOHV GH GpULYDWLRQ GX WRPH,,FKDSLWUH,
⎧ ⎛ < FRV ϕ = VLQ ϕ ⎞ + ⎟ GV ⎪ ⎜ − 5 5 ⎠ ⎪⎝ ⎪ ⎛ Gϕ⎞ ⎪ ⎟⎟ GV G 3 ⎨ G< − = ⎜⎜ + ⎝ 7 GV ⎠ ⎪ ⎪ ⎪ G= + < ⎛⎜ + G ϕ ⎞⎟ GV ⎜ 7 GV ⎟ ⎪ ⎝ ⎠ ⎩
⎧ ⎛ < FRV ϕ = VLQ ϕ ⎞ + ⎟ GV ⎪ ⎜ − 5 5 ⎠ ⎪⎝ ⎪ ⎛ Gϕ⎞ ⎪ ⎟⎟ GV G 3 ⎨ G< − = ⎜⎜ + ⎝ 7 GV ⎠ ⎪ ⎪ ⎪ G= + < ⎛⎜ + G ϕ ⎞⎟ GV ⎜ 7 GV ⎟ ⎪ ⎝ ⎠ ⎩
⎧ ⎛ ∂ X Y FRV ϕ Z VLQ ϕ ⎞ ∂X ∂X ⎟⎟ GV + − + G< + G= ⎪ ⎜⎜ 5 5 ⎠ ∂< ∂= ⎪ ⎝ ∂V ⎪ ⎛ G ϕ ⎞⎞ ∂Y ∂Y ⎪ ⎛ ∂ Y X FRV ϕ ⎟⎟ ⎟⎟ GV + G 3R3 ⎨ ⎜⎜ G< + G= + − Z ⎜⎜ + V 5 7 G V < = ∂ ∂ ∂ ⎝ ⎠⎠ ⎪⎝ ⎪ ⎪ ⎛⎜ ∂ Z + X VLQ ϕ + Z ⎛⎜ + G ϕ ⎞⎟ ⎞⎟ GV + ∂ Z G < + ∂ Z G = ⎜ 7 GV ⎟⎟ ⎪ ⎜ ∂V 5 ∂< ∂= ⎝ ⎠⎠ ⎩⎝
⎧ ⎛ ∂ X Y FRV ϕ Z VLQ ϕ ⎞ ∂X ∂X ⎟⎟ GV + − + G< + G= ⎪ ⎜⎜ 5 5 ⎠ ∂< ∂= ⎪ ⎝ ∂V ⎪ ⎛ G ϕ ⎞⎞ ∂Y ∂Y ⎪ ⎛ ∂ Y X FRV ϕ ⎟⎟ ⎟⎟ GV + G 3R3 ⎨ ⎜⎜ G< + G= + − Z ⎜⎜ + V 5 7 G V < = ∂ ∂ ∂ ⎝ ⎠⎠ ⎪⎝ ⎪ ⎪ ⎛⎜ ∂ Z + X VLQ ϕ + Z ⎛⎜ + G ϕ ⎞⎟ ⎞⎟ GV + ∂ Z G < + ∂ Z G = ⎜ 7 GV ⎟⎟ ⎪ ⎜ ∂V 5 ∂< ∂= ⎝ ⎠⎠ ⎩⎝
- 188 -
- 188 -
G¶R
G¶R
⎧ ∂X ⎞ ∂ X Y FRV ϕ Z VLQ ϕ ⎛ G ϕ ⎞ ⎛ ∂ X ⎟ ⎟⎟ ⎜⎜ = −< − + + ⎜⎜ + ⎪ ∂ ∂ ] ⎟⎠ V 5 5 7 G V < ∂ ⎠⎝ ⎝ ⎪ε = < FRV ϕ = VLQ ϕ ⎪ [ + − ⎪ 5 5 ⎪ ⎪ ⎪ ∂Y ∂Z ⎪ ε] = ⎪ ε< = ∂ < ∂] ⎪ ⎪ ⎪ ⎪ γ = ∂ Z + ∂ Y ⎨ <= ∂ < ∂ ] ⎪ ⎪ ⎪ ∂Z ∂Z⎞ ∂ Z X VLQ ϕ ⎛ G ϕ ⎞ ⎛ ⎟ ⎟ ⎜⎜ Y + = ⎪ −< − + ⎜⎜ + ⎟ ∂ ∂ = ⎟⎠ ∂ V 5 7 G V < ∂X ⎪ ⎠⎝ ⎝ γ = + ⎪ =; ∂ ] < FRV ϕ = VLQ ϕ + − ⎪ 5 5 ⎪ ⎪ ∂Y ∂Y⎞ ∂ Y X FRV ϕ ⎛ G ϕ ⎞ ⎛ ⎪ ⎟ ⎟⎟ ⎜⎜ − Z + ] −< + + ⎜⎜ + ∂< ∂ ] ⎟⎠ ⎪ 5 ∂X ∂V ⎝ 7 GV ⎠ ⎝ γ = + ⎪ ;< ∂ < < FRV ϕ = VLQ ϕ + − ⎪ ⎩ 5 5
⎧ ⎪ ∂Z ∂Y + ⎪ ω; = ∂< ∂] ⎪ ⎪ ⎪ ∂Z ∂Z ⎞ ∂ Z X VLQ ϕ ⎛ G ϕ ⎞ ⎛ ⎪ ⎟ ⎟⎟ ⎜⎜ Y + ] −< − + ⎜⎜ + ⎪⎪ ∂< ∂ ] ⎟⎠ 5 ∂ X ∂V ⎝ 7 GV ⎠ ⎝ ω = − ⎨ < ∂] < FRV ϕ = VLQ ϕ + − ⎪ 5 5 ⎪ ⎪ ∂Y ∂Y⎞ ∂ Y X FRV ϕ ⎛ G ϕ ⎞ ⎛ ⎪ ⎟ ⎟⎟ ⎜⎜ − Z + = −< + + ⎜⎜ + ∂ ∂ ] ⎟⎠ 5 7 G V < ⎪ ∂X ∂V ⎠ ⎝ ⎝ ⎪ ω= = ∂ < + < FRV ϕ = VLQ ϕ + − ⎪ 5 5 ⎪⎩
⎧ ∂X ⎞ ∂ X Y FRV ϕ Z VLQ ϕ ⎛ G ϕ ⎞ ⎛ ∂ X ⎟ ⎟⎟ ⎜⎜ = −< − + + ⎜⎜ + ⎪ ∂ ∂ ] ⎟⎠ V 5 5 7 G V < ∂ ⎠⎝ ⎝ ⎪ε = < FRV ϕ = VLQ ϕ ⎪ [ + − ⎪ 5 5 ⎪ ⎪ ⎪ ∂Y ∂Z ⎪ ε] = ⎪ ε< = ∂ < ∂] ⎪ ⎪ ⎪ ⎪ γ = ∂ Z + ∂ Y ⎨ <= ∂ < ∂ ] ⎪ ⎪ ⎪ ∂Z ∂Z⎞ ∂ Z X VLQ ϕ ⎛ G ϕ ⎞ ⎛ ⎟ ⎟ ⎜⎜ Y + = ⎪ −< − + ⎜⎜ + ⎟ ∂ ∂ = ⎟⎠ ∂ V 5 7 G V < ∂X ⎪ ⎠⎝ ⎝ γ = + ⎪ =; ∂ ] < FRV ϕ = VLQ ϕ + − ⎪ 5 5 ⎪ ⎪ ∂Y ∂Y⎞ ∂ Y X FRV ϕ ⎛ G ϕ ⎞ ⎛ ⎪ ⎟ ⎟⎟ ⎜⎜ − Z + ] −< + + ⎜⎜ + ∂< ∂ ] ⎟⎠ ⎪ 5 ∂X ∂V ⎝ 7 GV ⎠ ⎝ γ = + ⎪ ;< ∂ < < FRV ϕ = VLQ ϕ + − ⎪ ⎩ 5 5
⎧ ⎪ ∂Z ∂Y + ⎪ ω; = ∂< ∂] ⎪ ⎪ ⎪ ∂Z ∂Z ⎞ ∂ Z X VLQ ϕ ⎛ G ϕ ⎞ ⎛ ⎪ ⎟ ⎟⎟ ⎜⎜ Y + ] −< − + ⎜⎜ + ⎪⎪ ∂< ∂ ] ⎟⎠ 5 ∂ X ∂V ⎝ 7 GV ⎠ ⎝ ω = − ⎨ < ∂] < FRV ϕ = VLQ ϕ + − ⎪ 5 5 ⎪ ⎪ ∂Y ∂Y⎞ ∂ Y X FRV ϕ ⎛ G ϕ ⎞ ⎛ ⎪ ⎟ ⎟⎟ ⎜⎜ − Z + = −< + + ⎜⎜ + ∂ ∂ ] ⎟⎠ 5 7 G V < ⎪ ∂X ∂V ⎠ ⎝ ⎝ ⎪ ω= = ∂ < + < FRV ϕ = VLQ ϕ + − ⎪ 5 5 ⎪⎩
±(TXDWLRQVGHO¶pTXLOLEUHORFDO
±(TXDWLRQVGHO¶pTXLOLEUHORFDO
&HVRQWOHVpTXDWLRQVG¶pTXLOLEUHG¶XQHWUDQFKHpOpPHQWDLUHIRUPXOHV HW GXWRPH ,, FKDSLWUH , GDQV OHVTXHOOHV RQ GRLW LQWURGXLUH OHV IRUFHV G¶LQHUWLH HW FRXSOHV G¶LQHUWLH 2Q REWLHQWDLQVL
&HVRQWOHVpTXDWLRQVG¶pTXLOLEUHG¶XQHWUDQFKHpOpPHQWDLUHIRUPXOHV HW GXWRPH ,, FKDSLWUH , GDQV OHVTXHOOHV RQ GRLW LQWURGXLUH OHV IRUFHV G¶LQHUWLH HW FRXSOHV G¶LQHUWLH 2Q REWLHQWDLQVL
- 189 -
- 189 -
G¶R
G¶R
⎧ ∂X ⎞ ∂ X Y FRV ϕ Z VLQ ϕ ⎛ G ϕ ⎞ ⎛ ∂ X ⎟ ⎟⎟ ⎜⎜ = −< − + + ⎜⎜ + ⎪ 5 5 ∂ ] ⎟⎠ ⎝ 7 GV ⎠ ⎝ ∂ < ⎪ ε = ∂V < FRV ϕ = VLQ ϕ ⎪ [ + − ⎪ 5 5 ⎪ ⎪ ⎪ ∂Y ∂Z ⎪ ε] = ⎪ ε< = ∂ < ∂] ⎪ ⎪ ⎪ ⎪ γ = ∂ Z + ∂ Y ⎨ <= ∂ < ∂ ] ⎪ ⎪ ⎪ ∂Z ∂Z⎞ ∂ Z X VLQ ϕ ⎛ G ϕ ⎞ ⎛ ⎟ ⎟⎟ ⎜⎜ Y + = ⎪ −< − + ⎜⎜ + ∂ ∂ = ⎟⎠ ∂ V 5 7 G V < ∂ X ⎪ ⎠ ⎝ ⎝ ⎪ γ =; = ∂ ] + < FRV ϕ = VLQ ϕ + − ⎪ 5 5 ⎪ ⎪ ∂Y ∂Y⎞ ∂ Y X FRV ϕ ⎛ G ϕ ⎞ ⎛ ⎪ ⎟ ⎟⎟ ⎜⎜ − Z + ] −< + + ⎜⎜ + ∂< ∂ ] ⎟⎠ ⎪ 5 ∂X ∂V ⎝ 7 GV ⎠ ⎝ γ = + ⎪ ;< ∂ < < FRV ϕ = VLQ ϕ + − ⎪ ⎩ 5 5
⎧ ⎪ ∂Z ∂Y + ⎪ ω; = ∂< ∂] ⎪ ⎪ ⎪ ∂Z ∂Z ⎞ ∂ Z X VLQ ϕ ⎛ G ϕ ⎞ ⎛ ⎪ ⎟ ⎟ ⎜⎜ Y + ] −< − + ⎜⎜ + ⎟ ⎪⎪ ∂ ∂ ] ⎟⎠ ∂ V 5 7 G V < ∂X ⎠⎝ ⎝ ω = − ⎨ < ∂] < FRV ϕ = VLQ ϕ + − ⎪ 5 5 ⎪ ⎪ ∂Y ∂Y⎞ ∂ Y X FRV ϕ ⎛ G ϕ ⎞ ⎛ ⎪ ⎟ ⎟⎟ ⎜⎜ − Z + = −< + + ⎜⎜ + ∂< ∂ ] ⎟⎠ 5 ⎪ ∂X ∂V ⎝ 7 GV ⎠ ⎝ ω = + ⎪ = ∂< < FRV ϕ = VLQ ϕ + − ⎪ 5 5 ⎩⎪
⎧ ∂X ⎞ ∂ X Y FRV ϕ Z VLQ ϕ ⎛ G ϕ ⎞ ⎛ ∂ X ⎟ ⎟⎟ ⎜⎜ = −< − + + ⎜⎜ + ⎪ 5 5 ∂ ] ⎟⎠ ⎝ 7 GV ⎠ ⎝ ∂ < ⎪ ε = ∂V < FRV ϕ = VLQ ϕ ⎪ [ + − ⎪ 5 5 ⎪ ⎪ ⎪ ∂Y ∂Z ⎪ ε] = ⎪ ε< = ∂ < ∂] ⎪ ⎪ ⎪ ⎪ γ = ∂ Z + ∂ Y ⎨ <= ∂ < ∂ ] ⎪ ⎪ ⎪ ∂Z ∂Z⎞ ∂ Z X VLQ ϕ ⎛ G ϕ ⎞ ⎛ ⎟ ⎟⎟ ⎜⎜ Y + = ⎪ −< − + ⎜⎜ + ∂ ∂ = ⎟⎠ ∂ V 5 7 G V < ∂ X ⎪ ⎠ ⎝ ⎝ ⎪ γ =; = ∂ ] + < FRV ϕ = VLQ ϕ + − ⎪ 5 5 ⎪ ⎪ ∂Y ∂Y⎞ ∂ Y X FRV ϕ ⎛ G ϕ ⎞ ⎛ ⎪ ⎟ ⎟⎟ ⎜⎜ − Z + ] −< + + ⎜⎜ + ∂< ∂ ] ⎟⎠ ⎪ 5 ∂X ∂V ⎝ 7 GV ⎠ ⎝ γ = + ⎪ ;< ∂ < < FRV ϕ = VLQ ϕ + − ⎪ ⎩ 5 5
⎧ ⎪ ∂Z ∂Y + ⎪ ω; = ∂< ∂] ⎪ ⎪ ⎪ ∂Z ∂Z ⎞ ∂ Z X VLQ ϕ ⎛ G ϕ ⎞ ⎛ ⎪ ⎟ ⎟ ⎜⎜ Y + ] −< − + ⎜⎜ + ⎟ ⎪⎪ ∂ ∂ ] ⎟⎠ ∂ V 5 7 G V < ∂X ⎠⎝ ⎝ ω = − ⎨ < ∂] < FRV ϕ = VLQ ϕ + − ⎪ 5 5 ⎪ ⎪ ∂Y ∂Y⎞ ∂ Y X FRV ϕ ⎛ G ϕ ⎞ ⎛ ⎪ ⎟ ⎟⎟ ⎜⎜ − Z + = −< + + ⎜⎜ + ∂< ∂ ] ⎟⎠ 5 ⎪ ∂X ∂V ⎝ 7 GV ⎠ ⎝ ω = + ⎪ = ∂< < FRV ϕ = VLQ ϕ + − ⎪ 5 5 ⎩⎪
±(TXDWLRQVGHO¶pTXLOLEUHORFDO
±(TXDWLRQVGHO¶pTXLOLEUHORFDO
&HVRQWOHVpTXDWLRQVG¶pTXLOLEUHG¶XQHWUDQFKHpOpPHQWDLUHIRUPXOHV HW GXWRPH ,, FKDSLWUH , GDQV OHVTXHOOHV RQ GRLW LQWURGXLUH OHV IRUFHV G¶LQHUWLH HW FRXSOHV G¶LQHUWLH 2Q REWLHQWDLQVL
&HVRQWOHVpTXDWLRQVG¶pTXLOLEUHG¶XQHWUDQFKHpOpPHQWDLUHIRUPXOHV HW GXWRPH ,, FKDSLWUH , GDQV OHVTXHOOHV RQ GRLW LQWURGXLUH OHV IRUFHV G¶LQHUWLH HW FRXSOHV G¶LQHUWLH 2Q REWLHQWDLQVL
- 189 -
- 189 -
DYHF G S ⋅ GV ⋅ GV
IRUFHGHFKDUJHPHQWDSSOLTXpHjODWUDQFKHGV
DYHF G S ⋅ GV
IRUFHGHFKDUJHPHQWDSSOLTXpHjODWUDQFKHGV
FRXSOHGHFKDUJHPHQWDSSOLTXpjODWUDQFKHGV
⋅ GV
FRXSOHGHFKDUJHPHQWDSSOLTXpjODWUDQFKHGV
R
UpVXOWDQWHHWPRPHQWGXYLVVHXUVXU6
R
UpVXOWDQWHHWPRPHQWGXYLVVHXUVXU6
ρ
PDVVHYROXPLTXHGXPDWpULDX
ρ
PDVVHYROXPLTXHGXPDWpULDX
, - .
XQLWDLUHVGH {* ;<=}HQFRQILJXUDWLRQR GHUHSRV
, - .
XQLWDLUHVGH {* ;<=}HQFRQILJXUDWLRQR GHUHSRV
ΓU ΓH ΓF
DFFpOpUDWLRQUHODWLYHG¶HQWUDvQHPHQWGH&RULROLVGH3
ΓU ΓH ΓF
DFFpOpUDWLRQUHODWLYHG¶HQWUDvQHPHQWGH&RULROLVGH3
−ρ
⋅ GV HW
−ρ
⋅ GV
I
SVHXGRYHFWHXUURWDWLRQGH6 jO¶LQVWDQWWGDQV {* ;<=}
−ρ
⋅ GV HW
PRPHQWVHQ*GHVIRUFHVG¶LQHUWLHG¶HQWUDvQHPHQWHWGH&RULROLVDSSOLTXpHV jODWUDQFKHGV
−ρ
⋅ GV
WHQVHXUGHVPRPHQWVTXDGUDWLTXHVGH6 HQ*DYHF
I
⎡, ; ⎢ [I ] = ⎢ ⎢ ⎢⎣
,<
WHQVHXUGHVPRPHQWVTXDGUDWLTXHVGH6 HQ*DYHF ⎡, ; ⎢ [I ] = ⎢ ⎢ ⎢⎣
DYHF
9U YLWHVVHUHODWLYHGDQV {* ;<=}GHODSDUWLFXOH3
,<
⎤ ⎥ ⎥ GDQV {* ;<=} ⎥ , = ⎥⎦
2QUDSSHOOHTXHO¶DFFpOpUDWLRQGH&RULROLVHVWGRQQpHSDUODIRUPXOH
SVHXGRYHFWHXU YLWHVVH GH URWDWLRQ LQVWDQWDQpH GX UHSqUH {* ;<=} SDU UDSSRUW j XQ JDOLOpHQ
}
⎧ ⎛ ∂ X ⎛ ∂ Z ∂ Y ⎞⎞ ∂ 1 FRV ϕ VLQ ϕ ⎟⎟ − 7< + 7] = ρ 6 ⎜ + ΓH[ + ⎜⎜ θ < − θ] ⎪ S; + ⎜ ∂W ∂V 5 5 ∂W ∂ W ⎟⎠ ⎟⎠ ⎝ ⎪ ⎝ ⎪ ⎛ ∂ Y ⎛ Gϕ⎞ ⎛ ∂ X ∂ Z ⎞⎞ ∂ 7< FRV ϕ ⎪ ⎟⎟ 7= = ρ 6 ⎜ + ΓH< + ⎜⎜ θ = ⎟⎟ ⎟ + − θ; 1 − ⎜⎜ + ⎨ S< + ⎟ ⎜ ∂ ∂ ∂ V 5 7 G V W W ∂ W ⎝ ⎠ ⎝ ⎠⎠ ⎪ ⎝ ⎪ ⎪ S + ∂ 7] − VLQ ϕ 1 + ⎛⎜ + G ϕ ⎞⎟ 7 = ρ 6 ⎛⎜ ∂ Z + Γ + ⎛⎜ θ ∂ Y − θ ∂ X ⎞⎟ ⎞⎟ H] \ = < ⎜ ⎟ ⎜ ; ∂W ⎪ ⎜ ∂ W ∂V ∂ W ⎟⎠ ⎟⎠ 5 ⎝ 7 GV ⎠ ⎝ ⎝ ⎩
SVHXGRYHFWHXU YLWHVVH GH URWDWLRQ LQVWDQWDQpH GX UHSqUH {* ;<=} SDU UDSSRUW j XQ JDOLOpHQ
{
}
/DSURMHFWLRQVXU , - . GHVGHX[pTXDWLRQVYHFWRULHOOHVG¶pTXLOLEUHG\QDPLTXH GRQQH
⎧ ⎛ ∂ X ⎛ ∂ Z ∂ Y ⎞⎞ ∂ 1 FRV ϕ VLQ ϕ ⎟⎟ − 7< + 7] = ρ 6 ⎜ + ΓH[ + ⎜⎜ θ < − θ] ⎪ S; + ⎜ ∂W ∂V 5 5 ∂W ∂ W ⎟⎠ ⎟⎠ ⎝ ⎪ ⎝ ⎪ ⎛ ∂ Y ⎛ Gϕ⎞ ⎛ ∂ X ∂ Z ⎞⎞ ∂ 7< FRV ϕ ⎪ ⎟⎟ 7= = ρ 6 ⎜ + ΓH< + ⎜⎜ θ = ⎟⎟ ⎟ + − θ; 1 − ⎜⎜ + ⎨ S< + ⎟ ⎜ ∂ ∂ ∂ V 5 7 G V W W ∂ W ⎝ ⎠ ⎝ ⎠⎠ ⎪ ⎝ ⎪ ⎪ S + ∂ 7] − VLQ ϕ 1 + ⎛⎜ + G ϕ ⎞⎟ 7 = ρ 6 ⎛⎜ ∂ Z + Γ + ⎛⎜ θ ∂ Y − θ ∂ X ⎞⎟ ⎞⎟ H] \ = < ⎜ ⎟ ⎜ ; ∂W ⎪ ⎜ ∂ W ∂V ∂ W ⎟⎠ ⎟⎠ 5 ⎝ 7 GV ⎠ ⎝ ⎝ ⎩
- 190 -
- 190 -
DYHF G S ⋅ GV ⋅ GV
IRUFHGHFKDUJHPHQWDSSOLTXpHjODWUDQFKHGV
DYHF G S ⋅ GV
IRUFHGHFKDUJHPHQWDSSOLTXpHjODWUDQFKHGV
FRXSOHGHFKDUJHPHQWDSSOLTXpjODWUDQFKHGV
⋅ GV
FRXSOHGHFKDUJHPHQWDSSOLTXpjODWUDQFKHGV
R
UpVXOWDQWHHWPRPHQWGXYLVVHXUVXU6
R
UpVXOWDQWHHWPRPHQWGXYLVVHXUVXU6
ρ
PDVVHYROXPLTXHGXPDWpULDX
ρ
PDVVHYROXPLTXHGXPDWpULDX
, - .
XQLWDLUHVGH {* ;<=}HQFRQILJXUDWLRQR GHUHSRV
, - .
XQLWDLUHVGH {* ;<=}HQFRQILJXUDWLRQR GHUHSRV
ΓU ΓH ΓF
DFFpOpUDWLRQUHODWLYHG¶HQWUDvQHPHQWGH&RULROLVGH3
ΓU ΓH ΓF
DFFpOpUDWLRQUHODWLYHG¶HQWUDvQHPHQWGH&RULROLVGH3
−ρ
⋅ GV HW
−ρ
⋅ GV
I
SVHXGRYHFWHXUURWDWLRQGH6 jO¶LQVWDQWWGDQV {* ;<=}
−ρ
⋅ GV HW
PRPHQWVHQ*GHVIRUFHVG¶LQHUWLHG¶HQWUDvQHPHQWHWGH&RULROLVDSSOLTXpHV jODWUDQFKHGV
−ρ
⋅ GV
WHQVHXUGHVPRPHQWVTXDGUDWLTXHVGH6 HQ*DYHF
I
⎡, ; ⎢ [I ] = ⎢ ⎢ ⎢⎣
,<
PRPHQWVHQ*GHVIRUFHVG¶LQHUWLHG¶HQWUDvQHPHQWHWGH&RULROLVDSSOLTXpHV jODWUDQFKHGV WHQVHXUGHVPRPHQWVTXDGUDWLTXHVGH6 HQ*DYHF ⎡, ; ⎢ [I ] = ⎢ ⎢ ⎢⎣
DYHF
9U YLWHVVHUHODWLYHGDQV {* ;<=}GHODSDUWLFXOH3
}
/DSURMHFWLRQVXU , - . GHVGHX[pTXDWLRQVYHFWRULHOOHVG¶pTXLOLEUHG\QDPLTXH GRQQH
⎧ ⎛ ∂ X ⎛ ∂ Z ∂ Y ⎞⎞ ∂ 1 FRV ϕ VLQ ϕ ⎟⎟ − 7< + 7] = ρ 6 ⎜ + ΓH[ + ⎜⎜ θ < − θ] ⎪ S; + ⎜ ∂V 5 5 ∂W ∂ W ⎟⎠ ⎟⎠ ⎝ ⎪ ⎝ ∂W ⎪ ⎛ ∂ Y ⎛ Gϕ⎞ ⎛ ∂ X ∂ Z ⎞⎞ ∂ 7< FRV ϕ ⎪ ⎟⎟ 7= = ρ 6 ⎜ + ΓH< + ⎜⎜ θ = ⎟ ⎟ + − θ; 1 − ⎜⎜ + ⎨ S< + ⎜ ∂W ∂ ∂ W ⎟⎠ ⎟⎠ V 5 7 G V ⎝ ⎠ ⎝ ∂W ⎪ ⎝ ⎪ ⎪ S + ∂ 7] − VLQ ϕ 1 + ⎛⎜ + G ϕ ⎞⎟ 7 = ρ 6 ⎛⎜ ∂ Z + Γ + ⎛⎜ θ ∂ Y − θ ∂ X ⎞⎟ ⎞⎟ H] \ ⎜ 7 GV ⎟ < ⎜ ; ∂W ⎪ = ∂V ⎜ ∂ W ∂ W ⎟⎠ ⎟⎠ 5 ⎝ ⎠ ⎝ ⎝ ⎩
- 190 -
,<
⎤ ⎥ ⎥ GDQV {* ;<=} ⎥ , = ⎥⎦
2QUDSSHOOHTXHO¶DFFpOpUDWLRQGH&RULROLVHVWGRQQpHSDUODIRUPXOH
SVHXGRYHFWHXU YLWHVVH GH URWDWLRQ LQVWDQWDQpH GX UHSqUH {* ;<=} SDU UDSSRUW j XQ JDOLOpHQ
SVHXGRYHFWHXUURWDWLRQGH6 jO¶LQVWDQWWGDQV {* ;<=}
⎤ ⎥ ⎥ GDQV {* ;<=} ⎥ , = ⎥⎦
2QUDSSHOOHTXHO¶DFFpOpUDWLRQGH&RULROLVHVWGRQQpHSDUODIRUPXOH
{
DYHF
9U YLWHVVHUHODWLYHGDQV {* ;<=}GHODSDUWLFXOH3
/DSURMHFWLRQVXU , - . GHVGHX[pTXDWLRQVYHFWRULHOOHVG¶pTXLOLEUHG\QDPLTXH GRQQH
PRPHQWVHQ*GHVIRUFHVG¶LQHUWLHG¶HQWUDvQHPHQWHWGH&RULROLVDSSOLTXpHV jODWUDQFKHGV
⎤ ⎥ ⎥ GDQV {* ;<=} ⎥ , = ⎥⎦
2QUDSSHOOHTXHO¶DFFpOpUDWLRQGH&RULROLVHVWGRQQpHSDUODIRUPXOH
{
SVHXGRYHFWHXUURWDWLRQGH6 jO¶LQVWDQWWGDQV {* ;<=}
DYHF
SVHXGRYHFWHXU YLWHVVH GH URWDWLRQ LQVWDQWDQpH GX UHSqUH {* ;<=} SDU UDSSRUW j XQ JDOLOpHQ 9U YLWHVVHUHODWLYHGDQV {* ;<=}GHODSDUWLFXOH3
{
}
/DSURMHFWLRQVXU , - . GHVGHX[pTXDWLRQVYHFWRULHOOHVG¶pTXLOLEUHG\QDPLTXH GRQQH
⎧ ⎛ ∂ X ⎛ ∂ Z ∂ Y ⎞⎞ ∂ 1 FRV ϕ VLQ ϕ ⎟⎟ − 7< + 7] = ρ 6 ⎜ + ΓH[ + ⎜⎜ θ < − θ] ⎪ S; + ⎜ ∂V 5 5 ∂W ∂ W ⎟⎠ ⎟⎠ ⎝ ⎪ ⎝ ∂W ⎪ ⎛ ∂ Y ⎛ Gϕ⎞ ⎛ ∂ X ∂ Z ⎞⎞ ∂ 7< FRV ϕ ⎪ ⎟⎟ 7= = ρ 6 ⎜ + ΓH< + ⎜⎜ θ = ⎟ ⎟ + − θ; 1 − ⎜⎜ + ⎨ S< + ⎜ ∂W ∂ ∂ W ⎟⎠ ⎟⎠ V 5 7 G V ⎝ ⎠ ⎝ ∂W ⎪ ⎝ ⎪ ⎪ S + ∂ 7] − VLQ ϕ 1 + ⎛⎜ + G ϕ ⎞⎟ 7 = ρ 6 ⎛⎜ ∂ Z + Γ + ⎛⎜ θ ∂ Y − θ ∂ X ⎞⎟ ⎞⎟ H] \ ⎜ 7 GV ⎟ < ⎜ ; ∂W ⎪ = ∂V ⎜ ∂ W ∂ W ⎟⎠ ⎟⎠ 5 ⎝ ⎠ ⎝ ⎝ ⎩
- 190 -
⎧ ⎛ ∂ ω\ ⎞ ∂ 0 [ FRV ϕ VLQ ϕ ⎪ P; + − + MH[ + MF[ ⎟ 0< + 0] = ρ ⎜ ,[ ⎜ ⎟ ∂V 5 5 ∂W ⎪ ⎝ ⎠ ⎪ ⎛ ∂ ω[ ⎞ ⎪ ⎛ Gϕ⎞ ∂ 0 < FRV ϕ ⎟⎟ 0 = − 7= = ρ ⎜ , < + + MH< + MF< ⎟ 0 ; − ⎜⎜ + ⎨ P< + ⎜ ⎟ ∂V 5 ∂W ⎝ 7 GV ⎠ ⎪ ⎝ ⎠ ⎪ ⎛ ⎞ ⎪ P + ∂ 0 ] − VLQ ϕ 0 + ⎛⎜ + G ϕ ⎞⎟ 0 + 7 = ρ ⎜ , ∂ ω] + M + M ⎟ H] F] ⎟ ; ⎜ \ ⎟ < ⎜ ] ∂ W ⎪ = ∂V 5 ⎝ 7 GV ⎠ ⎝ ⎠ ⎩
⎧ ⎛ ∂ ω\ ⎞ ∂ 0 [ FRV ϕ VLQ ϕ ⎪ P; + − + MH[ + MF[ ⎟ 0< + 0] = ρ ⎜ ,[ ⎜ ⎟ ∂V 5 5 ∂W ⎪ ⎝ ⎠ ⎪ ⎛ ∂ ω[ ⎞ ⎪ ⎛ Gϕ⎞ ∂ 0 < FRV ϕ ⎟⎟ 0 = − 7= = ρ ⎜ , < + + MH< + MF< ⎟ 0 ; − ⎜⎜ + ⎨ P< + ⎜ ⎟ ∂V 5 ∂W ⎝ 7 GV ⎠ ⎪ ⎝ ⎠ ⎪ ⎛ ⎞ ⎪ P + ∂ 0 ] − VLQ ϕ 0 + ⎛⎜ + G ϕ ⎞⎟ 0 + 7 = ρ ⎜ , ∂ ω] + M + M ⎟ H] F] ⎟ ; ⎜ \ ⎟ < ⎜ ] ∂ W ⎪ = ∂V 5 ⎝ 7 GV ⎠ ⎝ ⎠ ⎩
X Y Z GpVLJQHQWOHVFRPSRVDQWHVGDQV {* ;<=}GXYHFWHXUWUDQVODWLRQGH*VRLW *R* j O¶LQVWDQWW
X Y Z GpVLJQHQWOHVFRPSRVDQWHVGDQV {* ;<=}GXYHFWHXUWUDQVODWLRQGH*VRLW *R* j O¶LQVWDQWW
5HPDUTXHV
5HPDUTXHV
± 6LOHUHSqUH {* ;<=}HVWJDOLOpHQRQDELHQVU
± 6LOHUHSqUH {* ;<=}HVWJDOLOpHQRQDELHQVU
ΓH = ΓF = θ = MH = MF =
ΓH = ΓF = θ = MH = MF =
± 6LOHSUREOqPHHVWSODQODOLJQHPR\HQQHYLEUDQWGDQVOHSODQGHV\PpWULH[R\ RQD ϕ =
± 6LOHSUREOqPHHVWSODQODOLJQHPR\HQQHYLEUDQWGDQVOHSODQGHV\PpWULH[R\ RQD
= Z = 7] = 0 [ = 0 < = ω[ = ω< = 7
ϕ =
= Z = 7] = 0 [ = 0 < = ω[ = ω< = 7
±0pWKRGHJpQpUDOHG¶DQDO\VHG\QDPLTXH
±0pWKRGHJpQpUDOHG¶DQDO\VHG\QDPLTXH
/D PpWKRGH TXH QRXV SURSRVRQV LFL HVW XQH PpWKRGH GHV GpSODFHPHQWV F¶HVW j GLUH TX¶HOOH UHWLHQWFRPPHLQFRQQXHVSULYLOpJLpHVOHVTXDWUHGpSODFHPHQWVGHODVHFWLRQGURLWHFRXUDQWH X Y Z ω[ TXLVRQWGHVIRQFWLRQVGHVHWGHWDVVRFLpHVDXTXDWUHPRXYHPHQWVGHFHWWH VHFWLRQGURLWHORQJLWXGLQDO {X}GHIOH[LRQ {Y}HW {Z}GHWRUVLRQ {ω[ }
/D PpWKRGH TXH QRXV SURSRVRQV LFL HVW XQH PpWKRGH GHV GpSODFHPHQWV F¶HVW j GLUH TX¶HOOH UHWLHQWFRPPHLQFRQQXHVSULYLOpJLpHVOHVTXDWUHGpSODFHPHQWVGHODVHFWLRQGURLWHFRXUDQWH X Y Z ω[ TXLVRQWGHVIRQFWLRQVGHVHWGHWDVVRFLpHVDXTXDWUHPRXYHPHQWVGHFHWWH VHFWLRQGURLWHORQJLWXGLQDO {X}GHIOH[LRQ {Y}HW {Z}GHWRUVLRQ {ω[ }
(Q QRXV DSSX\DQW VXU XQH K\SRWKqVH VLPSOLILFDWULFH QRXV H[SULPHURQV WRXWHV OHV LQFRQQXHV GX SUREOqPH GpSODFHPHQWV GpIRUPDWLRQV FRQWUDLQWHV YLVVHXUV HQ IRQFWLRQ GH FHV TXDWUH SDUDPqWUHVSULYLOpJLpVHWQRXVpWDEOLURQVOHVpTXDWLRQVGXPRXYHPHQWTXLSHUPHWWHQWGHOHV FDOFXOHU
(Q QRXV DSSX\DQW VXU XQH K\SRWKqVH VLPSOLILFDWULFH QRXV H[SULPHURQV WRXWHV OHV LQFRQQXHV GX SUREOqPH GpSODFHPHQWV GpIRUPDWLRQV FRQWUDLQWHV YLVVHXUV HQ IRQFWLRQ GH FHV TXDWUH SDUDPqWUHVSULYLOpJLpVHWQRXVpWDEOLURQVOHVpTXDWLRQVGXPRXYHPHQWTXLSHUPHWWHQWGHOHV FDOFXOHU
+\SRWKqVH
+\SRWKqVH
3 V < = W GpVLJQDQWODSDUWLFXOHFRXUDQWHG¶XQHVHFWLRQGURLWH6GHFHQWUH * V W RQVDLW TXHODWUDQVODWLRQVXELHSDU3HVWODVRPPHGHWURLVWUDQVODWLRQVGXHVUHVSHFWLYHPHQW ± jXQHWUDQVODWLRQGH6GHFRPSRVDQWHV X Y Z
3 V < = W GpVLJQDQWODSDUWLFXOHFRXUDQWHG¶XQHVHFWLRQGURLWH6GHFHQWUH * V W RQVDLW TXHODWUDQVODWLRQVXELHSDU3HVWODVRPPHGHWURLVWUDQVODWLRQVGXHVUHVSHFWLYHPHQW ± jXQHWUDQVODWLRQGH6GHFRPSRVDQWHV X Y Z
± jXQHURWDWLRQGH6DXWRXUGH*GHFRPSRVDQWHV ω; ω< ω=
± jXQHURWDWLRQGH6DXWRXUGH*GHFRPSRVDQWHV ω; ω< ω=
± jXQHGpIRUPDWLRQGH6
± jXQHGpIRUPDWLRQGH6
&HWWHWURLVLqPHWUDQVODWLRQHVWQpJOLJHDEOHGHYDQWOHVGHX[SUHPLqUHV
&HWWHWURLVLqPHWUDQVODWLRQHVWQpJOLJHDEOHGHYDQWOHVGHX[SUHPLqUHV
- 191 -
- 191 -
⎧ ⎛ ∂ ω\ ⎞ ∂ 0 [ FRV ϕ VLQ ϕ ⎪ P; + − + MH[ + MF[ ⎟ 0< + 0] = ρ ⎜ ,[ ⎜ ⎟ ∂V 5 5 ∂W ⎪ ⎝ ⎠ ⎪ ⎛ ∂ ω[ ⎞ ⎪ ⎛ Gϕ⎞ ∂ 0 < FRV ϕ ⎟⎟ 0 = − 7= = ρ ⎜ , < + + MH< + MF< ⎟ 0 ; − ⎜⎜ + ⎨ P< + ⎜ ⎟ ∂ V 5 7 G V ∂W ⎝ ⎠ ⎪ ⎝ ⎠ ⎪ ⎪ P + ∂ 0 ] − VLQ ϕ 0 + ⎛⎜ + G ϕ ⎞⎟ 0 + 7 = ρ ⎛⎜ , ∂ ω] + M + M ⎞⎟ H] F] ⎟ ; ⎜ \ ⎟ < ⎜ ] ∂ W ⎪ = ∂V 5 ⎝ 7 GV ⎠ ⎝ ⎠ ⎩
⎧ ⎛ ∂ ω\ ⎞ ∂ 0 [ FRV ϕ VLQ ϕ ⎪ P; + − + MH[ + MF[ ⎟ 0< + 0] = ρ ⎜ ,[ ⎜ ⎟ ∂V 5 5 ∂W ⎪ ⎝ ⎠ ⎪ ⎛ ∂ ω[ ⎞ ⎪ ⎛ Gϕ⎞ ∂ 0 < FRV ϕ ⎟⎟ 0 = − 7= = ρ ⎜ , < + + MH< + MF< ⎟ 0 ; − ⎜⎜ + ⎨ P< + ⎜ ⎟ ∂ V 5 7 G V ∂W ⎝ ⎠ ⎪ ⎝ ⎠ ⎪ ⎪ P + ∂ 0 ] − VLQ ϕ 0 + ⎛⎜ + G ϕ ⎞⎟ 0 + 7 = ρ ⎛⎜ , ∂ ω] + M + M ⎞⎟ H] F] ⎟ ; ⎜ \ ⎟ < ⎜ ] ∂ W ⎪ = ∂V 5 ⎝ 7 GV ⎠ ⎝ ⎠ ⎩
X Y Z GpVLJQHQWOHVFRPSRVDQWHVGDQV {* ;<=}GXYHFWHXUWUDQVODWLRQGH*VRLW *R* j O¶LQVWDQWW
X Y Z GpVLJQHQWOHVFRPSRVDQWHVGDQV {* ;<=}GXYHFWHXUWUDQVODWLRQGH*VRLW *R* j O¶LQVWDQWW
5HPDUTXHV
5HPDUTXHV
± 6LOHUHSqUH {* ;<=}HVWJDOLOpHQRQDELHQVU
± 6LOHUHSqUH {* ;<=}HVWJDOLOpHQRQDELHQVU
ΓH = ΓF = θ = MH = MF = ± 6LOHSUREOqPHHVWSODQODOLJQHPR\HQQHYLEUDQWGDQVOHSODQGHV\PpWULH[R\ RQD ϕ =
= Z = 7] = 0 [ = 0 < = ω[ = ω< = 7
ΓH = ΓF = θ = MH = MF = ± 6LOHSUREOqPHHVWSODQODOLJQHPR\HQQHYLEUDQWGDQVOHSODQGHV\PpWULH[R\ RQD ϕ =
= Z = 7] = 0 [ = 0 < = ω[ = ω< = 7
±0pWKRGHJpQpUDOHG¶DQDO\VHG\QDPLTXH
±0pWKRGHJpQpUDOHG¶DQDO\VHG\QDPLTXH
/D PpWKRGH TXH QRXV SURSRVRQV LFL HVW XQH PpWKRGH GHV GpSODFHPHQWV F¶HVW j GLUH TX¶HOOH UHWLHQWFRPPHLQFRQQXHVSULYLOpJLpHVOHVTXDWUHGpSODFHPHQWVGHODVHFWLRQGURLWHFRXUDQWH X Y Z ω[ TXLVRQWGHVIRQFWLRQVGHVHWGHWDVVRFLpHVDXTXDWUHPRXYHPHQWVGHFHWWH VHFWLRQGURLWHORQJLWXGLQDO {X}GHIOH[LRQ {Y}HW {Z}GHWRUVLRQ {ω[ }
/D PpWKRGH TXH QRXV SURSRVRQV LFL HVW XQH PpWKRGH GHV GpSODFHPHQWV F¶HVW j GLUH TX¶HOOH UHWLHQWFRPPHLQFRQQXHVSULYLOpJLpHVOHVTXDWUHGpSODFHPHQWVGHODVHFWLRQGURLWHFRXUDQWH X Y Z ω[ TXLVRQWGHVIRQFWLRQVGHVHWGHWDVVRFLpHVDXTXDWUHPRXYHPHQWVGHFHWWH VHFWLRQGURLWHORQJLWXGLQDO {X}GHIOH[LRQ {Y}HW {Z}GHWRUVLRQ {ω[ }
(Q QRXV DSSX\DQW VXU XQH K\SRWKqVH VLPSOLILFDWULFH QRXV H[SULPHURQV WRXWHV OHV LQFRQQXHV GX SUREOqPH GpSODFHPHQWV GpIRUPDWLRQV FRQWUDLQWHV YLVVHXUV HQ IRQFWLRQ GH FHV TXDWUH SDUDPqWUHVSULYLOpJLpVHWQRXVpWDEOLURQVOHVpTXDWLRQVGXPRXYHPHQWTXLSHUPHWWHQWGHOHV FDOFXOHU
(Q QRXV DSSX\DQW VXU XQH K\SRWKqVH VLPSOLILFDWULFH QRXV H[SULPHURQV WRXWHV OHV LQFRQQXHV GX SUREOqPH GpSODFHPHQWV GpIRUPDWLRQV FRQWUDLQWHV YLVVHXUV HQ IRQFWLRQ GH FHV TXDWUH SDUDPqWUHVSULYLOpJLpVHWQRXVpWDEOLURQVOHVpTXDWLRQVGXPRXYHPHQWTXLSHUPHWWHQWGHOHV FDOFXOHU
+\SRWKqVH
+\SRWKqVH
3 V < = W GpVLJQDQWODSDUWLFXOHFRXUDQWHG¶XQHVHFWLRQGURLWH6GHFHQWUH * V W RQVDLW TXHODWUDQVODWLRQVXELHSDU3HVWODVRPPHGHWURLVWUDQVODWLRQVGXHVUHVSHFWLYHPHQW ± jXQHWUDQVODWLRQGH6GHFRPSRVDQWHV X Y Z
3 V < = W GpVLJQDQWODSDUWLFXOHFRXUDQWHG¶XQHVHFWLRQGURLWH6GHFHQWUH * V W RQVDLW TXHODWUDQVODWLRQVXELHSDU3HVWODVRPPHGHWURLVWUDQVODWLRQVGXHVUHVSHFWLYHPHQW ± jXQHWUDQVODWLRQGH6GHFRPSRVDQWHV X Y Z
± jXQHURWDWLRQGH6DXWRXUGH*GHFRPSRVDQWHV ω; ω< ω=
± jXQHURWDWLRQGH6DXWRXUGH*GHFRPSRVDQWHV ω; ω< ω=
± jXQHGpIRUPDWLRQGH6
± jXQHGpIRUPDWLRQGH6
&HWWHWURLVLqPHWUDQVODWLRQHVWQpJOLJHDEOHGHYDQWOHVGHX[SUHPLqUHV
&HWWHWURLVLqPHWUDQVODWLRQHVWQpJOLJHDEOHGHYDQWOHVGHX[SUHPLqUHV
- 191 -
- 191 -
3UHPLqUHFRQVpTXHQFH
3UHPLqUHFRQVpTXHQFH
3R3 = *R* +
3R3 = *R* +
*R3
F¶HVWjGLUH
*R3
F¶HVWjGLUH ⎧ X = X + = ⋅ ω\ − < ⋅ ω] ⎪ ⎪ 3R3 ⎨ Y = Y − = ⋅ ω[ ⎪ ⎪⎩ Z = Z + < ⋅ ω[
⎧ X = X + = ⋅ ω\ − < ⋅ ω] ⎪ ⎪ 3R3 ⎨ Y = Y − = ⋅ ω[ ⎪ ⎪⎩ Z = Z + < ⋅ ω[
'HX[LqPHFRQVpTXHQFH
'HX[LqPHFRQVpTXHQFH
'DQVOHVIRUPXOHV UHPSODoRQVXYZSDUOHXUVH[SUHVVLRQV FLGHVVXVRQREWLHQW OHVFRPSRVDQWHV ω< HW ω=
'DQVOHVIRUPXOHV UHPSODoRQVXYZSDUOHXUVH[SUHVVLRQV FLGHVVXVRQREWLHQW OHVFRPSRVDQWHV ω< HW ω=
⎧ ⎪ ω[ ⎪ ⎪ ⎛ Gϕ⎞ ∂Z VLQ ϕ ⎪ ⎟⎟ Y − ⎨ ω< = X − ⎜⎜ + ∂V 5 ⎝ 7 GV ⎠ ⎪ ⎪ ⎪ ω = FRV ϕ X − ⎛⎜ + G ϕ ⎞⎟ Z + ∂ Y ⎜ 7 GV ⎟ ⎪ ] ∂V 5 ⎝ ⎠ ⎩
⎧ ⎪ ω[ ⎪ ⎪ ⎛ Gϕ⎞ ∂Z VLQ ϕ ⎪ ⎟⎟ Y − ⎨ ω< = X − ⎜⎜ + ∂V 5 ⎝ 7 GV ⎠ ⎪ ⎪ ⎪ ω = FRV ϕ X − ⎛⎜ + G ϕ ⎞⎟ Z + ∂ Y ⎜ 7 GV ⎟ ⎪ ] ∂V 5 ⎝ ⎠ ⎩
(QSRUWDQWFHVH[SUHVVLRQVGH ω< HW ω= GDQV RQREWLHQWOHVH[SUHVVLRQVGHXYZHQ IRQFWLRQGH X Y Z HW ω[ HQSRUWDQWHQVXLWHFHVGHUQLqUHVGDQVOHVIRUPXOHV RQREWLHQW OHVH[SUHVVLRQVGHVGpIRUPDWLRQV ε ; γ ;< HW γ ;= GDQVOHVILEUHVORQJLWXGLQDOHVSXLVFHOOHV GHVFRQWUDLQWHV σ ; τ;< HW τ;= jO¶DLGHGHODORLGHFRPSRUWHPHQW
(QSRUWDQWFHVH[SUHVVLRQVGH ω< HW ω= GDQV RQREWLHQWOHVH[SUHVVLRQVGHXYZHQ IRQFWLRQGH X Y Z HW ω[ HQSRUWDQWHQVXLWHFHVGHUQLqUHVGDQVOHVIRUPXOHV RQREWLHQW OHVH[SUHVVLRQVGHVGpIRUPDWLRQV ε ; γ ;< HW γ ;= GDQVOHVILEUHVORQJLWXGLQDOHVSXLVFHOOHV GHVFRQWUDLQWHV σ ; τ;< HW τ;= jO¶DLGHGHODORLGHFRPSRUWHPHQW
([SUHVVLRQGXYLVVHXUVXU6
([SUHVVLRQGXYLVVHXUVXU6
3DUUDSSRUWjVDSRVLWLRQGHUHSRVR ODVHFWLRQ6G¶DEVFLVVHFXUYLOLJQHVVHWURXYHGpSODFpH jO¶LQVWDQWW
3DUUDSSRUWjVDSRVLWLRQGHUHSRVR ODVHFWLRQ6G¶DEVFLVVHFXUYLOLJQHVVHWURXYHGpSODFpH jO¶LQVWDQWW
± G¶XQHWUDQVODWLRQ Λ = X , + Y - + Z . = *R*
± G¶XQHWUDQVODWLRQ Λ = X , + Y - + Z . = *R*
± G¶XQHURWDWLRQ
= ω; , + ω< - + ω= . DXWRXUGH*
± G¶XQHURWDWLRQ
= ω; , + ω< - + ω= . DXWRXUGH*
3RXU OD VHFWLRQ YRLVLQH 6′ G¶DEVFLVVH FXUYLOLJQH V + GV OD WUDQVODWLRQ HW OD URWDWLRQ VRQW ∂Λ FDUDFWpULVpHVSDUOHVYHFWHXUV Λ + GV HW ∂V
3RXU OD VHFWLRQ YRLVLQH 6′ G¶DEVFLVVH FXUYLOLJQH V + GV OD WUDQVODWLRQ HW OD URWDWLRQ VRQW ∂Λ FDUDFWpULVpHVSDUOHVYHFWHXUV Λ + GV HW ∂V
- 192 -
- 192 -
3UHPLqUHFRQVpTXHQFH
3UHPLqUHFRQVpTXHQFH
3R3 = *R* +
3R3 = *R* +
*R3
F¶HVWjGLUH
*R3
F¶HVWjGLUH ⎧ X = X + = ⋅ ω\ − < ⋅ ω] ⎪ ⎪ 3R3 ⎨ Y = Y − = ⋅ ω[ ⎪ ⎪⎩ Z = Z + < ⋅ ω[
⎧ X = X + = ⋅ ω\ − < ⋅ ω] ⎪ ⎪ 3R3 ⎨ Y = Y − = ⋅ ω[ ⎪ ⎪⎩ Z = Z + < ⋅ ω[
'HX[LqPHFRQVpTXHQFH
'HX[LqPHFRQVpTXHQFH
'DQVOHVIRUPXOHV UHPSODoRQVXYZSDUOHXUVH[SUHVVLRQV FLGHVVXVRQREWLHQW OHVFRPSRVDQWHV ω< HW ω=
'DQVOHVIRUPXOHV UHPSODoRQVXYZSDUOHXUVH[SUHVVLRQV FLGHVVXVRQREWLHQW OHVFRPSRVDQWHV ω< HW ω=
⎧ ⎪ ω[ ⎪ ⎪ ⎛ Gϕ⎞ ∂Z VLQ ϕ ⎪ ⎟⎟ Y − ⎨ ω< = X − ⎜⎜ + ∂V 5 7 G V ⎝ ⎠ ⎪ ⎪ ⎪ ω = FRV ϕ X − ⎛⎜ + G ϕ ⎞⎟ Z + ∂ Y ⎜ 7 GV ⎟ ⎪ ] ∂V 5 ⎝ ⎠ ⎩
⎧ ⎪ ω[ ⎪ ⎪ ⎛ Gϕ⎞ ∂Z VLQ ϕ ⎪ ⎟⎟ Y − ⎨ ω< = X − ⎜⎜ + ∂V 5 7 G V ⎝ ⎠ ⎪ ⎪ ⎪ ω = FRV ϕ X − ⎛⎜ + G ϕ ⎞⎟ Z + ∂ Y ⎜ 7 GV ⎟ ⎪ ] ∂V 5 ⎝ ⎠ ⎩
(QSRUWDQWFHVH[SUHVVLRQVGH ω< HW ω= GDQV RQREWLHQWOHVH[SUHVVLRQVGHXYZHQ IRQFWLRQGH X Y Z HW ω[ HQSRUWDQWHQVXLWHFHVGHUQLqUHVGDQVOHVIRUPXOHV RQREWLHQW OHVH[SUHVVLRQVGHVGpIRUPDWLRQV ε ; γ ;< HW γ ;= GDQVOHVILEUHVORQJLWXGLQDOHVSXLVFHOOHV GHVFRQWUDLQWHV σ ; τ;< HW τ;= jO¶DLGHGHODORLGHFRPSRUWHPHQW
(QSRUWDQWFHVH[SUHVVLRQVGH ω< HW ω= GDQV RQREWLHQWOHVH[SUHVVLRQVGHXYZHQ IRQFWLRQGH X Y Z HW ω[ HQSRUWDQWHQVXLWHFHVGHUQLqUHVGDQVOHVIRUPXOHV RQREWLHQW OHVH[SUHVVLRQVGHVGpIRUPDWLRQV ε ; γ ;< HW γ ;= GDQVOHVILEUHVORQJLWXGLQDOHVSXLVFHOOHV GHVFRQWUDLQWHV σ ; τ;< HW τ;= jO¶DLGHGHODORLGHFRPSRUWHPHQW
([SUHVVLRQGXYLVVHXUVXU6
([SUHVVLRQGXYLVVHXUVXU6
3DUUDSSRUWjVDSRVLWLRQGHUHSRVR ODVHFWLRQ6G¶DEVFLVVHFXUYLOLJQHVVHWURXYHGpSODFpH jO¶LQVWDQWW
3DUUDSSRUWjVDSRVLWLRQGHUHSRVR ODVHFWLRQ6G¶DEVFLVVHFXUYLOLJQHVVHWURXYHGpSODFpH jO¶LQVWDQWW
± G¶XQHWUDQVODWLRQ Λ = X , + Y - + Z . = *R*
± G¶XQHWUDQVODWLRQ Λ = X , + Y - + Z . = *R*
± G¶XQHURWDWLRQ
= ω; , + ω< - + ω= . DXWRXUGH*
± G¶XQHURWDWLRQ
= ω; , + ω< - + ω= . DXWRXUGH*
3RXU OD VHFWLRQ YRLVLQH 6′ G¶DEVFLVVH FXUYLOLJQH V + GV OD WUDQVODWLRQ HW OD URWDWLRQ VRQW ∂Λ FDUDFWpULVpHVSDUOHVYHFWHXUV Λ + GV HW ∂V
3RXU OD VHFWLRQ YRLVLQH 6′ G¶DEVFLVVH FXUYLOLJQH V + GV OD WUDQVODWLRQ HW OD URWDWLRQ VRQW ∂Λ FDUDFWpULVpHVSDUOHVYHFWHXUV Λ + GV HW ∂V
- 192 -
- 192 -
(QXWLOLVDQWOHVIRUPXOHVGHGpULYDWLRQYHFWRULHOOHV GXWRPH,,FKDSLWUH,RQWURXYH
⎧ ⎛ ∂Λ ⎞ ⎟ = ∂ X − FRV ϕ Y + VLQ ϕ Z ⎪ ⎜⎜ 5 5 ⎪ ⎝ ∂ V ⎟⎠ ; ∂ V ⎪ ⎪ ⎛ Gϕ ⎞ ∂ Λ ⎪ ⎛⎜ ∂ Λ ⎞⎟ ∂ Y FRV ϕ ⎟⎟ Z = + X − ⎜⎜ + ⎨⎜ ⎟ ∂V ⎪ ⎝ ∂V ⎠ ∂V 5 ⎝ 7 GV ⎠ < ⎪ ⎪ ⎪ ⎛⎜ ∂ Λ ⎞⎟ = ∂ Z − VLQ ϕ X + ⎛⎜ + G ϕ ⎞⎟ Y ⎜ 7 GV ⎟ ⎪ ⎜ ∂V ⎟ 5 ⎝ ⎠ ⎠= ∂ V ⎩⎝ ⎧ ⎛∂ω⎞ ∂ ω[ FRV ϕ VLQ ϕ ⎟⎟ = − ω< + ω= ⎪ ⎜⎜ ∂ ∂ V V 5 5 ⎠; ⎪⎝ ⎪ ⎪ ∂ ω\ FRV ϕ ⎛ Gϕ⎞ ⎪ ⎛∂ω⎞ ⎟⎟ = ⎟⎟ ω= + ω; − ⎜⎜ + ⎨ ⎜⎜ ∂V 5 ⎪ ⎝ ∂ V ⎠< ⎝ 7 GV ⎠ ⎪ ⎪ ⎪ ⎛⎜ ∂ ω ⎞⎟ = ∂ ω] − VLQ ϕ ω + ⎛⎜ + G ϕ ⎞⎟ ω ; ⎜ ⎟ < ⎪ ⎜ ∂V ⎟ ∂V 5 ⎠= ⎝ 7 GV ⎠ ⎩⎝
(QXWLOLVDQWOHVIRUPXOHVGHGpULYDWLRQYHFWRULHOOHV GXWRPH,,FKDSLWUH,RQWURXYH
⎧ ⎛ ∂Λ ⎞ ⎟ = ∂ X − FRV ϕ Y + VLQ ϕ Z ⎪ ⎜⎜ 5 5 ⎪ ⎝ ∂ V ⎟⎠ ; ∂ V ⎪ ⎪ ⎛ Gϕ ⎞ ∂ Λ ⎪ ⎛⎜ ∂ Λ ⎞⎟ ∂ Y FRV ϕ ⎟⎟ Z = + X − ⎜⎜ + ⎨⎜ ⎟ ∂V ⎪ ⎝ ∂V ⎠ ∂V 5 ⎝ 7 GV ⎠ < ⎪ ⎪ ⎪ ⎛⎜ ∂ Λ ⎞⎟ = ∂ Z − VLQ ϕ X + ⎛⎜ + G ϕ ⎞⎟ Y ⎜ 7 GV ⎟ ⎪ ⎜ ∂V ⎟ 5 ⎝ ⎠ ⎠= ∂ V ⎩⎝ ⎧ ⎛∂ω⎞ ∂ ω[ FRV ϕ VLQ ϕ ⎟⎟ = − ω< + ω= ⎪ ⎜⎜ ∂ ∂ V V 5 5 ⎠; ⎪⎝ ⎪ ⎪ ∂ ω\ FRV ϕ ⎛ Gϕ⎞ ⎪ ⎛∂ω⎞ ⎟⎟ = ⎟⎟ ω= + ω; − ⎜⎜ + ⎨ ⎜⎜ ∂V 5 ⎪ ⎝ ∂ V ⎠< ⎝ 7 GV ⎠ ⎪ ⎪ ⎪ ⎛⎜ ∂ ω ⎞⎟ = ∂ ω] − VLQ ϕ ω + ⎛⎜ + G ϕ ⎞⎟ ω ; ⎜ ⎟ < ⎪ ⎜ ∂V ⎟ ∂V 5 ⎠= ⎝ 7 GV ⎠ ⎩⎝
/D ORL GX FRPSRUWHPHQW YLVFRpODVWLTXH OLQpDLUH GRQQH OH YLVVHXU HQ IRQFWLRQ GH FHV GpSODFHPHQWVGLIIpUHQWLHOV
/D ORL GX FRPSRUWHPHQW YLVFRpODVWLTXH OLQpDLUH GRQQH OH YLVVHXU HQ IRQFWLRQ GH FHV GpSODFHPHQWVGLIIpUHQWLHOV
- 193 -
- 193 -
(QXWLOLVDQWOHVIRUPXOHVGHGpULYDWLRQYHFWRULHOOHV GXWRPH,,FKDSLWUH,RQWURXYH
⎧ ⎛ ∂Λ ⎞ ⎟ = ∂ X − FRV ϕ Y + VLQ ϕ Z ⎪ ⎜⎜ ⎟ ∂ 5 V 5 ⎪⎝ ⎠; ∂ V ⎪ ⎪ ⎛ Gϕ ⎞ ∂ Λ ⎪ ⎛⎜ ∂ Λ ⎞⎟ ∂ Y FRV ϕ ⎟ Z = + X − ⎜⎜ + ⎨ ∂ V ⎪ ⎜⎝ ∂ V ⎟⎠ ∂V 5 7 G V ⎟⎠ ⎝ < ⎪ ⎪ ⎪ ⎛⎜ ∂ Λ ⎞⎟ = ∂ Z − VLQ ϕ X + ⎛⎜ + G ϕ ⎞⎟ Y ⎜ 7 GV ⎟ ⎪ ⎜ ∂V ⎟ 5 ⎝ ⎠ ⎠= ∂ V ⎩⎝ ⎧ ⎛∂ω⎞ ∂ ω[ FRV ϕ VLQ ϕ ⎟⎟ = − ω< + ω= ⎪ ⎜⎜ ∂V 5 5 ⎪ ⎝ ∂ V ⎠; ⎪ ⎪ ∂ ω\ FRV ϕ ⎛ Gϕ⎞ ⎪ ⎛∂ω⎞ ⎟⎟ = ⎟⎟ ω= + ω; − ⎜⎜ + ⎨ ⎜⎜ ∂V 5 ⎪ ⎝ ∂ V ⎠< ⎝ 7 GV ⎠ ⎪ ⎪ ⎪ ⎛⎜ ∂ ω ⎞⎟ = ∂ ω] − VLQ ϕ ω + ⎛⎜ + G ϕ ⎞⎟ ω ; ⎜ ⎟ < ⎪ ⎜ ∂V ⎟ ∂V 5 ⎠= ⎝ 7 GV ⎠ ⎩⎝
(QXWLOLVDQWOHVIRUPXOHVGHGpULYDWLRQYHFWRULHOOHV GXWRPH,,FKDSLWUH,RQWURXYH
⎧ ⎛ ∂Λ ⎞ ⎟ = ∂ X − FRV ϕ Y + VLQ ϕ Z ⎪ ⎜⎜ ⎟ ∂ 5 V 5 ⎪⎝ ⎠; ∂ V ⎪ ⎪ ⎛ Gϕ ⎞ ∂ Λ ⎪ ⎛⎜ ∂ Λ ⎞⎟ ∂ Y FRV ϕ ⎟ Z = + X − ⎜⎜ + ⎨ ∂ V ⎪ ⎜⎝ ∂ V ⎟⎠ ∂V 5 7 G V ⎟⎠ ⎝ < ⎪ ⎪ ⎪ ⎛⎜ ∂ Λ ⎞⎟ = ∂ Z − VLQ ϕ X + ⎛⎜ + G ϕ ⎞⎟ Y ⎜ 7 GV ⎟ ⎪ ⎜ ∂V ⎟ 5 ⎝ ⎠ ⎠= ∂ V ⎩⎝ ⎧ ⎛∂ω⎞ ∂ ω[ FRV ϕ VLQ ϕ ⎟⎟ = − ω< + ω= ⎪ ⎜⎜ ∂V 5 5 ⎪ ⎝ ∂ V ⎠; ⎪ ⎪ ∂ ω\ FRV ϕ ⎛ Gϕ⎞ ⎪ ⎛∂ω⎞ ⎟⎟ = ⎟⎟ ω= + ω; − ⎜⎜ + ⎨ ⎜⎜ ∂V 5 ⎪ ⎝ ∂ V ⎠< ⎝ 7 GV ⎠ ⎪ ⎪ ⎪ ⎛⎜ ∂ ω ⎞⎟ = ∂ ω] − VLQ ϕ ω + ⎛⎜ + G ϕ ⎞⎟ ω ; ⎜ ⎟ < ⎪ ⎜ ∂V ⎟ ∂V 5 ⎠= ⎝ 7 GV ⎠ ⎩⎝
/D ORL GX FRPSRUWHPHQW YLVFRpODVWLTXH OLQpDLUH GRQQH OH YLVVHXU HQ IRQFWLRQ GH FHV GpSODFHPHQWVGLIIpUHQWLHOV
/D ORL GX FRPSRUWHPHQW YLVFRpODVWLTXH OLQpDLUH GRQQH OH YLVVHXU HQ IRQFWLRQ GH FHV GpSODFHPHQWVGLIIpUHQWLHOV
- 193 -
- 193 -
/HPRPHQWGHWRUVLRQ 0 W HVWOLpDXPRPHQWORQJLWXGLQDO 0 [ SDUODIRUPXOHGHWUDQVSRUWGHV PRPHQWV 0 W = 0 [ −
/HPRPHQWGHWRUVLRQ 0 W HVWOLpDXPRPHQWORQJLWXGLQDO 0 [ SDUODIRUPXOHGHWUDQVSRUWGHV PRPHQWV 0 W = 0 [ −
4XDQWDX[FRPSRVDQWHV 7< HW 7= GHO¶HIIRUWWUDQFKDQWRQGpGXLWOHXUVH[SUHVVLRQVGHVGHX[ GHUQLqUHVpTXDWLRQV G¶pTXLOLEUHGHVPRPHQWV
4XDQWDX[FRPSRVDQWHV 7< HW 7= GHO¶HIIRUWWUDQFKDQWRQGpGXLWOHXUVH[SUHVVLRQVGHVGHX[ GHUQLqUHVpTXDWLRQV G¶pTXLOLEUHGHVPRPHQWV
1RXV DYRQV PDLQWHQDQW H[SULPp WRXWHV OHV FRPSRVDQWHV GX YLVVHXU HQ IRQFWLRQ GHV GpSODFHPHQWV
1RXV DYRQV PDLQWHQDQW H[SULPp WRXWHV OHV FRPSRVDQWHV GX YLVVHXU HQ IRQFWLRQ GHV GpSODFHPHQWV
(QSRUWDQWFHVH[SUHVVLRQVGDQVOHVWURLVpTXDWLRQV G¶pTXLOLEUHGHVIRUFHVHWODSUHPLqUH pTXDWLRQ G¶pTXLOLEUH GHV PRPHQWV RQ REWLHQW OHV TXDWUH pTXDWLRQV GX PRXYHPHQW FKHUFKpHV
(QSRUWDQWFHVH[SUHVVLRQVGDQVOHVWURLVpTXDWLRQV G¶pTXLOLEUHGHVIRUFHVHWODSUHPLqUH pTXDWLRQ G¶pTXLOLEUH GHV PRPHQWV RQ REWLHQW OHV TXDWUH pTXDWLRQV GX PRXYHPHQW FKHUFKpHV
5HPDUTXHV
5HPDUTXHV
± SRXU DYRLU OHV PRXYHPHQWV QRQ DPRUWLV F¶HVW j GLUH QpJOLJHU O¶DPRUWLVVHPHQW LQWHUQH RQ DQQXOHOHVFRHIILFLHQWVGHYLVFRVLWp (′ HW *′ GDQVOHVIRUPXOHV
± SRXU DYRLU OHV PRXYHPHQWV QRQ DPRUWLV F¶HVW j GLUH QpJOLJHU O¶DPRUWLVVHPHQW LQWHUQH RQ DQQXOHOHVFRHIILFLHQWVGHYLVFRVLWp (′ HW *′ GDQVOHVIRUPXOHV
± VDXI SRXU OHV KDUPRQLTXHV GH UDQJ pOHYp OH FRXSOH LQHUWLHO
G DX[ URWDWLRQV
± VDXI SRXU OHV KDUPRQLTXHV GH UDQJ pOHYp OH FRXSOH LQHUWLHO
G DX[ URWDWLRQV
UHODWLYHVGHVVHFWLRQVGURLWHVHVWQpJOLJHDEOHSDUUDSSRUWDX[DXWUHVFRXSOHVILJXUDQWGDQVOD GHX[LqPHpTXDWLRQ G¶pTXLOLEUHGHVPRPHQWVHWLOHVWOpJLWLPHGHO¶\FRQVLGpUHUFRPPH QXO G ± GDQVGHQRPEUHX[SUREOqPHVODSRXWUHQ¶HVWSDVFKDUJpHHWO¶RQDDORUV S = HW P = VL
UHODWLYHVGHVVHFWLRQVGURLWHVHVWQpJOLJHDEOHSDUUDSSRUWDX[DXWUHVFRXSOHVILJXUDQWGDQVOD GHX[LqPHpTXDWLRQ G¶pTXLOLEUHGHVPRPHQWVHWLOHVWOpJLWLPHGHO¶\FRQVLGpUHUFRPPH QXO G ± GDQVGHQRPEUHX[SUREOqPHVODSRXWUHQ¶HVWSDVFKDUJpHHWO¶RQDDORUV S = HW P = VL
±35(0,Ê5($33/,&$7,21&25'(69,%5$17(6
±35(0,Ê5($33/,&$7,21&25'(69,%5$17(6
/DFRUGHHVWIL[pHHQ2HW$GLVWDQWGH/HWWHQGXHHIIRUWQRUPDO1XQLIRUPH 2QpWXGLHVHV YLEUDWLRQVWUDQVYHUVDOHVQDWXUHOOHVQRQDPRUWLHVGDQVOHSODQ[R\ JDOLOpHQ
/DFRUGHHVWIL[pHHQ2HW$GLVWDQWGH/HWWHQGXHHIIRUWQRUPDO1XQLIRUPH 2QpWXGLHVHV YLEUDWLRQVWUDQVYHUVDOHVQDWXUHOOHVQRQDPRUWLHVGDQVOHSODQ[R\ JDOLOpHQ
GHSOXVOHUHSqUH {* ;<=}HVWJDOLOpHQRQD ΓH = ΓF = HW MH = MF =
GHSOXVOHUHSqUH {* ;<=}HVWJDOLOpHQRQD ΓH = ΓF = HW MH = MF =
)LJXUH
)LJXUH
- 194 -
- 194 -
/HPRPHQWGHWRUVLRQ 0 W HVWOLpDXPRPHQWORQJLWXGLQDO 0 [ SDUODIRUPXOHGHWUDQVSRUWGHV PRPHQWV
/HPRPHQWGHWRUVLRQ 0 W HVWOLpDXPRPHQWORQJLWXGLQDO 0 [ SDUODIRUPXOHGHWUDQVSRUWGHV PRPHQWV
0 W = 0 [ −
0 W = 0 [ −
4XDQWDX[FRPSRVDQWHV 7< HW 7= GHO¶HIIRUWWUDQFKDQWRQGpGXLWOHXUVH[SUHVVLRQVGHVGHX[ GHUQLqUHVpTXDWLRQV G¶pTXLOLEUHGHVPRPHQWV
4XDQWDX[FRPSRVDQWHV 7< HW 7= GHO¶HIIRUWWUDQFKDQWRQGpGXLWOHXUVH[SUHVVLRQVGHVGHX[ GHUQLqUHVpTXDWLRQV G¶pTXLOLEUHGHVPRPHQWV
1RXV DYRQV PDLQWHQDQW H[SULPp WRXWHV OHV FRPSRVDQWHV GX YLVVHXU HQ IRQFWLRQ GHV GpSODFHPHQWV
1RXV DYRQV PDLQWHQDQW H[SULPp WRXWHV OHV FRPSRVDQWHV GX YLVVHXU HQ IRQFWLRQ GHV GpSODFHPHQWV
(QSRUWDQWFHVH[SUHVVLRQVGDQVOHVWURLVpTXDWLRQV G¶pTXLOLEUHGHVIRUFHVHWODSUHPLqUH pTXDWLRQ G¶pTXLOLEUH GHV PRPHQWV RQ REWLHQW OHV TXDWUH pTXDWLRQV GX PRXYHPHQW FKHUFKpHV
(QSRUWDQWFHVH[SUHVVLRQVGDQVOHVWURLVpTXDWLRQV G¶pTXLOLEUHGHVIRUFHVHWODSUHPLqUH pTXDWLRQ G¶pTXLOLEUH GHV PRPHQWV RQ REWLHQW OHV TXDWUH pTXDWLRQV GX PRXYHPHQW FKHUFKpHV
5HPDUTXHV
5HPDUTXHV
± SRXU DYRLU OHV PRXYHPHQWV QRQ DPRUWLV F¶HVW j GLUH QpJOLJHU O¶DPRUWLVVHPHQW LQWHUQH RQ DQQXOHOHVFRHIILFLHQWVGHYLVFRVLWp (′ HW *′ GDQVOHVIRUPXOHV
± SRXU DYRLU OHV PRXYHPHQWV QRQ DPRUWLV F¶HVW j GLUH QpJOLJHU O¶DPRUWLVVHPHQW LQWHUQH RQ DQQXOHOHVFRHIILFLHQWVGHYLVFRVLWp (′ HW *′ GDQVOHVIRUPXOHV
± VDXI SRXU OHV KDUPRQLTXHV GH UDQJ pOHYp OH FRXSOH LQHUWLHO
G DX[ URWDWLRQV
± VDXI SRXU OHV KDUPRQLTXHV GH UDQJ pOHYp OH FRXSOH LQHUWLHO
G DX[ URWDWLRQV
UHODWLYHVGHVVHFWLRQVGURLWHVHVWQpJOLJHDEOHSDUUDSSRUWDX[DXWUHVFRXSOHVILJXUDQWGDQVOD GHX[LqPHpTXDWLRQ G¶pTXLOLEUHGHVPRPHQWVHWLOHVWOpJLWLPHGHO¶\FRQVLGpUHUFRPPH QXO G ± GDQVGHQRPEUHX[SUREOqPHVODSRXWUHQ¶HVWSDVFKDUJpHHWO¶RQDDORUV S = HW P = VL
UHODWLYHVGHVVHFWLRQVGURLWHVHVWQpJOLJHDEOHSDUUDSSRUWDX[DXWUHVFRXSOHVILJXUDQWGDQVOD GHX[LqPHpTXDWLRQ G¶pTXLOLEUHGHVPRPHQWVHWLOHVWOpJLWLPHGHO¶\FRQVLGpUHUFRPPH QXO G ± GDQVGHQRPEUHX[SUREOqPHVODSRXWUHQ¶HVWSDVFKDUJpHHWO¶RQDDORUV S = HW P = VL
±35(0,Ê5($33/,&$7,21&25'(69,%5$17(6
±35(0,Ê5($33/,&$7,21&25'(69,%5$17(6
/DFRUGHHVWIL[pHHQ2HW$GLVWDQWGH/HWWHQGXHHIIRUWQRUPDO1XQLIRUPH 2QpWXGLHVHV YLEUDWLRQVWUDQVYHUVDOHVQDWXUHOOHVQRQDPRUWLHVGDQVOHSODQ[R\ JDOLOpHQ
/DFRUGHHVWIL[pHHQ2HW$GLVWDQWGH/HWWHQGXHHIIRUWQRUPDO1XQLIRUPH 2QpWXGLHVHV YLEUDWLRQVWUDQVYHUVDOHVQDWXUHOOHVQRQDPRUWLHVGDQVOHSODQ[R\ JDOLOpHQ
GHSOXVOHUHSqUH {* ;<=}HVWJDOLOpHQRQD ΓH = ΓF = HW MH = MF =
GHSOXVOHUHSqUH {* ;<=}HVWJDOLOpHQRQD ΓH = ΓF = HW MH = MF =
)LJXUH
)LJXUH
- 194 -
- 194 -
/D FRUGH HVW FRQVLGpUpH FRPPH XQ ILO F¶HVW j GLUH XQH SRXWUH VDQV ULJLGLWp HQ IOH[LRQ QL WRUVLRQ/HVILOVHWFkEOHVRQWpWppWXGLpVHQVWDWLTXHDXWRPH,,FKDSLWUH,/HYLVVHXUVH UpGXLWVXUFKDTXHVHFWLRQGURLWHjO¶HIIRUWQRUPDO1QpFHVVDLUHPHQWSRVLWLIWHQVLRQ 2QVDLW GHSOXVTXHOHVpTXDWLRQVGXSUREOqPHGRLYHQWrWUHpFULWHVGDQVODFRQILJXUDWLRQGpIRUPpHj O¶LQVWDQWWFRQVLGpUp
/D FRUGH HVW FRQVLGpUpH FRPPH XQ ILO F¶HVW j GLUH XQH SRXWUH VDQV ULJLGLWp HQ IOH[LRQ QL WRUVLRQ/HVILOVHWFkEOHVRQWpWppWXGLpVHQVWDWLTXHDXWRPH,,FKDSLWUH,/HYLVVHXUVH UpGXLWVXUFKDTXHVHFWLRQGURLWHjO¶HIIRUWQRUPDO1QpFHVVDLUHPHQWSRVLWLIWHQVLRQ 2QVDLW GHSOXVTXHOHVpTXDWLRQVGXSUREOqPHGRLYHQWrWUHpFULWHVGDQVODFRQILJXUDWLRQGpIRUPpHj O¶LQVWDQWWFRQVLGpUp
/DVHFRQGHpTXDWLRQG¶pTXLOLEUHGHVIRUFHV VXLYDQWR<GRQQHLPPpGLDWHPHQWO¶pTXDWLRQ GXPRXYHPHQW
/DVHFRQGHpTXDWLRQG¶pTXLOLEUHGHVIRUFHV VXLYDQWR<GRQQHLPPpGLDWHPHQWO¶pTXDWLRQ GXPRXYHPHQW
1
∂ Y
∂ [
∂ Y
= ρ6
∂ W
RX
∂ Y ∂ [
=
∂ Y & ∂ W
SXLVTXH1HVWXQLIRUPHHWFRQVWDQWHWTXHODFRXUEXUH
DYHF & =
1 ρ6
∂ Y HQ*jO¶LQVWDQWWpJDOH 5 ∂[
∞
∑
VLQ Q π
Q =
& / SpULRGH ωQ = Q π SXOVDWLRQ / QF
∂ Y
∂ [
∂ Y
= ρ6
∂ W
RX
∂ Y ∂ [
=
∂ Y & ∂ W
∞
Y [ W =
1 ρ6
∂ Y HQ*jO¶LQVWDQWWpJDOH 5 ∂[
∑ VLQ Q π / ⎛⎜⎝ $ [
Q FRV
Qπ
Q =
/ ORQJXHXU G¶RQGH Q
DYHF & =
2Q WURXYH HQFRUH XQH pTXDWLRQ GH G¶$OHPEHUW HQ SRVDQW Y [ W = I [ ⋅ J W RQ REWLHQW FRPSWHWHQXGHVFRQGLWLRQVDX[OLPLWHV I = I / = ODVROXWLRQJpQpUDOH
[⎛ FW FW ⎞ ⎜ $ Q FRV Q π + %Q VLQ Q π ⎟ /⎝ / /⎠
&KDTXH KDUPRQLTXH FRQVWLWXH XQH RQGH VWDWLRQQDLUH DYHF λ Q = 7Q =
1
SXLVTXH1HVWXQLIRUPHHWFRQVWDQWHWTXHODFRXUEXUH
2Q WURXYH HQFRUH XQH pTXDWLRQ GH G¶$OHPEHUW HQ SRVDQW Y [ W = I [ ⋅ J W RQ REWLHQW FRPSWHWHQXGHVFRQGLWLRQVDX[OLPLWHV I = I / = ODVROXWLRQJpQpUDOH Y [ W =
FW FW ⎞ + %Q VLQ Q π ⎟ / /⎠
&KDTXH KDUPRQLTXH FRQVWLWXH XQH RQGH VWDWLRQQDLUH DYHF λ Q = 7Q =
& / SpULRGH ωQ = Q π SXOVDWLRQ / QF
/ ORQJXHXU G¶RQGH Q
/HV FRHIILFLHQW GH )RXULHU $ Q HW %Q VH GpWHUPLQHQW j O¶DLGH GHV FRQGLWLRQV LQLWLDOHV GH &DXFK\ jVDYRLU
/HV FRHIILFLHQW GH )RXULHU $ Q HW %Q VH GpWHUPLQHQW j O¶DLGH GHV FRQGLWLRQV LQLWLDOHV GH &DXFK\ jVDYRLU
± HQSRVLWLRQ Y [ R = ϕ [
± HQSRVLWLRQ Y [ R = ϕ [
± HQYLWHVVH
∂Y [ R = ψ [ ∂W
$Q = /
/
∫
± HQYLWHVVH
[ ϕ [ ⋅ VLQ Q π ⋅ G[ HW %Q = Qπ& /
/
∫
[ ψ [ ⋅ VLQ Q π ⋅ G[ /
∂Y [ R = ψ [ ∂W
$Q = /
/
∫
[ ϕ [ ⋅ VLQ Q π ⋅ G[ HW %Q = Qπ& /
/
[
∫ ψ [ ⋅ VLQ Q π / ⋅ G[
±'(8;,Ê0($33/,&$7,219,7(66(6&5,7,48(6'(527$7,21
±'(8;,Ê0($33/,&$7,219,7(66(6&5,7,48(6'(527$7,21
'DQVOHVH[HPSOHVTXLSUpFqGHQWQRXVDYRQVpWXGLpOHVYLEUDWLRQVQDWXUHOOHVGHSRXWUHVOLpHVj GHV UHSqUHV JDOLOpHQV 1RXV DOORQV WUDLWHU PDLQWHQDQW XQ FDV LPSRUWDQW R O¶RQ D GHV IRUFHV G¶LQHUWLHG¶HQWUDvQHPHQWHWGH&RULROLVDLQVLTXHGHVIRUFHVH[FLWDWULFHV
'DQVOHVH[HPSOHVTXLSUpFqGHQWQRXVDYRQVpWXGLpOHVYLEUDWLRQVQDWXUHOOHVGHSRXWUHVOLpHVj GHV UHSqUHV JDOLOpHQV 1RXV DOORQV WUDLWHU PDLQWHQDQW XQ FDV LPSRUWDQW R O¶RQ D GHV IRUFHV G¶LQHUWLHG¶HQWUDvQHPHQWHWGH&RULROLVDLQVLTXHGHVIRUFHVH[FLWDWULFHV
- 195 -
- 195 -
/D FRUGH HVW FRQVLGpUpH FRPPH XQ ILO F¶HVW j GLUH XQH SRXWUH VDQV ULJLGLWp HQ IOH[LRQ QL WRUVLRQ/HVILOVHWFkEOHVRQWpWppWXGLpVHQVWDWLTXHDXWRPH,,FKDSLWUH,/HYLVVHXUVH UpGXLWVXUFKDTXHVHFWLRQGURLWHjO¶HIIRUWQRUPDO1QpFHVVDLUHPHQWSRVLWLIWHQVLRQ 2QVDLW GHSOXVTXHOHVpTXDWLRQVGXSUREOqPHGRLYHQWrWUHpFULWHVGDQVODFRQILJXUDWLRQGpIRUPpHj O¶LQVWDQWWFRQVLGpUp
/D FRUGH HVW FRQVLGpUpH FRPPH XQ ILO F¶HVW j GLUH XQH SRXWUH VDQV ULJLGLWp HQ IOH[LRQ QL WRUVLRQ/HVILOVHWFkEOHVRQWpWppWXGLpVHQVWDWLTXHDXWRPH,,FKDSLWUH,/HYLVVHXUVH UpGXLWVXUFKDTXHVHFWLRQGURLWHjO¶HIIRUWQRUPDO1QpFHVVDLUHPHQWSRVLWLIWHQVLRQ 2QVDLW GHSOXVTXHOHVpTXDWLRQVGXSUREOqPHGRLYHQWrWUHpFULWHVGDQVODFRQILJXUDWLRQGpIRUPpHj O¶LQVWDQWWFRQVLGpUp
/DVHFRQGHpTXDWLRQG¶pTXLOLEUHGHVIRUFHV VXLYDQWR<GRQQHLPPpGLDWHPHQWO¶pTXDWLRQ GXPRXYHPHQW
/DVHFRQGHpTXDWLRQG¶pTXLOLEUHGHVIRUFHV VXLYDQWR<GRQQHLPPpGLDWHPHQWO¶pTXDWLRQ GXPRXYHPHQW
1
∂ Y ∂[
∂ Y
= ρ6
∂W
RX
∂ Y ∂[
=
∂ Y &
SXLVTXH1HVWXQLIRUPHHWFRQVWDQWHWTXHODFRXUEXUH
∂W
DYHF & =
1 ρ6
∂ Y HQ*jO¶LQVWDQWWpJDOH 5 ∂[
2Q WURXYH HQFRUH XQH pTXDWLRQ GH G¶$OHPEHUW HQ SRVDQW Y [ W = I [ ⋅ J W RQ REWLHQW FRPSWHWHQXGHVFRQGLWLRQVDX[OLPLWHV I = I / = ODVROXWLRQJpQpUDOH ∞
Y [ W =
∑ Q =
VLQ Q π
1
& / SpULRGH ωQ = Q π SXOVDWLRQ / QF
∂ Y ∂[
∂ Y
= ρ6
∂W
RX
∂ Y ∂[
=
∂ Y &
∂W
DYHF & =
1 ρ6
∂ Y HQ*jO¶LQVWDQWWpJDOH 5 ∂[
2Q WURXYH HQFRUH XQH pTXDWLRQ GH G¶$OHPEHUW HQ SRVDQW Y [ W = I [ ⋅ J W RQ REWLHQW FRPSWHWHQXGHVFRQGLWLRQVDX[OLPLWHV I = I / = ODVROXWLRQJpQpUDOH ∞
Y [ W =
∑ VLQ Q π / ⎛⎜⎝ $ [
Q FRV
Q =
/ ORQJXHXU G¶RQGH Q
SXLVTXH1HVWXQLIRUPHHWFRQVWDQWHWTXHODFRXUEXUH
[⎛ FW FW ⎞ ⎜ $ Q FRV Q π + %Q VLQ Q π ⎟ /⎝ / /⎠
&KDTXH KDUPRQLTXH FRQVWLWXH XQH RQGH VWDWLRQQDLUH DYHF λ Q = 7Q =
Qπ
FW FW ⎞ + %Q VLQ Q π ⎟ / /⎠
&KDTXH KDUPRQLTXH FRQVWLWXH XQH RQGH VWDWLRQQDLUH DYHF λ Q = 7Q =
& / SpULRGH ωQ = Q π SXOVDWLRQ / QF
/ ORQJXHXU G¶RQGH Q
/HV FRHIILFLHQW GH )RXULHU $ Q HW %Q VH GpWHUPLQHQW j O¶DLGH GHV FRQGLWLRQV LQLWLDOHV GH &DXFK\ jVDYRLU
/HV FRHIILFLHQW GH )RXULHU $ Q HW %Q VH GpWHUPLQHQW j O¶DLGH GHV FRQGLWLRQV LQLWLDOHV GH &DXFK\ jVDYRLU
± HQSRVLWLRQ Y [ R = ϕ [
± HQSRVLWLRQ Y [ R = ϕ [
± HQYLWHVVH
∂Y [ R = ψ [ ∂W
$Q =
/
/
∫
ϕ [ ⋅ VLQ Q π
± HQYLWHVVH
[ ⋅ G[ HW %Q = Qπ& /
/
∫
ψ [ ⋅ VLQ Q π
[ ⋅ G[ /
∂Y [ R = ψ [ ∂W
$Q =
/
/
∫
ϕ [ ⋅ VLQ Q π
[ ⋅ G[ HW %Q = Qπ& /
/
[
∫ ψ [ ⋅ VLQ Q π / ⋅ G[
±'(8;,Ê0($33/,&$7,219,7(66(6&5,7,48(6'(527$7,21
±'(8;,Ê0($33/,&$7,219,7(66(6&5,7,48(6'(527$7,21
'DQVOHVH[HPSOHVTXLSUpFqGHQWQRXVDYRQVpWXGLpOHVYLEUDWLRQVQDWXUHOOHVGHSRXWUHVOLpHVj GHV UHSqUHV JDOLOpHQV 1RXV DOORQV WUDLWHU PDLQWHQDQW XQ FDV LPSRUWDQW R O¶RQ D GHV IRUFHV G¶LQHUWLHG¶HQWUDvQHPHQWHWGH&RULROLVDLQVLTXHGHVIRUFHVH[FLWDWULFHV
'DQVOHVH[HPSOHVTXLSUpFqGHQWQRXVDYRQVpWXGLpOHVYLEUDWLRQVQDWXUHOOHVGHSRXWUHVOLpHVj GHV UHSqUHV JDOLOpHQV 1RXV DOORQV WUDLWHU PDLQWHQDQW XQ FDV LPSRUWDQW R O¶RQ D GHV IRUFHV G¶LQHUWLHG¶HQWUDvQHPHQWHWGH&RULROLVDLQVLTXHGHVIRUFHVH[FLWDWULFHV
- 195 -
- 195 -
)LJXUHD
)LJXUHD
)LJXUHE
)LJXUHE
)LJXUHF
)LJXUHF
2QFRQVLGqUHXQHSRXWUHSULVPDWLTXHGHVHFWLRQUHFWDQJXODLUHGHORQJXHXU/TXLWRXUQHDYHF OD YLWHVVH DQJXODLUH FRQVWDQWH θ DXWRXU GH VRQ D[H [′[ HW UHSRVH VXU GHX[ SDOLHUV HQ VH H[WUpPLWpV2HW$TXHO¶RQSHXWFRQVLGpUHUFRPPHGHVURWXOHV
2QFRQVLGqUHXQHSRXWUHSULVPDWLTXHGHVHFWLRQUHFWDQJXODLUHGHORQJXHXU/TXLWRXUQHDYHF OD YLWHVVH DQJXODLUH FRQVWDQWH θ DXWRXU GH VRQ D[H [′[ HW UHSRVH VXU GHX[ SDOLHUV HQ VH H[WUpPLWpV2HW$TXHO¶RQSHXWFRQVLGpUHUFRPPHGHVURWXOHV
/H UHSqUH {R [\]} HVW JDOLOpHQ DYHF R[ KRUL]RQWDO HW R\ YHUWLFDO DVFHQGDQW /HV D[HV SULQFLSDX[ GH OD SRXWUH VRQW 2; FRQIRQGX DYHF R[ 2< HW 2= DYHF R\ R< = θ ⋅ W OHV
/H UHSqUH {R [\]} HVW JDOLOpHQ DYHF R[ KRUL]RQWDO HW R\ YHUWLFDO DVFHQGDQW /HV D[HV SULQFLSDX[ GH OD SRXWUH VRQW 2; FRQIRQGX DYHF R[ 2< HW 2= DYHF R\ R< = θ ⋅ W OHV
PRPHQWVTXDGUDWLTXHVSULQFLSDX[FHQWUDX[GHODVHFWLRQGURLWH6VRQWQRWpV , < HW , = , ] DYHF , ] << , < ODSRXWUHHVWGRQFWUqVIOH[LEOHGDQVOHSODQ;2< HWF¶HVWGDQVFHSODQTXHQRXV pWXGLHURQVVHVYLEUDWLRQVGHIOH[LRQ
PRPHQWVTXDGUDWLTXHVSULQFLSDX[FHQWUDX[GHODVHFWLRQGURLWH6VRQWQRWpV , < HW , = , ] DYHF , ] << , < ODSRXWUHHVWGRQFWUqVIOH[LEOHGDQVOHSODQ;2< HWF¶HVWGDQVFHSODQTXHQRXV pWXGLHURQVVHVYLEUDWLRQVGHIOH[LRQ
/DILJXUHDUHSUpVHQWHODSRXWUHDXUHSRVSDVGHIRUFHVG¶LQHUWLHQLGHSHVDQWHXU /DILJXUH E HVW UHODWLYH j OD VHFWLRQ GURLWH FRXUDQWH 6 G¶DEVFLVVH [ j O¶LQVWDQW W 'DQV OH UHSqUH {* ;<=}YRLFLOHVFRPSRVDQWHVGHVYHFWHXUVLQWHUYHQDQWGDQVOHPRXYHPHQW
/DILJXUHDUHSUpVHQWHODSRXWUHDXUHSRVSDVGHIRUFHVG¶LQHUWLHQLGHSHVDQWHXU /DILJXUH E HVW UHODWLYH j OD VHFWLRQ GURLWH FRXUDQWH 6 G¶DEVFLVVH [ j O¶LQVWDQW W 'DQV OH UHSqUH {* ;<=}YRLFLOHVFRPSRVDQWHVGHVYHFWHXUVLQWHUYHQDQWGDQVOHPRXYHPHQW
⎧ ⎪ ⎪ *R* ⎨ Y [ W ⎪ ⎪⎩
⎧ ⎪ ⎪ 9U ⎨ ⎪ ⎪⎩
∂Y ∂W
⎧ ⎪ ⎪ ΓU ⎨ ⎪ ⎪⎩
∂ Y ∂W
⎧ ⎪ ⎪ ΓH ⎨ − θ ⋅ Y ⎪ ⎪⎩
⎧ ⎪ ⎪⎪ ΓF ⎨ ⎪ ⎪ θ ⋅ ∂ Y ⎪⎩ ∂W
⎧ ⎪ G⎪ J ⎨ − J FRV θ ⋅ W ⎪ ⎪⎩ J VLQ θ ⋅ W
⎧ ⎪ ⎪ *R* ⎨ Y [ W ⎪ ⎪⎩
⎧ ⎪ ⎪ 9U ⎨ ⎪ ⎪⎩
∂Y ∂W
⎧ ⎪ ⎪ ΓU ⎨ ⎪ ⎪⎩
∂ Y ∂ W
- 196 -
⎧ ⎪ ⎪ ΓH ⎨ − θ ⋅ Y ⎪ ⎪⎩
⎧ ⎪ ⎪⎪ ΓF ⎨ ⎪ ⎪ θ ⋅ ∂ Y ⎪⎩ ∂W
⎧ ⎪ G⎪ J ⎨ − J FRV θ ⋅ W ⎪ ⎪⎩ J VLQ θ ⋅ W
- 196 -
)LJXUHD
)LJXUHD
)LJXUHE
)LJXUHE
)LJXUHF
)LJXUHF
2QFRQVLGqUHXQHSRXWUHSULVPDWLTXHGHVHFWLRQUHFWDQJXODLUHGHORQJXHXU/TXLWRXUQHDYHF OD YLWHVVH DQJXODLUH FRQVWDQWH θ DXWRXU GH VRQ D[H [′[ HW UHSRVH VXU GHX[ SDOLHUV HQ VH H[WUpPLWpV2HW$TXHO¶RQSHXWFRQVLGpUHUFRPPHGHVURWXOHV
2QFRQVLGqUHXQHSRXWUHSULVPDWLTXHGHVHFWLRQUHFWDQJXODLUHGHORQJXHXU/TXLWRXUQHDYHF OD YLWHVVH DQJXODLUH FRQVWDQWH θ DXWRXU GH VRQ D[H [′[ HW UHSRVH VXU GHX[ SDOLHUV HQ VH H[WUpPLWpV2HW$TXHO¶RQSHXWFRQVLGpUHUFRPPHGHVURWXOHV
/H UHSqUH {R [\]} HVW JDOLOpHQ DYHF R[ KRUL]RQWDO HW R\ YHUWLFDO DVFHQGDQW /HV D[HV SULQFLSDX[ GH OD SRXWUH VRQW 2; FRQIRQGX DYHF R[ 2< HW 2= DYHF R\ R< = θ ⋅ W OHV
/H UHSqUH {R [\]} HVW JDOLOpHQ DYHF R[ KRUL]RQWDO HW R\ YHUWLFDO DVFHQGDQW /HV D[HV SULQFLSDX[ GH OD SRXWUH VRQW 2; FRQIRQGX DYHF R[ 2< HW 2= DYHF R\ R< = θ ⋅ W OHV
PRPHQWVTXDGUDWLTXHVSULQFLSDX[FHQWUDX[GHODVHFWLRQGURLWH6VRQWQRWpV , < HW , = , ] DYHF , ] << , < ODSRXWUHHVWGRQFWUqVIOH[LEOHGDQVOHSODQ;2< HWF¶HVWGDQVFHSODQTXHQRXV pWXGLHURQVVHVYLEUDWLRQVGHIOH[LRQ
PRPHQWVTXDGUDWLTXHVSULQFLSDX[FHQWUDX[GHODVHFWLRQGURLWH6VRQWQRWpV , < HW , = , ] DYHF , ] << , < ODSRXWUHHVWGRQFWUqVIOH[LEOHGDQVOHSODQ;2< HWF¶HVWGDQVFHSODQTXHQRXV pWXGLHURQVVHVYLEUDWLRQVGHIOH[LRQ
/DILJXUHDUHSUpVHQWHODSRXWUHDXUHSRVSDVGHIRUFHVG¶LQHUWLHQLGHSHVDQWHXU /DILJXUH E HVW UHODWLYH j OD VHFWLRQ GURLWH FRXUDQWH 6 G¶DEVFLVVH [ j O¶LQVWDQW W 'DQV OH UHSqUH {* ;<=}YRLFLOHVFRPSRVDQWHVGHVYHFWHXUVLQWHUYHQDQWGDQVOHPRXYHPHQW
/DILJXUHDUHSUpVHQWHODSRXWUHDXUHSRVSDVGHIRUFHVG¶LQHUWLHQLGHSHVDQWHXU /DILJXUH E HVW UHODWLYH j OD VHFWLRQ GURLWH FRXUDQWH 6 G¶DEVFLVVH [ j O¶LQVWDQW W 'DQV OH UHSqUH {* ;<=}YRLFLOHVFRPSRVDQWHVGHVYHFWHXUVLQWHUYHQDQWGDQVOHPRXYHPHQW
⎧ ⎪ ⎪ *R* ⎨ Y [ W ⎪ ⎪⎩
⎧ ⎪ ⎪ 9U ⎨ ⎪ ⎪⎩
∂Y ∂W
⎧ ⎪ ⎪ ΓU ⎨ ⎪ ⎪⎩
∂ Y ∂W
⎧ ⎪ ⎪ ΓH ⎨ − θ ⋅ Y ⎪ ⎪⎩
- 196 -
⎧ ⎪ ⎪⎪ ΓF ⎨ ⎪ ⎪ θ ⋅ ∂ Y ⎪⎩ ∂W
⎧ ⎪ G⎪ J ⎨ − J FRV θ ⋅ W ⎪ ⎪⎩ J VLQ θ ⋅ W
⎧ ⎪ ⎪ *R* ⎨ Y [ W ⎪ ⎪⎩
⎧ ⎪ ⎪ 9U ⎨ ⎪ ⎪⎩
∂Y ∂W
⎧ ⎪ ⎪ ΓU ⎨ ⎪ ⎪⎩
∂ Y ∂ W
⎧ ⎪ ⎪ ΓH ⎨ − θ ⋅ Y ⎪ ⎪⎩
- 196 -
⎧ ⎪ ⎪⎪ ΓF ⎨ ⎪ ⎪ θ ⋅ ∂ Y ⎪⎩ ∂W
⎧ ⎪ G⎪ J ⎨ − J FRV θ ⋅ W ⎪ ⎪⎩ J VLQ θ ⋅ W
/HVpTXDWLRQVV¶pFULYHQW
/HVpTXDWLRQVV¶pFULYHQW
⎧ ∂ 7\ ⎞ ⎛ ∂ Y = ρ 6 ⎜ − θ ⋅ Y + J ⋅ FRV θ W ⎟ °IRUPXOH ⎪ ⎟ ⎜ ⎪ ∂[ ⎠ ⎝ ∂W ⎪ ⎪ ∂ 0] ⎪ ∂ [ + 7\ = °IRUPXOH HQQpJOLJHDQWOHVFRXSOHVLQHUWLHOV ⎪ ⎨ ⎪ ∂Y ⎪ ω] = ∂ [ °IRUPXOH ⎪ ⎪ ⎪ 0 = (, ∂ ω] °IRUPXOH HQO¶ DEVHQFHG¶ DPRUWLVVHPHQW ⎪ ] ∂[ ⎩ 2QHQGpGXLWO¶pTXDWLRQGXPRXYHPHQW ∂ Y + ∂ [ / &
2QHQGpGXLWO¶pTXDWLRQGXPRXYHPHQW
⎛ ∂ Y ⎞ (, J ⎜ − θ ⋅ Y ⎟ = − FRV θ W DYHF & / = ⎟ ⎜ ∂W ρ 6 / & ⎝ ⎠
(Q SRVDQW Y [ W = I [ ⋅ J W HW FRPSWH WHQX GHV FRQGLWLRQV DX[ OLPLWHV I = I ′′ = I / = I ′′/ = RQ WURXYH OD VROXWLRQ JpQpUDOH GH O¶pTXDWLRQ VDQV VHFRQG PHPEUH ∞
Y [ W =
∑
VLQ Q π
Q =
ωQ = Q π
DYHF
[ ($ Q FRV ωQ W + %Q VLQ ωQ W ) /
& −θ /
Y [ W = FRV θ W
∞
∑
D Q VLQ
Q =
DQ =
± SRXUQLPSDLU D Q =
[
(Q SRVDQW Y [ W = I [ ⋅ J W HW FRPSWH WHQX GHV FRQGLWLRQV DX[ OLPLWHV I = I ′′ = I / = I ′′/ = RQ WURXYH OD VROXWLRQ JpQpUDOH GH O¶pTXDWLRQ VDQV VHFRQG PHPEUH ∞
Y [ W =
ωQ = Q π
⎛ Q π & Q π ⎜ θ − ⎜ / ⎝
⎞ ⎟ ⎟ ⎠
DQ =
DQ =
[
]
J − (− )Q ⎛ Q π & ⎞⎟ Q π ⎜ θ − ⎜ / ⎟⎠ ⎝
J ⎛ Q π & ⎞⎟ Q π ⎜ θ − ⎟ ⎜ / ⎝ ⎠
2QHQGpGXLWO¶pTXDWLRQGXPRXYHPHQW
⎛∂ Y ⎞ (, J ⎜ − θ ⋅ Y ⎟ = − FRV θ W DYHF & / = ⎟ ⎜ ∂ W ρ 6 / & ⎝ ⎠
∞
Y [ W =
∑ Q =
ωQ = Q π
[ VLQ Q π ($ Q FRV ωQ W + %Q VLQ ωQ W ) /
& −θ /
Y [ W = FRV θ W
∞
∑
D Q VLQ
Q =
DQ =
[
∞
⎛ Q π & Q π ⎜ θ − ⎜ / ⎝
⎞ ⎟ ⎟ ⎠
- 197 -
∑ VLQ Q π / ($ [
Q FRV ωQ W
+ %Q VLQ ωQ W )
ωQ = Q π
& −θ /
&KHUFKRQVXQHVROXWLRQSDUWLFXOLqUHGHO¶pTXDWLRQFRPSOqWHVRXVODIRUPH Y [ W = FRV θ W
∞
∑D
Q VLQ
Q =
Qπ[ /
2QWURXYHSDUODPpWKRGHFODVVLTXHGHFDOFXOGHVFRHIILFLHQWVGH)RXULHU
]
DQ =
± SRXUQSDLU
Y [ W =
Q =
J − (− )Q ⎛ Q π & ⎞ ⎟ Q π ⎜ θ − ⎜ / ⎟⎠ ⎝
J
⎛ ∂ Y ⎞ (, J ⎜ − θ ⋅ Y ⎟ = − FRV θ W DYHF & / = ⎟ ⎜ ∂ W ρ 6 / & ⎝ ⎠
(Q SRVDQW Y [ W = I [ ⋅ J W HW FRPSWH WHQX GHV FRQGLWLRQV DX[ OLPLWHV I = I ′′ = I / = I ′′/ = RQ WURXYH OD VROXWLRQ JpQpUDOH GH O¶pTXDWLRQ VDQV VHFRQG PHPEUH
Qπ[ /
2QWURXYHSDUODPpWKRGHFODVVLTXHGHFDOFXOGHVFRHIILFLHQWVGH)RXULHU
DQ =
∂ Y + ∂ [ / &
DYHF
&KHUFKRQVXQHVROXWLRQSDUWLFXOLqUHGHO¶pTXDWLRQFRPSOqWHVRXVODIRUPH
± SRXUQLPSDLU D Q =
Qπ[ /
⎧ ∂ 7\ ⎞ ⎛ ∂ Y = ρ 6 ⎜ − θ ⋅ Y + J ⋅ FRV θ W ⎟ °IRUPXOH ⎪ ⎟ ⎜ ∂W [ ∂ ⎪ ⎠ ⎝ ⎪ ⎪ ∂ 0] ⎪ ∂ [ + 7\ = °IRUPXOH HQQpJOLJHDQWOHVFRXSOHVLQHUWLHOV ⎪ ⎨ ⎪ ∂Y ⎪ ω] = ∂ [ °IRUPXOH ⎪ ⎪ ⎪ 0 = (, ∂ ω] °IRUPXOH HQO¶ DEVHQFHG¶ DPRUWLVVHPHQW ⎪ ] ∂[ ⎩
(Q SRVDQW Y [ W = I [ ⋅ J W HW FRPSWH WHQX GHV FRQGLWLRQV DX[ OLPLWHV I = I ′′ = I / = I ′′/ = RQ WURXYH OD VROXWLRQ JpQpUDOH GH O¶pTXDWLRQ VDQV VHFRQG PHPEUH
± SRXUQSDLU
Q VLQ
/HVpTXDWLRQVV¶pFULYHQW
2QHQGpGXLWO¶pTXDWLRQGXPRXYHPHQW
DYHF
∑D
- 197 -
⎧ ∂ 7\ ⎞ ⎛ ∂ Y = ρ 6 ⎜ − θ ⋅ Y + J ⋅ FRV θ W ⎟ °IRUPXOH ⎪ ⎟ ⎜ ∂W [ ∂ ⎪ ⎠ ⎝ ⎪ ⎪ ∂ 0] ⎪ ∂ [ + 7\ = °IRUPXOH HQQpJOLJHDQWOHVFRXSOHVLQHUWLHOV ⎪ ⎨ ⎪ ∂Y ⎪ ω] = ∂ [ °IRUPXOH ⎪ ⎪ ⎪ 0 = (, ∂ ω] °IRUPXOH HQO¶ DEVHQFHG¶ DPRUWLVVHPHQW ⎪ ] ∂[ ⎩
+ %Q VLQ ωQ W )
2QWURXYHSDUODPpWKRGHFODVVLTXHGHFDOFXOGHVFRHIILFLHQWVGH)RXULHU
± SRXUQLPSDLU D Q =
/HVpTXDWLRQVV¶pFULYHQW
∂ Y + ∂ [ / &
∞
Q =
- 197 -
Q FRV ωQ W
& −θ /
Y [ W = FRV θ W
]
[
&KHUFKRQVXQHVROXWLRQSDUWLFXOLqUHGHO¶pTXDWLRQFRPSOqWHVRXVODIRUPH
± SRXUQSDLU
∑ VLQ Q π / ($ Q =
J − (− )Q ⎛ Q π & ⎞⎟ Q π ⎜ θ − ⎜ / ⎟⎠ ⎝
J
⎛ ∂ Y ⎞ (, J ⎜ − θ ⋅ Y ⎟ = − FRV θ W DYHF & / = ⎟ ⎜ ∂W ρ 6 / & ⎝ ⎠
Qπ[ /
2QWURXYHSDUODPpWKRGHFODVVLTXHGHFDOFXOGHVFRHIILFLHQWVGH)RXULHU
DQ =
∂ Y + ∂ [ / &
DYHF
&KHUFKRQVXQHVROXWLRQSDUWLFXOLqUHGHO¶pTXDWLRQFRPSOqWHVRXVODIRUPH
± SRXUQSDLU
⎧ ∂ 7\ ⎞ ⎛ ∂ Y = ρ 6 ⎜ − θ ⋅ Y + J ⋅ FRV θ W ⎟ °IRUPXOH ⎪ ⎟ ⎜ ⎪ ∂[ ⎠ ⎝ ∂W ⎪ ⎪ ∂ 0] ⎪ ∂ [ + 7\ = °IRUPXOH HQQpJOLJHDQWOHVFRXSOHVLQHUWLHOV ⎪ ⎨ ⎪ ∂Y ⎪ ω] = ∂ [ °IRUPXOH ⎪ ⎪ ⎪ 0 = (, ∂ ω] °IRUPXOH HQO¶ DEVHQFHG¶ DPRUWLVVHPHQW ⎪ ] ∂[ ⎩
DQ =
± SRXUQLPSDLU D Q =
[
]
J − (− )Q ⎛ Q π & ⎞ ⎟ Q π ⎜ θ − ⎜ / ⎟⎠ ⎝
J ⎛ Q π & ⎞⎟ Q π ⎜ θ − ⎟ ⎜ / ⎝ ⎠
- 197 -
2QUHPDUTXHTXH D Q GHYLHQWLQILQLVL θ =
Q π & /
2QUHPDUTXHTXH D Q GHYLHQWLQILQLVL θ =
Q π & /
2Q D GRQF XQH VXLWH GH YDOHXUV FULWLTXHV SRXU OD YLWHVVH GH URWDWLRQ θ Q π & θ &5 Q = = ωQ & 5 ′ /
2Q D GRQF XQH VXLWH GH YDOHXUV FULWLTXHV SRXU OD YLWHVVH GH URWDWLRQ θ Q π & θ &5 Q = = ωQ & 5 ′ /
/RUVTXH θ VH UDSSURFKH GH θ &5 Q OH QLqPH PRGH HQWUH HQ UpVRQDQFH VRQ DPSOLWXGH DXJPHQWDQWFRQVLGpUDEOHPHQW
/RUVTXH θ VH UDSSURFKH GH θ &5 Q OH QLqPH PRGH HQWUH HQ UpVRQDQFH VRQ DPSOLWXGH DXJPHQWDQWFRQVLGpUDEOHPHQW
±752,6,Ê0($33/,&$7,219,%5$7,2163/$1(6'¶81$11($8
±752,6,Ê0($33/,&$7,219,%5$7,2163/$1(6'¶81$11($8
8QDQQHDXFLUFXODLUHGHVHFWLRQGURLWHFRQVWDQWH6DGPHW[R\ FRPPHSODQGHV\PpWULH/HV D[HV VRQW JDOLOpHQV $ O¶LQVWDQW LQLWLDO O¶DQQHDX HVW DX UHSRV RQ DSSOLTXH DORUV XQH IRUFH UDGLDOHH[FLWDWULFHXQLIRUPpPHQWUpSDUWLH S < = S VLQ ω W RQVHSURSRVHG¶pWXGLHUODUpSRQVH DPRUWLH
8QDQQHDXFLUFXODLUHGHVHFWLRQGURLWHFRQVWDQWH6DGPHW[R\ FRPPHSODQGHV\PpWULH/HV D[HV VRQW JDOLOpHQV $ O¶LQVWDQW LQLWLDO O¶DQQHDX HVW DX UHSRV RQ DSSOLTXH DORUV XQH IRUFH UDGLDOHH[FLWDWULFHXQLIRUPpPHQWUpSDUWLH S < = S VLQ ω W RQVHSURSRVHG¶pWXGLHUODUpSRQVH DPRUWLH
)LJXUH
- 198 -
)LJXUH
- 198 -
Q π & 2QUHPDUTXHTXH D Q GHYLHQWLQILQLVL θ = /
Q π & 2QUHPDUTXHTXH D Q GHYLHQWLQILQLVL θ = /
2Q D GRQF XQH VXLWH GH YDOHXUV FULWLTXHV SRXU OD YLWHVVH GH URWDWLRQ θ Q π & θ &5 Q = = ωQ & 5 ′ /
2Q D GRQF XQH VXLWH GH YDOHXUV FULWLTXHV SRXU OD YLWHVVH GH URWDWLRQ θ Q π & θ &5 Q = = ωQ & 5 ′ /
/RUVTXH θ VH UDSSURFKH GH θ &5 Q OH QLqPH PRGH HQWUH HQ UpVRQDQFH VRQ DPSOLWXGH DXJPHQWDQWFRQVLGpUDEOHPHQW
/RUVTXH θ VH UDSSURFKH GH θ &5 Q OH QLqPH PRGH HQWUH HQ UpVRQDQFH VRQ DPSOLWXGH DXJPHQWDQWFRQVLGpUDEOHPHQW
±752,6,Ê0($33/,&$7,219,%5$7,2163/$1(6'¶81$11($8
±752,6,Ê0($33/,&$7,219,%5$7,2163/$1(6'¶81$11($8
8QDQQHDXFLUFXODLUHGHVHFWLRQGURLWHFRQVWDQWH6DGPHW[R\ FRPPHSODQGHV\PpWULH/HV D[HV VRQW JDOLOpHQV $ O¶LQVWDQW LQLWLDO O¶DQQHDX HVW DX UHSRV RQ DSSOLTXH DORUV XQH IRUFH UDGLDOHH[FLWDWULFHXQLIRUPpPHQWUpSDUWLH S < = S VLQ ω W RQVHSURSRVHG¶pWXGLHUODUpSRQVH DPRUWLH
8QDQQHDXFLUFXODLUHGHVHFWLRQGURLWHFRQVWDQWH6DGPHW[R\ FRPPHSODQGHV\PpWULH/HV D[HV VRQW JDOLOpHQV $ O¶LQVWDQW LQLWLDO O¶DQQHDX HVW DX UHSRV RQ DSSOLTXH DORUV XQH IRUFH UDGLDOHH[FLWDWULFHXQLIRUPpPHQWUpSDUWLH S < = S VLQ ω W RQVHSURSRVHG¶pWXGLHUODUpSRQVH DPRUWLH
)LJXUH
- 198 -
)LJXUH
- 198 -
/HPRXYHPHQWHVWSXUHPHQWUDGLDOHWFRQVLVWHHQXQH©UHVSLUDWLRQªGHO¶DQQHDX
/HPRXYHPHQWHVWSXUHPHQWUDGLDOHWFRQVLVWHHQXQH©UHVSLUDWLRQªGHO¶DQQHDX
6RQ pTXDWLRQ V¶REWLHQW SDU pOLPLQDWLRQ GH O¶HIIRUW QRUPDO 1W HQWUH O¶pTXDWLRQ G¶pTXLOLEUH VHORQ *< LqPH IRUPXOH HW O¶pTXDWLRQ GH FRPSRUWHPHQW YLVFRpODVWLTXH OLQpDLUH qUHIRUPXOH TXLV¶pFULYHQW
6RQ pTXDWLRQ V¶REWLHQW SDU pOLPLQDWLRQ GH O¶HIIRUW QRUPDO 1W HQWUH O¶pTXDWLRQ G¶pTXLOLEUH VHORQ *< LqPH IRUPXOH HW O¶pTXDWLRQ GH FRPSRUWHPHQW YLVFRpODVWLTXH OLQpDLUH qUHIRUPXOH TXLV¶pFULYHQW
S VLQ ω W +
1 G Y −6 ⎛ GY⎞ ⎜ ( Y + (′ ⎟ = ρ 6 HW 1 = 5 5 ⎜⎝ G W ⎟⎠ GW
2QWURXYH
S VLQ ω W + 2QWURXYH
G Y (′ G Y ( S + + Y= VLQ ω W GW ρ6 GW ρ5 ρ5
G Y (′ G Y ( S + + Y= VLQ ω W GW ρ6 GW ρ5 ρ5 2QSRVHDORUV ω=
( ρ5
2QSRVHDORUV SXOVDWLRQQDWXUHOOHQRQDPRUWLH
(′&5 = 5 ρ ( DPRUWLVVHPHQWFULWLTXH λ=
(′ (′&5
1 G Y −6 ⎛ GY⎞ ⎜ ( Y + (′ ⎟ = ρ 6 HW 1 = 5 5 ⎜⎝ G W ⎟⎠ GW
ω=
( ρ5
SXOVDWLRQQDWXUHOOHQRQDPRUWLH
(′&5 = 5 ρ ( DPRUWLVVHPHQWFULWLTXH λ=
DPRUWLVVHPHQWUpGXLW
&HODSHUPHWG¶pFULUHO¶pTXDWLRQGXPRXYHPHQW
(′ (′&5
DPRUWLVVHPHQWUpGXLW
&HODSHUPHWG¶pFULUHO¶pTXDWLRQGXPRXYHPHQW
G Y GY S + λ ω + ω Y = VLQ ω W G W ρ 6 GW
G Y GY S + λ ω + ω Y = VLQ ω W G W ρ 6 GW
3RXUO¶pTXDWLRQVDQVVHFRQGPHPEUHPRXYHPHQWQDWXUHODPRUWL RQGLVWLQJXHWURLVFDV
3RXUO¶pTXDWLRQVDQVVHFRQGPHPEUHPRXYHPHQWQDWXUHODPRUWL RQGLVWLQJXHWURLVFDV
HUFDV λ > DPRUWLVVHPHQWIRUW
HUFDV λ > DPRUWLVVHPHQWIRUW
2QSRVH U = ω λ − HWO¶RQD
2QSRVH U = ω λ − HWO¶RQD
Y W = H −λωW $ FK UW + % VK UW LqPHFDV λ = DPRUWLVVHPHQWFULWLTXH
Y W = H −λωW $ FK UW + % VK UW LqPHFDV λ = DPRUWLVVHPHQWFULWLTXH
Y W = H −ωW $ + %W
Y W = H −ωW $ + %W
LqPHFDV λ < DPRUWLVVHPHQWIDLEOH
LqPHFDV λ < DPRUWLVVHPHQWIDLEOH
2QSRVH Ω = ω − λ HWO¶RQD
2QSRVH Ω = ω − λ HWO¶RQD
Y W = H −λωW $ FRV ΩW + % VLQ ΩW
Y W = H −λωW $ FRV ΩW + % VLQ ΩW
- 199 -
- 199 -
/HPRXYHPHQWHVWSXUHPHQWUDGLDOHWFRQVLVWHHQXQH©UHVSLUDWLRQªGHO¶DQQHDX
/HPRXYHPHQWHVWSXUHPHQWUDGLDOHWFRQVLVWHHQXQH©UHVSLUDWLRQªGHO¶DQQHDX
6RQ pTXDWLRQ V¶REWLHQW SDU pOLPLQDWLRQ GH O¶HIIRUW QRUPDO 1W HQWUH O¶pTXDWLRQ G¶pTXLOLEUH VHORQ *< LqPH IRUPXOH HW O¶pTXDWLRQ GH FRPSRUWHPHQW YLVFRpODVWLTXH OLQpDLUH qUHIRUPXOH TXLV¶pFULYHQW
6RQ pTXDWLRQ V¶REWLHQW SDU pOLPLQDWLRQ GH O¶HIIRUW QRUPDO 1W HQWUH O¶pTXDWLRQ G¶pTXLOLEUH VHORQ *< LqPH IRUPXOH HW O¶pTXDWLRQ GH FRPSRUWHPHQW YLVFRpODVWLTXH OLQpDLUH qUHIRUPXOH TXLV¶pFULYHQW
S VLQ ω W +
1 G Y −6 ⎛ GY⎞ ⎜⎜ ( Y + (′ ⎟ = ρ 6 HW 1 = 5 5 ⎝ G W ⎟⎠ GW
2QWURXYH
S VLQ ω W + 2QWURXYH
G Y (′ G Y ( S + + Y= VLQ ω W GW ρ 6 GW ρ5 ρ5
G Y (′ G Y ( S + + Y= VLQ ω W GW ρ 6 GW ρ5 ρ5 2QSRVHDORUV ω=
( ρ5
2QSRVHDORUV SXOVDWLRQQDWXUHOOHQRQDPRUWLH
(′&5 = 5 ρ ( DPRUWLVVHPHQWFULWLTXH λ=
(′ (′&5
1 G Y −6 ⎛ GY⎞ ⎜⎜ ( Y + (′ ⎟ = ρ 6 HW 1 = 5 5 ⎝ G W ⎟⎠ GW
ω=
( ρ5
SXOVDWLRQQDWXUHOOHQRQDPRUWLH
(′&5 = 5 ρ ( DPRUWLVVHPHQWFULWLTXH λ=
DPRUWLVVHPHQWUpGXLW
&HODSHUPHWG¶pFULUHO¶pTXDWLRQGXPRXYHPHQW
G Y GY S + λ ω + ω Y = VLQ ω W GW ρ6 G W
(′ (′&5
DPRUWLVVHPHQWUpGXLW
&HODSHUPHWG¶pFULUHO¶pTXDWLRQGXPRXYHPHQW
G Y GY S + λ ω + ω Y = VLQ ω W GW ρ6 G W
3RXUO¶pTXDWLRQVDQVVHFRQGPHPEUHPRXYHPHQWQDWXUHODPRUWL RQGLVWLQJXHWURLVFDV
3RXUO¶pTXDWLRQVDQVVHFRQGPHPEUHPRXYHPHQWQDWXUHODPRUWL RQGLVWLQJXHWURLVFDV
HUFDV λ > DPRUWLVVHPHQWIRUW
HUFDV λ > DPRUWLVVHPHQWIRUW
2QSRVH U = ω λ − HWO¶RQD
2QSRVH U = ω λ − HWO¶RQD
Y W = H −λωW $ FK UW + % VK UW LqPHFDV λ = DPRUWLVVHPHQWFULWLTXH
Y W = H −λωW $ FK UW + % VK UW LqPHFDV λ = DPRUWLVVHPHQWFULWLTXH
Y W = H −ωW $ + %W
Y W = H −ωW $ + %W
LqPHFDV λ < DPRUWLVVHPHQWIDLEOH
LqPHFDV λ < DPRUWLVVHPHQWIDLEOH
2QSRVH Ω = ω − λ HWO¶RQD
2QSRVH Ω = ω − λ HWO¶RQD
Y W = H −λωW $ FRV ΩW + % VLQ ΩW
Y W = H −λωW $ FRV ΩW + % VLQ ΩW
- 199 -
- 199 -
2QREWLHQWG¶DXWUHSDUWFRPPHUpSRQVHIRUFpHVROXWLRQSDUWLFXOLqUHGHO¶pTXDWLRQFRPSOqWH
Y∗ W =
DYHF
ρ5 (6
⎧ ⎪ ⎪ FRV ψ = ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ VLQ ψ = ⎪ ⎪ ⎪⎩
VLQ ω W + ψ ω ⎞⎟ ⎟
⎛ ω ⎞ ⎛ ⎜ − + ⎜ λ ⎟ ⎜ ω ω⎠ ⎝ ⎠ ⎝
2QREWLHQWG¶DXWUHSDUWFRPPHUpSRQVHIRUFpHVROXWLRQSDUWLFXOLqUHGHO¶pTXDWLRQFRPSOqWH
Y∗ W =
DYHF
⎧ ⎪ ⎪ FRV ψ = ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ VLQ ψ = ⎪ ⎪ ⎪⎩
ω − ω
⎛ ω ⎞ ⎛ ⎟ + ⎜ λ ω ⎞⎟ ⎜ − ⎜ ω ⎟ ⎝ ω⎠ ⎠ ⎝
ω −λ ω
ρ5 (6
⎛ ω ⎞ ⎛ ⎟ + ⎜ λ ω ⎞⎟ ⎜ − ⎜ ω ⎟ ⎝ ω⎠ ⎠ ⎝
VLQ ω W + ψ
⎛ ω ⎞ ⎛ ⎜ − ⎟ + ⎜ λ ω ⎞⎟ ⎜ ω ⎟ ⎝ ω⎠ ⎝ ⎠
−
ω ω
⎛ ω ⎞ ⎛ ⎟ + ⎜ λ ω ⎞⎟ ⎜ − ⎜ ω ⎟ ⎝ ω⎠ ⎠ ⎝
ω −λ ω
⎛ ω ⎞ ⎛ ⎟ + ⎜ λ ω ⎞⎟ ⎜ − ⎜ ω ⎟ ⎝ ω⎠ ⎠ ⎝
±)2508/('(5$(,*+(70e7+2'('(5,7=
±)2508/('(5$(,*+(70e7+2'('(5,7=
(OOHV SHUPHWWHQW GH FDOFXOHU GH IDoRQ DSSURFKpH OHV SXOVDWLRQV QDWXUHOOHV QRQ DPRUWLHV ωQ (WXGLRQVHQOHSULQFLSHVXUGHVH[HPSOHV
(OOHV SHUPHWWHQW GH FDOFXOHU GH IDoRQ DSSURFKpH OHV SXOVDWLRQV QDWXUHOOHV QRQ DPRUWLHV ωQ (WXGLRQVHQOHSULQFLSHVXUGHVH[HPSOHV
±)RUPXOHGH5D\OHLJK
±)RUPXOHGH5D\OHLJK
&RQVLGpURQV OD SRXWUH GX SDUDJUDSKH VXU GHX[ DSSXLV HW VXSSRVRQV TX¶HOOH YLEUH HQ IOH[LRQVXLYDQWQLqPHPRGHSURSUHDYHFODFRQGLWLRQLQLWLDOH Y Q [ R =
&RQVLGpURQV OD SRXWUH GX SDUDJUDSKH VXU GHX[ DSSXLV HW VXSSRVRQV TX¶HOOH YLEUH HQ IOH[LRQVXLYDQWQLqPHPRGHSURSUHDYHFODFRQGLWLRQLQLWLDOH Y Q [ R =
2QDDORUV Y Q [ W = I Q [ ⋅ VLQ ωQ W
2QDDORUV Y Q [ W = I Q [ ⋅ VLQ ωQ W
$XQLQVWDQWWVRQpQHUJLHFLQpWLTXHDSRXUH[SUHVVLRQ
$XQLQVWDQWWVRQpQHUJLHFLQpWLTXHDSRXUH[SUHVVLRQ
/
(F =
/
∫
∫
HWVRQpQHUJLHSRWHQWLHOOHpODVWLTXHLQWHUQH : = ( SL (S = SXLVTXH
/
∫
/
⎛∂Y ⎞ ρ 6 ⎜⎜ Q ⎟⎟ G[ = ωQ ⋅ FRV ωQ W ρ 6 (I Q [ ) G[ ∂ W ⎝ ⎠
0 G[ = (,
/
∫
⎛ ∂ YQ (, ⎜ ⎜ ∂ W ⎝
(F =
/
⎛∂Y ⎞ ρ 6 ⎜⎜ Q ⎟⎟ G[ = ωQ ⋅ FRV ωQ W ρ 6 (I Q [ ) G[ ∂ W ⎝ ⎠
∫
∫
HWVRQpQHUJLHSRWHQWLHOOHpODVWLTXHLQWHUQH : = ( SL
⎞ ⎟ G[ = VLQ ωQ W ⎟ ⎠
/
∫
(, (I Q′′ [ ) G[
(S =
∂ Y 0 = ∂ [ (,
SXLVTXH
/
∫
0 G[ = (,
/
∫
⎛ ∂ YQ (, ⎜ ⎜ ∂ W ⎝
⎞ ⎟ G[ = VLQ ωQ W ⎟ ⎠
/
∫ (, (I ′′ [ ) G[ Q
∂ Y 0 = ∂ [ (,
- 200 -
- 200 -
2QREWLHQWG¶DXWUHSDUWFRPPHUpSRQVHIRUFpHVROXWLRQSDUWLFXOLqUHGHO¶pTXDWLRQFRPSOqWH
2QREWLHQWG¶DXWUHSDUWFRPPHUpSRQVHIRUFpHVROXWLRQSDUWLFXOLqUHGHO¶pTXDWLRQFRPSOqWH
Y∗ W =
DYHF
ρ5 (6
⎧ ⎪ ⎪ FRV ψ = ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ VLQ ψ = ⎪ ⎪ ⎪⎩
VLQ ω W + ψ ω ⎞⎟ ⎟
⎛ ω ⎞ ⎛ ⎜ − + ⎜ λ ⎟ ⎜ ω ω⎠ ⎝ ⎝ ⎠
Y∗ W =
DYHF − ω ⎞⎟ ⎟
⎧ ⎪ ⎪ FRV ψ = ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ VLQ ψ = ⎪ ⎪ ⎪⎩
ω ω
⎛ ω ⎞ ⎛ ⎜ − + ⎜ λ ⎟ ⎜ ω ω⎠ ⎠ ⎝ ⎝
ω −λ ω
ρ5 (6
⎛ ω ⎞ ⎛ ⎟ + ⎜ λ ω ⎞⎟ ⎜ − ⎜ ω ⎟ ⎝ ω⎠ ⎠ ⎝
VLQ ω W + ψ
⎛ ω ⎞ ⎛ ⎜ − ⎟ + ⎜ λ ω ⎞⎟ ⎜ ω ⎟ ⎝ ω⎠ ⎝ ⎠
−
ω ω
⎛ ω ⎞ ⎛ ⎟ + ⎜ λ ω ⎞⎟ ⎜ − ⎜ ω ⎟ ⎝ ω⎠ ⎠ ⎝
ω −λ ω
⎛ ω ⎞ ⎛ ⎟ + ⎜ λ ω ⎞⎟ ⎜ − ⎜ ω ⎟ ⎝ ω⎠ ⎠ ⎝
±)2508/('(5$(,*+(70e7+2'('(5,7=
±)2508/('(5$(,*+(70e7+2'('(5,7=
(OOHV SHUPHWWHQW GH FDOFXOHU GH IDoRQ DSSURFKpH OHV SXOVDWLRQV QDWXUHOOHV QRQ DPRUWLHV ωQ (WXGLRQVHQOHSULQFLSHVXUGHVH[HPSOHV
(OOHV SHUPHWWHQW GH FDOFXOHU GH IDoRQ DSSURFKpH OHV SXOVDWLRQV QDWXUHOOHV QRQ DPRUWLHV ωQ (WXGLRQVHQOHSULQFLSHVXUGHVH[HPSOHV
±)RUPXOHGH5D\OHLJK
±)RUPXOHGH5D\OHLJK
&RQVLGpURQV OD SRXWUH GX SDUDJUDSKH VXU GHX[ DSSXLV HW VXSSRVRQV TX¶HOOH YLEUH HQ IOH[LRQVXLYDQWQLqPHPRGHSURSUHDYHFODFRQGLWLRQLQLWLDOH Y Q [ R =
&RQVLGpURQV OD SRXWUH GX SDUDJUDSKH VXU GHX[ DSSXLV HW VXSSRVRQV TX¶HOOH YLEUH HQ IOH[LRQVXLYDQWQLqPHPRGHSURSUHDYHFODFRQGLWLRQLQLWLDOH Y Q [ R =
2QDDORUV Y Q [ W = I Q [ ⋅ VLQ ωQ W
2QDDORUV Y Q [ W = I Q [ ⋅ VLQ ωQ W
$XQLQVWDQWWVRQpQHUJLHFLQpWLTXHDSRXUH[SUHVVLRQ /
$XQLQVWDQWWVRQpQHUJLHFLQpWLTXHDSRXUH[SUHVVLRQ /
/
⎛∂Y ⎞ ρ 6 ⎜⎜ Q ⎟⎟ G[ = ωQ ⋅ FRV ωQ W ρ 6 (I Q [ ) G[ (F = ⎝ ∂W ⎠
∫
∫
HWVRQpQHUJLHSRWHQWLHOOHpODVWLTXHLQWHUQH : = ( SL (S = SXLVTXH
/
∫
0 G[ = (,
/
∫
⎛ ∂ YQ (, ⎜ ⎜ ∂ W ⎝
⎞ ⎟ G[ = VLQ ωQ W ⎟ ⎠
∂ Y 0 = ∂ [ (,
∫
∫
HWVRQpQHUJLHSRWHQWLHOOHpODVWLTXHLQWHUQH : = ( SL /
∫
(, (I Q′′ [ ) G[
(S =
SXLVTXH
- 200 -
/
⎛∂Y ⎞ ρ 6 ⎜⎜ Q ⎟⎟ G[ = ωQ ⋅ FRV ωQ W ρ 6 (I Q [ ) G[ (F = ⎝ ∂W ⎠
/
∫
0 G[ = (,
/
∫
⎛ ∂ YQ (, ⎜ ⎜ ∂ W ⎝
⎞ ⎟ G[ = VLQ ωQ W ⎟ ⎠
∂ Y 0 = ∂ [ (,
- 200 -
/
∫ (, (I ′′ [ ) G[ Q
(QO¶DEVHQFHG¶DPRUWLVVHPHQWO¶pQHUJLHPpFDQLTXH ( P = ( F + ( S HVWFRQVWDQWHpJDORQVVHV YDOHXUVDX[LQVWDQWV W = HW W =
π 2QREWLHQWODIRUPXOHGH5D\OHLJK ωQ /
∫ (, (I ′′ [ ) G[ Q
ωQ =
/
(QO¶DEVHQFHG¶DPRUWLVVHPHQWO¶pQHUJLHPpFDQLTXH ( P = ( F + ( S HVWFRQVWDQWHpJDORQVVHV YDOHXUVDX[LQVWDQWV W = HW W =
/
∫ (, (I ′′ [ ) G[
Q
ωQ =
∫ ρ6 (I [ ) G[ Q
π 2QREWLHQWODIRUPXOHGH5D\OHLJK ωQ
/
∫ ρ6 (I [ ) G[ Q
'DQV O¶H[HPSOH FKRLVL RQ D SX FDOFXOHU H[DFWHPHQW OHV GpIRUPpHV PRGDOHV HW RQ D WURXYp Qπ[ (Q SRUWDQW FHWWH H[SUHVVLRQ GDQV OD IRUPXOH GH 5D\OHLJK RQ REWLHQW I Q [ = %Q VLQ / DORUVOHVYDOHXUVH[DFWHVGH ωQ
'DQV O¶H[HPSOH FKRLVL RQ D SX FDOFXOHU H[DFWHPHQW OHV GpIRUPpHV PRGDOHV HW RQ D WURXYp Qπ[ (Q SRUWDQW FHWWH H[SUHVVLRQ GDQV OD IRUPXOH GH 5D\OHLJK RQ REWLHQW I Q [ = %Q VLQ / DORUVOHVYDOHXUVH[DFWHVGH ωQ
'DQV GH QRPEUHX[ FDV RQ QH SHXW SDV GpWHUPLQHU H[DFWHPHQW I Q [ PDLV RQ D XQH ERQQH LGpHGHODGpIRUPpHPRGDOHFRPSWHWHQXGHVFRQGLWLRQVDX[OLPLWHVHWGXUDQJQRQSRUWH DORUV GDQV XQH H[SUHVVLRQ DSSURFKpH GH I Q [ TXL SHUPHW GH FDOFXOHU XQH YDOHXU DSSURFKpHGH ωQ
'DQV GH QRPEUHX[ FDV RQ QH SHXW SDV GpWHUPLQHU H[DFWHPHQW I Q [ PDLV RQ D XQH ERQQH LGpHGHODGpIRUPpHPRGDOHFRPSWHWHQXGHVFRQGLWLRQVDX[OLPLWHVHWGXUDQJQRQSRUWH DORUV GDQV XQH H[SUHVVLRQ DSSURFKpH GH I Q [ TXL SHUPHW GH FDOFXOHU XQH YDOHXU DSSURFKpHGH ωQ
'DQVO¶H[HPSOHFKRLVLFDOFXORQVDLQVLXQHYDOHXUDSSURFKpHGHODSXOVDWLRQIRQGDPHQWDOH ω
'DQVO¶H[HPSOHFKRLVLFDOFXORQVDLQVLXQHYDOHXUDSSURFKpHGHODSXOVDWLRQIRQGDPHQWDOH ω
⎛⎛ [ ⎞ [⎞ ⎛[⎞ HQ SUHQDQW I [ = % ⎜ ⎜ ⎟ − ⎜ ⎟ + ⎟ TXL D OD PrPH IRUPH TXH OD IRQFWLRQ H[DFWH ⎜⎝ / ⎠ ⎝ / ⎠ / ⎟⎠ ⎝ [ I [ = % VLQ π HWTXLVDWLVIDLWFRPPHHOOHDX[FRQGLWLRQV /
⎛ ⎛ [ ⎞ [⎞ ⎛[⎞ HQ SUHQDQW I [ = % ⎜ ⎜ ⎟ − ⎜ ⎟ + ⎟ TXL D OD PrPH IRUPH TXH OD IRQFWLRQ H[DFWH ⎜⎝ / ⎠ ⎝ / ⎠ / ⎟⎠ ⎝ [ I [ = % VLQ π HWTXLVDWLVIDLWFRPPHHOOHDX[FRQGLWLRQV /
⎛/⎞ I = I / = I′′ = I′′/ = I / − [ = I [ I⎜ ⎟ = % ⎝⎠
⎛/⎞ I = I / = I′′ = I′′/ = I / − [ = I [ I⎜ ⎟ = % ⎝⎠
2QWURXYHWRXVFDOFXOVIDLWV
2QWURXYHWRXVFDOFXOVIDLWV
ω DS =
(, (, = ρ6 / ρ6 /
ω DS =
/DYDOHXUH[DFWHGpWHUPLQpHDXHVW
ω = π
(, (, = ρ6 / ρ6 /
/DYDOHXUH[DFWHGpWHUPLQpHDXHVW
(, (, = ρ6 / ρ6 /
ω = π
/¶HUUHXUUHODWLYHHVWGRQFpJDOHjSDUH[FqV
(, (, = ρ6 / ρ6 /
/¶HUUHXUUHODWLYHHVWGRQFpJDOHjSDUH[FqV
- 201 -
- 201 -
(QO¶DEVHQFHG¶DPRUWLVVHPHQWO¶pQHUJLHPpFDQLTXH ( P = ( F + ( S HVWFRQVWDQWHpJDORQVVHV
(QO¶DEVHQFHG¶DPRUWLVVHPHQWO¶pQHUJLHPpFDQLTXH ( P = ( F + ( S HVWFRQVWDQWHpJDORQVVHV
YDOHXUVDX[LQVWDQWV W = HW W =
π 2QREWLHQWODIRUPXOHGH5D\OHLJK ωQ /
ωQ =
∫
YDOHXUVDX[LQVWDQWV W = HW W =
π 2QREWLHQWODIRUPXOHGH5D\OHLJK ωQ /
∫ (, (I ′′ [ ) G[
(, (I Q′′ [ ) G[
/
Q
ωQ =
∫ ρ6 (I [ ) G[ Q
/
∫ ρ6 (I [ ) G[ Q
'DQV O¶H[HPSOH FKRLVL RQ D SX FDOFXOHU H[DFWHPHQW OHV GpIRUPpHV PRGDOHV HW RQ D WURXYp Qπ[ (Q SRUWDQW FHWWH H[SUHVVLRQ GDQV OD IRUPXOH GH 5D\OHLJK RQ REWLHQW I Q [ = %Q VLQ / DORUVOHVYDOHXUVH[DFWHVGH ωQ
'DQV O¶H[HPSOH FKRLVL RQ D SX FDOFXOHU H[DFWHPHQW OHV GpIRUPpHV PRGDOHV HW RQ D WURXYp Qπ[ (Q SRUWDQW FHWWH H[SUHVVLRQ GDQV OD IRUPXOH GH 5D\OHLJK RQ REWLHQW I Q [ = %Q VLQ / DORUVOHVYDOHXUVH[DFWHVGH ωQ
'DQV GH QRPEUHX[ FDV RQ QH SHXW SDV GpWHUPLQHU H[DFWHPHQW I Q [ PDLV RQ D XQH ERQQH LGpHGHODGpIRUPpHPRGDOHFRPSWHWHQXGHVFRQGLWLRQVDX[OLPLWHVHWGXUDQJQRQSRUWH DORUV GDQV XQH H[SUHVVLRQ DSSURFKpH GH I Q [ TXL SHUPHW GH FDOFXOHU XQH YDOHXU DSSURFKpHGH ωQ
'DQV GH QRPEUHX[ FDV RQ QH SHXW SDV GpWHUPLQHU H[DFWHPHQW I Q [ PDLV RQ D XQH ERQQH LGpHGHODGpIRUPpHPRGDOHFRPSWHWHQXGHVFRQGLWLRQVDX[OLPLWHVHWGXUDQJQRQSRUWH DORUV GDQV XQH H[SUHVVLRQ DSSURFKpH GH I Q [ TXL SHUPHW GH FDOFXOHU XQH YDOHXU DSSURFKpHGH ωQ
'DQVO¶H[HPSOHFKRLVLFDOFXORQVDLQVLXQHYDOHXUDSSURFKpHGHODSXOVDWLRQIRQGDPHQWDOH ω
'DQVO¶H[HPSOHFKRLVLFDOFXORQVDLQVLXQHYDOHXUDSSURFKpHGHODSXOVDWLRQIRQGDPHQWDOH ω
⎛ ⎛ [ ⎞ [⎞ ⎛[⎞ HQ SUHQDQW I [ = % ⎜ ⎜ ⎟ − ⎜ ⎟ + ⎟ TXL D OD PrPH IRUPH TXH OD IRQFWLRQ H[DFWH ⎜⎝ / ⎠ ⎝ / ⎠ / ⎟⎠ ⎝ [ I [ = % VLQ π HWTXLVDWLVIDLWFRPPHHOOHDX[FRQGLWLRQV /
⎛ ⎛ [ ⎞ [⎞ ⎛[⎞ HQ SUHQDQW I [ = % ⎜ ⎜ ⎟ − ⎜ ⎟ + ⎟ TXL D OD PrPH IRUPH TXH OD IRQFWLRQ H[DFWH ⎜⎝ / ⎠ ⎝ / ⎠ / ⎟⎠ ⎝ [ I [ = % VLQ π HWTXLVDWLVIDLWFRPPHHOOHDX[FRQGLWLRQV /
⎛/⎞ I = I / = I′′ = I′′/ = I / − [ = I [ I⎜ ⎟ = % ⎝⎠
⎛/⎞ I = I / = I′′ = I′′/ = I / − [ = I [ I⎜ ⎟ = % ⎝⎠
2QWURXYHWRXVFDOFXOVIDLWV
2QWURXYHWRXVFDOFXOVIDLWV
ω DS =
(, (, = ρ6 / ρ6 /
/DYDOHXUH[DFWHGpWHUPLQpHDXHVW
ω = π
ω DS =
(, (, = ρ6 / ρ6 /
/DYDOHXUH[DFWHGpWHUPLQpHDXHVW
(, (, = ρ6 / ρ6 /
/¶HUUHXUUHODWLYHHVWGRQFpJDOHjSDUH[FqV
- 201 -
ω = π
(, (, = ρ6 / ρ6 /
/¶HUUHXUUHODWLYHHVWGRQFpJDOHjSDUH[FqV
- 201 -
±0pWKRGHGH5LW]
±0pWKRGHGH5LW]
2QGpPRQWUHTXHOHPLQLPXPDEVROXGXTXRWLHQWGH5D\OHLJK
2QGpPRQWUHTXHOHPLQLPXPDEVROXGXTXRWLHQWGH5D\OHLJK
/
∫
/
5=
/
∫ (, (I ′′ [ ) ⋅ G[
(, (I Q′′ [ ) ⋅ G[
Q
/
5=
∫ ρ6 (I [ ) ⋅ G[ Q
∫ ρ6 (I [ ) ⋅ G[
Q
HVW REWHQX ORUVTXH OD IRQFWLRQ I [ HVW FHOOH GH OD YpULWDEOH GpIRUPpH PRGDOH GX PRGH IRQGDPHQWDO5pJDOHDORUVOHFDUUpGHODSXOVDWLRQSURSUHIRQGDPHQWDOH
HVW REWHQX ORUVTXH OD IRQFWLRQ I [ HVW FHOOH GH OD YpULWDEOH GpIRUPpH PRGDOH GX PRGH IRQGDPHQWDO5pJDOHDORUVOHFDUUpGHODSXOVDWLRQSURSUHIRQGDPHQWDOH
6RLW ϕ [ ϕ [ !! ϕP [ PIRQFWLRQVVDWLVIDLVDQWDX[FRQGLWLRQVDX[OLPLWHV2QSHXW DSSUR[LPHU OD YpULWDEOH FRXUEH SDU OD IRQFWLRQ D ϕ [ + D ϕ [ + !! + D P ϕP [ HQ GpWHUPLQDQWOHVFRHIILFLHQWV D L GHIDoRQjUHQGUH5PLQLPDOF¶HVWjGLUHHQUpVROYDQWOHVP pTXDWLRQV ∂5 = L = ! P ∂ DL
6RLW ϕ [ ϕ [ !! ϕP [ PIRQFWLRQVVDWLVIDLVDQWDX[FRQGLWLRQVDX[OLPLWHV2QSHXW DSSUR[LPHU OD YpULWDEOH FRXUEH SDU OD IRQFWLRQ D ϕ [ + D ϕ [ + !! + D P ϕP [ HQ GpWHUPLQDQWOHVFRHIILFLHQWV D L GHIDoRQjUHQGUH5PLQLPDOF¶HVWjGLUHHQUpVROYDQWOHVP pTXDWLRQV ∂5 = L = ! P ∂ DL
5HSUHQRQV O¶H[HPSOH SUpFpGHQW GH OD SRXWUH VXU GHX[ DSSXLV DYHF ϕ [ = ϕ [ =
[ ⎛ [⎞ ⎜ − ⎟ HW / ⎝ /⎠
[ ⎛ [ ⎞ ⎛⎜ [ [ ⎞⎟ IRQFWLRQVTXLVDWLVIRQWDX[FRQGLWLRQV − + ⎜ − ⎟ / ⎝ / ⎠ ⎝⎜ / / ⎠⎟
5HSUHQRQV O¶H[HPSOH SUpFpGHQW GH OD SRXWUH VXU GHX[ DSSXLV DYHF ϕ [ = ϕ [ =
[ ⎛ [ ⎞ ⎛⎜ [ [ ⎞⎟ IRQFWLRQVTXLVDWLVIRQWDX[FRQGLWLRQV − + ⎜ − ⎟ / ⎝ / ⎠ ⎝⎜ / / ⎠⎟
ϕ = ϕ / = ϕ / − [ = ϕ [
(QSRVDQW λ =
ϕ = ϕ / = ϕ / − [ = ϕ [
I [ = D ϕ [ + D ϕ [
2QDGRQF
I [ = D ϕ [ + D ϕ [
2QDGRQF
D RQWURXYHSRXUTXRWLHQWGH5D\OHLJK D /
5 =
(QSRVDQW λ =
D RQWURXYHSRXUTXRWLHQWGH5D\OHLJK D /
(, λ + λ + ρ6 / λ + λ +
= 6D YDOHXU PLQLPDOH HVW ω DS
5 =
(, REWHQXH SRXU λ = − /¶HUUHXU UHODWLYH ρ6 /
(, λ + λ + ρ6 / λ + λ +
= 6D YDOHXU PLQLPDOH HVW ω DS
HVWLFLGHSDUH[FqV
HVWLFLGHSDUH[FqV
(, REWHQXH SRXU λ = − /¶HUUHXU UHODWLYH ρ6 /
- 202 -
- 202 -
±0pWKRGHGH5LW]
±0pWKRGHGH5LW]
2QGpPRQWUHTXHOHPLQLPXPDEVROXGXTXRWLHQWGH5D\OHLJK
2QGpPRQWUHTXHOHPLQLPXPDEVROXGXTXRWLHQWGH5D\OHLJK
/
∫ (, (I ′′ [ ) ⋅ G[ Q
/
5=
/
∫ (, (I ′′ [ ) ⋅ G[
Q
/
5=
∫ ρ6 (I [ ) ⋅ G[ Q
[ ⎛ [⎞ ⎜ − ⎟ HW / ⎝ /⎠
∫ ρ6 (I [ ) ⋅ G[
Q
HVW REWHQX ORUVTXH OD IRQFWLRQ I [ HVW FHOOH GH OD YpULWDEOH GpIRUPpH PRGDOH GX PRGH IRQGDPHQWDO5pJDOHDORUVOHFDUUpGHODSXOVDWLRQSURSUHIRQGDPHQWDOH
HVW REWHQX ORUVTXH OD IRQFWLRQ I [ HVW FHOOH GH OD YpULWDEOH GpIRUPpH PRGDOH GX PRGH IRQGDPHQWDO5pJDOHDORUVOHFDUUpGHODSXOVDWLRQSURSUHIRQGDPHQWDOH
6RLW ϕ [ ϕ [ !! ϕP [ PIRQFWLRQVVDWLVIDLVDQWDX[FRQGLWLRQVDX[OLPLWHV2QSHXW DSSUR[LPHU OD YpULWDEOH FRXUEH SDU OD IRQFWLRQ D ϕ [ + D ϕ [ + !! + D P ϕP [ HQ GpWHUPLQDQWOHVFRHIILFLHQWV D L GHIDoRQjUHQGUH5PLQLPDOF¶HVWjGLUHHQUpVROYDQWOHVP pTXDWLRQV ∂5 = L = ! P ∂ DL
6RLW ϕ [ ϕ [ !! ϕP [ PIRQFWLRQVVDWLVIDLVDQWDX[FRQGLWLRQVDX[OLPLWHV2QSHXW DSSUR[LPHU OD YpULWDEOH FRXUEH SDU OD IRQFWLRQ D ϕ [ + D ϕ [ + !! + D P ϕP [ HQ GpWHUPLQDQWOHVFRHIILFLHQWV D L GHIDoRQjUHQGUH5PLQLPDOF¶HVWjGLUHHQUpVROYDQWOHVP pTXDWLRQV ∂5 = L = ! P ∂ DL
5HSUHQRQV O¶H[HPSOH SUpFpGHQW GH OD SRXWUH VXU GHX[ DSSXLV DYHF ϕ [ = ϕ [ =
[ ⎛ [⎞ ⎜ − ⎟ HW / ⎝ /⎠
[ ⎛ [ ⎞ ⎛⎜ [ [ ⎞⎟ IRQFWLRQVTXLVDWLVIRQWDX[FRQGLWLRQV − + ⎜ − ⎟ / ⎝ / ⎠ ⎝⎜ / / ⎠⎟
5HSUHQRQV O¶H[HPSOH SUpFpGHQW GH OD SRXWUH VXU GHX[ DSSXLV DYHF ϕ [ = ϕ [ =
[ ⎛ [ ⎞ ⎛⎜ [ [ ⎞⎟ IRQFWLRQVTXLVDWLVIRQWDX[FRQGLWLRQV − + ⎜ − ⎟ / ⎝ / ⎠ ⎝⎜ / / ⎠⎟
ϕ = ϕ / = ϕ / − [ = ϕ [
I [ = D ϕ [ + D ϕ [
2QDGRQF (QSRVDQW λ =
D RQWURXYHSRXUTXRWLHQWGH5D\OHLJK D /
5 =
ϕ = ϕ / = ϕ / − [ = ϕ [
I [ = D ϕ [ + D ϕ [
2QDGRQF (QSRVDQW λ =
D RQWURXYHSRXUTXRWLHQWGH5D\OHLJK D /
(, λ + λ + ρ6 / λ + λ +
= 6D YDOHXU PLQLPDOH HVW ω DS
(, REWHQXH SRXU λ = − /¶HUUHXU UHODWLYH ρ6 /
5 =
(, λ + λ + ρ6 / λ + λ +
= 6D YDOHXU PLQLPDOH HVW ω DS
HVWLFLGHSDUH[FqV
HVWLFLGHSDUH[FqV
- 202 -
[ ⎛ [⎞ ⎜ − ⎟ HW / ⎝ /⎠
(, REWHQXH SRXU λ = − /¶HUUHXU UHODWLYH ρ6 /
- 202 -
&+$3,75(;
&+$3,75(;
'<1$0,48('(63/$48(6
'<1$0,48('(63/$48(6
/HFKDSLWUH,,GXWRPH,pWDLWFRQVDFUpjOD6WDWLTXHGHVSODTXHVOHVSULQFLSDX[UpVXOWDWV TXH QRXV \ DYRQV REWHQXV UHVWHQW YDODEOHV VDQV DXFXQ FKDQJHPHQW HQ '\QDPLTXH G¶DXWUHV GRLYHQWVLPSOHPHQWFRPSOpWpV
/HFKDSLWUH,,GXWRPH,pWDLWFRQVDFUpjOD6WDWLTXHGHVSODTXHVOHVSULQFLSDX[UpVXOWDWV TXH QRXV \ DYRQV REWHQXV UHVWHQW YDODEOHV VDQV DXFXQ FKDQJHPHQW HQ '\QDPLTXH G¶DXWUHV GRLYHQWVLPSOHPHQWFRPSOpWpV
1RXVUHSUHQGURQVLFL
1RXVUHSUHQGURQVLFL
± ODGpILQLWLRQGXYLVVHXUVXUXQHFRXSXUHpOpPHQWDLUH
± ODGpILQLWLRQGXYLVVHXUVXUXQHFRXSXUHpOpPHQWDLUH
± O¶H[SUHVVLRQGHVFRPSRVDQWHVGXYLVVHXUHQIRQFWLRQGHVFRQWUDLQWHV
± O¶H[SUHVVLRQGHVFRPSRVDQWHVGXYLVVHXUHQIRQFWLRQGHVFRQWUDLQWHV
± OHGpFRXSODJHGHVHIIRUWVLQWHUQHVHQ
± OHGpFRXSODJHGHVHIIRUWVLQWHUQHVHQ
HIIRUWVGHPHPEUDQH17
HIIRUWVGHPHPEUDQH17
HIIRUWVWUDQVYHUVDX[480
HIIRUWVWUDQVYHUVDX[480
/HVpTXDWLRQVG¶pTXLOLEUHpWDEOLHVHQ6WDWLTXHGRLYHQWrWUHFRPSOpWpHVSDUOHVHIIRUWVG¶LQHUWLH HWV¶pFULYHQWHQFDUWpVLHQQHVSRXUXQHILEUHQRUPDOHGHFHQWUH 3 GHVHFWLRQG6
/HVpTXDWLRQVG¶pTXLOLEUHpWDEOLHVHQ6WDWLTXHGRLYHQWrWUHFRPSOpWpHVSDUOHVHIIRUWVG¶LQHUWLH HWV¶pFULYHQWHQFDUWpVLHQQHVSRXUXQHILEUHQRUPDOHGHFHQWUH 3 GHVHFWLRQG6
DYHF
DYHF
ΓU
DFFpOpUDWLRQUHODWLYHGHODSDUWLFXOH 3 UHODWLYHj {R [\]}
ΓU
DFFpOpUDWLRQUHODWLYHGHODSDUWLFXOH 3 UHODWLYHj {R [\]}
ΓH
DFFpOpUDWLRQG¶HQWUDvQHPHQWGH 3
ΓH
DFFpOpUDWLRQG¶HQWUDvQHPHQWGH 3
DFFpOpUDWLRQGH&RULROLVGH 3
DFFpOpUDWLRQGH&RULROLVGH 3
YLWHVVHGHURWDWLRQLQVWDQWDQpHGXUHSqUH {R [\]}OLpjODSODTXHSDUUDSSRUWj XQJDOLOpHQ
9U G S
YLWHVVHUHODWLYHGH 3 SDUUDSSRUWj {R [\]}
S I GV
YLWHVVHGHURWDWLRQLQVWDQWDQpHGXUHSqUH {R [\]}OLpjODSODTXHSDUUDSSRUWj XQJDOLOpHQ YLWHVVHUHODWLYHGH 3 SDUUDSSRUWj {R [\]}
IRUFHVXUIDFLTXHH[WpULHXUHSHVDQWHXUSUHVVLRQ
9U G S
WHQVHXUFHQWUDOG¶LQHUWLHGHODILEUHQRUPDOH
S I GV
WHQVHXUFHQWUDOG¶LQHUWLHGHODILEUHQRUPDOH
IRUFHVXUIDFLTXHH[WpULHXUHSHVDQWHXUSUHVVLRQ
- 203 -
- 203 -
&+$3,75(;
&+$3,75(;
'<1$0,48('(63/$48(6
'<1$0,48('(63/$48(6
/HFKDSLWUH,,GXWRPH,pWDLWFRQVDFUpjOD6WDWLTXHGHVSODTXHVOHVSULQFLSDX[UpVXOWDWV TXH QRXV \ DYRQV REWHQXV UHVWHQW YDODEOHV VDQV DXFXQ FKDQJHPHQW HQ '\QDPLTXH G¶DXWUHV GRLYHQWVLPSOHPHQWFRPSOpWpV
/HFKDSLWUH,,GXWRPH,pWDLWFRQVDFUpjOD6WDWLTXHGHVSODTXHVOHVSULQFLSDX[UpVXOWDWV TXH QRXV \ DYRQV REWHQXV UHVWHQW YDODEOHV VDQV DXFXQ FKDQJHPHQW HQ '\QDPLTXH G¶DXWUHV GRLYHQWVLPSOHPHQWFRPSOpWpV
1RXVUHSUHQGURQVLFL
1RXVUHSUHQGURQVLFL
± ODGpILQLWLRQGXYLVVHXUVXUXQHFRXSXUHpOpPHQWDLUH
± ODGpILQLWLRQGXYLVVHXUVXUXQHFRXSXUHpOpPHQWDLUH
± O¶H[SUHVVLRQGHVFRPSRVDQWHVGXYLVVHXUHQIRQFWLRQGHVFRQWUDLQWHV
± O¶H[SUHVVLRQGHVFRPSRVDQWHVGXYLVVHXUHQIRQFWLRQGHVFRQWUDLQWHV
± OHGpFRXSODJHGHVHIIRUWVLQWHUQHVHQ
± OHGpFRXSODJHGHVHIIRUWVLQWHUQHVHQ
HIIRUWVGHPHPEUDQH17
HIIRUWVGHPHPEUDQH17
HIIRUWVWUDQVYHUVDX[480
HIIRUWVWUDQVYHUVDX[480
/HVpTXDWLRQVG¶pTXLOLEUHpWDEOLHVHQ6WDWLTXHGRLYHQWrWUHFRPSOpWpHVSDUOHVHIIRUWVG¶LQHUWLH HWV¶pFULYHQWHQFDUWpVLHQQHVSRXUXQHILEUHQRUPDOHGHFHQWUH 3 GHVHFWLRQG6
/HVpTXDWLRQVG¶pTXLOLEUHpWDEOLHVHQ6WDWLTXHGRLYHQWrWUHFRPSOpWpHVSDUOHVHIIRUWVG¶LQHUWLH HWV¶pFULYHQWHQFDUWpVLHQQHVSRXUXQHILEUHQRUPDOHGHFHQWUH 3 GHVHFWLRQG6
DYHF
DYHF
ΓU
DFFpOpUDWLRQUHODWLYHGHODSDUWLFXOH 3 UHODWLYHj {R [\]}
ΓU
DFFpOpUDWLRQUHODWLYHGHODSDUWLFXOH 3 UHODWLYHj {R [\]}
ΓH
DFFpOpUDWLRQG¶HQWUDvQHPHQWGH 3
ΓH
DFFpOpUDWLRQG¶HQWUDvQHPHQWGH 3
DFFpOpUDWLRQGH&RULROLVGH 3
YLWHVVHGHURWDWLRQLQVWDQWDQpHGXUHSqUH {R [\]}OLpjODSODTXHSDUUDSSRUWj XQJDOLOpHQ
9U G S
YLWHVVHUHODWLYHGH 3 SDUUDSSRUWj {R [\]}
S I GV
DFFpOpUDWLRQGH&RULROLVGH 3
YLWHVVHGHURWDWLRQLQVWDQWDQpHGXUHSqUH {R [\]}OLpjODSODTXHSDUUDSSRUWj XQJDOLOpHQ YLWHVVHUHODWLYHGH 3 SDUUDSSRUWj {R [\]}
IRUFHVXUIDFLTXHH[WpULHXUHSHVDQWHXUSUHVVLRQ
9U G S
WHQVHXUFHQWUDOG¶LQHUWLHGHODILEUHQRUPDOH
S I GV
WHQVHXUFHQWUDOG¶LQHUWLHGHODILEUHQRUPDOH
- 203 -
IRUFHVXUIDFLTXHH[WpULHXUHSHVDQWHXUSUHVVLRQ
- 203 -
⎡ ⎤ ⎥ K ⎢ ⎢ ⎥ GDQVOHUHSqUH {3 [\]} = ⎢ ⎥ ⎢⎣ ⎥⎦
[I ]
[I ]
URWDWLRQGHODILEUHUHODWLYHPHQWj {R [\]}
⎡ ⎤ ⎥ K ⎢ ⎢ ⎥ GDQVOHUHSqUH {3 [\]} = ⎢ ⎥ ⎢⎣ ⎥⎦
URWDWLRQGHODILEUHUHODWLYHPHQWj {R [\]}
−ρ
⋅ GV
PRPHQWHQ 3 GHVIRUFHVG¶LQHUWLHG¶HQWUDvQHPHQWDSSOLTXpHVjODILEUH
−ρ
⋅ GV
PRPHQWHQ 3 GHVIRUFHVG¶LQHUWLHG¶HQWUDvQHPHQWDSSOLTXpHVjODILEUH
−ρ
⋅ GV
PRPHQWHQ 3 GHVIRUFHVG¶LQHUWLHGH&RULROLVDSSOLTXpHVjODILEUH
−ρ
⋅ GV
PRPHQWHQ 3 GHVIRUFHVG¶LQHUWLHGH&RULROLVDSSOLTXpHVjODILEUH
(QSURMHFWLRQVXUOHVD[HV[\]OHVpTXDWLRQV V¶pFULYHQW
(QSURMHFWLRQVXUOHVD[HV[\]OHVpTXDWLRQV V¶pFULYHQW
⎧ ⎛ ∂ X ⎛ ∂ Z ∂ Y ⎞⎞ ∂ 1 [ ∂ 7\ ⎟⎟ + = ρ K ⎜ + ΓH[ + ⎜⎜ θ \ − θ] ⎪ S[ + ⎜ ∂[ ∂\ ∂W ∂ W ⎟⎠ ⎟⎠ ⎝ ⎪ ⎝ ∂W ⎪ ⎪ ⎛ ∂ Y ⎛ ∂ X ∂ Z ⎞⎞ ∂ 7[ ∂ 1 \ ⎪ ⎟⎟ + = ρ K ⎜ + ΓH\ + ⎜⎜ θ ] − θ[ ⎨ S\ + ⎜ ∂[ ∂\ ∂ W ⎟⎠ ⎟⎠ ⎝ ∂W ⎪ ⎝ ∂W ⎪ ⎪ ⎪ S + ∂ 4 [ + ∂ 4 \ = ρ K ⎛⎜ ∂ Z + Γ + ⎛⎜ θ ∂ Y − θ ∂ X ⎞⎟ ⎞⎟ H] \ ] ⎜ [ ∂W ⎪ ⎜ ∂ W ∂[ ∂\ ∂ W ⎟⎠ ⎟⎠ ⎝ ⎝ ⎩
⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩
⎛ K ∂ ω[ ⎞ ∂ 8[ ∂ 0 \ + + 4\ = ρ ⎜ + MH[ + MF[ ⎟ ⎜ ⎟ ∂[ ∂\ ⎝ ∂ W ⎠ ⎛ K ∂ ω\ ⎞ ∂ 0[ ∂ 8\ − 4[ = ρ ⎜ + MH\ + MF\ ⎟ + ⎜ ⎟ ∂\ ∂[ ∂ W ⎝ ⎠
⎧ ⎛ ∂ X ⎛ ∂ Z ∂ Y ⎞⎞ ∂ 1 [ ∂ 7\ ⎟⎟ + = ρ K ⎜ + ΓH[ + ⎜⎜ θ \ − θ] ⎪ S[ + ⎜ ∂[ ∂\ ∂W ∂ W ⎟⎠ ⎟⎠ ⎝ ⎪ ⎝ ∂W ⎪ ⎪ ⎛ ∂ Y ⎛ ∂ X ∂ Z ⎞⎞ ∂ 7[ ∂ 1 \ ⎪ ⎟⎟ + = ρ K ⎜ + ΓH\ + ⎜⎜ θ ] − θ[ ⎨ S\ + ⎜ ∂[ ∂\ ∂ W ⎟⎠ ⎟⎠ ⎝ ∂W ⎪ ⎝ ∂W ⎪ ⎪ ⎪ S + ∂ 4 [ + ∂ 4 \ = ρ K ⎛⎜ ∂ Z + Γ + ⎛⎜ θ ∂ Y − θ ∂ X ⎞⎟ ⎞⎟ H] \ ] ⎜ [ ∂W ⎪ ⎜ ∂ W ∂[ ∂\ ∂ W ⎟⎠ ⎟⎠ ⎝ ⎝ ⎩
⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩
⎛ K ∂ ω[ ⎞ ∂ 8[ ∂ 0 \ + + 4\ = ρ ⎜ + MH[ + MF[ ⎟ ⎜ ⎟ ∂[ ∂\ ⎝ ∂ W ⎠ ⎛ K ∂ ω\ ⎞ ∂ 0[ ∂ 8\ − 4[ = ρ ⎜ + MH\ + MF\ ⎟ + ⎜ ⎟ ∂\ ∂[ ∂ W ⎝ ⎠
5HPDUTXHV
5HPDUTXHV
± O¶pTXDWLRQ G¶pTXLOLEUH GHV PRPHQWV DXWRXU GH O¶D[H WUDQVYHUVDO ]′] HVW LGHQWLTXHPHQW YpULILpH
± O¶pTXDWLRQ G¶pTXLOLEUH GHV PRPHQWV DXWRXU GH O¶D[H WUDQVYHUVDO ]′] HVW LGHQWLTXHPHQW YpULILpH
± GDQVODPDMRULWpGHVFDVOHPRXYHPHQWDOLHXHQO¶DEVHQFHGHSHVDQWHXURXSOXW{WDXWRXUGH ODFRQILJXUDWLRQG¶pTXLOLEUHVWDWLTXHGDQVOHFKDPSGHSHVDQWHXU
± GDQVODPDMRULWpGHVFDVOHPRXYHPHQWDOLHXHQO¶DEVHQFHGHSHVDQWHXURXSOXW{WDXWRXUGH ODFRQILJXUDWLRQG¶pTXLOLEUHVWDWLTXHGDQVOHFKDPSGHSHVDQWHXU
± ORUVTXHOHUHSqUH {R [\]}OLpjODSODTXHHVWJDOLOpHQRQDELHQVU ΓH = ΓF = MH =
± ORUVTXHOHUHSqUH {R [\]}OLpjODSODTXHHVWJDOLOpHQRQDELHQVU ΓH = ΓF = MH =
MF =
MF =
±9,%5$7,216'¶81(3/$48(©'$166213/$1ª
±9,%5$7,216'¶81(3/$48(©'$166213/$1ª
&¶HVW OH FDV R WRXWHV OHV IRUFHV H[WpULHXUHV GRQQpHV GH OLDLVRQV UpHOOHV G¶LQHUWLH VRQW SDUDOOqOHVDXSODQPR\HQ[R\ HWFRQVWDQWHVVXLYDQWO¶pSDLVVHXU
&¶HVW OH FDV R WRXWHV OHV IRUFHV H[WpULHXUHV GRQQpHV GH OLDLVRQV UpHOOHV G¶LQHUWLH VRQW SDUDOOqOHVDXSODQPR\HQ[R\ HWFRQVWDQWHVVXLYDQWO¶pSDLVVHXU
- 204 -
- 204 -
⎡ ⎤ ⎥ K ⎢ ⎢ ⎥ GDQVOHUHSqUH {3 [\]} = ⎢ ⎥ ⎢⎣ ⎥⎦
[I ]
[I ]
URWDWLRQGHODILEUHUHODWLYHPHQWj {R [\]}
⎡ ⎤ ⎥ K ⎢ ⎢ ⎥ GDQVOHUHSqUH {3 [\]} = ⎢ ⎥ ⎢⎣ ⎥⎦
URWDWLRQGHODILEUHUHODWLYHPHQWj {R [\]}
−ρ
⋅ GV
PRPHQWHQ 3 GHVIRUFHVG¶LQHUWLHG¶HQWUDvQHPHQWDSSOLTXpHVjODILEUH
−ρ
⋅ GV
PRPHQWHQ 3 GHVIRUFHVG¶LQHUWLHG¶HQWUDvQHPHQWDSSOLTXpHVjODILEUH
−ρ
⋅ GV
PRPHQWHQ 3 GHVIRUFHVG¶LQHUWLHGH&RULROLVDSSOLTXpHVjODILEUH
−ρ
⋅ GV
PRPHQWHQ 3 GHVIRUFHVG¶LQHUWLHGH&RULROLVDSSOLTXpHVjODILEUH
(QSURMHFWLRQVXUOHVD[HV[\]OHVpTXDWLRQV V¶pFULYHQW
(QSURMHFWLRQVXUOHVD[HV[\]OHVpTXDWLRQV V¶pFULYHQW
⎧ ⎛ ∂ X ⎛ ∂ Z ∂ Y ⎞⎞ ∂ 1 [ ∂ 7\ ⎟⎟ ⎟ + = ρ K ⎜ + ΓH[ + ⎜⎜ θ \ − θ] ⎪ S[ + ⎟ ⎜ ∂[ W W ∂\ ∂ ∂ W ∂ ⎝ ⎠⎠ ⎪ ⎝ ⎪ ⎪ ⎛ ∂ Y ⎛ ∂ X ∂ Z ⎞⎞ ∂ 7[ ∂ 1 \ ⎪ ⎟⎟ + = ρ K ⎜ + ΓH\ + ⎜⎜ θ ] − θ[ ⎨ S\ + ⎜ ∂ ∂\ ∂ W ⎟⎠ ⎟⎠ [ ⎝ ∂W ⎪ ⎝ ∂W ⎪ ⎪ ⎪ S + ∂ 4 [ + ∂ 4 \ = ρ K ⎛⎜ ∂ Z + Γ + ⎛⎜ θ ∂ Y − θ ∂ X ⎞⎟ ⎞⎟ H] \ ] ⎜ [ ∂W ⎪ ⎜ ∂ W ∂[ ∂\ ∂ W ⎟⎠ ⎟⎠ ⎝ ⎝ ⎩
⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩
⎛ K ∂ ω[ ⎞ ∂ 8[ ∂ 0 \ + + 4\ = ρ ⎜ + MH[ + MF[ ⎟ ⎜ ⎟ ∂[ ∂\ ⎝ ∂ W ⎠ ⎛ K ∂ ω\ ⎞ ∂ 0[ ∂ 8\ ⎟ − 4[ = ρ ⎜ + + + M M H\ F\ ⎜ ∂ W ⎟ ∂\ ∂[ ⎝ ⎠
⎧ ⎛ ∂ X ⎛ ∂ Z ∂ Y ⎞⎞ ∂ 1 [ ∂ 7\ ⎟⎟ ⎟ + = ρ K ⎜ + ΓH[ + ⎜⎜ θ \ − θ] ⎪ S[ + ⎟ ⎜ ∂[ W W ∂\ ∂ ∂ W ∂ ⎝ ⎠⎠ ⎪ ⎝ ⎪ ⎪ ⎛ ∂ Y ⎛ ∂ X ∂ Z ⎞⎞ ∂ 7[ ∂ 1 \ ⎪ ⎟⎟ + = ρ K ⎜ + ΓH\ + ⎜⎜ θ ] − θ[ ⎨ S\ + ⎜ ∂ ∂\ ∂ W ⎟⎠ ⎟⎠ [ ⎝ ∂W ⎪ ⎝ ∂W ⎪ ⎪ ⎪ S + ∂ 4 [ + ∂ 4 \ = ρ K ⎛⎜ ∂ Z + Γ + ⎛⎜ θ ∂ Y − θ ∂ X ⎞⎟ ⎞⎟ H] \ ] ⎜ [ ∂W ⎪ ⎜ ∂ W ∂[ ∂\ ∂ W ⎟⎠ ⎟⎠ ⎝ ⎝ ⎩
⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩
⎛ K ∂ ω[ ⎞ ∂ 8[ ∂ 0 \ + + 4\ = ρ ⎜ + MH[ + MF[ ⎟ ⎜ ⎟ ∂[ ∂\ ⎝ ∂ W ⎠ ⎛ K ∂ ω\ ⎞ ∂ 0[ ∂ 8\ ⎟ − 4[ = ρ ⎜ + + + M M H\ F\ ⎜ ∂ W ⎟ ∂\ ∂[ ⎝ ⎠
5HPDUTXHV
5HPDUTXHV
± O¶pTXDWLRQ G¶pTXLOLEUH GHV PRPHQWV DXWRXU GH O¶D[H WUDQVYHUVDO ]′] HVW LGHQWLTXHPHQW YpULILpH
± O¶pTXDWLRQ G¶pTXLOLEUH GHV PRPHQWV DXWRXU GH O¶D[H WUDQVYHUVDO ]′] HVW LGHQWLTXHPHQW YpULILpH
± GDQVODPDMRULWpGHVFDVOHPRXYHPHQWDOLHXHQO¶DEVHQFHGHSHVDQWHXURXSOXW{WDXWRXUGH ODFRQILJXUDWLRQG¶pTXLOLEUHVWDWLTXHGDQVOHFKDPSGHSHVDQWHXU
± GDQVODPDMRULWpGHVFDVOHPRXYHPHQWDOLHXHQO¶DEVHQFHGHSHVDQWHXURXSOXW{WDXWRXUGH ODFRQILJXUDWLRQG¶pTXLOLEUHVWDWLTXHGDQVOHFKDPSGHSHVDQWHXU
± ORUVTXHOHUHSqUH {R [\]}OLpjODSODTXHHVWJDOLOpHQRQDELHQVU ΓH = ΓF = MH =
± ORUVTXHOHUHSqUH {R [\]}OLpjODSODTXHHVWJDOLOpHQRQDELHQVU ΓH = ΓF = MH =
MF =
MF =
±9,%5$7,216'¶81(3/$48(©'$166213/$1ª
±9,%5$7,216'¶81(3/$48(©'$166213/$1ª
&¶HVW OH FDV R WRXWHV OHV IRUFHV H[WpULHXUHV GRQQpHV GH OLDLVRQV UpHOOHV G¶LQHUWLH VRQW SDUDOOqOHVDXSODQPR\HQ[R\ HWFRQVWDQWHVVXLYDQWO¶pSDLVVHXU
&¶HVW OH FDV R WRXWHV OHV IRUFHV H[WpULHXUHV GRQQpHV GH OLDLVRQV UpHOOHV G¶LQHUWLH VRQW SDUDOOqOHVDXSODQPR\HQ[R\ HWFRQVWDQWHVVXLYDQWO¶pSDLVVHXU
- 204 -
- 204 -
/HVHIIRUWVLQWHUQHVWUDQVYHUVDX[480VRQWDORUVLGHQWLTXHPHQWQXOVVHXOVOHVHIIRUWVGH PHPEUDQH1HW7QHOHVRQWSDV/HIHXLOOHWPR\HQUHVWHSODQ&HFDVDpWppWXGLpHQVWDWLTXH DXWRPH,,FKDSLWUH9,FRQWUDLQWHVSODQHVHWFRQWUDLQWHVTXDVLSODQHV
/HVHIIRUWVLQWHUQHVWUDQVYHUVDX[480VRQWDORUVLGHQWLTXHPHQWQXOVVHXOVOHVHIIRUWVGH PHPEUDQH1HW7QHOHVRQWSDV/HIHXLOOHWPR\HQUHVWHSODQ&HFDVDpWppWXGLpHQVWDWLTXH DXWRPH,,FKDSLWUH9,FRQWUDLQWHVSODQHVHWFRQWUDLQWHVTXDVLSODQHV
/HVpTXDWLRQVGXPRXYHPHQWYLVFRpODVWLTXHRQWpWpGRQQpHVDXFKDSLWUH9,,,IRUPXOHV UDSSHORQVOHV
/HVpTXDWLRQVGXPRXYHPHQWYLVFRpODVWLTXHRQWpWpGRQQpHVDXFKDSLWUH9,,,IRUPXOHV UDSSHORQVOHV
G I + λ + µ JUDG ⋅ GLY 3R3 + µ ∆ 3R3
⎛ ⎞ ⎛ ⎞ ⎛ ∂ 3R3 ⎞ ⎟ + µ′ ∆ ⎜ ∂ 3R3 ⎟ = ρ ⎜ ∂ 3R3 + ΓH + ΓF ⎟ + λ′ + µ′ JUDG ⋅ GLY ⎜⎜ ⎜ ⎟ ⎟ ⎟ ⎜ ⎝ ∂W ⎠ ⎝ ∂W ⎠ ⎝ ∂W ⎠
RXSXLVTXH ∆ = JDUG ⋅ GLY −
G I + λ + µ JUDG ⋅ GLY 3R3 − µ
3R3
⎛ ∂ 3R3 ⎞ ⎟ − µ′ + λ′ + µ′ JUDG ⋅ GLY ⎜⎜ ⎟ ⎝ ∂W ⎠
⎛ ∂ 3R3 ⎞ ⎟ − µ′ + λ′ + µ′ JUDG ⋅ GLY ⎜⎜ ⎟ ⎝ ∂W ⎠
⋅
⋅
⎛ ∂ 3R3 ⎞ ∂ 3R3 =ρ⎜ + ΓH + ΓF ⎟ ⎟ ⎜ ∂W ⎝ ∂W ⎠
⎛ ⎞ ⎛ ⎞ ⎛ ∂ 3R3 ⎞ ⎟ + µ′ ∆ ⎜ ∂ 3R3 ⎟ = ρ ⎜ ∂ 3R3 + ΓH + ΓF ⎟ + λ′ + µ′ JUDG ⋅ GLY ⎜⎜ ⎜ ⎟ ⎟ ⎟ ⎜ ⎝ ∂W ⎠ ⎝ ∂W ⎠ ⎝ ∂W ⎠
RXSXLVTXH ∆ = JDUG ⋅ GLY −
⎛ ∂ 3R3 ⎞ ∂ 3R3 =ρ⎜ + ΓH + ΓF ⎟ ⎟ ⎜ ∂W ⎝ ∂W ⎠
G I + λ + µ JUDG ⋅ GLY 3R3 + µ ∆ 3R3
G I + λ + µ JUDG ⋅ GLY 3R3 − µ
3R3
⎛ ∂ 3R3 ⎞ ⎟ − µ′ + λ′ + µ′ JUDG ⋅ GLY ⎜⎜ ⎟ ⎝ ∂W ⎠
⎛ ∂ 3R3 ⎞ ⎟ − µ′ + λ′ + µ′ JUDG ⋅ GLY ⎜⎜ ⎟ ⎝ ∂W ⎠
⋅
⋅
⎛ ∂ 3R3 ⎞ ∂ 3R3 =ρ⎜ + ΓH + ΓF ⎟ ⎟ ⎜ ∂W ⎝ ∂W ⎠
⎛ ∂ 3R3 ⎞ ∂ 3R3 =ρ⎜ + ΓH + ΓF ⎟ ⎟ ⎜ ∂W ⎝ ∂W ⎠
5HPDUTXHV
5HPDUTXHV
± OHVGpULYDWLRQVSDUUDSSRUWDXWHPSVVHIRQWGDQVOHUHSqUH {R [\]}OLpjODSODTXH
± OHVGpULYDWLRQVSDUUDSSRUWDXWHPSVVHIRQWGDQVOHUHSqUH {R [\]}OLpjODSODTXH
± HQO¶DEVHQFHG¶DPRUWLVVHPHQWLQWHUQHRQD λ′ = R = µ′
± HQO¶DEVHQFHG¶DPRUWLVVHPHQWLQWHUQHRQD λ′ = R = µ′
G ± OHYHFWHXU I GpVLJQHODIRUFHYROXPLTXHHQ3QpFHVVDLUHPHQWSDUDOOqOHDXSODQPR\HQGHOD SODTXH[R\
G ± OHYHFWHXU I GpVLJQHODIRUFHYROXPLTXHHQ3QpFHVVDLUHPHQWSDUDOOqOHDXSODQPR\HQGHOD SODTXH[R\
± LFL GLY 3R3 = ε [ + ε \ + ε ] = ε [ + ε \ −
− ν ν ε [ + ε \ = ε [ + ε \ − ν − ν
± LFL GLY 3R3 = ε [ + ε \ + ε ] = ε [ + ε \ −
± RQ SURMHWWH OHV pTXDWLRQV GX PRXYHPHQW VXU OHV D[HV R[ HW R\ R OHV FRPSRVDQWHV GH 3R3 VRQWX[\W HWY[\W OHVGHX[pTXDWLRQVDLQVLREWHQXVVRQWLGHQWLTXHVDX[GHX[ SUHPLqUHVpTXDWLRQVG¶pTXLOLEUHGHVIRUFHV GDQVOHVTXHOOHVRQUHPSODFH 1 [ 1 \ 7[
− ν ν ε [ + ε \ = ε [ + ε \ − ν − ν
± RQ SURMHWWH OHV pTXDWLRQV GX PRXYHPHQW VXU OHV D[HV R[ HW R\ R OHV FRPSRVDQWHV GH 3R3 VRQWX[\W HWY[\W OHVGHX[pTXDWLRQVDLQVLREWHQXVVRQWLGHQWLTXHVDX[GHX[ SUHPLqUHVpTXDWLRQVG¶pTXLOLEUHGHVIRUFHV GDQVOHVTXHOOHVRQUHPSODFH 1 [ 1 \ 7[
7\ SDUOHXUVH[SUHVVLRQVHQIRQFWLRQGH X HW Y
7\ SDUOHXUVH[SUHVVLRQVHQIRQFWLRQGH X HW Y
- 205 -
- 205 -
/HVHIIRUWVLQWHUQHVWUDQVYHUVDX[480VRQWDORUVLGHQWLTXHPHQWQXOVVHXOVOHVHIIRUWVGH PHPEUDQH1HW7QHOHVRQWSDV/HIHXLOOHWPR\HQUHVWHSODQ&HFDVDpWppWXGLpHQVWDWLTXH DXWRPH,,FKDSLWUH9,FRQWUDLQWHVSODQHVHWFRQWUDLQWHVTXDVLSODQHV
/HVHIIRUWVLQWHUQHVWUDQVYHUVDX[480VRQWDORUVLGHQWLTXHPHQWQXOVVHXOVOHVHIIRUWVGH PHPEUDQH1HW7QHOHVRQWSDV/HIHXLOOHWPR\HQUHVWHSODQ&HFDVDpWppWXGLpHQVWDWLTXH DXWRPH,,FKDSLWUH9,FRQWUDLQWHVSODQHVHWFRQWUDLQWHVTXDVLSODQHV
/HVpTXDWLRQVGXPRXYHPHQWYLVFRpODVWLTXHRQWpWpGRQQpHVDXFKDSLWUH9,,,IRUPXOHV UDSSHORQVOHV
/HVpTXDWLRQVGXPRXYHPHQWYLVFRpODVWLTXHRQWpWpGRQQpHVDXFKDSLWUH9,,,IRUPXOHV UDSSHORQVOHV
G I + λ + µ JUDG ⋅ GLY 3R3 + µ ∆ 3R3
⎛ ⎞ ⎛ ⎞ ⎛ ∂ 3R3 ⎞ ⎟ + µ′ ∆ ⎜ ∂ 3R3 ⎟ = ρ ⎜ ∂ 3R3 + ΓH + ΓF ⎟ + λ′ + µ′ JUDG ⋅ GLY ⎜⎜ ⎜ ⎟ ⎟ ⎟ ⎜ ⎝ ∂W ⎠ ⎝ ∂W ⎠ ⎝ ∂W ⎠
RXSXLVTXH ∆ = JDUG ⋅ GLY −
G I + λ + µ JUDG ⋅ GLY 3R3 − µ
3R3
⎛ ∂ 3R3 ⎞ ⎟ − µ′ + λ′ + µ′ JUDG ⋅ GLY ⎜⎜ ⎟ ⎝ ∂W ⎠
⎛ ∂ 3R3 ⎞ ⎟ − µ′ + λ′ + µ′ JUDG ⋅ GLY ⎜⎜ ⎟ ⎝ ∂W ⎠
⋅
⋅
⎛ ∂ 3R3 ⎞ ∂ 3R3 =ρ⎜ + ΓH + ΓF ⎟ ⎟ ⎜ ∂W ⎝ ∂W ⎠
⎛ ∂ 3R3 ⎞ ∂ 3R3 =ρ⎜ + ΓH + ΓF ⎟ ⎟ ⎜ ∂W ⎝ ∂W ⎠
G I + λ + µ JUDG ⋅ GLY 3R3 + µ ∆ 3R3
⎛ ⎞ ⎛ ⎞ ⎛ ∂ 3R3 ⎞ ⎟ + µ′ ∆ ⎜ ∂ 3R3 ⎟ = ρ ⎜ ∂ 3R3 + ΓH + ΓF ⎟ + λ′ + µ′ JUDG ⋅ GLY ⎜⎜ ⎜ ⎟ ⎟ ⎟ ⎜ ⎝ ∂W ⎠ ⎝ ∂W ⎠ ⎝ ∂W ⎠
RXSXLVTXH ∆ = JDUG ⋅ GLY −
G I + λ + µ JUDG ⋅ GLY 3R3 − µ
3R3
⎛ ∂ 3R3 ⎞ ⎟ − µ′ + λ′ + µ′ JUDG ⋅ GLY ⎜⎜ ⎟ ⎝ ∂W ⎠
⎛ ∂ 3R3 ⎞ ⎟ − µ′ + λ′ + µ′ JUDG ⋅ GLY ⎜⎜ ⎟ ⎝ ∂W ⎠
⋅
⋅
⎛ ∂ 3R3 ⎞ ∂ 3R3 =ρ⎜ + ΓH + ΓF ⎟ ⎟ ⎜ ∂W ⎝ ∂W ⎠
⎛ ∂ 3R3 ⎞ ∂ 3R3 =ρ⎜ + ΓH + ΓF ⎟ ⎟ ⎜ ∂W ⎝ ∂W ⎠
5HPDUTXHV
5HPDUTXHV
± OHVGpULYDWLRQVSDUUDSSRUWDXWHPSVVHIRQWGDQVOHUHSqUH {R [\]}OLpjODSODTXH
± OHVGpULYDWLRQVSDUUDSSRUWDXWHPSVVHIRQWGDQVOHUHSqUH {R [\]}OLpjODSODTXH
± HQO¶DEVHQFHG¶DPRUWLVVHPHQWLQWHUQHRQD λ′ = R = µ′
± HQO¶DEVHQFHG¶DPRUWLVVHPHQWLQWHUQHRQD λ′ = R = µ′
G ± OHYHFWHXU I GpVLJQHODIRUFHYROXPLTXHHQ3QpFHVVDLUHPHQWSDUDOOqOHDXSODQPR\HQGHOD SODTXH[R\
G ± OHYHFWHXU I GpVLJQHODIRUFHYROXPLTXHHQ3QpFHVVDLUHPHQWSDUDOOqOHDXSODQPR\HQGHOD SODTXH[R\
± LFL GLY 3R3 = ε [ + ε \ + ε ] = ε [ + ε \ −
− ν ν ε [ + ε \ = ε [ + ε \ − ν − ν
± RQ SURMHWWH OHV pTXDWLRQV GX PRXYHPHQW VXU OHV D[HV R[ HW R\ R OHV FRPSRVDQWHV GH 3R3 VRQWX[\W HWY[\W OHVGHX[pTXDWLRQVDLQVLREWHQXVVRQWLGHQWLTXHVDX[GHX[ SUHPLqUHVpTXDWLRQVG¶pTXLOLEUHGHVIRUFHV GDQVOHVTXHOOHVRQUHPSODFH 1 [ 1 \ 7[ 7\ SDUOHXUVH[SUHVVLRQVHQIRQFWLRQGH X HW Y
- 205 -
± LFL GLY 3R3 = ε [ + ε \ + ε ] = ε [ + ε \ −
− ν ν ε [ + ε \ = ε [ + ε \ − ν − ν
± RQ SURMHWWH OHV pTXDWLRQV GX PRXYHPHQW VXU OHV D[HV R[ HW R\ R OHV FRPSRVDQWHV GH 3R3 VRQWX[\W HWY[\W OHVGHX[pTXDWLRQVDLQVLREWHQXVVRQWLGHQWLTXHVDX[GHX[ SUHPLqUHVpTXDWLRQVG¶pTXLOLEUHGHVIRUFHV GDQVOHVTXHOOHVRQUHPSODFH 1 [ 1 \ 7[ 7\ SDUOHXUVH[SUHVVLRQVHQIRQFWLRQGH X HW Y
- 205 -
([HPSOH9LEUDWLRQVFLUFRQIpUHQWLHOOHVOLEUHVDPRUWLHVG¶XQHFRXURQQH
([HPSOH9LEUDWLRQVFLUFRQIpUHQWLHOOHVOLEUHVDPRUWLHVG¶XQHFRXURQQH
)LJXUH
)LJXUH
/DFRXURQQHG¶pSDLVVHXUKGHUD\RQVDLQWpULHXU HWEH[WpULHXU HVWHQFDVWUpHVXLYDQWVRQ ERUGLQWpULHXUVXUXQVROLGHLQGpIRUPDEOHJDOLOpHQ
/DFRXURQQHG¶pSDLVVHXUKGHUD\RQVDLQWpULHXU HWEH[WpULHXU HVWHQFDVWUpHVXLYDQWVRQ ERUGLQWpULHXUVXUXQVROLGHLQGpIRUPDEOHJDOLOpHQ
2Q V¶LQWpUHVVH DX[ PRXYHPHQWV FLUFRQIpUHQWLHOV OH GpSODFHPHQW GH 3 VH UpGXLVDQW j VD FRPSRVDQWHRUWKRUDGLDOHYUW
2Q V¶LQWpUHVVH DX[ PRXYHPHQWV FLUFRQIpUHQWLHOV OH GpSODFHPHQW GH 3 VH UpGXLVDQW j VD FRPSRVDQWHRUWKRUDGLDOHYUW
/DVHFRQGHpTXDWLRQ HQSURMHFWLRQVXUO¶D[HFLUFRQIpUHQWLHOV¶pFULW
/DVHFRQGHpTXDWLRQ HQSURMHFWLRQVXUO¶D[HFLUFRQIpUHQWLHOV¶pFULW
⎛ ∂ Y ∂ Y Y ⎞ ∂ Y ∂ ⎛⎜ ∂ Y ∂ Y Y ⎞⎟ = ρ µ⎜ + − ⎟ + µ′ + − ⎜ U ∂ U U ⎠⎟ ∂ W ⎝⎜ ∂ U U ∂ U U ⎠⎟ ∂ W ⎝ ∂U
(QSRVDQW Y U W = I U ⋅ J W HOOHGHYLHQW
[µ J W + µ′ J W ] ⎡⎢I ′′U + I ′U − ⎣
U
(QSRVDQW Y U W = I U ⋅ J W HOOHGHYLHQW
⎤ I U ⎥ = ρ I U ⋅ J W U ⎦
VRLWHQFRUHHQVpSDUDQWOHVIRQFWLRQVIU HWJW J = µ′ J + J µ
⎛ ∂ Y ∂ Y Y ⎞ ∂ Y ∂ ⎛⎜ ∂ Y ∂ Y Y ⎞⎟ = ρ µ⎜ + − ⎟ + µ′ + − ⎜ U ∂ U U ⎠⎟ ∂ W ⎝⎜ ∂ U U ∂ U U ⎠⎟ ∂ W ⎝ ∂U
[µ J W + µ′ J W ] ⎡⎢I ′′U + I ′U − ⎣
U
⎤ I U ⎥ = ρ I U ⋅ J W U ⎦
VRLWHQFRUHHQVpSDUDQWOHVIRQFWLRQVIU HWJW
I ′′ + I ′ − I U U = − ω ρ ⋅I µ
J = µ′ J + J µ
- 206 -
I ′′ + I ′ − I U U = − ω ρ ⋅I µ
- 206 -
([HPSOH9LEUDWLRQVFLUFRQIpUHQWLHOOHVOLEUHVDPRUWLHVG¶XQHFRXURQQH
([HPSOH9LEUDWLRQVFLUFRQIpUHQWLHOOHVOLEUHVDPRUWLHVG¶XQHFRXURQQH
)LJXUH
)LJXUH
/DFRXURQQHG¶pSDLVVHXUKGHUD\RQVDLQWpULHXU HWEH[WpULHXU HVWHQFDVWUpHVXLYDQWVRQ ERUGLQWpULHXUVXUXQVROLGHLQGpIRUPDEOHJDOLOpHQ
/DFRXURQQHG¶pSDLVVHXUKGHUD\RQVDLQWpULHXU HWEH[WpULHXU HVWHQFDVWUpHVXLYDQWVRQ ERUGLQWpULHXUVXUXQVROLGHLQGpIRUPDEOHJDOLOpHQ
2Q V¶LQWpUHVVH DX[ PRXYHPHQWV FLUFRQIpUHQWLHOV OH GpSODFHPHQW GH 3 VH UpGXLVDQW j VD FRPSRVDQWHRUWKRUDGLDOHYUW
2Q V¶LQWpUHVVH DX[ PRXYHPHQWV FLUFRQIpUHQWLHOV OH GpSODFHPHQW GH 3 VH UpGXLVDQW j VD FRPSRVDQWHRUWKRUDGLDOHYUW
/DVHFRQGHpTXDWLRQ HQSURMHFWLRQVXUO¶D[HFLUFRQIpUHQWLHOV¶pFULW
/DVHFRQGHpTXDWLRQ HQSURMHFWLRQVXUO¶D[HFLUFRQIpUHQWLHOV¶pFULW
⎛ ∂ Y ∂ Y Y ⎞ ∂ Y ∂ ⎛⎜ ∂ Y ∂ Y Y ⎞⎟ = ρ µ⎜ + − ⎟ + µ′ + − ⎜ U ∂ U U ⎠⎟ ∂ W ⎝⎜ ∂ U U ∂ U U ⎠⎟ ∂ W ⎝ ∂U
(QSRVDQW Y U W = I U ⋅ J W HOOHGHYLHQW
[µ J W + µ′ J W ] ⎡⎢I ′′U + I ′U − ⎣
U
(QSRVDQW Y U W = I U ⋅ J W HOOHGHYLHQW
⎤ I U ⎥ = ρ I U ⋅ J W U ⎦
VRLWHQFRUHHQVpSDUDQWOHVIRQFWLRQVIU HWJW J = µ′ J + J µ
I ′′ + I ′ − I U U = − ω ρ ⋅I µ
- 206 -
⎛ ∂ Y ∂ Y Y ⎞ ∂ Y ∂ ⎛⎜ ∂ Y ∂ Y Y ⎞⎟ = ρ µ⎜ + − ⎟ + µ′ + − ⎜ U ∂ U U ⎠⎟ ∂ W ⎝⎜ ∂ U U ∂ U U ⎠⎟ ∂ W ⎝ ∂U
[µ J W + µ′ J W ] ⎡⎢I ′′U + I ′U − ⎣
U
⎤ I U ⎥ = ρ I U ⋅ J W U ⎦
VRLWHQFRUHHQVpSDUDQWOHVIRQFWLRQVIU HWJW J = µ′ J + J µ
I ′′ + I ′ − I U U = − ω ρ ⋅I µ
- 206 -
3RVRQV & =
µ FpOpULWpGHO¶RQGHQDWXUHOOHQRQDPRUWLH ρ
3RVRQV & =
µ′ FRHIILFLHQWG¶DPRUWLVVHPHQW ρ
&′ =
&′&5 =
⎛ &′ N = ⎜⎜ ⎝ &′&5
&′ =
&′&5 =
⎛ &′ N = ⎜⎜ ⎝ &′&5
& FRHIILFLHQWG¶DPRUWLVVHPHQWFULWLTXH ω
⎞ ⎟⎟ FRHIILFLHQWG¶DPRUWLVVHPHQWUpGXLW ⎠
2QSHXWDORUVpFULUHOHVGHX[pTXDWLRQVGpFRXSOpHV
µ FpOpULWpGHO¶RQGHQDWXUHOOHQRQDPRUWLH ρ µ′ FRHIILFLHQWG¶DPRUWLVVHPHQW ρ
& FRHIILFLHQWG¶DPRUWLVVHPHQWFULWLTXH ω
⎞ ⎟⎟ FRHIILFLHQWG¶DPRUWLVVHPHQWUpGXLW ⎠
2QSHXWDORUVpFULUHOHVGHX[pTXDWLRQVGpFRXSOpHV
⎧ J + N ω J + J = ⎪ ⎪ ⎨ ⎞ ⎛ ⎪ I ′′ + I ′ + ⎜ ω − ⎟ I = ⎜ F U ⎟ U ⎪⎩ ⎠ ⎝ /DVHFRQGHGXW\SHGH%HVVHODSRXUVROXWLRQJpQpUDOH
⎧ J + N ω J + J = ⎪ ⎪ ⎨ ⎞ ⎛ ⎪ I ′′ + I ′ + ⎜ ω − ⎟ I = ⎜ F U ⎟ U ⎪⎩ ⎠ ⎝ /DVHFRQGHGXW\SHGH%HVVHODSRXUVROXWLRQJpQpUDOH
⎛ ωU ⎞ ⎛ ωU ⎞ I U = α - ⎜ ⎟ + β 1 ⎜ ⎟ ⎝ F ⎠ ⎝ F ⎠
⎛ ωU ⎞ ⎛ ωU ⎞ I U = α - ⎜ ⎟ + β 1 ⎜ ⎟ ⎝ F ⎠ ⎝ F ⎠
- HW 1 GpVLJQDQW OHV IRQFWLRQV GH %HVVHO GH SUHPLqUH HW GH VHFRQGH HVSqFH UHVSHFWLYHPHQW G¶RUGUH
- HW 1 GpVLJQDQW OHV IRQFWLRQV GH %HVVHO GH SUHPLqUH HW GH VHFRQGH HVSqFH UHVSHFWLYHPHQW G¶RUGUH
/HVFRQGLWLRQVDX[OLPLWHVV¶pFULYHQW
/HVFRQGLWLRQVDX[OLPLWHVV¶pFULYHQW
⎛ ωD ⎞ ⎛ ωD ⎞ ±3RXU U = D Y = ∀W ⇒ I D = ⇒ α - ⎜ ⎟ = ⎟ + β 1 ⎜ F ⎝ ⎠ ⎝ F ⎠
⎛ ωD ⎞ ⎛ ωD ⎞ ±3RXU U = D Y = ∀W ⇒ I D = ⇒ α - ⎜ ⎟ = ⎟ + β 1 ⎜ F ⎝ ⎠ ⎝ F ⎠
±3RXU U = E ERUGOLEUH τUθ = ∀W ⇒ γ Uθ = ∀W
±3RXU U = E ERUGOLEUH τUθ = ∀W ⇒ γ Uθ = ∀W
&RPPH γ
Uθ
=
⎛ ∂ Y Y ⎜⎜ − U ⎝ ∂ U
⎞ ⎟⎟ FHWWHFRQGLWLRQV¶pFULW ⎠
&RPPH γ
Uθ
=
⎛ ∂ Y Y ⎜⎜ − U ⎝ ∂ U
⎞ ⎟⎟ FHWWHFRQGLWLRQV¶pFULW ⎠
I E = F¶HVWjGLUHFRPSWHWHQXGHVIRUPXOHVGHGpULYDWLRQ GXFKDSLWUH9,,, ⎛ ωE ⎞ ⎛ ωE ⎞ SRXUOHVIRQFWLRQVGH%HVVHO α - ⎜ ⎟ = ⎟ + β 1 ⎜ ⎝ F ⎠ ⎝ F ⎠
I E = F¶HVWjGLUHFRPSWHWHQXGHVIRUPXOHVGHGpULYDWLRQ GXFKDSLWUH9,,, ⎛ ωE ⎞ ⎛ ωE ⎞ SRXUOHVIRQFWLRQVGH%HVVHO α - ⎜ ⎟ = ⎟ + β 1 ⎜ ⎝ F ⎠ ⎝ F ⎠
- 207 -
- 207 -
I ′E −
3RVRQV & =
I ′E −
µ FpOpULWpGHO¶RQGHQDWXUHOOHQRQDPRUWLH ρ
3RVRQV & =
µ′ FRHIILFLHQWG¶DPRUWLVVHPHQW ρ
&′ =
&′&5 =
⎛ &′ N = ⎜⎜ ⎝ &′&5
&′ =
&′&5 =
⎛ &′ N = ⎜⎜ ⎝ &′&5
& FRHIILFLHQWG¶DPRUWLVVHPHQWFULWLTXH ω
⎞ ⎟⎟ FRHIILFLHQWG¶DPRUWLVVHPHQWUpGXLW ⎠
2QSHXWDORUVpFULUHOHVGHX[pTXDWLRQVGpFRXSOpHV
µ FpOpULWpGHO¶RQGHQDWXUHOOHQRQDPRUWLH ρ µ′ FRHIILFLHQWG¶DPRUWLVVHPHQW ρ
& FRHIILFLHQWG¶DPRUWLVVHPHQWFULWLTXH ω
2QSHXWDORUVpFULUHOHVGHX[pTXDWLRQVGpFRXSOpHV
⎧ J + N ω J + J = ⎪ ⎪ ⎨ ⎞ ⎛ ⎪ I ′′ + I ′ + ⎜ ω − ⎟ I = ⎜ F U ⎟ U ⎪⎩ ⎠ ⎝ /DVHFRQGHGXW\SHGH%HVVHODSRXUVROXWLRQJpQpUDOH
⎞ ⎟⎟ FRHIILFLHQWG¶DPRUWLVVHPHQWUpGXLW ⎠
⎧ J + N ω J + J = ⎪ ⎪ ⎨ ⎞ ⎛ ⎪ I ′′ + I ′ + ⎜ ω − ⎟ I = ⎜ F U ⎟ U ⎪⎩ ⎠ ⎝ /DVHFRQGHGXW\SHGH%HVVHODSRXUVROXWLRQJpQpUDOH
⎛ ωU ⎞ ⎛ ωU ⎞ I U = α - ⎜ ⎟ + β 1 ⎜ ⎟ ⎝ F ⎠ ⎝ F ⎠
⎛ ωU ⎞ ⎛ ωU ⎞ I U = α - ⎜ ⎟ + β 1 ⎜ ⎟ ⎝ F ⎠ ⎝ F ⎠
- HW 1 GpVLJQDQW OHV IRQFWLRQV GH %HVVHO GH SUHPLqUH HW GH VHFRQGH HVSqFH UHVSHFWLYHPHQW G¶RUGUH
- HW 1 GpVLJQDQW OHV IRQFWLRQV GH %HVVHO GH SUHPLqUH HW GH VHFRQGH HVSqFH UHVSHFWLYHPHQW G¶RUGUH
/HVFRQGLWLRQVDX[OLPLWHVV¶pFULYHQW
/HVFRQGLWLRQVDX[OLPLWHVV¶pFULYHQW
⎛ ωD ⎞ ⎛ ωD ⎞ ±3RXU U = D Y = ∀W ⇒ I D = ⇒ α - ⎜ ⎟ = ⎟ + β 1 ⎜ ⎝ F ⎠ ⎝ F ⎠
⎛ ωD ⎞ ⎛ ωD ⎞ ±3RXU U = D Y = ∀W ⇒ I D = ⇒ α - ⎜ ⎟ = ⎟ + β 1 ⎜ ⎝ F ⎠ ⎝ F ⎠
±3RXU U = E ERUGOLEUH τUθ = ∀W ⇒ γ Uθ = ∀W
±3RXU U = E ERUGOLEUH τUθ = ∀W ⇒ γ Uθ = ∀W
&RPPH γ
Uθ
=
⎛ ∂ Y Y ⎞ ⎜⎜ ⎟ FHWWHFRQGLWLRQV¶pFULW − ∂ U U ⎟⎠ ⎝
&RPPH γ
Uθ
=
⎛ ∂ Y Y ⎞ ⎜⎜ ⎟ FHWWHFRQGLWLRQV¶pFULW − ∂ U U ⎟⎠ ⎝
I E = F¶HVWjGLUHFRPSWHWHQXGHVIRUPXOHVGHGpULYDWLRQ GXFKDSLWUH9,,, ⎛ ωE ⎞ ⎛ ωE ⎞ SRXUOHVIRQFWLRQVGH%HVVHO α - ⎜ ⎟ = ⎟ + β 1 ⎜ F ⎝ ⎠ ⎝ F ⎠
I E = F¶HVWjGLUHFRPSWHWHQXGHVIRUPXOHVGHGpULYDWLRQ GXFKDSLWUH9,,, ⎛ ωE ⎞ ⎛ ωE ⎞ SRXUOHVIRQFWLRQVGH%HVVHO α - ⎜ ⎟ = ⎟ + β 1 ⎜ F ⎝ ⎠ ⎝ F ⎠
- 207 -
- 207 -
I ′E −
I ′E −
5DVVHPEORQVFHVGHX[FRQGLWLRQVDX[OLPLWHV
5DVVHPEORQVFHVGHX[FRQGLWLRQVDX[OLPLWHV
⎧ ⎛ ωD ⎞ ⎛ ωD ⎞ ⎪ α - ⎜ F ⎟ + β 1 ⎜ F ⎟ = ⎝ ⎠ ⎝ ⎠ ⎪ ⎨ ⎪ ⎛ ωE ⎞ ⎛ ωE ⎞ ⎪ α - ⎜ F ⎟ + β 1 ⎜ F ⎟ = ⎠ ⎝ ⎝ ⎠ ⎩
⎧ ⎛ ωD ⎞ ⎛ ωD ⎞ ⎪ α - ⎜ F ⎟ + β 1 ⎜ F ⎟ = ⎝ ⎠ ⎝ ⎠ ⎪ ⎨ ⎪ ⎛ ωE ⎞ ⎛ ωE ⎞ ⎪ α - ⎜ F ⎟ + β 1 ⎜ F ⎟ = ⎠ ⎝ ⎝ ⎠ ⎩
/D VROXWLRQ WULYLDOH α = β = FRUUHVSRQG DX UHSRV HW GRLW rWUH UHMHWpH /D VXLWH {ωQ } GHV SXOVDWLRQV SURSUHV QRQ DPRUWLHV HVW GRQF FRQVWLWXpH SDU OD VXLWH GHV UDFLQHV GH O¶pTXDWLRQ FDUDFWpULVWLTXH
/D VROXWLRQ WULYLDOH α = β = FRUUHVSRQG DX UHSRV HW GRLW rWUH UHMHWpH /D VXLWH {ωQ } GHV SXOVDWLRQV SURSUHV QRQ DPRUWLHV HVW GRQF FRQVWLWXpH SDU OD VXLWH GHV UDFLQHV GH O¶pTXDWLRQ FDUDFWpULVWLTXH
⎛ ωD ⎞ - ⎜ ⎟ ⎝ F ⎠
⎛ ωD ⎞ 1 ⎜ ⎟ ⎝ F ⎠
⎛ ωE ⎞ - ⎜ ⎟ ⎝ F ⎠
⎛ ωE ⎞ 1 ⎜ ⎟ ⎝ F ⎠
=
/¶pTXDWLRQGLIIpUHQWLHOOHHQJW V¶pFULW
⎛ ωD ⎞ - ⎜ ⎟ ⎝ F ⎠
⎛ ωD ⎞ 1 ⎜ ⎟ ⎝ F ⎠
⎛ ωE ⎞ - ⎜ ⎟ ⎝ F ⎠
⎛ ωE ⎞ 1 ⎜ ⎟ ⎝ F ⎠
=
/¶pTXDWLRQGLIIpUHQWLHOOHHQJW V¶pFULW
J + N Q ⋅ ωQ ⋅ J + ω ⋅ J =
J + N Q ⋅ ωQ ⋅ J + ω ⋅ J =
3RXUFKDTXHKDUPRQLTXHWURLVFDVGRLYHQWrWUHHQYLVDJpV
3RXUFKDTXHKDUPRQLTXHWURLVFDVGRLYHQWrWUHHQYLVDJpV
HUFDVDPRUWLVVHPHQWIRUW N Q >
HUFDVDPRUWLVVHPHQWIRUW N Q >
(QSRVDQW UQ = ωQ N Q − RQD
(QSRVDQW UQ = ωQ N Q − RQD
J Q W = H − N Q ωQ W ($ Q FK UQ W + %Q VK UQ W ) HFDVDPRUWLVVHPHQWFULWLTXH N Q =
J Q W = H − N Q ωQ W ($ Q FK UQ W + %Q VK UQ W ) HFDVDPRUWLVVHPHQWFULWLTXH N Q =
J Q W = H −ωQ W ($ Q + %Q W )
J Q W = H −ωQ W ($ Q + %Q W )
HFDVDPRUWLVVHPHQWIDLEOH N Q <
HFDVDPRUWLVVHPHQWIDLEOH N Q <
(QSRVDQW Ω Q = ωQ − N Q RQD
(QSRVDQW Ω Q = ωQ − N Q RQD
J Q W = H − N Q ωQ W ($ Q FRV Ω Q W + %Q VLQ Ω Q W ) /DVROXWLRQJpQpUDOHYUW V¶pFULWILQDOHPHQW
J Q W = H − N Q ωQ W ($ Q FRV Ω Q W + %Q VLQ Ω Q W ) /DVROXWLRQJpQpUDOHYUW V¶pFULWILQDOHPHQW
∞
Y U W =
∑
∞
I Q U ⋅ J Q W
Y U W =
Q =
∑ I U ⋅ J W Q
Q
Q =
- 208 -
- 208 -
5DVVHPEORQVFHVGHX[FRQGLWLRQVDX[OLPLWHV
5DVVHPEORQVFHVGHX[FRQGLWLRQVDX[OLPLWHV
⎧ ⎛ ωD ⎞ ⎛ ωD ⎞ ⎪ α - ⎜ F ⎟ + β 1 ⎜ F ⎟ = ⎝ ⎠ ⎝ ⎠ ⎪ ⎨ ⎪ ⎛ ωE ⎞ ⎛ ωE ⎞ ⎪ α - ⎜ F ⎟ + β 1 ⎜ F ⎟ = ⎝ ⎠ ⎝ ⎠ ⎩
⎧ ⎛ ωD ⎞ ⎛ ωD ⎞ ⎪ α - ⎜ F ⎟ + β 1 ⎜ F ⎟ = ⎝ ⎠ ⎝ ⎠ ⎪ ⎨ ⎪ ⎛ ωE ⎞ ⎛ ωE ⎞ ⎪ α - ⎜ F ⎟ + β 1 ⎜ F ⎟ = ⎝ ⎠ ⎝ ⎠ ⎩
/D VROXWLRQ WULYLDOH α = β = FRUUHVSRQG DX UHSRV HW GRLW rWUH UHMHWpH /D VXLWH {ωQ } GHV SXOVDWLRQV SURSUHV QRQ DPRUWLHV HVW GRQF FRQVWLWXpH SDU OD VXLWH GHV UDFLQHV GH O¶pTXDWLRQ FDUDFWpULVWLTXH
/D VROXWLRQ WULYLDOH α = β = FRUUHVSRQG DX UHSRV HW GRLW rWUH UHMHWpH /D VXLWH {ωQ } GHV SXOVDWLRQV SURSUHV QRQ DPRUWLHV HVW GRQF FRQVWLWXpH SDU OD VXLWH GHV UDFLQHV GH O¶pTXDWLRQ FDUDFWpULVWLTXH
⎛ ωD ⎞ - ⎜ ⎟ ⎝ F ⎠
⎛ ωD ⎞ 1 ⎜ ⎟ ⎝ F ⎠
⎛ ωE ⎞ - ⎜ ⎟ ⎝ F ⎠
⎛ ωE ⎞ 1 ⎜ ⎟ ⎝ F ⎠
=
/¶pTXDWLRQGLIIpUHQWLHOOHHQJW V¶pFULW
⎛ ωD ⎞ - ⎜ ⎟ ⎝ F ⎠
⎛ ωD ⎞ 1 ⎜ ⎟ ⎝ F ⎠
⎛ ωE ⎞ - ⎜ ⎟ ⎝ F ⎠
⎛ ωE ⎞ 1 ⎜ ⎟ ⎝ F ⎠
=
/¶pTXDWLRQGLIIpUHQWLHOOHHQJW V¶pFULW
J + N Q ⋅ ωQ ⋅ J + ω ⋅ J =
J + N Q ⋅ ωQ ⋅ J + ω ⋅ J =
3RXUFKDTXHKDUPRQLTXHWURLVFDVGRLYHQWrWUHHQYLVDJpV
3RXUFKDTXHKDUPRQLTXHWURLVFDVGRLYHQWrWUHHQYLVDJpV
HUFDVDPRUWLVVHPHQWIRUW N Q >
HUFDVDPRUWLVVHPHQWIRUW N Q >
(QSRVDQW UQ = ωQ N Q − RQD
(QSRVDQW UQ = ωQ N Q − RQD
J Q W = H − N Q ωQ W ($ Q FK UQ W + %Q VK UQ W ) HFDVDPRUWLVVHPHQWFULWLTXH N Q =
J Q W = H − N Q ωQ W ($ Q FK UQ W + %Q VK UQ W ) HFDVDPRUWLVVHPHQWFULWLTXH N Q =
J Q W = H −ωQ W ($ Q + %Q W )
J Q W = H −ωQ W ($ Q + %Q W )
HFDVDPRUWLVVHPHQWIDLEOH N Q <
HFDVDPRUWLVVHPHQWIDLEOH N Q <
(QSRVDQW Ω Q = ωQ − N Q RQD
(QSRVDQW Ω Q = ωQ − N Q RQD
J Q W = H − N Q ωQ W ($ Q FRV Ω Q W + %Q VLQ Ω Q W ) /DVROXWLRQJpQpUDOHYUW V¶pFULWILQDOHPHQW
J Q W = H − N Q ωQ W ($ Q FRV Ω Q W + %Q VLQ Ω Q W ) /DVROXWLRQJpQpUDOHYUW V¶pFULWILQDOHPHQW
∞
Y U W =
∑
∞
I Q U ⋅ J Q W
Q =
- 208 -
Y U W =
∑ I U ⋅ J W Q
Q =
- 208 -
Q
2QHQGpGXLWOHWHQVHXUGpIRUPDWLRQ E TXLDSRXUVHXOFRPSRVDQWHQRQQXOOHHQFRRUGRQQpHV F\OLQGULTXHV γ Uθ =
⎛∂Y ⎜ − ⎜⎝ ∂ U
Y⎞ ⎟= U ⎟⎠
∞
∑ Q =
2QHQGpGXLWOHWHQVHXUGpIRUPDWLRQ E TXLDSRXUVHXOFRPSRVDQWHQRQQXOOHHQFRRUGRQQpHV F\OLQGULTXHV
⎡ ωQ ⎛ω U⎞ ⎛ ω U ⎞⎤ J Q W ⋅ ⎢α Q - ⎜ Q ⎟ + β Q 1 ⎜ Q ⎟ ⎥ F F ⎝ ⎠ ⎝ F ⎠⎦ ⎣
SXLVOHWHQVHXUFRQWUDLQWH Σ GRQWODVHXOHFRPSRVDQWHQRQQXOOHHVW τUθ = µ γ Uθ + µ′
γ Uθ =
∂ γ Uθ ∂W
⎛∂Y ⎜ − ⎜⎝ ∂ U
Y⎞ ⎟= U ⎟⎠
∞
∑ Q =
⎡ ωQ ⎛ω U⎞ ⎛ ω U ⎞⎤ J Q W ⋅ ⎢α Q - ⎜ Q ⎟ + β Q 1 ⎜ Q ⎟ ⎥ F F ⎝ ⎠ ⎝ F ⎠⎦ ⎣
SXLVOHWHQVHXUFRQWUDLQWH Σ GRQWODVHXOHFRPSRVDQWHQRQQXOOHHVW τUθ = µ γ Uθ + µ′
∂ γ Uθ ∂W
2QDHQFRUHXQV\VWqPHG¶RQGHVVWDWLRQQDLUHVGHW\SH©WUDQVYHUVDOHVª
2QDHQFRUHXQV\VWqPHG¶RQGHVVWDWLRQQDLUHVGHW\SH©WUDQVYHUVDOHVª
±9,%5$7,21675$169(56$/(6'(63/$48(6
±9,%5$7,21675$169(56$/(6'(63/$48(6
3RXU pWDEOLU O¶pTXDWLRQ GX PRXYHPHQW j ODTXHOOH REpLW OD IOqFKH Z[ \ W QRXV SURFpGRQV FRPPHGDQVOHFDVVWDWLTXHHWQRXVDSSXLHURQVVXUOHVGHX[PrPHVK\SRWKqVHV
3RXU pWDEOLU O¶pTXDWLRQ GX PRXYHPHQW j ODTXHOOH REpLW OD IOqFKH Z[ \ W QRXV SURFpGRQV FRPPHGDQVOHFDVVWDWLTXHHWQRXVDSSXLHURQVVXUOHVGHX[PrPHVK\SRWKqVHV
1RXVH[SULPHURQVG¶DERUGOHVSDUDPqWUHVGXSUREOqPHHQIRQFWLRQGHZ
1RXVH[SULPHURQVG¶DERUGOHVSDUDPqWUHVGXSUREOqPHHQIRQFWLRQGHZ
UHpWDSHGpSODFHPHQWV
UHpWDSHGpSODFHPHQWV ⎧ ∂Z ⎪ X = −] ∂ [ ⎪ ∂Z ⎪ 3R3 ⎨ Y = −] ∂\ ⎪ ⎪ ⎪ Z = Z [ \ ⎩
HpWDSHGpIRUPDWLRQV
⎧ ∂Z ⎪ X = −] ∂ [ ⎪ ∂Z ⎪ 3R3 ⎨ Y = −] ∂\ ⎪ ⎪ ⎪ Z = Z [ \ ⎩
⎧ ∂X ∂ Z = −] ⎪ ε[ = ∂[ ∂ [ ⎪ ⎪ ∂Y ∂ Z ⎪ = −] ⎨ ε\ = ∂\ ∂ \ ⎪ ⎪ ⎪ γ = ⎛⎜ ∂ X + ∂ Y ⎞⎟ = −] ∂ Z [\ ⎪ ∂[ ⋅∂\ ⎜⎝ ∂ \ ∂ [ ⎟⎠ ⎩
2QHQGpGXLW
ε] = −
HpWDSHGpIRUPDWLRQV
⎧ ∂X ∂ Z = −] ⎪ ε[ = ∂[ ∂ [ ⎪ ⎪ ∂Y ∂ Z ⎪ = −] ⎨ ε\ = ∂\ ∂ \ ⎪ ⎪ ⎪ γ = ⎛⎜ ∂ X + ∂ Y ⎞⎟ = −] ∂ Z [\ ⎪ ∂[ ⋅∂\ ⎜⎝ ∂ \ ∂ [ ⎟⎠ ⎩
2QHQGpGXLW
ε] = −
ν ν ε [ + ε \ = ]⋅∆Z − ν − ν
ν ν ε [ + ε \ = ]⋅∆Z − ν − ν
- 209 -
- 209 -
2QHQGpGXLWOHWHQVHXUGpIRUPDWLRQ E TXLDSRXUVHXOFRPSRVDQWHQRQQXOOHHQFRRUGRQQpHV F\OLQGULTXHV
2QHQGpGXLWOHWHQVHXUGpIRUPDWLRQ E TXLDSRXUVHXOFRPSRVDQWHQRQQXOOHHQFRRUGRQQpHV F\OLQGULTXHV
γ Uθ =
⎛∂Y ⎜ − ⎜⎝ ∂ U
Y⎞ ⎟= U ⎟⎠
∞
∑ Q =
⎡ ωQ ⎛ω U⎞ ⎛ ω U ⎞⎤ J Q W ⋅ ⎢α Q - ⎜ Q ⎟ + β Q 1 ⎜ Q ⎟ ⎥ F ⎝ F ⎠ ⎝ F ⎠⎦ ⎣
SXLVOHWHQVHXUFRQWUDLQWH Σ GRQWODVHXOHFRPSRVDQWHQRQQXOOHHVW τUθ = µ γ Uθ + µ′
γ Uθ =
∂ γ Uθ ∂W
⎛∂Y ⎜ − ⎜⎝ ∂ U
Y⎞ ⎟= U ⎟⎠
∞
∑ Q =
⎡ ωQ ⎛ω U⎞ ⎛ ω U ⎞⎤ J Q W ⋅ ⎢α Q - ⎜ Q ⎟ + β Q 1 ⎜ Q ⎟ ⎥ F ⎝ F ⎠ ⎝ F ⎠⎦ ⎣
SXLVOHWHQVHXUFRQWUDLQWH Σ GRQWODVHXOHFRPSRVDQWHQRQQXOOHHVW τUθ = µ γ Uθ + µ′
∂ γ Uθ ∂W
2QDHQFRUHXQV\VWqPHG¶RQGHVVWDWLRQQDLUHVGHW\SH©WUDQVYHUVDOHVª
2QDHQFRUHXQV\VWqPHG¶RQGHVVWDWLRQQDLUHVGHW\SH©WUDQVYHUVDOHVª
±9,%5$7,21675$169(56$/(6'(63/$48(6
±9,%5$7,21675$169(56$/(6'(63/$48(6
3RXU pWDEOLU O¶pTXDWLRQ GX PRXYHPHQW j ODTXHOOH REpLW OD IOqFKH Z[ \ W QRXV SURFpGRQV FRPPHGDQVOHFDVVWDWLTXHHWQRXVDSSXLHURQVVXUOHVGHX[PrPHVK\SRWKqVHV
3RXU pWDEOLU O¶pTXDWLRQ GX PRXYHPHQW j ODTXHOOH REpLW OD IOqFKH Z[ \ W QRXV SURFpGRQV FRPPHGDQVOHFDVVWDWLTXHHWQRXVDSSXLHURQVVXUOHVGHX[PrPHVK\SRWKqVHV
1RXVH[SULPHURQVG¶DERUGOHVSDUDPqWUHVGXSUREOqPHHQIRQFWLRQGHZ
1RXVH[SULPHURQVG¶DERUGOHVSDUDPqWUHVGXSUREOqPHHQIRQFWLRQGHZ
UHpWDSHGpSODFHPHQWV
UHpWDSHGpSODFHPHQWV ⎧ ∂Z ⎪ X = −] ∂ [ ⎪ ∂Z ⎪ 3R3 ⎨ Y = −] ∂\ ⎪ ⎪ ⎪ Z = Z [ \ ⎩
HpWDSHGpIRUPDWLRQV
⎧ ∂Z ⎪ X = −] ∂ [ ⎪ ∂Z ⎪ 3R3 ⎨ Y = −] ∂\ ⎪ ⎪ ⎪ Z = Z [ \ ⎩
⎧ ∂X ∂ Z = −] ⎪ ε[ = ∂[ ∂ [ ⎪ ⎪ ∂Y ∂ Z ⎪ = −] ⎨ ε\ = ∂\ ∂ \ ⎪ ⎪ ⎪ γ = ⎛⎜ ∂ X + ∂ Y ⎞⎟ = −] ∂ Z [\ ⎜ ⎟ ⎪ ∂[ ⋅∂\ ⎝∂\ ∂[ ⎠ ⎩
2QHQGpGXLW
ε] = −
HpWDSHGpIRUPDWLRQV
⎧ ∂X ∂ Z = −] ⎪ ε[ = ∂[ ∂ [ ⎪ ⎪ ∂Y ∂ Z ⎪ = −] ⎨ ε\ = ∂\ ∂ \ ⎪ ⎪ ⎪ γ = ⎛⎜ ∂ X + ∂ Y ⎞⎟ = −] ∂ Z [\ ⎜ ⎟ ⎪ ∂[ ⋅∂\ ⎝∂\ ∂[ ⎠ ⎩
2QHQGpGXLW
ε] = −
ν ν ε [ + ε \ = ]⋅∆Z − ν − ν
- 209 -
ν ν ε [ + ε \ = ]⋅∆Z − ν − ν
- 209 -
HpWDSHFRQWUDLQWHV
HpWDSHFRQWUDLQWHV
/D ORL GX FRPSRUWHPHQW YLVFRpODVWLTXH QRXV GRQQH FRPSWH WHQX GH OD VHFRQGH K\SRWKqVH σ] =
/D ORL GX FRPSRUWHPHQW YLVFRpODVWLTXH QRXV GRQQH FRPSWH WHQX GH OD VHFRQGH K\SRWKqVH σ] =
⎧ ( (′ ε [ + ν ε \ + ⎪ σ[ = − ν − ν′ ⎪ ⎪ ( (′ ⎪ ε \ + ν ε [ + ⎨ σ\ = − ν − ν′ ⎪ ⎪ ⎪ τ = ( γ + (′ ∂ γ ⎪ [\ − ν [\ − ν′ ∂ W [\ ⎩
∂ ε \ + ν′ ε [ ∂W
F¶HVWjGLUHHQUHPSODoDQW ε [ ε \ γ [\ SDUOHXUVH[SUHVVLRQV
⎧ ⎡ ( ⎛ ∂ Z (′ ∂ ∂ Z ⎞⎟ ⎜ ⎪ σ[ = − ⎢ + + ν ⎜ ⎟ ∂ \ ⎠ − ν′ ∂ W ⎪ ⎢⎣ − ν ⎝ ∂ [ ⎪ ⎪ ⎡ ( ⎛ ∂ Z ⎪ ∂ Z ⎞⎟ (′ ∂ ⎜ + ν + ⎨ σ\ = − ⎢ ⎜ ⎟ ∂ [ ⎠ − ν′ ∂ W ⎢⎣ − ν ⎝ ∂ \ ⎪ ⎪ ⎪ ⎪ τ = − ⎡ ( ∂ Z + (′ ∂ ∂ Z ⎤ ⋅ ] ⎥ ⎢ [\ ⎪ ⎣⎢ + ν ∂ [ ∂ \ + ν′ ∂ W ∂ [ ∂ \ ⎦⎥ ⎩
⎛ ∂ Z ∂ Z ⎞⎟⎤ ⎜ ′ + ν ⎥⋅] ⎜ ∂ [ ∂ \ ⎟⎠⎥⎦ ⎝ ⎛ ∂ Z ∂ Z ⎞⎟⎤ ⎜ ′ + ν ⎥⋅] ⎜ ∂ \ ∂ [ ⎟⎠⎥⎦ ⎝
∂ ε [ + ν′ ε \ ∂W ∂ ε \ + ν′ ε [ ∂W
F¶HVWjGLUHHQUHPSODoDQW ε [ ε \ γ [\ SDUOHXUVH[SUHVVLRQV
HpWDSHYLVVHXUV
⎧ ⎡ ( ⎛ ∂ Z (′ ∂ ∂ Z ⎞⎟ ⎜ ⎪ σ[ = − ⎢ + + ν ⎜ ⎟ ∂ \ ⎠ − ν′ ∂ W ⎪ ⎢⎣ − ν ⎝ ∂ [ ⎪ ⎪ ⎡ ( ⎛ ∂ Z ⎪ ∂ Z ⎞⎟ (′ ∂ ⎜ + ν + ⎨ σ\ = − ⎢ ⎜ ⎟ ∂ [ ⎠ − ν′ ∂ W ⎢⎣ − ν ⎝ ∂ \ ⎪ ⎪ ⎪ ⎪ τ = − ⎡ ( ∂ Z + (′ ∂ ∂ Z ⎤ ⋅ ] ⎥ ⎢ [\ ⎪ ⎣⎢ + ν ∂ [ ∂ \ + ν′ ∂ W ∂ [ ∂ \ ⎦⎥ ⎩
⎛ ∂ Z ∂ Z ⎞⎟⎤ ⎜ ′ + ν ⎥⋅] ⎜ ∂ [ ∂ \ ⎟⎠⎥⎦ ⎝ ⎛ ∂ Z ∂ Z ⎞⎟⎤ ⎜ ′ + ν ⎥⋅] ⎜ ∂ \ ∂ [ ⎟⎠⎥⎦ ⎝
HpWDSHYLVVHXUV
K ⎧ ⎪ ⎪ 8 [ = − 8 \ = − τ [\ ⋅ ] ⋅ G] = ' − ν ∂ Z + '′ − ν′ ∂ ∂ Z ⎪ ∂W ∂[ ∂\ ∂[ ∂\ K ⎪ − ⎪ K ⎪ ⎪⎪ ⎛ ∂ Z ∂ ⎛⎜ ∂ Z ∂ Z ⎞⎟ ∂ Z ⎞⎟ ′ ′ σ [ ⋅ ] ⋅ G] = −' ⎜ + ν − + ν ' ⎨ 0[ = ⎜ ∂ [ ∂ W ⎜⎝ ∂ [ ∂ \ ⎟⎠ ∂ \ ⎟⎠ ⎪ ⎝ K − ⎪ ⎪ K ⎪ ⎛ ∂ Z ∂ Z ⎞⎟ ∂ ⎛⎜ ∂ Z ∂ Z ⎞⎟ ⎪ ⎜ ′ ′ + ν + + ν ' ⎪ 0 \ = − σ \ ⋅ ] ⋅ G] = ' ⎜ ∂ W ⎜⎝ ∂ \ ∂ [ ⎟⎠ ∂ [ ⎟⎠ ⎝ ∂\ ⎪ K − ⎪⎩
∫
⎧ ( (′ ε [ + ν ε \ + ⎪ σ[ = − ν − ν′ ⎪ ⎪ ( (′ ⎪ ε \ + ν ε [ + ⎨ σ\ = − ν − ν′ ⎪ ⎪ ⎪ τ = ( γ + (′ ∂ γ ⎪ [\ − ν [\ − ν′ ∂ W [\ ⎩
∂ ε [ + ν′ ε \ ∂W
∫
K ⎧ ⎪ ⎪ 8 [ = − 8 \ = − τ [\ ⋅ ] ⋅ G] = ' − ν ∂ Z + '′ − ν′ ∂ ∂ Z ⎪ ∂W ∂[ ∂\ ∂[ ∂\ K ⎪ − ⎪ K ⎪ ⎪⎪ ⎛ ∂ Z ∂ ⎛⎜ ∂ Z ∂ Z ⎞⎟ ∂ Z ⎞⎟ ′ ′ σ [ ⋅ ] ⋅ G] = −' ⎜ + ν − + ν ' ⎨ 0[ = ⎜ ∂ [ ∂ W ⎜⎝ ∂ [ ∂ \ ⎟⎠ ∂ \ ⎟⎠ ⎪ ⎝ K − ⎪ ⎪ K ⎪ ⎛ ∂ Z ∂ Z ⎞⎟ ∂ ⎛⎜ ∂ Z ∂ Z ⎞⎟ ⎪ ⎜ ′ ′ + ν + + ν ' ⎪ 0 \ = − σ \ ⋅ ] ⋅ G] = ' ⎜ ∂ W ⎜⎝ ∂ \ ∂ [ ⎟⎠ ∂ [ ⎟⎠ ⎝ ∂\ ⎪ K − ⎪⎩
∫
∫
∫
∫
/HVpTXDWLRQVG¶pTXLOLEUHGHVPRPHQWV SHUPHWWHQWDORUVG¶H[SULPHUOHVHIIRUWVWUDQFKDQWV WUDQVYHUVDX[ 4 [ HW 4 \
/HVpTXDWLRQVG¶pTXLOLEUHGHVPRPHQWV SHUPHWWHQWDORUVG¶H[SULPHUOHVHIIRUWVWUDQFKDQWV WUDQVYHUVDX[ 4 [ HW 4 \
- 210 -
- 210 -
HpWDSHFRQWUDLQWHV
HpWDSHFRQWUDLQWHV
/D ORL GX FRPSRUWHPHQW YLVFRpODVWLTXH QRXV GRQQH FRPSWH WHQX GH OD VHFRQGH K\SRWKqVH σ] =
/D ORL GX FRPSRUWHPHQW YLVFRpODVWLTXH QRXV GRQQH FRPSWH WHQX GH OD VHFRQGH K\SRWKqVH σ] =
⎧ ( (′ ε [ + ν ε \ + ⎪ σ[ = − ν − ν′ ⎪ ⎪ ( (′ ⎪ ε \ + ν ε [ + ⎨ σ\ = − ν − ν′ ⎪ ⎪ ⎪ τ = ( γ + (′ ∂ γ ⎪ [\ − ν [\ − ν′ ∂ W [\ ⎩
∂ ε \ + ν′ ε [ ∂W
F¶HVWjGLUHHQUHPSODoDQW ε [ ε \ γ [\ SDUOHXUVH[SUHVVLRQV
⎧ ⎡ ( ⎛ ∂ Z (′ ∂ ∂ Z ⎞⎟ ⎜ ⎪ σ[ = − ⎢ + + ν ⎜ ⎟ ∂ \ ⎠ − ν′ ∂ W ⎪ ⎢⎣ − ν ⎝ ∂ [ ⎪ ⎪ ⎡ ( ⎛ ∂ Z ⎪ ∂ Z ⎞⎟ (′ ∂ ⎜ + ν + ⎨ σ\ = − ⎢ ⎜ ⎟ ∂ [ ⎠ − ν′ ∂ W ⎪ ⎣⎢ − ν ⎝ ∂ \ ⎪ ⎪ ⎪ τ = − ⎡ ( ∂ Z + (′ ∂ ∂ Z ⎤ ⋅ ] ⎥ ⎢ [\ ⎪ ⎣⎢ + ν ∂ [ ∂ \ + ν′ ∂ W ∂ [ ∂ \ ⎦⎥ ⎩
⎛ ∂ Z ∂ Z ⎞⎟⎤ ⎜ ′ + ν ⎥⋅] ⎜ ∂ [ ∂ \ ⎟⎠⎥⎦ ⎝ ⎛ ∂ Z ∂ Z ⎞⎟⎤ ⎜ ′ + ν ⎥⋅] ⎜ ∂ \ ∂ [ ⎟⎠⎦⎥ ⎝
∂ ε [ + ν′ ε \ ∂W ∂ ε \ + ν′ ε [ ∂W
F¶HVWjGLUHHQUHPSODoDQW ε [ ε \ γ [\ SDUOHXUVH[SUHVVLRQV
HpWDSHYLVVHXUV
⎧ ⎡ ( ⎛ ∂ Z (′ ∂ ∂ Z ⎞⎟ ⎜ ⎪ σ[ = − ⎢ + + ν ⎜ ⎟ ∂ \ ⎠ − ν′ ∂ W ⎪ ⎢⎣ − ν ⎝ ∂ [ ⎪ ⎪ ⎡ ( ⎛ ∂ Z ⎪ ∂ Z ⎞⎟ (′ ∂ ⎜ + ν + ⎨ σ\ = − ⎢ ⎜ ⎟ ∂ [ ⎠ − ν′ ∂ W ⎪ ⎣⎢ − ν ⎝ ∂ \ ⎪ ⎪ ⎪ τ = − ⎡ ( ∂ Z + (′ ∂ ∂ Z ⎤ ⋅ ] ⎥ ⎢ [\ ⎪ ⎣⎢ + ν ∂ [ ∂ \ + ν′ ∂ W ∂ [ ∂ \ ⎦⎥ ⎩
⎛ ∂ Z ∂ Z ⎞⎟⎤ ⎜ ′ + ν ⎥⋅] ⎜ ∂ [ ∂ \ ⎟⎠⎥⎦ ⎝ ⎛ ∂ Z ∂ Z ⎞⎟⎤ ⎜ ′ + ν ⎥⋅] ⎜ ∂ \ ∂ [ ⎟⎠⎦⎥ ⎝
HpWDSHYLVVHXUV
K ⎧ ⎪ ⎪ 8 [ = − 8 \ = − τ [\ ⋅ ] ⋅ G] = ' − ν ∂ Z + '′ − ν′ ∂ ∂ Z ⎪ ∂W ∂[ ∂\ ∂[ ∂\ K ⎪ − ⎪ K ⎪ ⎪⎪ ⎛ ∂ Z ∂ Z ⎞⎟ ∂ ⎛⎜ ∂ Z ∂ Z ⎞⎟ ′ ′ σ [ ⋅ ] ⋅ G] = −' ⎜ + ν − + ν ' ⎨ 0[ = ⎜ ∂ [ ∂ W ⎜⎝ ∂ [ ∂ \ ⎟⎠ ∂ \ ⎟⎠ ⎪ ⎝ K − ⎪ ⎪ K ⎪ ⎛ ∂ Z ∂ Z ⎞⎟ ∂ ⎛⎜ ∂ Z ∂ Z ⎞⎟ ⎪ = − σ \ ⋅ ] ⋅ G] = ' ⎜ +ν + '′ + ν′ 0 ⎪ \ ⎟ ⎜ ∂ \ ⎜ ∂W ⎝ ∂\ ∂[ ⎠ ∂ [ ⎟⎠ ⎝ ⎪ K − ⎩⎪
∫
⎧ ( (′ ε [ + ν ε \ + ⎪ σ[ = − ν − ν′ ⎪ ⎪ ( (′ ⎪ ε \ + ν ε [ + ⎨ σ\ = − ν − ν′ ⎪ ⎪ ⎪ τ = ( γ + (′ ∂ γ ⎪ [\ − ν [\ − ν′ ∂ W [\ ⎩
∂ ε [ + ν′ ε \ ∂W
∫
K ⎧ ⎪ ⎪ 8 [ = − 8 \ = − τ [\ ⋅ ] ⋅ G] = ' − ν ∂ Z + '′ − ν′ ∂ ∂ Z ⎪ ∂W ∂[ ∂\ ∂[ ∂\ K ⎪ − ⎪ K ⎪ ⎪⎪ ⎛ ∂ Z ∂ Z ⎞⎟ ∂ ⎛⎜ ∂ Z ∂ Z ⎞⎟ ′ ′ σ [ ⋅ ] ⋅ G] = −' ⎜ + ν − + ν ' ⎨ 0[ = ⎜ ∂ [ ∂ W ⎜⎝ ∂ [ ∂ \ ⎟⎠ ∂ \ ⎟⎠ ⎪ ⎝ K − ⎪ ⎪ K ⎪ ⎛ ∂ Z ∂ Z ⎞⎟ ∂ ⎛⎜ ∂ Z ∂ Z ⎞⎟ ⎪ = − σ \ ⋅ ] ⋅ G] = ' ⎜ +ν + '′ + ν′ 0 ⎪ \ ⎟ ⎜ ∂ \ ⎜ ∂W ⎝ ∂\ ∂[ ⎠ ∂ [ ⎟⎠ ⎝ ⎪ K − ⎩⎪
∫
∫
∫
∫
/HVpTXDWLRQVG¶pTXLOLEUHGHVPRPHQWV SHUPHWWHQWDORUVG¶H[SULPHUOHVHIIRUWVWUDQFKDQWV WUDQVYHUVDX[ 4 [ HW 4 \
/HVpTXDWLRQVG¶pTXLOLEUHGHVPRPHQWV SHUPHWWHQWDORUVG¶H[SULPHUOHVHIIRUWVWUDQFKDQWV WUDQVYHUVDX[ 4 [ HW 4 \
- 210 -
- 210 -
(TXDWLRQVGXPRXYHPHQW
(TXDWLRQVGXPRXYHPHQW
3RUWRQVFHVH[SUHVVLRQVGH 4 [ HW 4 \ GDQVODWURLVLqPHpTXDWLRQ G¶pTXLOLEUHGHVIRUFHV
3RUWRQVFHVH[SUHVVLRQVGH 4 [ HW 4 \ GDQVODWURLVLqPHpTXDWLRQ G¶pTXLOLEUHGHVIRUFHV
RQREWLHQWO¶pTXDWLRQGXPRXYHPHQW
RQREWLHQWO¶pTXDWLRQGXPRXYHPHQW
⎛ ∂ Z ⎞ ∂ ⋅ ∆ ∆ Z = S ] − K ρ ⎜ + Γ H ] ⎟ ⎟ ⎜ ∂W ⎝ ∂W ⎠
' ⋅ ∆ ∆ Z + '′ ⋅
⎛ ∂ Z ⎞ ∂ ⋅ ∆ ∆ Z = S ] − K ρ ⎜ + Γ H ] ⎟ ⎟ ⎜ ∂W ⎝ ∂W ⎠
' ⋅ ∆ ∆ Z + '′ ⋅
5HPDUTXHV
5HPDUTXHV
1RXV DYRQV YX DX GX FKDSLWUH 9,,, TXH OHV FRQWUDLQWHV YLVTXHXVHV V¶H[SULPDLHQW HQ IRQFWLRQ GHV YLWHVVHV GH GpIRUPDWLRQ FRPPH OHV FRQWUDLQWHV pODVWLTXHV HQ IRQFWLRQ GHV GpIRUPDWLRQVDXPR\HQGHGHX[FRHIILFLHQWV1RXVDYRQVLQWURGXLWOHVFRHIILFLHQWV (′ HW *′ SXLV λ′ HW µ′ OHVFRHIILFLHQWV ν′ HW '′ VRQWGpILQLVSDUOHVIRUPXOHV
1RXV DYRQV YX DX GX FKDSLWUH 9,,, TXH OHV FRQWUDLQWHV YLVTXHXVHV V¶H[SULPDLHQW HQ IRQFWLRQ GHV YLWHVVHV GH GpIRUPDWLRQ FRPPH OHV FRQWUDLQWHV pODVWLTXHV HQ IRQFWLRQ GHV GpIRUPDWLRQVDXPR\HQGHGHX[FRHIILFLHQWV1RXVDYRQVLQWURGXLWOHVFRHIILFLHQWV (′ HW *′ SXLV λ′ HW µ′ OHVFRHIILFLHQWV ν′ HW '′ VRQWGpILQLVSDUOHVIRUPXOHV
*′ =
(′ (′ K HW '′ = + ν′ − ν′
*′ =
/¶pTXDWLRQ GX PRXYHPHQW TXH QRXV YHQRQV G¶pWDEOLU HVW DVVH] FRPSOH[H FDU WUqV JpQpUDOHHOOHSHUPHWGHWHQLUFRPSWH ± GHO¶DPRUWLVVHPHQWLQWHUQHSDUOHWHUPH '′ ⋅
(′ (′ K HW '′ = + ν′ − ν′
/¶pTXDWLRQ GX PRXYHPHQW TXH QRXV YHQRQV G¶pWDEOLU HVW DVVH] FRPSOH[H FDU WUqV JpQpUDOHHOOHSHUPHWGHWHQLUFRPSWH
∂ ⋅ ∆ ∆ Z ∂W
± GHO¶DPRUWLVVHPHQWLQWHUQHSDUOHWHUPH '′ ⋅
± GHVIRUFHVGHFKDUJHPHQWSDUOHWHUPH S ]
∂ ⋅ ∆ ∆ Z ∂W
± GHVIRUFHVGHFKDUJHPHQWSDUOHWHUPH S ]
± GHV IRUFHV G¶LQHUWLH G¶HQWUDvQHPHQW SDU OHV WHUPHV − K ρ Γ H ] HW &RULROLVSDUOHWHUPH
± GHO¶LQHUWLHGHURWDWLRQGHVILEUHVSDUOHWHUPH ρ
± GHV IRUFHV G¶LQHUWLH G¶HQWUDvQHPHQW SDU OHV WHUPHV − K ρ Γ H ] HW &RULROLVSDUOHWHUPH
HW GH
K ∂ ∆ Z ∂ W
± GHO¶LQHUWLHGHURWDWLRQGHVILEUHVSDUOHWHUPH ρ
'DQV OD PDMRULWp GHV SUREOqPHV SOXVLHXUV GH FHV WHUPHV VRQW QXOV (Q SDUWLFXOLHU OHV K ∂ VRQW ∆ Z HW WHUPHV OLpV DX[ LQHUWLHV GH URWDWLRQ GHV ILEUHV ρ ∂ W
HW GH
K ∂ ∆ Z ∂ W
'DQV OD PDMRULWp GHV SUREOqPHV SOXVLHXUV GH FHV WHUPHV VRQW QXOV (Q SDUWLFXOLHU OHV K ∂ VRQW ∆ Z HW WHUPHV OLpV DX[ LQHUWLHV GH URWDWLRQ GHV ILEUHV ρ ∂ W
⎛ ∂ Z ⎞ WRXWjIDLWQpJOLJHDEOHVGHYDQW − K ρ ⎜ + Γ H ] ⎟ OLpDX[LQHUWLHVGHWUDQVODWLRQ ⎟ ⎜ ∂W ⎝ ⎠
⎛ ∂ Z ⎞ WRXWjIDLWQpJOLJHDEOHVGHYDQW − K ρ ⎜ + Γ H ] ⎟ OLpDX[LQHUWLHVGHWUDQVODWLRQ ⎟ ⎜ ∂W ⎝ ⎠
/¶LQWpJUDWLRQGHO¶pTXDWLRQGXPRXYHPHQWGRQQHODIOqFKHZ[\W OHVIRUPXOHV SHUPHWWHQW G¶HQ GpGXLUH OHV DXWUHV SDUDPqWUHV GX SUREOqPH /HV FRQVWDQWHV G¶LQWpJUDWLRQVRQWGpWHUPLQpHVjO¶DLGHGHVFRQGLWLRQVDX[OLPLWHVGHVFRQGLWLRQVGHOLDLVRQ HWGHVFRQGLWLRQVLQLWLDOHV
/¶LQWpJUDWLRQGHO¶pTXDWLRQGXPRXYHPHQWGRQQHODIOqFKHZ[\W OHVIRUPXOHV SHUPHWWHQW G¶HQ GpGXLUH OHV DXWUHV SDUDPqWUHV GX SUREOqPH /HV FRQVWDQWHV G¶LQWpJUDWLRQVRQWGpWHUPLQpHVjO¶DLGHGHVFRQGLWLRQVDX[OLPLWHVGHVFRQGLWLRQVGHOLDLVRQ HWGHVFRQGLWLRQVLQLWLDOHV
- 211 -
- 211 -
(TXDWLRQVGXPRXYHPHQW
(TXDWLRQVGXPRXYHPHQW
3RUWRQVFHVH[SUHVVLRQVGH 4 [ HW 4 \ GDQVODWURLVLqPHpTXDWLRQ G¶pTXLOLEUHGHVIRUFHV
3RUWRQVFHVH[SUHVVLRQVGH 4 [ HW 4 \ GDQVODWURLVLqPHpTXDWLRQ G¶pTXLOLEUHGHVIRUFHV
RQREWLHQWO¶pTXDWLRQGXPRXYHPHQW
RQREWLHQWO¶pTXDWLRQGXPRXYHPHQW
⎛ ∂ Z ⎞ ∂ ⋅ ∆ ∆ Z = S ] − K ρ ⎜ + Γ H ] ⎟ ⎟ ⎜ ∂W ⎝ ∂W ⎠
' ⋅ ∆ ∆ Z + '′ ⋅
⎛ ∂ Z ⎞ ∂ ⋅ ∆ ∆ Z = S ] − K ρ ⎜ + Γ H ] ⎟ ⎟ ⎜ ∂W ⎝ ∂W ⎠
' ⋅ ∆ ∆ Z + '′ ⋅
5HPDUTXHV
5HPDUTXHV
1RXV DYRQV YX DX GX FKDSLWUH 9,,, TXH OHV FRQWUDLQWHV YLVTXHXVHV V¶H[SULPDLHQW HQ IRQFWLRQ GHV YLWHVVHV GH GpIRUPDWLRQ FRPPH OHV FRQWUDLQWHV pODVWLTXHV HQ IRQFWLRQ GHV GpIRUPDWLRQVDXPR\HQGHGHX[FRHIILFLHQWV1RXVDYRQVLQWURGXLWOHVFRHIILFLHQWV (′ HW *′ SXLV λ′ HW µ′ OHVFRHIILFLHQWV ν′ HW '′ VRQWGpILQLVSDUOHVIRUPXOHV
1RXV DYRQV YX DX GX FKDSLWUH 9,,, TXH OHV FRQWUDLQWHV YLVTXHXVHV V¶H[SULPDLHQW HQ IRQFWLRQ GHV YLWHVVHV GH GpIRUPDWLRQ FRPPH OHV FRQWUDLQWHV pODVWLTXHV HQ IRQFWLRQ GHV GpIRUPDWLRQVDXPR\HQGHGHX[FRHIILFLHQWV1RXVDYRQVLQWURGXLWOHVFRHIILFLHQWV (′ HW *′ SXLV λ′ HW µ′ OHVFRHIILFLHQWV ν′ HW '′ VRQWGpILQLVSDUOHVIRUPXOHV
*′ =
(′ (′ K HW '′ = + ν′ − ν′
*′ =
/¶pTXDWLRQ GX PRXYHPHQW TXH QRXV YHQRQV G¶pWDEOLU HVW DVVH] FRPSOH[H FDU WUqV JpQpUDOHHOOHSHUPHWGHWHQLUFRPSWH ± GHO¶DPRUWLVVHPHQWLQWHUQHSDUOHWHUPH '′ ⋅
∂ ⋅ ∆ ∆ Z ∂W
/¶pTXDWLRQ GX PRXYHPHQW TXH QRXV YHQRQV G¶pWDEOLU HVW DVVH] FRPSOH[H FDU WUqV JpQpUDOHHOOHSHUPHWGHWHQLUFRPSWH ± GHO¶DPRUWLVVHPHQWLQWHUQHSDUOHWHUPH '′ ⋅
± GHVIRUFHVGHFKDUJHPHQWSDUOHWHUPH S ]
∂ ⋅ ∆ ∆ Z ∂W
± GHVIRUFHVGHFKDUJHPHQWSDUOHWHUPH S ]
± GHV IRUFHV G¶LQHUWLH G¶HQWUDvQHPHQW SDU OHV WHUPHV − K ρ Γ H ] HW &RULROLVSDUOHWHUPH
± GHO¶LQHUWLHGHURWDWLRQGHVILEUHVSDUOHWHUPH ρ
(′ (′ K HW '′ = + ν′ − ν′
HW GH
K ∂ ∆ Z ∂ W
'DQV OD PDMRULWp GHV SUREOqPHV SOXVLHXUV GH FHV WHUPHV VRQW QXOV (Q SDUWLFXOLHU OHV K ∂ VRQW ∆ Z HW WHUPHV OLpV DX[ LQHUWLHV GH URWDWLRQ GHV ILEUHV ρ ∂ W ⎛ ∂ Z ⎞ WRXWjIDLWQpJOLJHDEOHVGHYDQW − K ρ ⎜ + Γ H ] ⎟ OLpDX[LQHUWLHVGHWUDQVODWLRQ ⎟ ⎜ ∂W ⎝ ⎠
± GHV IRUFHV G¶LQHUWLH G¶HQWUDvQHPHQW SDU OHV WHUPHV − K ρ Γ H ] HW &RULROLVSDUOHWHUPH
± GHO¶LQHUWLHGHURWDWLRQGHVILEUHVSDUOHWHUPH ρ
HW GH
K ∂ ∆ Z ∂ W
'DQV OD PDMRULWp GHV SUREOqPHV SOXVLHXUV GH FHV WHUPHV VRQW QXOV (Q SDUWLFXOLHU OHV K ∂ VRQW ∆ Z HW WHUPHV OLpV DX[ LQHUWLHV GH URWDWLRQ GHV ILEUHV ρ ∂ W ⎛ ∂ Z ⎞ WRXWjIDLWQpJOLJHDEOHVGHYDQW − K ρ ⎜ + Γ H ] ⎟ OLpDX[LQHUWLHVGHWUDQVODWLRQ ⎟ ⎜ ∂W ⎝ ⎠
/¶LQWpJUDWLRQGHO¶pTXDWLRQGXPRXYHPHQWGRQQHODIOqFKHZ[\W OHVIRUPXOHV SHUPHWWHQW G¶HQ GpGXLUH OHV DXWUHV SDUDPqWUHV GX SUREOqPH /HV FRQVWDQWHV G¶LQWpJUDWLRQVRQWGpWHUPLQpHVjO¶DLGHGHVFRQGLWLRQVDX[OLPLWHVGHVFRQGLWLRQVGHOLDLVRQ HWGHVFRQGLWLRQVLQLWLDOHV
/¶LQWpJUDWLRQGHO¶pTXDWLRQGXPRXYHPHQWGRQQHODIOqFKHZ[\W OHVIRUPXOHV SHUPHWWHQW G¶HQ GpGXLUH OHV DXWUHV SDUDPqWUHV GX SUREOqPH /HV FRQVWDQWHV G¶LQWpJUDWLRQVRQWGpWHUPLQpHVjO¶DLGHGHVFRQGLWLRQVDX[OLPLWHVGHVFRQGLWLRQVGHOLDLVRQ HWGHVFRQGLWLRQVLQLWLDOHV
- 211 -
- 211 -
±)/(;,21&,1'5,48('(63/$48(65(&7$1*8/$,5(6
±)/(;,21&,1'5,48('(63/$48(65(&7$1*8/$,5(6
&¶HVWOHFDVRODIOqFKHZ[W HVWLQGpSHQGDQWHGHODFRRUGRQQpH\FHFDVDpWppWXGLpHQ 6WDWLTXHDXWRPH,/HVIRUPXOHV j VHVLPSOLILHQWWRXWHVOHVGpULYpHVSDUUDSSRUWj\ pWDQWQXOOHV
&¶HVWOHFDVRODIOqFKHZ[W HVWLQGpSHQGDQWHGHODFRRUGRQQpH\FHFDVDpWppWXGLpHQ 6WDWLTXHDXWRPH,/HVIRUPXOHV j VHVLPSOLILHQWWRXWHVOHVGpULYpHVSDUUDSSRUWj\ pWDQWQXOOHV
7UDLWRQV O¶H[HPSOH GH OD SODTXH UHFWDQJXODLUH HQFDVWUpHOLEUH GH OD ILJXUH GDQV OH FDV GHV YLEUDWLRQV QDWXUHOOHV DPRUWLHV GH IOH[LRQ F\OLQGULTXH HQ UHSqUH JDOLOpHQ {R [\]} HW HQ QpJOLJHDQWOHVLQHUWLHVGHURWDWLRQGHVILEUHV
7UDLWRQV O¶H[HPSOH GH OD SODTXH UHFWDQJXODLUH HQFDVWUpHOLEUH GH OD ILJXUH GDQV OH FDV GHV YLEUDWLRQV QDWXUHOOHV DPRUWLHV GH IOH[LRQ F\OLQGULTXH HQ UHSqUH JDOLOpHQ {R [\]} HW HQ QpJOLJHDQWOHVLQHUWLHVGHURWDWLRQGHVILEUHV
)LJXUH
)LJXUH
/¶pTXDWLRQGXPRXYHPHQWV¶pFULWLFL
'
/¶pTXDWLRQGXPRXYHPHQWV¶pFULWLFL
∂ Z ∂ ∂ Z ∂ Z + '′ + ρK = ∂W ∂[ ∂[ ∂ W
(OOHSHXWV¶pFULUHVLO¶RQSRVH Z [ W = I [ ⋅ J W
'
J W ' I[ = −ω − = ρ K I [ J W + '′ J W '
HWVHGpFRXSOHDLQVLHQGHX[pTXDWLRQV
HWVHGpFRXSOHDLQVLHQGHX[pTXDWLRQV
'′ ρ K ω I [ HW J W ⋅ ω ⋅ J W + ω ⋅ J W = ' '
I [ =
/DSUHPLqUHDGPHWSRXUVROXWLRQJpQpUDOH
I [ = α ⋅ FRV
∂ Z ∂ ∂ Z ∂ Z + '′ + ρK = ∂W ∂[ ∂[ ∂ W
(OOHSHXWV¶pFULUHVLO¶RQSRVH Z [ W = I [ ⋅ J W
J W ' I[ = −ω − = ρ K I [ J W + '′ J W '
I [ =
'′ ρ K ω I [ HW J W ⋅ ω ⋅ J W + ω ⋅ J W = ' '
/DSUHPLqUHDGPHWSRXUVROXWLRQJpQpUDOH
ρ K ω ρ K ω ρ K ω ρ K ω [ + β ⋅ VLQ [ + γ ⋅ FK [ + δ ⋅ VK [ ' ' ' '
I [ = α ⋅ FRV
ρ K ω ρ K ω ρ K ω ρ K ω [ + β ⋅ VLQ [ + γ ⋅ FK [ + δ ⋅ VK [ ' ' ' '
- 212 -
- 212 -
±)/(;,21&,1'5,48('(63/$48(65(&7$1*8/$,5(6
±)/(;,21&,1'5,48('(63/$48(65(&7$1*8/$,5(6
&¶HVWOHFDVRODIOqFKHZ[W HVWLQGpSHQGDQWHGHODFRRUGRQQpH\FHFDVDpWppWXGLpHQ 6WDWLTXHDXWRPH,/HVIRUPXOHV j VHVLPSOLILHQWWRXWHVOHVGpULYpHVSDUUDSSRUWj\ pWDQWQXOOHV
&¶HVWOHFDVRODIOqFKHZ[W HVWLQGpSHQGDQWHGHODFRRUGRQQpH\FHFDVDpWppWXGLpHQ 6WDWLTXHDXWRPH,/HVIRUPXOHV j VHVLPSOLILHQWWRXWHVOHVGpULYpHVSDUUDSSRUWj\ pWDQWQXOOHV
7UDLWRQV O¶H[HPSOH GH OD SODTXH UHFWDQJXODLUH HQFDVWUpHOLEUH GH OD ILJXUH GDQV OH FDV GHV YLEUDWLRQV QDWXUHOOHV DPRUWLHV GH IOH[LRQ F\OLQGULTXH HQ UHSqUH JDOLOpHQ {R [\]} HW HQ QpJOLJHDQWOHVLQHUWLHVGHURWDWLRQGHVILEUHV
7UDLWRQV O¶H[HPSOH GH OD SODTXH UHFWDQJXODLUH HQFDVWUpHOLEUH GH OD ILJXUH GDQV OH FDV GHV YLEUDWLRQV QDWXUHOOHV DPRUWLHV GH IOH[LRQ F\OLQGULTXH HQ UHSqUH JDOLOpHQ {R [\]} HW HQ QpJOLJHDQWOHVLQHUWLHVGHURWDWLRQGHVILEUHV
)LJXUH
)LJXUH
/¶pTXDWLRQGXPRXYHPHQWV¶pFULWLFL
'
/¶pTXDWLRQGXPRXYHPHQWV¶pFULWLFL
∂ Z ∂ ∂ Z ∂ Z ′ + ' + ρ K = ∂ W ∂ [ ∂ [ ∂ W
(OOHSHXWV¶pFULUHVLO¶RQSRVH Z [ W = I [ ⋅ J W −
'
∂ Z ∂ ∂ Z ∂ Z ′ + ' + ρ K = ∂ W ∂ [ ∂ [ ∂ W
(OOHSHXWV¶pFULUHVLO¶RQSRVH Z [ W = I [ ⋅ J W −
J W ' I[ = −ω = ρ K I [ J W + '′ J W '
HWVHGpFRXSOHDLQVLHQGHX[pTXDWLRQV
'′ ρ K ω I [ HW J W ⋅ ω ⋅ J W + ω ⋅ J W = ' '
/DSUHPLqUHDGPHWSRXUVROXWLRQJpQpUDOH
I [ = α ⋅ FRV
J W ' I[ = −ω = ρ K I [ J W + '′ J W '
HWVHGpFRXSOHDLQVLHQGHX[pTXDWLRQV I [ =
I [ =
'′ ρ K ω I [ HW J W ⋅ ω ⋅ J W + ω ⋅ J W = ' '
/DSUHPLqUHDGPHWSRXUVROXWLRQJpQpUDOH
ρ K ω ρ K ω ρ K ω ρ K ω [ + β ⋅ VLQ [ + γ ⋅ FK [ + δ ⋅ VK [ ' ' ' '
- 212 -
I [ = α ⋅ FRV
ρ K ω ρ K ω ρ K ω ρ K ω [ + β ⋅ VLQ [ + γ ⋅ FK [ + δ ⋅ VK [ ' ' ' '
- 212 -
/HVFRQGLWLRQVDX[OLPLWHVV¶pFULYHQW
/HVFRQGLWLRQVDX[OLPLWHVV¶pFULYHQW
⎧ ⎪ Z R W = ∀W ⎪ ⎪ ⎛∂Z ⎞ ⎟⎟ = ∀W ⎪ ⎜⎜ ⎪ ⎝ ∂ [ ⎠[ = ⎨ ⎪ 0 = SRXU[ = / ∀W ⎪ [ ⎪ ⎪ 4 = SRXU[ = / ∀W ⎪ [ ⎩
⎧ ⎪ Z R W = ∀W ⎪ ⎪ ⎛∂Z ⎞ ⎟⎟ = ∀W ⎪ ⎜⎜ ⎪ ⎝ ∂ [ ⎠[ = ⎨ ⎪ 0 = SRXU[ = / ∀W ⎪ [ ⎪ ⎪ 4 = SRXU[ = / ∀W ⎪ [ ⎩
⇒ I R = ⇒ I ′R = ⇒ I ′′/ =
⇒ I ′′′/ =
(OOHVGRQQHQW α + γ = β + δ = HW
⇒ I R = ⇒ I ′R = ⇒ I ′′/ =
⇒ I ′′′/ =
(OOHVGRQQHQW α + γ = β + δ = HW
⎧⎛ ⎞ ⎛ ⎞ ⎪ ⎜ FRV ρ K ω / + FK ρ K ω / ⎟ ⋅ α + ⎜ VLQ ρ K ω / + VK ρ K ω / ⎟ ⋅ β = ⎟ ⎜ ⎟ ' ' ' ' ⎪⎜ ⎠ ⎝ ⎠ ⎪⎝ ⎨ ⎪⎛ ⎞ ⎛ ⎞ ⎪ ⎜ VLQ ρ K ω / − VK ρ K ω / ⎟ ⋅ α − ⎜ FRV ρ K ω / + FK ρ K ω / ⎟ ⋅ β = ⎟ ⎜ ⎟ ' ' ' ' ⎪⎜ ⎠ ⎝ ⎠ ⎩⎝
⎧⎛ ⎞ ⎛ ⎞ ⎪ ⎜ FRV ρ K ω / + FK ρ K ω / ⎟ ⋅ α + ⎜ VLQ ρ K ω / + VK ρ K ω / ⎟ ⋅ β = ⎟ ⎜ ⎟ ' ' ' ' ⎪⎜ ⎠ ⎝ ⎠ ⎪⎝ ⎨ ⎪⎛ ⎞ ⎛ ⎞ ⎪ ⎜ VLQ ρ K ω / − VK ρ K ω / ⎟ ⋅ α − ⎜ FRV ρ K ω / + FK ρ K ω / ⎟ ⋅ β = ⎟ ⎜ ⎟ ' ' ' ' ⎪⎜ ⎠ ⎝ ⎠ ⎩⎝
,O\DPRXYHPHQWVLO¶RQDG¶DXWUHVVROXWLRQVTXHODVROXWLRQWULYLDOH α = β = γ = δ = F¶HVWj GLUHVLOHGpWHUPLQDQWGXV\VWqPHGHVGHX[GHUQLqUHVpTXDWLRQVHVWQXOFHTXLV¶pFULW
,O\DPRXYHPHQWVLO¶RQDG¶DXWUHVVROXWLRQVTXHODVROXWLRQWULYLDOH α = β = γ = δ = F¶HVWj GLUHVLOHGpWHUPLQDQWGXV\VWqPHGHVGHX[GHUQLqUHVpTXDWLRQVHVWQXOFHTXLV¶pFULW
FRV
ρ K ω ρ K ω / ⋅ FK / = − ' '
FRV
/HVVROXWLRQVGHFHWWHpTXDWLRQFDUDFWpULVWLTXHVRQW
/HVVROXWLRQVGHFHWWHpTXDWLRQFDUDFWpULVWLTXHVRQW
' ' ⎛ π⎞ ω = ω = ⎜ ⎟ ρ K / ρ K / ⎝ ⎠
ω =
⎛ Q − π ⎞ ωQ = ⎜ ⎟ ⎝ ⎠
ρ K ω ρ K ω / ⋅ FK / = − ' '
' ρ K /
' ρ K /
$FKDTXHYDOHXU ωQ GHODSXOVDWLRQ ω FRUUHVSRQGXQHIRQFWLRQ I Q [ WHOOHTXH
' ' ⎛ π⎞ ω = ω = ⎜ ⎟ ρ K / ρ K / ⎝ ⎠
ω =
⎛ Q − π ⎞ ωQ = ⎜ ⎟ ⎝ ⎠
' ρ K /
' ρ K /
$FKDTXHYDOHXU ωQ GHODSXOVDWLRQ ω FRUUHVSRQGXQHIRQFWLRQ I Q [ WHOOHTXH
⎛ ⎛ ρ K ωQ ρ K ωQ ⎞⎟ ρ K ωQ ρ K ωQ ⎞⎟ I Q [ = α Q ⋅ ⎜ FRV [ − FK [ + βQ ⋅ ⎜ FRV [ − VK [ ⎜ ⎟ ⎜ ⎟ ' ' ' ' ⎝ ⎠ ⎝ ⎠
⎛ ⎛ ρ K ωQ ρ K ωQ ⎞⎟ ρ K ωQ ρ K ωQ ⎞⎟ I Q [ = α Q ⋅ ⎜ FRV [ − FK [ + βQ ⋅ ⎜ FRV [ − VK [ ⎜ ⎟ ⎜ ⎟ ' ' ' ' ⎝ ⎠ ⎝ ⎠
- 213 -
- 213 -
/HVFRQGLWLRQVDX[OLPLWHVV¶pFULYHQW
/HVFRQGLWLRQVDX[OLPLWHVV¶pFULYHQW
⎧ ⎪ Z R W = ∀W ⎪ ⎪ ⎛∂Z ⎞ ⎟⎟ = ∀W ⎪ ⎜⎜ ⎪ ⎝ ∂ [ ⎠[ = ⎨ ⎪ 0 = SRXU[ = / ∀W ⎪ [ ⎪ ⎪ 4 = SRXU[ = / ∀W ⎪ [ ⎩
⎧ ⎪ Z R W = ∀W ⎪ ⎪ ⎛∂Z ⎞ ⎟⎟ = ∀W ⎪ ⎜⎜ ⎪ ⎝ ∂ [ ⎠[ = ⎨ ⎪ 0 = SRXU[ = / ∀W ⎪ [ ⎪ ⎪ 4 = SRXU[ = / ∀W ⎪ [ ⎩
⇒ I R = ⇒ I ′R = ⇒ I ′′/ =
⇒ I ′′′/ =
(OOHVGRQQHQW α + γ = β + δ = HW
⇒ I R = ⇒ I ′R = ⇒ I ′′/ =
⇒ I ′′′/ =
(OOHVGRQQHQW α + γ = β + δ = HW
⎧⎛ ⎞ ⎛ ⎞ ⎪ ⎜ FRV ρ K ω / + FK ρ K ω / ⎟ ⋅ α + ⎜ VLQ ρ K ω / + VK ρ K ω / ⎟ ⋅ β = ⎟ ⎜ ⎟ ' ' ' ' ⎪⎜ ⎠ ⎝ ⎠ ⎪⎝ ⎨ ⎪⎛ ⎞ ⎛ ⎞ ⎪ ⎜ VLQ ρ K ω / − VK ρ K ω / ⎟ ⋅ α − ⎜ FRV ρ K ω / + FK ρ K ω / ⎟ ⋅ β = ⎟ ⎜ ⎟ ' ' ' ' ⎪⎜ ⎠ ⎝ ⎠ ⎩⎝
⎧⎛ ⎞ ⎛ ⎞ ⎪ ⎜ FRV ρ K ω / + FK ρ K ω / ⎟ ⋅ α + ⎜ VLQ ρ K ω / + VK ρ K ω / ⎟ ⋅ β = ⎟ ⎜ ⎟ ' ' ' ' ⎪⎜ ⎠ ⎝ ⎠ ⎪⎝ ⎨ ⎪⎛ ⎞ ⎛ ⎞ ⎪ ⎜ VLQ ρ K ω / − VK ρ K ω / ⎟ ⋅ α − ⎜ FRV ρ K ω / + FK ρ K ω / ⎟ ⋅ β = ⎟ ⎜ ⎟ ' ' ' ' ⎪⎜ ⎠ ⎝ ⎠ ⎩⎝
,O\DPRXYHPHQWVLO¶RQDG¶DXWUHVVROXWLRQVTXHODVROXWLRQWULYLDOH α = β = γ = δ = F¶HVWj GLUHVLOHGpWHUPLQDQWGXV\VWqPHGHVGHX[GHUQLqUHVpTXDWLRQVHVWQXOFHTXLV¶pFULW
,O\DPRXYHPHQWVLO¶RQDG¶DXWUHVVROXWLRQVTXHODVROXWLRQWULYLDOH α = β = γ = δ = F¶HVWj GLUHVLOHGpWHUPLQDQWGXV\VWqPHGHVGHX[GHUQLqUHVpTXDWLRQVHVWQXOFHTXLV¶pFULW
FRV
ρ K ω ρ K ω / ⋅ FK / = − ' '
FRV
/HVVROXWLRQVGHFHWWHpTXDWLRQFDUDFWpULVWLTXHVRQW ' ' ⎛ π⎞ ω = ω = ⎜ ⎟ ρK / ρK / ⎝ ⎠
ω =
⎛ Q − π ⎞ ωQ = ⎜ ⎟ ⎝ ⎠
ρ K ω ρ K ω / ⋅ FK / = − ' '
/HVVROXWLRQVGHFHWWHpTXDWLRQFDUDFWpULVWLTXHVRQW
' ρ K /
' ρ K /
$FKDTXHYDOHXU ωQ GHODSXOVDWLRQ ω FRUUHVSRQGXQHIRQFWLRQ I Q [ WHOOHTXH
' ' ⎛ π⎞ ω = ω = ⎜ ⎟ ρK / ρK / ⎝ ⎠
ω =
⎛ Q − π ⎞ ωQ = ⎜ ⎟ ⎝ ⎠
' ρ K /
' ρ K /
$FKDTXHYDOHXU ωQ GHODSXOVDWLRQ ω FRUUHVSRQGXQHIRQFWLRQ I Q [ WHOOHTXH
⎛ ⎛ ρ K ωQ ρ K ωQ ⎞⎟ ρ K ωQ ρ K ωQ ⎞⎟ I Q [ = α Q ⋅ ⎜ FRV [ − FK [ + βQ ⋅ ⎜ FRV [ − VK [ ⎜ ⎟ ⎜ ⎟ ' ' ' ' ⎝ ⎠ ⎝ ⎠
⎛ ⎛ ρ K ωQ ρ K ωQ ⎞⎟ ρ K ωQ ρ K ωQ ⎞⎟ I Q [ = α Q ⋅ ⎜ FRV [ − FK [ + βQ ⋅ ⎜ FRV [ − VK [ ⎜ ⎟ ⎜ ⎟ ' ' ' ' ⎝ ⎠ ⎝ ⎠
- 213 -
- 213 -
HWO¶RQSHXWSUHQGUHSRXU α Q HW βQ
HWO¶RQSHXWSUHQGUHSRXU α Q HW βQ
⎧ ρ K ωQ ρ K ωQ ⎪ α Q = FRV / + FK / ' ' ⎪ ⎪ ⎨ ⎪ ⎪ β = VLQ ρ K ωQ / − VK ρ K ωQ / Q ' ' ⎩⎪
(QFHTXLFRQFHUQHODIRQFWLRQ J Q W HOOHVDWLVIDLWjO¶pTXDWLRQGLIIpUHQWLHOOH JQ +
3RVRQV & =
⎧ ρ K ωQ ρ K ωQ ⎪ α Q = FRV / + FK / ' ' ⎪ ⎪ ⎨ ⎪ ⎪ β = VLQ ρ K ωQ / − VK ρ K ωQ / Q ' ' ⎩⎪
(QFHTXLFRQFHUQHODIRQFWLRQ J Q W HOOHVDWLVIDLWjO¶pTXDWLRQGLIIpUHQWLHOOH
'′ ωQ ⋅ J Q + ωQ ⋅ J Q = RX JQ + N Q ωQ ⋅ J Q + ωQ ⋅ J Q = '
( ρ − ν
& = FpOpULWpGHO¶RQGH
(′ &′ = FRHIILFLHQWG¶DPRUWLVVHPHQW ρ − ν′
&′ =
&′&5 Q =
⎛ &′ ⎞ ⎟⎟ FRHIILFLHQWG¶DPRUWLVVHPHQWUpGXLW N Q = ⎜⎜ ⎝ &′&5 Q ⎠
& FRHIILFLHQWG¶DPRUWLVVHPHQWFULWLTXH ωQ
JQ +
3RVRQV & =
'′ ωQ ⋅ J Q + ωQ ⋅ J Q = RX JQ + N Q ωQ ⋅ J Q + ωQ ⋅ J Q = '
( ρ − ν
& = FpOpULWpGHO¶RQGH
(′ &′ = FRHIILFLHQWG¶DPRUWLVVHPHQW ρ − ν′
&′ =
&′&5 Q =
⎛ &′ ⎞ ⎟⎟ FRHIILFLHQWG¶DPRUWLVVHPHQWUpGXLW N Q = ⎜⎜ ⎝ &′&5 Q ⎠
& FRHIILFLHQWG¶DPRUWLVVHPHQWFULWLTXH ωQ
3RXUFKDTXHKDUPRQLTXHRQGLVWLQJXHGRQFWURLVFDVVXLYDQWOHVYDOHXUVGHO¶DPRUWLVVHPHQW
3RXUFKDTXHKDUPRQLTXHRQGLVWLQJXHGRQFWURLVFDVVXLYDQWOHVYDOHXUVGHO¶DPRUWLVVHPHQW
HUFDVDPRUWLVVHPHQWIRUW N Q >
HUFDVDPRUWLVVHPHQWIRUW N Q >
(QSRVDQW UQ = ωQ N Q − RQD
(QSRVDQW UQ = ωQ N Q − RQD
J Q W = H − N Q ωQ W ($ Q FK UQ W + %Q VK UQ W )
J Q W = H − N Q ωQ W ($ Q FK UQ W + %Q VK UQ W )
HFDVDPRUWLVVHPHQWFULWLTXH N Q =
HFDVDPRUWLVVHPHQWFULWLTXH N Q =
HFDVDPRUWLVVHPHQWIDLEOH N Q <
HFDVDPRUWLVVHPHQWIDLEOH N Q <
(QSRVDQW Ω Q = ωQ − N Q RQD
(QSRVDQW Ω Q = ωQ − N Q RQD
J Q W = H −ωQ W ($ Q + %Q W )
J Q W = H −ωQ W ($ Q + %Q W )
J Q W = H − N Q ωQ W ($ Q FRV Ω Q W + %Q VLQ Ω Q W )
J Q W = H − N Q ωQ W ($ Q FRV Ω Q W + %Q VLQ Ω Q W )
- 214 -
- 214 -
HWO¶RQSHXWSUHQGUHSRXU α Q HW βQ
HWO¶RQSHXWSUHQGUHSRXU α Q HW βQ
⎧ ρ K ωQ ρ K ωQ ⎪ α Q = FRV / + FK / ' ' ⎪ ⎪ ⎨ ⎪ ⎪ β = VLQ ρ K ωQ / − VK ρ K ωQ / ⎪⎩ Q ' '
(QFHTXLFRQFHUQHODIRQFWLRQ J Q W HOOHVDWLVIDLWjO¶pTXDWLRQGLIIpUHQWLHOOH JQ +
3RVRQV & =
⎧ ρ K ωQ ρ K ωQ ⎪ α Q = FRV / + FK / ' ' ⎪ ⎪ ⎨ ⎪ ⎪ β = VLQ ρ K ωQ / − VK ρ K ωQ / ⎪⎩ Q ' '
(QFHTXLFRQFHUQHODIRQFWLRQ J Q W HOOHVDWLVIDLWjO¶pTXDWLRQGLIIpUHQWLHOOH
'′ ωQ ⋅ J Q + ωQ ⋅ J Q = RX JQ + N Q ωQ ⋅ J Q + ωQ ⋅ J Q = '
( ρ − ν
& = FpOpULWpGHO¶RQGH
(′ &′ = FRHIILFLHQWG¶DPRUWLVVHPHQW ρ − ν′
&′ =
&′&5 Q =
⎛ &′ ⎞ ⎟⎟ FRHIILFLHQWG¶DPRUWLVVHPHQWUpGXLW N Q = ⎜⎜ ⎝ &′&5 Q ⎠
& FRHIILFLHQWG¶DPRUWLVVHPHQWFULWLTXH ωQ
JQ +
3RVRQV & =
'′ ωQ ⋅ J Q + ωQ ⋅ J Q = RX JQ + N Q ωQ ⋅ J Q + ωQ ⋅ J Q = '
( ρ − ν
& = FpOpULWpGHO¶RQGH
(′ &′ = FRHIILFLHQWG¶DPRUWLVVHPHQW ρ − ν′
&′ =
&′&5 Q =
⎛ &′ ⎞ ⎟⎟ FRHIILFLHQWG¶DPRUWLVVHPHQWUpGXLW N Q = ⎜⎜ ⎝ &′&5 Q ⎠
& FRHIILFLHQWG¶DPRUWLVVHPHQWFULWLTXH ωQ
3RXUFKDTXHKDUPRQLTXHRQGLVWLQJXHGRQFWURLVFDVVXLYDQWOHVYDOHXUVGHO¶DPRUWLVVHPHQW
3RXUFKDTXHKDUPRQLTXHRQGLVWLQJXHGRQFWURLVFDVVXLYDQWOHVYDOHXUVGHO¶DPRUWLVVHPHQW
HUFDVDPRUWLVVHPHQWIRUW N Q >
HUFDVDPRUWLVVHPHQWIRUW N Q >
(QSRVDQW UQ = ωQ N Q − RQD
(QSRVDQW UQ = ωQ N Q − RQD
J Q W = H − N Q ωQ W ($ Q FK UQ W + %Q VK UQ W )
J Q W = H − N Q ωQ W ($ Q FK UQ W + %Q VK UQ W )
HFDVDPRUWLVVHPHQWFULWLTXH N Q =
HFDVDPRUWLVVHPHQWFULWLTXH N Q =
HFDVDPRUWLVVHPHQWIDLEOH N Q <
HFDVDPRUWLVVHPHQWIDLEOH N Q <
(QSRVDQW Ω Q = ωQ − N Q RQD
(QSRVDQW Ω Q = ωQ − N Q RQD
J Q W = H −ωQ W ($ Q + %Q W )
J Q W = H −ωQ W ($ Q + %Q W )
J Q W = H − N Q ωQ W ($ Q FRV Ω Q W + %Q VLQ Ω Q W )
J Q W = H − N Q ωQ W ($ Q FRV Ω Q W + %Q VLQ Ω Q W )
- 214 -
- 214 -
/DVROXWLRQJpQpUDOHV¶pFULWILQDOHPHQW Z [ W =
/DVROXWLRQJpQpUDOHV¶pFULWILQDOHPHQW
∞
∑
I Q [ ⋅ J Q W
Z [ W =
Q =
∞
∑ I [ ⋅ J W Q
Q
Q =
/HVFRQVWDQWHV $ Q HW %Q VHGpWHUPLQHQWDXPR\HQGHVFRQGLWLRQVLQLWLDOHVRXGH&DXFK\
/HVFRQVWDQWHV $ Q HW %Q VHGpWHUPLQHQWDXPR\HQGHVFRQGLWLRQVLQLWLDOHVRXGH&DXFK\
⎛∂Z ⎞ ⎟⎟ ϕ [ = Z [ R HW ψ [ = ⎜⎜ ⎝ ∂ W ⎠W =
⎛∂Z ⎞ ⎟⎟ ϕ [ = Z [ R HW ψ [ = ⎜⎜ ⎝ ∂ W ⎠W =
± 9,%5$7,216$;,6<0e75,48(6'(6',648(6 (7&285211(6&,5&8/$,5(6
± 9,%5$7,216$;,6<0e75,48(6'(6',648(6 (7&285211(6&,5&8/$,5(6
/DIOH[LRQD[LV\PpWULTXHDpWpWUDLWpHHQ6WDWLTXHDXWRPH,
/DIOH[LRQD[LV\PpWULTXHDpWpWUDLWpHHQ6WDWLTXHDXWRPH,
/HVIRUPXOHVGHYLHQQHQWHQ'\QDPLTXHHQFRRUGRQQpHVF\OLQGULTXHV θ ] R ]′] GpVLJQH O¶D[HGHUpYROXWLRQ
/HVIRUPXOHVGHYLHQQHQWHQ'\QDPLTXHHQFRRUGRQQpHVF\OLQGULTXHV θ ] R ]′] GpVLJQH O¶D[HGHUpYROXWLRQ
⎧ ∂Z ⎪ X = −] ∂ U ⎪ ⎪ 3R3 ⎨ Y = ⎪ ⎪ ⎪ Z = Z U ⎩
⎧ ∂Z ⎪ X = −] ∂ U ⎪ ⎪ 3R3 ⎨ Y = ⎪ ⎪ ⎪ Z = Z U ⎩
GpSODFHPHQWUDGLDO GpSODFHPHQWFLUFRQIpUHQWLHO
GpSODFHPHQWD[LDORXWUDQVYHUVDO
⎧ ∂X ∂ Z = −] ⎪ εU = ∂U ∂ U ⎪ ⎪ X ∂Z ⎪ ⎨ εθ = = − ] U U ∂U ⎪ ⎪ ⎪ γ = ⎪ Uθ ⎩
⎧ ⎡ ( ⎛ ∂ Z ν ∂ Z ⎞ ′ ∂ ⎛ ∂ Z ν′ ∂ Z ⎞⎤ ⎟+ ( ⎜ ⎜ ⎟⎥ ⎪ σU = −] ⎢ + + ⎜ U ∂ U ⎟⎠⎥⎦ U ∂ U ⎟⎠ − ν′ ∂ W ⎜⎝ ∂ U ⎪ ⎢⎣ − ν ⎝ ∂ U ⎪ ⎪ ⎡ ( ⎛ ∂Z ⎪ (′ ∂ ⎛⎜ ∂ Z ∂ Z ⎞⎟⎤ ∂ Z ⎞⎟ ⎜ ′ + + ν + ν ⎥ ⎨ σθ = −] ⎢ ⎜ ∂ [ ⎟⎠⎥⎦ ∂ U ⎟⎠ − ν′ ∂ W ⎜⎝ U ∂ U ⎢⎣ − ν ⎝ U ∂ U ⎪ ⎪ ⎪ ⎪ τ = ⎪ Uθ ⎩
GpSODFHPHQWUDGLDO GpSODFHPHQWFLUFRQIpUHQWLHO GpSODFHPHQWD[LDORXWUDQVYHUVDO
⎧ ∂X ∂ Z = −] ⎪ εU = ∂U ∂ U ⎪ ⎪ X ∂Z ⎪ ⎨ εθ = = − ] U U ∂U ⎪ ⎪ ⎪ γ = ⎪ Uθ ⎩
⎧ ⎡ ( ⎛ ∂ Z ν ∂ Z ⎞ ′ ∂ ⎛ ∂ Z ν′ ∂ Z ⎞⎤ ⎟+ ( ⎜ ⎜ ⎟⎥ ⎪ σU = −] ⎢ + + ⎜ U ∂ U ⎟⎠⎥⎦ U ∂ U ⎟⎠ − ν′ ∂ W ⎜⎝ ∂ U ⎪ ⎢⎣ − ν ⎝ ∂ U ⎪ ⎪ ⎡ ( ⎛ ∂Z ⎪ (′ ∂ ⎛⎜ ∂ Z ∂ Z ⎞⎟⎤ ∂ Z ⎞⎟ ⎜ ′ + + ν + ν ⎥ ⎨ σθ = −] ⎢ ⎜ ∂ [ ⎟⎠⎥⎦ ∂ U ⎟⎠ − ν′ ∂ W ⎜⎝ U ∂ U ⎢⎣ − ν ⎝ U ∂ U ⎪ ⎪ ⎪ ⎪ τ = ⎪ Uθ ⎩
- 215 -
/DVROXWLRQJpQpUDOHV¶pFULWILQDOHPHQW Z [ W =
- 215 -
/DVROXWLRQJpQpUDOHV¶pFULWILQDOHPHQW
∞
∑
I Q [ ⋅ J Q W
Z [ W =
Q =
∞
∑ I [ ⋅ J W Q
Q
Q =
/HVFRQVWDQWHV $ Q HW %Q VHGpWHUPLQHQWDXPR\HQGHVFRQGLWLRQVLQLWLDOHVRXGH&DXFK\
/HVFRQVWDQWHV $ Q HW %Q VHGpWHUPLQHQWDXPR\HQGHVFRQGLWLRQVLQLWLDOHVRXGH&DXFK\
⎛∂Z ⎞ ⎟⎟ ϕ [ = Z [ R HW ψ [ = ⎜⎜ ⎝ ∂ W ⎠W =
⎛∂Z ⎞ ⎟⎟ ϕ [ = Z [ R HW ψ [ = ⎜⎜ ⎝ ∂ W ⎠W =
± 9,%5$7,216$;,6<0e75,48(6'(6',648(6 (7&285211(6&,5&8/$,5(6
± 9,%5$7,216$;,6<0e75,48(6'(6',648(6 (7&285211(6&,5&8/$,5(6
/DIOH[LRQD[LV\PpWULTXHDpWpWUDLWpHHQ6WDWLTXHDXWRPH,
/DIOH[LRQD[LV\PpWULTXHDpWpWUDLWpHHQ6WDWLTXHDXWRPH,
/HVIRUPXOHVGHYLHQQHQWHQ'\QDPLTXHHQFRRUGRQQpHVF\OLQGULTXHV θ ] R ]′] GpVLJQH O¶D[HGHUpYROXWLRQ
/HVIRUPXOHVGHYLHQQHQWHQ'\QDPLTXHHQFRRUGRQQpHVF\OLQGULTXHV θ ] R ]′] GpVLJQH O¶D[HGHUpYROXWLRQ
⎧ ∂Z ⎪ X = −] ∂ U ⎪ ⎪ 3R3 ⎨ Y = ⎪ ⎪ ⎪ Z = Z U ⎩
⎧ ∂Z ⎪ X = −] ∂ U ⎪ ⎪ 3R3 ⎨ Y = ⎪ ⎪ ⎪ Z = Z U ⎩
GpSODFHPHQWUDGLDO GpSODFHPHQWFLUFRQIpUHQWLHO
GpSODFHPHQWD[LDORXWUDQVYHUVDO
⎧ ∂X ∂ Z = −] ⎪ εU = ∂U ∂ U ⎪ ⎪ X ∂Z ⎪ ⎨ εθ = = − ] U U ∂U ⎪ ⎪ ⎪ γ = ⎪ Uθ ⎩
⎧ ⎡ ( ⎛ ∂ Z ν ∂ Z ⎞ ′ ∂ ⎛ ∂ Z ν′ ∂ Z ⎞⎤ ⎜ ⎟+ ( ⎜ ⎟⎥ ⎪ σU = −] ⎢ + + ⎜ U ∂ U ⎟⎠ − ν′ ∂ W ⎜⎝ ∂ U U ∂ U ⎟⎠⎦⎥ ⎪ ⎣⎢ − ν ⎝ ∂ U ⎪ ⎪ ⎡ ( ⎛ ∂Z ⎪ (′ ∂ ⎛⎜ ∂ Z ∂ Z ⎞⎟⎤ ∂ Z ⎞⎟ ⎜ + + ν′ +ν ⎥ ⎨ σθ = −] ⎢ ⎜ U ∂U ⎟ ∂W ⎜ U ∂U ∂ [ ⎟⎠⎦⎥ ∂ U ⎠ − ν′ ⎪ ⎝ ⎣⎢ − ν ⎝ ⎪ ⎪ ⎪ τ = ⎪ Uθ ⎩
- 215 -
GpSODFHPHQWUDGLDO GpSODFHPHQWFLUFRQIpUHQWLHO
GpSODFHPHQWD[LDORXWUDQVYHUVDO
⎧ ∂X ∂ Z = −] ⎪ εU = ∂U ∂ U ⎪ ⎪ X ∂Z ⎪ ⎨ εθ = = − ] U U ∂U ⎪ ⎪ ⎪ γ = ⎪ Uθ ⎩
⎧ ⎡ ( ⎛ ∂ Z ν ∂ Z ⎞ ′ ∂ ⎛ ∂ Z ν′ ∂ Z ⎞⎤ ⎜ ⎟+ ( ⎜ ⎟⎥ ⎪ σU = −] ⎢ + + ⎜ U ∂ U ⎟⎠ − ν′ ∂ W ⎜⎝ ∂ U U ∂ U ⎟⎠⎦⎥ ⎪ ⎣⎢ − ν ⎝ ∂ U ⎪ ⎪ ⎡ ( ⎛ ∂Z ⎪ (′ ∂ ⎛⎜ ∂ Z ∂ Z ⎞⎟⎤ ∂ Z ⎞⎟ ⎜ + + ν′ +ν ⎥ ⎨ σθ = −] ⎢ ⎜ U ∂U ⎟ ∂W ⎜ U ∂U ∂ [ ⎟⎠⎦⎥ ∂ U ⎠ − ν′ ⎪ ⎝ ⎣⎢ − ν ⎝ ⎪ ⎪ ⎪ τ = ⎪ Uθ ⎩
- 215 -
⎧ ⎪ 8 U = = 8θ ⎪ ⎪ ⎛ ∂ Z ν ∂ Z ⎞ ∂ ⎛⎜ ∂ Z ν′ ∂ Z ⎞⎟ ⎪ ⎟ ⎜ ⎪ 0 U = −' ⎜ ∂ U + U ∂ U ⎟ − '′ ⋅ ∂ W ⎜ ∂ U + U ∂ U ⎟ ⎠ ⎝ ⎠ ⎝ ⎪ ⎪ ⎪ ⎛ ∂Z ∂ ⎛⎜ ∂ Z ∂ Z ⎞⎟ ∂ Z ⎞⎟ ⎪⎪ 0 θ = −' ⎜ ′ ′ − ⋅ + ν +ν ' ⎜ U ∂U ∂ W ⎜⎝ U ∂ U ∂ U ⎟⎠ ∂ U ⎟⎠ ⎨ ⎝ ⎪ ⎪ ⎪ 4 = −⎛⎜ ' + '′ ⋅ ∂ ⎞⎟ ⋅ ∂ ∆ Z ⎜ ⎪ U ∂ W ⎟⎠ ∂ U ⎝ ⎪ ⎪ HQQpJOLJHDQWOLQHUWLHGHURWDWLRQGHVILEUHV ⎪ ⎪ ⎪ 4θ = ⎩⎪
5DSSHORQVTXHO¶RSpUDWHXUODSODFLHQ ∆ V¶pFULW
∆=
⎧ ⎪ 8 U = = 8θ ⎪ ⎪ ⎛ ∂ Z ν ∂ Z ⎞ ∂ ⎛⎜ ∂ Z ν′ ∂ Z ⎞⎟ ⎪ ⎟ ⎜ ⎪ 0 U = −' ⎜ ∂ U + U ∂ U ⎟ − '′ ⋅ ∂ W ⎜ ∂ U + U ∂ U ⎟ ⎠ ⎝ ⎠ ⎝ ⎪ ⎪ ⎪ ⎛ ∂Z ∂ ⎛⎜ ∂ Z ∂ Z ⎞⎟ ∂ Z ⎞⎟ ⎪⎪ 0 θ = −' ⎜ ′ ′ − ⋅ + ν +ν ' ⎜ U ∂U ∂ W ⎜⎝ U ∂ U ∂ U ⎟⎠ ∂ U ⎟⎠ ⎨ ⎝ ⎪ ⎪ ⎪ 4 = −⎛⎜ ' + '′ ⋅ ∂ ⎞⎟ ⋅ ∂ ∆ Z ⎜ ⎪ U ∂ W ⎟⎠ ∂ U ⎝ ⎪ ⎪ HQQpJOLJHDQWOLQHUWLHGHURWDWLRQGHVILEUHV ⎪ ⎪ ⎪ 4θ = ⎩⎪
5DSSHORQVTXHO¶RSpUDWHXUODSODFLHQ ∆ V¶pFULW
G G G ⎛ G ⎞ ⎜⎜ U ⎟⎟ + = G U U G U U G U ⎝ G U ⎠
∆=
7UDLWRQV O¶H[HPSOH GX GLVTXH HQFDVWUp VXLYDQW VRQ ERUG U = 5 HQ YLEUDWLRQV WUDQVYHUVDOHV D[LV\PpWULTXHV/LPLWRQVQRXVjO¶pWXGHGHVYLEUDWLRQVQDWXUHOOHVQRQDPRUWLHVHQO¶DEVHQFH GHFKDUJHPHQWOHUHSqUH {R [\]}pWDQWGHSOXVJDOLOpHQILJXUH
G G G ⎛ G ⎞ ⎜⎜ U ⎟⎟ + = G U U G U U G U ⎝ G U ⎠
7UDLWRQV O¶H[HPSOH GX GLVTXH HQFDVWUp VXLYDQW VRQ ERUG U = 5 HQ YLEUDWLRQV WUDQVYHUVDOHV D[LV\PpWULTXHV/LPLWRQVQRXVjO¶pWXGHGHVYLEUDWLRQVQDWXUHOOHVQRQDPRUWLHVHQO¶DEVHQFH GHFKDUJHPHQWOHUHSqUH {R [\]}pWDQWGHSOXVJDOLOpHQILJXUH
)LJXUHD 3HUVSHFWLYH
)LJXUHD 3HUVSHFWLYH
- 216 -
- 216 -
⎧ ⎪ 8 U = = 8θ ⎪ ⎪ ⎛ ∂ Z ν ∂ Z ⎞ ∂ ⎛⎜ ∂ Z ν′ ∂ Z ⎞⎟ ⎪ ⎟ ⎜ ′ 0 ' ' − ⋅ + = − + ⎪ U ⎜ ∂ U U ∂ U ⎟⎠ U ∂ U ⎟⎠ ∂ W ⎜⎝ ∂ U ⎝ ⎪ ⎪ ⎪ ⎛ ∂Z ∂ ⎛⎜ ∂ Z ∂ Z ⎞⎟ ∂ Z ⎞⎟ ⎪⎪ 0 θ = −' ⎜ ′ ′ − ⋅ + ν +ν ' ⎜ U ∂U ∂ W ⎜⎝ U ∂ U ∂ U ⎟⎠ ∂ U ⎟⎠ ⎨ ⎝ ⎪ ⎪ ⎪ 4 = −⎛⎜ ' + '′ ⋅ ∂ ⎞⎟ ⋅ ∂ ∆ Z ⎜ ⎪ U ∂ W ⎟⎠ ∂ U ⎝ ⎪ ⎪ HQQpJOLJHDQWOLQHUWLHGHURWDWLRQGHVILEUHV ⎪ ⎪ ⎪ 4θ = ⎪⎩
⎧ ⎪ 8 U = = 8θ ⎪ ⎪ ⎛ ∂ Z ν ∂ Z ⎞ ∂ ⎛⎜ ∂ Z ν′ ∂ Z ⎞⎟ ⎪ ⎟ ⎜ ′ 0 ' ' − ⋅ + = − + ⎪ U ⎜ ∂ U U ∂ U ⎟⎠ U ∂ U ⎟⎠ ∂ W ⎜⎝ ∂ U ⎝ ⎪ ⎪ ⎪ ⎛ ∂Z ∂ ⎛⎜ ∂ Z ∂ Z ⎞⎟ ∂ Z ⎞⎟ ⎪⎪ 0 θ = −' ⎜ ′ ′ − ⋅ + ν +ν ' ⎜ U ∂U ∂ W ⎜⎝ U ∂ U ∂ U ⎟⎠ ∂ U ⎟⎠ ⎨ ⎝ ⎪ ⎪ ⎪ 4 = −⎛⎜ ' + '′ ⋅ ∂ ⎞⎟ ⋅ ∂ ∆ Z ⎜ ⎪ U ∂ W ⎟⎠ ∂ U ⎝ ⎪ ⎪ HQQpJOLJHDQWOLQHUWLHGHURWDWLRQGHVILEUHV ⎪ ⎪ ⎪ 4θ = ⎪⎩
5DSSHORQVTXHO¶RSpUDWHXUODSODFLHQ ∆ V¶pFULW
∆=
5DSSHORQVTXHO¶RSpUDWHXUODSODFLHQ ∆ V¶pFULW
G G G ⎛ G ⎞ ⎜⎜ U ⎟⎟ + = G U U G U U G U ⎝ G U ⎠
∆=
7UDLWRQV O¶H[HPSOH GX GLVTXH HQFDVWUp VXLYDQW VRQ ERUG U = 5 HQ YLEUDWLRQV WUDQVYHUVDOHV D[LV\PpWULTXHV/LPLWRQVQRXVjO¶pWXGHGHVYLEUDWLRQVQDWXUHOOHVQRQDPRUWLHVHQO¶DEVHQFH GHFKDUJHPHQWOHUHSqUH {R [\]}pWDQWGHSOXVJDOLOpHQILJXUH
G G G ⎛ G ⎞ ⎜⎜ U ⎟⎟ + = G U U G U U G U ⎝ G U ⎠
7UDLWRQV O¶H[HPSOH GX GLVTXH HQFDVWUp VXLYDQW VRQ ERUG U = 5 HQ YLEUDWLRQV WUDQVYHUVDOHV D[LV\PpWULTXHV/LPLWRQVQRXVjO¶pWXGHGHVYLEUDWLRQVQDWXUHOOHVQRQDPRUWLHVHQO¶DEVHQFH GHFKDUJHPHQWOHUHSqUH {R [\]}pWDQWGHSOXVJDOLOpHQILJXUH
)LJXUHD 3HUVSHFWLYH
)LJXUHD 3HUVSHFWLYH
- 216 -
- 216 -
)LJXUHE &RXSHPpULGLHQQH
)LJXUHE &RXSHPpULGLHQQH
/¶pTXDWLRQGXPRXYHPHQW V¶pFULWLFL
/¶pTXDWLRQGXPRXYHPHQW V¶pFULWLFL
' ⋅ ∆ ∆ Z + ρ K
∂ Z = ∂ W
' ⋅ ∆ ∆ Z + ρ K
8QPRGHSURSUHGHSXOVDWLRQ ω V¶pFULW
∂ Z = ∂ W
8QPRGHSURSUHGHSXOVDWLRQ ω V¶pFULW
Z U W = I U ⋅ FRV ωW + ϕ
Z U W = I U ⋅ FRV ωW + ϕ
'¶RO¶pTXDWLRQGHIU RXpTXDWLRQDX[IRUPHVSURSUHV
'¶RO¶pTXDWLRQGHIU RXpTXDWLRQDX[IRUPHVSURSUHV
⎧ ρ K ω ⎪ ∆ ∆ I = N I HQSRVDQW N = ' ⎪ ⎨ ⎪ DYHF ∆ I = G I + G I ⎪⎩ G U U G U
⎧ ρ K ω ⎪ ∆ ∆ I = N I HQSRVDQW N = ' ⎪ ⎨ ⎪ DYHF ∆ I = G I + G I ⎪⎩ G U U G U
&HWWHpTXDWLRQHVWYpULILpHSDUOHVGHX[IRQFWLRQVGH%HVVHO - NU HW 1 NU IRQFWLRQVGH %HVVHOG¶RUGUH]pURGHqUHHWGHqPHHVSqFHUHVSHFWLYHPHQW
&HWWHpTXDWLRQHVWYpULILpHSDUOHVGHX[IRQFWLRQVGH%HVVHO - NU HW 1 NU IRQFWLRQVGH %HVVHOG¶RUGUH]pURGHqUHHWGHqPHHVSqFHUHVSHFWLYHPHQW
(Q HIIHW FRPPH QRXV O¶DYRQV YX DX GX FKDSLWUH 9,,, - NU HW 1 NU VRQW GHX[ IRQFWLRQVLQGpSHQGDQWHVVDWLVIDLVDQWjO¶pTXDWLRQGH%HVVHO
(Q HIIHW FRPPH QRXV O¶DYRQV YX DX GX FKDSLWUH 9,,, - NU HW 1 NU VRQW GHX[ IRQFWLRQVLQGpSHQGDQWHVVDWLVIDLVDQWjO¶pTXDWLRQGH%HVVHO
G - NU G - NU + = − - NU NU G NU G NU
G - NU G - NU + = − - NU NU G NU G NU
G 1 NU G 1 NU + = − 1 NU NU G NU G NU
G 1 NU G 1 NU + = − 1 NU NU G NU G NU
- 217 -
- 217 -
)LJXUHE &RXSHPpULGLHQQH
/¶pTXDWLRQGXPRXYHPHQW V¶pFULWLFL
)LJXUHE &RXSHPpULGLHQQH
/¶pTXDWLRQGXPRXYHPHQW V¶pFULWLFL
' ⋅ ∆ ∆ Z + ρ K
∂ Z = ∂ W
8QPRGHSURSUHGHSXOVDWLRQ ω V¶pFULW
' ⋅ ∆ ∆ Z + ρ K
∂ Z = ∂ W
8QPRGHSURSUHGHSXOVDWLRQ ω V¶pFULW
Z U W = I U ⋅ FRV ωW + ϕ
'¶RO¶pTXDWLRQGHIU RXpTXDWLRQDX[IRUPHVSURSUHV
Z U W = I U ⋅ FRV ωW + ϕ
'¶RO¶pTXDWLRQGHIU RXpTXDWLRQDX[IRUPHVSURSUHV
⎧ ρ K ω ⎪ ∆ ∆ I = N I HQSRVDQW N = ' ⎪ ⎨ ⎪ DYHF ∆ I = G I + G I ⎪⎩ G U U G U
⎧ ρ K ω ⎪ ∆ ∆ I = N I HQSRVDQW N = ' ⎪ ⎨ ⎪ DYHF ∆ I = G I + G I ⎪⎩ G U U G U
&HWWHpTXDWLRQHVWYpULILpHSDUOHVGHX[IRQFWLRQVGH%HVVHO - NU HW 1 NU IRQFWLRQVGH %HVVHOG¶RUGUH]pURGHqUHHWGHqPHHVSqFHUHVSHFWLYHPHQW
&HWWHpTXDWLRQHVWYpULILpHSDUOHVGHX[IRQFWLRQVGH%HVVHO - NU HW 1 NU IRQFWLRQVGH %HVVHOG¶RUGUH]pURGHqUHHWGHqPHHVSqFHUHVSHFWLYHPHQW
(Q HIIHW FRPPH QRXV O¶DYRQV YX DX GX FKDSLWUH 9,,, - NU HW 1 NU VRQW GHX[ IRQFWLRQVLQGpSHQGDQWHVVDWLVIDLVDQWjO¶pTXDWLRQGH%HVVHO
(Q HIIHW FRPPH QRXV O¶DYRQV YX DX GX FKDSLWUH 9,,, - NU HW 1 NU VRQW GHX[ IRQFWLRQVLQGpSHQGDQWHVVDWLVIDLVDQWjO¶pTXDWLRQGH%HVVHO
G - NU G - NU + = − - NU NU G NU G NU
G - NU G - NU + = − - NU NU G NU G NU
G 1 NU G 1 NU + = − 1 NU NU G NU G NU
G 1 NU G 1 NU + = − 1 NU NU G NU G NU
- 217 -
- 217 -
6LO¶RQSUHQG I U = - NU RX I U = 1 NU RQD ∆I =
6LO¶RQSUHQG I U = - NU RX I U = 1 NU RQD
G I G I GI ⎤ ⎡ G I + = + N ⎢ ⎥ = −N ⋅ I U U G U NU G NU GU ⎥⎦ ⎣⎢ G NU
∆I =
G I G I GI ⎤ ⎡ G I + = + N ⎢ ⎥ = −N ⋅ I U U G U NU G NU GU ⎥⎦ ⎣⎢ G NU
HWSDUFRQVpTXHQW ∆ ∆ I = −N ∆ I = N ⋅ I
HWSDUFRQVpTXHQW ∆ ∆ I = −N ∆ I = N ⋅ I
'¶RODVROXWLRQJpQpUDOH
'¶RODVROXWLRQJpQpUDOH I U = α - NU + β 1 NU
I U = α - NU + β 1 NU
/HVFRQGLWLRQVDX[OLPLWHVVXUOHERUGHQFDVWUp U = 5 VRQW I 5 = HW I ′5 = &RPSWH WHQX GHV UqJOHV GH GpULYDWLRQV GHV IRQFWLRQV GH %HVVHO IRUPXOHV GX FKDSLWUH ,,, FHV FRQGLWLRQVV¶pFULYHQW
/HVFRQGLWLRQVDX[OLPLWHVVXUOHERUGHQFDVWUp U = 5 VRQW I 5 = HW I ′5 = &RPSWH WHQX GHV UqJOHV GH GpULYDWLRQV GHV IRQFWLRQV GH %HVVHO IRUPXOHV GX FKDSLWUH ,,, FHV FRQGLWLRQVV¶pFULYHQW
I 5 = ⇒ α - N5 + β 1 N5 =
I 5 = ⇒ α - N5 + β 1 N5 =
I ′5 = ⇒ − α - N5 + β 1 N5 =
I ′5 = ⇒ − α - N5 + β 1 N5 =
,O \ D PRXYHPHQW VL FH V\VWqPH DGPHW G¶DXWUHV VROXWLRQV TXH OD VROXWLRQ WULYLDOH α = β = F¶HVWjGLUHVLOHGpWHUPLQDQWHVWQXOFHTXLGRQQH
,O \ D PRXYHPHQW VL FH V\VWqPH DGPHW G¶DXWUHV VROXWLRQV TXH OD VROXWLRQ WULYLDOH α = β = F¶HVWjGLUHVLOHGpWHUPLQDQWHVWQXOFHTXLGRQQH
- N5 - N5 + = 1 N5 1 N5
- N5 - N5 + = 1 N5 1 N5
/HVWURLVSUHPLqUHVUDFLQHVVRQW
/HVWURLVSUHPLqUHVUDFLQHVVRQW
N5 = $YHF ω = N
N5 =
N5 =
ρK RQHQGpGXLWOHVWURLVSUHPLqUHVSXOVDWLRQVSURSUHV '
ω =
N5 = $YHF ω = N
' ' ' ω = ω = ρK 5 ρK 5 ρK 5
/DVROXWLRQJpQpUDOHV¶pFULWILQDOHPHQW
ω =
' ' ' ω = ω = ρK 5 ρK 5 ρK 5
/DVROXWLRQJpQpUDOHV¶pFULWILQDOHPHQW ∞
∑ (αQ - N Q U + βQ 1 N Q U )⋅ FRV ωQ W + ϕQ
Z U W =
Q =
DYHF α Q = . Q 1 N Q 5 HW βQ = −. Q - N Q 5
∑ (α
Q - N Q U + βQ
DYHF α Q = . Q 1 N Q 5 HW βQ = −. Q - N Q 5
- 218 -
6LO¶RQSUHQG I U = - NU RX I U = 1 NU RQD G I G I + = N G U U G U
1 N Q U )⋅ FRV ωQ W + ϕQ
Q =
- 218 -
∆I =
N5 =
ρK RQHQGpGXLWOHVWURLVSUHPLqUHVSXOVDWLRQVSURSUHV '
∞
Z U W =
N5 =
6LO¶RQSUHQG I U = - NU RX I U = 1 NU RQD
⎡ G I GI ⎤ + ⎢ ⎥ = −N ⋅ I U NU G NU G NU ⎥⎦ ⎣⎢
∆I =
G I G I + = N G U U G U
⎡ G I GI ⎤ + ⎢ ⎥ = −N ⋅ I U NU G NU G NU ⎥⎦ ⎣⎢
HWSDUFRQVpTXHQW ∆ ∆ I = −N ∆ I = N ⋅ I
HWSDUFRQVpTXHQW ∆ ∆ I = −N ∆ I = N ⋅ I
'¶RODVROXWLRQJpQpUDOH
'¶RODVROXWLRQJpQpUDOH I U = α - NU + β 1 NU
I U = α - NU + β 1 NU
/HVFRQGLWLRQVDX[OLPLWHVVXUOHERUGHQFDVWUp U = 5 VRQW I 5 = HW I ′5 = &RPSWH WHQX GHV UqJOHV GH GpULYDWLRQV GHV IRQFWLRQV GH %HVVHO IRUPXOHV GX FKDSLWUH ,,, FHV FRQGLWLRQVV¶pFULYHQW
/HVFRQGLWLRQVDX[OLPLWHVVXUOHERUGHQFDVWUp U = 5 VRQW I 5 = HW I ′5 = &RPSWH WHQX GHV UqJOHV GH GpULYDWLRQV GHV IRQFWLRQV GH %HVVHO IRUPXOHV GX FKDSLWUH ,,, FHV FRQGLWLRQVV¶pFULYHQW
I 5 = ⇒ α - N5 + β 1 N5 =
I 5 = ⇒ α - N5 + β 1 N5 =
I ′5 = ⇒ − α - N5 + β 1 N5 =
I ′5 = ⇒ − α - N5 + β 1 N5 =
,O \ D PRXYHPHQW VL FH V\VWqPH DGPHW G¶DXWUHV VROXWLRQV TXH OD VROXWLRQ WULYLDOH α = β = F¶HVWjGLUHVLOHGpWHUPLQDQWHVWQXOFHTXLGRQQH
,O \ D PRXYHPHQW VL FH V\VWqPH DGPHW G¶DXWUHV VROXWLRQV TXH OD VROXWLRQ WULYLDOH α = β = F¶HVWjGLUHVLOHGpWHUPLQDQWHVWQXOFHTXLGRQQH
- N5 - N5 + = 1 N5 1 N5
- N5 - N5 + = 1 N5 1 N5
/HVWURLVSUHPLqUHVUDFLQHVVRQW N5 = $YHF ω = N
/HVWURLVSUHPLqUHVUDFLQHVVRQW N5 =
N5 =
ρK RQHQGpGXLWOHVWURLVSUHPLqUHVSXOVDWLRQVSURSUHV '
ω =
' ' ' ω = ω = ρK 5 ρK 5 ρK 5
/DVROXWLRQJpQpUDOHV¶pFULWILQDOHPHQW
N5 = $YHF ω = N
N5 =
ρK RQHQGpGXLWOHVWURLVSUHPLqUHVSXOVDWLRQVSURSUHV '
ω =
' ' ' ω = ω = ρK 5 ρK 5 ρK 5
/DVROXWLRQJpQpUDOHV¶pFULWILQDOHPHQW
∞
Z U W =
N5 =
∑ (αQ - N Q U + βQ 1 N Q U )⋅ FRV ωQ W + ϕQ Q =
DYHF α Q = . Q 1 N Q 5 HW βQ = −. Q - N Q 5
- 218 -
∞
Z U W =
∑ (α
Q - N Q U + βQ
1 N Q U )⋅ FRV ωQ W + ϕQ
Q =
DYHF α Q = . Q 1 N Q 5 HW βQ = −. Q - N Q 5
- 218 -
±0e7+2'('(5$(,*+±5,7=
±0e7+2'('(5$(,*+±5,7=
1RXVO¶DYRQVLQWURGXLWHDXFKDSLWUHSUpFpGHQWSRXUOHVSRXWUHVRQSHXWDXVVLO¶XWLOLVHUSRXU OHV SODTXHV 3RXU FHOD pWDEOLVVRQV OD IRUPXOH GH 5D\OHLJK GDQV OH FDV GH YLEUDWLRQV WUDQVYHUVDOHVGHVSODTXHV
1RXVO¶DYRQVLQWURGXLWHDXFKDSLWUHSUpFpGHQWSRXUOHVSRXWUHVRQSHXWDXVVLO¶XWLOLVHUSRXU OHV SODTXHV 3RXU FHOD pWDEOLVVRQV OD IRUPXOH GH 5D\OHLJK GDQV OH FDV GH YLEUDWLRQV WUDQVYHUVDOHVGHVSODTXHV
&RQVLGpURQV GRQF XQH SODTXH TXL YLEUH WUDQVYHUVDOHPHQW VDQV IRUFHV H[FLWDWULFHV HW VDQV DPRUWLVVHPHQWVXLYDQWOHPRGHSURSUHGHUDQJQ
&RQVLGpURQV GRQF XQH SODTXH TXL YLEUH WUDQVYHUVDOHPHQW VDQV IRUFHV H[FLWDWULFHV HW VDQV DPRUWLVVHPHQWVXLYDQWOHPRGHSURSUHGHUDQJQ
/¶pQHUJLH PpFDQLTXH VRPPH GH O¶pQHUJLH FLQpWLTXH ( F HW GH O¶pQHUJLH SRWHQWLHOOH pODVWLTXH
/¶pQHUJLH PpFDQLTXH VRPPH GH O¶pQHUJLH FLQpWLTXH ( F HW GH O¶pQHUJLH SRWHQWLHOOH pODVWLTXH
( S HVW DORUV FRQVHUYpH F¶HVW j GLUH LQGpSHQGDQWH GX WHPSV ([SULPRQVOj HQ QpJOLJHDQW
( S HVW DORUV FRQVHUYpH F¶HVW j GLUH LQGpSHQGDQWH GX WHPSV ([SULPRQVOj HQ QpJOLJHDQW
O¶pQHUJLHFLQpWLTXHGHURWDWLRQGHVILEUHVHWO¶pQHUJLHpODVWLTXHGXFLVDLOOHPHQWWUDQVYHUVDO
O¶pQHUJLHFLQpWLTXHGHURWDWLRQGHVILEUHVHWO¶pQHUJLHpODVWLTXHGXFLVDLOOHPHQWWUDQVYHUVDO
(F =
(S =
− ν '
∫∫ 6
⎛∂Z ⎞ ⎟⎟ G6 ρK ⎜⎜ ⎝ ∂W ⎠
∫∫ [(0
[
− 0\
6=VXUIDFHPR\HQQH
) + + ν 0 [ 0 \ − 8 [ 8 \ ]G6
(F =
(S =
6
− ν '
∫∫ 6
⎛∂Z ⎞ ⎟⎟ G6 ρK ⎜⎜ ⎝ ∂W ⎠
∫∫ [(0
[
− 0\
6=VXUIDFHPR\HQQH
) + + ν 0 [ 0 \ − 8 [ 8 \ ]G6
6
&HWWHGHUQLqUHIRUPXOHDpWppWDEOLHDXWRPH,HQ6WDWLTXH
&HWWHGHUQLqUHIRUPXOHDpWppWDEOLHDXWRPH,HQ6WDWLTXH
3RXUOHPRGHSURSUHGHUDQJQRQD Z [ \ W = I Q [ \ ⋅ VLQ ωQ W G¶RO¶RQGpGXLW
3RXUOHPRGHSURSUHGHUDQJQRQD Z [ \ W = I Q [ \ ⋅ VLQ ωQ W G¶RO¶RQGpGXLW
⎧ ∂Z = ωQ ⋅ FRV ωQ W ⋅ I Q [ \ ⎪ ⎪ ∂W ⎪ ⎪ ∂ Z ∂ IQ ⎪ 8 [ = − 8 \ = ' − ν = ' − ν ⋅ VLQ ωQ W ⋅ ∂[ ∂\ ∂[ ∂\ ⎪ ⎪ ⎨ ⎪ ⎞ ⎛ ∂ IQ ⎞ ⎛ ∂ Z Z I ∂ ∂ Q⎟ ⎟ = −' ⋅ VLQ ωQ W ⋅ ⎜ +ν +ν ⎪ 0 [ = −' ⎜⎜ ⎟ ⎟ ⎜ ∂ [ [ \ \ ∂ ∂ ∂ ⎪ ⎠ ⎝ ⎠ ⎝ ⎪ ⎪ ⎛ ∂ IQ ⎛ ∂ Z ∂ I Q ⎞⎟ ∂ Z ⎞⎟ ⎜ ⎪ 0\ = ' ⎜ ' VLQ W = ⋅ ω ⋅ + ν + ν Q ⎜ ∂ \ ⎜ ∂ \ ∂ [ ⎟⎠ ⎪⎩ ∂ [ ⎟⎠ ⎝ ⎝ '¶RHQSRUWDQWGDQVOHVH[SUHVVLRQVGH ( F HW ( S (F =
ωQ ⋅ FRV ωQ W ⋅ (S =
⋅ VLQ ωQ W ⋅
⎧ ∂Z = ωQ ⋅ FRV ωQ W ⋅ I Q [ \ ⎪ ⎪ ∂W ⎪ ⎪ ∂ Z ∂ IQ ⎪ 8 [ = − 8 \ = ' − ν = ' − ν ⋅ VLQ ωQ W ⋅ ∂[ ∂\ ∂[ ∂\ ⎪ ⎪ ⎨ ⎪ ⎞ ⎛ ∂ IQ ⎞ ⎛ ∂ Z Z I ∂ ∂ Q⎟ ⎟ = −' ⋅ VLQ ωQ W ⋅ ⎜ +ν +ν ⎪ 0 [ = −' ⎜⎜ ⎟ ⎟ ⎜ ∂ [ [ \ \ ∂ ∂ ∂ ⎪ ⎠ ⎝ ⎠ ⎝ ⎪ ⎪ ⎛ ∂ IQ ⎛ ∂ Z ∂ I Q ⎞⎟ ∂ Z ⎞⎟ ⎜ ⎪ 0\ = ' ⎜ ' VLQ W = ⋅ ω ⋅ + ν + ν Q ⎜ ∂ \ ⎜ ∂ \ ∂ [ ⎟⎠ ⎪⎩ ∂ [ ⎟⎠ ⎝ ⎝ '¶RHQSRUWDQWGDQVOHVH[SUHVVLRQVGH ( F HW ( S
∫∫ ρK ⋅ [I [ \ ] ⋅ G6 Q
(F =
6
∫∫ ' φ [ \ ⋅ G6
ωQ ⋅ FRV ωQ W ⋅ (S =
Q
6
⋅ VLQ ωQ W ⋅
- 219 -
∫∫ ρK ⋅ [I [ \ ] ⋅ G6 Q
6
∫∫ ' φ [ \ ⋅ G6 Q
6
- 219 -
±0e7+2'('(5$(,*+±5,7=
±0e7+2'('(5$(,*+±5,7=
1RXVO¶DYRQVLQWURGXLWHDXFKDSLWUHSUpFpGHQWSRXUOHVSRXWUHVRQSHXWDXVVLO¶XWLOLVHUSRXU OHV SODTXHV 3RXU FHOD pWDEOLVVRQV OD IRUPXOH GH 5D\OHLJK GDQV OH FDV GH YLEUDWLRQV WUDQVYHUVDOHVGHVSODTXHV
1RXVO¶DYRQVLQWURGXLWHDXFKDSLWUHSUpFpGHQWSRXUOHVSRXWUHVRQSHXWDXVVLO¶XWLOLVHUSRXU OHV SODTXHV 3RXU FHOD pWDEOLVVRQV OD IRUPXOH GH 5D\OHLJK GDQV OH FDV GH YLEUDWLRQV WUDQVYHUVDOHVGHVSODTXHV
&RQVLGpURQV GRQF XQH SODTXH TXL YLEUH WUDQVYHUVDOHPHQW VDQV IRUFHV H[FLWDWULFHV HW VDQV DPRUWLVVHPHQWVXLYDQWOHPRGHSURSUHGHUDQJQ
&RQVLGpURQV GRQF XQH SODTXH TXL YLEUH WUDQVYHUVDOHPHQW VDQV IRUFHV H[FLWDWULFHV HW VDQV DPRUWLVVHPHQWVXLYDQWOHPRGHSURSUHGHUDQJQ
/¶pQHUJLH PpFDQLTXH VRPPH GH O¶pQHUJLH FLQpWLTXH ( F HW GH O¶pQHUJLH SRWHQWLHOOH pODVWLTXH
/¶pQHUJLH PpFDQLTXH VRPPH GH O¶pQHUJLH FLQpWLTXH ( F HW GH O¶pQHUJLH SRWHQWLHOOH pODVWLTXH
( S HVW DORUV FRQVHUYpH F¶HVW j GLUH LQGpSHQGDQWH GX WHPSV ([SULPRQVOj HQ QpJOLJHDQW
( S HVW DORUV FRQVHUYpH F¶HVW j GLUH LQGpSHQGDQWH GX WHPSV ([SULPRQVOj HQ QpJOLJHDQW
O¶pQHUJLHFLQpWLTXHGHURWDWLRQGHVILEUHVHWO¶pQHUJLHpODVWLTXHGXFLVDLOOHPHQWWUDQVYHUVDO
O¶pQHUJLHFLQpWLTXHGHURWDWLRQGHVILEUHVHWO¶pQHUJLHpODVWLTXHGXFLVDLOOHPHQWWUDQVYHUVDO
(F =
(S =
− ν '
∫∫ 6
⎛∂Z ⎞ ⎟⎟ G6 ρK ⎜⎜ ⎝ ∂W ⎠
∫∫ [(0
[
− 0\
6=VXUIDFHPR\HQQH
) + + ν 0 [ 0 \ − 8 [ 8 \ ]G6
6
(F =
(S =
− ν '
∫∫ 6
⎛∂Z ⎞ ⎟⎟ G6 ρK ⎜⎜ ⎝ ∂W ⎠
∫∫ [(0
[
− 0\
6=VXUIDFHPR\HQQH
) + + ν 0 [ 0 \ − 8 [ 8 \ ]G6
6
&HWWHGHUQLqUHIRUPXOHDpWppWDEOLHDXWRPH,HQ6WDWLTXH
&HWWHGHUQLqUHIRUPXOHDpWppWDEOLHDXWRPH,HQ6WDWLTXH
3RXUOHPRGHSURSUHGHUDQJQRQD Z [ \ W = I Q [ \ ⋅ VLQ ωQ W G¶RO¶RQGpGXLW
3RXUOHPRGHSURSUHGHUDQJQRQD Z [ \ W = I Q [ \ ⋅ VLQ ωQ W G¶RO¶RQGpGXLW
⎧ ∂Z = ωQ ⋅ FRV ωQ W ⋅ I Q [ \ ⎪ ⎪ ∂W ⎪ ⎪ ∂ Z ∂ IQ ⎪ 8 [ = − 8 \ = ' − ν = ' − ν ⋅ VLQ ωQ W ⋅ ∂[ ∂\ ∂[ ∂\ ⎪ ⎪ ⎨ ⎪ ⎞ ⎛ ∂ IQ ⎞ ⎛ ∂ Z Z I ∂ ∂ Q⎟ ⎟ = −' ⋅ VLQ ωQ W ⋅ ⎜ +ν +ν ⎪ 0 [ = −' ⎜⎜ ⎜ ∂ [ ∂ \ ⎟⎠ ∂ \ ⎟⎠ ⎪ ⎝ ⎝ ∂[ ⎪ ⎪ ⎛ ∂ IQ ⎛ ∂ Z ∂ I Q ⎞⎟ ∂ Z ⎞⎟ ⎪ 0\ = ' ⎜ = ' ⋅ VLQ ωQ W ⋅ ⎜ +ν +ν ⎜ ∂\ ⎜ ∂\ ∂ [ ⎟⎠ ⎪⎩ ∂ [ ⎟⎠ ⎝ ⎝ '¶RHQSRUWDQWGDQVOHVH[SUHVVLRQVGH ( F HW ( S (F =
ωQ ⋅ FRV ωQ W ⋅ (S =
⋅ VLQ ωQ W ⋅
'¶RHQSRUWDQWGDQVOHVH[SUHVVLRQVGH ( F HW ( S
∫∫ ρK ⋅ [I [ \ ] ⋅ G6 Q
6
∫∫ ' φ [ \ ⋅ G6 Q
6
- 219 -
⎧ ∂Z = ωQ ⋅ FRV ωQ W ⋅ I Q [ \ ⎪ ⎪ ∂W ⎪ ⎪ ∂ Z ∂ IQ ⎪ 8 [ = − 8 \ = ' − ν = ' − ν ⋅ VLQ ωQ W ⋅ ∂[ ∂\ ∂[ ∂\ ⎪ ⎪ ⎨ ⎪ ⎞ ⎛ ∂ IQ ⎞ ⎛ ∂ Z Z I ∂ ∂ Q⎟ ⎟ = −' ⋅ VLQ ωQ W ⋅ ⎜ +ν +ν ⎪ 0 [ = −' ⎜⎜ ⎜ ∂ [ ∂ \ ⎟⎠ ∂ \ ⎟⎠ ⎪ ⎝ ⎝ ∂[ ⎪ ⎪ ⎛ ∂ IQ ⎛ ∂ Z ∂ I Q ⎞⎟ ∂ Z ⎞⎟ ⎪ 0\ = ' ⎜ = ' ⋅ VLQ ωQ W ⋅ ⎜ +ν +ν ⎜ ∂\ ⎜ ∂\ ∂ [ ⎟⎠ ⎪⎩ ∂ [ ⎟⎠ ⎝ ⎝
(F =
ωQ ⋅ FRV ωQ W ⋅ (S =
⋅ VLQ ωQ W ⋅
∫∫ ρK ⋅ [I [ \ ] ⋅ G6 Q
6
∫∫ ' φ [ \ ⋅ G6 Q
6
- 219 -
DYHF
φ Q [ \ =
+ ν ∆ I Q − − ν − ν
DYHF
⎛ ∂ IQ ⎛ ∂ IQ ⎞ ∂ I Q ⎟⎞ ⎛⎜ ∂ I Q ∂ I Q ⎟⎞ ⎜ ⎟ + − ν ⎜ +ν +ν ⎜ ⎜ ⎟ ∂ \ ⎟⎠ ⎝⎜ ∂ \ ∂ [ ⎠⎟ ⎝ ∂[ ⎝ ∂ [ ⋅∂ \ ⎠
(Q pJDODQW OHV GHX[ H[SUHVVLRQV GH ( P FRUUHVSRQGDQW DX[ LQVWDQWV W = HW W = REWLHQWODIRUPXOHGH5D\OHLJKFKHUFKpH
π RQ ωQ
∫∫ ' ⋅ φ ⋅ GV = ρ K ⋅ [I ] ⋅ G6 ∫∫
φ Q [ \ =
+ ν ∆ I Q − − ν − ν
⎛ ∂ IQ ⎛ ∂ IQ ⎞ ∂ I Q ⎟⎞ ⎛⎜ ∂ I Q ∂ I Q ⎟⎞ ⎜ ⎟ + − ν ⎜ +ν +ν ⎜ ⎜ ⎟ ∂ \ ⎟⎠ ⎝⎜ ∂ \ ∂ [ ⎠⎟ ⎝ ∂[ ⎝ ∂ [ ⋅∂ \ ⎠
(Q pJDODQW OHV GHX[ H[SUHVVLRQV GH ( P FRUUHVSRQGDQW DX[ LQVWDQWV W = HW W = REWLHQWODIRUPXOHGH5D\OHLJKFKHUFKpH
Q
ωQ
Q
6
Q
∫∫ ' ⋅ φ ⋅ GV = ρ K ⋅ [I ] ⋅ G6 ∫∫
π RQ ωQ
ωQ
6
Q
6
6
7UqVVRXYHQWRQQHFRQQDvWSDVH[DFWHPHQWODIRUPHSURSUH I Q PDLVRQSHXWV¶HQGRQQHUXQH H[SUHVVLRQDSSURFKpHD\DQWPrPHDOOXUHHWVDWLVIDLVDQWDX[PrPHVFRQGLWLRQVDX[OLPLWHV2Q REWLHQWDLQVLXQHYDOHXUDSSURFKpHGH ωQ
7UqVVRXYHQWRQQHFRQQDvWSDVH[DFWHPHQWODIRUPHSURSUH I Q PDLVRQSHXWV¶HQGRQQHUXQH H[SUHVVLRQDSSURFKpHD\DQWPrPHDOOXUHHWVDWLVIDLVDQWDX[PrPHVFRQGLWLRQVDX[OLPLWHV2Q REWLHQWDLQVLXQHYDOHXUDSSURFKpHGH ωQ
$SSOLTXRQV FHWWH PpWKRGH DX[ GHX[ H[HPSOHV SUpFpGHQWV WUDLWpV DX[ HW SRXU FDOFXOHU ω
$SSOLTXRQV FHWWH PpWKRGH DX[ GHX[ H[HPSOHV SUpFpGHQWV WUDLWpV DX[ HW SRXU FDOFXOHU ω
HUH[HPSOH9LEUDWLRQSDUIOH[LRQF\OLQGULTXH
HUH[HPSOH9LEUDWLRQSDUIOH[LRQF\OLQGULTXH
)LJXUHSUHPLqUHIRUPHSURSUH
2QDLFL
2QDLFL
/
∫ [I ′′[ ] ⋅ G[
ω =
)LJXUHSUHPLqUHIRUPHSURSUH
/
/
ω =
∫ [I [ ] ⋅ G[
∫ [I [ ] ⋅ G[
3UHQRQVFRPPHpTXDWLRQDSSURFKpHGHODGpIRUPpHPRGDOH
3UHQRQVFRPPHpTXDWLRQDSSURFKpHGHODGpIRUPpHPRGDOH
I [ = [ − / [ + / [
I [ = [ − / [ + / [
- 220 -
- 220 -
DYHF
+ ν ∆ I Q − − ν − ν
DYHF
⎛ ∂ IQ ⎛ ∂ IQ ⎞ ∂ I Q ⎟⎞ ⎛⎜ ∂ I Q ∂ I Q ⎟⎞ ⎜ ⎟ + − ν ⎜ +ν +ν ⎟⎜ ⎟ ⎜ ∂ [ ⎜ ⎟ ∂\ ⎠⎝ ∂\ ∂[ ⎠ ⎝ ⎝ ∂ [ ⋅∂ \ ⎠
(Q pJDODQW OHV GHX[ H[SUHVVLRQV GH ( P FRUUHVSRQGDQW DX[ LQVWDQWV W = HW W = REWLHQWODIRUPXOHGH5D\OHLJKFKHUFKpH
∫∫ ' ⋅ φ ⋅ GV = ρ K ⋅ [I ] ⋅ G6 ∫∫
π RQ ωQ
φ Q [ \ =
+ ν ∆ I Q − − ν − ν
⎛ ∂ IQ ⎛ ∂ IQ ⎞ ∂ I Q ⎟⎞ ⎛⎜ ∂ I Q ∂ I Q ⎟⎞ ⎜ ⎜ ⎟ + − ν + ν + ν ⎜ ⎜ ⎟ ∂ \ ⎟⎠ ⎝⎜ ∂ \ ∂ [ ⎠⎟ ⎝ ∂[ ⎝ ∂ [ ⋅∂ \ ⎠
(Q pJDODQW OHV GHX[ H[SUHVVLRQV GH ( P FRUUHVSRQGDQW DX[ LQVWDQWV W = HW W = REWLHQWODIRUPXOHGH5D\OHLJKFKHUFKpH
Q
/
φ Q [ \ =
∫ [I ′′[ ] ⋅ G[
ωQ
Q
6
Q
∫∫ ' ⋅ φ ⋅ GV = ρ K ⋅ [I ] ⋅ G6 ∫∫
π RQ ωQ
ωQ
6
Q
6
6
7UqVVRXYHQWRQQHFRQQDvWSDVH[DFWHPHQWODIRUPHSURSUH I Q PDLVRQSHXWV¶HQGRQQHUXQH H[SUHVVLRQDSSURFKpHD\DQWPrPHDOOXUHHWVDWLVIDLVDQWDX[PrPHVFRQGLWLRQVDX[OLPLWHV2Q REWLHQWDLQVLXQHYDOHXUDSSURFKpHGH ωQ
7UqVVRXYHQWRQQHFRQQDvWSDVH[DFWHPHQWODIRUPHSURSUH I Q PDLVRQSHXWV¶HQGRQQHUXQH H[SUHVVLRQDSSURFKpHD\DQWPrPHDOOXUHHWVDWLVIDLVDQWDX[PrPHVFRQGLWLRQVDX[OLPLWHV2Q REWLHQWDLQVLXQHYDOHXUDSSURFKpHGH ωQ
$SSOLTXRQV FHWWH PpWKRGH DX[ GHX[ H[HPSOHV SUpFpGHQWV WUDLWpV DX[ HW SRXU FDOFXOHU ω
$SSOLTXRQV FHWWH PpWKRGH DX[ GHX[ H[HPSOHV SUpFpGHQWV WUDLWpV DX[ HW SRXU FDOFXOHU ω
HUH[HPSOH9LEUDWLRQSDUIOH[LRQF\OLQGULTXH
HUH[HPSOH9LEUDWLRQSDUIOH[LRQF\OLQGULTXH
)LJXUHSUHPLqUHIRUPHSURSUH
2QDLFL
/
ω =
∫
)LJXUHSUHPLqUHIRUPHSURSUH
2QDLFL
/
[I′′ [ ] ⋅ G[
/
∫ [I [ ] ⋅ G[
∫ [I ′′[ ] ⋅ G[
3UHQRQVFRPPHpTXDWLRQDSSURFKpHGHODGpIRUPpHPRGDOH
ω =
/
∫ [I [ ] ⋅ G[
3UHQRQVFRPPHpTXDWLRQDSSURFKpHGHODGpIRUPpHPRGDOH
I [ = [ − / [ + / [
I [ = [ − / [ + / [
- 220 -
- 220 -
,OV¶DJLWGXSRO\Q{PHOHSOXVVLPSOHVDWLVIDLVDQWDX[FRQGLWLRQVDX[OLPLWHV
Z R W = ∀W
,OV¶DJLWGXSRO\Q{PHOHSOXVVLPSOHVDWLVIDLVDQWDX[FRQGLWLRQVDX[OLPLWHV
⇒ I R =
⎛ ∂ Z ⎞ ⎜⎜ ⎟⎟ = ∀W ⇒ I′R = ⎝ ∂ [ ⎠[ =
Z R W = ∀W
⎛ ∂ Z ⎞ ⎜⎜ ⎟⎟ = ∀W ⇒ I′R = ⎝ ∂ [ ⎠[ =
(0 [ )[ = / = ∀W
⇒ I′′/ =
(0 [ )[ = / = ∀W
⇒ I′′/ =
(4 [ )[ = / = ∀W
⇒ I′′′/ =
(4 [ )[ = / = ∀W
⇒ I′′′/ =
2QWURXYHDORUV
' ω = ρK
∫ [ − /
/
⋅ G[
/
∫ ([
− / [ + / [
) ⋅ G[
' = ρ K /
' ω = ρK
2QWURXYHDORUV /
⇒ I R =
ω =
∫ [ − /
⋅ G[
/
∫ ([
− / [ + / [
) ⋅ G[
=
' ρ K /
'
⇒ ω =
ρK/
'
ρK/
ω =
'
⇒ ω =
ρK/
'
ρ K /
1RXVDYRQVWURXYpDXOHFRHIILFLHQW/¶HUUHXUUHODWLYHHVWGRQGHSDUH[FqV
1RXVDYRQVWURXYpDXOHFRHIILFLHQW/¶HUUHXUUHODWLYHHVWGRQGHSDUH[FqV
HH[HPSOHYLEUDWLRQD[LV\PpWULTXHG¶XQGLVTXH
HH[HPSOHYLEUDWLRQD[LV\PpWULTXHG¶XQGLVTXH
)LJXUHSUHPLqUHIRUPHSURSUH
)LJXUHSUHPLqUHIRUPHSURSUH
- 221 -
- 221 -
,OV¶DJLWGXSRO\Q{PHOHSOXVVLPSOHVDWLVIDLVDQWDX[FRQGLWLRQVDX[OLPLWHV
Z R W = ∀W
,OV¶DJLWGXSRO\Q{PHOHSOXVVLPSOHVDWLVIDLVDQWDX[FRQGLWLRQVDX[OLPLWHV
⇒ I R =
⎛ ∂ Z ⎞ ⎜⎜ ⎟⎟ = ∀W ⇒ I′R = ⎝ ∂ [ ⎠[ =
Z R W = ∀W
⎛ ∂ Z ⎞ ⎜⎜ ⎟⎟ = ∀W ⇒ I′R = ⎝ ∂ [ ⎠[ =
(0 [ )[ = / = ∀W
⇒ I′′/ =
(0 [ )[ = / = ∀W
⇒ I′′/ =
(4 [ )[ = / = ∀W
⇒ I′′′/ =
(4 [ )[ = / = ∀W
⇒ I′′′/ =
2QWURXYHDORUV
' ω = ρK
∫
/
[ − / ⋅ G[
/
∫ ([
− / [ + / [
) ⋅ G[
' = ρ K /
2QWURXYHDORUV /
⇒ I R =
ω =
' ω = ρK
∫ [ − /
⋅ G[
/
∫ ([
− / [ + / [
) ⋅ G[
=
' ρ K /
'
ρ K /
⇒ ω =
'
ρ K /
ω =
'
ρ K /
⇒ ω =
'
ρ K /
1RXVDYRQVWURXYpDXOHFRHIILFLHQW/¶HUUHXUUHODWLYHHVWGRQGHSDUH[FqV
1RXVDYRQVWURXYpDXOHFRHIILFLHQW/¶HUUHXUUHODWLYHHVWGRQGHSDUH[FqV
HH[HPSOHYLEUDWLRQD[LV\PpWULTXHG¶XQGLVTXH
HH[HPSOHYLEUDWLRQD[LV\PpWULTXHG¶XQGLVTXH
)LJXUHSUHPLqUHIRUPHSURSUH
)LJXUHSUHPLqUHIRUPHSURSUH
- 221 -
- 221 -
3UHQRQVSRXUODGpIRUPpHG¶XQHVHFWLRQPpULGLHQQH
(
I U = 5 − U V\PpWULH
3UHQRQVSRXUODGpIRUPpHG¶XQHVHFWLRQPpULGLHQQH
) SRO\Q{PH OH SOXV VLPSOH VDWLVIDLVDQW DX[ FRQGLWLRQV DX[ OLPLWHV HW GH
(
I U = 5 − U V\PpWULH
) SRO\Q{PH OH SOXV VLPSOH VDWLVIDLVDQW DX[ FRQGLWLRQV DX[ OLPLWHV HW GH
I′R = I 5 = I′5 = 2QD I′U = U − 5 U HW I′′U = U − 5
I′R = I 5 = I′5 = 2QD I′U = U − 5 U HW I′′U = U − 5
5
'
∫
5
φ U ⋅ U ⋅ GU
5
ω =
'
∫ [I U ] ⋅ U ⋅ GU
ρK
DYHF φ U =
' ' G¶R ω = ρ K 5 ρ K 5
$XQRXVDYLRQVWURXYp ω =
' ρK5
+ ν ⎛ ⎞ ⎛ ν ⎞ ⎛ ⎞ ⎜ I′′ + I′ ⎟ − ⎜ I′′ + I′ ⎟ ⎜ I′ + ν I′′⎟ − ν ⎝ U ⎠ − ν ⎝ U ⎠⎝U ⎠
2QWURXYH ω =
' ' G¶R ω = ρ K 5 ρ K 5
$XQRXVDYLRQVWURXYp ω =
3DUODPpWKRGHDSSURFKpHQRXVDYRQVGRQFXQHHUUHXUUHODWLYHGHSDUH[FqV
ρ K 5
3UHQRQVSRXUODGpIRUPpHG¶XQHVHFWLRQPpULGLHQQH
) SRO\Q{PH OH SOXV VLPSOH VDWLVIDLVDQW DX[ FRQGLWLRQV DX[ OLPLWHV HW GH
(
I U = 5 − U V\PpWULH
) SRO\Q{PH OH SOXV VLPSOH VDWLVIDLVDQW DX[ FRQGLWLRQV DX[ OLPLWHV HW GH
I′R = I 5 = I′5 = 2QD I′U = U − 5 U HW I′′U = U − 5
I′R = I 5 = I′5 = 2QD I′U = U − 5 U HW I′′U = U − 5
5
'
∫ φ U ⋅ U ⋅ GU
ρK
5
'
5
ω =
∫ [I U ] ⋅ U ⋅ GU
⎞ ⎛ + ν ⎛ ν ⎞ ⎛ ⎞ ⎜ I′′ + I′ ⎟ − ⎜ I′′ + I′ ⎟ ⎜ I′ + ν I′′⎟ − ν ⎝ U ⎠ − ν ⎝ U ⎠⎝U ⎠
2QWURXYH ω =
' ' G¶R ω = ρK5 ρ K 5
$XQRXVDYLRQVWURXYp ω =
' ρK5
3DUODPpWKRGHDSSURFKpHQRXVDYRQVGRQFXQHHUUHXUUHODWLYHGHSDUH[FqV - 222 -
∫ φ U ⋅ U ⋅ GU
5
ω =
ρK
DYHF φ U =
- 222 -
3UHQRQVSRXUODGpIRUPpHG¶XQHVHFWLRQPpULGLHQQH
(
'
3DUODPpWKRGHDSSURFKpHQRXVDYRQVGRQFXQHHUUHXUUHODWLYHGHSDUH[FqV
- 222 -
I U = 5 − U V\PpWULH
+ ν ⎛ ⎞ ⎛ ν ⎞ ⎛ ⎞ ⎜ I′′ + I′ ⎟ − ⎜ I′′ + I′ ⎟ ⎜ I′ + ν I′′⎟ − ν ⎝ U ⎠ − ν ⎝ U ⎠⎝U ⎠
2QWURXYH ω =
∫ [I U ] ⋅ U ⋅ GU
ρK
DYHF φ U =
5
ω =
∫ φ U ⋅ U ⋅ GU
∫ [I U ] ⋅ U ⋅ GU
DYHF φ U =
⎞ ⎛ + ν ⎛ ν ⎞ ⎛ ⎞ ⎜ I′′ + I′ ⎟ − ⎜ I′′ + I′ ⎟ ⎜ I′ + ν I′′⎟ − ν ⎝ U ⎠ − ν ⎝ U ⎠⎝U ⎠
2QWURXYH ω =
' ' G¶R ω = ρK5 ρ K 5
$XQRXVDYLRQVWURXYp ω =
'
ρ K 5
3DUODPpWKRGHDSSURFKpHQRXVDYRQVGRQFXQHHUUHXUUHODWLYHGHSDUH[FqV - 222 -
&+$3,75(;,
&+$3,75(;,
'<1$0,48('(6&248(6
'<1$0,48('(6&248(6
/HVFRTXHVRQWpWppWXGLpHVHQ6WDWLTXHDXWRPH,1RXVHQH[WUDLURQVOHVSULQFLSDX[UpVXOWDWV SRXUOHVJpQpUDOLVHUHQ'\QDPLTXH
/HVFRTXHVRQWpWppWXGLpHVHQ6WDWLTXHDXWRPH,1RXVHQH[WUDLURQVOHVSULQFLSDX[UpVXOWDWV SRXUOHVJpQpUDOLVHUHQ'\QDPLTXH
1RXV SUHQGURQV FRPPH OLJQHV FRRUGRQQpHV VXU OD VXUIDFH PR\HQQH 6 OHV OLJQHV GH FRXUEXUHFDUDFWpULVpHVSDUODQXOOLWpGHOHXUWRUVLRQJpRGpVLTXH
1RXV SUHQGURQV FRPPH OLJQHV FRRUGRQQpHV VXU OD VXUIDFH PR\HQQH 6 OHV OLJQHV GH FRXUEXUHFDUDFWpULVpHVSDUODQXOOLWpGHOHXUWRUVLRQJpRGpVLTXH
/D GpILQLWLRQ G¶XQ YLVVHXU HW O¶H[SUHVVLRQ GH VHV FRPSRVDQWHV HQ IRQFWLRQ GHV FRQWUDLQWHV UHVWHQWLQFKDQJpHV
/D GpILQLWLRQ G¶XQ YLVVHXU HW O¶H[SUHVVLRQ GH VHV FRPSRVDQWHV HQ IRQFWLRQ GHV FRQWUDLQWHV UHVWHQWLQFKDQJpHV
/HVpTXDWLRQVGHO¶pTXLOLEUHFRPSOpWpHVGHVIRUFHVG¶LQHUWLHHWGHOHXUVPRPHQWVV¶pFULYHQW
/HVpTXDWLRQVGHO¶pTXLOLEUHFRPSOpWpHVGHVIRUFHVG¶LQHUWLHHWGHOHXUVPRPHQWVV¶pFULYHQW
ΓU
DFFpOpUDWLRQUHODWLYHGHODSDUWLFXOH 3
ΓU
DFFpOpUDWLRQUHODWLYHGHODSDUWLFXOH 3
ΓH
DFFpOpUDWLRQG¶HQWUDvQHPHQWGH 3
ΓH
DFFpOpUDWLRQG¶HQWUDvQHPHQWGH 3
DFFpOpUDWLRQGH&RULROLVGH 3
DFFpOpUDWLRQGH&RULROLVGH 3
YLWHVVH GH URWDWLRQ LQVWDQWDQpH GX UHSqUH OLp j OD VWUXFWXUH SDU UDSSRUW j XQJDOLOpHQ
YLWHVVH GH URWDWLRQ LQVWDQWDQpH GX UHSqUH OLp j OD VWUXFWXUH SDU UDSSRUW j XQJDOLOpHQ
9U
YLWHVVHUHODWLYHGH 3
9U
YLWHVVHUHODWLYHGH 3
G S
IRUFHVXUIDFLTXHH[WpULHXUHSHVDQWHXUSUHVVLRQ
G S
IRUFHVXUIDFLTXHH[WpULHXUHSHVDQWHXUSUHVVLRQ
S I G6
WHQVHXUFHQWUDOG¶LQHUWLHGHODILEUHQRUPDOHGHVHFWLRQ G 6
S I G6
WHQVHXUFHQWUDOG¶LQHUWLHGHODILEUHQRUPDOHGHVHFWLRQ G 6
- 223 -
- 223 -
&+$3,75(;,
&+$3,75(;,
'<1$0,48('(6&248(6
'<1$0,48('(6&248(6
/HVFRTXHVRQWpWppWXGLpHVHQ6WDWLTXHDXWRPH,1RXVHQH[WUDLURQVOHVSULQFLSDX[UpVXOWDWV SRXUOHVJpQpUDOLVHUHQ'\QDPLTXH
/HVFRTXHVRQWpWppWXGLpHVHQ6WDWLTXHDXWRPH,1RXVHQH[WUDLURQVOHVSULQFLSDX[UpVXOWDWV SRXUOHVJpQpUDOLVHUHQ'\QDPLTXH
1RXV SUHQGURQV FRPPH OLJQHV FRRUGRQQpHV VXU OD VXUIDFH PR\HQQH 6 OHV OLJQHV GH FRXUEXUHFDUDFWpULVpHVSDUODQXOOLWpGHOHXUWRUVLRQJpRGpVLTXH
1RXV SUHQGURQV FRPPH OLJQHV FRRUGRQQpHV VXU OD VXUIDFH PR\HQQH 6 OHV OLJQHV GH FRXUEXUHFDUDFWpULVpHVSDUODQXOOLWpGHOHXUWRUVLRQJpRGpVLTXH
/D GpILQLWLRQ G¶XQ YLVVHXU HW O¶H[SUHVVLRQ GH VHV FRPSRVDQWHV HQ IRQFWLRQ GHV FRQWUDLQWHV UHVWHQWLQFKDQJpHV
/D GpILQLWLRQ G¶XQ YLVVHXU HW O¶H[SUHVVLRQ GH VHV FRPSRVDQWHV HQ IRQFWLRQ GHV FRQWUDLQWHV UHVWHQWLQFKDQJpHV
/HVpTXDWLRQVGHO¶pTXLOLEUHFRPSOpWpHVGHVIRUFHVG¶LQHUWLHHWGHOHXUVPRPHQWVV¶pFULYHQW
/HVpTXDWLRQVGHO¶pTXLOLEUHFRPSOpWpHVGHVIRUFHVG¶LQHUWLHHWGHOHXUVPRPHQWVV¶pFULYHQW
ΓU
DFFpOpUDWLRQUHODWLYHGHODSDUWLFXOH 3
ΓU
DFFpOpUDWLRQUHODWLYHGHODSDUWLFXOH 3
ΓH
DFFpOpUDWLRQG¶HQWUDvQHPHQWGH 3
ΓH
DFFpOpUDWLRQG¶HQWUDvQHPHQWGH 3
DFFpOpUDWLRQGH&RULROLVGH 3
YLWHVVH GH URWDWLRQ LQVWDQWDQpH GX UHSqUH OLp j OD VWUXFWXUH SDU UDSSRUW j XQJDOLOpHQ
DFFpOpUDWLRQGH&RULROLVGH 3
YLWHVVH GH URWDWLRQ LQVWDQWDQpH GX UHSqUH OLp j OD VWUXFWXUH SDU UDSSRUW j XQJDOLOpHQ
9U
YLWHVVHUHODWLYHGH 3
9U
YLWHVVHUHODWLYHGH 3
G S
IRUFHVXUIDFLTXHH[WpULHXUHSHVDQWHXUSUHVVLRQ
G S
IRUFHVXUIDFLTXHH[WpULHXUHSHVDQWHXUSUHVVLRQ
S I G6
WHQVHXUFHQWUDOG¶LQHUWLHGHODILEUHQRUPDOHGHVHFWLRQ G 6
S I G6
WHQVHXUFHQWUDOG¶LQHUWLHGHODILEUHQRUPDOHGHVHFWLRQ G 6
- 223 -
- 223 -
⎡ ⎤ ⎥ K ⎢ ⎢ ⎥ GDQVOHUHSqUH 3 H H . = ⎢ ⎥ ⎢⎣ ⎥⎦
{
[I ]
}
⋅ GV
−ρ
⋅ GV
{
[I ]
URWDWLRQGHODILEUHQRUPDOH
−ρ
⎡ ⎤ ⎥ K ⎢ ⎢ ⎥ GDQVOHUHSqUH 3 H H . = ⎢ ⎥ ⎢⎣ ⎥⎦
PRPHQW HQ 3 GHV IRUFHV G¶LQHUWLH G¶HQWUDvQHPHQW DSSOLTXpHV j OD ILEUH QRUPDOH PRPHQWHQ 3 GHVIRUFHVG¶LQHUWLHGH&RULROLVDSSOLTXpHVjODILEUHQRUPDOH
}
URWDWLRQGHODILEUHQRUPDOH
−ρ
⋅ GV
−ρ
⋅ GV
PRPHQW HQ 3 GHV IRUFHV G¶LQHUWLH G¶HQWUDvQHPHQW DSSOLTXpHV j OD ILEUH QRUPDOH PRPHQWHQ 3 GHVIRUFHVG¶LQHUWLHGH&RULROLVDSSOLTXpHVjODILEUHQRUPDOH
(QSURMHFWLRQVXU H H . OHVpTXDWLRQV V¶pFULYHQW
(QSURMHFWLRQVXU H H . OHVpTXDWLRQV V¶pFULYHQW
3RXUOHVIRUFHV
3RXUOHVIRUFHV
∂ 1 ∂ 7 1 − 1 7 + 7 4 ⎧ − − = ⎪ S + β ∂ α + β ∂ α + 5J 5J 5 1 ⎪ ⎪ ⎛ ∂ X ⎛ ∂ Z ∂ X ⎞⎞ ⎟⎟ ρ K ⎜ + ΓH + ⎜⎜ θ − θ] ⎪ ⎜ ∂W ∂ W ⎟⎠ ⎟⎠ ⎪ ⎝ ⎝ ∂W ⎪ ⎪ ⎪ ⎪ ∂ 1 ∂ 7 1 − 1 7 + 7 4 + + − − = ⎪ S + 5J 5J 5 1 β β ∂ α ∂ α ⎪⎪ ⎨ ⎛ ∂ X ⎛ ∂ X ∂ Z ⎞ ⎞ ⎪ ⎟⎟ ρK⎜ + ΓH + ⎜⎜ θ ] − θ ⎜ ∂W ⎪ ∂W ∂ W ⎟⎠ ⎟⎠ ⎝ ⎝ ⎪ ⎪ ⎪ ⎪ ⎪ S + ∂ 4 + ∂ 4 + 1 + 1 + 4 − 4 = ⎪ ] β ∂ α β ∂ α 5 1 5 1 5J 5J ⎪ ⎛ ∂ Z ⎪ ⎛ ∂ X ∂ X ⎞ ⎞ ⎟⎟ ρ K ⎜ + ΓH ] + ⎜⎜ θ − θ ⎪ ⎜ ∂W ∂ W ⎟⎠ ⎟⎠ ⎪⎩ ⎝ ⎝ ∂W
∂ 1 ∂ 7 1 − 1 7 + 7 4 ⎧ − − = ⎪ S + β ∂ α + β ∂ α + 5J 5J 5 1 ⎪ ⎪ ⎛ ∂ X ⎛ ∂ Z ∂ X ⎞⎞ ⎟⎟ ρ K ⎜ + ΓH + ⎜⎜ θ − θ] ⎪ ⎜ ∂W ∂ W ⎟⎠ ⎟⎠ ⎪ ⎝ ⎝ ∂W ⎪ ⎪ ⎪ ⎪ ∂ 1 ∂ 7 1 − 1 7 + 7 4 + + − − = ⎪ S + 5J 5J 5 1 β β ∂ α ∂ α ⎪⎪ ⎨ ⎛ ∂ X ⎛ ∂ X ∂ Z ⎞ ⎞ ⎪ ⎟⎟ ρK⎜ + ΓH + ⎜⎜ θ ] − θ ⎜ ∂W ⎪ ∂W ∂ W ⎟⎠ ⎟⎠ ⎝ ⎝ ⎪ ⎪ ⎪ ⎪ ⎪ S + ∂ 4 + ∂ 4 + 1 + 1 + 4 − 4 = ⎪ ] β ∂ α β ∂ α 5 1 5 1 5J 5J ⎪ ⎛ ∂ Z ⎪ ⎛ ∂ X ∂ X ⎞ ⎞ ⎟⎟ ρ K ⎜ + ΓH ] + ⎜⎜ θ − θ ⎪ ⎜ ∂W ∂ W ⎟⎠ ⎟⎠ ⎪⎩ ⎝ ⎝ ∂W
3RXUOHVPRPHQW
3RXUOHVPRPHQW
⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩
⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩
⎞ ⎛ K ∂ ω ∂ 8 ∂ 0 8 − 8 0 + 0 + MH + MF ⎟ + + − + 4 = ρ ⎜ ⎟ ⎜ 5J 5J β ∂ α β ∂ α ⎠ ⎝ ∂ W
⎞ ⎛ K ∂ ω ∂ 8 ∂ 0 8 − 8 0 + 0 + MH + MF ⎟ + + − − 4 = ρ ⎜ ⎟ ⎜ 5J 5J β ∂ α β ∂ α ⎠ ⎝ ∂ W
{
}
⎞ ⎛ K ∂ ω ∂ 8 ∂ 0 8 − 8 0 + 0 + MH + MF ⎟ + + − − 4 = ρ ⎜ ⎟ ⎜ 5J 5J β ∂ α β ∂ α ⎠ ⎝ ∂ W
⋅ GV
−ρ
⋅ GV
⎡ ⎤ ⎥ K ⎢ ⎢ ⎥ GDQVOHUHSqUH 3 H H . = ⎢ ⎥ ⎢⎣ ⎥⎦
PRPHQW HQ 3 GHV IRUFHV G¶LQHUWLH G¶HQWUDvQHPHQW DSSOLTXpHV j OD ILEUH QRUPDOH PRPHQWHQ 3 GHVIRUFHVG¶LQHUWLHGH&RULROLVDSSOLTXpHVjODILEUHQRUPDOH
{
[I ]
URWDWLRQGHODILEUHQRUPDOH
−ρ
}
URWDWLRQGHODILEUHQRUPDOH
−ρ
⋅ GV
−ρ
⋅ GV
PRPHQW HQ 3 GHV IRUFHV G¶LQHUWLH G¶HQWUDvQHPHQW DSSOLTXpHV j OD ILEUH QRUPDOH PRPHQWHQ 3 GHVIRUFHVG¶LQHUWLHGH&RULROLVDSSOLTXpHVjODILEUHQRUPDOH
(QSURMHFWLRQVXU H H . OHVpTXDWLRQV V¶pFULYHQW
(QSURMHFWLRQVXU H H . OHVpTXDWLRQV V¶pFULYHQW
3RXUOHVIRUFHV
3RXUOHVIRUFHV
∂ 1 ∂ 7 1 − 1 7 + 7 4 ⎧ − − = ⎪ S + β ∂ α + β ∂ α + 5J 5J 5 1 ⎪ ⎪ ⎛ ∂ X ⎛ ∂ Z ∂ X ⎞⎞ ⎟⎟ ρ K ⎜ + ΓH + ⎜⎜ θ − θ] ⎪ ⎜ ∂W ∂ W ⎟⎠ ⎟⎠ ⎪ ⎝ ⎝ ∂W ⎪ ⎪ ⎪ ⎪ ∂ 1 ∂ 7 1 − 1 7 + 7 4 + + − − = ⎪ S + 5J 5J 5 1 β β ∂ α ∂ α ⎪⎪ ⎨ ⎛ ∂ X ⎛ ∂ X ∂ Z ⎞ ⎞ ⎪ ⎟⎟ ρK⎜ + ΓH + ⎜⎜ θ ] − θ ⎜ ⎪ ∂W ∂ W ⎟⎠ ⎟⎠ ∂W ⎝ ⎝ ⎪ ⎪ ⎪ ⎪ ⎪ S + ∂ 4 + ∂ 4 + 1 + 1 + 4 − 4 = ⎪ ] β ∂ α β ∂ α 5 1 5 1 5J 5J ⎪ ⎛ ∂ Z ⎪ ⎛ ∂ X ∂ X ⎞ ⎞ ⎟⎟ ⎟ ρ K ⎜ + ΓH ] + ⎜⎜ θ − θ ⎪ ⎟ ⎜ W W ∂ ∂ W ∂ ⎪⎩ ⎝ ⎠⎠ ⎝
∂ 1 ∂ 7 1 − 1 7 + 7 4 ⎧ − − = ⎪ S + β ∂ α + β ∂ α + 5J 5J 5 1 ⎪ ⎪ ⎛ ∂ X ⎛ ∂ Z ∂ X ⎞⎞ ⎟⎟ ρ K ⎜ + ΓH + ⎜⎜ θ − θ] ⎪ ⎜ ∂W ∂ W ⎟⎠ ⎟⎠ ⎪ ⎝ ⎝ ∂W ⎪ ⎪ ⎪ ⎪ ∂ 1 ∂ 7 1 − 1 7 + 7 4 + + − − = ⎪ S + 5J 5J 5 1 β β ∂ α ∂ α ⎪⎪ ⎨ ⎛ ∂ X ⎛ ∂ X ∂ Z ⎞ ⎞ ⎪ ⎟⎟ ρK⎜ + ΓH + ⎜⎜ θ ] − θ ⎜ ⎪ ∂W ∂ W ⎟⎠ ⎟⎠ ∂W ⎝ ⎝ ⎪ ⎪ ⎪ ⎪ ⎪ S + ∂ 4 + ∂ 4 + 1 + 1 + 4 − 4 = ⎪ ] β ∂ α β ∂ α 5 1 5 1 5J 5J ⎪ ⎛ ∂ Z ⎪ ⎛ ∂ X ∂ X ⎞ ⎞ ⎟⎟ ⎟ ρ K ⎜ + ΓH ] + ⎜⎜ θ − θ ⎪ ⎟ ⎜ W W ∂ ∂ W ∂ ⎪⎩ ⎝ ⎠⎠ ⎝
3RXUOHVPRPHQW
3RXUOHVPRPHQW
⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩
⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩
⎞ ⎛ K ∂ ω ∂ 8 ∂ 0 8 − 8 0 + 0 + MH + MF ⎟ + + − + 4 = ρ ⎜ ⎟ ⎜ 5J 5J β ∂ α β ∂ α ⎠ ⎝ ∂ W ⎞ ⎛ K ∂ ω ∂ 8 ∂ 0 8 − 8 0 + 0 + MH + MF ⎟ + + − − 4 = ρ ⎜ ⎟ ⎜ 5J 5J β ∂ α β ∂ α ⎠ ⎝ ∂ W
- 224 -
- 224 -
⎡ ⎤ ⎥ K ⎢ ⎢ ⎥ GDQVOHUHSqUH 3 H H . = ⎢ ⎥ ⎢⎣ ⎥⎦
[I ]
⎞ ⎛ K ∂ ω ∂ 8 ∂ 0 8 − 8 0 + 0 + MH + MF ⎟ + + − + 4 = ρ ⎜ ⎟ ⎜ 5J 5J β ∂ α β ∂ α ⎠ ⎝ ∂ W
- 224 -
⎞ ⎛ K ∂ ω ∂ 8 ∂ 0 8 − 8 0 + 0 + MH + MF ⎟ + + − + 4 = ρ ⎜ ⎟ ⎜ 5J 5J β ∂ α β ∂ α ⎠ ⎝ ∂ W ⎞ ⎛ K ∂ ω ∂ 8 ∂ 0 8 − 8 0 + 0 + MH + MF ⎟ + + − − 4 = ρ ⎜ ⎟ ⎜ 5J 5J β ∂ α β ∂ α ⎠ ⎝ ∂ W
- 224 -
/DWURLVLqPHpTXDWLRQG¶pTXLOLEUHGHVPRPHQWVHVWLGHQWLTXHPHQWYpULILpH
/DWURLVLqPHpTXDWLRQG¶pTXLOLEUHGHVPRPHQWVHVWLGHQWLTXHPHQWYpULILpH
'DQVFHVpTXDWLRQV X X Z GpVLJQHQWOHVFRPSRVDQWHVGXYHFWHXUGpSODFHPHQWGH 3 VXU
'DQVFHVpTXDWLRQV X X Z GpVLJQHQWOHVFRPSRVDQWHVGXYHFWHXUGpSODFHPHQWGH 3 VXU
H H . UHVSHFWLYHPHQW
H H . UHVSHFWLYHPHQW
{
}
{
}
/HVH[SUHVVLRQVGDQVOHUHSqUHORFDO 3 H H . GHVFRPSRVDQWHVGXWHQVHXUGpIRUPDWLRQ E HWGXSVHXGRYHFWHXUURWDWLRQ RQWpWppWDEOLHVHQ6WDWLTXHGHVFRTXHVDXWRPH,
/HVH[SUHVVLRQVGDQVOHUHSqUHORFDO 3 H H . GHVFRPSRVDQWHVGXWHQVHXUGpIRUPDWLRQ E HWGXSVHXGRYHFWHXUURWDWLRQ RQWpWppWDEOLHVHQ6WDWLTXHGHVFRTXHVDXWRPH,
1RXV pWXGLHURQV OHV YLEUDWLRQV GHV FRTXHV SDU OD WKpRULH OLQpDLUH SXLV SDU OD WKpRULH GHV PHPEUDQHV SDU XQH PpWKRGH GH GpSODFHPHQWV F¶HVW j GLUH HQ SUHQDQW FRPPH LQFRQQXHV SULYLOpJLpHVOHVWURLVGpSODFHPHQWV X α α W X α α W Z α α W
1RXV pWXGLHURQV OHV YLEUDWLRQV GHV FRTXHV SDU OD WKpRULH OLQpDLUH SXLV SDU OD WKpRULH GHV PHPEUDQHV SDU XQH PpWKRGH GH GpSODFHPHQWV F¶HVW j GLUH HQ SUHQDQW FRPPH LQFRQQXHV SULYLOpJLpHVOHVWURLVGpSODFHPHQWV X α α W X α α W Z α α W
1RXVQRXVDSSXLHURQVVXUOHVWURLVPrPHVK\SRWKqVHVTX¶HQ6WDWLTXH
1RXVQRXVDSSXLHURQVVXUOHVWURLVPrPHVK\SRWKqVHVTX¶HQ6WDWLTXH
'DQV FKDFXQ GH FHV GHX[ FDV QRXV FRPPHQFHURQV SDU H[SULPHU WRXV OHV SDUDPqWUHV GX SUREOqPHGpSODFHPHQWVGpIRUPDWLRQVFRQWUDLQWHVYLVVHXUV HQIRQFWLRQGH X X Z SXLV QRXVPRQWUHURQVFRPPHQWpWDEOLUOHVpTXDWLRQVGXPRXYHPHQW
'DQV FKDFXQ GH FHV GHX[ FDV QRXV FRPPHQFHURQV SDU H[SULPHU WRXV OHV SDUDPqWUHV GX SUREOqPHGpSODFHPHQWVGpIRUPDWLRQVFRQWUDLQWHVYLVVHXUV HQIRQFWLRQGH X X Z SXLV QRXVPRQWUHURQVFRPPHQWpWDEOLUOHVpTXDWLRQVGXPRXYHPHQW
±7+e25,(/,1e$,5(
±7+e25,(/,1e$,5(
UHpWDSHGpSODFHPHQWV
UHpWDSHGpSODFHPHQWV
HpWDSHGpIRUPDWLRQV
⎧ ⎛ ∂Z X ⎞ + ⎟⎟ ] ⎪ X = X − ⎜⎜ ⎝ β ∂ α 5 1 ⎠ ⎪ ⎪ ⎛ ∂Z G X ⎞ ⎪ + ⎟⎟ ] X = 3R3 ⎨ X = X − ⎜⎜ β ∂ α 5 1 ⎠ ⎝ ⎪ ⎪ ⎪Z=Z ⎪ ⎩
⎧ ε = ε + ] ε′ ⎪⎪ ⎨ ε = ε + ] ε′ ⎪ ′ ⎪⎩ γ = γ + ] γ
HpWDSHGpIRUPDWLRQV
DYHF
⎧ ∂ X X Z − − ⎪ ε = β ∂ α 5J 5 1 ⎪ ⎪ ∂ X X Z ⎪ + − ⎨ ε = β ∂ α 5J 5 1 ⎪ ⎪ ⎪ γ = ⎛⎜ ∂ X + ∂ X + X − X ⎞⎟ ⎪ ⎜ β ∂ α β ∂ α 5J 5J ⎟⎠ ⎝ ⎩
⎧ ⎛ ∂Z X ⎞ + ⎟⎟ ] ⎪ X = X − ⎜⎜ ⎝ β ∂ α 5 1 ⎠ ⎪ ⎪ ⎛ ∂Z G X ⎞ ⎪ + ⎟⎟ ] X = 3R3 ⎨ X = X − ⎜⎜ β ∂ α 5 1 ⎠ ⎝ ⎪ ⎪ ⎪Z=Z ⎪ ⎩
⎧ ε = ε + ] ε′ ⎪⎪ ⎨ ε = ε + ] ε′ ⎪ ′ ⎪⎩ γ = γ + ] γ
DYHF
⎧ ∂ X X Z − − ⎪ ε = β ∂ α 5J 5 1 ⎪ ⎪ ∂ X X Z ⎪ + − ⎨ ε = β ∂ α 5J 5 1 ⎪ ⎪ ⎪ γ = ⎛⎜ ∂ X + ∂ X + X − X ⎞⎟ ⎪ ⎜ β ∂ α β ∂ α 5J 5J ⎟⎠ ⎝ ⎩
- 225 -
- 225 -
/DWURLVLqPHpTXDWLRQG¶pTXLOLEUHGHVPRPHQWVHVWLGHQWLTXHPHQWYpULILpH
/DWURLVLqPHpTXDWLRQG¶pTXLOLEUHGHVPRPHQWVHVWLGHQWLTXHPHQWYpULILpH
'DQVFHVpTXDWLRQV X X Z GpVLJQHQWOHVFRPSRVDQWHVGXYHFWHXUGpSODFHPHQWGH 3 VXU
'DQVFHVpTXDWLRQV X X Z GpVLJQHQWOHVFRPSRVDQWHVGXYHFWHXUGpSODFHPHQWGH 3 VXU
H H . UHVSHFWLYHPHQW
H H . UHVSHFWLYHPHQW
{
}
{
}
/HVH[SUHVVLRQVGDQVOHUHSqUHORFDO 3 H H . GHVFRPSRVDQWHVGXWHQVHXUGpIRUPDWLRQ E HWGXSVHXGRYHFWHXUURWDWLRQ RQWpWppWDEOLHVHQ6WDWLTXHGHVFRTXHVDXWRPH,
/HVH[SUHVVLRQVGDQVOHUHSqUHORFDO 3 H H . GHVFRPSRVDQWHVGXWHQVHXUGpIRUPDWLRQ E HWGXSVHXGRYHFWHXUURWDWLRQ RQWpWppWDEOLHVHQ6WDWLTXHGHVFRTXHVDXWRPH,
1RXV pWXGLHURQV OHV YLEUDWLRQV GHV FRTXHV SDU OD WKpRULH OLQpDLUH SXLV SDU OD WKpRULH GHV PHPEUDQHV SDU XQH PpWKRGH GH GpSODFHPHQWV F¶HVW j GLUH HQ SUHQDQW FRPPH LQFRQQXHV SULYLOpJLpHVOHVWURLVGpSODFHPHQWV X α α W X α α W Z α α W
1RXV pWXGLHURQV OHV YLEUDWLRQV GHV FRTXHV SDU OD WKpRULH OLQpDLUH SXLV SDU OD WKpRULH GHV PHPEUDQHV SDU XQH PpWKRGH GH GpSODFHPHQWV F¶HVW j GLUH HQ SUHQDQW FRPPH LQFRQQXHV SULYLOpJLpHVOHVWURLVGpSODFHPHQWV X α α W X α α W Z α α W
1RXVQRXVDSSXLHURQVVXUOHVWURLVPrPHVK\SRWKqVHVTX¶HQ6WDWLTXH
1RXVQRXVDSSXLHURQVVXUOHVWURLVPrPHVK\SRWKqVHVTX¶HQ6WDWLTXH
'DQV FKDFXQ GH FHV GHX[ FDV QRXV FRPPHQFHURQV SDU H[SULPHU WRXV OHV SDUDPqWUHV GX SUREOqPHGpSODFHPHQWVGpIRUPDWLRQVFRQWUDLQWHVYLVVHXUV HQIRQFWLRQGH X X Z SXLV QRXVPRQWUHURQVFRPPHQWpWDEOLUOHVpTXDWLRQVGXPRXYHPHQW
'DQV FKDFXQ GH FHV GHX[ FDV QRXV FRPPHQFHURQV SDU H[SULPHU WRXV OHV SDUDPqWUHV GX SUREOqPHGpSODFHPHQWVGpIRUPDWLRQVFRQWUDLQWHVYLVVHXUV HQIRQFWLRQGH X X Z SXLV QRXVPRQWUHURQVFRPPHQWpWDEOLUOHVpTXDWLRQVGXPRXYHPHQW
±7+e25,(/,1e$,5(
±7+e25,(/,1e$,5(
UHpWDSHGpSODFHPHQWV
UHpWDSHGpSODFHPHQWV
HpWDSHGpIRUPDWLRQV
⎧ ⎛ ∂Z X ⎞ + ⎟⎟ ] ⎪ X = X − ⎜⎜ β ∂ α 5 1 ⎠ ⎝ ⎪ ⎪ ⎛ ∂Z G X ⎞ ⎪ + ⎟⎟ ] X = 3R3 ⎨ X = X − ⎜⎜ ⎝ β ∂ α 5 1 ⎠ ⎪ ⎪ ⎪Z=Z ⎪ ⎩
⎧ ε = ε + ] ε′ ⎪⎪ ⎨ ε = ε + ] ε′ ⎪ ′ ⎩⎪ γ = γ + ] γ
HpWDSHGpIRUPDWLRQV
DYHF
⎧ ∂ X X Z − − ⎪ ε = β ∂ α 5J 5 1 ⎪ ⎪ ∂ X X Z ⎪ + − ⎨ ε = β ∂ α 5J 5 1 ⎪ ⎪ ⎪ γ = ⎛⎜ ∂ X + ∂ X + X − X ⎞⎟ ⎪ ⎜ β ∂ α β ∂ α 5J 5J ⎟⎠ ⎝ ⎩
- 225 -
⎧ ⎛ ∂Z X ⎞ + ⎟⎟ ] ⎪ X = X − ⎜⎜ β ∂ α 5 1 ⎠ ⎝ ⎪ ⎪ ⎛ ∂Z G X ⎞ ⎪ + ⎟⎟ ] X = 3R3 ⎨ X = X − ⎜⎜ ⎝ β ∂ α 5 1 ⎠ ⎪ ⎪ ⎪Z=Z ⎪ ⎩
⎧ ε = ε + ] ε′ ⎪⎪ ⎨ ε = ε + ] ε′ ⎪ ′ ⎩⎪ γ = γ + ] γ
DYHF
⎧ ∂ X X Z − − ⎪ ε = β ∂ α 5J 5 1 ⎪ ⎪ ∂ X X Z ⎪ + − ⎨ ε = β ∂ α 5J 5 1 ⎪ ⎪ ⎪ γ = ⎛⎜ ∂ X + ∂ X + X − X ⎞⎟ ⎪ ⎜ β ∂ α β ∂ α 5J 5J ⎟⎠ ⎝ ⎩
- 225 -
⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩
ε′ =
X 5J
⎛ ∂Z ⎞ X ∂ ⎛ ⎞ Z ∂ ⎛ ∂Z ⎞ ⎜⎜ ⎟⎟ − ⎜⎜ ⎟⎟ − − ⎜⎜ ⎟⎟ + − β ∂ α β ∂ α β ∂ α β ∂ 5 5 5 5J 1 ⎠ ⎝ 1 ⎠ 5 1 ⎝ ⎠ α ⎝ 1
ε′ =
X 5J
⎛ ⎞ X ∂ ⎜⎜ ⎟⎟ − − 5 5 1 ⎠ β ∂ α ⎝ 1
∂ X ∂ − β 5 1 ∂ α β ∂ α
′ = γ −
⎛ ⎞ Z ∂ ⎜⎜ ⎟⎟ − − β 5 ∂ α ⎝ 1 ⎠ 5 1
⎛ ∂Z ⎞ ∂Z ⎜⎜ ⎟⎟ − β ∂ α β ∂ 5J ⎝ ⎠ α
⎛ X ⎞ ∂ X ∂ ⎜⎜ ⎟⎟ + − ⎝ 5 1 ⎠ β 5 1 ∂ α β ∂ α
⎛ X ⎞ ⎜⎜ ⎟⎟ ⎝ 5 1 ⎠
∂Z ∂ Z ∂Z + −− β 5J ∂ α β 5J ∂ α β β ∂ α ⋅ ∂ α
⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩
ε′ =
X 5J
⎛ ∂Z ⎞ X ∂ ⎛ ⎞ Z ∂ ⎛ ∂Z ⎞ ⎜⎜ ⎟⎟ − ⎜⎜ ⎟⎟ − − ⎜⎜ ⎟⎟ + − β ∂ α β ∂ α β ∂ α β ∂ 5 5 5 5J 1 ⎠ ⎝ 1 ⎠ 5 1 ⎝ ⎠ α ⎝ 1
ε′ =
X 5J
⎛ ⎞ X ∂ ⎜⎜ ⎟⎟ − − 5 5 1 ⎠ β ∂ α ⎝ 1
∂ X ∂ − β 5 1 ∂ α β ∂ α
′ = γ −
⎛ ⎞ Z ∂ ⎜⎜ ⎟⎟ − − β 5 ∂ α ⎝ 1 ⎠ 5 1
⎛ ∂Z ⎞ ∂Z ⎜⎜ ⎟⎟ − β ∂ α β ∂ 5J ⎝ ⎠ α
⎛ X ⎞ ∂ X ∂ ⎜⎜ ⎟⎟ + − ⎝ 5 1 ⎠ β 5 1 ∂ α β ∂ α
⎛ X ⎞ ⎜⎜ ⎟⎟ ⎝ 5 1 ⎠
∂Z ∂ Z ∂Z + −− β 5J ∂ α β 5J ∂ α β β ∂ α ⋅ ∂ α
HpWDSHFRQWUDLQWHV
HpWDSHFRQWUDLQWHV
&RPSWH WHQX GH OD VHFRQGH K\SRWKqVH σ] = OD ORL GX FRPSRUWHPHQW YLVFRpODVWLTXH OLQpDLUHGRQQH
&RPSWH WHQX GH OD VHFRQGH K\SRWKqVH σ] = OD ORL GX FRPSRUWHPHQW YLVFRpODVWLTXH OLQpDLUHGRQQH
⎧ ( (′ ∂ ε + ν ε + ε + ν′ ε = σ + ] σ′ ⎪ σ = − ν − ν′ ∂ W ⎪ ⎪ ( (′ ∂ ⎪ ε + ν ε + ε + ν′ ε = σ + ] σ′ ⎨ σ = − ν − ν′ ∂ W ⎪ ⎪ ⎪ τ = ( γ + (′ ∂ γ = τ + ] τ′ ⎪ − ν − ν′ ∂ W ⎩
⎧ ( (′ ε + ν ε + ⎪ σ = − ν − ν′ ⎪ ⎪ ( (′ ⎪ ε + ν ε + ⎨ σ = − ν − ν′ ⎪ ⎪ ⎪ τ = ( γ + (′ ∂ γ ⎪ − ν − ν′ ∂ W ⎩
⎧ ( (′ ∂ ε + ν ε + ε + ν′ ε = σ + ] σ′ ⎪ σ = − ν − ν′ ∂ W ⎪ ⎪ ( (′ ∂ ⎪ ε + ν ε + ε + ν′ ε = σ + ] σ′ ⎨ σ = − ν − ν′ ∂ W ⎪ ⎪ ⎪ τ = ( γ + (′ ∂ γ = τ + ] τ′ ⎪ − ν − ν′ ∂ W ⎩
⎧ ( (′ ε + ν ε + ⎪ σ = − ν − ν′ ⎪ ⎪ ( (′ ⎪ ε + ν ε + ⎨ σ = − ν − ν′ ⎪ ⎪ ⎪ τ = ( γ + (′ ∂ γ ⎪ − ν − ν′ ∂ W ⎩
∂ ε + ν′ ε ∂W ∂ ε + ν′ ε ∂W
′ HWOHVH[SUHVVLRQVDQDORJXHVSRXU σ′ σ′ τ
′ HWOHVH[SUHVVLRQVDQDORJXHVSRXU σ′ σ′ τ
HpWDSHYLVVHXUV
HpWDSHYLVVHXUV
2QHQGpGXLWHQSRVDQW , =
K
2QHQGpGXLWHQSRVDQW , =
- 226 -
ε′ =
X 5J
⎛ ∂Z ⎞ X ∂ ⎛ ⎞ Z ∂ ⎛ ∂Z ⎞ ⎜⎜ ⎟⎟ − ⎜⎜ ⎟⎟ − − ⎜⎜ ⎟⎟ + − β ∂ α β ∂ α β ∂ α β ∂ 5 5 5 5J 5 1 ⎠ ⎝ 1 ⎠ ⎝ ⎠ α ⎝ 1 1
ε′ =
X 5J
⎛ ⎞ X ∂ ⎜⎜ ⎟⎟ − − 5 5 1 ⎠ β ∂ α ⎝ 1
′ = γ −
∂ X ∂ − β 5 1 ∂ α β ∂ α
∂ ε + ν′ ε ∂W
K
- 226 -
⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩
∂ ε + ν′ ε ∂W
⎛ ⎞ Z ∂ ⎜⎜ ⎟⎟ − − β 5 5 ∂ α ⎝ 1 ⎠ 1
⎛ ∂Z ⎞ ∂Z ⎜⎜ ⎟⎟ − β ∂ α β ∂ 5J ⎝ ⎠ α
⎛ X ⎞ ∂ X ∂ ⎜⎜ ⎟⎟ + − β ∂ α β ∂ α 5 5 1 ⎝ 1 ⎠
⎛ X ⎞ ⎜⎜ ⎟⎟ ⎝ 5 1 ⎠
∂Z ∂ Z ∂Z + −− β 5J ∂ α β 5J ∂ α β β ∂ α ⋅ ∂ α
⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩
ε′ =
X 5J
⎛ ∂Z ⎞ X ∂ ⎛ ⎞ Z ∂ ⎛ ∂Z ⎞ ⎜⎜ ⎟⎟ − ⎜⎜ ⎟⎟ − − ⎜⎜ ⎟⎟ + − β ∂ α β ∂ α β ∂ α β ∂ 5 5 5 5J 5 1 ⎠ ⎝ 1 ⎠ ⎝ ⎠ α ⎝ 1 1
ε′ =
X 5J
⎛ ⎞ X ∂ ⎜⎜ ⎟⎟ − − 5 5 1 ⎠ β ∂ α ⎝ 1
′ = γ −
∂ X ∂ − β 5 1 ∂ α β ∂ α
⎛ ⎞ Z ∂ ⎜⎜ ⎟⎟ − − β 5 5 ∂ α ⎝ 1 ⎠ 1
⎛ ∂Z ⎞ ∂Z ⎜⎜ ⎟⎟ − β ∂ α β ∂ 5J ⎝ ⎠ α
⎛ X ⎞ ∂ X ∂ ⎜⎜ ⎟⎟ + − β ∂ α β ∂ α 5 5 1 ⎝ 1 ⎠
⎛ X ⎞ ⎜⎜ ⎟⎟ ⎝ 5 1 ⎠
∂Z ∂ Z ∂Z + −− β 5J ∂ α β 5J ∂ α β β ∂ α ⋅ ∂ α
HpWDSHFRQWUDLQWHV
HpWDSHFRQWUDLQWHV
&RPSWH WHQX GH OD VHFRQGH K\SRWKqVH σ] = OD ORL GX FRPSRUWHPHQW YLVFRpODVWLTXH OLQpDLUHGRQQH
&RPSWH WHQX GH OD VHFRQGH K\SRWKqVH σ] = OD ORL GX FRPSRUWHPHQW YLVFRpODVWLTXH OLQpDLUHGRQQH
⎧ ( (′ ∂ ε + ν ε + ε + ν′ ε = σ + ] σ′ ⎪ σ = − ν − ν′ ∂ W ⎪ ⎪ ( (′ ∂ ⎪ ε + ν ε + ε + ν′ ε = σ + ] σ′ ⎨ σ = − ν − ν′ ∂ W ⎪ ⎪ ⎪ τ = ( γ + (′ ∂ γ = τ + ] τ′ ⎪ − ν − ν′ ∂ W ⎩
⎧ ( (′ ε + ν ε + ⎪ σ = − ν − ν′ ⎪ ⎪ ( (′ ⎪ ε + ν ε + ⎨ σ = − ν − ν′ ⎪ ⎪ ⎪ τ = ( γ + (′ ∂ γ ⎪ − ν − ν′ ∂ W ⎩
⎧ ( (′ ∂ ε + ν ε + ε + ν′ ε = σ + ] σ′ ⎪ σ = − ν − ν′ ∂ W ⎪ ⎪ ( (′ ∂ ⎪ ε + ν ε + ε + ν′ ε = σ + ] σ′ ⎨ σ = − ν − ν′ ∂ W ⎪ ⎪ ⎪ τ = ( γ + (′ ∂ γ = τ + ] τ′ ⎪ − ν − ν′ ∂ W ⎩
⎧ ( (′ ε + ν ε + ⎪ σ = − ν − ν′ ⎪ ⎪ ( (′ ⎪ ε + ν ε + ⎨ σ = − ν − ν′ ⎪ ⎪ ⎪ τ = ( γ + (′ ∂ γ ⎪ − ν − ν′ ∂ W ⎩
∂ ε + ν′ ε ∂W ∂ ε + ν′ ε ∂W
′ HWOHVH[SUHVVLRQVDQDORJXHVSRXU σ′ σ′ τ
′ HWOHVH[SUHVVLRQVDQDORJXHVSRXU σ′ σ′ τ
HpWDSHYLVVHXUV
HpWDSHYLVVHXUV
2QHQGpGXLWHQSRVDQW , =
K
2QHQGpGXLWHQSRVDQW , =
- 226 -
K
- 226 -
∂ ε + ν′ ε ∂W ∂ ε + ν′ ε ∂W
⎧ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩
⎧ ⎪ ⎪ ⎪ τ′ ⎪ 7 = K τ − , 5 1 ⎪⎪ ⎨ ⎛ τ ⎞ ⎪ ′ ⎟⎟ 8 = , ⎜⎜ − τ ⎪ 5 ⎝ 1 ⎠ ⎪ ⎪ ⎛ σ ⎞ + σ′ ⎟⎟ 0 = , ⎜⎜ − ⎪ ⎪⎩ ⎝ 5 1 ⎠
1 = K σ − ,
σ′ 5 1
1 = K σ − ,
σ′ 5 1
7 = K τ − ,
′ τ 5 1
⎛ τ ⎞ ′ ⎟⎟ 8 = , ⎜⎜ − τ 5 ⎝ 1 ⎠ ⎛ σ ⎞ + σ′ ⎟⎟ 0 = , ⎜⎜ − ⎝ 5 1 ⎠
⎧ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩
⎧ ⎪ ⎪ ⎪ τ′ ⎪ 7 = K τ − , 5 1 ⎪⎪ ⎨ ⎛ τ ⎞ ⎪ ′ ⎟⎟ 8 = , ⎜⎜ − τ ⎪ 5 ⎝ 1 ⎠ ⎪ ⎪ ⎛ σ ⎞ + σ′ ⎟⎟ 0 = , ⎜⎜ − ⎪ ⎪⎩ ⎝ 5 1 ⎠
1 = K σ − ,
σ′ 5 1
1 = K σ − ,
σ′ 5 1
7 = K τ − ,
′ τ 5 1
⎛ τ ⎞ ′ ⎟⎟ 8 = , ⎜⎜ − τ 5 ⎝ 1 ⎠ ⎛ σ ⎞ + σ′ ⎟⎟ 0 = , ⎜⎜ − ⎝ 5 1 ⎠
2QSHXWDORUVH[SULPHUOHVHIIRUWVWUDQFKDQWWUDQVYHUVDX[ 4 HW 4 jSDUWLUGHVpTXDWLRQV G¶pTXLOLEUHGHVPRPHQWV
2QSHXWDORUVH[SULPHUOHVHIIRUWVWUDQFKDQWWUDQVYHUVDX[ 4 HW 4 jSDUWLUGHVpTXDWLRQV G¶pTXLOLEUHGHVPRPHQWV
HpWDSHpTXDWLRQVGXPRXYHPHQW
HpWDSHpTXDWLRQVGXPRXYHPHQW
2Q OHV REWLHQW HQ UHPSODoDQW GDQV OHV WURLV pTXDWLRQV G¶pTXLOLEUH GHV IRUFHV OHV FRPSRVDQWHV GHV YLVVHXUV SDU OHXUV H[SUHVVLRQV REWHQXV j OD H pWDSH HQ IRQFWLRQ GH X X Z
2Q OHV REWLHQW HQ UHPSODoDQW GDQV OHV WURLV pTXDWLRQV G¶pTXLOLEUH GHV IRUFHV OHV FRPSRVDQWHV GHV YLVVHXUV SDU OHXUV H[SUHVVLRQV REWHQXV j OD H pWDSH HQ IRQFWLRQ GH X X Z
/¶LQWpJUDWLRQ GH FHV pTXDWLRQV GRQQH DORUV OHV H[SUHVVLRQV GH X α α W X α α W Z α α W DYHFGHVFRQVWDQWHVTXHO¶RQGpWHUPLQHjO¶DLGHGHVFRQGLWLRQVDX[OLPLWHVGHV FRQGLWLRQVGHOLDLVRQHWGHVFRQGLWLRQVLQLWLDOHV
/¶LQWpJUDWLRQ GH FHV pTXDWLRQV GRQQH DORUV OHV H[SUHVVLRQV GH X α α W X α α W Z α α W DYHFGHVFRQVWDQWHVTXHO¶RQGpWHUPLQHjO¶DLGHGHVFRQGLWLRQVDX[OLPLWHVGHV FRQGLWLRQVGHOLDLVRQHWGHVFRQGLWLRQVLQLWLDOHV
/HVIRUPXOHV j GRQQHQWHQILQOHVH[SUHVVLRQVGHVDXWUHVSDUDPqWUHVGXSUREOqPH
/HVIRUPXOHV j GRQQHQWHQILQOHVH[SUHVVLRQVGHVDXWUHVSDUDPqWUHVGXSUREOqPH
±7+e25,('(60(0%5$1(6
±7+e25,('(60(0%5$1(6
(OOH VH GpGXLW GH OD WKpRULH OLQpDLUH HQ DQQXODQW OHV FRHIILFLHQWV GH WRXV OHV WHUPHV HQ ] SXLVTXH OH ORQJ GH WRXWH ILEUH QRUPDOH GpSODFHPHQWV GpIRUPDWLRQV HW FRQWUDLQWHV VRQW FRQVWDQWV
(OOH VH GpGXLW GH OD WKpRULH OLQpDLUH HQ DQQXODQW OHV FRHIILFLHQWV GH WRXV OHV WHUPHV HQ ] SXLVTXH OH ORQJ GH WRXWH ILEUH QRUPDOH GpSODFHPHQWV GpIRUPDWLRQV HW FRQWUDLQWHV VRQW FRQVWDQWV
UHpWDSHGpSODFHPHQWV
UHpWDSHGpSODFHPHQWV
⎧ X = X = X α α W ⎪⎪ G X = 3R3 ⎨ X = X = X α α W ⎪ ⎪⎩ Z = Z = Z α α W
HpWDSHGpIRUPDWLRQV
⎧ X = X = X α α W ⎪⎪ G X = 3R3 ⎨ X = X = X α α W ⎪ ⎪⎩ Z = Z = Z α α W
⎧ ∂ X X Z − − ⎪ ε = ε = ε α α W = β ∂ α 5J 5 1 ⎪ ⎪ ∂ X X Z ⎪ + − ⎨ ε = ε = ε α α W = β ∂ α 5J 5 1 ⎪ ⎪ ⎛ ⎞ ⎪ γ = γ = γ α α W = ⎜ ∂ X + ∂ X + X − X ⎟ ⎜ ⎝ β ∂ α β ∂ α 5J 5J ⎟⎠ ⎪⎩
HpWDSHGpIRUPDWLRQV
⎧ ∂ X X Z − − ⎪ ε = ε = ε α α W = β ∂ α 5J 5 1 ⎪ ⎪ ∂ X X Z ⎪ + − ⎨ ε = ε = ε α α W = β ∂ α 5J 5 1 ⎪ ⎪ ⎛ ⎞ ⎪ γ = γ = γ α α W = ⎜ ∂ X + ∂ X + X − X ⎟ ⎜ ⎝ β ∂ α β ∂ α 5J 5J ⎟⎠ ⎪⎩
- 227 -
⎧ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩⎪
⎧ ⎪ ⎪ ⎪ τ′ ⎪ 7 = K τ − , 5 1 ⎪⎪ ⎨ ⎛ τ ⎞ ⎪ ′ ⎟⎟ 8 = , ⎜⎜ − τ ⎪ 5 1 ⎝ ⎠ ⎪ ⎪ ⎛ σ ⎞ + σ′ ⎟⎟ 0 = , ⎜⎜ − ⎪ ⎝ 5 1 ⎠ ⎩⎪
1 = K σ − ,
σ′ 5 1
- 227 -
1 = K σ − ,
σ′ 5 1
7 = K τ − ,
′ τ 5 1
⎛ τ ⎞ ′ ⎟⎟ 8 = , ⎜⎜ − τ ⎝ 5 1 ⎠ ⎛ σ ⎞ + σ′ ⎟⎟ 0 = , ⎜⎜ − ⎝ 5 1 ⎠
⎧ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩⎪
⎧ ⎪ ⎪ ⎪ τ′ ⎪ 7 = K τ − , 5 1 ⎪⎪ ⎨ ⎛ τ ⎞ ⎪ ′ ⎟⎟ 8 = , ⎜⎜ − τ ⎪ 5 1 ⎝ ⎠ ⎪ ⎪ ⎛ σ ⎞ + σ′ ⎟⎟ 0 = , ⎜⎜ − ⎪ ⎝ 5 1 ⎠ ⎩⎪
1 = K σ − ,
σ′ 5 1
1 = K σ − ,
σ′ 5 1
7 = K τ − ,
′ τ 5 1
⎛ τ ⎞ ′ ⎟⎟ 8 = , ⎜⎜ − τ ⎝ 5 1 ⎠ ⎛ σ ⎞ + σ′ ⎟⎟ 0 = , ⎜⎜ − ⎝ 5 1 ⎠
2QSHXWDORUVH[SULPHUOHVHIIRUWVWUDQFKDQWWUDQVYHUVDX[ 4 HW 4 jSDUWLUGHVpTXDWLRQV G¶pTXLOLEUHGHVPRPHQWV
2QSHXWDORUVH[SULPHUOHVHIIRUWVWUDQFKDQWWUDQVYHUVDX[ 4 HW 4 jSDUWLUGHVpTXDWLRQV G¶pTXLOLEUHGHVPRPHQWV
HpWDSHpTXDWLRQVGXPRXYHPHQW
HpWDSHpTXDWLRQVGXPRXYHPHQW
2Q OHV REWLHQW HQ UHPSODoDQW GDQV OHV WURLV pTXDWLRQV G¶pTXLOLEUH GHV IRUFHV OHV FRPSRVDQWHV GHV YLVVHXUV SDU OHXUV H[SUHVVLRQV REWHQXV j OD H pWDSH HQ IRQFWLRQ GH X X Z
2Q OHV REWLHQW HQ UHPSODoDQW GDQV OHV WURLV pTXDWLRQV G¶pTXLOLEUH GHV IRUFHV OHV FRPSRVDQWHV GHV YLVVHXUV SDU OHXUV H[SUHVVLRQV REWHQXV j OD H pWDSH HQ IRQFWLRQ GH X X Z
/¶LQWpJUDWLRQ GH FHV pTXDWLRQV GRQQH DORUV OHV H[SUHVVLRQV GH X α α W X α α W Z α α W DYHFGHVFRQVWDQWHVTXHO¶RQGpWHUPLQHjO¶DLGHGHVFRQGLWLRQVDX[OLPLWHVGHV FRQGLWLRQVGHOLDLVRQHWGHVFRQGLWLRQVLQLWLDOHV
/¶LQWpJUDWLRQ GH FHV pTXDWLRQV GRQQH DORUV OHV H[SUHVVLRQV GH X α α W X α α W Z α α W DYHFGHVFRQVWDQWHVTXHO¶RQGpWHUPLQHjO¶DLGHGHVFRQGLWLRQVDX[OLPLWHVGHV FRQGLWLRQVGHOLDLVRQHWGHVFRQGLWLRQVLQLWLDOHV
/HVIRUPXOHV j GRQQHQWHQILQOHVH[SUHVVLRQVGHVDXWUHVSDUDPqWUHVGXSUREOqPH
/HVIRUPXOHV j GRQQHQWHQILQOHVH[SUHVVLRQVGHVDXWUHVSDUDPqWUHVGXSUREOqPH
±7+e25,('(60(0%5$1(6
±7+e25,('(60(0%5$1(6
(OOH VH GpGXLW GH OD WKpRULH OLQpDLUH HQ DQQXODQW OHV FRHIILFLHQWV GH WRXV OHV WHUPHV HQ ] SXLVTXH OH ORQJ GH WRXWH ILEUH QRUPDOH GpSODFHPHQWV GpIRUPDWLRQV HW FRQWUDLQWHV VRQW FRQVWDQWV
(OOH VH GpGXLW GH OD WKpRULH OLQpDLUH HQ DQQXODQW OHV FRHIILFLHQWV GH WRXV OHV WHUPHV HQ ] SXLVTXH OH ORQJ GH WRXWH ILEUH QRUPDOH GpSODFHPHQWV GpIRUPDWLRQV HW FRQWUDLQWHV VRQW FRQVWDQWV
UHpWDSHGpSODFHPHQWV
UHpWDSHGpSODFHPHQWV
⎧ X = X = X α α W ⎪⎪ G X = 3R3 ⎨ X = X = X α α W ⎪ ⎩⎪ Z = Z = Z α α W
HpWDSHGpIRUPDWLRQV
⎧ X = X = X α α W ⎪⎪ G X = 3R3 ⎨ X = X = X α α W ⎪ ⎩⎪ Z = Z = Z α α W
⎧ ∂ X X Z − − ⎪ ε = ε = ε α α W = β ∂ α 5J 5 1 ⎪ ⎪ ∂ X X Z ⎪ + − ⎨ ε = ε = ε α α W = β ∂ α 5J 5 1 ⎪ ⎪ ⎛ ⎞ ⎪ γ = γ = γ α α W = ⎜ ∂ X + ∂ X + X − X ⎟ ⎜⎝ β ∂ α β ∂ α 5J 5J ⎟⎠ ⎪⎩
HpWDSHGpIRUPDWLRQV
⎧ ∂ X X Z − − ⎪ ε = ε = ε α α W = β ∂ α 5J 5 1 ⎪ ⎪ ∂ X X Z ⎪ + − ⎨ ε = ε = ε α α W = β ∂ α 5J 5 1 ⎪ ⎪ ⎛ ⎞ ⎪ γ = γ = γ α α W = ⎜ ∂ X + ∂ X + X − X ⎟ ⎜⎝ β ∂ α β ∂ α 5J 5J ⎟⎠ ⎪⎩
- 227 -
- 227 -
HpWDSHFRQWUDLQWHV
HpWDSHFRQWUDLQWHV
⎧ ( (′ ∂ ε + ν ε + ε + ν′ ε ⎪ σ = σ = σ α α W = ∂W ′ − ν − ν ⎪ ⎪⎪ ( (′ ∂ ε + ν ε + ε + ν′ ε ⎨ σ = σ = σ α α W = − ν − ν′ ∂ W ⎪ ⎪ ′ ⎪ τ = τ = τ α α W = ( γ + ( ∂ γ ⎪⎩ − ν − ν′ ∂ W
HpWDSHYLVVHXUV
HpWDSHYLVVHXUV ⎧ 1 = K σ ⎧ 4 = 4 = ⎪⎪ ⎪⎪ ⎨ 8 = = 8 ⎨ 1 = K σ ⎪ ⎪ ⎪⎩ 7 = 7 = 7 = K τ ⎪⎩ 0 = = 0
⎧ ( (′ ∂ ε + ν ε + ε + ν′ ε ⎪ σ = σ = σ α α W = ∂W ′ − ν − ν ⎪ ⎪⎪ ( (′ ∂ ε + ν ε + ε + ν′ ε ⎨ σ = σ = σ α α W = − ν − ν′ ∂ W ⎪ ⎪ ′ ⎪ τ = τ = τ α α W = ( γ + ( ∂ γ ⎪⎩ − ν − ν′ ∂ W
⎧ 1 = K σ ⎧ 4 = 4 = ⎪⎪ ⎪⎪ ⎨ 8 = = 8 ⎨ 1 = K σ ⎪ ⎪ ⎪⎩ 7 = 7 = 7 = K τ ⎪⎩ 0 = = 0
HpWDSHpTXDWLRQVGXPRXYHPHQW
HpWDSHpTXDWLRQVGXPRXYHPHQW
2QOHVREWLHQWFRPPHSRXUODWKpRULHOLQpDLUHHQUHPSODoDQWGDQVOHVpTXDWLRQVGHO¶pTXLOLEUH ORFDO GHV IRUFHV OHV FRPSRVDQWHV 1 1 HW 7 = 7 = 7 GHV YLVVHXUV SDU OHXUV H[SUHVVLRQV HQ IRQFWLRQ GH X X HW Z REWHQXHV j OD TXDWULqPH pWDSH DYHF GH SOXV 4 = 4 =
2QOHVREWLHQWFRPPHSRXUODWKpRULHOLQpDLUHHQUHPSODoDQWGDQVOHVpTXDWLRQVGHO¶pTXLOLEUH ORFDO GHV IRUFHV OHV FRPSRVDQWHV 1 1 HW 7 = 7 = 7 GHV YLVVHXUV SDU OHXUV H[SUHVVLRQV HQ IRQFWLRQ GH X X HW Z REWHQXHV j OD TXDWULqPH pWDSH DYHF GH SOXV 4 = 4 =
±352%/Ê0(6$;,6<0e75,48(60e5,',(16
±352%/Ê0(6$;,6<0e75,48(60e5,',(16
&RQVLGpURQV OHV YLEUDWLRQV D[LV\PpWULTXHV G¶XQH FRTXH D[LV\PpWULTXH FKDTXH SDUWLFXOH YLEUDQW GDQV VRQSODQPpULGLHQ R] GpVLJQH O¶D[H GH UpYROXWLRQ /HV OLJQHV GH FRXUEXUH L
&RQVLGpURQV OHV YLEUDWLRQV D[LV\PpWULTXHV G¶XQH FRTXH D[LV\PpWULTXH FKDTXH SDUWLFXOH YLEUDQW GDQV VRQSODQPpULGLHQ R] GpVLJQH O¶D[H GH UpYROXWLRQ /HV OLJQHV GH FRXUEXUH L
VRQWOHVFHUFOHVSDUDOOqOHVDYHF α = θ OHVOLJQHVGHFRXUEXUH L VRQWOHVPpULGLHQQHVDYHF
VRQWOHVFHUFOHVSDUDOOqOHVDYHF α = θ OHVOLJQHVGHFRXUEXUH L VRQWOHVPpULGLHQQHVDYHF
α = V
α = V
7RXWHVOHVIRUPXOHVQpFHVVDLUHVDXWUDLWHPHQWGHFHSUREOqPHRQWpWppWDEOLHVHQ6WDWLTXHDX WRPH,
7RXWHVOHVIRUPXOHVQpFHVVDLUHVDXWUDLWHPHQWGHFHSUREOqPHRQWpWppWDEOLHVHQ6WDWLTXHDX WRPH,
2QDLFLOHVSDUDPqWUHVpWDQWLQGpSHQGDQWVGH θ
2QDLFLOHVSDUDPqWUHVpWDQWLQGpSHQGDQWVGH θ
⎧ X = GpSODFHPHQWFLUFRQIpUHQWLHO ⎪⎪ 3R3 ⎨ X = X V W ⎪ ⎩⎪ Z = Z V W
⎧ X = GpSODFHPHQWFLUFRQIpUHQWLHO ⎪⎪ 3R3 ⎨ X = X V W ⎪ ⎩⎪ Z = Z V W
- 228 -
- 228 -
HpWDSHFRQWUDLQWHV
HpWDSHFRQWUDLQWHV
⎧ ( (′ ∂ ε + ν ε + ε + ν′ ε ⎪ σ = σ = σ α α W = − ν − ν′ ∂ W ⎪ ⎪⎪ ( (′ ∂ ε + ν ε + ε + ν′ ε ⎨ σ = σ = σ α α W = − ν − ν′ ∂ W ⎪ ⎪ ′ ⎪ τ = τ = τ α α W = ( γ + ( ∂ γ − ν − ν′ ∂ W ⎩⎪
HpWDSHYLVVHXUV
⎧ ( (′ ∂ ε + ν ε + ε + ν′ ε ⎪ σ = σ = σ α α W = − ν − ν′ ∂ W ⎪ ⎪⎪ ( (′ ∂ ε + ν ε + ε + ν′ ε ⎨ σ = σ = σ α α W = − ν − ν′ ∂ W ⎪ ⎪ ′ ⎪ τ = τ = τ α α W = ( γ + ( ∂ γ − ν − ν′ ∂ W ⎩⎪
HpWDSHYLVVHXUV ⎧ 1 = K σ ⎧ 4 = 4 = ⎪⎪ ⎪⎪ ⎨ 8 = = 8 ⎨ 1 = K σ ⎪ ⎪ ⎪⎩ 7 = 7 = 7 = K τ ⎪⎩ 0 = = 0
⎧ 1 = K σ ⎧ 4 = 4 = ⎪⎪ ⎪⎪ ⎨ 8 = = 8 ⎨ 1 = K σ ⎪ ⎪ ⎪⎩ 7 = 7 = 7 = K τ ⎪⎩ 0 = = 0
HpWDSHpTXDWLRQVGXPRXYHPHQW
HpWDSHpTXDWLRQVGXPRXYHPHQW
2QOHVREWLHQWFRPPHSRXUODWKpRULHOLQpDLUHHQUHPSODoDQWGDQVOHVpTXDWLRQVGHO¶pTXLOLEUH ORFDO GHV IRUFHV OHV FRPSRVDQWHV 1 1 HW 7 = 7 = 7 GHV YLVVHXUV SDU OHXUV H[SUHVVLRQV HQ IRQFWLRQ GH X X HW Z REWHQXHV j OD TXDWULqPH pWDSH DYHF GH SOXV 4 = 4 =
2QOHVREWLHQWFRPPHSRXUODWKpRULHOLQpDLUHHQUHPSODoDQWGDQVOHVpTXDWLRQVGHO¶pTXLOLEUH ORFDO GHV IRUFHV OHV FRPSRVDQWHV 1 1 HW 7 = 7 = 7 GHV YLVVHXUV SDU OHXUV H[SUHVVLRQV HQ IRQFWLRQ GH X X HW Z REWHQXHV j OD TXDWULqPH pWDSH DYHF GH SOXV 4 = 4 =
±352%/Ê0(6$;,6<0e75,48(60e5,',(16
±352%/Ê0(6$;,6<0e75,48(60e5,',(16
&RQVLGpURQV OHV YLEUDWLRQV D[LV\PpWULTXHV G¶XQH FRTXH D[LV\PpWULTXH FKDTXH SDUWLFXOH YLEUDQW GDQV VRQSODQPpULGLHQ R] GpVLJQH O¶D[H GH UpYROXWLRQ /HV OLJQHV GH FRXUEXUH L
&RQVLGpURQV OHV YLEUDWLRQV D[LV\PpWULTXHV G¶XQH FRTXH D[LV\PpWULTXH FKDTXH SDUWLFXOH YLEUDQW GDQV VRQSODQPpULGLHQ R] GpVLJQH O¶D[H GH UpYROXWLRQ /HV OLJQHV GH FRXUEXUH L
VRQWOHVFHUFOHVSDUDOOqOHVDYHF α = θ OHVOLJQHVGHFRXUEXUH L VRQWOHVPpULGLHQQHVDYHF
VRQWOHVFHUFOHVSDUDOOqOHVDYHF α = θ OHVOLJQHVGHFRXUEXUH L VRQWOHVPpULGLHQQHVDYHF
α = V
α = V
7RXWHVOHVIRUPXOHVQpFHVVDLUHVDXWUDLWHPHQWGHFHSUREOqPHRQWpWppWDEOLHVHQ6WDWLTXHDX WRPH,
7RXWHVOHVIRUPXOHVQpFHVVDLUHVDXWUDLWHPHQWGHFHSUREOqPHRQWpWppWDEOLHVHQ6WDWLTXHDX WRPH,
2QDLFLOHVSDUDPqWUHVpWDQWLQGpSHQGDQWVGH θ
2QDLFLOHVSDUDPqWUHVpWDQWLQGpSHQGDQWVGH θ
⎧ X = GpSODFHPHQWFLUFRQIpUHQWLHO ⎪⎪ 3R3 ⎨ X = X V W ⎪ ⎪⎩ Z = Z V W
⎧ X = GpSODFHPHQWFLUFRQIpUHQWLHO ⎪⎪ 3R3 ⎨ X = X V W ⎪ ⎪⎩ Z = Z V W
- 228 -
- 228 -
±UH$33/,&$7,219,%5$7,21675$169(56$/(6 '¶81(0(0%5$1(5(&7$1*8/$,5(3/$1(7(1'8(
±UH$33/,&$7,219,%5$7,21675$169(56$/(6 '¶81(0(0%5$1(5(&7$1*8/$,5(3/$1(7(1'8(
8QHPHPEUDQHUHFWDQJXODLUHHVWIL[pHVXLYDQWVHVERUGVjXQFDGUHLQGpIRUPDEOHFRQVWLWXDQW XQ VROLGH JDOLOpHQ /HV TXDWUH F{WpV GH FH FDGUH H[HUFHQW VXU OD PHPEUDQH GHV HIIRUWV GH WHQVLRQXQLIRUPpPHQWUpSDUWLVHWG¶LQWHQVLWp1SDUXQLWpGHORQJXHXU
8QHPHPEUDQHUHFWDQJXODLUHHVWIL[pHVXLYDQWVHVERUGVjXQFDGUHLQGpIRUPDEOHFRQVWLWXDQW XQ VROLGH JDOLOpHQ /HV TXDWUH F{WpV GH FH FDGUH H[HUFHQW VXU OD PHPEUDQH GHV HIIRUWV GH WHQVLRQXQLIRUPpPHQWUpSDUWLVHWG¶LQWHQVLWp1SDUXQLWpGHORQJXHXU
(WXGLRQVOHVYLEUDWLRQVWUDQVYHUVDOHVQDWXUHOOHV {Z [ \ W }QRQDPRUWLHVHQVXSSRVDQWFHWWH WHQVLRQ1FRQVWDQWHGDQVOHWHPSVF¶HVWjGLUHQRQDIIHFWpHSDUOHPRXYHPHQWFHTXLHVWYUDL SRXUOHVIDLEOHVDPSOLWXGHV
(WXGLRQVOHVYLEUDWLRQVWUDQVYHUVDOHVQDWXUHOOHV {Z [ \ W }QRQDPRUWLHVHQVXSSRVDQWFHWWH WHQVLRQ1FRQVWDQWHGDQVOHWHPSVF¶HVWjGLUHQRQDIIHFWpHSDUOHPRXYHPHQWFHTXLHVWYUDL SRXUOHVIDLEOHVDPSOLWXGHV
2$ = D
)LJXUH
2% = E
2$ = D
)LJXUH
2% = E
/H WHQVHXU GHV HIIRUWV GH PHPEUDQH HVW XQLIRUPH FRQVWDQW HW LVRWURSH LO HQ HVW GRQF GH PrPH GHV FRQWUDLQWHV HW GpIRUPDWLRQV HW O¶RQ D G¶DSUqV HW − ν − ν σ= 1 = 1 = 1 = K σ = K σ = K σ SXLV ε = ε = ε = 1 ( (K
/H WHQVHXU GHV HIIRUWV GH PHPEUDQH HVW XQLIRUPH FRQVWDQW HW LVRWURSH LO HQ HVW GRQF GH PrPH GHV FRQWUDLQWHV HW GpIRUPDWLRQV HW O¶RQ D G¶DSUqV HW − ν − ν σ= 1 = 1 = 1 = K σ = K σ = K σ SXLV ε = ε = ε = 1 ( (K
/DWURLVLqPHpTXDWLRQ G¶pTXLOLEUHGHVIRUFHVWUDQVYHUVDOHVV¶pFULWDORUV
/DWURLVLqPHpTXDWLRQ G¶pTXLOLEUHGHVIRUFHVWUDQVYHUVDOHVV¶pFULWDORUV
⎞ ∂ Z 1 ⎛ ⎜⎜ ⎟ = + ρ K ⎝ 5 1 5 1 ⎟⎠ ∂W
⎞ ∂ Z 1 ⎛ ⎜⎜ ⎟ = + ρ K ⎝ 5 1 5 1 ⎟⎠ ∂W
&RPPH GDQV OH FDV GHV FRUGHV YLEUDQWHV QRXV DYRQV G FRQVLGpUHU FHW pTXLOLEUH HQ FRQILJXUDWLRQGpIRUPpHHWHQWHQDQWFRPSWHGHFHWWHGpIRUPDWLRQ2QDDLQVL
&RPPH GDQV OH FDV GHV FRUGHV YLEUDQWHV QRXV DYRQV G FRQVLGpUHU FHW pTXLOLEUH HQ FRQILJXUDWLRQGpIRUPpHHWHQWHQDQWFRPSWHGHFHWWHGpIRUPDWLRQ2QDDLQVL
∂ Z ∂ Z + = + = ∆Z 5 1 5 1 ∂ [ ∂ \
∂ Z ∂ Z + = + = ∆Z 5 1 5 1 ∂ [ ∂ \
DLQVLTXHQRXVO¶DYRQVPRQWUpDXFKDSLWUH9,,GXWRPH,GDQVOHFDVGHVVXUIDFHV©SUHVTXH SODQHVªSDJH
DLQVLTXHQRXVO¶DYRQVPRQWUpDXFKDSLWUH9,,GXWRPH,GDQVOHFDVGHVVXUIDFHV©SUHVTXH SODQHVªSDJH
- 229 -
- 229 -
±UH$33/,&$7,219,%5$7,21675$169(56$/(6 '¶81(0(0%5$1(5(&7$1*8/$,5(3/$1(7(1'8(
±UH$33/,&$7,219,%5$7,21675$169(56$/(6 '¶81(0(0%5$1(5(&7$1*8/$,5(3/$1(7(1'8(
8QHPHPEUDQHUHFWDQJXODLUHHVWIL[pHVXLYDQWVHVERUGVjXQFDGUHLQGpIRUPDEOHFRQVWLWXDQW XQ VROLGH JDOLOpHQ /HV TXDWUH F{WpV GH FH FDGUH H[HUFHQW VXU OD PHPEUDQH GHV HIIRUWV GH WHQVLRQXQLIRUPpPHQWUpSDUWLVHWG¶LQWHQVLWp1SDUXQLWpGHORQJXHXU
8QHPHPEUDQHUHFWDQJXODLUHHVWIL[pHVXLYDQWVHVERUGVjXQFDGUHLQGpIRUPDEOHFRQVWLWXDQW XQ VROLGH JDOLOpHQ /HV TXDWUH F{WpV GH FH FDGUH H[HUFHQW VXU OD PHPEUDQH GHV HIIRUWV GH WHQVLRQXQLIRUPpPHQWUpSDUWLVHWG¶LQWHQVLWp1SDUXQLWpGHORQJXHXU
(WXGLRQVOHVYLEUDWLRQVWUDQVYHUVDOHVQDWXUHOOHV {Z [ \ W }QRQDPRUWLHVHQVXSSRVDQWFHWWH WHQVLRQ1FRQVWDQWHGDQVOHWHPSVF¶HVWjGLUHQRQDIIHFWpHSDUOHPRXYHPHQWFHTXLHVWYUDL SRXUOHVIDLEOHVDPSOLWXGHV
(WXGLRQVOHVYLEUDWLRQVWUDQVYHUVDOHVQDWXUHOOHV {Z [ \ W }QRQDPRUWLHVHQVXSSRVDQWFHWWH WHQVLRQ1FRQVWDQWHGDQVOHWHPSVF¶HVWjGLUHQRQDIIHFWpHSDUOHPRXYHPHQWFHTXLHVWYUDL SRXUOHVIDLEOHVDPSOLWXGHV
2$ = D
)LJXUH
2% = E
2$ = D
)LJXUH
2% = E
/H WHQVHXU GHV HIIRUWV GH PHPEUDQH HVW XQLIRUPH FRQVWDQW HW LVRWURSH LO HQ HVW GRQF GH PrPH GHV FRQWUDLQWHV HW GpIRUPDWLRQV HW O¶RQ D G¶DSUqV HW − ν − ν σ= 1 = 1 = 1 = K σ = K σ = K σ SXLV ε = ε = ε = 1 ( (K
/H WHQVHXU GHV HIIRUWV GH PHPEUDQH HVW XQLIRUPH FRQVWDQW HW LVRWURSH LO HQ HVW GRQF GH PrPH GHV FRQWUDLQWHV HW GpIRUPDWLRQV HW O¶RQ D G¶DSUqV HW − ν − ν σ= 1 = 1 = 1 = K σ = K σ = K σ SXLV ε = ε = ε = 1 ( (K
/DWURLVLqPHpTXDWLRQ G¶pTXLOLEUHGHVIRUFHVWUDQVYHUVDOHVV¶pFULWDORUV
/DWURLVLqPHpTXDWLRQ G¶pTXLOLEUHGHVIRUFHVWUDQVYHUVDOHVV¶pFULWDORUV
∂ Z 1 = ∂ W ρ K
⎛ ⎞ ⎜⎜ ⎟⎟ + ⎝ 5 1 5 1 ⎠
∂ Z 1 = ∂ W ρ K
⎛ ⎞ ⎜⎜ ⎟⎟ + ⎝ 5 1 5 1 ⎠
&RPPH GDQV OH FDV GHV FRUGHV YLEUDQWHV QRXV DYRQV G FRQVLGpUHU FHW pTXLOLEUH HQ FRQILJXUDWLRQGpIRUPpHHWHQWHQDQWFRPSWHGHFHWWHGpIRUPDWLRQ2QDDLQVL
&RPPH GDQV OH FDV GHV FRUGHV YLEUDQWHV QRXV DYRQV G FRQVLGpUHU FHW pTXLOLEUH HQ FRQILJXUDWLRQGpIRUPpHHWHQWHQDQWFRPSWHGHFHWWHGpIRUPDWLRQ2QDDLQVL
∂ Z ∂ Z + = + = ∆Z 5 1 5 1 ∂ [ ∂ \
∂ Z ∂ Z + = + = ∆Z 5 1 5 1 ∂ [ ∂ \
DLQVLTXHQRXVO¶DYRQVPRQWUpDXFKDSLWUH9,,GXWRPH,GDQVOHFDVGHVVXUIDFHV©SUHVTXH SODQHVªSDJH
DLQVLTXHQRXVO¶DYRQVPRQWUpDXFKDSLWUH9,,GXWRPH,GDQVOHFDVGHVVXUIDFHV©SUHVTXH SODQHVªSDJH
- 229 -
- 229 -
)LQDOHPHQWO¶pTXDWLRQGXPRXYHPHQWV¶pFULW
∆Z =
)LQDOHPHQWO¶pTXDWLRQGXPRXYHPHQWV¶pFULW
ρ K ∂ Z ∂ Z 1 RX DYHF & = ∆ Z = 1 ∂ W ρK & ∂ W
∆Z =
ρ K ∂ Z ∂ Z 1 RX DYHF & = ∆ Z = 1 ∂ W ρK & ∂ W
,OV¶DJLWHQFRUHG¶XQHpTXDWLRQGXW\SHGHG¶$OHPEHUWTXHQRXVDOORQVUpVRXGUHHQFKHUFKDQW GHVVROXWLRQVGHODIRUPH Z [ \ W = S [ ⋅ T \ ⋅ J W
,OV¶DJLWHQFRUHG¶XQHpTXDWLRQGXW\SHGHG¶$OHPEHUWTXHQRXVDOORQVUpVRXGUHHQFKHUFKDQW GHVVROXWLRQVGHODIRUPH Z [ \ W = S [ ⋅ T \ ⋅ J W
2QDQpFHVVDLUHPHQW
2QDQpFHVVDLUHPHQW J ⎛ S′′ T′′ ⎞ = & ⎜⎜ + ⎟⎟ = − ω J ⎝S T⎠
J ⎛ S′′ T′′ ⎞ = & ⎜⎜ + ⎟⎟ = − ω J ⎝S T⎠
G¶RO¶RQGpGXLWLPPpGLDWHPHQW
G¶RO¶RQGpGXLWLPPpGLDWHPHQW
J W = $ FRV ωW + % VLQ ωW
J W = $ FRV ωW + % VLQ ωW
/HVIRQFWLRQVS[ HWT\ YpULILHQWDORUVO¶pTXDWLRQ
/HVIRQFWLRQVS[ HWT\ YpULILHQWDORUVO¶pTXDWLRQ
S′′ T′′ = − − & ω S T
S′′ T′′ = − − & ω S T
/HSUHPLHUPHPEUHQHSRXYDQWGpSHQGUHTXHGH[HWOHVHFRQGTXHGH\LOVQHGpSHQGHQWQL GH [ QL GH \ HW pJDOHQW GRQF XQH FRQVWDQWH 2Q YpULILH DLVpPHQW TXH VHXOH XQH FRQVWDQWH VWULFWHPHQWQpJDWLYHSHUPHWG¶REWHQLUGHVVROXWLRQV QRQ QXOOHVS[ HW T\ VDWLVIDLVDQW DX[ FRQGLWLRQVVXUOHVERUGV2QDSSHOOHUD −N FHWWHFRQVWDQWH
/HSUHPLHUPHPEUHQHSRXYDQWGpSHQGUHTXHGH[HWOHVHFRQGTXHGH\LOVQHGpSHQGHQWQL GH [ QL GH \ HW pJDOHQW GRQF XQH FRQVWDQWH 2Q YpULILH DLVpPHQW TXH VHXOH XQH FRQVWDQWH VWULFWHPHQWQpJDWLYHSHUPHWG¶REWHQLUGHVVROXWLRQV QRQ QXOOHVS[ HW T\ VDWLVIDLVDQW DX[ FRQGLWLRQVVXUOHVERUGV2QDSSHOOHUD −N FHWWHFRQVWDQWH
,OHQUpVXOWHOHVpTXDWLRQVGpFRXSOpHV
,OHQUpVXOWHOHVpTXDWLRQVGpFRXSOpHV
(
)
S′′ + N S = HW T′′ + & ω − N T =
(
)
S′′ + N S = HW T′′ + & ω − N T =
/DSUHPLqUHGRQQH S = α FRV N[ + β VLQ N[
/DSUHPLqUHGRQQH S = α FRV N[ + β VLQ N[
/DFRQGLWLRQ Z = VXUOHVERUGV [ = HW [ = D LPSRVH α = HW β VLQ ND = RQSHXW
/DFRQGLWLRQ Z = VXUOHVERUGV [ = HW [ = D LPSRVH α = HW β VLQ ND = RQSHXW
+
SUHQGUH β = HW ND = Q π Q ∈ 1 +
SUHQGUH β = HW ND = Q π Q ∈ 1 2QDGRQFSRXUS[ XQHVXLWHGHVROXWLRQV
2QDGRQFSRXUS[ XQHVXLWHGHVROXWLRQV
[ S Q [ = VLQ Q π D
S Q [ = VLQ Q π
6HPEODEOHPHQWRQWURXYH
[ D
6HPEODEOHPHQWRQWURXYH
T \ = γ FRV ⎜⎛ & ω − N ⋅ \ ⎞⎟ + δ VLQ ⎜⎛ & ω − N ⋅ \ ⎞⎟ ⎝ ⎠ ⎝ ⎠
T \ = γ FRV ⎜⎛ & ω − N ⋅ \ ⎞⎟ + δ VLQ ⎜⎛ & ω − N ⋅ \ ⎞⎟ ⎝ ⎠ ⎝ ⎠
- 230 -
- 230 -
)LQDOHPHQWO¶pTXDWLRQGXPRXYHPHQWV¶pFULW
∆Z =
)LQDOHPHQWO¶pTXDWLRQGXPRXYHPHQWV¶pFULW
ρ K ∂ Z ∂ Z 1 RX DYHF & = ∆ Z = 1 ∂W ρK & ∂W
∆Z =
ρ K ∂ Z ∂ Z 1 RX DYHF & = ∆ Z = 1 ∂W ρK & ∂W
,OV¶DJLWHQFRUHG¶XQHpTXDWLRQGXW\SHGHG¶$OHPEHUWTXHQRXVDOORQVUpVRXGUHHQFKHUFKDQW GHVVROXWLRQVGHODIRUPH Z [ \ W = S [ ⋅ T \ ⋅ J W
,OV¶DJLWHQFRUHG¶XQHpTXDWLRQGXW\SHGHG¶$OHPEHUWTXHQRXVDOORQVUpVRXGUHHQFKHUFKDQW GHVVROXWLRQVGHODIRUPH Z [ \ W = S [ ⋅ T \ ⋅ J W
2QDQpFHVVDLUHPHQW
2QDQpFHVVDLUHPHQW J ⎛ S′′ T′′ ⎞ = & ⎜⎜ + ⎟⎟ = − ω J ⎝S T⎠
J ⎛ S′′ T′′ ⎞ = & ⎜⎜ + ⎟⎟ = − ω J ⎝S T⎠
G¶RO¶RQGpGXLWLPPpGLDWHPHQW
G¶RO¶RQGpGXLWLPPpGLDWHPHQW
J W = $ FRV ωW + % VLQ ωW
J W = $ FRV ωW + % VLQ ωW
/HVIRQFWLRQVS[ HWT\ YpULILHQWDORUVO¶pTXDWLRQ
/HVIRQFWLRQVS[ HWT\ YpULILHQWDORUVO¶pTXDWLRQ
S′′ T′′ = − − & ω S T
S′′ T′′ = − − & ω S T
/HSUHPLHUPHPEUHQHSRXYDQWGpSHQGUHTXHGH[HWOHVHFRQGTXHGH\LOVQHGpSHQGHQWQL GH [ QL GH \ HW pJDOHQW GRQF XQH FRQVWDQWH 2Q YpULILH DLVpPHQW TXH VHXOH XQH FRQVWDQWH VWULFWHPHQWQpJDWLYHSHUPHWG¶REWHQLUGHVVROXWLRQV QRQ QXOOHVS[ HW T\ VDWLVIDLVDQW DX[ FRQGLWLRQVVXUOHVERUGV2QDSSHOOHUD −N FHWWHFRQVWDQWH
/HSUHPLHUPHPEUHQHSRXYDQWGpSHQGUHTXHGH[HWOHVHFRQGTXHGH\LOVQHGpSHQGHQWQL GH [ QL GH \ HW pJDOHQW GRQF XQH FRQVWDQWH 2Q YpULILH DLVpPHQW TXH VHXOH XQH FRQVWDQWH VWULFWHPHQWQpJDWLYHSHUPHWG¶REWHQLUGHVVROXWLRQV QRQ QXOOHVS[ HW T\ VDWLVIDLVDQW DX[ FRQGLWLRQVVXUOHVERUGV2QDSSHOOHUD −N FHWWHFRQVWDQWH
,OHQUpVXOWHOHVpTXDWLRQVGpFRXSOpHV
,OHQUpVXOWHOHVpTXDWLRQVGpFRXSOpHV
(
)
S′′ + N S = HW T′′ + & ω − N T =
(
)
S′′ + N S = HW T′′ + & ω − N T =
/DSUHPLqUHGRQQH S = α FRV N[ + β VLQ N[
/DSUHPLqUHGRQQH S = α FRV N[ + β VLQ N[
/DFRQGLWLRQ Z = VXUOHVERUGV [ = HW [ = D LPSRVH α = HW β VLQ ND = RQSHXW
/DFRQGLWLRQ Z = VXUOHVERUGV [ = HW [ = D LPSRVH α = HW β VLQ ND = RQSHXW
+
SUHQGUH β = HW ND = Q π Q ∈ 1 +
SUHQGUH β = HW ND = Q π Q ∈ 1 2QDGRQFSRXUS[ XQHVXLWHGHVROXWLRQV
2QDGRQFSRXUS[ XQHVXLWHGHVROXWLRQV
[ S Q [ = VLQ Q π D
6HPEODEOHPHQWRQWURXYH
S Q [ = VLQ Q π
[ D
6HPEODEOHPHQWRQWURXYH
T \ = γ FRV ⎜⎛ & ω − N ⋅ \ ⎞⎟ + δ VLQ ⎜⎛ & ω − N ⋅ \ ⎞⎟ ⎝ ⎠ ⎝ ⎠
T \ = γ FRV ⎜⎛ & ω − N ⋅ \ ⎞⎟ + δ VLQ ⎜⎛ & ω − N ⋅ \ ⎞⎟ ⎝ ⎠ ⎝ ⎠
- 230 -
- 230 -
/D FRQGLWLRQ
Z = VXU OHV ERUGV
\ = HW
\ = E LPSRVH
γ = HW
/D FRQGLWLRQ
Z = VXU OHV ERUGV
\ = HW
δ VLQ & ω − N ⋅ E =
δ VLQ & ω − N ⋅ E =
2QSUHQGDORUV δ = HW & ω − N ⋅ E = P π P ∈ 1 +
2QSUHQGDORUV δ = HW & ω − N ⋅ E = P π P ∈ 1 +
3RXU N = Q
π RQWURXYH D
3RXU N = Q
⎛ Q P ⎞ ω = π & ⎜ − ⎟ = ωQ P ⎜D E ⎟⎠ ⎝
2QDDLQVLSRXUT\ ODVXLWHGHVROXWLRQV
2QDDLQVLSRXUT\ ODVXLWHGHVROXWLRQV
T P \ = VLQ P π
\ E
T P \ = VLQ P π
/HVVROXWLRQVSDUWLFXOLqUHVSRXUODIOqFKHZV¶pFULYHQWGHFHIDLW
(
)
:Q P = VLQ Q
HWO¶RQHVWFRQGXLWjpFULUHODVROXWLRQJpQpUDOHVRXVODIRUPHG¶XQHGRXEOHVpULHGH)RXULHU ∞
(
)
π[ π[ VLQ P $ Q P FRV ωQ P W + %Q P VLQ ωQ P W D E
HWO¶RQHVWFRQGXLWjpFULUHODVROXWLRQJpQpUDOHVRXVODIRUPHG¶XQHGRXEOHVpULHGH)RXULHU
∞
∑∑
\ E
/HVVROXWLRQVSDUWLFXOLqUHVSRXUODIOqFKHZV¶pFULYHQWGHFHIDLW
π[ π[ VLQ P $ Q P FRV ωQ P W + %Q P VLQ ωQ P W D E
Z=
γ = HW
π RQWURXYH D
⎛ Q P ⎞ ω = π & ⎜ − ⎟ = ωQ P ⎜D E ⎟⎠ ⎝
:Q P = VLQ Q
\ = E LPSRVH
∞
Z=
:Q P [ \ W
Q = P =
∞
∑ ∑:
Q P [
\ W
Q = P =
/HVFRQVWDQWHV $ Q P HW %Q P VHGpWHUPLQHQWjO¶DLGHGHVFRQGLWLRQVLQLWLDOHVRXFRQGLWLRQVGH
/HVFRQVWDQWHV $ Q P HW %Q P VHGpWHUPLQHQWjO¶DLGHGHVFRQGLWLRQVLQLWLDOHVRXFRQGLWLRQVGH
&DXFK\
&DXFK\ ⎧ ⎪ ϕ [ \ = Z [ \ R IOqFKHLQLWLDOH ⎪ ⎨ ⎪ ψ [ \ = ⎛⎜ ∂ Z ⎞⎟ YLWHVVH LQLWLDOH ⎜ ∂W ⎟ ⎪ ⎝ ⎠ W = ⎩
⎧ ⎪ ϕ [ \ = Z [ \ R IOqFKHLQLWLDOH ⎪ ⎨ ⎪ ψ [ \ = ⎛⎜ ∂ Z ⎞⎟ YLWHVVH LQLWLDOH ⎜ ∂W ⎟ ⎪ ⎝ ⎠ W = ⎩
2QWURXYHOHVLQWpJUDOHVpWDQWSULVHVVXUOHUHFWDQJOHRFFXSpSDUODPHPEUDQH
2QWURXYHOHVLQWpJUDOHVpWDQWSULVHVVXUOHUHFWDQJOHRFFXSpSDUODPHPEUDQH
π[ π\ ⎧ ϕ [ \ ⋅ VLQ Q ⋅ VLQ P ⋅ G[ ⋅ G\ ⎪ $ Q P = DE D E ⎪ ⎨ [ \ ⎪% = ψ [ \ ⋅ VLQ Q π ⋅ VLQ P π ⋅ G[ ⋅ G\ ⎪ Q P ω DE D E QP ⎩
π[ π\ ⎧ ϕ [ \ ⋅ VLQ Q ⋅ VLQ P ⋅ G[ ⋅ G\ ⎪ $ Q P = DE D E ⎪ ⎨ [ \ ⎪% = ψ [ \ ⋅ VLQ Q π ⋅ VLQ P π ⋅ G[ ⋅ G\ ⎪ Q P ω DE D E QP ⎩
- 231 -
- 231 -
∫∫
∫∫
∫∫
/D FRQGLWLRQ
Z = VXU OHV ERUGV
\ = HW
\ = E LPSRVH
∫∫
γ = HW
/D FRQGLWLRQ
Z = VXU OHV ERUGV
\ = HW
δ VLQ & ω − N ⋅ E =
δ VLQ & ω − N ⋅ E =
2QSUHQGDORUV δ = HW & ω − N ⋅ E = P π P ∈ 1 +
2QSUHQGDORUV δ = HW & ω − N ⋅ E = P π P ∈ 1 +
3RXU N = Q
π RQWURXYH D
3RXU N = Q
⎛ Q P ⎞ ω = π & ⎜ − ⎟ = ωQ P ⎜D E ⎟⎠ ⎝
2QDDLQVLSRXUT\ ODVXLWHGHVROXWLRQV
2QDDLQVLSRXUT\ ODVXLWHGHVROXWLRQV
T P \ = VLQ P π
\ E
T P \ = VLQ P π
/HVVROXWLRQVSDUWLFXOLqUHVSRXUODIOqFKHZV¶pFULYHQWGHFHIDLW
(
)
HWO¶RQHVWFRQGXLWjpFULUHODVROXWLRQJpQpUDOHVRXVODIRUPHG¶XQHGRXEOHVpULHGH)RXULHU ∞
:Q P = VLQ Q
(
)
π[ π[ VLQ P $ Q P FRV ωQ P W + %Q P VLQ ωQ P W D E
HWO¶RQHVWFRQGXLWjpFULUHODVROXWLRQJpQpUDOHVRXVODIRUPHG¶XQHGRXEOHVpULHGH)RXULHU
∞
∑∑
\ E
/HVVROXWLRQVSDUWLFXOLqUHVSRXUODIOqFKHZV¶pFULYHQWGHFHIDLW
π[ π[ VLQ P $ Q P FRV ωQ P W + %Q P VLQ ωQ P W D E
Z=
γ = HW
π RQWURXYH D
⎛ Q P ⎞ ω = π & ⎜ − ⎟ = ωQ P ⎜D E ⎟⎠ ⎝
:Q P = VLQ Q
\ = E LPSRVH
∞
Z=
:Q P [ \ W
Q = P =
∞
∑ ∑:
Q P [
\ W
Q = P =
/HVFRQVWDQWHV $ Q P HW %Q P VHGpWHUPLQHQWjO¶DLGHGHVFRQGLWLRQVLQLWLDOHVRXFRQGLWLRQVGH
/HVFRQVWDQWHV $ Q P HW %Q P VHGpWHUPLQHQWjO¶DLGHGHVFRQGLWLRQVLQLWLDOHVRXFRQGLWLRQVGH
&DXFK\
&DXFK\ ⎧ ⎪ ϕ [ \ = Z [ \ R IOqFKHLQLWLDOH ⎪ ⎨ ⎪ ψ [ \ = ⎛⎜ ∂ Z ⎞⎟ YLWHVVH LQLWLDOH ⎜ ∂W ⎟ ⎪ ⎝ ⎠ W = ⎩
2QWURXYHOHVLQWpJUDOHVpWDQWSULVHVVXUOHUHFWDQJOHRFFXSpSDUODPHPEUDQH
⎧ ⎪ ϕ [ \ = Z [ \ R IOqFKHLQLWLDOH ⎪ ⎨ ⎪ ψ [ \ = ⎛⎜ ∂ Z ⎞⎟ YLWHVVH LQLWLDOH ⎜ ∂W ⎟ ⎪ ⎝ ⎠ W = ⎩
2QWURXYHOHVLQWpJUDOHVpWDQWSULVHVVXUOHUHFWDQJOHRFFXSpSDUODPHPEUDQH
π[ π\ ⎧ ϕ [ \ ⋅ VLQ Q ⋅ VLQ P ⋅ G[ ⋅ G\ ⎪ $ Q P = DE D E ⎪ ⎨ [ \ ⎪% = ψ [ \ ⋅ VLQ Q π ⋅ VLQ P π ⋅ G[ ⋅ G\ ⎪ Q P ω DE D E QP ⎩
π[ π\ ⎧ ϕ [ \ ⋅ VLQ Q ⋅ VLQ P ⋅ G[ ⋅ G\ ⎪ $ Q P = DE D E ⎪ ⎨ [ \ ⎪% = ψ [ \ ⋅ VLQ Q π ⋅ VLQ P π ⋅ G[ ⋅ G\ ⎪ Q P ω DE D E QP ⎩
- 231 -
- 231 -
∫∫
∫∫
∫∫
∫∫
±H$33/,&$7,215e3216('¶81(0(0%5$1(63+e5,48(¬81&+2&
±H$33/,&$7,215e3216('¶81(0(0%5$1(63+e5,48(¬81&+2&
/DPHPEUDQHVSKpULTXHGHUD\RQDHWG¶pSDLVVHXUKHVWDXUHSRVMXVTX¶jO¶LQVWDQW W = $ FHW LQVWDQW D OLHX XQH H[SORVLRQ HQ VRQ FHQWUH FUpDQW VXU OD SDURL LQWHUQH XQH SUHVVLRQ S = S H −αW R S HW α GpVLJQHQWGHVFRQVWDQWHVSRVLWLYHVGRQQpHV2QVHSURSRVHG¶pWXGLHU OHPRXYHPHQWGHODVSKqUHVRXVO¶HIIHWGHFHFKRFHQO¶DEVHQFHGHWRXWDXWUHFKDUJHPHQWHW HQ WHQDQW FRPSWH GH O¶DPRUWLVVHPHQW YLVTXHX[ GX PDWpULDX /HV D[HV R[ R\ R] OLpV j OD VSKqUHVRQWVXSSRVpVJDOLOpHQV
/DPHPEUDQHVSKpULTXHGHUD\RQDHWG¶pSDLVVHXUKHVWDXUHSRVMXVTX¶jO¶LQVWDQW W = $ FHW LQVWDQW D OLHX XQH H[SORVLRQ HQ VRQ FHQWUH FUpDQW VXU OD SDURL LQWHUQH XQH SUHVVLRQ S = S H −αW R S HW α GpVLJQHQWGHVFRQVWDQWHVSRVLWLYHVGRQQpHV2QVHSURSRVHG¶pWXGLHU OHPRXYHPHQWGHODVSKqUHVRXVO¶HIIHWGHFHFKRFHQO¶DEVHQFHGHWRXWDXWUHFKDUJHPHQWHW HQ WHQDQW FRPSWH GH O¶DPRUWLVVHPHQW YLVTXHX[ GX PDWpULDX /HV D[HV R[ R\ R] OLpV j OD VSKqUHVRQWVXSSRVpVJDOLOpHQV
)LJXUHD
)LJXUHE
)LJXUHD
)LJXUHE
/HSUREOqPHSRVVqGHODV\PpWULHVSKpULTXHHWO¶RQDOHVH[SUHVVLRQV
/HSUREOqPHSRVVqGHODV\PpWULHVSKpULTXHHWO¶RQDOHVH[SUHVVLRQV
± SRXUOHVGpSODFHPHQWV X = X = Z = Z W
± SRXUOHVGpSODFHPHQWV X = X = Z = Z W
± SRXUOHVGpIRUPDWLRQV ε = ε = ± SRXUOHVFRQWUDLQWHV σ = σ =
Z D
± SRXUOHVGpIRUPDWLRQV ε = ε =
( Z (′ Z + − ν D − ν′ D
± SRXUOHVFRQWUDLQWHV σ = σ =
Z D
( Z (′ Z + − ν D − ν′ D
± SRXUOHVYLVVHXUV 1 = 1 = K σ
± SRXUOHVYLVVHXUV 1 = 1 = K σ
$SDUWLUGHODLqPHpTXDWLRQ G¶pTXLOLEUHGHVIRUFHVVXLYDQWODQRUPDOH . jODFRTXH RQ REWLHQWO¶pTXDWLRQGXPRXYHPHQW
$SDUWLUGHODLqPHpTXDWLRQ G¶pTXLOLEUHGHVIRUFHVVXLYDQWODQRUPDOH . jODFRTXH RQ REWLHQWO¶pTXDWLRQGXPRXYHPHQW
⎛ ⎞ G Z ⎟⎟ = ρ K + S H − αW + 1 ⎜⎜ G W ⎝ 5 1 5 1 ⎠
⎛ ⎞ G Z ⎟⎟ = ρ K + S H − αW + 1 ⎜⎜ G W ⎝ 5 1 5 1 ⎠
6RLWSXLVTX¶LFL 5 1 = 5 1 = −D
G Z GW
+
6RLWSXLVTX¶LFL 5 1 = 5 1 = −D
G Z
(′
GZ ( S Z = H − αW + G W K ρ ′ ρ D − ν ρ D − ν
GW
+
(′
GZ ( S Z = H − αW + G W K ρ ′ ρ D − ν ρ D − ν
- 232 -
- 232 -
±H$33/,&$7,215e3216('¶81(0(0%5$1(63+e5,48(¬81&+2&
±H$33/,&$7,215e3216('¶81(0(0%5$1(63+e5,48(¬81&+2&
/DPHPEUDQHVSKpULTXHGHUD\RQDHWG¶pSDLVVHXUKHVWDXUHSRVMXVTX¶jO¶LQVWDQW W = $ FHW LQVWDQW D OLHX XQH H[SORVLRQ HQ VRQ FHQWUH FUpDQW VXU OD SDURL LQWHUQH XQH SUHVVLRQ S = S H −αW R S HW α GpVLJQHQWGHVFRQVWDQWHVSRVLWLYHVGRQQpHV2QVHSURSRVHG¶pWXGLHU OHPRXYHPHQWGHODVSKqUHVRXVO¶HIIHWGHFHFKRFHQO¶DEVHQFHGHWRXWDXWUHFKDUJHPHQWHW HQ WHQDQW FRPSWH GH O¶DPRUWLVVHPHQW YLVTXHX[ GX PDWpULDX /HV D[HV R[ R\ R] OLpV j OD VSKqUHVRQWVXSSRVpVJDOLOpHQV
/DPHPEUDQHVSKpULTXHGHUD\RQDHWG¶pSDLVVHXUKHVWDXUHSRVMXVTX¶jO¶LQVWDQW W = $ FHW LQVWDQW D OLHX XQH H[SORVLRQ HQ VRQ FHQWUH FUpDQW VXU OD SDURL LQWHUQH XQH SUHVVLRQ S = S H −αW R S HW α GpVLJQHQWGHVFRQVWDQWHVSRVLWLYHVGRQQpHV2QVHSURSRVHG¶pWXGLHU OHPRXYHPHQWGHODVSKqUHVRXVO¶HIIHWGHFHFKRFHQO¶DEVHQFHGHWRXWDXWUHFKDUJHPHQWHW HQ WHQDQW FRPSWH GH O¶DPRUWLVVHPHQW YLVTXHX[ GX PDWpULDX /HV D[HV R[ R\ R] OLpV j OD VSKqUHVRQWVXSSRVpVJDOLOpHQV
)LJXUHD
)LJXUHE
)LJXUHD
)LJXUHE
/HSUREOqPHSRVVqGHODV\PpWULHVSKpULTXHHWO¶RQDOHVH[SUHVVLRQV
/HSUREOqPHSRVVqGHODV\PpWULHVSKpULTXHHWO¶RQDOHVH[SUHVVLRQV
± SRXUOHVGpSODFHPHQWV X = X = Z = Z W
± SRXUOHVGpSODFHPHQWV X = X = Z = Z W
± SRXUOHVGpIRUPDWLRQV ε = ε = ± SRXUOHVFRQWUDLQWHV σ = σ =
Z D
± SRXUOHVGpIRUPDWLRQV ε = ε =
( Z (′ Z + − ν D − ν′ D
± SRXUOHVFRQWUDLQWHV σ = σ =
Z D
( Z (′ Z + − ν D − ν′ D
± SRXUOHVYLVVHXUV 1 = 1 = K σ
± SRXUOHVYLVVHXUV 1 = 1 = K σ
$SDUWLUGHODLqPHpTXDWLRQ G¶pTXLOLEUHGHVIRUFHVVXLYDQWODQRUPDOH . jODFRTXH RQ REWLHQWO¶pTXDWLRQGXPRXYHPHQW
$SDUWLUGHODLqPHpTXDWLRQ G¶pTXLOLEUHGHVIRUFHVVXLYDQWODQRUPDOH . jODFRTXH RQ REWLHQWO¶pTXDWLRQGXPRXYHPHQW
⎛ ⎞ G Z ⎟⎟ = ρ K + S H − αW + 1 ⎜⎜ G W ⎝ 5 1 5 1 ⎠
⎛ ⎞ G Z ⎟⎟ = ρ K + S H − αW + 1 ⎜⎜ G W ⎝ 5 1 5 1 ⎠
6RLWSXLVTX¶LFL 5 1 = 5 1 = −D
G Z GW
+
6RLWSXLVTX¶LFL 5 1 = 5 1 = −D
(′
GZ ( S Z = H − αW + ρK ρ D − ν′ G W ρ D − ν
- 232 -
G Z GW
+
(′
GZ ( S Z = H − αW + ρK ρ D − ν′ G W ρ D − ν
- 232 -
(QSRVDQW ω=
N=
(
(QSRVDQW
− ν D ρ
(′ D − ν′
ω=
SXOVDWLRQOLEUHQRQDPRUWLH
− ν DPRUWLVVHPHQWUpGXLW (ρ
N=
HOOHV¶pFULWVRXVIRUPHFDQRQLTXH
G Z GW
(
− ν D ρ
(′ D − ν′
SXOVDWLRQOLEUHQRQDPRUWLH
− ν DPRUWLVVHPHQWUpGXLW (ρ
HOOHV¶pFULWVRXVIRUPHFDQRQLTXH
+ N ω
G Z
GZ S + ω ⋅ Z = H − α W GW ρK
GW
+ N ω
GZ S + ω ⋅ Z = H − α W GW ρK
3RXU OD VROXWLRQ JpQpUDOH GH O¶pTXDWLRQ KRPRJqQH VDQV VHFRQG PHPEUH RQ GRLW HQYLVDJHU WURLVFDV
3RXU OD VROXWLRQ JpQpUDOH GH O¶pTXDWLRQ KRPRJqQH VDQV VHFRQG PHPEUH RQ GRLW HQYLVDJHU WURLVFDV
HUFDV N Q > DPRUWLVVHPHQWIRUW
HUFDV N Q > DPRUWLVVHPHQWIRUW
(QSRVDQW U = ω N − RQD
(QSRVDQW U = ω N − RQD
Z W = H − NωW ($ FK UW + % VK UW )
Z W = H − NωW ($ FK UW + % VK UW )
HFDV N Q = DPRUWLVVHPHQWFULWLTXH
HFDV N Q = DPRUWLVVHPHQWFULWLTXH
HFDV N Q < DPRUWLVVHPHQWIDLEOH
HFDV N Q < DPRUWLVVHPHQWIDLEOH
(QSRVDQW Ω = ω − N RQD
(QSRVDQW Ω = ω − N RQD
Z W = H −ωW ($ + %W )
Z W = H −ωW ($ + %W )
Z W = H − NωW ($ FRV ΩW + % VLQ ΩW ) 8QHVROXWLRQSDUWLFXOLqUHGHO¶pTXDWLRQFRPSOqWHUpSRQVHIRUFpH HVW
Z ∗ W =
S
ρ K α − Nω α + ω
8QHVROXWLRQSDUWLFXOLqUHGHO¶pTXDWLRQFRPSOqWHUpSRQVHIRUFpH HVW
H − αW
VL α Q¶DQQXOHSDVOHGpQRPLQDWHXU HW ω∗ W =
Z W = H − NωW ($ FRV ΩW + % VLQ ΩW )
Z ∗ W =
ρ K α − Nω α + ω
S W H − αW ρ K Nω − α
HW ω∗ W =
S W H − αW ρ K Nω − α
GDQVOHFDVFRQWUDLUH - 233 -
- 233 -
(QSRVDQW
N=
(
(QSRVDQW
− ν D ρ
(′ D − ν′
H − αW
VL α Q¶DQQXOHSDVOHGpQRPLQDWHXU
GDQVOHFDVFRQWUDLUH
ω=
S
ω=
SXOVDWLRQOLEUHQRQDPRUWLH
− ν DPRUWLVVHPHQWUpGXLW (ρ
N=
HOOHV¶pFULWVRXVIRUPHFDQRQLTXH
G Z GW
(
− ν D ρ
(′ D − ν′
SXOVDWLRQOLEUHQRQDPRUWLH
− ν DPRUWLVVHPHQWUpGXLW (ρ
HOOHV¶pFULWVRXVIRUPHFDQRQLTXH
+ N ω
G Z
GZ S + ω ⋅ Z = H − α W GW ρK
GW
+ N ω
GZ S + ω ⋅ Z = H − α W GW ρK
3RXU OD VROXWLRQ JpQpUDOH GH O¶pTXDWLRQ KRPRJqQH VDQV VHFRQG PHPEUH RQ GRLW HQYLVDJHU WURLVFDV
3RXU OD VROXWLRQ JpQpUDOH GH O¶pTXDWLRQ KRPRJqQH VDQV VHFRQG PHPEUH RQ GRLW HQYLVDJHU WURLVFDV
HUFDV N Q > DPRUWLVVHPHQWIRUW
HUFDV N Q > DPRUWLVVHPHQWIRUW
(QSRVDQW U = ω N − RQD
(QSRVDQW U = ω N − RQD
Z W = H − NωW ($ FK UW + % VK UW )
Z W = H − NωW ($ FK UW + % VK UW )
HFDV N Q = DPRUWLVVHPHQWFULWLTXH
HFDV N Q = DPRUWLVVHPHQWFULWLTXH
HFDV N Q < DPRUWLVVHPHQWIDLEOH
HFDV N Q < DPRUWLVVHPHQWIDLEOH
(QSRVDQW Ω = ω − N RQD
(QSRVDQW Ω = ω − N RQD
Z W = H −ωW ($ + %W )
Z W = H −ωW ($ + %W )
Z W = H − NωW ($ FRV ΩW + % VLQ ΩW ) 8QHVROXWLRQSDUWLFXOLqUHGHO¶pTXDWLRQFRPSOqWHUpSRQVHIRUFpH HVW
Z ∗ W =
S
ρ K α − Nω α + ω
VL α Q¶DQQXOHSDVOHGpQRPLQDWHXU HW ω∗ W =
Z W = H − NωW ($ FRV ΩW + % VLQ ΩW ) 8QHVROXWLRQSDUWLFXOLqUHGHO¶pTXDWLRQFRPSOqWHUpSRQVHIRUFpH HVW
H − αW
Z ∗ W =
S
ρ K α − Nω α + ω
VL α Q¶DQQXOHSDVOHGpQRPLQDWHXU
S W H − αW ρ K Nω − α
HW ω∗ W =
GDQVOHFDVFRQWUDLUH
S W H − αW ρ K Nω − α
GDQVOHFDVFRQWUDLUH - 233 -
- 233 -
H − αW
$FKHYRQVOHSUREOqPHGDQVOHFDVG¶XQDPRUWLVVHPHQWIDLEOH2QDDORUV
$FKHYRQVOHSUREOqPHGDQVOHFDVG¶XQDPRUWLVVHPHQWIDLEOH2QDDORUV
S H − αW Z W = H − NωW ($ FRV ΩW + % VLQ ΩW )+ ρ K α − Nω α + ω YLEUDWLRQQDWXUHOOH
S H − αW Z W = H − NωW ($ FRV ΩW + % VLQ ΩW )+ ρ K α − Nω α + ω YLEUDWLRQQDWXUHOOH
UpSRQVHIRUFpH
UpSRQVHIRUFpH
= GRQQHQW /HVFRQGLWLRQVLQLWLDOHV Z = HW Z
$=
− S
ρ K α − Nω α + ω
HW % =
= GRQQHQW /HVFRQGLWLRQVLQLWLDOHV Z = HW Z
α − Nω S
ρ K ω − N α − Nω α + ω
$=
− S
ρ K α − Nω α + ω
- 234 -
UpSRQVHIRUFpH
= GRQQHQW /HVFRQGLWLRQVLQLWLDOHV Z = HW Z
ρ K α − Nω α + ω
HW % =
= GRQQHQW /HVFRQGLWLRQVLQLWLDOHV Z = HW Z
α − Nω S
ρ K ω − N α − Nω α + ω
$=
- 234 -
S H − αW Z W = H − NωW ($ FRV ΩW + % VLQ ΩW )+ ρ K α − Nω α + ω YLEUDWLRQQDWXUHOOH
UpSRQVHIRUFpH
− S
ρ K ω − N α − Nω α + ω
$FKHYRQVOHSUREOqPHGDQVOHFDVG¶XQDPRUWLVVHPHQWIDLEOH2QDDORUV
S H − αW Z W = H − NωW ($ FRV ΩW + % VLQ ΩW )+ ρ K α − Nω α + ω YLEUDWLRQQDWXUHOOH
α − Nω S
- 234 -
$FKHYRQVOHSUREOqPHGDQVOHFDVG¶XQDPRUWLVVHPHQWIDLEOH2QDDORUV
$=
HW % =
− S
ρ K α − Nω α + ω
HW % =
- 234 -
α − Nω S ρ K ω − N α − Nω α + ω
- 235 -
- 235 -
- 235 -
- 235 -
Vous pouvez faire part de vos remarques, critiques, suggestions aux auteurs à cette adresse :
[email protected]
Achevé d’imprimer en France en juillet 2011 chez Messages SAS 111, rue Nicolas Vauquelin • 31100 Toulouse Tél. : 05 61 41 24 14 • Fax : 05 61 19 00 43
[email protected]