POWER CABLE AMPACITY (132 kV)
132 kV, 1200 mm2 In trench section In !! crossin" section In !#ct $%nk &or crossin" section
Final Ampacity calculation N7144.xmcd
1
22.03.2013
CO'TE'T( Variable ata (!eneral)
4
Po)er C%$*e Am+%cit C%*c#*%tions 1.
A" #e$i$tance o% "onductor
13
2.
ielectric &o$$ per 'nit &ent %or te *n$ulation
1+
3.
&o$$ Factor %or ,etallic -creen and -eat
1+
4.
"alculation o% ermal #e$i$tance
21
+.
"ond "onduc ucto torr emp emper erat atur ure e #i$e #i$e abo/ abo/e e te te Ambi Ambien entt
2
.
"ontinuou$ "urrent "arryin "apacity o% one 132 kV circuit
2
7.
#eduction %actor o% one 132 kV "ircuit
2
.
-upe -uperr po$ po$it itio ion n met meto od d to calc calcul ulat ate e int inter erac actio tion n o% o% ru ru 132 132 kV cabl cable e circuit and to exi$tin 400 kV cable circuit$
3
#edu #educt ctio ion n %ac %acto torr o% o% inte intera ract ctio ion n o% o% ru ru 132 132 kV kV cab cable le circ circui uit$ t$ it it te te to exi$tin 400 kV cable circuit$
+1
.
Po)er C%$*e Im+e-%nce C%*c#*%tions 1.
5o$iti/e6Neati/e -euence *mpedance
7
2.
8ero *mpedance
7
Final Ampacity calculation N7144.xmcd
2
22.03.2013
CO'TE'T( Variable ata (!eneral)
4
Po)er C%$*e Am+%cit C%*c#*%tions 1.
A" #e$i$tance o% "onductor
13
2.
ielectric &o$$ per 'nit &ent %or te *n$ulation
1+
3.
&o$$ Factor %or ,etallic -creen and -eat
1+
4.
"alculation o% ermal #e$i$tance
21
+.
"ond "onduc ucto torr emp emper erat atur ure e #i$e #i$e abo/ abo/e e te te Ambi Ambien entt
2
.
"ontinuou$ "urrent "arryin "apacity o% one 132 kV circuit
2
7.
#eduction %actor o% one 132 kV "ircuit
2
.
-upe -uperr po$ po$it itio ion n met meto od d to calc calcul ulat ate e int inter erac actio tion n o% o% ru ru 132 132 kV cabl cable e circuit and to exi$tin 400 kV cable circuit$
3
#edu #educt ctio ion n %ac %acto torr o% o% inte intera ract ctio ion n o% o% ru ru 132 132 kV kV cab cable le circ circui uit$ t$ it it te te to exi$tin 400 kV cable circuit$
+1
.
Po)er C%$*e Im+e-%nce C%*c#*%tions 1.
5o$iti/e6Neati/e -euence *mpedance
7
2.
8ero *mpedance
7
Final Ampacity calculation N7144.xmcd
2
22.03.2013
POWER CABLE AMPACITY CALC.LATIO'( *9" 027 : "*!#9 ;! 1<03
Final Ampacity calculation N7144.xmcd
3
22.03.2013
"A&9 =59> 132 kV ?&59 cable@ 12$mm@ copper conductor@ lead : 59 $eated /BR. *N-A&&A*BN 5&A"9> A' A* < '.A.9. 5#BC9"> A' A* 2 6 9A@ #AN-"B N7144
VARIABLE !ATA A E*ectric%* (stem !%t%
400000 U p_400 :=
(5a$e to pa$e /oltae@ V)
132000 U p_132 :=
(5a$e to pa$e /oltae@ V)
fc := 50
(Freuency@ D)
ω := 2.π fc
(Anular %reuency@ D)
63000 Iccs_400 :=
(,ax. eart<%ault current in cable $eat@ A)
31500 Iccs_132 :=
(,ax. eart<%ault current in cable $eat@ A)
tcc := 0.5
(-ort
1102.3 P400tr :=
(ran$mi$$ion capacity %or induced /oltae calculation@ ,VA)
P400hdd := 568
(ran$mi$$ion capacity %or induced /oltae calculation@ ,VA)
P400rc := 800
(ran$mi$$ion capacity %or induced /oltae calculation@ ,VA)
Inom_400tr :=
P400tr
(
U p_400⋅ 10
Inom_400hdd :=
Inom_400rc :=
(Nominal tran$mi$$ion current in trenc@ A)
)⋅
−6
(
(Nominal tran$mi$$ion current in cro$$in@ A)
)⋅
−6
(
U p_400⋅ 10
(Nominal tran$mi$$ion current in road cro$$in@ A)
)⋅
Inom_400hdd = 820
3
P400rc −6
Inom_400tr = 1591
3
P400hdd U p_400⋅ 10
ω = 314.2
Inom_400rc = 1155
3
Final Ampacity calculation N7144.xmcd
4
22.03.2013
B C%$*e Constr#ction !%t% n := 1
(Number o% load
n p := 1
(Number oc conductor$ in parallel)
dc := 45
(iamenter o% conductor@ mm)
1200 Acc :=
("ro$$<$ection o% copper condutor@ mm2 )
tc1 := 0.9
(ickne$$ o% conductor binder6$ellin tape@ mm)
dc0 := dc + 2 ⋅ tc1
(iamenter o% conductor@ includin binder tape@ mm)
tc2 := 1.5
(A/arae tickne$$ o% conductor $creen@ mm)
tcs := tc1 + tc2
(otal tickne$$ o% conductor $creen@ mm)
tcs = 2.4
dc1 := dc + 2 tcs
( iameter o% conductor@ includin $creen@ mm)
dc1 = 49.8
ti := 16
(,in. a/arae tickne$$ o% in$ulation@ mm)
din := dc + 2 tcs + 2 ti
(9xternal diamenter o% in$ulation@ excludin $creen@ mm)
tinss := 1.8
(,in. a/. tickne$$ o% in$ulation $creen@ mm)
(
d bst := din + 2 tinss
)
(iameter o/er in$ulation $creen@ mm)
tst1 := 0.9
(ickne$$ o% $ellin tape6beddin@ mm)
d bcs := d bst + 2 tst1
(iameter o/er $ellin tape6beddin@ mm)
tcms :=
d bcs − dc
(ickne$$ beteen condcutor and metal $eat@ mm)
2
tls := 3.6
(A/. tickne$$ o% lead $eat@ mm)
dals := d bcs + 2 tls
(iameter o/er lead $eat@ mm)
dlad := dals − tls
(,ean diameter o% lead $eat@ mm)
dmm := dals − tls
(,ean eometric diameter o% lead $eat@ mm)
−6 Alad := π tls d bcs + tls 10
(
)
("ro$$<$ection o% lead $eat@
m2 )
tos := 4.7
(A/. tickne$$ o% outer co/erin@ includin -" $kin@ mm)
do := dals + 2 tos
(9xternal diameter o% te cable@ mm)
Final Ampacity calculation N7144.xmcd
+
dc0 = 46.8
din = 81.8
d bst = 85.4
d bcs = 87.2
tcms = 21.1
dals = 94.4 dlad = 90.8 dmm = 90.8 −3 Alad = 1.027 × 10
do = 103.8
22.03.2013
C E*ectric%* Ch%r%cteristics −6 15.1 × 10 ! o :=
(.". re$i$tance o% te conductor at 20E"@ Bm6m)
−8 ρcoppr := 1.7241 × 10
(9lectrical re$i$ti/ity o% "opper@ Bm6m) < *9" 027<1<1@ able 1
−8 21.4 × 10 ρlad :=
(9lectrical re$i$ti/ity o% &ead@ Bm6mm) < *9" 027<1<1@ able 1
! E*ectric%* Coe&&icients
0.37 " p :=
(5roximity e%%ect coe%%icient acc. to "ire tecnical paper nE272@ ;orkin !roup 1.03)
0.44 " s :=
(5roximity e%%ect coe%%icient acc. to "ire tecnical paper nE272@ ;orkin !roup 1.03)
E Ins#*%tion Ch%r%cteristics ε p := 2.4
(#elati/e permitti/ity o% in$ulation)
0.001 tan# δ$ :=
(&o$$ %actor o% te in$ulation)
4 Therm%* Resisti5ities ρ%lp := 3.5
(emal re$i$ti/ity o% ?&59@ .m6; acc to *9" 027<2<1)
ρ p := 3.5
(emal re$i$ti/ity o% 59@ .m6; acc to *9" 027<2<1)
ρ b := 6
(emal re$i$ti/ity o% $ellin tape$@ .m6;)
ρsc := 2.5
(emal re$i$ti/ity o% -6"@ .m6;)
ρ p&c := 6
(emal re$i$ti/ity o% 5V"@ .m6; acc to *9" 027<2<1)
ρsr := 1.2
(emal $oil re$i$ti/ity at road cro$$in @ .m6;)
ρst := 1.2
(emal $oil re$i$ti/ity in trec (-tabili$ed $ourroundin @ .m6;)
ρ bntonit := 1.0
(emal re$i$ti/ity o% bentonite @ .m6;)
ρconcrt := 1.0
(emal $oil re$i$ti/ity o% concrete o% te duct bank @ .m6;)
ρhdd := 1.0
(emal $oil re$i$ti/ity o% $ection @ .m6;)
Final Ampacity calculation N7144.xmcd
22.03.2013
Tem+er%t#res %n- Tem+er%t#re Coe&&icients
Θma% := 90
(,ax. operatin temperature o% conductor. E")
Θc1 := 250
(,ax. $ort
Θms := 80
(,ax. orkin temperature o% te lead $eat@ E")
Θcs1 := 250
(Final eart<%ault temperature o% copper ire $creen@ E")
Θcs2 := Θms
(*nitial eart<%ault temperature o% copper ire $creen@ E")
Θl1 := 180
(Final eart<%ault temepratre o% lead $eat@ E")
Θc'ro(nd := 40
(,ax. round temperature@ E")
Θ bntonit := 70
(,ean temperature o% te medium %illin beteen cable and duct@ E")
77.3 Θap :=
(,ean temperature o% air in$ide te road cro$$in pipe@ E")
−3 αc20 := 3.93 × 10
("on$tant copper temperature coe%%icient@ 16E")
−3 αlad := 4 × 10
(emperature coe%%icient o% lead $eat re$i$tance. 16E")
βc := 234.5
(#eciprocal o% temperature coe%%icient o% re$i$tance copper)
)c := 226
("on$tant o% copper)
βs := 230
(#eciprocal o% temperature coe%%icient o% re$i$tance lead)
)s := 41
("on$tant o% lead)
Final Ampacity calculation N7144.xmcd
7
22.03.2013
T+ic%* Tro#"h cross6sction 132 kV Circ#it
1150 h'cb_tr := h'1ca_tr := h'cb_tr −
(i$tance %rom round $ur%ace to cable bottom@ mm) do
2
(i$tance %rom round $ur%ace to cable axi$@ mm)
s tr := 200
(Axial $pacin o% conductor #@=@ in trenc@ mm)
s ctr := 2100
("enter to "enter di$tance o% cable circuit$ in trenc@ mm)
Θm_tr := 81.5
(;orkin temperature o% te lead $eat in trou@ E")
Final Ampacity calculation N7144.xmcd
h'1ca_tr = 1098
22.03.2013
I !! Crossin" 132 kV Circ#it
t pip_hdd := 15
(ickne$$ o% 59 duct all@ mm)
di pip_hdd := 195
(*n$ide diameter o% 59 duct@ mm)
(
)
do pip_hdd := di pip_hdd + 2 pip_hdd t
(Butdi$e diamenter o% 59@ mm)
tbt := 50
(ickne$$ o% bentonite layer around te cable@ mm)
s hdd := do pip_hdd
(Axial $pacin o% te conductor$ in $ection@ mm)
7000 + *hdd :=
1 2
+
do pip_hdd = 225
3
do 3 pip_hdd (i$tance %rom road le/el to te tre%oil center@ mm)
Θm_hdd := 80
Final Ampacity calculation N7144.xmcd
*hdd = 7242
(;orkin temperature o% te lead $eat in trou@ E")
22.03.2013
7 T+ic%* Ro%- Crossin" 132 kV Circ#it
t pip_rc := 10
(ickne$$ o% 59 duct all@ mm)
di pip_rc := 180
(*n$ide diameter o% 59 duct@ mm)
(
)
do pip_rc := di pip_rc + 2 t pip_rc
(Butdi$e diamenter o% 59@ mm)
tbt := 50
(ickne$$ o% bentonite layer around te cable@ mm)
1800 +,- :=
(;idt o% te uct bank@ mm)
,- := 550
(eit o% te uct bank@ mm)
1225 h',- :=
(ept o% te uct bank centre@ mm)
/ := 3
(Number o% cable$ o% al% duct bank$)
s rc := 300
(Axial $pacin o% te conductor$ in road cro$$in@ mm)
Final Ampacity calculation N7144.xmcd
10
do pip_rc = 200
22.03.2013
s crc := 2100
("enter to "enter di$tance o% cable circuit$ in trenc@ mm)
1325 h'cb_rc :=
(i$tance %rom round $ur%ace to cable bottom@ mm)
h'db_rc := h'cb_rc +
t pip_rc
do
h'1ca_rc := h'cb_rc −
h'da_rc := h'db_rc −
(i$tance %rom round $ur%ace to duct bottom@ mm)
2
(i$tance %rom round $ur%ace to cable axi$@ mm)
2 di pip_rc
(i$tance %rom round $ur%ace to duct axi$@ mm)
2
80.5 Θm_rc :=
h'db_rc = 1330
h'1ca_rc = 1273
h'da_rc = 1240
(;orkin temperature o% te lead $eat in trou@ E")
8 !et%i*s o& +%r%**e* r#nnin" 900 kV C%$*es in Tro#"h (ection 1100 h'400_tr :=
(urial dept %rom round $ur%ace to cable bottom@ mm)
2800 , 400a_400b_tr :=
(Axial di$tance beteen 400 kV and 400 kV "ircuit$@ mm)
2100 , 400a_132_tr :=
(Axial di$tance beteen 400 kV clo$e$t and 132 kV "ircuit$@ mm)
4900 , 400b_132_tr :=
(Axial di$tance beteen 400 kV %urte$t and 132 kV "ircuit$@ mm)
400_tr := 600
(Axial di$tance beteen o% te 400 kV circuit$@ mm)
2500 A400 :=
("ro$$ $ection o% copper conductor@ mm 2)
−6 9.7232 × 10 ! A_400_tr :=
(A" re$i$tance o% te conductor@ Bm6m)
0.0901 λ 1a_tr_400 :=
(&o$$ %actor %or $creen and $eat o% pa$e 1)
λ 1b_tr_400 := 0.0605
(&o$$ %actor %or $creen and $eat o% pa$e 2)
λ 1c_tr_400 := 0.0601
(&o$$ %actor %or $creen and $eat o% pa$e 3)
1.08 +d400 :=
(ielectric &o$$e$@ ;6m)
Final Ampacity calculation N7144.xmcd
11
22.03.2013
I !et%i*s o& +%r%**e* r#nnin" 900 kV C%$*es in !! (ection 7500 h'400_hdd :=
(urial dept %rom round $ur%ace to cable bottom@ mm)
do400pip := 280
(ickne$$ o% 59 pipe@mm)
400_hdd := do400pip = 280
(Axial di$tance beteen o% te 400 kV circuit$@ mm)
7000 + *400hdd :=
1 2
+
3 3
do400pip (i$tance %rom road le/el to tre%oil center@mm)
hl400 := *400hdd − 400_hdd ⋅
bl400 := *400hdd + 400_hdd ⋅
3 3 3
(urial dept o% te upmo$t cable$@mm)
hl400 = 7140
(urial dept o% te deepe$ cable$@mm)
bl400 = 7463
3
3000 , 400a_400b_hdd :=
(Axial di$tance beteen 400 kV and 400 kV "ircuit$@ mm)
3000 , 400a_132_hdd :=
(Axial di$tance beteen 400 kV clo$e$t and 132 kV "ircuit$@ mm)
6000 , 400b_132_hdd :=
(Axial di$tance beteen 400 kV %urte$t and 132 kV "ircuit$@ mm)
−6 9.754 × 10 ! A_400_hdd :=
(A" re$i$tance o% te conductor@ Bm6m)
λ 1_hdd_400 := 0.1
(&o$$ %actor %or $creen and $eat )
7 !et%i*s o& +%r%**e* r#nnin" 900 kV C%$*es in Ro%- Crossin" (ection 1350 h'400_rc :=
(urial dept %rom round $ur%ace to cable bottom@ mm)
2800 , 400a_400b_rc :=
(Axial di$tance beteen 400 kV and 400 kV "ircuit$@ mm)
2100 , 400a_132_rc :=
(Axial di$tance beteen 400 kV clo$e$t and 132 kV "ircuit$@ mm)
4900 , 400b_132_rc :=
(Axial di$tance beteen 400 kV %urte$t and 132 kV "ircuit$@ mm)
400_rc := 300
(Axial di$tance beteen o% te 400 kV circuit$@ mm)
−6 9.723 × 10 ! A_400_rc :=
(A" re$i$tance o% te conductor@ Bm6m)
λ 1a_rc_400 := 0.0899
Final Ampacity calculation N7144.xmcd
(&o$$ %actor %or $creen and $eat o% pa$e 1)
12
22.03.2013
0.0604 λ 1b_rc_400 :=
(&o$$ %actor %or $creen and $eat o% pa$e 2)
λ 1c_rc_400 := 0.0600
(&o$$ %actor %or $creen and $eat o% pa$e 3)
1 AC Resist%nce o& Con-#ctor !C Resist%nce o& Con-#ctor " coppr # Θ$ := 1 + αc20# Θ − 20$
(
)
! := ! o⋅ " coppr Θma%
(Factor)
(
)
" coppr Θma% = 1.3
(.". re$i$tance o% conductor at max. operatin temperature@ Bm6m) −5 ! = 1.925 × 10
! 20 := ! o
(.". #e$i$tance o% condcutor at 20E"@ Bm6m)
−5 ! 20 = 1.51 × 10
11 C%$*es in tro#"h 111 (kin E&&ect 4%ctor %s :=
s :=
8 π fc ! %s
( 10− 7) ⋅ " s
(Factor)
%s = 1.695
4
(-kin e%%ect %actor)
192 + 0.8%s
s = 0.0415
4
112 Pro:imit e&&ect &%ctor % p :=
8π fc !
−7
10
(Factor %or conduit$)
" p
% p = 1.554
2 % 4 d 2 192 + 0.8 % 4 dc ( p) p c + 1.18 p# s $ := 0.312 4 s s 4 4 ( % p) + 0.27 192 + 0.8 ( % p) 192 + 0.8% p
( )
p str = 0.006
113 AC Resist%nce o& the Con-#ctor
(
( ))
!cac_tr := ! ⋅ 1 + s + p s tr
(A.". re$i$tance o% conductor at max. operatin temperature @ Bm6m) −5 !cac_tr = 2.017 × 10
Final Ampacity calculation N7144.xmcd
13
22.03.2013
(
( ))
!cac_tr20 := ! 20⋅ 1 + s + p s tr
(A.". re$itance o% condcutor at 20E" temperature@ Bm6m) −5 !cac_tr20 = 1.6 × 10
12 C%$*es in !! 121 (kin e&&ect &%ctor s = 0.0415
122 Pro:imit e&&ect &%ctor
(
)
p s hdd = 0.00469
123 AC Resist%nce o& the Con-#ctor
(
(
))
!cac_hdd := ! ⋅ 1 + s + p shdd
(A.". re$i$tance o% conductor at max. operatin temperature@ Bm6m) −5 !cac_hdd = 2.014 × 10
(
(
))
!cac_hdd20 := ! 20⋅ 1 + s + p shdd
(A.". re$i$tance o% conductor at 20E" temperature@ Bm6m) −5 !cac_hdd20 = 1.6 × 10
13 C%$*es in !#ct B%nk %t Ro%- crossin" 131 (kin e&&ect &%ctor s = 0.0415
132 Pro:imit e&&ect &%ctor
( )
p s rc = 0.00263
133 AC Resist%nce o& the con-#ctor
(
( ))
!cac_rc := ! ⋅ 1 + s + p src
(A.". re$i$tance o% conductor at max. operatin temperature@ Bm6mm) −5 !cac_rc = 2.01 × 10
Final Ampacity calculation N7144.xmcd
14
22.03.2013
(
( ))
!cac_rc20 := ! 20⋅ 1 + s + p src
(A.". re$i$tance o% conductor at 20E" temperature@ Bm6m) −5 !cac_rc20 = 1.6 × 10
2 !ie*ectric Loss +er .nit Len"th &or the Ins#*%tion ε p
:=
−9
din
⋅ 10
("apacitance o% eac pa$e aain$t te $creen $urroundin@ F6m6pa$e) − 12 = 268.7 × 10
18. ln
dc1
U o :=
U p_132
(5a$e to neutral /oltae@ V)
3
3 Ic := Uo⋅ ω⋅ ⋅ 10
("arin current per conductor@ A6km)
2 +d := ω⋅ ⋅ Uo ⋅ tan# δ$
(ielectric lo$$e$ per unit lent per pa$e@ ;6m)
3 U o = 76.2 × 10
Ic = 6.43
+d = 0.49
3 Loss 4%ctor &or the Met%**ic (creen %n- (he%th (1) Equivalent Resistance of Lead Sheath
(
)
( Θm − 20) ⋅ αlad
" lad Θm := 1 +
(Factor)
1.05 " lad20 :=
(
)
!s lad Θm :=
ρlad Alad
ρlad Alad
⋅ " lad( Θm)
(.". re$i$tance o% te lead $eat at teta E"@ Bm6m)
−6
⋅ " lad# 20 $ = 208.39 × 10
(,ax. .". metallic $eat re$i$tance at 20E"@ Bm6m)
(2) General
( )
m Θm :=
⋅ 10− 7
ω
!slad( Θm)
(
)
(
(
)
4π ω
)
ρs Θm := ρlad⋅ " lad Θm
β 1 Θm :=
(9lectrical re$i$ti/ity o% te lead $eat at $creen temperature)
( 107) ⋅ ρs( Θm)
Final Ampacity calculation N7144.xmcd
1+
22.03.2013
( )
's Θm := 1
(Note < For lead $eat cable$ $ can be take a$ unity and
( β1⋅ ts)
4
12 12 × 10
can be nelected < *9" 027<1<1)
31 Circ#*%tion Loss 4%ctor /C*23;2 o& IEC ;02<=6161 /1 Circ#*%tin" *oss c%*c#*%tion &or three sin"*e6core c%$*es in &*%t &orm%tion, )itho#t tr%ns+osition, she%thes $on-e- %t $oth en-s /C*%#se 232 − 7. 2s ⋅ ln flat# s$ := 2.ω⋅ 10 dlad
m_flat := 2 ω⋅ 10
(#eactance o% -eat per unit lent@ Bm6m)
−7
⋅ ln# 2 $
(,utual reactance per unit lent o% cable beteen te $eat o% an outer cable and conductor@ Bm6m) −6 m_flat = 43.552 × 10
P# s$ := flat# s$ + m_flat
m_flat
# s$ := flat# s$ −
3
/% Centre C%$*e
(
)
λ 1flat_a Θm , s , ! ac :=
(
(
)
!slad Θm
!s
! ac
)
# s$
(
(
)
lad Θm
2
2
+ # s $
)
λ 1flat_cba Θm , s , ! ac := λ 1flat_a Θm , s , ! ac 0.004 ⋅
2
(;ere lent$ o% minor $ection$ are unkno@ multiply by %actor o% 0.004)
/$O#ter c%$*e Le%-in" +h%se
(
)
λ 1flat_b Θm , s , ! ac :=
(
( )
2
!slad Θm
0.75⋅ P # s$
! ac
2 2 !s Θm) + P# s$ ( lad
)
(
)
λ 1flat_cbb Θm , s , ! ac := λ 1flat_b Θm , s , ! ac 0.004 ⋅
+
0.25 # s$
(
)
!s lad Θm
2
2
+
+ # s$
2
( )
2 !slad Θm ⋅ P# s$ ⋅ # s$ ⋅ m_flat 3 + !slad Θm
( )
2
+ P# s$
2
!s
(
)
lad Θm
2
+ # s $
2
(;ere lent$ o% minor $ection$ are unkno@ multiply by %actor o % 0.004)
/$O#ter c%$*e L%""in" +h%se
(
)
λ 1flat_c Θm , s , ! ac :=
(
)
2
!slad Θm
0.75⋅ P # s$
! ac
2 2 !s lad( Θm) + P# s$
Final Ampacity calculation N7144.xmcd
+
0.25 # s$
( )
!slad Θm
1
2
2
+ # s$
+ 2
(
)
2 !slad Θm ⋅ P# s$ ⋅ # s$ ⋅ m_flat 3 + !slad Θm
(
)
2
+ P# s$
2
!s
( )
lad Θm
2
+ # s$
2
22.03.2013
(
)
(
)
λ 1flat_cbc Θm , s , ! ac := λ 1flat_c Θm , s , ! ac 0.004 ⋅
(;ere lent$ o% minor $ection$ are unkno@ multiply by %actor o % 0.004)
/2 Circ#*%tin" *oss c%*c#*%tion &or three sin"*e6core c%$*es in tre&oi* &orm%tion $on-e- %t $oth en-s /C*%#se 231 − 7. 2. s ⋅ ln trf # s$ := 2.ω⋅ 10 dlad
(#eactance o% -eat per unit lent@ Bm6m)
−4 trf shdd = 1.006 × 10
(
(
)
λ 1_trf Θm , s , ! ac :=
( )
!slad Θm
1
! ac
1+
!slad( Θm)
(
)
)
(
trf # s $
)
λ 1_trf_cb Θm , s , ! ac := λ 1_trf Θm , s , ! ac 0.004 ⋅
2
(;ere lent$ o% minor $ection$ are unkno@ multiply by %actor o % 0.004)
32 E-- C#rrent Loss 4%ctor /C*23;1 o& IEC ;02<=6161 (1) Eddy Current loss calculation formula for the three single-core cales in trefoil formation
m Θ 2 d 2 ( m) lad λ 0_t ( Θm , s) := 3 ⋅ ⋅ 2 2 s 1 + m( Θm)
(
)
(
)
( )
∆1_t Θm , s := 1.14 m Θm
2.45
+ 0.33 ⋅
dlad
2s
0.92 m( Θm) + 1.66
∆2_t Θm , s := 0
(
)
λ 1_t Θm , s , ! ac :=
!slad( Θm)
! ac
⋅ 's( Θm) ⋅ λ 0_t ( Θm , s) ⋅ ( 1 + ∆1_t ( Θm, s) + ∆2_t ( Θm, s) )
(2) Eddy Current loss calculation formula for three single-core cales in flat formation % Centre c%$*e
m Θ 2 d 2 ( m) lad λ 0a( Θm , s) := 6 ⋅ 2 2s 1 + m( Θm) Final Ampacity calculation N7144.xmcd
( 9ddy current lo$$ %actor %or cable$ in trou)
17
22.03.2013
(
)
(
)
( )
∆1a Θm , s := 0.86 m Θm
d 3.08 lad
⋅
1.4 m( Θm) + 0.7
2s
∆2a Θm , s := 0
(
!slad( Θm)
)
λ 1a Θm , s , ! ac :=
! ac
⋅ 's( Θm) ⋅ λ 0a( Θm, s) ⋅ ( 1 + ∆1a( Θm , s) + ∆2a( Θm , s) )
$ O#ter c%$*e *e%-in" +h%se
m Θ 2 d 2 ( m) lad λ 0b( Θm , s) := 1.5 ⋅ 2 2 s 1 + m( Θm)
(
)
(
)
0.16 m( Θm) + 2
) 2s
∆1b Θm , s := 4.7 m Θm
(
d 0.7 lad
(9ddy current lo$$ %actor %or cable$ in trou)
d 3.3 lad
1.47 m( Θm) + 5.06
( ) 2s
∆2b Θm , s := 21 m Θm
(
)
λ 1b Θm , s , ! ac :=
!slad( Θm) ! ac
⋅ 's( Θm) ⋅ λ 0b( Θm , s) ⋅ ( 1 + ∆1b( Θm , s) + ∆2b( Θm, s) )
C O#ter c%$*e *%""in" +h%se
m Θ 2 d 2 ( m) lad λ 0c( Θm , s) := 1.5 ⋅ 2 2 s 1 + m( Θm)
(
)
∆1c Θm , s :=
(
( ( )
)
( ( )
)
2 + m Θm − 0.3
)
(
)
∆2c Θm , s := 0.92 m Θm
(
) (
0.74 m Θm + 2 m Θm
)
λ 1c Θm , s , ! ac :=
!slad( Θm)
0.5
2
d 3.7 lad
⋅
! ac
2s
(9ddy current lo$$ %actor %or cable$ in trou)
⋅
dlad
2s
( ) +1
m Θm
( ) +2
m Θm
⋅ 's( Θm) ⋅ λ 0c( Θm, s) ⋅ ( 1 + ∆1c( Θm , s) + ∆2c( Θm , s) )
Final Ampacity calculation N7144.xmcd
1
22.03.2013
33 Loss 4%ctor &or (he%th %n- screen 331 Loss 4%ctor &or (he%th in tro#"h −6 !s lad Θms = 258.403 × 10
(
)
(
)
(
)
(
)
(.". re$i$tance o% te lead $eat at teta E"@ Bm6m)
λ 1flat_cba Θms , str , !cac_tr = 0.0043 ("irculatin current lo$$ %actor on lead $eat o% centre cable)
λ 1flat_cbb Θms , str , !cac_tr = 0.0095 ("irculatin current lo$$ %actor on lead $eat o% outer leadin cable)
λ 1flat_cbc Θms , str , !cac_tr = 0.0095 ("irculatin current lo$$ %actor on lead $eat o% outer lain cable)
(
)
(
)
(
)
λ 1a Θms , str , !cac_tr = 0.0577
(9ddy current lo$$ %actor on lead $eat o% centre cable)
λ 1b Θms , str , !cac_tr = 0.0152
λ 1c Θms , str , !cac_tr = 0.0152
(
)
(9ddy current lo$$ %actor on lead $eat o% outer cable leadin pa$e)
(9ddy current lo$$ %actor on lead $eat o% outer cable lain pa$e)
(
)
(
λ 1a_tr Θm , s , ! ac := λ 1flat_cba Θm , s , ! ac + λ 1a Θm , s , ! ac
)
(&o$$ %actor %or metallic $creen$6$eat %or cable$ in trou@ pa$e 1)
(
)
λ 1a_tr Θms , str , !cac_tr = 0.0621
(
)
(
)
(
λ 1b_tr Θm , s , ! ac := λ 1flat_cbb Θm , s , ! ac + λ 1b Θm , s , ! ac
)
(&o$$ %actor %or metallic $creen$6$eat %or cable$ in trou@ pa$e 2)
(
)
λ 1b_tr Θms , str , !cac_tr = 0.0247
(
)
(
)
(
λ 1c_tr Θm , s , ! ac := λ 1flat_cbc Θm , s , ! ac + λ 1c Θm , s , ! ac
)
(&o$$ %actor %or metallic $creen$6$eat %or cable$ in trou@ pa$e 3)
(
)
λ 1c_tr Θms , str , !cac_tr = 0.0247
(
)
λ 1_tr := λ 1a_tr Θms , str , !cac_tr = 0.0621
Final Ampacity calculation N7144.xmcd
(&o$$ %actor u$ed %or current ratin calculation)
1
22.03.2013
332 Loss 4%ctor &or (he%th %n- (creen in !! −6 !s lad Θms = 258.4 × 10
(
)
(
(.". re$i$tance o% te lead $eat at teta E"@ Bm6m)
)
λ 1_trf_cb Θms , shdd , !cac_hdd = 0.0067
(
("irculatin current lo$$ %actor)
)
λ 1_t Θms , shdd , !cac_hdd = 0.0233 (9ddy current lo$$ %actor on lead $eat o% centre cable)
(
)
(
)
(
λ 1_hddf Θm , s , ! ac := λ 1_trf_cb Θm , s , ! ac + λ 1_t Θm , s , ! ac
)
(&o$$ %actor %or metallic $creen6$eat %or tre%oil %ormation)
(
)
λ 1_hddf Θms , shdd , !cac_hdd = 0.03
(
)
λ 1_hdd := λ 1_hddf Θms , shdd , !cac_hdd = 0.03
(&o$$ %actor u$ed %or current ratin calculation)
333 Loss 4%ctor &or (he%th %n- (creen in Ro%- crossin" −6 !s lad Θms = 258.403 × 10
(
)
(
)
(
)
(
)
(.". re$i$tance o% te lead $eat at teta E"@ Bm6m)
λ 1flat_cba Θms , src , !cac_rc = 0.0072 ("irculatin current lo$$ %actor on lead $eat o% centre cable)
λ 1flat_cbb Θms , src , !cac_rc = 0.0127 ("irculatin current lo$$ %actor on lead $eat o% outer leadin cable)
λ 1flat_cbc Θms , src , !cac_rc = 0.0127 ("irculatin current lo$$ %actor on lead $eat o% outer lain cable)
(
)
λ 1a Θms , src , !cac_rc = 0.0257
(9ddy current lo$$ %actor on lead $eat o% centre cable)
−3 (9ddy current lo$$ %actor on lead $eat o% outer cable leadin pa$e) λ 1b Θms , src , !cac_rc = 6.584 × 10
(
)
(
)
λ 1c Θms , src , !cac_rc = 0.0066
(
)
(
(9ddy current lo$$ %actor on lead $eat o% outer cable lain pa$e)
)
(
λ 1a_rc Θm , s , ! ac := λ 1flat_cba Θm , s , ! ac + λ 1a Θm , s , ! ac
)
(&o$$ %actor %or metallic $creen$6$eat %or cable$ in trou@ pa$e 1)
(
)
λ 1a_rc Θms , src , !cac_rc = 0.0329
Final Ampacity calculation N7144.xmcd
20
22.03.2013
(
)
(
)
(
λ 1b_rc Θm , s , ! ac := λ 1flat_cbb Θm , s , ! ac + λ 1b Θm , s , ! ac
)
(&o$$ %actor %or metallic $creen$6$eat %or cable$ in trou@ pa$e 2)
(
)
λ 1b_rc Θms , src , !cac_rc = 0.0193
(
)
(
)
(
λ 1c_rc Θm , s , ! ac := λ 1flat_cbc Θm , s , ! ac + λ 1c Θm , s , ! ac
)
(&o$$ %actor %or metallic $creen$6$eat %or cable$ in trou@ pa$e 3)
(
)
λ 1c_rc Θms , src , !cac_rc = 0.0193
(
)
λ 1_rc := λ 1a_rc Θms , src , !cac_rc = 0.0329 (&o$$ %actor u$ed %or current ratin calculation)
9 C%*c#*%tion o& Therm%* Resist%nce 91 Therm%* Resist%nce $et)een on con-#ctor %n- she%th, T1 /C*2111 o& IEC ;02=16261 911 Therm%* Resist%nce o& $in-er t%+e o5er con-#ctor 10 :=
ρ b
2π
dc0
⋅ ln
(ermal re$i$tance beteen one conductor and -6"@ .m6;)
dc
10 = 0.0375
912 Therm%* Resist%nce o& (>C screen o5er $in-er t%+e 11 :=
ρsc
2π
dc1
⋅ ln
dc0
(ermal re$i$tance beteen one conductor and in$ulation $eat@ .m6;) 11 = 0.0247
913 Therm%* Resist%nce o& ?LPE ins#*%tion 12 :=
ρ%lp
2π
din
⋅ ln
(ermal re$i$tance beteen one conductor and -6"@ .m6;)
dc1 12 = 0.2764
919 Therm%* Resist%nce o& (>C screen o5er ins#*%tion 13 :=
ρsc
2π
d bst
⋅ ln
din
Final Ampacity calculation N7144.xmcd
(ermal re$i$tance beteen one conductor and metallic $eat@ .m6;) 13 = 0.0171 21
22.03.2013
91@ Therm%* Resist%nce o& (>C Be--in" $e*o) Le%- (he%th ρ b
14 :=
2π
d bcs
⋅ ln
(ermal re$i$tance beteen -ellin tape@ .m6;)
d bst 14 = 0.0199
91; Therm%* Resist%nce one con-#ctor %n- she%th, T1 1 := 10 + 11 + 12 + 13 + 14
1 = 0.3757
92 Therm%* Resist%nce $et)een (he%th %n- Armo#r, T2 /C* 212 o& IEC ;02<=6261 2 := 0
(No armourin)
2 = 0
93 Therm%* Resist%nceo& o#ter co5erin", T3 /C* 213 o& IEC ;02<=6261
ρ p
3 :=
2π
2.tos
dals
⋅ ln 1 +
(ermal re$i$tance o% outer co/er@ .m6;)
3 = 0.0529
99 Therm%* Resist%nceo& c%$*e s#rro#n-in", T9 /C* 22 o& IEC ;02<=6261 991 C%$*es in tro#"h For 3 cable$ a/in uneual $eat lo$$e$@ laid in %lat %ormation and eually $paced apart
( :=
( 2.h'1ca_tr )
( = 21.158
do
(1 := ln ( +
(
2 ( −1
ρsoil
(1 = 3.745
2 2⋅ h'1 ca_tr
) 2π ⋅ (1 + ln 1 +
4trn ρsoil :=
str
9xternal ermal #e$i$tance %or current ratin calculation in trou (to u$ed at numerator o% te %inal %ormula)@ .m6;
( )
4trn ρst = 1.632
Final Ampacity calculation N7144.xmcd
22
22.03.2013