cen29305_chAP1.qxd
11/30/05
3:13 PM
Page 841
APPENDIX
P R O P E R T Y TA B L E S A N D CHARTS (SI UNITS) Table A–1 Table A–2 Table A–3 Table A–4 Table A–5 Table A–6 Table A–7 Table A–8 Table A–9 Table A–10 Table A–11 Table A–12 Table A–13 Table A–14 Table A–15 Table A–16 Table A–17 Table A–18 Table A–19 Figure A–20
1
Molar mass, gas constant, and ideal-gas specific heats of some substances 842 Boiling and freezing point properties 843 Properties of solid metals 844–846 Properties of solid nonmetals 847 Properties of building materials 848–849 Properties of insulating materials 850 Properties of common foods 851–852 Properties of miscellaneous materials 853 Properties of saturated water 854 Properties of saturated refrigerant–134a 855 Properties of saturated ammonia 856 Properties of saturated propane 857 Properties of liquids 858 Properties of liquid metals 859 Properties of air at 1 atm pressure 860 Properties of gases at 1 atm pressure 861–862 Properties of the atmosphere at high altitude 863 Emissivities of surfaces 864–865 Solar radiative properties of materials 866 The Moody chart for friction factor for fully developed flow in circular pipes 867
841
cen29305_chAP1.qxd
11/30/05
3:13 PM
Page 842
842 APPENDIX 1
TABLE A–1 Molar mass, gas constant, and ideal-gas specific heats of some substances Specific Heat Data at 25C Substance Air Ammonia, NH3 Argon, Ar Bromine, Br2 Isobutane, C4H10 n-Butane, C4H10 Carbon dioxide, CO2 Carbon monoxide, CO Chlorine, Cl2 Chlorodifluoromethane (R-22), CHCIF2 Ethane, C2H6 Ethylene, C2H4 Fluorine, F2 Helium, He n-Heptane, C7H16 n-Hexane, C6H14 Hydrogen, H2 Krypton, Kr Methane, CH4 Neon, Ne Nitrogen, N2 Nitric oxide, NO Nitrogen dioxide, NO2 Oxygen, O2 n-Pentane, C5H12 Propane, C3H8 Propylene, C3H6 Steam, H2O Sulfur dioxide, SO2 Tetrachloromethane, CCI4 Tetrafluoroethane (R-134a), C2H2F4 Trifluoroethane (R-143a), C2H3F3 Xenon, Xe
Molar Mass M, kg/kmol 28.97 17.03 39.95 159.81 58.12 58.12 44.01 28.01 70.905 86.47 30.070 28.054 38.00 4.003 100.20 86.18 2.016 83.80 16.04 20.183 28.01 30.006 46.006 32.00 72.15 44.097 42.08 18.015 64.06 153.82 102.03 84.04 131.30
Gas Constant R, kJ/kg · K* 0.2870 0.4882 0.2081 0.05202 0.1430 0.1430 0.1889 0.2968 0.1173 0.09615 0.2765 0.2964 0.2187 2.077 0.08297 0.09647 4.124 0.09921 0.5182 0.4119 0.2968 0.2771 0.1889 0.2598 0.1152 0.1885 0.1976 0.4615 0.1298 0.05405 0.08149 0.09893 0.06332
cp, kJ/kg · K
cv, kJ/kg · K
k cp /cv
1.005 2.093 0.5203 0.2253 1.663 1.694 0.8439 1.039 0.4781 0.6496 1.744 1.527 0.8237 5.193 1.649 1.654 14.30 0.2480 2.226 1.030 1.040 0.9992 0.8060 0.9180 1.664 1.669 1.531 1.865 0.6228 0.5415 0.8334 0.9291 0.1583
0.7180 1.605 0.3122 0.1732 1.520 1.551 0.6550 0.7417 0.3608 0.5535 1.468 1.231 0.6050 3.116 1.566 1.558 10.18 0.1488 1.708 0.6180 0.7429 0.7221 0.6171 0.6582 1.549 1.480 1.333 1.403 0.4930 0.4875 0.7519 0.8302 0.09499
1.400 1.304 1.667 1.300 1.094 1.092 1.288 1.400 1.325 1.174 1.188 1.241 1.362 1.667 1.053 1.062 1.405 1.667 1.303 1.667 1.400 1.384 1.306 1.395 1.074 1.127 1.148 1.329 1.263 1.111 1.108 1.119 1.667
*The unit kJ/kg · K is equivalent to kPa · m3/kg · K. The gas constant is calculated from R RU /M, where RU 8.31447 kJ/kmol · K is the universal gas constant and M is the molar mass. Source: Specific heat values are obtained primarily from the property routines prepared by The National Institute of Standards and Technology (NIST), Gaithersburg, MD.
cen29305_chAP1.qxd
11/30/05
3:13 PM
Page 843
843 APPENDIX 1
TABLE A–2 Boiling and freezing point properties Boiling Data at l atm
Freezing Data
Substance
Normal Latent Heat of Boiling Vaporization Point, C hfg, kJ/kg
Freezing Point, C
Ammonia
33.3
77.7
1357
322.4
Argon Benzene Brine (20% sodium chloride by mass) n-Butane Carbon dioxide Ethanol Ethyl alcohol Ethylene glycol Glycerine Helium Hydrogen Isobutane Kerosene Mercury Methane
185.9 80.2
161.6 394
189.3 5.5
103.9 0.5 78.4* 78.2 78.6 198.1 179.9 268.9 252.8 11.7 204–293 356.7 161.5
— 385.2 230.5 (at 0C) 838.3 855 800.1 974 22.8 445.7 367.1 251 294.7 510.4
17.4 138.5 56.6 114.2 156 10.8 18.9 — 259.2 160 24.9 38.9 182.2
109 108 181.1 200.6 — 59.5 105.7 — 11.4 58.4
Methanol Nitrogen
64.5 195.8
1100 198.6
97.7 210
99.2 25.3
124.8
306.3
57.5
180.7
218.8
13.7
187.7
80.0
Octane Oil (light) Oxygen Petroleum Propane
183 — 42.1
Refrigerant-134a
26.1
Water
100
212.7 230–384 427.8
216.8
2257
96.6
0.0
Liquid Properties
Latent Heat of Fusion Temperature, Density hif, kJ/kg C r, kg/m3
28 126 — 80.3
—
333.7
Specific Heat cp, kJ/kg · K
33.3 20 0 25 185.6 20
682 665 639 602 1394 879
4.43 4.52 4.60 4.80 1.14 1.72
20 0.5 0 25 20 20 20 268.9 252.8 11.7 20 25 161.5 100 25 195.8 160 20 25 183 20 42.1 0 50 50 26.1 0 25 0 25 50 75 100
1150 601 298 783 789 1109 1261 146.2 70.7 593.8 820 13,560 423 301 787 809 596 703 910 1141 640 581 529 449 1443 1374 1295 1207 1000 997 988 975 958
3.11 2.31 0.59 2.46 2.84 2.84 2.32 22.8 10.0 2.28 2.00 0.139 3.49 5.79 2.55 2.06 2.97 2.10 1.80 1.71 2.0 2.25 2.53 3.13 1.23 1.27 1.34 1.43 4.22 4.18 4.18 4.19 4.22
* Sublimation temperature. (At pressures below the triple-point pressure of 518 kPa, carbon dioxide exists as a solid or gas. Also, the freezing-point temperature of carbon dioxide is the triple-point temperature of 56.5C.)
cen29305_chAP1.qxd
11/30/05
3:13 PM
Page 844
844 APPENDIX 1
TABLE A–3 Properties of solid metals Properties at Various Temperatures (K), k(W/m · K)/cp (J/kg · K)
Properties at 300 K
Melting Point, K
r kg/m3
933
2702
903
237
97.1
Alloy 2024-T6 775 (4.5% Cu, 1.5% Mg, 0.6% Mn) Alloy 195, Cast (4.5% Cu) Beryllium 1550
2770
875
177
73.0
2790 1850
883 1825
Bismuth
545
9780
122
2573
2500
1107
27.0
594
8650
231
96.8
48.4
Chromium
2118
7160
449
93.7
29.1
Cobalt
1769
8862
421
99.2
26.6
Copper: Pure
1358
8933
385
401
117
1293
8800
420
52
14
1104
8780
355
54
17
1188
8530
380
110
1493
8920
384
23
1211
5360
322
59.9
Gold
1336
19,300
129
317
Iridium
2720
22,500
130
147
Iron: Pure
1810
7870
447
80.2
7870
447
7854
Composition Aluminum: Pure
Boron Cadmium
Commercial bronze (90% Cu, 10% Al) Phosphor gear bronze (89% Cu, 11% Sn) Cartridge brass (70% Cu, 30% Zn) Constantan (55% Cu, 45% Ni) Germanium
Armco (99.75% pure) Carbon steels: Plain carbon (Mn 1% Si 0.1%) AISI 1010
k a 106 cp J/kg · K W/m · K m2/s 100
168 200 7.86
68.2 59.2 6.59 9.76
200
400
600
800
302 482 65
237 798 163
240 949 186
231 1033 186
218 1146
473
787
925
1042
174 185 990 301 161 126 106 90.8 203 1114 2191 2604 2823 3018 16.5 9.69 7.04 112 120 127 190 55.5 16.8 10.6 9.60 9.85 128 600 1463 1892 2160 2338 203 99.3 94.7 198 222 242 159 111 90.9 80.7 71.3 65.4 192 384 484 542 581 616 167 122 85.4 67.4 58.2 52.1 236 379 450 503 550 628 393 397 52 160 65 — 137 395
379 417 59 545 74 — 149 425
366 433
352 451
17 237 232 190 327 109 172 90
413 356 42 785 41 — 95 360 19 362 96.8 290 323 124 153 122
43.2 337 311 131 144 133
27.3 348 298 135 138 138
19.8 357 284 140 132 144
17.4 375 270 145 126 153
23.1
134 216
94.0 384
69.5 490
54.7 574
43.3 32.8 680 975
72.7
20.7
95.6 215
80.6 384
65.7 490
53.1 574
42.2 32.3 680 975
434
60.5
17.7
7832
434
63.9
18.8
7817
446
51.9
14.9
56.7 487 58.7 559 49.8 501
48.0 39.2 30.0 559 685 1169 48.8 39.2 31.3 685 1168 44.0 37.4 29.3 582 699 971
33.9 6.71 34.7 127 50.3
482 252
75
487 Carbon–silicon (Mn 1% 0.1% Si 0.6%)
1000
cen29305_chAP1.qxd
11/30/05
3:13 PM
Page 845
845 APPENDIX 1
TABLE A–3 Properties of solid metals (Continued)
Composition
Melting Point, K
Carbon–manganese–silicon (1% Mn 1.65% 0.1% Si 0.6%) Chromium (low) steels: 1 Cr– 41 Mo–Si (0.18% C, 2 0.65% Cr, 0.23% Mo, 0.6% Si) 1 Cr– 12 Mo (0.16% C, 1% Cr, 0.54% Mo, 0.39% Si) 1 Cr–V (0.2% C, 1.02% Cr, 0.15% V) Stainless steels: AISI 302
Properties at Various Temperatures (K), k(W/m · K)/cp(J/kg · K)
Properties at 300 K r kg/m3
k a 106 cp J/kg · K W/m · K m2/s 100
600
800
1000
35.0 27.6 685 1090
434
41.0
11.6
42.2 487
39.7 559
7822
444
37.7
10.9
38.2
36.7
7858
442
42.3
12.2
492 42.0
575 39.1
688 969 34.5 27.4
7836
443
48.9
14.1
492 46.8
575 42.1
688 969 36.3 28.2
492
575
688
480
15.1
3.91
7900
477
14.9
3.95
AISI 316
8238
468
13.4
3.48
AISI 347
7978
480
14.2
3.71
35.3
1670
400
8131
8055
AISI 304
200
Lead
601
11,340
129
Magnesium
923
1740
1024
156
87.6
Molybdenum
2894
10,240
251
138
53.7
Nickel: Pure
1728
8900
444
90.7
Nichrome (80% Ni, 20% Cr) Inconel X-750 (73% Ni, 15% Cr, 6.7% Fe) Niobium
1672
8400
420
12
1665
8510
439
11.7
3.1
2741
8570
265
53.7
23.6
Palladium
1827
12,020
244
71.8
24.5
Platinum: Pure
2045
21,450
133
71.6
25.1
Alloy 60Pt–40Rh (60% Pt, 40% Rh) Rhenium
1800
16,630
162
47
17.4
3453
21,100
136
47.9
16.7
Rhodium
2236
12,450
243
150
24.1
23.0 232 3.4
49.6
9.2 272
12.6 402
39.7 118 169 649 179 141
36.7 125 159 934 143 224
164 383
107 485
17.3 512 16.6 515 15.2 504 15.8 513 34.0 132 153 1074 134 261
33.3
20.0 22.8 559 585 19.8 22.6 557 582 18.3 21.3 550 576 18.9 21.9 559 585 31.4 142 149 146 1170 1267 126 118 275 285 65.6 530 16 525 17.0
67.6 562 21 545 20.5
26.9
969 25.4 606 25.4 611 24.2 602 24.7 606
112 295
8.7
10.3
80.2 592 14 480 13.5
71.8
— 55.2 188 76.5 168
372 52.6 249 71.6 227
473 55.2 274 73.6 251
510 58.2 283 79.7 261
546 626 61.3 64.4 292 301 86.9 94.2 271 281
77.5 100
72.6 125
58.9 97 186 147
51.0 127 154 220
71.8 136 52 — 46.1 139 146 253
73.2 141 59 — 44.2 145 136 274
75.6 146 65 — 44.1 151 127 293
24.0
78.7 152 69 — 44.6 156 121 311
cen29305_chAP1.qxd
11/30/05
3:13 PM
Page 846
846 APPENDIX 1
TABLE A–3 Properties of solid metals (Concluded) Properties at Various Temperatures (K), k(W/m · K)/cp (J/kg · K)
Properties at 300 K
Melting Point, K
r kg/m3
Silicon
1685
2330
712
148
Silver
1235
10,500
235
429
Tantalum
3269
16,600
140
57.5
24.7
Thorium
2023
11,700
118
54.0
39.1
505
7310
227
66.6
40.1
Titanium
1953
4500
522
21.9
Tungsten
3660
19,300
132
Uranium
1406
19,070
116
27.6
12.5
Vanadium
2192
6100
489
30.7
10.3
693
7140
389
2125
6570
278
Composition
Tin
Zinc Zirconium
k a 106 cp J/kg · K W/m · K m2/s 100
174
116 22.7
89.2 174
9.32 68.3
41.8 12.4
884 259 444 187 59.2 110 59.8 99 85.2 188 30.5 300 208 87 21.7 94 35.8 258 117 297 33.2 205
200
400
600
800
1000
264 556 430 225 57.5 133 54.6 112 73.3 215 24.5 465 186 122 25.1 108 31.3 430 118 367 25.2 264
98.9 790 425 239 57.8 144 54.5 124 62.2 243 20.4 551 159 137 29.6 125 31.3 515 111 402 21.6 300
61.9 867 412 250 58.6 146 55.8 134
42.4 913 396 262 59.4 149 56.9 145
31.2 946 379 277 60.2 152 56.9 156
19.4 591 137 142 34.0 146 33.3 540 103 436 20.7 332
19.7 633 125 146 38.8 176 35.7 563
20.7 675 118 148 43.9 180 38.2 597
21.6 23.7 342 362
From Frank P. Incropera and David P. DeWitt, Fundamentals of Heat and Mass Transfer, 3rd ed., 1990. This material is used by permission of John Wiley & Sons, Inc.
cen29305_chAP1.qxd
11/30/05
3:13 PM
Page 847
847 APPENDIX 1
TABLE A–4 Properties of solid nonmetals
Composition Aluminum oxide, sapphire Aluminum oxide, polycrystalline Beryllium oxide Boron
Melting Point, K
r cp k a 106 kg/m3 J/kg · KW/m · K m2/s
2323
3970
765
46
15.1
2323
3970
765
36.0
11.9
2725
3000
1030
2573
2500
1105
Boron fiber epoxy 590 (30% vol.) composite k, || to fibers k, to fibers cp Carbon Amorphous 1500
2080
Diamond, type lla — insulator Graphite, pyrolytic 2273 k, || to layers k, to layers cp Graphite fiber 450 epoxy (25% vol.) composite k, heat flow || to fibers k, heat flow to fibers cp Pyroceram, 1623 Corning 9606 Silicon carbide 3100 Silicon dioxide, 1883 crystalline (quartz) k, || to c-axis k, to c-axis cp Silicon dioxide, 1883 polycrystalline (fused silica) Silicon nitride 2173
272 27.6
9.99
1122 1950
3500
—
1.60
100
200
400
600
450 — 133 —
82 — 55 —
190 —
52.5 —
32.4 940 26.4 940 196 1350 18.7 1490
18.9 1110 15.8 1110 111 1690 11.3 1880
88.0
2.29 0.59
—
509 2300
2.10 0.37 364
2.23 0.49 757
2.28 0.60 1431
0.67 —
1.18 —
1.89 —
10,000 21
4000 194
1540 853
3230 9.23 411
1390 4.09 992
21.9 —
800
1000
13.0 1180 10.4 1180 70 1865 8.1 2135
10.5 1225 7.85 1225 47 1975 6.3 2350
2.37 —
2.53 —
2210 1950 5.70
4970 16.8 136
709
892 2.68 1406
667 534 2.01 1.60 1650 1793
1216 3.64 908 — 880
3.28 1038 — 1050
3.08 2.96 1122 1197 — 87 1135 1195
7.6 4.70 885 1.51
5.0 3.4 1075 1.75
4.2 3.1 1250 2.17
905 13.9 778
1040 11.3 937
1105 1155 9.88 8.76 1063 1155
1400
2600
11.1 0.87 935 808 3.98
3160
675
490
0.46 1.89
5.7 0.68 337 5.25 —
8.7 1.1 642 4.78 —
39 20.8 — 0.69
16.4 9.5 — 1.14
230
13.0
2650 10.4 6.21 2220
745 745
2400
691
392
2070
708
Thorium dioxide
3573
9110
235
Titanium dioxide, polycrystalline
2133
4157
710
Sulfur
Properties at Various Temperatures (K), k (W/m · K)/cp (J/kg · K)
Properties at 300 K
1.38
0.834
— — — — — 578 0.206 0.141 0.165 0.185 403 606 13 6.1 16.0
8.4
9.65
2.8
10.2 255 7.01 805
6.6 274 5.02 880
4.7 285 8.94 910
2.87
3.68 295 3.46 930
cen29305_chAP1.qxd
11/30/05
3:13 PM
Page 848
848 APPENDIX 1
TABLE A–5 Properties of building materials (at a mean temperature of 24C)
Material Building Boards Asbestos–cement board Gypsum of plaster board Plywood (Douglas fir)
Insulated board and sheating (regular density) Hardboard (high density, standard tempered) Particle board: Medium density Underlayment Wood subfloor
Specific Heat, cp kJ/kg · K
R-value (for listed thickness, L/k), K · m2/W
Thickness, L mm
Density, r kg/m3
Thermal Conductivity, k W/m · K
6 mm 10 mm 13 mm — 6 mm 10 mm 13 mm 20 mm 13 mm 20 mm
1922 800 800 545 545 545 545 545 288 288
— — — 0.12 — — — — — —
1.00 1.09 — 1.21 1.21 1.21 1.21 1.21 1.30 1.30
0.011 0.057 0.078 — 0.055 0.083 0.110 0.165 0.232 0.359
—
1010
0.14
1.34
—
— 16 mm 20 mm
800 640 —
0.14 — —
1.30 1.21 1.38
— 0.144 0.166
Building Membrane Vapor-permeable felt Vapor-seal (2 layers of mopped 0.73 kg/m2 felt)
—
—
—
—
0.011
—
—
—
—
0.021
Flooring Materials Carpet and fibrous pad Carpet and rubber pad Tile (asphalt, linoleum, vinyl)
— — —
— — —
— — —
1.42 1.38 1.26
0.367 0.217 0.009
100 mm 200 mm 300 mm
1922 2082 2400 1920 1120 — — —
0.72 1.30 1.34 0.90 0.41 0.77 1.0 1.30
— — — 0.79 — — — —
— — — — — 0.13 0.20 0.23
1920 1600 1280 960 0.18 1920 1280 1857
1.1 0.79 0.54 0.33 — 1.40 0.65 0.72
— 0.84 0.84 — — — — —
— — — —
Masonry Materials Masonry units: Brick, common Brick, face Brick, fire clay
Concrete blocks (3 oval cores, sand and gravel aggregate) Concretes: Lightweight aggregates, (including expanded shale, clay, or slate; expanded slags; cinders; pumice; and scoria)
940 Cement/lime, mortar, and stucco Stucco
— — —
cen29305_chAP1.qxd
11/30/05
3:13 PM
Page 849
849 APPENDIX 1
TABLE A–5 Properties of building materials (Concluded) (at a mean temperature of 24C) Specific Heat, cp kJ/kg · K
R-value (for listed thickness, L/k), K · m2/W
Thickness, L mm
Density, r kg/m3
Thermal Conductivity, k W/m · K
10 mm 13 mm
1900 1100 1100 1100 —
— — — — —
1.00 1.51 1.26 1.46 1.26
0.037 0.026 0.077 0.058 0.009
—
—
1.30
0.166
19 mm
1860
0.72
0.84
0.026
13 mm 13 mm —
720 1680 720
— 0.81 0.22
— 0.84 1.34
0.055 0.016 —
— 11 mm 25 mm 10 mm
1900 — — —
— — — —
— 1.17 1.30 1.21
0.037 0.12 0.139 0.111
10 mm 10 mm —
— — 2530
— — 1.0
1.22 1.34 0.84
0.11 0.32 0.018
Woods Hardwoods (maple, oak, etc.) Softwoods (fir, pine, etc.)
— —
721 513
0.159 0.115
1.26 1.38
— —
Metals Aluminum (1100) Steel, mild Steel, Stainless
— — —
2739 7833 7913
222 45.3 15.6
0.896 0.502 0.456
— — —
Material Roofing Asbestos-cement shingles Asphalt roll roofing Asphalt shingles Built-in roofing Slate Wood shingles (plain and plastic/film faced) Plastering Materials Cement plaster, sand aggregate Gypsum plaster: Lightweight aggregate Sand aggregate Perlite aggregate Siding Material (on flat surfaces) Asbestos-cement shingles Hardboard siding Wood (drop) siding Wood (plywood) siding lapped Aluminum or steel siding (over sheeting): Hollow backed Insulating-board backed Architectural glass
Source: Table A–5 and A–6 are adapted from ASHRAE, Handbook of Fundamentals (Atlanta, GA: American Society of Heating, Refrigerating, and AirConditioning Engineers, 1993), Chap. 22, Table 4. Used with permission.
cen29305_chAP1.qxd
11/30/05
3:13 PM
Page 850
850 APPENDIX 1
TABLE A–6 Properties of insulating materials (at a mean temperature of 24C)
Material Blanket and Batt Mineral fiber (fibrous form processed from rock, slag, or glass)
Density, r kg/m3
50 to 70 mm 75 to 90 mm 135 to 165 mm
4.8–32 4.8–32 4.8–32
— — —
0.71–0.96 0.71–0.96 0.71–0.96
1.23 1.94 3.32
136 64–144 16 24 16 72 240 120
0.055 0.036 0.040 0.023 0.052 0.032 0.042 0.039
1.0 0.96 1.2 1.6 1.26 1.68 0.71 1.80
— — — — — — — —
24–40 56–72 70
0.023–0.026 0.038–0.039 0.026
— — 1.045
— — —
190
0.046
—
—
9.6–32 9.6–32 — — 122 122 32–66 128–240 37–51
— — — — 0.025 0.068 0.039–0.045 0.065 0.039–0.046
0.71 0.71 0.71 0.71 — — 1.09 1.38 —
1.94 3.35 3.87 5.28 — — — — —
144 — — —
0.058 — — —
1.0 1.0 2.1 3.9
— 0.24 0.49 0.93
160
0.0017
—
—
40
0.00016
—
—
120
0.000017
—
—
Sprayed or Formed in Place Polyurethane foam Glass fiber Urethane, two-part mixture (rigid foam) Mineral wool granules with asbestos/ inorganic binders (sprayed) ~75 to 125 mm ~165 to 222 mm ~191 to 254 mm ~185 mm
Silica aerogel Vermiculite (expanded) Perlite, expanded Sawdust or shavings Cellulosic insulation (milled paper or wood pulp) Roof Insulation Cellular glass Preformed, for use above deck
R-value (for listed thickness, L/k), K · m2/W
Thickness, L mm
Board and Slab Cellular glass Glass fiber (organic bonded) Expanded polystyrene (molded beads) Expanded polyurethane (R-11 expanded) Expanded perlite (organic bonded) Expanded rubber (rigid) Mineral fiber with resin binder Cork
Loose Fill Mineral fiber (rock, slag, or glass)
Specific Heat, cp kJ/kg · K
Thermal Conductivity, k W/m · K
— 13 mm 25 mm 50 mm
Reflective Insulation Silica powder (evacuated) Aluminum foil separating fluffy glass mats; 10–12 layers (evacuated); for cryogenic applications (150 K) Aluminum foil and glass paper laminate; 75–150 layers (evacuated); for cryogenic applications (150 K)
84 85 65 75 82 92 84 80 23 78 89 82 89 75 87
Fruits Apples Apricots Avocados Bananas Blueberries Cantaloupes Cherries, sour Cherries, sweet Figs, dried Figs, fresh Grapefruit Grapes Lemons Olives Oranges 1.1 1.1 0.3 0.8 1.6 1.2 1.7 1.8 — 2.4 1.1 1.1 1.4 1.4 0.8
1.2 0.6 0.7 0.6 0.9 1.4 0.8 0.5 0.6 0.5 0.8 1.8 0.7 0.2 0.9 1.8 0.9 0.8 1.1 0.6 0.7 0.6 0.8 0.3 0.5 1.1 3.65 3.69 3.02 3.35 3.59 3.92 3.65 3.52 — 3.45 3.82 3.59 3.82 3.35 3.75
3.65 3.96 3.82 3.86 3.92 3.79 3.92 3.99 3.32 4.06 3.96 3.35 3.69 4.02 3.89 3.86 3.82 3.79 3.69 3.32 3.92 3.45 3.89 3.96 3.99 3.92
Above Freezing
1.90 1.91 1.66 1.78 1.87 2.00 1.90 1.85 1.13 1.82 1.96 1.87 1.96 1.78 1.94
1.90 2.01 1.96 1.97 2.00 1.95 2.00 2.02 1.77 2.05 2.01 1.78 1.91 2.04 1.99 1.97 1.96 1.95 1.91 1.77 2.00 1.82 1.99 2.01 2.02 2.00
Below Freezing
281 284 217 251 274 307 281 267 77 261 297 274 297 251 291
281 311 297 301 307 294 307 314 247 321 311 251 284 317 304 301 297 294 284 247 307 261 304 311 314 307 49 70 67 56 74 65 37 56 38 64
Meats Beef carcass Liver Round, beef Sirloin, beef Chicken Lamb leg Port carcass Ham Pork sausage Turkey
5 16 37 39 1 74 17 63 88 6 2 3 4
78 75 79 57 64 83
Fish/Seafood Cod, whole Halibut, whole Lobster Mackerel Salmon, whole Shrimp
Other Almonds Butter Cheese, Cheddar Cheese, Swiss Chocolate milk Eggs, whole Honey Ice cream Milk, whole Peanuts Peanuts, roasted Pecans Walnuts
89 83 85 86 85 18 90 87 93
Peaches Pears Pineapples Plums Quinces Raisins Strawberries Tangerines Watermelon
Water content,a %(mass)
— — 12.9 10.0 — 0.6 — 5.6 0.6 — — — —
1.7 1.7 — — 2.8 — — 1.7 — —
— — 2.08 2.15 — 3.32 — 2.95 3.79 — — — —
2.48 3.18 3.08 2.72 3.32 3.02 2.08 2.72 2.11 2.98
3.45 3.35 3.49 2.75 2.98 3.62
3.82 3.62 3.69 3.72 3.69 — 3.86 3.75 3.96
0.9 1.6 1.0 0.8 2.0 — 0.8 1.1 0.4 2.2 2.2 2.2 2.2 2.2 2.2
Above Freezing
Freezing Pointa C
0.89 1.04 1.31 1.33 0.85 1.77 1.05 1.63 1.95 0.92 0.87 0.87 0.88
1.46 1.72 1.68 1.55 1.77 1.66 1.31 1.55 1.32 1.65
1.82 1.78 1.84 1.56 1.65 1.89
1.96 1.89 1.91 1.92 1.91 1.07 1.97 1.94 2.01
Below Freezing
Specific heat,b kJ/kg · K
17 53 124 130 3 247 57 210 294 20 7 10 13
164 234 224 187 247 217 124 187 127 214
261 251 264 190 214 277
297 277 284 287 284 60 301 291 311
Latent Heat of Fusion,c kJ/kg
c
The latent heat of fusion is determined by multiplying the heat of fusion of water (334 kJ/kg) by the water content of the food.
b Specific heat data are based on the specific heat values of a water and ice at 0C and are determined from Siebel’s formulas: cp, fresh 3.35 (Water content) 0.84, above freezing, and cp, frozen 1.26 (Water content) 0.84, below freezing.
3:13 PM
Sources: aWater content and freezing-point data are from ASHRAE, Handbook of Fundamentals, Sl version (Atlanta, GA: American Society of Heating, Refrigerating and Air–Conditioning Engineers, Inc., 1993), Chap. 30. Table 1. Used with permission. Freezing point is the temperature at which freezing starts for fruits and vegetables, and the average freezing temperature for other foods.
84 93 89 90 92 88 92 94 74 96 93 75 85 95 91 90 89 88 85 74 92 78 91 93 94 92
Freezing Pointa C
Latent Heat of Fusion,c kJ/kg Food
11/30/05
Vegetables Artichokes Asparagus Beans, snap Broccoli Cabbage Carrots Cauliflower Celery Corn, sweet Cucumbers Eggplant Horseradish Leeks Lettuce Mushrooms Okra Onions, green Onions, dry Parsley Peas, green Peppers, sweet Potatoes Pumpkins Spinach Tomatos, rlpe Turnips
Food
Water content,a %(mass)
Specific heat,b kJ/kg · K
Properties of common foods (a) Specific heats and freezing-point properties
TABLE A–7
cen29305_chAP1.qxd Page 851
851 APPENDIX 1
cen29305_chAP1.qxd
11/30/05
3:13 PM
Page 852
852 APPENDIX 1
TABLE A–7 Properties of common foods (Concluded) (b) Other properties Water Content, % (mass)
Temperature, T C
Density, r kg/m3
Thermal Conductivity, k W/m · K
Thermal Diffusivity, a m2/s
Specific Heat, cp kJ/kg · K
Fruits/Vegetables Apple juice Apples Apples, dried Apricots, dried Bananas, fresh Broccoli Cherries, fresh Figs Grape juice Peaches Plums Potatoes Raisins
87 85 41.6 43.6 76 — 92 40.4 89 89 — 78 32
20 8 23 23 27 6 0–30 23 20 2–32 16 0–70 23
1000 840 856 1320 980 560 1050 1241 1000 960 610 1055 1380
0.559 0.418 0.219 0.375 0.481 0.385 0.545 0.310 0.567 0.526 0.247 0.498 0.376
0.14 106 0.13 106 0.096 106 0.11 106 0.14 106 — 0.13 106 0.096 106 0.14 106 0.14 106 — 0.13 106 0.11 106
3.86 3.81 2.72 2.77 3.59 — 3.99 2.69 3.91 3.91 — 3.64 2.48
Meats Beef, ground Beef, lean Beef fat Beef liver Cat food Chicken breast Dog food Fish, cod Fish, salmon Ham Lamb Pork, lean Turkey breast Veal
67 74 0 72 39.7 75 30.6 81 67 71.8 72 72 74 75
6 3 35 35 23 0 23 3 3 20 20 4 3 20
950 1090 810 — 1140 1050 1240 1180 — 1030 1030 1030 1050 1060
0.406 0.471 0.190 0.448 0.326 0.476 0.319 0.534 0.531 0.480 0.456 0.456 0.496 0.470
0.13 0.13 — — 0.11 0.13 0.11 0.12 — 0.14 0.13 0.13 0.13 0.13
16 31.9 16 91 88 0 0 100 100 32.3
4 23 5 20 28 32 4 0 30 23
— 340 1000 — — 910 920 1000 995 450
0.197 0.106 0.233 0.566 0.580 0.168 0.168 0.569 0.618 0.082
— 0.12 0.11 — — — — 0.14 0.15 0.10
Food
Other Butter Chocolate cake Margarine Milk, skimmed Milk, whole Olive oil Peanut oil Water White cake
106 106
106 106 106 106
106 106 106 106 106
106 106
106 106 106
3.36 3.54 — 3.49 2.68 3.56 2.45 3.71 3.36 3.48 3.49 3.49 3.54 3.56 2.08 2.48 2.08 3.96 3.89 — — 4.217 4.178 2.49
Source: Data obtained primarily from ASHRAE, Handbook of Fundamentals, SI version (Atlanta, GA: American Society of Heating, Refrigerating and AirConditioning Engineers, Inc., 1993), Chap. 30, Tables 7 and 9. Used with permission. Most specific heats are calculated from cp 1.68 2.51 (Water content), which is a good approximation in the temperature range of 3 to 32C. Most thermal diffusivities are calculated from a k/rcp. Property values given here are valid for the specific water content.
cen29305_chAP1.qxd
11/30/05
3:13 PM
Page 853
853 APPENDIX 1
TABLE A–8 Properties of miscellaneous materials (Values are at 300 K unless indicated otherwise)
Material Asphalt Bakelite Brick, refractory Chrome brick 473 K 823 K 1173 K Fire clay, burnt 1600 K 773 K 1073 K 1373 K Fire clay, burnt 1725 K 773 K 1073 K 1373 K Fire clay brick 478 K 922 K 1478 K Magnesite 478 K 922 K 1478 K Chicken meat, white (74.4% water content) 198 K 233 K 253 K 273 K 293 K Clay, dry Clay, wet Coal, anthracite Concrete (stone mix) Cork Cotton Fat Glass Window Pyrex Crown Lead
Thermal Density, r Conductivity, k kg/m3 W/m · K 2115 1300
0.062 1.4
3010 — —
2.3 2.5 2.0
2050 — —
1.0 1.1 1.1
Specific Heat, cp J/kg · K 920 1465
835 — —
960 — —
2325 — —
1.3 1.4 1.4
960 — —
2645 — —
1.0 1.5 1.8
960 — —
— — —
3.8 2.8 1.9
1130 — —
— — — — — 1550 1495 1350
1.60 1.49 1.35 0.48 0.49 0.930 1.675 0.26
— — — — — — — 1260
2300 86 80 —
1.4 0.048 0.06 0.17
880 2030 1300 —
2800 2225 2500 3400
0.7 1–1.4 1.05 0.85
750 835 — —
Source: Compiled from various sources.
Material Ice 273 K 253 K 173 K Leather, sole Linoleum Mica Paper Plastics Plexiglass Teflon 300 K 400 K Lexan Nylon Polypropylene Polyester PVC, vinyl Porcelain Rubber, natural Rubber, vulcanized Soft Hard Sand Snow, fresh Snow, 273 K Soil, dry Soil, wet Sugar Tissue, human Skin Fat layer Muscle Vaseline Wood, cross-grain Balsa Fir Oak White pine Yellow pine Wood, radial Oak Fir Wool, ship
Thermal Density, r Conductivity, k kg/m3 W/m · K
Specific Heat, cp J/kg · K
920 922 928 998 535 1180 2900 930
1.88 2.03 3.49 0.159 0.081 0.186 0.523 0.180
2040 1945 1460 — — — — 1340
1190
0.19
1465
2200 — 1200 1145 910 1395 1470 2300 1150
0.35 0.45 0.19 0.29 0.12 0.15 0.1 1.5 0.28
1050 — 1260 — 1925 1170 840 — —
1100 1190 1515 100 500 1500 1900 1600
0.13 0.16 0.2–1.0 0.60 2.2 1.0 2.0 0.58
2010 — 800 — — 1900 2200 —
0.37 0.2 0.41 0.17
— — — —
— — — — 140 415 545 435 640
0.055 0.11 0.17 0.11 0.15
— 2720 2385 — 2805
545 420 145
0.19 0.14 0.05
2385 2720 —
cen29305_chAP1.qxd
11/30/05
3:13 PM
Page 854
854 APPENDIX 1
TABLE A–9 Properties of saturated water
Temp. T, C 0.01 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 110 120 130 140 150 160 170 180 190 200 220 240 260 280 300 320 340 360 374.14
Saturation Pressure Psat, kPa 0.6113 0.8721 1.2276 1.7051 2.339 3.169 4.246 5.628 7.384 9.593 12.35 15.76 19.94 25.03 31.19 38.58 47.39 57.83 70.14 84.55 101.33 143.27 198.53 270.1 361.3 475.8 617.8 791.7 1,002.1 1,254.4 1,553.8 2,318 3,344 4,688 6,412 8,581 11,274 14,586 18,651 22,090
Density r, kg/m3 Liquid
Vapor
999.8 0.0048 999.9 0.0068 999.7 0.0094 999.1 0.0128 998.0 0.0173 997.0 0.0231 996.0 0.0304 994.0 0.0397 992.1 0.0512 990.1 0.0655 988.1 0.0831 985.2 0.1045 983.3 0.1304 980.4 0.1614 977.5 0.1983 974.7 0.2421 971.8 0.2935 968.1 0.3536 965.3 0.4235 961.5 0.5045 957.9 0.5978 950.6 0.8263 943.4 1.121 934.6 1.496 921.7 1.965 916.6 2.546 907.4 3.256 897.7 4.119 887.3 5.153 876.4 6.388 864.3 7.852 840.3 11.60 813.7 16.73 783.7 23.69 750.8 33.15 713.8 46.15 667.1 64.57 610.5 92.62 528.3 144.0 317.0 317.0
Enthalpy of Vaporization
Specific Heat cp, J/kg · K
hfg, kJ/kg
Liquid
Vapor
2501 2490 2478 2466 2454 2442 2431 2419 2407 2395 2383 2371 2359 2346 2334 2321 2309 2296 2283 2270 2257 2230 2203 2174 2145 2114 2083 2050 2015 1979 1941 1859 1767 1663 1544 1405 1239 1028 720 0
4217 4205 4194 4185 4182 4180 4178 4178 4179 4180 4181 4183 4185 4187 4190 4193 4197 4201 4206 4212 4217 4229 4244 4263 4286 4311 4340 4370 4410 4460 4500 4610 4760 4970 5280 5750 6540 8240 14,690 —
1854 1857 1862 1863 1867 1870 1875 1880 1885 1892 1900 1908 1916 1926 1936 1948 1962 1977 1993 2010 2029 2071 2120 2177 2244 2314 2420 2490 2590 2710 2840 3110 3520 4070 4835 5980 7900 11,870 25,800 —
Thermal Conductivity k, W/m · k Liquid
Vapor
0.561 0.0171 0.571 0.0173 0.580 0.0176 0.589 0.0179 0.598 0.0182 0.607 0.0186 0.615 0.0189 0.623 0.0192 0.631 0.0196 0.637 0.0200 0.644 0.0204 0.649 0.0208 0.654 0.0212 0.659 0.0216 0.663 0.0221 0.667 0.0225 0.670 0.0230 0.673 0.0235 0.675 0.0240 0.677 0.0246 0.679 0.0251 0.682 0.0262 0.683 0.0275 0.684 0.0288 0.683 0.0301 0.682 0.0316 0.680 0.0331 0.677 0.0347 0.673 0.0364 0.669 0.0382 0.663 0.0401 0.650 0.0442 0.632 0.0487 0.609 0.0540 0.581 0.0605 0.548 0.0695 0.509 0.0836 0.469 0.110 0.427 0.178 — —
Prandtl Number Pr
Dynamic Viscosity m, kg/m · s Liquid 1.792 1.519 1.307 1.138 1.002 0.891 0.798 0.720 0.653 0.596 0.547 0.504 0.467 0.433 0.404 0.378 0.355 0.333 0.315 0.297 0.282 0.255 0.232 0.213 0.197 0.183 0.170 0.160 0.150 0.142 0.134 0.122 0.111 0.102 0.094 0.086 0.078 0.070 0.060 0.043
103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103
Volume Expansion Coefficient b, 1/K
Vapor
Liquid
Vapor
13.5 11.2 9.45 8.09 7.01 6.14 5.42 4.83 4.32 3.91 3.55 3.25 2.99 2.75 2.55 2.38 2.22 2.08 1.96 1.85 1.75 1.58 1.44 1.33 1.24 1.16 1.09 1.03 0.983 0.947 0.910 0.865 0.836 0.832 0.854 0.902 1.00 1.23 2.06
1.00 0.068 103 1.00 0.015 103 1.00 0.733 103 1.00 0.138 103 1.00 0.195 103 1.00 0.247 103 1.00 0.294 103 1.00 0.337 103 1.00 0.377 103 1.00 0.415 103 1.00 0.451 103 1.00 0.484 103 1.00 0.517 103 1.00 0.548 103 1.00 0.578 103 1.00 0.607 103 1.00 0.653 103 1.00 0.670 103 1.00 0.702 103 1.00 0.716 103 1.00 0.750 103 1.00 0.798 103 1.00 0.858 103 1.01 0.913 103 1.02 0.970 103 1.02 1.025 103 1.05 1.145 103 1.05 1.178 103 1.07 1.210 103 1.09 1.280 103 1.11 1.350 103 1.15 1.520 103 1.24 1.720 103 1.35 2.000 103 1.49 2.380 103 1.69 2.950 103 1.97 2.43 3.73
0.922 0.934 0.946 0.959 0.973 0.987 1.001 1.016 1.031 1.046 1.062 1.077 1.093 1.110 1.126 1.142 1.159 1.176 1.193 1.210 1.227 1.261 1.296 1.330 1.365 1.399 1.434 1.468 1.502 1.537 1.571 1.641 1.712 1.788 1.870 1.965 2.084 2.255 2.571 4.313
105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105
Liquid
Note 1: Kinematic viscosity n and thermal diffusivity a can be calculated from their definitions, n m/r and a k/rcp n/Pr. The temperatures 0.01C, 100C, and 374.14C are the triple-, boiling-, and critical-point temperatures of water, respectively. The properties listed above (except the vapor density) can be used at any pressure with negligible error except at temperatures near the critical-point value. Note 2: The unit kJ/kg · C for specific heat is equivalent to kJ/kg · K, and the unit W/m · C for thermal conductivity is equivalent to W/m · K. Source: Viscosity and thermal conductivity data are from J. V. Sengers and J. T. R. Watson, Journal of Physical and Chemical Reference Data 15 (1986), pp. 1291–1322. Other data are obtained from various sources or calculated.
cen29305_chAP1.qxd
11/30/05
3:13 PM
Page 855
855 APPENDIX 1
TABLE A–10 Properties of saturated refrigerant-134a Specific Enthalpy Density Heat of Saturation r, kg/m3 Vaporization cp, J/kg · K Temp. Pressure T, C P, kPa Liquid Vapor hfg, kJ/kg Liquid Vapor 40 35 30 25 20 15 10 5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
51.2 66.2 84.4 106.5 132.8 164.0 200.7 243.5 293.0 349.9 414.9 488.7 572.1 665.8 770.6 887.5 1017.1 1160.5 1318.6 1492.3 1682.8 1891.0 2118.2 2365.8 2635.2 2928.2 3246.9 3594.1 3975.1
1418 1403 1389 1374 1359 1343 1327 1311 1295 1278 1261 1244 1226 1207 1188 1168 1147 1125 1102 1078 1053 1026 996.2 964 928.2 887.1 837.7 772.5 651.7
2.773 3.524 4.429 5.509 6.787 8.288 10.04 12.07 14.42 17.12 20.22 23.75 27.77 32.34 37.53 43.41 50.08 57.66 66.27 76.11 87.38 100.4 115.6 133.6 155.3 182.3 217.8 269.3 376.3
225.9 222.7 219.5 216.3 213.0 209.5 206.0 202.4 198.7 194.8 190.8 186.6 182.3 177.8 173.1 168.2 163.0 157.6 151.8 145.7 139.1 132.1 124.4 115.9 106.4 95.4 82.2 64.9 33.9
1254 1264 1273 1283 1294 1306 1318 1330 1344 1358 1374 1390 1408 1427 1448 1471 1498 1529 1566 1608 1659 1722 1801 1907 2056 2287 2701 3675 7959
748.6 764.1 780.2 797.2 814.9 833.5 853.1 873.8 895.6 918.7 943.2 969.4 997.6 1028 1061 1098 1138 1184 1237 1298 1372 1462 1577 1731 1948 2281 2865 4144 8785
Thermal Conductivity k, W/m · K Liquid 0.1101 0.1084 0.1066 0.1047 0.1028 0.1009 0.0989 0.0968 0.0947 0.0925 0.0903 0.0880 0.0856 0.0833 0.0808 0.0783 0.0757 0.0731 0.0704 0.0676 0.0647 0.0618 0.0587 0.0555 0.0521 0.0484 0.0444 0.0396 0.0322
Vapor 0.00811 0.00862 0.00913 0.00963 0.01013 0.01063 0.01112 0.01161 0.01210 0.01259 0.01308 0.01357 0.01406 0.01456 0.01507 0.01558 0.01610 0.01664 0.01720 0.01777 0.01838 0.01902 0.01972 0.02048 0.02133 0.02233 0.02357 0.02544 0.02989
Liquid
Vapor
Volume Expansion Coefficient Surface Tension, b, l/K Liquid N/m
106 5.558 106 5.257 106 4.992 106 4.757 106 4.548 106 4.363 106 4.198 106 4.051 106 3.919 106 3.802 106 3.697 106 3.604 105 3.521 105 3.448 105 3.383 105 3.328 105 3.285 105 3.253 105 3.231 105 3.223 105 3.229 105 3.255 105 3.307 105 3.400 105 3.558 105 3.837 105 4.385 105 5.746 105 11.77
0.235 0.266 0.299 0.335 0.374 0.415 0.459 0.505 0.553 0.603 0.655 0.708 0.763 0.819 0.877 0.935 0.995 1.058 1.123 1.193 1.272 1.362 1.471 1.612 1.810 2.116 2.658 3.862 8.326
0.00205 0.00209 0.00215 0.00220 0.00227 0.00233 0.00241 0.00249 0.00258 0.00269 0.00280 0.00293 0.00307 0.00324 0.00342 0.00364 0.00390 0.00420 0.00455 0.00500 0.00554 0.00624 0.00716 0.00843 0.01031 0.01336 0.01911 0.03343 0.10047
Prandtl Number Pr
Dynamic Viscosity m, kg/m · s Liquid 4.878 4.509 4.178 3.882 3.614 3.371 3.150 2.947 2.761 2.589 2.430 2.281 2.142 2.012 1.888 1.772 1.660 1.554 1.453 1.355 1.260 1.167 1.077 9.891 9.011 8.124 7.203 6.190 4.765
104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 105 105 105 105 105 105
Vapor 2.550 3.003 3.504 4.054 4.651 5.295 5.982 6.709 7.471 8.264 9.081 9.915 1.075 1.160 1.244 1.327 1.408 1.486 1.562 1.634 1.704 1.771 1.839 1.908 1.982 2.071 2.187 2.370 2.833
0.01760 0.01682 0.01604 0.01527 0.01451 0.01376 0.01302 0.01229 0.01156 0.01084 0.01014 0.00944 0.00876 0.00808 0.00742 0.00677 0.00613 0.00550 0.00489 0.00429 0.00372 0.00315 0.00261 0.00209 0.00160 0.00114 0.00071 0.00033 0.00004
Note 1: Kinematic viscosity n and thermal diffusivity a can be calculated from their definitions, n m/r and a k/rcp n/Pr. The properties listed here (except the vapor density) can be used at any pressures with negligible error except at temperatures near the critical-point value. Note 2: The unit kJ/kg · C for specific heat is equivalent to kJ/kg · K, and the unit W/m · C for thermal conductivity is equivalent to W/m · K. Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Original sources: R. Tillner-Roth and H. D. Baehr, “An International Standard Formulation for the Thermodynamic Properties of 1,1,1,2-Tetrafluoroethane (HFC-134a) for Temperatures from 170 K to 455 K and Pressures up to 70 MPa,” J. Phys. Chem, Ref. Data, Vol. 23, No. 5, 1994; M.J. Assael, N. K. Dalaouti, A. A. Griva, and J. H. Dymond, “Viscosity and Thermal Conductivity of Halogenated Methane and Ethane Refrigerants,” IJR, Vol. 22, pp. 525–535, 1999; NIST REFPROP 6 program (M. O. McLinden, S. A. Klein, E. W. Lemmon, and A. P. Peskin, Physical and Chemical Properties Division, National Institute of Standards and Technology, Boulder, CO 80303, 1995).
cen29305_chAP1.qxd
11/30/05
3:13 PM
Page 856
856 APPENDIX 1
TABLE A–11 Properties of saturated ammonia Specific Thermal Enthalpy Density Heat Conductivity of Saturation k, W/m · K r, kg/m3 Vaporization cp, J/kg · K Temp. Pressure T, C P, kPa Liquid Vapor hfg, kJ/kg Liquid Vapor Liquid Vapor 40 30 25 20 15 10 5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
71.66 119.4 151.5 190.1 236.2 290.8 354.9 429.6 516 615.3 728.8 857.8 1003 1167 1351 1555 1782 2033 2310 2614 2948 3312 3709 4141 4609 5116 5665 6257
690.2 677.8 671.5 665.1 658.6 652.1 645.4 638.6 631.7 624.6 617.5 610.2 602.8 595.2 587.4 579.4 571.3 562.9 554.2 545.2 536.0 526.3 516.2 505.7 494.5 482.8 470.2 456.6
0.6435 1.037 1.296 1.603 1.966 2.391 2.886 3.458 4.116 4.870 5.729 6.705 7.809 9.055 10.46 12.03 13.8 15.78 18.00 20.48 23.26 26.39 29.90 33.87 38.36 43.48 49.35 56.15
1389 1360 1345 1329 1313 1297 1280 1262 1244 1226 1206 1186 1166 1144 1122 1099 1075 1051 1025 997.4 968.9 939.0 907.5 874.1 838.6 800.6 759.8 715.5
4414 4465 4489 4514 4538 4564 4589 4617 4645 4676 4709 4745 4784 4828 4877 4932 4993 5063 5143 5234 5340 5463 5608 5780 5988 6242 6561 6972
2242 2322 2369 2420 2476 2536 2601 2672 2749 2831 2920 3016 3120 3232 3354 3486 3631 3790 3967 4163 4384 4634 4923 5260 5659 6142 6740 7503
— — 0.5968 0.5853 0.5737 0.5621 0.5505 0.5390 0.5274 0.5158 0.5042 0.4927 0.4811 0.4695 0.4579 0.4464 0.4348 0.4232 0.4116 0.4001 0.3885 0.3769 0.3653 0.3538 0.3422 0.3306 0.3190 0.3075
0.01792 0.01898 0.01957 0.02015 0.02075 0.02138 0.02203 0.02270 0.02341 0.02415 0.02492 0.02573 0.02658 0.02748 0.02843 0.02943 0.03049 0.03162 0.03283 0.03412 0.03550 0.03700 0.03862 0.04038 0.04232 0.04447 0.04687 0.04958
Dynamic Viscosity m, kg/m · s Liquid 2.926 2.630 2.492 2.361 2.236 2.117 2.003 1.896 1.794 1.697 1.606 1.519 1.438 1.361 1.288 1.219 1.155 1.094 1.037 9.846 9.347 8.879 8.440 8.030 7.646 7.284 6.946 6.628
Vapor 4
10 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 105 105 105 105 105 105 105 105 105
7.957 8.311 8.490 8.669 8.851 9.034 9.218 9.405 9.593 9.784 9.978 1.017 1.037 1.057 1.078 1.099 1.121 1.143 1.166 1.189 1.213 1.238 1.264 1.292 1.322 1.354 1.389 1.429
Liquid
Vapor
Volume Expansion Coefficient b, l/K Liquid
— — 1.875 1.821 1.769 1.718 1.670 1.624 1.580 1.539 1.500 1.463 1.430 1.399 1.372 1.347 1.327 1.310 1.297 1.288 1.285 1.287 1.296 1.312 1.338 1.375 1.429 1.503
0.9955 1.017 1.028 1.041 1.056 1.072 1.089 1.107 1.126 1.147 1.169 1.193 1.218 1.244 1.272 1.303 1.335 1.371 1.409 1.452 1.499 1.551 1.612 1.683 1.768 1.871 1.999 2.163
0.00176 0.00185 0.00190 0.00194 0.00199 0.00205 0.00210 0.00216 0.00223 0.00230 0.00237 0.00245 0.00254 0.00264 0.00275 0.00287 0.00301 0.00316 0.00334 0.00354 0.00377 0.00404 0.00436 0.00474 0.00521 0.00579 0.00652 0.00749
Prandtl Number Pr
6
10 106 106 106 106 106 106 106 106 106 106 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105
Surface Tension, N/m 0.03565 0.03341 0.03229 0.03118 0.03007 0.02896 0.02786 0.02676 0.02566 0.02457 0.02348 0.02240 0.02132 0.02024 0.01917 0.01810 0.01704 0.01598 0.01493 0.01389 0.01285 0.01181 0.01079 0.00977 0.00876 0.00776 0.00677 0.00579
Note 1: Kinematic viscosity n and thermal diffusivity a can be calculated from their definitions, n m/r and a k/rcp n/Pr. The properties listed here (except the vapor density) can be used at any pressures with negligible error except at temperatures near the critical-point value. Note 2: The unit kJ/kg · C for specific heat is equivalent to kJ/kg · K, and the unit W/m · C for thermal conductivity is equivalent to W/m · K. Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Original sources: Tillner-Roth, Harms-Watzenberg, and Baehr, “Eine neue Fundamentalgleichung fur Ammoniak,” DKV-Tagungsbericht 20:167–181, 1993; Liley and Desai, “Thermophysical Properties of Refrigerants,” ASHRAE, 1993, ISBN 1-1883413-10-9.
cen29305_chAP1.qxd
11/30/05
3:13 PM
Page 857
857 APPENDIX 1
TABLE A–12 Properties of saturated propane
Density Saturation r, kg/m3 Temp. Pressure T, C P, kPa Liquid Vapor 120 0.4053 110 1.157 100 2.881 90 6.406 80 12.97 70 24.26 60 42.46 50 70.24 40 110.7 30 167.3 20 243.8 10 344.4 0 473.3 5 549.8 10 635.1 15 729.8 20 834.4 25 949.7 30 1076 35 1215 40 1366 45 1530 50 1708 60 2110 70 2580 80 3127 90 3769
664.7 0.01408 654.5 0.03776 644.2 0.08872 633.8 0.1870 623.2 0.3602 612.5 0.6439 601.5 1.081 590.3 1.724 578.8 2.629 567.0 3.864 554.7 5.503 542.0 7.635 528.7 10.36 521.8 11.99 514.7 13.81 507.5 15.85 500.0 18.13 492.2 20.68 484.2 23.53 475.8 26.72 467.1 30.29 458.0 34.29 448.5 38.79 427.5 49.66 403.2 64.02 373.0 84.28 329.1 118.6
Specific Enthalpy Heat of Vaporization cp, J/kg · K hfg, kJ/kg Liquid Vapor 498.3 489.3 480.4 471.5 462.4 453.1 443.5 433.6 423.1 412.1 400.3 387.8 374.2 367.0 359.5 351.7 343.4 334.8 325.8 316.2 306.1 295.3 283.9 258.4 228.0 189.7 133.2
2003 2021 2044 2070 2100 2134 2173 2217 2258 2310 2368 2433 2507 2547 2590 2637 2688 2742 2802 2869 2943 3026 3122 3283 3595 4501 6977
1115 1148 1183 1221 1263 1308 1358 1412 1471 1535 1605 1682 1768 1814 1864 1917 1974 2036 2104 2179 2264 2361 2473 2769 3241 4173 7239
Thermal Conductivity k, W/m · K Liquid 0.1802 0.1738 0.1672 0.1606 0.1539 0.1472 0.1407 0.1343 0.1281 0.1221 0.1163 0.1107 0.1054 0.1028 0.1002 0.0977 0.0952 0.0928 0.0904 0.0881 0.0857 0.0834 0.0811 0.0765 0.0717 0.0663 0.0595
Vapor 0.00589 0.00645 0.00705 0.00769 0.00836 0.00908 0.00985 0.01067 0.01155 0.01250 0.01351 0.01459 0.01576 0.01637 0.01701 0.01767 0.01836 0.01908 0.01982 0.02061 0.02142 0.02228 0.02319 0.02517 0.02746 0.03029 0.03441
Dynamic Viscosity m, kg/m · s Liquid 6.136 5.054 4.252 3.635 3.149 2.755 2.430 2.158 1.926 1.726 1.551 1.397 1.259 1.195 1.135 1.077 1.022 9.702 9.197 8.710 8.240 7.785 7.343 6.487 5.649 4.790 3.807
Vapor 4
10 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 105 105 105 105 105 105 105 105 105 105
4.372 4.625 4.881 5.143 5.409 5.680 5.956 6.239 6.529 6.827 7.136 7.457 7.794 7.970 8.151 8.339 8.534 8.738 8.952 9.178 9.417 9.674 9.950 1.058 1.138 1.249 1.448
Volume Expansion Coefficient Surface Tension, b, l/K Vapor Liquid N/m
Prandtl Number Pr Liquid 6
10 106 106 106 106 106 106 106 106 106 106 106 106 106 106 106 106 106 106 106 106 106 105 105 105 105 105
6.820 5.878 5.195 4.686 4.297 3.994 3.755 3.563 3.395 3.266 3.158 3.069 2.996 2.964 2.935 2.909 2.886 2.866 2.850 2.837 2.828 2.824 2.826 2.784 2.834 3.251 4.465
0.827 0.822 0.819 0.817 0.817 0.818 0.821 0.825 0.831 0.839 0.848 0.860 0.875 0.883 0.893 0.905 0.918 0.933 0.950 0.971 0.995 1.025 1.061 1.164 1.343 1.722 3.047
0.00153 0.00157 0.00161 0.00166 0.00171 0.00177 0.00184 0.00192 0.00201 0.00213 0.00226 0.00242 0.00262 0.00273 0.00286 0.00301 0.00318 0.00337 0.00358 0.00384 0.00413 0.00448 0.00491 0.00609 0.00811 0.01248 0.02847
0.02630 0.02486 0.02344 0.02202 0.02062 0.01923 0.01785 0.01649 0.01515 0.01382 0.01251 0.01122 0.00996 0.00934 0.00872 0.00811 0.00751 0.00691 0.00633 0.00575 0.00518 0.00463 0.00408 0.00303 0.00204 0.00114 0.00037
Note 1: Kinematic viscosity n and thermal diffusivity a can be calculated from their definitions, n m/r and a k/mcp n/Pr. The properties listed here (except the vapor density) can be used at any pressures with negligible error except at temperatures near the critical-point value. Note 2: The unit kJ/kg · C for specific heat is equivalent to kJ/kg · K, and the unit W/m · C for thermal conductivity is equivalent to W/m · K. Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Original sources: Reiner Tillner-Roth, “Fundamental Equations of State,” Shaker, Verlag, Aachan, 1998; B. A. Younglove and J. F. Ely, “Thermophysical Properties of Fluids. II Methane, Ethane, Propane, Isobutane, and Normal Butane,” J. Phys. Chem. Ref. Data, Vol. 16, No. 4, 1987; G.R. Somayajulu, “A Generalized Equation for Surface Tension from the Triple-Point to the CriticalPoint,” International Journal of Thermophysics, Vol. 9, No. 4, 1988.
cen29305_chAP1.qxd
11/30/05
3:13 PM
Page 858
858 APPENDIX 1
TABLE A–13 Properties of liquids
Temp. T, C
Density r, kg/m3
Specific Heat cp, J/kg · K
160 150 140 130 120 110 100 90
420.2 405.0 388.8 371.1 351.4 328.8 301.0 261.7
3492 3580 3700 3875 4146 4611 5578 8902
Thermal Conductivity k, W/m · K
0.1863 0.1703 0.1550 0.1402 0.1258 0.1115 0.0967 0.0797
Thermal Diffusivity a, m2/s
Dynamic Viscosity m, kg/m · s
Kinematic Viscosity n, m2/s
Prandtl Number Pr
Volume Expansion Coeff. b, 1/K
Methane [CH4] 1.270 1.174 1.077 9.749 8.634 7.356 5.761 3.423
107 107 107 108 108 108 108 108
1.133 9.169 7.551 6.288 5.257 4.377 3.577 2.761
104 105 105 105 105 105 105 105
2.699 2.264 1.942 1.694 1.496 1.331 1.188 1.055
107 107 107 107 107 107 107 107
2.126 1.927 1.803 1.738 1.732 1.810 2.063 3.082
0.00352 0.00391 0.00444 0.00520 0.00637 0.00841 0.01282 0.02922
104 104 104 104 104 104
7.429 6.531 5.795 5.185 4.677 4.250
107 107 107 107 107 107
7.414 6.622 5.980 5.453 5.018 4.655
0.00118 0.00120 0.00123 0.00127 0.00132 0.00137
104 104 104 104 104 104 104 105 105
1.360 8.531 5.942 4.420 3.432 2.743 2.233 1.836 1.509
106 107 107 107 107 107 107 107 107
12.65 8.167 6.079 4.963 4.304 3.880 3.582 3.363 3.256
0.00142 0.00150 0.00161 0.00177 0.00199 0.00232 0.00286 0.00385 0.00628
8.219 5.287 3.339 1.970 1.201 7.878 5.232 3.464 2.455
103 103 103 103 103 104 104 104 104
84,101 54,327 34,561 20,570 12,671 8,392 5,631 3,767 2,697
4.242 9.429 2.485 8.565 3.794 2.046 1.241 8.029 6.595
103 104 104 105 105 105 105 106 106
46,636 10,863 2,962 1,080 499.3 279.1 176.3 118.1 98.31
Methanol [CH3(OH)] 20 30 40 50 60 70
788.4 779.1 769.6 760.1 750.4 740.4
2515 2577 2644 2718 2798 2885
0.1987 0.1980 0.1972 0.1965 0.1957 0.1950
1.002 9.862 9.690 9.509 9.320 9.128
107 108 108 108 108 108
5.857 5.088 4.460 3.942 3.510 3.146
Isobutane (R600a) 100 75 50 25 0 25 50 75 100
683.8 659.3 634.3 608.2 580.6 550.7 517.3 478.5 429.6
1881 1970 2069 2180 2306 2455 2640 2896 3361
0.1383 0.1357 0.1283 0.1181 0.1068 0.0956 0.0851 0.0757 0.0669
1.075 1.044 9.773 8.906 7.974 7.069 6.233 5.460 4.634
107 107 108 108 108 108 108 108 108
2262 2288 2320 2354 2386 2416 2447 2478 2513
0.2820 0.2835 0.2846 0.2856 0.2860 0.2860 0.2860 0.2860 0.2863
9.773 9.732 9.662 9.576 9.484 9.388 9.291 9.195 9.101
108 108 108 108 108 108 108 108 108
9.305 5.624 3.769 2.688 1.993 1.510 1.155 8.785 6.483
Glycerin 0 5 10 15 20 25 30 35 40
1276 1273 1270 1267 1264 1261 1258 1255 1252
10.49 6.730 4.241 2.496 1.519 0.9934 0.6582 0.4347 0.3073
Engine Oil (unused) 0 20 40 60 80 100 120 140 150
899.0 888.1 876.0 863.9 852.0 840.0 828.9 816.8 810.3
1797 1881 1964 2048 2132 2220 2308 2395 2441
0.1469 0.1450 0.1444 0.1404 0.1380 0.1367 0.1347 0.1330 0.1327
9.097 8.680 8.391 7.934 7.599 7.330 7.042 6.798 6.708
108 108 108 108 108 108 108 108 108
3.814 0.8374 0.2177 0.07399 0.03232 0.01718 0.01029 0.006558 0.005344
Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Originally based on various sources.
0.00070 0.00070 0.00070 0.00070 0.00070 0.00070 0.00070 0.00070 0.00070
cen29305_chAP1.qxd
11/30/05
3:13 PM
Page 859
859 APPENDIX 1
TABLE A–14 Properties of liquid metals
Temp. T, C
Density r, kg/m3
Specific Heat cp, J/kg · K
Thermal Conductivity k, W/m · K
13595 13534 13473 13412 13351 13231 13112 12993 12873
140.4 139.4 138.6 137.8 137.1 136.1 135.5 135.3 135.3
8.18200 8.51533 8.83632 9.15632 9.46706 10.07780 10.65465 11.18150 11.68150
Thermal Diffusivity a, m2/s
Dynamic Viscosity m, kg/m · s
Kinematic Viscosity n, m2/s
Volume Expansion Coeff. b, 1/K
Prandtl Number Pr
Mercury (Hg) Melting Point: 39C 0 25 50 75 100 150 200 250 300
4.287 4.514 4.734 4.956 5.170 5.595 5.996 6.363 6.705
106 106 106 106 106 106 106 106 106
1.687 1.534 1.423 1.316 1.245 1.126 1.043 9.820 9.336
1.241 1.133 1.056 9.819 9.326 8.514 7.959 7.558 7.252
107 107 107 108 108 108 108 108 108
0.0289 0.0251 0.0223 0.0198 0.0180 0.0152 0.0133 0.0119 0.0108
103 103 103 103 104
1.545 1.436 1.215 1.048 9.157
107 107 107 107 108
0.01381 0.01310 0.01154 0.01022 0.00906
103 103 103 103 103 103 103
2.167 1.976 1.814 1.702 1.589 1.475 1.360
107 107 107 107 107 107 107
0.02252 0.02048 0.01879 0.01771 0.01661 0.01549 0.01434
7.432 5.967 4.418 3.188 2.909 2.614
107 107 107 107 107 107
0.01106 0.008987 0.006751 0.004953 0.004593 0.004202
4.213 3.456 2.652 2.304 2.126
107 107 107 107 107
0.006023 0.004906 0.00374 0.003309 0.003143
107 107 107 107 107 107
0.02102 0.01611 0.01161 0.00753 0.00665 0.00579
103 103 103 103 103 103 103 104 104
1.810 1.810 1.810 1.810 1.810 1.810 1.815 1.829 1.854
Bismuth (Bi) Melting Point: 271C 350 400 500 600 700
9969 9908 9785 9663 9540
146.0 148.2 152.8 157.3 161.8
16.28 16.10 15.74 15.60 15.60
1.118 1.096 1.052 1.026 1.010
105 105 105 105 105
1.540 1.422 1.188 1.013 8.736
Lead (Pb) Melting Point: 327C 400 450 500 550 600 650 700
10506 10449 10390 10329 10267 10206 10145
158 156 155 155 155 155 155
15.97 15.74 15.54 15.39 15.23 15.07 14.91
9.623 9.649 9.651 9.610 9.568 9.526 9.483
1378 1349 1320 1296 1284 1272
85.84 80.84 75.84 71.20 67.41 63.63
6.718 6.639 6.544 6.437 6.335 6.220
106 106 106 106 106 106 106
2.277 2.065 1.884 1.758 1.632 1.505 1.379
Sodium (Na) Melting Point: 98C 100 200 300 400 500 600
927.3 902.5 877.8 853.0 828.5 804.0
200 300 400 500 600
795.2 771.6 748.0 723.9 699.6
105 105 105 105 105 105
6.892 5.385 3.878 2.720 2.411 2.101
104 104 104 104 104 104
Potassium (K) Melting Point: 64C 790.8 772.8 754.8 750.0 750.0
43.99 42.01 40.03 37.81 35.50
6.995 7.045 7.090 6.964 6.765
105 105 105 105 105
3.350 2.667 1.984 1.668 1.487
104 104 104 104 104
Sodium-Potassium (%22Na-%78K) Melting Point: 11C 100 200 300 400 500 600
847.3 823.2 799.1 775.0 751.5 728.0
944.4 922.5 900.6 879.0 880.1 881.2
25.64 26.27 26.89 27.50 27.89 28.28
3.205 3.459 3.736 4.037 4.217 4.408
105 105 105 105 105 105
5.707 4.587 3.467 2.357 2.108 1.859
104 104 104 104 104 104
6.736 5.572 4.339 3.041 2.805 2.553
Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Originally based on various sources.
104 104 104 104 104 104 104 104 104
cen29305_chAP1.qxd
11/30/05
3:13 PM
Page 860
860 APPENDIX 1
TABLE A–15 Properties of air at 1 atm pressure Temp. T, C
Density r, kg/m3
Specific Heat cp, J/kg · K
Thermal Conductivity k, W/m · K
150 100 50 40 30 20 10 0 5 10 15 20 25 30 35 40 45 50 60 70 80 90 100 120 140 160 180 200 250 300 350 400 450 500 600 700 800 900 1000 1500 2000
2.866 2.038 1.582 1.514 1.451 1.394 1.341 1.292 1.269 1.246 1.225 1.204 1.184 1.164 1.145 1.127 1.109 1.092 1.059 1.028 0.9994 0.9718 0.9458 0.8977 0.8542 0.8148 0.7788 0.7459 0.6746 0.6158 0.5664 0.5243 0.4880 0.4565 0.4042 0.3627 0.3289 0.3008 0.2772 0.1990 0.1553
983 966 999 1002 1004 1005 1006 1006 1006 1006 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1008 1008 1009 1011 1013 1016 1019 1023 1033 1044 1056 1069 1081 1093 1115 1135 1153 1169 1184 1234 1264
0.01171 0.01582 0.01979 0.02057 0.02134 0.02211 0.02288 0.02364 0.02401 0.02439 0.02476 0.02514 0.02551 0.02588 0.02625 0.02662 0.02699 0.02735 0.02808 0.02881 0.02953 0.03024 0.03095 0.03235 0.03374 0.03511 0.03646 0.03779 0.04104 0.04418 0.04721 0.05015 0.05298 0.05572 0.06093 0.06581 0.07037 0.07465 0.07868 0.09599 0.11113
Thermal Diffusivity a, m2/s2 4.158 8.036 1.252 1.356 1.465 1.578 1.696 1.818 1.880 1.944 2.009 2.074 2.141 2.208 2.277 2.346 2.416 2.487 2.632 2.780 2.931 3.086 3.243 3.565 3.898 4.241 4.593 4.954 5.890 6.871 7.892 8.951 1.004 1.117 1.352 1.598 1.855 2.122 2.398 3.908 5.664
106 106 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 104 104 104 104 104 104 104 104 104
Dynamic Viscosity m, kg/m · s 8.636 1.189 1.474 1.527 1.579 1.630 1.680 1.729 1.754 1.778 1.802 1.825 1.849 1.872 1.895 1.918 1.941 1.963 2.008 2.052 2.096 2.139 2.181 2.264 2.345 2.420 2.504 2.577 2.760 2.934 3.101 3.261 3.415 3.563 3.846 4.111 4.362 4.600 4.826 5.817 6.630
106 106 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105
Kinematic Viscosity n, m2/s 3.013 5.837 9.319 1.008 1.087 1.169 1.252 1.338 1.382 1.426 1.470 1.516 1.562 1.608 1.655 1.702 1.750 1.798 1.896 1.995 2.097 2.201 2.306 2.522 2.745 2.975 3.212 3.455 4.091 4.765 5.475 6.219 6.997 7.806 9.515 1.133 1.326 1.529 1.741 2.922 4.270
106 106 106 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 104 104 104 104 104 104
Prandtl Number Pr 0.7246 0.7263 0.7440 0.7436 0.7425 0.7408 0.7387 0.7362 0.7350 0.7336 0.7323 0.7309 0.7296 0.7282 0.7268 0.7255 0.7241 0.7228 0.7202 0.7177 0.7154 0.7132 0.7111 0.7073 0.7041 0.7014 0.6992 0.6974 0.6946 0.6935 0.6937 0.6948 0.6965 0.6986 0.7037 0.7092 0.7149 0.7206 0.7260 0.7478 0.7539
Note: For ideal gases, the properties cp, k, m, and Pr are independent of pressure. The properties r, n, and a at a pressure P (in atm) other than 1 atm are determined by multiplying the values of r at the given temperature by P and by dividing n and a by P. Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Original sources: Keenan, Chao, Keyes, Gas Tables, Wiley, 198; and Thermophysical Properties of Matter. Vol. 3: Thermal Conductivity, Y. S. Touloukian, P. E. Liley, S. C. Saxena, Vol. 11: Viscosity, Y. S. Touloukian, S. C. Saxena, and P. Hestermans, IFI/Plenun, NY, 1970, ISBN 0-306067020-8.
cen29305_chAP1.qxd
11/30/05
3:13 PM
Page 861
861 APPENDIX 1
TABLE A–16 Properties of gases at 1 atm pressure Temp. T, C
Density r, kg/m3
Specific Heat cp, J/kg · K
Thermal Conductivity k, W/m · K
Thermal Diffusivity a, m2/s2
Dynamic Viscosity m, kg/m · s
Kinematic Viscosity n, m2/s
Prandtl Number Pr
Carbon Dioxide, CO2 50 0 50 100 150 200 300 400 500 1000 1500 2000
2.4035 1.9635 1.6597 1.4373 1.2675 1.1336 0.9358 0.7968 0.6937 0.4213 0.3025 0.2359
746 811 866.6 914.8 957.4 995.2 1060 1112 1156 1292 1356 1387
0.01051 0.01456 0.01858 0.02257 0.02652 0.03044 0.03814 0.04565 0.05293 0.08491 0.10688 0.11522
5.860 9.141 1.291 1.716 2.186 2.698 3.847 5.151 6.600 1.560 2.606 3.521
1.129 1.375 1.612 1.841 2.063 2.276 2.682 3.061 3.416 4.898 6.106 7.322
105 105 105 105 105 105 105 105 105 105 105 105
4.699 7.003 9.714 1.281 1.627 2.008 2.866 3.842 4.924 1.162 2.019 3.103
106 106 106 105 105 105 105 105 105 104 104 104
0.8019 0.7661 0.7520 0.7464 0.7445 0.7442 0.7450 0.7458 0.7460 0.7455 0.7745 0.8815
105 105 105 105 105 105 105 105 104 104 104 104
1.378 1.629 1.863 2.080 2.283 2.472 2.812 3.111 3.379 4.557 6.321 9.826
105 105 105 105 105 105 105 105 105 105 105 105
9.012 1.303 1.764 2.274 2.830 3.426 4.722 6.136 7.653 1.700 3.284 6.543
106 105 105 105 105 105 105 105 105 104 104 104
0.7840 0.7499 0.7328 0.7239 0.7191 0.7164 0.7134 0.7111 0.7087 0.7080 0.7733 0.9302
105 105 105 105 105 105 105 105 104 104 104 104
8.564 1.028 1.191 1.345 1.491 1.630 1.886 2.119 2.334 3.281 4.434 6.360
106 105 105 105 105 105 105 105 105 105 105 105
9.774 1.436 1.969 2.567 3.227 3.944 5.529 7.297 9.228 2.136 4.022 7.395
106 105 105 105 105 105 105 105 105 104 104 104
0.8116 0.7494 0.7282 0.7247 0.7284 0.7344 0.7450 0.7501 0.7502 0.7331 0.7936 1.0386
104 104 104 104 104 104
7.293 8.391 9.427 1.041 1.136 1.228
106 106 106 105 105 105
6.624 9.329 1.240 1.582 1.957 2.365
105 105 104 104 104 104
0.6562 0.7071 0.7191 0.7196 0.7174 0.7155
106 106 105 105 105 105 105 105 105 104 104 104
Carbon Monoxide, CO 50 0 50 100 150 200 300 400 500 1000 1500 2000
1.5297 1.2497 1.0563 0.9148 0.8067 0.7214 0.5956 0.5071 0.4415 0.2681 0.1925 0.1502
1081 1048 1039 1041 1049 1060 1085 1111 1135 1226 1279 1309
0.01901 0.02278 0.02641 0.02992 0.03330 0.03656 0.04277 0.04860 0.05412 0.07894 0.10458 0.13833
1.149 1.739 2.407 3.142 3.936 4.782 6.619 8.628 1.079 2.401 4.246 7.034
Methane, CH4 50 0 50 100 150 200 300 400 500 1000 1500 2000
0.8761 0.7158 0.6050 0.5240 0.4620 0.4132 0.3411 0.2904 0.2529 0.1536 0.1103 0.0860
2243 2217 2302 2443 2611 2791 3158 3510 3836 5042 5701 6001
0.02367 0.03042 0.03766 0.04534 0.05344 0.06194 0.07996 0.09918 0.11933 0.22562 0.31857 0.36750
1.204 1.917 2.704 3.543 4.431 5.370 7.422 9.727 1.230 2.914 5.068 7.120
Hydrogen, H2 50 0 50 100 150 200
0.11010 0.08995 0.07603 0.06584 0.05806 0.05193
12635 13920 14349 14473 14492 14482
0.1404 0.1652 0.1881 0.2095 0.2296 0.2486
1.009 1.319 1.724 2.199 2.729 3.306
(Continued)
cen29305_chAP1.qxd
11/30/05
3:13 PM
Page 862
862 APPENDIX 1
TABLE A–16 Properties of gases at 1 atm pressure (Continued) Temp. T, C
Density r, kg/m3
300 400 500 1000 1500 2000
0.04287 0.03650 0.03178 0.01930 0.01386 0.01081
Specific Heat cp, J/kg · K 14481 14540 14653 15577 16553 17400
Thermal Conductivity k, W/m · K 0.2843 0.3180 0.3509 0.5206 0.6581 0.5480
Thermal Diffusivity a, m2/s2 4.580 5.992 7.535 1.732 2.869 2.914
Dynamic Viscosity m, kg/m · s
Kinematic Viscosity n, m2/s
Prandtl Number Pr
104 104 104 103 103 103
1.403 1.570 1.730 2.455 3.099 3.690
105 105 105 105 105 105
3.274 4.302 5.443 1.272 2.237 3.414
104 104 104 103 103 103
0.7149 0.7179 0.7224 0.7345 0.7795 1.1717
105 105 105 105 105 105 105 105 104 104 104 104
1.390 1.640 1.874 2.094 2.300 2.494 2.849 3.166 3.451 4.594 5.562 6.426
105 105 105 105 105 105 105 105 105 105 105 105
9.091 1.312 1.774 2.289 2.851 3.457 4.783 6.242 7.816 1.713 2.889 4.278
106 105 105 105 105 105 105 105 105 104 104 104
0.6655 0.7121 0.7114 0.7056 0.7025 0.7025 0.7078 0.7153 0.7215 0.7022 0.5969 0.4483
105 105 105 105 105 105 105 105 104 104 104 104
1.616 1.916 2.194 2.451 2.694 2.923 3.350 3.744 4.114 5.732 7.133 8.417
105 105 105 105 105 105 105 105 105 105 105 105
9.246 1.342 1.818 2.346 2.923 3.546 4.923 6.463 8.156 1.871 3.243 4.907
106 105 105 105 105 105 105 105 105 104 104 104
0.7694 0.7198 0.7053 0.7019 0.7019 0.7025 0.7030 0.7023 0.7010 0.6986 0.6985 0.6873
7.187 8.956 1.078 1.265 1.456 1.650 2.045 2.446 2.847 4.762 6.411 7.808
106 106 105 105 105 105 105 105 105 105 105 105
7.305 1.114 1.587 2.150 2.806 3.556 5.340 7.498 1.002 2.761 5.177 8.084
106 105 105 105 105 105 105 105 104 104 104 104
1.0047 1.0033 0.9944 0.9830 0.9712 0.9599 0.9401 0.9240 0.9108 0.8639 0.8233 0.7833
Nitrogen, N2 50 0 50 100 150 200 300 400 500 1000 1500 2000
1.5299 1.2498 1.0564 0.9149 0.8068 0.7215 0.5956 0.5072 0.4416 0.2681 0.1925 0.1502
957.3 1035 1042 1041 1043 1050 1070 1095 1120 1213 1266 1297
0.02001 0.02384 0.02746 0.03090 0.03416 0.03727 0.04309 0.04848 0.05358 0.07938 0.11793 0.18590
1.366 1.843 2.494 3.244 4.058 4.921 6.758 8.727 1.083 2.440 4.839 9.543
Oxygen, O2 50 0 50 100 150 200 300 400 500 1000 1500 2000
1.7475 1.4277 1.2068 1.0451 0.9216 0.8242 0.6804 0.5793 0.5044 0.3063 0.2199 0.1716
984.4 928.7 921.7 931.8 947.6 964.7 997.1 1025 1048 1121 1165 1201
0.02067 0.02472 0.02867 0.03254 0.03637 0.04014 0.04751 0.05463 0.06148 0.09198 0.11901 0.14705
1.201 1.865 2.577 3.342 4.164 5.048 7.003 9.204 1.163 2.678 4.643 7.139
Water Vapor, H2O 50 0 50 100 150 200 300 400 500 1000 1500 2000
0.9839 0.8038 0.6794 0.5884 0.5189 0.4640 0.3831 0.3262 0.2840 0.1725 0.1238 0.0966
1892 1874 1874 1887 1908 1935 1997 2066 2137 2471 2736 2928
0.01353 0.01673 0.02032 0.02429 0.02861 0.03326 0.04345 0.05467 0.06677 0.13623 0.21301 0.29183
7.271 1.110 1.596 2.187 2.890 3.705 5.680 8.114 1.100 3.196 6.288 1.032
106 105 105 105 105 105 105 105 104 104 104 103
Note: For ideal gases, the properties cp, k, m, and Pr are independent of pressure. The properties r, n, and a at a pressure P (in atm) other than 1 atm are determined by multiplying the values of p at the given temperature by r and by dividing n and a by P. Source: Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Originally based on various sources.
cen29305_chAP1.qxd
11/30/05
3:13 PM
Page 863
863 APPENDIX 1
TABLE A–17 Properties of the atmosphere at high altitude Altitude, z, m
Temperature, T , C
Pressure, P, kPa
Gravity g, m/s2
Speed of Sound, c, m/s
Density, r, kg/m3
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000 5200 5400 5600 5800 6000 6200 6400 6600 6800 7000 8000 9000 10,000 12,000 14,000 16,000 18,000
15.00 13.70 12.40 11.10 9.80 8.50 7.20 5.90 4.60 3.30 2.00 0.70 0.59 1.89 3.19 4.49 5.79 7.09 8.39 9.69 10.98 12.3 13.6 14.9 16.2 17.5 18.8 20.1 21.4 22.7 24.0 25.3 26.6 27.9 29.2 30.5 36.9 43.4 49.9 56.5 56.5 56.5 56.5
101.33 98.95 96.61 94.32 92.08 89.88 87.72 85.60 83.53 81.49 79.50 77.55 75.63 73.76 71.92 70.12 68.36 66.63 64.94 63.28 61.66 60.07 58.52 57.00 55.51 54.05 52.62 51.23 49.86 48.52 47.22 45.94 44.69 43.47 42.27 41.11 35.65 30.80 26.50 19.40 14.17 10.53 7.57
9.807 9.806 9.805 9.805 9.804 9.804 9.803 9.802 9.802 9.801 9.800 9.800 9.799 9.799 9.798 9.797 9.797 9.796 9.796 9.795 9.794 9.794 9.793 9.793 9.792 9.791 9.791 9.790 9.789 9.785 9.788 9.788 9.787 9.786 9.785 9.785 9.782 9.779 9.776 9.770 9.764 9.758 9.751
340.3 339.5 338.8 338.0 337.2 336.4 335.7 334.9 334.1 333.3 332.5 331.7 331.0 330.2 329.4 328.6 327.8 327.0 326.2 325.4 324.6 323.8 323.0 322.2 321.4 320.5 319.7 318.9 318.1 317.3 316.5 315.6 314.8 314.0 313.1 312.3 308.1 303.8 299.5 295.1 295.1 295.1 295.1
1.225 1.202 1.179 1.156 1.134 1.112 1.090 1.069 1.048 1.027 1.007 0.987 0.967 0.947 0.928 0.909 0.891 0.872 0.854 0.837 0.819 0.802 0.785 0.769 0.752 0.736 0.721 0.705 0.690 0.675 0.660 0.646 0.631 0.617 0.604 0.590 0.526 0.467 0.414 0.312 0.228 0.166 0.122
Viscosity m, kg/m · s
Thermal Conductivity, k, W/m · K
0.0253 0.0252 0.0252 0.0251 0.0250 0.0249 0.0248 0.0247 0.0245 0.0244 0.0243 0.0242 0.0241 0.0240 0.0239 0.0238 0.0237 0.0236 0.0235 0.0234 0.0233 0.0232 0.0231 0.0230 0.0229 0.0228 0.0227 0.0226 0.0224 0.0223 0.0222 0.0221 0.0220 0.0219 0.0218 0.0217 0.0212 0.0206 0.0201 0.0195 0.0195 0.0195 0.0195
1.789 1.783 1.777 1.771 1.764 1.758 1.752 1.745 1.739 1.732 1.726 1.720 1.713 1.707 1.700 1.694 1.687 1.681 1.674 1.668 1.661 1.655 1.648 1.642 1.635 1.628 1.622 1.615 1.608 1.602 1.595 1.588 1.582 1.575 1.568 1.561 1.527 1.493 1.458 1.422 1.422 1.422 1.422
105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105
Source: U.S. Standard Atmosphere Supplements, U.S. Government Printing Office, 1966. Based on year-round mean conditions at 45 latitude and varies with the time of the year and the weather patterns. The conditions at sea level (z 0) are taken to be P 101.325 kPa, T 15C, r 1.2250 kg/m3, g 9.80665 m2/S.
cen29305_chAP1.qxd
11/30/05
3:13 PM
Page 864
864 APPENDIX 1
TABLE A–18 Emissivities of surfaces (a) Metals Material Aluminum Polished Commercial sheet Heavily oxidized Anodized Bismuth, bright Brass Highly polished Polished Dull plate Oxidized Chromium, polished Copper Highly polished Polished Commercial sheet Oxidized Black oxidized Gold Highly polished Bright foil Iron Highly polished Case iron Wrought iron Rusted Oxidized Lead Polished Unoxidized, rough Oxidized
Temperature, K
Emissivity, e
300–900 400 400–800 300 350
0.04–0.06 0.09 0.20–0.33 0.8 0.34
500–650 350 300–600 450–800 300–1400
0.03–0.04 0.09 0.22 0.6 0.08–0.40
300 300–500 300 600–1000 300
0.02 0.04–0.05 0.15 0.5–0.8 0.78
300–1000 300
0.03–0.06 0.07
300–500 300 300–500 300 500–900
0.05–0.07 0.44 0.28 0.61 0.64–0.78
300–500 300 300
0.06–0.08 0.43 0.63
Material Magnesium, polished Mercury Molybdenum Polished Oxidized Nickel Polished Oxidized Platinum, polished Silver, polished Stainless steel Polished Lightly oxidized Highly oxidized Steel Polished sheet Commercial sheet Heavily oxidized Tin, polished Tungsten Polished Filament Zinc Polished Oxidized
Temperature, K
Emissivity, e
300–500 300–400
0.07–0.13 0.09–0.12
300–2000 600–800
0.05–0.21 0.80–0.82
500–1200 450–1000 500–1500 300–1000
0.07–0.17 0.37–0.57 0.06–0.18 0.02–0.07
300–1000 600–1000 600–1000
0.17–0.30 0.30–0.40 0.70–0.80
300–500 500–1200 300 300
0.08–0.14 0.20–0.32 0.81 0.05
300–2500 3500
0.03–0.29 0.39
300–800 300
0.02–0.05 0.25
cen29305_chAP1.qxd
11/30/05
3:13 PM
Page 865
865 APPENDIX 1
TABLE A–18 Emissivities of surfaces (Concluded) (b) Nonmetals Material Alumina Aluminum oxide Asbestos Asphalt pavement Brick Common Fireclay Carbon filament Cloth Concrete Glass Window Pyrex Pyroceram Ice Magnesium oxide Masonry Paints Aluminum Black, lacquer, shiny Oils, all colors Red primer White acrylic White enamel
Temperature, K
Emissivity, e
800–1400 600–1500 300 300
0.65–0.45 0.69–0.41 0.96 0.85–0.93
300 1200 2000 300 300
0.93–0.96 0.75 0.53 0.75–0.90 0.88–0.94
300 300–1200 300–1500 273 400–800 300
0.90–0.95 0.82–0.62 0.85–0.57 0.95–0.99 0.69–0.55 0.80
300 300 300 300 300 300
0.40–0.50 0.88 0.92–0.96 0.93 0.90 0.90
Material Paper, white Plaster, white Porcelain, glazed Quartz, rough, fused Rubber Hard Soft Sand Silicon carbide Skin, human Snow Soil, earth Soot Teflon Water, deep Wood Beech Oak
Temperature, K
Emissivity, e
300 300 300 300
0.90 0.93 0.92 0.93
300 300 300 600–1500 300 273 300 300–500 300–500 273–373
0.93 0.86 0.90 0.87–0.85 0.95 0.80–0.90 0.93–0.96 0.95 0.85–0.92 0.95–0.96
300 300
0.94 0.90
cen29305_chAP1.qxd
11/30/05
3:13 PM
Page 866
866 APPENDIX 1
TABLE A–19 Solar radiative properties of materials Description/composition Aluminum Polished Anodized Quartz-overcoated Foil Brick, red (Purdue) Concrete Galvanized sheet metal Clean, new Oxidized, weathered Glass, 3.2-mm thickness Float or tempered Low iron oxide type Marble, slightly off-white (nonreflective) Metal, plated Black sulfide Black cobalt oxide Black nickel oxide Black chrome Mylar, 0.13-mm thickness Paints Black (Parsons) White, acrylic White, zinc oxide Paper, white Plexiglas, 3.2-mm thickness Porcelain tiles, white (reflective glazed surface) Roofing tiles, bright red Dry surface Wet surface Sand, dry Off-white Dull red Snow Fine particles, fresh Ice granules Steel Mirror-finish Heavily rusted Stone (light pink) Tedlar, 0.10-mm thickness Teflon, 0.13-mm thickness Wood
Solar Absorptivity, as
Emissivity, e, at 300 K
Ratio, as /e
0.09 0.14 0.11 0.15 0.63 0.60
0.03 0.84 0.37 0.05 0.93 0.88
3.0 0.17 0.30 3.0 0.68 0.68
0.65 0.80
0.13 0.28
5.0 2.9
Solar Transmissivity, ts
0.79 0.88 0.40
0.88
0.92 0.93 0.92 0.87
0.10 0.30 0.08 0.09
0.45 9.2 3.1 11 9.7 0.87
0.98 0.26 0.16 0.27
0.98 0.90 0.93 0.83
1.0 0.29 0.17 0.32
0.26
0.85
0.30
0.65 0.88
0.85 0.91
0.76 0.96
0.52 0.73
0.82 0.86
0.63 0.82
0.13 0.33
0.82 0.89
0.16 0.37
0.41 0.89 0.65
0.05 0.92 0.87
8.2 0.96 0.74
0.90
0.92 0.92 0.59
0.90
0.66
Source: V. C. Sharma and A. Sharma, “Solar Properties of Some Building Elements,” Energy 14 (1989), pp. 805–810, and other sources.
0.1
2(103) 3 4 5 6
8 104
0 0.003–0.03 0.0016 0.000033 0.000005 0.00085 0.0005 0.00015 0.000007 0.00015
Glass, plastic Concrete Wood stave Rubber, smoothed Copper or brass tubing Cast iron Galvanized iron Wrought iron Stainless steel Commercial steel
103
ft
2(104) 3 4 5 6
0 0.9–9 0.5 0.01 0.0015 0.26 0.15 0.046 0.002 0.045
mm
Roughness, e
2(105) 3 4 5 6 Reynolds number, Re
8 105
Smooth pipes ε/D = 0
evaluated from the Colebrook equation
/D 2.51 1 2log10 . 3.7 Re f f
3
8 107
2(107) 3 4 5 6
ε/D = 0.000005
0.00001 8 108
0.00005
0.0001
0.0002
0.0004
0.001 0.0008 0.0006
0.002
0.004
0.006
0.01 0.008
0.015
0.02
0.03
0.04
0.05
Relative roughness, e/D L rV . Friction factors in the turbulent flow are D 2
2(106) 3 4 5 6
ε/D = 0.000001 8 106
Fully rough turbulent flow (f levels off)
The Moody chart for the friction factor for fully developed flow in circular pipes for use in the head loss relation PL f
FIGURE A–20
0.008
0.009
i Material
e
0.01
Transitional Turbulent flow flow
64/R
0.015
0.02
,f=
low nar f
0.025
Lam
0.03
Laminar flow
3:13 PM
0.04
0.05
0.06
0.07
0.08
0.09
11/30/05
Darcy friction factor, f
cen29305_chAP1.qxd Page 867
cen29305_chAP1.qxd
11/30/05
3:13 PM
Page 868