' ',_ "RMR, and the bal~nce is' a function of the remaining possible rating <>:['8-5~;i' ;:since the maximu~ ~ating for the strength of intact rock. is 15. ' . ,'" ;'.: , 2. The IRS rating,: which represents the strength a c, in MPa, of the -to~lc '" material, mU,st bee redu~ed to 800/0 of its value since it is.assum,ed that':large, '_ -'~ , (hard-rock) speci~en~ have a strength equal to' 80%. of the standard: .core: .',', sample tested in: the laboratory. This is a constant scaling factor. Thus':;. ':.... RMR - IRS: x ac 85'
X
80 100
=
' , basic rock mass strength (BMRS)-, (9 .. 6)'
TABLE 9.3 Geomechanics Classification for Rock Slopes: Strength CorrelationS Strength Parameters Rock Mass Class
35-40 30-35 25-30 20-25 15-20 5-15
IVa IVb Va .Vb a After
Rating (RMR)
Robertson (1988).
Island Copper Mine
12.5 10.5 10.0 20.0 9.0 7.5
40 36 34 30 27.5 24
Getchell Mine
7.0 7.0 7.0 2.0
30 26 24 21
184
OTHER APPLICATIONS Classificatio~
TABLE 9.4 Geomechanics . Strength Data B
for Rock Foundations: Shear
Rock- Mass Properties
RMR
80-61
60-41
40-21
I
II
III
IV
>400 >45 >56
300-400 35-45 18-56
200-300 25-35 5.6-18
100-200 15-25 1.8-5.6
<20 V <100 <15 <1.8
4.5-8.5 41-48
<4.5 <41
100-81
Rock class Cohesion, kPa Friction, deg Modulus, GPa
Shear Strength of Rock Material
15-25 55-65
>25 >65
Cohesion, MPa Friction, deg
8.5-15 48-55
Frictional Shear strength of Discontinuities, deg Rating for Condition of Discontinuities: Completely .dry Damp Wet Dripping Flowing a After
30
25
20
45.. ';.",,':'.;', 43, '".
35 33 31 29
25 23 21 19 17
27
Serafini and Pereira (1983)~' ~
",
o
10 15 13 11 10 ": '<10
10 <10 <10 <10 <10
_•.1:' ~ .~
... '
3. The design rock mass strength is obtained by incorporating a variable reducing factor due to adjust~ents for weathering (90%), .favorability _of. joint orientation (80%), and blasting effect (90%). Thus
DRMS
=
90% x 80% x 90% BRMS
=
0.65 BRMS
(9.7)
In addition, an averaging factor is employed where a rock mass contains weak and strong zones. In anothe~ study, Stille et al. (1982) provided a direct correlation between the RMR and the uniaxial compressive strength of rock mass ITeM on 'the basis of back-calculations featuring the finite element method and Swedish case histories. They suggested the following relationship: RMR (JcM (MPa)
100-81 30
80-61 12
60-41 5
40-21 2.5
<20
0.5
Finally, Yudhbir (1983) suggested a rock mass criterion of the form discussed by Bieniawski (1974), namely
185
ESTIMATING ROCK MASS MODULUS
(9.8) where a = 0.75 and A is a function of rock mass quality (note that A for intact rock), namely A = exp(O.0765 RMR -
7.65) = O.0176Qo.65
=
1
(9.9)
and B depends on rock type as determined ,by Bieniawski (1974) for these rock types:
B == 2.0 B = 3.0
Shale and limestone Siltstone and mudstone Quartzite, sandstone, and dolerite Very hard quartzite Norite and granite
B = 4.5 B = 4.5
B = 5.0
The above criteri'on requires experimental ;~alidation of the expression f?~ parameter A.
9.2
ESTIMATING ROCK MASS MODULU'S
The RMR: from the 'Geomechanics_-C1assification was related (Bieniawski, ,~" 1978) to the i,n-situ modulus, of deformation in the manne~, shown.in Figure :,' 4.3. The following relationship was obtained: I
i
r
i, ,
EM
=
2 x RMR -
100
(9.19)
where EM is the in-situ modulus of deformation in OPa and RMR > 50. For poorer-quality rock masses, Serafim and Pereira (1983) extended the above relationship in the range RMR < 50 as well as confirmed the equation. They also proposed this overall correlation: EM
=
IO(RMR -
(0)/40
(9.11 )
Using the well-known correlation RMR == 9 In Q + 44, Barton (1983) supplemented the data of Bieniawski (1978) with his own results and plotted the range of the measured values as depicted in Figure 9.1. He found a useful approximation:
I,
;
186
OTHER APPLICATIONS a-index
1a
0.1
100
40
400
1000
80~----~----~------'-----~------~--~
E
70
=2 RMR - 100
~--------~----------L1i----'---'
_..
60~----------~----~--~~~-----------1
50~---------HR7~~~---i------------~
40~----------~~~~~-------------~
=
30
.a Vi
20
E 40 10gloQ (max)
o
~-------r---+------
•o
0
---
,--b4--A-t::¥-.....--'---,---- ._ ..... -----.-.--....... -.. -.--.--... ----.-.............. - .. .
o
.5 10
O~~----~------~----~----~----~--~
50
60
70
80
90
100
Rock Mass Rating
.Figure 9.1 . Estimation of" in-situ modulus of deformation ·-trom .two classification . methods: squares represent Q case his tor;es , dots are RMR cases. (After 'Barton, 1983.)
E mean == 25 log Q and E max == 40 log Q
(9.12)
(E~i~ - '1 if'16g Q) ~nd' confirmed that careful 'double'; ~lasstfication at; a potential tesfsite might'eliminate the' need for expensive tests or' reduce their numbers.
9.3
ASSESSING ROCK SLOPE STABILITY
Romana (1985) made an important contribution in applying rock mass classifications to the assessment of the stability of rock slopes. He developed a factorial approach to rating adjustment for the discontinuity orientation parameter in the RMR system, based on field data. Recognizing that rock slope stability is governed by the behavior of the discontinuities and that in the original RMR system (Bieniawski, 1979) specific guidelines for favorability of joint orientations were lacking, his modification of the RMR system involved subtracting the newly proposed adjustment factors for discontinuity orientation and adding a new adjustment factor for the method of excavation. This approach is suitable for preliminary assessment of slope stability in rock, including very soft or heavily jointed rock masses.
'1,-', :
';.!
187
SPECIAL USES
. ..;. ~ ~.t.
The new adjustment rating for joints in rock slopes is a product of three factors: F 1 reflects parallelism between the slope and the discontinuity strike. F2 refers to the discontinuity dip in the plane mode of failure. F 3 relates to the relationship between the slope angle and the discontinuity dip. .L
'-
"
The adjustment factor for the method of excavation F4 depends on whether one deals with a natural slope or one excavated by presplitting, ~mooth blasting, mechanical excavation, or poor blasting. The appropriate ratings are given in Table 9.5. The final calcula.tion is of the form Adjusted RMR slope = RMRbasic -
(F 1
X
F2 x F 3)
+
f'4: .:(9.13) _
Romana (1985) applied this procedure to 28 slopes with varyi~gq~grees ofinstabiJity, including six cQrnpletely failed ones, and found gOQ~lagreernent with stability assessment (rock mass quality) predicted by the·RMR:sy~tem. He listed all these case histories and stated that further work;is: :uQQer way on several other slopes. ' .' ,
9.4 ,
9.4.1
r.
SPECIAL" USES
'."
.
.
RippabHity
This was the first excavation index to be evaluated by a rock mass classific~tion approach. Based on the Geomechanics Classification, Weaver (1975) proposed a rippability rating chart as a guide for the case of excavatio,n by tract9rmounted rippers of the Caterpillar type. In this approach, seismic velocity was a parameter selected to replace two standard parameters -in the RMR system: the intact rock strength and the RQD. Over a decade later, Smith (1986) modified the chart by Weaver (1975) by omitting seismic velocity, while Singh et al. (1986) discussed ground rippability in open cast mining operations and pointed out that the use of a single value. of the seismic velocity can be a misleading parameter in the assessment of the rock rippability. The chart by Weaver (1975), and hence by Smith (1986), while based on many pertinent parameters, was considered of limited value because some parameters might not be easily quantified at the initial stage of design. Accordingly, an alternative rippability rating chart was suggested by Singh et a1. (1986) and tested in a number of case histories
I
• ,",:
.' .,'
:
Roof Support' Design .Chart #2
CHART 8.2
:
fQr
,',
:
'0
Coal Mines
, , ENTRY' w1 DTH: - lS-FT
ROCK CLASS
ROCK MASS ATlNG (RI'IR)
90
I-IECHAN I C,AL BOLTS
HEl~HT
FT)
1.8
ENTRY
SUPPORT SPECIFICATIONS
ROCK LOAD
L
2.5'
s
5' :< 5' 40 5/S" 6. Z tons
c ~
c VERY GOOD
RESIN
BOLTS
ALTERNATE SUPPORT PATTERNS
SPECIFICATIONS FOR
POSTS ~
MEeHAN I CAL BOL T,S/P,OSTS
RESI:-l BOLTS/POSTS
2.5'
80
3,6
70
5,4
II
s
c ,~
C
60 3/4" 10 ton~
GOOD L
50
7.2
s
G 0>
C
'3.0
G
£.0 3/£." ,
C
Scans
L
"6.'O:~ ~-
..
FAIR
40
10.8
IV
s :
c ~
)/4"
7 tons
L
7. O'
s
30
12.6
S
a
p
>p
5
f>
= lO.O·
5,0"
)P :;
,. 5.0' p 5.0"
)
c
POOR
7.5'
,. ;,S"
.;op
c
0"
"
4.5' x 5' 40
C
!••
p
5. O' 4.5'
III 50
4.0' 4.5' 60 S/S" 'J tons
~
~
. 3'
L
S
20
14.4
>p = 5.0"
c ) Cons
S
p
,.
~
.0'
CHART 8.3
Roof Support Design Chart .#3 for Coal Mines ENTRY WIDTH:
ROCK CLASS
ROCK MASS RATING (RNR)
ROCK LOAD ~EIGHT
HR( rr)
SU?PORT SPEC.I F I C.AT IONS "lECHA~ i CAL L
VERY GOOD
90
80 II
70
1.5
3.2
4.8
s c C
6' ); )' :'0 5/5" 6.:: lons
Ll: S~ : G
:!.) , 6' x 5' 60 (40)
'
.. 3/4.:' 11 'lO:l~
L 5 :
3. O' L 4' x 4. S 5
G
60 ('0) 3/4" 10 tons
c
4.0' 4' x 5' 60
L
0 C
GOOD
L
5
60
6.4
III
C
8,0
S G
9 tons
C
L
4.0' 4 • x 5' 40 3/4" 8 tons
t
G ~
C
SPEC I rIC AT I ON S FOR POSTS
~tSJNBOLTS/POSTS
._---"_._----
"40. x 3.0'
5
1"
5/8"
~
- PATHRNS
2. ~. 4' x 5' 60 3/4"
C
4C
S
50
+
'. ALTERNATE. SUPPORT
ME't~A~N: I CAC.BOLl: S/P-O~T S
RE-SIN 30LTS
BOtTS :-.5 t
16-FT
·
4.0"
n
10'
e
5.0"
p
3. O'
5 G
Cp
¢
S
C
10'
I'
FAIR ~O
9.5
5.0'
L
5 G
C
4' x 5' 40 3/4" 7 tons
L 5
b.O' 4 ' )( 5'
L 5 .G
L S G ~
IV 30
11.2
-a. 0')
U'I
12,8
loQ
¢
10'
c.-I'
·
" .5"
5
e
C
C
~
L 5
·7 ~O.' lo' )( 5'
s
I'
'.0'
c
5. 5"
I'
·
5
C
5/8" 6 tons-
¢
POOR
20
c
e bO
,
P
t
c
4O
G
0 C
5/6" 5 ton5
.~
p
2). i
t
S
p
·
·
').0"
5'
CHART 8.4
Roof Support Design Chart #4 for Coal Mines OORY \~JDTH: 20~FT
00 OF 00 ENTRIES ROCK
MASS ROCK CLASS RATING RMR
ALTERNATE SUPPORT - PATTERNS
ROCK SUPPORT SPECIFICATIONS LOAD HEIGHT H'R (FT ) ,ME CHAr~ I CAL BOLiS/POSTS L
2. S·
5 : S' x 5'
G : 40
90
2,8
~
3/4"
C
8.S tons
VERY GOOD ': :'~ :'0'::/4./:;',':
L : 3.0' ~,.: }' x • .5·.. ~,. '-
G : 40
80
5,7
~:
,'5' .;'.'5'
_ _ :.~.
<.
'~~~;;;,;,;;;;;M
~c. ':<:'':~_."
: 60
t
s/s"
C
6.2 tons
I" ::' 3.7
4-p: ""
II
L : 5.0'
S
;
G
70
8.5
S'
x
S'
40
~
3/4"
C :
8.S tons
¢' :
S"
p
GOOD L : :6~ 0'
'5' xS'
60
40
11. 3
3/4"
8.8 tons p
6"
,~
L
RC$in
L~n~rh/Bolr
LcnGrh
'. I
';','-'"
"
::... ':-. ~-'
-
...
-
i ~.
·f
I
:-I".'J
Roof Support Design Chart -#5 for Coal Mines
CHART 8.5
ROCK MASS RATING RMR
ROCK SUPPORT LOAD HEIGHT HR (FT)
III
L
G
14.2
ALTER~ATE
SUPPORT - PATTERNS RESIN BOLTS/POSTS
7.0' ~.
50
,: 2Oc-FT
ENTRY H
INTERSECTIOO OF 00 ENTRIES ROCK CLASS
.,'
x 5•
1.0 ~/B:'
6,2
e
0
e
It
•
~p :. 7"
FAIR L
9. O' ~.
~o
17.0
e
X
•
5'
~o
5/S"
c 'p 5. ~"
IV
L :: 10.0'-
30
19.8
20
22.6
POOR
_ 'p' 7"
t"':
f··
R,,!;in I.l'ncth/Bolt l.en~th
e
$
•
o
ct
ct
168
APPLICATIONS IN MINING
overlying and underlying strata, and the geometry of the opening are as follows:
Depth of Coal Seam Belo~' Surface: 152 m Stratigraphic Column: Immediate roof: soft shale-4.5 m thick; average thickness of the layers in the roof 150 mm Coal seam: 3.0 m thick Floor: Fire clay Tests have been carried out on the roof strata and the coal seam yielding , the following property data: ~
_
Coal
Data
,;'Thickness (m) ' i '. Unit weight (kN/m,3) " Compressive stre'ngth ,~'. : '(M~a)
3.0 12.5
4.5: J_ 25.1' ... ',""
:17.00
49. 0 0: .... "
"
'; 'Roof strata conditions
Groundwater conditions In-situ:' stresses "
Soft Shale
Hard Shale
'
,
Not applicable
Damp
: 27.5 ': 26.7 :',81.00 ,
Separation < 1 rri~;slightly weathered; slightly rough surfaces; np,infiUin£_, RQD = 600/0,' Damp -. ;.
HoriZontal stress =2:5 x (vertical
I
',-
Damp
st~ess).
- "Sqlution Determination of the rock mass rating (RMR)·Jor roof,Strata. In :accordance with the Geomechanics Classification, the. foU9wing ratings are obtained for the classification parameters: Strength of intact rock (soft shale): 40 MPa Spacing of discontinuities: 150 mm Rock quality designation (RQD): 60% Condition of discontinuities: separation < 1 mm, slightly weathered and slightly rough surfaces Groundwater conditions: damp throughout
Rating Rating Rating
5 7 12
Rating Rating Basic RMR
17 10 51
-5 Adjustment for discontinuity orientation: , (horizontal bedding == fair orientation) Adjustment for in-situ state of stress: From the overburden depth, the vertical stress is 3.8 MPa and the horizontal stress (being 2.5 times this value) is 9.5 MPa. The ratio of the horizontal stress to the uniaxial compressive strength is 0.24. Using data from Newman and Bieniawski
,..:.::,
....
TABLE 9.5 Modification of the Geomechanics Classification for Rock Slopes a Bieniawski (1979) Ratings for RMR
Parameter Strength of intact rock material
Ranges of Values Point-load strength index (MPa)
>10
4-10
2-4
1-2
Uniaxial compressive strength (MPa)
>250
100-250
50-100
25-50
5-25
15
12
4
2
For this low range, uniaxial compressive strength test is preferred
1
Rating
7
1-5
0
"
Drill core quality ROD (%)
90-100
75-90
Rating
20
17
Spacing of discontinuities
>2m
0.6-'2 m
Rating
20
15
'50~75:
25-50
<25
8
3
200-600 mm
60-200 mm
<60 mm
10
8
5
2 ,. ' 13
3
j
\
",-)'
.','
'. ..
~
<1
~,,,,:,1t~.;,,,=,",:"-·_·~f
.-t;.=~-"
I·",
TABLE 9.5 . (Continued) Adjustment Rating· for Methods of Excavation of Slopes Natural Slop.e
Method
+15
Presplitting
+10, .
Smooth Blasting
Regular Blasting
Deficient Blasting
+8
o
-8
Tentative Description of SMR Classes
v
IV
III
II
0-20
21-40
41-60
61-80
81-100
Very poor
Poor
Good
Very good
Stability
Very unstable
Unstable
Partially stable
Stable
Fully Stable
Failures
Large planar or soil-like
Planar or large wedges
Some jOints or many wedges
Some blocks
None
Support
Reexcavation
Extensive corrective
Systematic.
Occasional
None
Class No.
SMR Description
BSy Romana (1985).
.,
I,
-
~
'..
Very rough surfaces. Not continuous. No separation. Unweathered. wall rock
Condition of discontinuities
\
..
•
-
I
•
•
Slightly rough surfaces. Separation
< 1 mm.
•
_
•
•
---;,'
f
I
~~
~..
"
•
.".
I
•
,
-;r. ..
~ IS; ~'.
Slickensided surfaces. Or Gouge < 5 mm thick. Or Separation 1-5 mm Continuous
SO,ft gouge > 5 mm or Separation > 5 mm Continuous
'. 20
10
o
. Wet
Dripping
Flowing
7
4
o
Slightly rough surfaces. Separation < 1mm. Highly weathered walls
Slightly weathered walls
~. . r
.4 - -25
30
Rating Groundwater in joint
Completely
dry
_ .'_D~mp ...
-f~~ "
5 ..
15
Rating
-
10 .
Joint Adjustment Rating for Join'ts b Favorable
Fair
Unfavorable
Very Unfavorable
la; - asl Iaj - as - 1800I
>30 0
30-200
20-10 0
10-5°
<5°
Pff
F1
0.40
0.70
0.85
1'.00
P P
lf3d
0.15 <20 0
F2 F2
0.15 1
.9:.49-:
.1 ' - ..
30-35° 0.70 1
35-45° 0.85 1
>45° 1.00 1
>10° <110° 0
10-0° :·11 0~120° . :.:..6'" :
0° >120° -25
Very Favorable
Case
P T
T
P T Pff
~i ~i +
f3s Ps
F3
P = plane failure. T == toppling failure.
20:---30° . . '~
'~,"
slope dip direction.
f3s = slope dip.
1,.,
.
"
'
= joint dfpdirection.
f3i
= joint dip. ....
-
".
~
~.
.,
__
..
~.
''''_' __ ''u
W'
__
-10°)
-50
<-10° -60
(Table continues on p. 190.)
-',
._ ...
~"_
00~(
..
~
!
.....
SPECIAL USES
191
in Great Britain and Turkey. This chart is depicted in Table 9.6. based on a later publication (Singh et al., 1987) which demonstrated the application of this approach to the selection of rippers for surface coal mines.
9.4.2
Dredgeability
Dredgeability as applied to rock was defined by Smith (1987) as the ability to excavate rock underwater with respect to known or assumed equipment, methods, and in-situ characteristics. Dredging is a multimillion dollar operation in which breaking .up or cutting the rock underwater requires an assessment of the rock mass quality in a similar way to rippability as~~.ssment. However, whil~ the same parameters may be expected to govem~: a given rock mass ripped underwater will usually be weaker than the s~m,e _.rock encountered in gry .conditions due to the influence of water on the str~ngth of rock .. Smith (1987) proposed an underwater rippability ratipg chart modifying :the work of Weaver (1975), whose proposal, in tum 1 W~~ based ou;the . .JGeo~echanics Classification. Smith's modification (9mit~ed not only ~he ';seismic velocity parameter used by Weaver, but ~l~~ t.he' joint contipu~ty -and joint gouge parameters, which, unlike for surfac~,e.xcavations, are not .readily availab~e in dredging applications. Table 9. 7 d~p~Gts.. Smith 's·dredge:ability chart, which, due to the above omissions, f~atl!res Jhe maximulJl .~: underwater rippability (RW) rating of 65, compared wit,h ~1J1~imum possible . : RMRof 100., This system provide~ a quantitative estim~te of~elative.'rippi!lg . difficul ty ~ with the lower ratings corresponding to ea.s.~er: ,ripping and higher :. ratings to' harder, ripping or blasting. Since RW do~s, ·not involve seismic . velocity observations, it can be used as a means of independent comparison with the refraction method.
9.4.3
Excavatability
Excavatability, a term denoting ease of excavation, was extensively discussed by Kirsten (1982), who pointed out that seismic velocity was in general poorly correlated to the excavatability of a material because a whole range of the basic material characteristics that affect excavatability were not represented in the seismic velocity. Moreover, seismic velocity could not be determined to an accuracy better than about 20%, and it might have a variance of the order of 1000 m1s in apparently identical materials. Kirsten proposed a classification system for excavation in natural materials in which the excavatability index N is given by
N = M RQD J J r s
Jn
S
Ja
(9.14)
~,
t,'·
., . • . • c-
.
"
TABLE 9.6 Rippability Classification Charta Parameters Uniaxial tensile strength (MPa) Rating Weathering Rating Sound velocity (m/s) Rating Abrasiveness Rating Discontinuity spacing (m) Rating Total Rating Ripping Assessment Recommended Dozer a After Singh (1987).
Class 1
Class 2
Class 3
Class 4
Class 5
<2 0-3
2-6 3-7
6-10 7-11
10-15 11-14
>15 14-17
Complete
Highly
Moderate
Slight
None
0-2 400-1100 0-6
2-6 1100-1600
6-10 1600-1900 10-14
10-14 1900-2500 14-18
1'4-18 >2500 18-25
Very low
Low
Moderate
High
Extreme
0-5 <0.06 0-7
5-9 7-15
9-13 0.3-1 15-22
13-18 1-2 22-28
18-22 >2 28-33
<30
30-50
50-70
70-90
>90
Easy Light duty'
Moderate ~ M~di~rn. duty
Difficult _Hea'vy du'ty
Marginal Very heavy duty
Blast
6~10
0.06~0.3
-
-... ... ~.,.~;"",-
~, .
:~.'"
'"
"'.
'
I>,'
\
• 1
~; I ,
'.
.
,
,1
'"
. "',
-;'
I:
,Ilf',
'; ~ ~ t"~\I,,
••
'It'
.
I
~ '.1' ,.,.~,~:~·!l "
'
.-
t
TABLE 9.7 Underwater Rippability (Dredgea~ility) Rating:Ch(Jrt~:· - ; '-
.
., . . . . . * ..
-
b
.- -
Rock Hardness (M'Pa)
Descriptive Classification Very hard ripping or blasting Rating Hard ripping Rating Average ripping Rating
:;".
. ..
.--<.
,-,
\ \.
~
---
-
Rating
>70
Rating
~(
,
-
---......:;-.
•
~.
~+
0_".
Orientation
Joint Spacing C
Unweathered
Very favorable
>3D
10
15
30
Slightly weathered
Unfavorable
'0 to 3D
7
13
25
10-25
Weathered
Slightly unfavorable
0/3 to 0
2
5
10
20
10' 25-70 5
1 <3
Very easy ripping
--'
•
-
3-10
Easy ripping
.. ",
- .. - .-Rock, Weathering
... .'
,
-
. Highly weathered ..
3
;
' Completely weathered
1
0
a After
Smith (1987). bCorresponding to uniaxial compressive strength. C Expressed as function of depth D.
- _.,-- ."
-
-
-.,
,-.,
:
"
~
. .
..
,...~~-
...
--
~ -.~-
,,~
..
.'
...
Favorable
0/20 to 0/3
5
10
Very favorable
<0/20
3
5
j
194
OTHER APPLICATIONS
. where Ms
mass strength number, denoting the effort to excavate the material as if it were homogeneous, unjointed, and dry. Thus, Ms approximates the uniaxial compressive strength of rock in MPa; rock quality designation (see Chap. 3); the parameters from the Q-system (see Chap. 5); relative ground structure number, representing the relative orientation of indi vidual blocks to the direction ripping. For intact material, is == 1.0. .
-
Once the excavatability index N is obtained from the above equation, it serves to classify the ease of excavation in rock as follpws: 1
10
10 < N < 100 100 < N < 1,000 1,000 < N < 10,000 N > 10,000
Easy rippinOg Hard ripping Very hard ripping Extremely hard ripping/blasting Blasting
by Abdullatif and Crudell~ -( 1983), Ease of excavation was also. studied I who investigated methods of i.excavation featuring digging,", ripping; and blasting at 23: sites and classifi'ed rock mass quality in terms Qf RMR. and . Q. Their findings are shown in Figure 9.2, which indicates ·qujte disti,nct " clusters of points for different n:tethods of excavation. For example, it ;can be seen that rock mass can be dug up to an RMR of 30 and ~ipped up to an RMR of 60. Rock masses rated as "good" or better by the RMR system must be blasted. " There is also a distinct gap between the Q values of rock masse.s that can be dug, Q up to 0.14, and those requiring ripping, Q above 1.05. Abdullatif andCruden (1983) observed that there was an overlap in Q values between 3.2 and 5.2 of rock masses that could be ripped and rock masses requiring blasting. rhey suggested that the reason the Q-system appears to present problems as a guide for excavatability of rock was that the active stress parameter J w/SRF, while important in tunneling, shows little variation in rock masses at the surface.
t
.
"
,
I
9.4.4
Cuttability
Cuttability of rock is particularly important when using roadheaders-boomtype tunneling machines. According to Fowell and Johnson (1982), interpretation of borehole information at the site-investigation stage for predicting roadheader cutting" rates was facilitated by the use of rock mass classifications.
SPECIAL USES
-
....
0
100
~
50
I-
o DIGGING £ RIPPING o BLASTING
0
~
5
~
1 -
0
0.1
0
•0 • •••
r-
-= co::I
0
£OOO~ 0
10 -
)(
C1I
195
-
0
0
~
-
-
0
00
0 0
0.01 0
I
I
I
I
20
40
60
80
100
Rock Mass Rating - RMR
; Figure 9.2 Rock mass quality classification diagram (base~:on RMR .and, Q)ndexes) depicting various excavation methods on sites. (After Abdulla~tif and Cru~en, 1983.)
'.'
.
.
.
.
Based on~ 20 field results, f:bwt?ll and Johnson (1982) derived a ~el~tio!lship .. between the_ RMR value~; an,d the cutting rate in m 3/hfpr theh~avyw.eight. ,'_."': class of.boom tunneling m~chint!s. The results are·,giY~I1jn ,Figure 9,.3,~nd; '. the authors' report that the only modification, they m~de in, the·, use .,of the Geomechanics Classification was in~ the rating for ori.entation,. since, for excavation in general, an Inverse relationship exists between support reL.
~" .:
€
120
CO)
E
CD
m
a:
80
C)
r:
5
0
40
0
0
20
40
60
80
100
Rock Mass Rating
Figure 9.3 Relationship between RMA and rock cutting rate. (After FoweJ/ and Johnson, 1982.)
196
OTHER APPLICATIONS 100~----.-~--r-----r-----~----~----~o~
o o
C)
90
> a:
w
80 -. (1) .0
E j
70
_2
60
z
C;
~ 50
-in
II) ~
(3
40
II) II)
~
30
~
g
a:
20
'-..... .".
...........
.A_
10 I.',' I
4 2 3 5 Bits/Foot (0) and Feet/Hour of Machine Cutting (&)
'I II
'-'6
Figure9.4
Roadheader performance data, bits/ft and ft/h of machine cutting at San Manuel Mine in Arizona, 2375-ft level, P21A and P218J:..test..(After Sandbak, · i1'985)" .' . .. "':'.,
quir.el1)e~ts
an9: ~as,~ of excavation. It can be c;~ncluded~that.thej·RMR :systerp rell1ark.~bly consistent relationship with tne roadheader .;cutting · provided.·a .' .rate ..... ' . ' ,..... . ,~' .Sandb~~ (19}~~5j '~Iso evaluated rock cuttini performance bY,a: roadheader . r~lating it ,to the rock mass quality described in terms" of-the Geomechanics ·a~~sificatio~~ This was an extensive investigation 'conducted at the San Manuel copper mine in Arizona, and on the basis 0['1430 ft (436 m)' of drift excavation in variable rock conditions, the advance rates by the roadheader (DOSeD SL-120) were shown to be predictable from RMR values. The results are given in Figure 9.4. It is apparent that the bits per foot rate and the feet per cutting hour rate can be effectively related to RMR values and rock mass classes. More recently, Stevens et al. (1987) presented RMR zoning plans of the San Manuel Mine, while Sandbak (1988) built on the success of the RMR-based evaluation of roadheader drift excavation and upgraded the approach to include it in the LHD (load-haul-dump) system design and in pillar sizing. "
9.4.5
,
'
,
,"
.,
,
Cavability
Cavability of rock strata is an important aspect in longwall mining ot' coal as well as metal mining operations involving block caving.
197
SPECIAL USES
TABLE 9.8
Cavability Estimates a RMR Class
Area undercut as "hydraulic radius" Cavability Fragmentation
1
2
3
4
NA 8 Nil Nil
30 m
20-30 m
8-20 m
<8 m
Poor Large
Fair Medium
Good Small
Very Good Very Good
5
a After
Lau bscher (1981). Not applicable.
b
Rock classifications have been used for this purpose (Laubscher ~ 1981:; Bieniawski, 1987). Most recently, an important contribution was made by Ghose and Gupta (1988). Laubscher (1981) used the Geomechanics Classification to assess cavahility in asbestos mines' and"suggested a correlation between the RMR class,e$ ~and caving as wellas::·ffag"mentation'characteristics. He also included estimate~':: of the "hydraulic 'radius" in caving operations, which is defined as thecaving "" area divided by the perimeter and serves to define the undercut area~·Th.e guidelines are summarized in Table 9.8. . '. . ... Kidybinski (J91~'~) and~nrug and~$zwilski (1983) described a cavabjl1~y: .. . classification used by. coal mines in. Poland. This classification is depicted ~,,' in Table 9.9. ,
r
. '1'
•
: .. ~ ., "', '
"',
TABLE 9.9
',',.
.:' \
',' , "
:';.
• "
,1
•
'.
~
"
,
_ :
I
_,
+.;-',
'.
•
Roof Ca~ability Classification Based on Polish Studies B
•
•
..
•_
;
Roof Quality Index b
I II III IV
Very weak Little stable ,Medium stable Stable V Very strong
,:~
Allowable Area of Roof Exposure (m2)
L < 18 18 < L < 35
35
1 1-2 2-5 5-8
>8
a After b
Kidybinski (1982) and Unrug and Szwilski (1983). Roof quality index L = 0.016 o'Md, where
(J"M (J"c
== in-situ compressive strength of rock strata (kg/cm2) = CTcK1 K2 K3 , = uniaxial compressive strength,
K1 = 0.4 (coefficient of strength utilization),
K2 = 0.7 (coefficient of creep), K3 = 50% (coefficient of moisture content), d = mean thickness of roof strata layers (em).
•
,.; "', , . • ~.r
Roof Class
~.
,
•
198
OTHER APPLICATIONS
i
TABLE 9.10
I
Class
!
I·
.r II III
i·,
L (;
IV V
f·
h
8
II:
b
;.
.
Cavability Classification for Coal-Measure Strata B
Cavability
Cavability Rating b
Caving Behavior
Extremely high High Moderate Low Extremely low
0-30 31-45 46-60 61-70 71-100
Very easy caving Easy caving Moderately caving, poor in big blocks Difficult caving, overhanging roof Very difficult caving, large overhang
After Ghose and Gupta (1988). Roof caving span.s = 0.87 R - 10.1, where R is the cavability vallie.
Cavability can also be evaluated by the RMR classification from the relationship between the' rock stand-up time versus the unsupported span for the fi ve rock mass classes, as shown in F~gure 4. 1·. Ghose and Gupta (1988) outlined a classification system for roof strata cavability using fuzzy-serme.thodology to assign ratings for four individual parameters: uniaxial compressive strength,'average core size, thickness of . ;·· roof beds, and depth b e l o w : s u r f a c e . ' . · : · . , ; This.classification model:was applied to ten longwall case. histories from!, :':} .. Indian coal fields and resulte,d in the description given in Table 9.l0. I'
, ,.
"~' :~ I} '.,.: ~,~..
9.5
IMPROVING CO,MM:UNICATION:. UNIFIED lROCK CLASSIFICATION SYSTEM
Williamson (1980, 1984) proposed the Unified (initially called "Uniform") Rock Classification System (URCS) as a reliable and rapid 'method of communicating detailed infon11atibn about rock conditions for engineering purposes. The system has been used extensively by the Soil Conservation Service of the U.S. Department of Agriculture for classifying and describing information on rock materials (Kirkaldie et al., 1988) . The URCS consists of four physical properties: a) weathering, b) strength, c) discontinuities, and d) density. A general assessment of rock perform.ance is then based on a grouping of these key elements to aid in making engineering judgments. These individual properties are estimated in the field with the use of a hand lens, a l-lb (0.5-kg) ball peen hammer, a spring-loaded "fish" scale, and a bucket of water. Each property is divided into five ratings which convey uniform meaning to geologists, engineers, inspectors, and contractors as well as contract-appeal board members. Subjective terminology, such as "slightly weathered, moderately hard, highly fractured, and lightweight," varies widely in meaning, depends on individual and professional experience, and cannot be quantified with any ....
~
1
t:
~ ~_
.-
f
,,.'
I
I,
".
•
,;.
. :,"
TABLE 9.11
Unified Rock Classification
~
:-.'
.
..
(',
I.'
. ,
. ",.'. ~:~~
.~:
."
'
SystemS Degree of Weathering Weathered
.:
Representative
.-.-
~':,;:, Altered,
"
Micro fresh state (MFS)
Visually fresh state (VFS) .
A
8
> Gravel Size
"
Stained state (STS)
C
<
Sand Size
Partly decomposed state (PDS) D
Completely decomposed state (CDS) E
Nonplastic
Nonplastic
:
tompar~ to ; Fr~sh State.,'
Unit Weight Relative Absorption
Plastic
Plastic
," 'f",
,
Remolding C
Reaction to Impact of 1 Ib Ball Peen Hammer "Rebounds" (elastic) (RQ)
"Pits" (tension~,Q ' , ~.
A
(PO) B
>15,000 psi >103 MPa
8,000-15,000 psi 55-103 MPa
C
UCraters" (shears) (CO) 0
Moldable (friable) (MO) E
3:000":"8,000 psi" 21-55 MPa -
1 ,000-3,000 psi 7-21 MPa
<1,000 psi <7 MPa
"Dents" (compression) '-", , _,,' (DO), '
'.,-
~
"
.
-
.~.
(Table continues on p. 200.) ~....
t
a
I'
(Continued)
TABLE 9.11
Discontinuities Very Low Permeability
May Transmit Water
'.
Solid (random breakage) (SRB)
Solid (preferred breakage) (SPB)
A
B
Solid (latent planes of separation) .. . (LPS)
Nonintersecting open' planes (2-D')
Intersecting open planes (3-D)
0
E
. C'<
Attitude
Interlock
130-140 pcf 2.10-2.25 g/cm 3 D
Less than 130 pet 2.10 g/cm 3 E
..
, =: Unit Weight
Greater than 160 pcf 2.55 g/cm 3
150-160 pcf 2.40-2.55 g/cm 3
140-150 pct 2.25-240 g/cm 3
A
B
C p~sign
Notation Weight
Weathering
LIA-EI Strength a After
Williamson {1980, 1984): estimated by soil mechanics techniques.
b Strength C
Approximate unconfined compressive strenath.
I
A-EI
-.,----"'~
I A-E I
IA-EI~
10-/ ____ Discontinuity
•• '201
REFERENCES
reliability. The URCS is not intended to supplant the existing rock mass classifications but assists when descriptive terminology is ambiguous. The URCS'is depicted in Table 9.11.
REFERENCES Abdullatif, O. M., and D. M. Cruden. "The Relationship between Rock Mass Quality and Ease of Excavation." Bull. Int., Assoc. Eng. GeoL, no. 28, 1983, pp. 183-187. Barton, N. HApplication of Q-System and Index Tests to Estimate Shear Str~ngth and Deformabili"ty of Rock Masses." Proc. into Symp. Eng. Geol. Underground Constr., A. A. 'Salkema, Boston, 1983, pp. 51-70. ", Bieniawski, Z. T. "Engineering Classification of Jointed Rock Masses." Trans~ S. Afr. inst. eiv. Eng. 15, 1973, pp. 335-344. Bieniawski, Z. T."Estimating the Strength of Rock Materials." 1. S. Afr. 1tlSt. Min. MetaLL. 74(8), 1974, pp. 312-320. Bieniawski, Z.' T. "Determining Rock Mass Deformability-Experience~,from~Case Histories." Int. J: Rock Mech. Min. Sci. 15, 1978, pp. 237-247. !';' .:: ,.: Bieniawski, Z',T. "The Geomechanics Classification in Rock Engineering A.I?plic~tion ..'~ 'Proc. 4th Int. Congr. Rock Mech., ISRM, Montreux, 1979, vol. 2; pp,; 5'1-58. Bieniawski, Z,!,' T. Strata.Contro! in Mineral Engineering ,A. A.BalkeIl)a, ~B9.stQn~' ; . .., .. . . . 1987, pp. 120-:121. '
Brown, E. T., and E. Hoek. "Discussion on Shear Failure Envelope, i,n ~RQcl< ' Masses." J. Geotech. Eng. 'ASCE 114, 1988, pp. 371-37J. Fowell, R. J., andS. T.Johnson. HRock Classification and Assessment for Rapid Excavation." Proc. Symp. Strata Mech., ed. I. W. Farmer" Elsevier, New York,-. 1982, pp. 241-'::244.,:, '.. I
Ghose, A. H., and D. Gupta. "A Rock Mass Classification Model for C~ving Roofs." Int. J. Min. Geol. Eng., 5,1988, pp. 257-271. .: Hoek, E., and E. T. Brown. "Empirical Strength Criterion for Rock, Masses." 1. Geotech. Eng. ASCE I06(GT9), 1980, pp. 1013-1035. Hoek, E. HRock Mass Strength." Geo-engineering Design Parameters, ed. C. M. St. John and K. Kim, Rockwell Hanford Operations Report no. SD-BWI-TI229, Richland, WA, Dec. 12, 1985, p. 85.
t $
II
Hoek, E., and E. T. Brown. "The Hoek-Brown Failure Criterion-a 1988 Update." Proc. 15th Can. Rock Mech. Symp., University of Toronto, Oct. 1988. Kidybinski, A. "Classification of Rock for Longwall Cavability." State-of-the-Art of Ground Control in Longwall Mining, ArME, New York, 1982, pp. 31-38. Kirkaldie, L., D. A. Williamson, and P. V. Patterson. Rock Material Field Classification Procedure. Soil Cons'ervation Service, Technical Release no. 71 (210VI), Feb. 1987,31 pp. Also in: ASTM STP 984, ASTMaterials, Philadelphia, 1988, pp. 133 - 167.
202
OTHER APPLICATIONS
Kirsten, H. A. D. "'A Classification System for Excavation in Natural Materials." Civ. Eng. S. Afr., July 1982, pp. 293-307 . .Laubscher, D. H. "Selection of Mass Underground Mining Methods." Design and Operation of Caving and Sub-Level Stoping Mines, ed. D. R. Stewart, AIME, New York, 1981, pp. 843-851. Laubscher, D. H. '"Design Aspects and Effectiveness of Support Systems in Different Mining Conditions." Trans. Inst. Min. Metall. 93, 1984, pp. A 70-A81. Robertson, A. M. '"Estimating Weak Rock Strength." AlME-SME Annual Meeting, Phoenix, AZ, ,1988, preprint #88-145. Romana, M. "New Adjustment Rating for Application of the Bieniawski Classification to Slopes." Proc. Int. SYf!lp. Rock Mech. Min. Civ. Works, ISRM, Zacatecas, Mexico, 1985, pp. 59~63. Sandbak, L. A. "Roadheader Drift Excavation and Geomechanics Rock Classification. at San Manuel Mine, Arizona." Proc. Rapid Excav. Tunneling Conf., AIME, New York, 1985, pp. 902-916. Sandbak, L. A. "Rock ~ass ,~lassification in LHD Mining at San Manuel, Arizona:',': .. SME-AlME Annual Meeting, Phoenix, AZ, 1988, preprint #88-26. Schmidt, B. "Leamingfr~m:N~clear Repository Design: The Ground Control PIal),. ~'~" >, '.1 Proc. 6th Aust. Tunneling Con!, Australian Geomechanics.Society, Melbourne;· ... · 1987, pp. 11-19 .. .'. Se~afim, J. L. " and J. f~ Per;eira. "Considerations of the Geomehanical Classificati"on:-': -: ; of Bieniawski." Rroc.! lpt., ,Symp. Eng. Ceol. Underground Constr. ,A. A:, ,1 Balkema, Boston, 1983~ pp. 33-43. ' , ;
.
'
;
~.
'. l'
I'~'
•
-'
.
.'~
Singh, R. N., B. Denby, I., Egretli, and A. G. Pathon; '.'Assessment of-Ground', R~ppability in Opencast Min'ing Operations." Min. Dept. Mdg. Univ. Nottingham ." 38, 19.86',' pp. 21 ~34. Singh, R. N., ~. Denby, ,and 1. Egretli. "Development of aNew Rippability Index ~ for Coal Measures.~' Proc. 28th U.S. Symp. Rock Mech. ,A.A. Balkema, Boston,' 1987, pp. 935-943. ;' Smith, H. J., 44Estim~ting Rippability by Rock Mass Classification." Proc. 27th U.S. Symp. Rock Mech., AIME, New York, 1986, pp. 443-448. Smith, H. J. "Estimating the Mechanical Dredgeability of Rock." Proc. 28th U.S. Symp. Rock Mech., A. A. Balkema, Boston, 1987, pp. 935-943. Stevens, C. R., L. A. Sandbak, and J. J. Hunter. "LHD Production and Design Modifications at the San Manuel Mine." Proc. 28th U.S. Symp. Rock Mech., A. A. Balkema, Boston, 1987, pp. 1175-1185. Stille, H., T. Groth, and A. Fredriksson. HFEM Analysis of Rock Mechapics Problems by JOBFEM." Swedish Rock Engineering Research Foundation Publication, No. 307, 1982, pp. 1-8. Trunk, U., and K. Hanisch. Private communication, 1989. To be published in Felsbau. Unrug, K., and T. B. Szwilski. "Strata Cavability In Longwall Mining." Proc.
I
REFERENCES
203
2nd. Int. Conf. Stability Underground Min., AIME, New York, 1983, pp. 131-147.
Weaver, J. M.· "Geological Factors Significant in the Assessment of Rippability:' Civ. Eng. S. Afr. 17, Dec. 1975, pp. 313-316. Williamson, D. A. "Uniform Rock Classification for Geotechnical Engineering Purposes." Transp. Res. Rec., no. 783, 1980, pp. 9-14. Williamson, D. A. uUnified Rock Classification System." Bull. Assoc. Eng. Geol. 21(3), 1984, pp. 345-354. Yudhbir. HAn Empirical Failure Criterion for Rock Masses." Proc; 5th Int. Congo Rock Mech., ISRM, Melbourne, 1983, pp. BI-B8 .
. -..
-' ~ '.~
:
.. ':....
.-
-~-:~
. .:
. ',-
\
1< ~
~',
I l
•
~I
..
10 Case Histories Data Base
I
I
It is truth very certain that when it is in our power to determine what is true. we ought to follow what is most probable.
-Rene Descartes
'"
:;. ,,-
'. ~:
if
The case histories used in the development and validatiorI of t~e.\GeomeGhanics ' Classification (RMR system) are tabulated in this chapte~., ,Originall y, 49 case histories were investigated in 1973, followed by 62 ~0~1 mining case. histories that were added by 1984 and a further 7 8 tunnel~ngl ~nd mining, case histories collected by 1987. To date, the RMR system has:.been used in 351 case histories. To assist the readers in deciding whether their particular project site conditio'ns fall within the range of data applicable to the RMR system, a summary of the case histories, featuring the principal data, is presented. Names of projects have been omitted at the owners' request. However, since this is abbreviated information, an example of the actual data sheet used in record keeping is shown in Figure 10.1. This data sheet is accompanied by the details of the geological conditions encountered and the support installed. The tabulated RMR case histories are presented here in order of the RMR magnitude, from the highest to the lowest. However, all the records are stored using the Mac Works data base software for a Macintosh personal computer and can be retrieve~ and sorted by any item' appearing in the heading of the tabulation (i.e., project type, span depth, etc.). 205
206
CASE HISTORIES DATA BASE
. Accordingly, to demonStrate the RMR data base ranges, histograms are ·.giv~n in Figures 10.2-10.4 depicting the ranges of the RMR values, spans of excavations, and depths below surface applicable to the case histories on the basis of which the RMR system was developed.
Rock
Case No
EJ·
Project
I
IShale
PARK RIVER WATER TUNNEL Har.tford, Connecticut
Country
Span,
m
17 . 80
I
Stand-up Time, hr 18 .759 1 Depth, m 151 .0
I
IU.S.A.
!Interbedded shale with sandstone. 3 structural , 9.9 Q 70 RMR regions. Monitoring and :1 classification data. Reh r~n ce Publications and reports .. BlacJ
I
I
I
"
:,1'1
"I, i
..
-t~E!~uj
I
RM R
[9]1
0
:iiere~encc!'
Figure 10.1
A record-keeping form for RMR case histories.
II·
,
'\
Listing of RMR Case Histories Case'
2 58 256 334 1
250 284
Rock Type
Project Type
gneiss limestone
chamber
lava
metal mine
limestone mine
dunite
hard rock mine
Shale
Railroad tunnel
quartzite
metal mine
si~stone
tunnel
99
dolerite
tunnel
264 76 283 248 113 48 321 16 251 285 253 57
gneiss
chamber
dolomite
sewage tunnel
108
gneiss
tunnel
254 238 265 245 229 103 252
.9.~!!~zite sericite ....
metal mine
224
3 263
~ranite
chamber
greyw!cke
chamber
181
g~!.!zite
-----
sail dolerite
foundation
argillite
chamber
siltstone
tunnel
_
.....melal.. mine
siltstone
-....tunnel .. metal mine
--_ __ . ----_._75
metal mine -- chamber
__
.
'---"-""
rock slope -
75
tunnel
75
quartzite
metal mine
75
basalt
tunnel
74 74 74 74 74
quartzite
tunnel ~.
54.600
_
16.700 ..
_._--_
.
....
12.000 22.600
_""
chamber
metaphyre
._------_.
33.300
_ _
__._-
..
82
103.000
._-_ __-_ _-_ _-_
...tunnel
9~.~.r:!.~.!~~.. quartzite
200.000
--~-.
chamber
y'~~~!!.~_gneiss
94 91 88 86 86 85 85 83 82 82 -*--. . . . . . . ._--.- .. 80 80 79 79 78.. .. ..78 .. ......... .. _... .. .. 78 _..... _... _.... .... ...... ........ 77 76 76 76 .. 76 ... .- --75 ..
~.unnel
sandy shale
----.- -_ .~~eis_~_. ----- .grel'_~~:.~e ---- melaphyre
255
chamber
.-
sandstone
a
RMR
metal mine
: 0,.,.:--
.'
---
20.0 13.1 16.8 25.0 7.4
403000 175200 87590
16.5 6.0 5.5 33.0 44.0 6.0 25.0 5.5 21.7 6.0 14.6 12.0 6.0 4.9 10.B 8.3 7.8 4.0 29.0 22.0
Depth m
18 666 1800 385 28 1494 200 51 350 338 200 _. 30 350 25 298 442 2378 200 -_. 2650 67 26 2100 '" 183 171
--
156 _w· 191
5.300 11.250 -- 1--------50.000 ..
Span m Stand up tim. hr
3.3 9.8 7.8 12.0 33.5 4.6 10.0
35040
217 2073 61
100 300 3936
-
41
1700
-,~-----
Listing of RMR Case Histories (Continued) easd 263 320 -~71 340 52
Rock Type
Project Tvpe
greywacke
chamber
sihstone ..-......
.--_
._-._--_.
oil shale
oil shale mine
63
coal'
coal mine
83
gneiss & granite
tunnel
_-
...... -_.-- -sihstone schist
chamber water tunnel
182
dolerite
tunnel
granite
tunnel
-_210 ..218
.9nei~s
---219
basalt
--.
metal mine
260
gneiss
chamber
~--
270 271
~.--
2~njle
2~~~~.!~~e
. ~~.?y.!~~~.e 1----275 greywacke
chamber -
• __ • T
tunnel
-
metal ..mine ._--_ chamber tunnel
71
chamber
71
tunnel .__.-
-70 .. 70
coal mine
11.300
. ~~.!!;.t!.ll~~.'
__ __
~-.-----
10.000
50.000 2.800
__._-_.
.
3.900
12.500
__
-.-
- ..---.
!..
.....--70 ....
i
.. ..
---."--".--."~
.....
70 -.---_.__......-.-._-
coal mine
70
'19.900
metal mine
:10
5.000
chamber
70 70 !7CJ 70 .70
tunnel
metal mine
-
chamber .!~nnel;!. ;
~
I.
-,
lun,ne.l,:; -' t
tunnel
-
,.
... -
_.
~7b
up
time hr
Depth m
33.5 6.0 18.0 12.0
300 263 _... 290 150 -..... 671 28 70 29 70 ~
72 72 72 71 . 71 71 71 _.71
foundation
Span m Stand
3.4
-.---.. ....._---_ ....... ...:._... _ 72.... 2.810 .. ..............
chamber
quarlzite
-_.259
72
-
.-72 ......
258
---- -_
..
tunnel
'--" chamber
----
4.800
12 '"
tuff
14 granite dolerite 104 190 2neiss monzonite 237 mudstone 261 319 sandstone argillite 337 dolerite 97 128 shale 134 .•.shale _.--139 shale .... --~223 shale 236 porphyry 247 gneiss 257 ~uarlzite
_-
tunnel
209
a
RMR
. 74 ....... 74 73 73. 72 , 72 .. 72
.-
..
35.000
.........
:
3.2 15.5 5.0 12.0 3.0 6.0 6.1 16.0 23.0 23.5
720 480 1440
'"
68 ........ 924 _... 384 2092 60 335 23 67 ~-183 152 210 25 48 _.....
-
2.5 4.0 13.7 6.0 21.5 5.5 15.3 9.3 9.9 7.8 4.3 16.0 16.6 23.0
1 _• •
3.0
3.0 3.0
2136 3000 2956 8759
143 ....... 152 _....... t68... 51 214 140 2750 335
--
... _....
--
......150 _.. 150 ...-............. t50
ts
ill
aa";Mage¥. J£ sax:.
JUI JI2
$S . X,"
;,
Case' 55
222 273 277 88 127 133 149 156 240
Rock Type
Project Type
amphibolite tuff greywacke
chamber chamber tunnel tunnel
- - - weywacke granite
-
coal mine
shale
coal mine
shale
coal mine
shale
coal _.. mine
._-- _.metal mine _ _ _ _ _ chamber ...._----monzonite metal mine
quartz~!.
345
schist
m~JaLmirle .
shale
coal mi'ne
shale
coal mine .coal ...--_ ..mine -.......
126 135 140 246 61 138 220 287 290 . 87 131 137 217 267 89 125 136 _..... 144 .. 146 ... 159
-_.
_.-
shale mudstone sandstone
--_ __ __.
..
tuff
chamber
sandstone
tunnel
shale
.......... -
.....
---
__ ._ ....... -
..
..chamber' -.-......-... ... mine ... coal .. _........ -........... coal mine ....-....................
quartzite
tunnel
shale
.-coal
shale shale
..
..
'.
. .
• • •,
I
...
coal mine
\,
67 67 ...-67 .66 ... 66 66 66 66 65 65 . 65 ........ 65 -, 65 .
--.~
..
4.300
64 64 .. 64"
_0
• _ _ _ . _ ••• _ . _ . _ ••
..
..
......
..-
92 ~
2160
150 150 ...... 102 154 152 171 193 ." 275 _... 200 706 76 154 160 152 -... 150 .'-'.. 150 ...... 157 545 200 200 .. -. 108_. 152 ..... _... 171 --_. 697 150 41 154..
2544 1320 1344 1032
160 _... 156 159 125
8760 2568· .2424 4944 3096
."_0
240 2136 1632 1224
-
1486
.---_._- __ -.
...
0.900
--- - -
mine
_--coal mine ...---.--. coal mine' .- .. _-. coal mine
..
\
..... " ..
.
-
..
64 64':"'"'· ... :
8.4
--'-'. _.-
64--
".
3.0 14.3 6.0
._----_. .
,
~--~
- ,j.
9.0 -------9.9 9.9
Depth m 921..
16;900 ._-_._--_. -_ -....-.-_ -._- ---_ _-- ---3600 .. 4824 -_ . --_._-,,--.. .... _................_ __.... .. __ -'1440 ..-- ---- ..-.- ...... _.................- ._- _. . 0;190
-
chamber tunnel-'
68 .. 68 68 68 ... 68 68',-, 6i;;
21.7 6.1 3.0 3.0 10.0 9.0 6.6 8.4 9.0 3.7 22.0 .. 20.0 6.0 12.0 9.0 7.8 16.3 4.5 .... .10.8 6.1 6.0 6.0 .... .. .. 19.0 ........ 6.0 .. .......... ........... .. ............. __9.6 .6.0
._----_... ._---_._---_-- ._--.._--_ _... ..-._---_.-
_
greywacke
shale
:
tunnel
.~ran!}e
shale
..
coal_......... mine ......... coal mine
shale _... ----- ...._w shale ... _ ----- basalt
: ..
- ._chamber ..........-.......
shale
20.000
__ • ._-_. ...1..-_ _ _0.800 .. ._----_.. .._-
._---- .p.5'.P.!'!_ry 262 329
Span m Stand up time hr
0.700
-
charnbe~ .
shale
a
RMR 69· 69 . 69 69. 68 68 68'
.~
-_ ._-
-----,-~ ~~. -:--~.<~-=~~~~~.;:~:-:,-':-~.~~.]- -.... -.1;
~ "'::-~;~,;".~~:~~?fJ:~2ft."",,~:;7."-
-...
..
:c,~,_-,.~;~!;:,'~ -~
Listing of RMR Case Histories (Continued) Case.
289 15
1----
17 62 ..101
--_
124 152 227 286 348
Rock Type
ProJec.t Type
shale
lunnel'
~.~~iss,
chamber.
._-
coal mine ............
dolerite
rock-slope
shale
coal mine
63
shale
coal mine
dolerite
rock slope
63 63. 63
94 109 119 141
sandstone
chamber
dolerite
tunnel
quartz-mica schist
tunnel
shale
coal mine
shale
coal mine ...... _._ ......... -
----192 gneiss --mudstone 202 203 208 241 288 49 59 2ql
6.600
62 62 62 62
13.200 7.500
tunnel metal mine
62 62 62 61 61 61 60. "60." -. 60,
792 600
shale
tunnel
.~.~.~~.~Y...!~~~~ I
.. --.
quartzite
railroad tunnel
shale
tunnel ..... _.......
...
tunnel coal mine
281
_._-
phyllite
'tullrlet
344
gneiss
....tunnel ...
andesite
wat~rtunnel
_
. -,
"
,-
gneiss'
...tunnel
189
gneiss
lunnel
..
..
.
.' .
.
--~9;--
59 59
72
3.7 10.0 . _ - - - - _.•. -.0 6.1 .......... 6.0 ............ 6.0 ..... __..... .. 9.0 35.000 14.3 " 2:160 ---
'
..
-.
--
,',-_
'
96 168
._---_._
"'-"'~O' -. ·",,·t;jO. .. .....
."
186
. 11.4
3600
1.300
_---
..
101
792 1200
_--_ .. _._----.18.0 .......... ._---_._3.0 ...... ........2.0
-
'.
"
,
,.,.,.
.... '-
h_
-
..
0:: ........ ......- ... -,
1.104 .,5';8
82 27 154 137.. lOB
---
100
'--
100 200 330 225 _. 19 457 200 9
40 384
-~
73 154 122 31 200 .-.. 54 .6_. _ _ .. __ ...........
.---_?~9.
.... -.
----_.........-
chamber
gneiss
30.0 5.5 3.7 11.4 8.4
...
....
_------ ._---62
shale
~
62
sandstone
"'
tunneL
51
11.4 12.0
--_...... _---- -_.....-................. ........
porphyry
mudstone
299 92
3.000
62,
diabase
_.
...
62
---leplite 1~ 92 142
~--
chamber . ............ _. --chamber ....... .. _...
1----
__
'63
,.
21·2
_ 6.0 ......__. '-..... ...._--------- ._- '63 .. --_ ..... _ .. _ ......... . ._3.6 ..... :'62 O.BOO -..._-_ ..._ 15.0 _-_-.._........ ._----........
sandstone"
---...
-63
_-
tunnel ............. coal ................mine tunnel _... ..................
._--_... --79 77
-
Depth m
225 305 _...
31'.600 ~ _ _ ~ _ _1,~.~ ----.!" 31.600 3.5 .. _... ......
,63
ch'amber _..._--
shale
Span m Stand up time hr
'10,0
63, .
~neiss
sandstone .. ---- -sandstone
a
RMR 64,
..
152 102
3.0
100
7.2
229
3.0
1440
2.8
2160
67 67
Case'
221 308 324 37 56 130 143 188 191 272 278 22 28 39 187 242 282 338 351
_.-
--
4
86 107 ._-.132 .. ...157 211 .. _._ ..... 274 306 312 323 326 327 346 34
__
Rock Type
Project Type
tuff
chartber
mudstone
tunnel
siltstone
tunnel
gneiss
tunnel
siltstone
shaft
shale
coat mine
shale
coal mine
granite
tunnel
gneiss
tunrier" .
greywacke
tunnel
.greywacke
tunnel'
shale sandstone
coal mine:
sandstone
coarinin'g
biotite
tunnel
andesite
metal mine
phyHile
shaft
shale
coal mine
granite
tunnel
granite
tunnel
sandstone
tunnel
":'
tunnel
shale . ..
coal mine
"
--
-~~1 "
sandstone
tunnel'
greywacke
t~~~·;f~-:-·--···:
mudstone
tunnel
mudstone
tunnel
siltstnoe
tunnel
mudstone
tunnel _.-
coal mine
--_.---- --'
---_..
.. -
-,
'.,
.. , -. '--
56-
56 56 56 56 56 ,. 5'S
--:---- --_.
...
coal mine
,
-.
'.~
.,
---.
.. _.... .
.
I
'
2.8 .-3.'0
._-_ --_.-
':~~~9. ..
-
.
._..._-----_. -----_.
\,
,.
--.-
56
u •••• • ••••••• _ . _ _ . _ •• _ _ _ _ _ •
shale
---
.'
.,~57
56 56 .56 J,56 , _. - _.,
600 240 4300 720
2.8 -
,.
57 57 57 57 56 56
coal mine
tunn'el
9.1
3.7
'57
shale
mUdstone
2.BOO
0.400
66
7.8
','~58'"
"51
6.1 6.0 6.0
12.3
'·:58"
.. -
Span m Stand up time hr
0.600
. ·:",~8~-·
-.
gneiss
shale
,0
59 59 59 58 58 58 58 58
---------coal mine
_- __ -
_-
ijMR
0.300
_ _.----_.......
...
'4.2 4.0 3.6 4320 3.0 3.7 ._ .... 3.0 .. .. ....... 2.5 .. ........... 168 6.0 8.0 15.5 3.9 ....... 624 6.0 ........ ...... 456 6.0 ......... ..... ......--........ -.-...... 5.0 ..... 48 .............. ._.......... 3.0 6.0 16 6.0 1056 6.0 ........ 6.0 ._6.0 .....
_-_
•••• 0 ••
1.740 12.000 1.650 1.000 ...
__ _...__ ...
Depth m
762 40 394 24 684 152 156 67 67 -. 150 150 .. 80 160 150 ,
67
275 102 300 .... .. 400 15 70 20 152...
_--_ _.- ----_ _
----..-._---_ ~.
~
3.8 ... -----_......... 4.5
145..
71 ........... 150 49 8
365 -173
--
98 .-.....
810 60
Listing of RMR Case Histories (Continued) easel 35 36
44
Rock Type
Project Type
shale
coal mi,ne
shale
coal 'mine
,.
tuff
charrber
basalt
chamber
55 55'-
1.500 2.330
243
fanglomerite
metal mine
55
0.200
293
shale
tunnel
295
shale
tunnel
55 55 54
20
gneiss
chamber
33
gneiss
chamber
47
_coal ..
----151 shale grey wacke
tunnel tunnel
shale
sandstone
---155 shale 276
greywacke
mudstone 309 313 sihstone "_ ......... -._. ..........
..-._315 ...-.-,.-.. mudstone
_- ._._....
-'."."","
-
.. _._.-317 .... ..
322 325 328
.. _----84 95
--212
------_._231 336 341
tunnel coal mine
--railroad tunnel coal mine lunnel tunnel
~
siltstone
tunnel
mudstone
tunnetl
granite
tu'~'nel'-'
dolerite granite
-....;
,-
.. -
tunnel
..
~~2'
; 52-52"
-
.---......- ...
!!2.illite
_.._---
sandstone
tunnel
.--
metal mine . chamber
52
-'-
52~
3.7 6.0 6.0 19.5 24.7 14.6 .... ,... 3.5
I.
4.2 _'0' 7.4 -....
40 30 401
408
_. __ _-_.
_ _ _ _ ...... _ _ _ _ _ _ •
.--..- ...... ...
..
_._. __ ..............
_---_. _.
.
-. .
_.-
I
-
~
12 ..... - ..... 26280
..
--~---
6.0 6.0
(},69Q
15.5
10.000
5.5
.-._-.. ..
1.250
5.0 3.7
,-
__ .-.... 24
-..- ._.._.- .......__.... _--
21.5 6.0
.0_-•
~
-
9
--- .. .._.....-... __._---_.. _-. . 6.0. ._... _...... _....__ . _. __ ..
6.0 .... 6.0
924 330 200 200 295 300 442 ._-' 141 ... 146 150 200 200 20 390.. 58 92 150 52
.._0.-___-.. _--- . ..... --------.. -- ...----
120 6.0 3.0 6.0 168 6.0 456 ........ _........ _. __ .u .....•-._._._
~
J
tunnel
-
'
Depth m
4.5 3.2 30.5 6.0
5.4 3,0 6.0 6.0 3.2
-
"-
Span m Stand up time hr
.--.~--.-
54 54' 54 54 53 53 . 53 53 53 53 .. ._-53 . ..---_.53 53 .. 53 53" .. -! ':53 ._ ... i ...,.-. .. ~.5,Z
_---
porphyry
-
_ __
tunnel
-tunnel tunnel -.. lunnel
'.
..
---_._.
coal mine
sihstone ...
mudstone
54~
coal mine
shale shale
._--_.
coal rriinEt
292 296 32 43 50
5.200 5.200 1.900
54 54 .
tunnel
279
-_.---sandstone
,
55 55::-.:"-·
216
---'--_42 ..... _- .~!anite
~
a
RMR
..
'
-
162 .__ . 159 -310 211 56 65 56.. 69 755 .- .. 25 210 ~
--
_.-
---"~
easet
Rock Type
Project Type
21 67 123 294 6 46 114
coal & shale
coal mine
sandstone
coal mine
shale shale
coal mine lunnel
granite
tunnel
shale
coal mine
claystone
foundation
118 162 .. ....193 194 195 249 311 314
sandy shale
_ __.- _ --_._--
coal mine
mudstone .. _---
tunn~I"-
mudstone ,,-._.,,-
tunnel
mudstone
tunnel
shale
chamber
mudstone
tunnel
mudstone
tunnel'
sandstone
coal mine
gneiss
tunnel
_ -._.349 .....
18 19 --"--' 30 45 164
--'-- 9neiss shale
coal mine co~lriline
_._- .2!.!~~ ,~?!'p'.~yry shale 145 ...._.- ........ _--_. 163 shale
-_235 ...-
-_
---.- .._..,._ .... _--_.
204 205 280 335 r-' 69 1--. 153 -'-'161 298
"
...
~O
50 49
...-
49 ---_., 49 '49. __ . . ,--
"49. .49
49 .. 48 48 48 .48
tunneL.
.'.
dunite
hard rock mine
siltstone
coal mine coal mine
shale
coal mine
shale
tunnel
• -
--~,
-,
....
- -
•
t
-
,
"
a
3.8 4.2 4.8 6.0 7.0 4.5
2.600
4.9 6.1 9.2 1.5 4.0 5.5 20.0 6.0
1.950 1.950
..
. .
6.0
3.6 6.1 23.5 3.2 4.2 7.6
_._--
5.300 5.300
..
.,
. P.83,0 1.140
. ..
..
48 '~41'
t17 47 47
-
-
"
'-'
----,
-
4.3 6.3 6.1 -3.0 2.0 5.8 2.8 3.2 5.4 :5.'6 10.0
'
-..
,
,
Depth m
92 220 154 200 20
--
124
225
67 5 5 15
232 609 152 .._.. . ....... .. .._. 175 .- .... 175 .__ ............ ._......_---_.-"'*._ ... 171 45 69 103 375 _....... 330 .......... ......... ..... 335 ........._.... .. ......... 80 190 156 915 .. ... 214 ......... ,_u· .. •_ _ _•_ _ _ ••159 156 . ... _. 100 96 102 295 300 145 152 225
._-_
--_._._.__ 6 312
._- ------_. _ __
_ _
---------..
---.....- .. -- ..__._-----_ ... _._..__._ _----_. __ ~-
67
3.7.
.
•
.
Span m Stand up time hr
..-
'48
phyllite
-----
,
coal mine
chamber
...
50
coal mine
mudstone
shale
c
.... ....
.'
metal mine
chamber
~
50 50
metal mine
mudstone
....
. : -:~9'
chamber
shale
232
'.
coa.I.rnine
shale
.
RMR 51'" 5.1 51 .. 51 50 50 50 .50 .50 50
foundation
shale
.....".. .. , 14
~-
-----_
72
.--_._.
67 24 48
72 67
---
~..
-'
'"-:' . . .
~
/
"
',1
.
Listing of RMR Case Hist~.ries (Continued) easel 310 347
Rock Type
Project Type
RMR
mudstone
tunnel
. 47
coal
coal mine
a
Span m Stand up time hr 6.0 6
-47
4.2
coal 25 _w160 ___ shale
coal· mine
46
4.2
coal mine
.:-4~
shale
coal mine
46 46 45 45 . ,45
8.4 8.1 6.0 6.7
--
180 199
mudstone
tunnel
60
gneiss & schist
tunnel
68
sandstone
coal mine
80
sihstone
chamber
0.250
18 28
17' 154
9
90
4.2
3.300
30.0
----------------t --"--' _~.~.~_ .~~~~. ____ .._ _ _. ~.~~_~.d.....a....;ti_on ........_ _ _..:....I~-,.;.;,4--5-- t _ _ _ _1_.'_2_0. _ _ _ _ _ 6_.1t--_ _ _ _ _ _ _ 1
.-.~.~:. - .;~:i:---.··--····-··-··-·-· ~~~._:.-;~-:_.:.-..___-..-w.--.~.:;.-.--. -_. _-_. ------;::t----:~--coal mine
--.-------.___ .. _ _ _~.~~
. . .-.--..-.--.-..+~; 143 198 195
sandstone
tunnel
112
shale
foundation
44
215 297 316
318
44 0.100 6.0 897 897 .44 10.0 225 sllslon8 tunr)el ~446.0 4 ............_......_____ .......... . '---'--'-- ··--------f----------of·--·-············-·-··131 ..··· mudstone tunnel 44 •_ _ _ _ _ _ ~----.-:.6.0 28 _... _. __...~.!.~
350
sandstone
coal mine
·~h·~i;··
~·~;i··~~;---··---··
78
__'_"'_
shale
basalt
chamber.
shale
tunnel
=:~~~_~~ :p.?~p.:~r.:~y.~===:=: ~i.~~L~~L~~ ___ .~:·
'-"40"--' 129 147
..-···u..- ..-.--.-..-.
shale
coal mine'
shale
coal
~~._ ~~~~e ___ •
._~..~!_ ~~~!~__ shale 172
mine ..
..~~~!~T_e
coal mine coal mine
__-
..
44 44
0 _ -
0.400 1.000
706 . "__ ,_, ___ ,, :_ _ _ _ _ 4.5 _ _ _ _ _4.-2t---------t·-··-·-.. ~···-.. 3.1 . . -_····· . ·.. ·_··--...
4; __ ' .--------. ~3 4~
~3
4:f "43'
29
26 46 100
4.5 44
175
7.6 15.0 5.5
Depth m 6' 145 386
···5·;'o ·335
00
5.4 5.4
24 264
175 152
__ 1-_ _ _ _ _4...:....:.6.1-_ _-.:;.3.;.9____ J. ______~157 ._~~~._··_·.,._f-_____4...:...;:6........_ ___=3.:.9____I.____~~__ 175 6.1 26 160
'--"74- ;h;i;--"--"'---' ·~~~·i·~i~·;········-·-..·-..····-··- ·:-..··_·..···4·]·-···_-- ........._.-.... .,. .. _....-._. -----·5.:~f----2-9---·· _· __·-..·_-·····'·;;·3
. ._._._.__. -.-.. ._ ....______ . ..,.............--.-.-.-.--....---.-.. .~~
177
shale.
coal mine
,---~-
. '43
. . ·. -······. - . -··. .; ;. -. ·----.--;;-t---------· ._--.--_.--.. _. 5.3
28
154
Depth m
54 104
101 154 150
4---------------1~---------
18
160
111 92 85
29 _. 301
sandstone
24
sandstone
coal mine
65
f---------------I~--------410
mine 39 -"---' .coal ._. ._------------,------+.----tunnel 39
---------------~.--------- 200
sandstone ---- ---.----.---.-.......... -....-.....__......._-- ---·-----·t------·-
shale
coal mine
38
100
dolerite
tunnel
38
150
shale
coal mine
38, .
gneiss shale
26
81
--_ ..._-................_...._.-......._--+--- ---,t----
.--1~ .9.~x._w_a_ck_e_ _ _ _ .. _. ~~.~~.7.~_ .. _..
343 23
38 ____
_._.. ~.~~~.~~.......... __ ._ _ _ _...._ _ ~_8____
"--'-" .coal .-.. . .rni(1e', .....
t
171
.------------~~-------__--..________~---------'50
._ _ _ __
.t.--_-_-
100
---------------4------- 180
.-------.t-------
coal mine
37
-----------------4--------- 150
.--<~1.;
53
coal tuN
159
shale
co~rfTIine
196
mudstone
tunnet"
225
shale
tunnel '.---"~r ....... -.. -.---.-----f:--~~t---.__
244
breccia
metal
1-----
-----------~-------- 100 71
38
chamber'" " .,
400
"~l
155 •_______~~_____________~__--------39
."
171
-,-------f
min'e
... -, 31
--t---------------·~··-----------
37
-_t-----.---
__·f----~-----~--------~
~.~ 9.!!Y~..!7~____ , .~~nel.__~--_---4---.;.3..;.·7-__ ...--------~.-----~ 339
sandstone
~.
coal mine
~7.
330 4_______________ 11____________'50
400
--
- ' . - .. .:::::r'"~~
Listing of RMR Case Histori~s (Continued}
12
-.
--,,----.-
--~
;';J
mykmite
chamber
34
1.300
60
105
quartz-mica schist
tunnel
,34
0.210
29
74 106 110 300
mudstone
coal mine
quartz-mica schisl
lunnei'
quarlz-mica schist
chamber
sandslone
tunnel
330
73 90 5 11 96
porphyry coal quartzite
::-.. :.-______ ._... ~.~~~.:!...................... ____._. 29 1.700~----_ --'-- qu_artzite _. ______ . ~~.~~~,?-=.!..!~~.~:.'_____... , ___2__9_ _-+_ _ _ _0._'_80.._ _ _ _ _ 206 --'.'207 31 91 93 304 81 183 f.-. 184
gr~ywacke
dolerite
tunnel
~9 ___
._---,_____.: i.~~~~i:_-_-.-. . :=._~·:~~: :=-·...;.-~-==·....~-9 mudstone mudstone
~hari:1ger
. :: .. , ... '.':29
shale quartzite quartzite sihstone siltstone dolerite dolerite
"!'I,"-
,,~~;,
"7_:t .... ~ .
,. _ _ _ _ _ _ _~1__-_ _•.:..;100 200
+____1_.4_7_0..________ 1'_ _ _ _ _ _ _-+______ 26 100
100
: 1
Case#
Rock Type
185
dolerite
85 .....
breccia
213 332 10 41
breccia
~-
Project Type tunnel . ~ .
p~!phyry
tunnel tunnel metal mine
shale
coal mine
~.
-_._- schist
tailrace tunnel
303
breccia
tunnel
342 9
gneiss
233 ..•.
.p'~~phyry breccia
tunnel chamber metal mine
schist
-_ ___"_0_- ._-230 331
porphyry granite
metal mine metal mine
-
21
0.100 0.020 0:010
21
._-_._20· .......
tunnel tunnel
98 116
dolerite
tunnel
lS
82 --'.'-214 72 75
0.170
24 22 22
breccia
_._-- _.
0.150
26 26 24
226
:E.aly shale ---"-305 breccia
Span m Stand up time hr
27. .
26
18 17 16
8
a
RMR
foundation
10
tunnel
10
'---'9 ... __._ ... _.....
~ranite
tunnel
breccia
tunnel
granite
tunnel
8
granite
highway tunnel
8
9
__
0.017 0.140 0.090 0.040 .
6.0 15.5 1.0 14.6 14.6
0.090 0.011 0.001 I
.....
~~. "~~."
··':·::·fT· f '·
1.0 15.5 2.0 4.5 9.0 3.6 6.0 3.0 6.5 4.3 3.7 4.5 5.9 7.8 5.5 6.1
10' 1 0
24
0
Depth m
48 72 70 706 110 250 200 100 50 214 603 706 100 46
47 152 200 71 1
-
68 442
399
218
CASE HISTORIES DATA BASE 80
60
-...
40
o
Q,) .
.0: E~
:J'
-
.
~
:2ij_ : :
....
\
'.~,
. I
20
I
I
21·30
'31-40.
41·50
51·60
61-70'
71·80
81-90
RMR Range .•• r. ,..' I
~
,.,
I
;:Figure'1.0.2 ,;Distr;bution ~f RMR. values in the :ca~e:'histo(ie'~ $tudied) .'
100
,.
'
-
80
ca ca
-
C 0
60
c:i
Z
40
<3
3-4
4-5
5-7
7· 1 0
1 0 -1 5
1 5·20
20 - 25
> 25
Span Range, m
Figure 10.3
The .range of spans encountered in the RMR case histories.
-,:1
CASE HISTORIES DATA BASE
219
80
60
II)
4) II)
CQ
0
'0
...
40
4)
J:J
E ::J
Z
20
o
.~ ~,_, <-25': 25- 50 I
50-100 'O.O~ 150 150-200200-250 250-500500- 750750-' km 1-2' km "'2-3 km ;
...
,'"
Depth Range, m
Figure 10.4:
The range of depths encountered in the RMR casehistories'.- _. . ,; <'. ." ~:; ",:. .
Appendix
Determination of the Rock Mass Rating: Output Example and Program Listing for Personal Computer . .. •••
'I.
.
,
. ;
221
i I
222
APPENDIX
=
RMR
----== - --===-"___
a
"_--=-
_____
-
=.7--_-:-:=:...:
- - - - - ------_-;-==-=---:--
The Pennsylvania State University De.termt.nation. oj the Rocft. nass Rati.n9 fxlsed on the GeomechGnics Classification oj Bieni.a.wsk,1" 1979 Program written by Claudio Farie Santos RMR System deueloped by Prof. 2. T. Bieniawsti . Summer 19S8
Do you wish e printed output of this program'? - pleese enswer "VES" OR NNO",
~yestions;
Whot system ~f units ore you gOi n9 to use? - ,pleese enswer M for,metric or E for Engllsh customery untts ? M . -;
Enter the unit weight of the rock m,oss (in kN/cubic meter):~? 25',' How meny families of discontinuities ? 3
~re
present in the rQck moss>? " ,
Which technique was used to determine the compressive s~rength of intact rock in the laboretory (please answer 'P' for poin't loed or' 'U' for unloxiel compressive lest) ? I,~'
? U Enter the uniaxial compressi'y'e strength of the rock materiel (1n MPfI):? 40
~
OUTPUT EXAMPLE
AMR
---...
--
----
223
-
---~---'----------
Enter tne ROD:? 60 Enter the discontinuity specing (in meters):? 0.150 Enter the discontinuity persistence (in meters):? 10 Enter the sep~reltion between discontinuities (in mm):? 0.125 Enter the condit ion of the joint surf ece - pleese answer: 'VR' f or very rough 'R' f or rough 'SR' for slightly rough '5' f or smooth 'SK' for slickensided ? SR " Enter the thickness of the 'olnt 1nf111in (in mm):? O.
;.: ... :
....
g" ';
~~-~-.~.-~."-.---------~------~~~~~~--------------~~ Enter the weelhering condHion of the well rock - pI eese answer: " :'UW'. for unweethered 'S,W' for slightly weathered 'MW' for moderately weethered 'H'W'" for highly weathered 'CWo for completely weathered ? SW' I
'.'
Enter the genera1 groundwater condition - preese "answer: 'CD', for completely dry 'OM' for damp 'WT' for wet 'OP' for dri ppi n9 'FW' for flowing ? OM
224 •
APPENDIX
-=-=---=--=:------
Whot 1S the effect of the strike end dip orientation of the critical set of discontinuities? - pleese answer: 'VF' for very favoroble 'FV' for fayoreble 'FR' for f a1 r 'UF' for urifoYoreble 'VU' for very unfavorable
? FR EsUmate the weethen~bility of the rock mass? - pleese answer: 'HR' for hi gh resistance to weatheri ng 'MR' for intermediate resistonce to weethering 'LR' for low resistence to weathering ? LR
Defermirl'otion
50
Value of odjustedRMR:
41
Volue of RMR for dry condit ions:
Cohesion (kPo):
• • •
:
".
~I _' --
..-_!..•• ~~.;;-; ,-.'7"...._~.-
of RHR
Value of basic RHR:
,."
55
250
Ao;gle of j~tern81 friction: 30 degrees
'~
.~,:
OUTPUT EXAMPLE
;0
225
Roor BOlTING/RMR '88 Mechanical rockbo1t: length = 6 ft; 'peel ng
=
3 ft
SCALE
5ft
H
RMR (roof) = 41
T
= 10ft Pill8r
~
B
= 20
ft
Entry
- alloW' a ,pacing of 1. ft near the rib~, e, indicated - ,pacin~ is 1he3ame both aJongand acero!, the entry
.-
,
SCALE I
I
-
, 0
10ft
~
0
o~ 0
't 0: 0
0
0
0
0 0
;,
,0:.
0
0
0
0
0'
0
0
0
0
0
0
0
0
0
0
0 0
"
0
0
oQ
0,
0
0
0
0
0' 0
0
0
0
0
0
0
0
0'
0
0
0
0
0
0
0"',0
0
0
0
0
0 0
0
0
0
0
0
I Plan view
,
-.- .
,
0
Cro33 -3ection
I
"
226
APPENDIX
PROGRAM LISTING FOR PERSONAL COMPUTER 10 CLS DIM BL(2) PRINT CALL TEXTFONT (7) CALL TEXTSIZE (18) PRINT TAB (7) " The Pennsylvania State University" PRINT CALL TEXTFONT (5) CALL TEXTSIZE (14) PRINT TAB(11) ·Determination of the Rock Mass Rating" PRINT TAB(10) "based on the Geomechanics Classification .. PRINT TAB (21) "of Bieniawski, 1979" CALL TEXTFONT (0) CALL TEXTSIZE (12) PRINT PRINT PRINT TAB (11) "Program written by Or. Claudio Faria Santos" . PRINT TAB(10) "RMR System developed by Prof. Z. T. Bieniawski" PRINT CALL TEXTFONT (1) PRINT TAB(24) "August 1988" -,.
PRINT PRINT PRINT TAB (10) "Do you wish a printed output of this program ?" PRINT TAB (10) "- please answer "YES" OR .. NO ..... PRINT , 00 INPUT PR$ IF PR$="YES· THEN GOTO 2000 . IF PR$,."NO" THEN GOTO .150 P,RINT PRINT TAB(10) "Please reenter the answer; use capital letters." GOTO 100 150 CLS CALL TEXTFACE (4) PRINT TAB(10) "Questions:" CALL TEXTFACE (0) PRINT 200 PRiNT ·What system of units are you going to use ?" PRINT "0 please answer "M" for metric or "E" for U.S. customary units" INPUT SUS IF SU$="M" THEN GOTO 210 IF SU$="E" THEN GOTO 220 PAINT P R I NT "0 please reenter answer: "M" or "E" (use capital lettersr GOTO 200 210 PRINT INPUT "Enter the !Jnit weight of the rock mass (in kN/cubic meter): ";GAMA PRINT GOTO 230 220 PRINT INPUT "Enter the unit weight of the rock mass (in pounds/cubic foot): ";PCF GAMA=PCF/6.363 PRINT 230 PRINT "How many families of discontinuities are present in the rock mass INPUT n PRINT 255 PRINT "Which technique was used to determine the compressive strength" P RI NT "of intact rock in the laboratory (please answer 'P' for point load or" PRINT "'U' for uniaxial compressive test) ?" INPUT TT$ PRINT IF TT$="P· THEN GOTO 265
: .
?"
227
PROGRAM LISTING FOR PERSONAL COMPUTER
IF TT$="U" THEN GO TO 275 P R I NT "Please reenter the answer (P or U); use capital letters" GOTO 255 265 REM ~MR question # 1a IF SU$="E" THEN GO TO 270 INPUT "Enter the point load index (in MPa): "; PL GOTO 272 270 INPUT "Enter the paint load index (In psi): H; PL PL=PU145 272 PRINT SIGMA=24·PL GOTO 280 275 REM Ouestion # 1b IF SU$="E" THEN GOTO 277 INPUT "Enter the uniaxial compressive strength of the rock material (in MPa): ";SIGM A PRINT GOTO 280 277 I N PUT "Enter the uniaxial compressive strength of the rock material (in pSI): ";SIG MA SIGMA=SIGMAl145 PRINT 280 INPUT "Enter the ROD: "; ROD PRINT REM RMR question # 3 IF SU$="E" THEN GOTO 283 INPUT MEnter the discontinuity spacing (In meters): "; SP .,'r-;: " PRINT . 282 INPUT "Enter the ,discontinuity persistence (in meters): It; L ;:: .. t '. . PRINT INPUT "Enter the separation between discontinuities (in mm): "; ZETA ..":.' PRINT GOTO 285 283 INPUT "Enter the discontinuity spacing (in feet): "; SP PRINT 'INPUT "Enter the discontinuity persistence (in feet): It; L PRINT " INPUT "Enter the separation between discontinuities (In inches): ZETA , ' CN=.305 CV;:25.4 SP=SP/CN L=UCN ZET A=ZET AlCV PRINT 285 PRINT "Enter the condition of the joint surface .. PRINT "- please answer:" PRINT TAB(10) "'VR' for very rough" PRINTTAB(10) "'R' for rough" PRINT TAB(10) "'SR' for slightly rough" PRINT TAB(10) "'S' for smooth" PRINTTAB(10} ·'SK' for slickensided" INPUT JR$ PRINT IF JR$;:"VR" THEN GOTO 310 IF JR$"."A" THEN GOTO 320 IF JR$:a"SR" THEN GOTO 330 IF JR$ ... "S· THEN GOTO 340 IF JR$="SKH THEN GOTO 350 PRINT -please reenter the answer (VR, R, SR, S or SK); use capital letters" GOTO 285 310 C4o:6 GOTO 355 320 C4m4.5 GOTO 355 330 C4z3 GOTO 355 340 C4=1.5 -,
~
'
P,
,
"
.!
228
APPENDIX
'GOTO 355 350,C4 ... 0' 355 IF SU$="E" THEN GOTO 360 IN'PUT ".Enter the thickness of the joint infilling (m-mm): -. T PRiNT GOTO 3,65 360 INPUT "Enter the thickness of the joint infilling (in Inches): ". T PRINT T= T/CV 365 PRINT "Enter the weathering condition of the wall rock" PRINT ". please answer:" PRINT TAB(10) n'uw' for unweathered" PRINT TAB(10) '''SW' for .slightly weathered" PRINT T AB(1 0) "'MW' for moderately weathered" PRINT TAB(10) '''HW' for highly weathered" PRINT TAB(10) '''CW' for completely weathered" INPUT AW$ PRINT I~ RW$="UW" THEN GOTO 410 IF RW$="SW" THEN GOTO 420 IF R_W$="MW" THEN GOTO 430 ,,', IF RW$","HW" THEN GOrO 440 fF RW$,.,"CW" THEN GOTO 450 " PR"INT "Please reenter the answer (UW, SW. MW, HW or CW); use capital leti~r~", GOTO 365 ',.;., . :r.:., 410 E4"6 r" ,J,., , GOTO 455 420 E4~4',5 ,_. ", ' .. I.. GOTO '455 430 E4;3 GOT0455 440 E4==1',5 GOTO 455 450 E4 ... 0 455 PRINT "Enter the general groundwater condition .. P R IN T .. ~ please answer:" PRINT TAB(1 0) '''CD' for completely dry" 'PRINT TAB(10) '''oM' for damp" . ~.. -:-i j i . . PRINT TAB(10) "WI' for wet" PRINT TAB(10) "'oP' for dripping" PRINTTAB(10) "'FW' for flowing" INPUT GW$ ,-,
,h
PRINT~
IF GW$="CO" THEN GOTO 510 IF GW$= "OM" THEN GOTO 520 IF GW$",,"Wr THEN GOTO 530 IF GW$="Dp· THEN GOTO 540 IF GW$",,"FW· THEN GOTO 550 PRINT "Please reenter the answer (CD, OM, WT, OP or FW): use capital letters" GOTO 455 510 R5a15 GOTO 555 520 R5",10 GOTO 555 530 R5",,? GOTO 555 540 R5",,4 GOTO 555 550 R5=0 555 PRINT "What is the effect of the strike and dip orientation .. P A I NT "of the critical set of discontinuities ?" PRINT ", please answer:" PRINT T AB(1 0) "'VF' for very favorable" PRINT TAB(lO) "'FV' for favorable" PRINT TAB(10) "'FR' for fair" PRINT T ASp 0) '''UF' for unfavorable" PRINT TAB(10) "'VU' for very unfavorable"
-'-' --------......-...l
229
PROGRAM LISTING FOR PERSONAL COMPUTER
INPUT UF$ PRINT IF UF$="VF" THEN GOTO 610. IF UF$=':FV" THEN GOTO 620 IF UF$="FR" THEN GOTO 630 IF UF$="UFM THEN GOTO 640 IF UF$="VU" THEN GOTO 650 PRINT "Please reenter the answer (VF. FV. FR. UF or UV): use capital letters" GOTO 555 610 AOJ=O GOTO 750 620. AOJ=2 GOTO 750 630 AOJ=5 GOTD 750 640. AOJ=10 GOTO 750. 650 AOJ=12 750 REM Oeterminatio':! of RMR: IF n>3 THEN LET F=:1, IF n=3 THEN LET F=1 IF n=2 THEN LET F=1.33 IF n=1 THEN LET F=1.33 IF SIGMA>200 THEN,lET R1=15:GOTO 800. IF SIGMA<1 THEN LETR1",,0:GOTO 800 IF SIGMA<5 THEN LET:R1<=1 :GOTO 80.0 IF SIGMA<25 THEN~LEJ R1 =2:GOTO 80.0 R1 =1.4514+(.0684~SIGMA) , 800 IF ROO>40 THEN GOTO 810 IF ROO>25 THEN GOTO 820 R2=3 GOTO 825 810 R2 .. ROO/5 GOTO 825 : 820 R2=(ROO/3)-(5+(1l3» 825 IF SP<.06 THEN LET, R3=:5:GOTO 850 R3=14.6501·(SP~(;3587» , 850 IF L<1 THEN LET A4a 6:Go,TO 870 IF L>20 THEN A4=O:GOTO.~87o. A4=6/L 870 IF ZETA<.1 THEN l.,ET B4&~:GOTO 880 ',' IF ZETA>5 THEN LET B4=0:GOTO 880.
..
~-~':
~
. ;
B4~.6/ZETA
880 IF T =0. THEN LET 04..,6:GOTO 890 IF T>5 THEN LET 04:10:GOTO 890 04=3 890 R4=A4+B4+C4+04+E4 BMR=R1+R2+R3+R4+R5 URMR-BMR-R5+ 15 URMR=URMR+.5 URMR .. INT(URMR) BMR=BMR+.5 BMR=INT(BMR) IF BMR>1o.O THEN LET BMR=10o. 891 PRINT "Estimate the weatherability of the rock mass ?" PRINT "- please answer: PRINT TAB(10) "'HR' for high resistance to weathering" PRINT TAB(10) "'MR' for intermediate resistance to weathering" PRINT TAB(10) ",'LR· for low resistance to weathering" INPUT QW$ IF aW$=MHR" THEN GOTO 892 IF OW$."MR" THEN GOTO 892 IF OW$."LR" THEN GOTO 893 PRINT "Please reenter the answer (HR. MR or LR); use capital letters" ,PRINT ' - GOTO 891 892 PRINT
"
'••:,J
..
.-' ~
-'
~
.
~..
~
.
230
APPENDIX
q:T WY=1 GOTO 895 893 LET WY=·.9 895 PRINT "Is the value o,f the horizontal stresses known ?" PRINT "0 please answer Y for "yes" or N for "no" PRINT INPUT YN$ IF YN$="Y" THEN GOTO 896 IF YN$="N" THEN GOTO 897 PRINT "Please reenter the answer (Y or N); use capital letters" PRINT GOTO 895 896 IF SU$="E" THEN GOTO 898 INPUT "Input the value of horizontal stresses (in MPa): ";HS PRINT GOTO 899 897 LET FLAG= 1 LET HC=1 GOTO 900 898 INPUT "Input the value of horizontal stresses (In pSI): ";HS HS=HS/145 PRINT 899 LET Y =HS/SIGMA IF Y <,1 THEN LET HC= 1: GOTO 900 IF Y>,2 THEN LET HC=1: GOTO 900 LET HC=.95 900 AMR=(BMRoADJrWY·HC AMR=AMR+.5 RMR=INT(RMA) CLS
CALL TEXTFACE (4) PRINT TAB(' 0) "Determination of AMR" PRINT CALL TEXTFACE (0) PRINT TAB(1 0) "Vatue of baSIC RMR: ":BMR PRINT PRINT TAB (10) "Value of adjusted RMR: ";RMR. PR I NT ~ PRINT TAB(10) "Value of RMR for dry conditions:
";URMR
PRINT REM Computation of c and 0: C=S·SMR Ft=S+(BMR/2) PRINT IF SU$="E" THEN GOTO 950 PRINT TAB(10) "Cohesion (kPa): ";C PRINT GOTO 955 950 CE=C"(.145) CE=CE+.5 CE ... INT(CE) PRINT TAB{1 0) "Cohesion (psi): ";CE PRINT 955 PRINT TAB(10) "Angle of internal friction: ";Ft;" degrees" PRINT GOTO 19999 2000 CLS PRINT TAB(10) "WARNING:" PRINT TAB(1 O} "You need to have a line printer ("lmageWriter" or " PRINT T AB(1 0) "compatible) connected to your Macintosh. Make sure" PRINT TAB(10) "that the "Chooser" in the Apple Menu is set to right"
PROGRAM LISTING FOR PERSONAL COMPUTER
PRINTTAB(10} Hprinter: FOR pause",,1 TO 10000 NEXT pause CLS CALL TEXTFACE (4) PRINT TAB(10) "Questions:" LPRINT TAB(10) "Questions:" CALL TEXTFACE (0) LPRINT PRINT 2200 PRINT ·What system of units are you going to use ?" LPRINT ·What system of units are you going to use ?" PR INT "0 please answer M for metric or E for U.S. customary units" LPRINT please answer M for metric or E for U.S. customary' units" INPUT SU$ lPRINT SU$ IF SU$:o:"M" THEN GOTO 2210 IF SU$.,"E· THEN GOTO 2220 LPRINT PRINT please reenter answer: M or E (use capital letters)" PRINT lPRINT "0 please reenter answer: M or E (use capital letters)," GOTO 2200 2210 PRINT LPRINT PRINT "Enter the unit weight of the rock mass (in kN/cubic meter): ,"; INPUT GAMA LPRINT "Enter the unit weight of the rock mass (in kN/cubic meter): "; LPRINT GAMA lPRINT PRINT GOTO 2230 2220 LPRINT PRINT PRINT "Enter the ,unit weight of ttie rock mass (in pounds/cubic foot): " INPUT PCF lPRINT "Enter the unit weight of the rock mass (in pounds/cubicloot): " lPRINT PCF GAMA=PCF/6.363 LPRINT 2230 PR INT "How many families of discontinuities are present in the rock maSs ?'" lPRINT "How many families of discontinuities are present in the rock mass ?" INPUT n LPRINT n PRINT LPRINT 2255 PRINT "Which technique was used to determine the compressive strength" PRINT "of intact rock in the laboratory (please answer 'P' for point load or" PRINT ·'U' for uniaxial compressive test) ?" LPRINT ·Which technique was used to determine the compressive strength" LPRINT ·of intact rock in the laboratory (please answer 'P' for point load or· LPRINT ·'U· for uniaxial compressive test) ?" INPUT TT$ LPRINT TT$ LPRINT PRINT IF TT$="P· THEN GOTO 2265 IF TT$="U" THEN GOTO 2275 PRINT "Please reenter the answer (P or U); use capital letters· LPRINT ·Please reenter the answer (P or U); use capital letters" GOTO 2255 2265 REM RMA question # 1 a IF SU$","E" THEN GOTO 2270 INPUT "Enter the point load index (in MPa): "; PL LPRINT -Enter the point load index (in MPa):' "; PL GOTO 2272 . No
·0
,
231
232
APPENDIX
2270 INPUT "Enter the point load index (in pSI): "; PL LPRINT "Enter point load index (in psi); "; PL PL.PLh45 2272 ·PRINT SIGMA;"24·PL GOTO 2280 2275 R EM Question # 1b IF SU$ ... "E" THEN GOTO 2277 INPUT MEnter the uniaxial compressive strength of the rock material (in MPa): M;SIGM
A LPRINT "Enter the uniaxial compressive strength of the rock material (in MPa): ";SIG MA PRINT LPRINT GOTO 2280 2277 INPUT "Enter the uniaxial compressive strength of the rock material (In psi):~ ";SI
G\M LPRINT "Enter the uniaxial compressive strength of the rock material (m psi): d:;SIGM A SIGMA=SIGMAl145 PRINT LPRINT 2280 INPUT "Enter the ROD: "; RO~ LPRINT "Enter the ROD: "; ROD PRINT LPRINT RE~ .RMR question # 3 IF SU$_ItE" THEN GOTO 2283 ?282 ,NPUT "Enter the discontinuity spacing (in meters):";SP LPRINT "Enter the discontinuity spacing (in meters):";SP IN PUT "Enter the discontinuity persistence (in meters): "; L LPRINT "Enter the ·discontinuity persistence (in meters): "; L PRINT LPRINT INPUT "Enter the separation between discontinuities (in mm): "; ZETA LPRINT :PRINT LPRINT "Enter ~he separation between disc·ontinuities (in mm): "; ZETA .LPRINT GOTO 2285 2283 .INPUT "Enter the discontinuity spacing (in feet): "; SP LPRINT "Enter the discontinuity spacing (in feet): "; SP PRINT LPRINT INPUT -Enter the discontinuity persistence (in feet) "; L PRINT INPUT "Enter the separation between discontinuities (in inches): n. ZETA LPRINT "Enter the discontinuity persistence (in feet): "; L LPRINT LPR INT "Enter the separation between discontinuities (In inches): CN=.305 CV=25.4 SP;:SP/CN L=UCN ZETA=ZET AJCV PRINT lPRINT 2285 PRINT "Enter the condition of the joint surface" PRINT "- please answer:" PRINT TAB(10) '~VR' for very rough" PRINT TAB(10} "'R' for rough" PRINT TAB(10) M'SR' for slightly rough" PRINT TAB(10) '''S' for smooth" PRINT TAB(10) M'SK' for slickensided" INPUT JR$ PRINT LPRINT "Enter the condition of the jOint surface LPRINT "- please answer:" II
n.
ZETA
-.".1
:~. t
~, ~ ~
L ;:
, .. : T
.
~,
~'-
'• . . . •
~
.
•• I
,
t. ..: ; ::: -: ,'"
'--'
. j--:.
i'; '_
.:
~
:.
,
.. -. . . . :.;
~.', ~
:"1
'..,,!t
~
.. ,
"'.
"
,
r pO
.1
PROGRAM LISTING FOR PERSONAL COMPUTER
LPRINT TAB(10) "'VR' for very rough" LPRINT TAB(10) '''R' for rough" LPRINT TAB (1 O) ,uSR' for slightly rough" LPRINTTAB(10} '''S' for smooth" LPRINT TAB(10) "'SK' for slickensided" LPRINT JR$ LPRINT IF JR$="VR" THEN GOTO 2310 IF JR$="R" THEN GOTO 2320 IF JR$~"SW THEN GOTO 2330 IF JR$="S" THEN GOTO 2340 IF JR$="SK" THEN GOTO 2350 PAINT "please reenter the answer (VR, R, SR, S or SK); use capital letters" LPRINT "please reenter the answer (VR, R, SR, S or SK); use capital letters" GOTO 2285 2310 C4-6 GOTO 2355 2320 C4=4.5 GOTO 2355 2330 C4=3 GOTO 2355 2340 C4=1.5 GOTO 2355 2350 C4=0 2355 IF SU$="E" THEN GOTO 2360 I N PUT "Enter the thickness of the joint infilling (in mm): If; T PRINT .... . LPRINT "Enter thethickf")esS of the joint infilling (in mm): If; T LPRINT . GOTO 2365 2360 INPUT "Enter the, thickness of the joint infilling (in inches): "; T LPRINT "Enter the thic~ness' of the jOint infilling (in inches): "; T PRINT LPAINT T=T/CV 2365 PRINT "Enter t~e :we~thering condition of the wall rock .. PRINT ". please answer.:". . PRINT TAB(10) "'UW' }or' unweathered" PRINT TAB(10) "'SW' 'for slightly weathered" PRINT TAB(10) '''MW'for moderately weathered" PRINT TAB(10) "'HW' for highly weathered" PRINT TAB(10) "'CW' for completely weathered" INPUT RW$ .' PRINT LPR INT "Enter the weathering condition of the wall rock " LPRINT ". please answer:" LPRINT TAB(10) "'UW' for unweathered" LPAfNT TAB(1 O} N'SW' for slightly weathered" LPRINT TAB(1 0) "'MW' for moderately weathered" LPRINT TAB(10} "'HW' for highly weathered" LPRINT T AB(1 0) "'CWO for completely weathered" LPAINT RW$ LPRINT IF RW$:z"UW" THEN GOTO 2410 IF RW$="SW" THEN GOTO 2420 IF RW$."MW" THEN GOTO 2430 IF RW$","HW· THEN GOTO 2440 IF RW$="CW" THEN GOTO 2450 PRINT "Please reenter the answer (UW. SW, MW, HW or CW); use capital letter!)" LPRINT "Please reenter the answer (UW. SW. MW, HW or CW): use capita! letters· GOTO 2365 2410 E4-6 GOTO 2455 2420 E4=4,5 GOTO 2455 2430 E4a:3 GOTO 2455
233
234
APPENDIX
2440 E4=1.5 GOTO '2455 2450 'E4=0 2455 PRINT "Enter the general groundwater condition .. PRINT ". please answer:" PRINT TAB (1 0) "'CD' tor completely dry" PRINT TAB(10) "'OM' for damp" PRINT TAB(10) "'Wl' for wet" PRINT TAB(10) "'OP' for dripping" PRINT T AB(10) "'FW' for flowing" INPUT GW$ PRINT l PRINT "Enter the general groundwater condition" lPRINT ". please answer:" . LPRJNT TAB(10) ·'CD' tor completely dry" lPRINT TA8(10) "'OM' for damp· LPRINT TA8(10) "'WT' for ~et" LPRINT TA8(10) '''DP' tor dripping" lPRINT TAB(10) "'FW' for flowing~ lPRINT GW$ lPRINT IF GW$="CO" THEN GOTO 2510 IF GW$="oM" THEN GOTO 2520 IF GW$c"WT" THEN GOTO 2530 IF GW$."DP" THEN GOTO 2540 IF GW$z"FW" THEN GOTO 2550 PRINT ·Please reenter the answer (CD, DM,WT, DP or FW); use capital letlers" LPRINT "Please reenter the answer (CD, OM, WT. DP or FW); use capital lellers~ GOTO 2455 ., 2510 R5=15 GOTO 2555 2520 R5=10 ., GOTO 2555 2530 R5=7 GOTO 2555 2540 R5=4 GOTO 2555 2550 A5=0 2555 PRINT -What is the strike and dip orientation .. P R I NT " of the critical set of discontinuities ?" PRINT ". please answer:" PRINT TA8(10) oo'VF' for very favorable" PRINT TAB (1 0) "'FV' for favorable" PRINT-TA8(10} "'FR' for fair" PRINT T AB(1 0) '''UF' for unfavorable" PRINTTABPO) '''VU' for very unfavorable" INPUT UF$ PRINT lPRINT "What is the strike and dip orientation" lPRINT "of the critical set of discontinuities ?" LPRINT ". please answer:" lPRINT TA8(10} ·'VF' tor very favorable" lPRINT TAB(10) ·'FV' for favorable" lPRINT TAB(10) "'FR' for fair· LPRINT T A8(1 O} ·'UF' for unfavorable" lPRINT TA8(10) "'VU' for very unfavorable" LPRINT UF$ LPRINT IF UF$="VFOO THEN GOTO 2610 IF UF$="FV" THEN GOTO 2620 IF UF$="FR" THEN GOTO 2630 IF UF$="UF- THEN GOTO 2640 IF UF$="VU" THEN GOTO 2650 PRINT "Please reenter the answer (VF. FV. FR, UF or UV); use capital letlers· lPRINT ·Please reenter the answer (VF, FV. FR, UF or UV); use capital letters· GOTO 2555 2610 ADJ=O
\.~
PROGRAM LISTING FOR PERSONAL COMPUTER
GOTO 2750 2620 ADJ.:2 GOTO 2750 2630 ADJ=3 GOTO 2750 2640 ADJ=1Q GOTO 2750 2650 ADJ=12 2750 REM Determination of RMR: IF n>3 THEN LET F=1 IF n=3 THEN LET F,.,1 IF n=2 THEN LET F=1.33 IF n:1 THEN LET F=1.33 IF SIGMA>200 THEN LET R1 ::15:GOTO 2800 IF SIGMA<1 THEN LET R1 =O:GOTO 2800 IF SIGMA<5 THEN LET A1 ~1 :GOTO 2800 IF SIGMA<25 THEN LET R1 .. 2:GOTO 2800 R1 ",1.4514+(.0684 ·SIGMA) 2800 IF RQO>40 THEN GOTO 2810 IF ROD>25 THEN GOTO 2820 R2=3 GOTO 2825 2810 R2= ROO/5 GOTO 2825 2820 R2=(ROD/3)-(5+(1/3» 2825 IF SP<.06 THEN LET R3=5:GOTO 2850 R3=~ 4.6501 " (SP"(..3587» 2850 IF L<1 THEt-4 LET A4.6:GOTO 2870 IF L>20 THEN A4",0:GOTO 2870
A4=6/L
2870 IF ZETA<.l THEN LET B4 .. 6:GOTO 2880 IF ZETA>5 THEN LET 94.0:GOTO 2880 B4=.6/ZETA 2880 IF T =0 THEN LET D4=6:GOTO 2890 IF T>5 THEN LET D4=0:GOTO 2890 04=3 2890 R4=A4+B4+C4+D4+E4 BMR::R1+R2+R3+R4+R5 URMR=BMR·R5+15 URMR .. URMR+.5 URMR=INT(URMR) BMR=BMR+.S 9MR::INT(BMR) IF BMR>100 THEN LET BMR-l00 2891 PRINT "Estimate the weatherability of the roof strata· PRINT -. please answer: PRINTTAB(10) '''HA' for high resistance to weathering" PRINT TAB(10) "'MR' for intermediate resistance to weathering" PRINT TAB(10) "'LR' for low resistance to weathering" INPUT OW$ LPRINT "Estimate the weatherability of the roof strata" LPRINT ". please answer: LPRINT TAB(10) "'HR' for high resistance to weathering" LPRINT TAB(1 0) "'MR' for intermediate resistance to weathering" LPRINT TAB(1 0) "'LR' for low resistance to weathering" LPRINT OW$ IF OW$="HR" THEN GOTO 2892 IF OW$="MR" THEN GOTO 2892 IF OW$=="LR" THEN GOTO 2893 PRINT "Please reenter the answer (HR, MR or LR); use capital letters" PRINT LPRINT -Please reenter the answer (HR. MR or LR); use capital letters· LPRINT GOTO 2891 2892 PRINT LET WYxl GOTO 2895
235
236
APPENDIX
2893 LET.WY=.9 2895 PRINT Mis the value at the hOrIZontal stresses known PR'INT "0 please answer Y for yes or N for no PRINT .
?"
INPUT YN$ LPRINT "Is the value of the horizontal stresses known ?" LPRINT please answer Y for yes or N for no LPRINT LPRINT IF YN$="Y" THEN GOTO 2896 IF YN$="N" THEN GOTO 2897 PRINT "Please reenter the answer (Y or N); use capital letters" PRINT LPRINT "Please reenter the' answer (Y or N); use capital letters" LPRtNT GOTO 2895 2896 IF SU$="E" THEN GOTO 2898 I N PUT "Input the value of horizonta.1 stresses (in MPa): ";HS PRINT LPRINT "Input the value of horizontal stresses (In MPa): ";HS LPRINT GOTO 2899 2897 LET FLAG= 1 LET HC=1 GOTO 2900 2898 INPUT "Input the value of horizontal stresses (in psi): ";HS LPAINT "Input the value, of horizortal stresses (10 pSI)' ":HS HS=HS/145 ' PRINT LPRINT 2899 LET Y=HS/S/GMA IF Y<.1 THEN LET HC=1: GOTO 2900 IF Y>.2 THEN LET HC=1: GOTO 2900 LET HC=.95 2900 RMR=(BMR-ADJrWY*HC RMR=RMR+.5 RMR=INT(RMR) no
CALL TEXTFACE. (4) PAINTTAB(10) "Determination of RMR" PRINT CALL TEXTFACE (0) PRINT TAB(10) "Value of basic RMR: ".;BMR PRINT PRINT TAB (10) "Value of adjusted RMR: ";RMR PRINT PRINT TAB(10) "Value of RMR for dry conditions: PRINT LPRINT CALL TEXTFACE (4) LPRINT TAB(10) "Determination of RMR" LPRINT CALL TEXTFACE (0) LPRINT TAB(10) "Value of basic RMR: ":BMR LPRINT LPRINT TAB (10) "Value of adjusted RMR: ";RMR LPRINT LPRINT TAB(1 0) "Value of RMR for dry conditions: LPRINT REM Computation of c and 0; C=S·BMR FI""S+(BMR/2} PRINT LPRINT
";URMR
"URMR
PROGRAM LISTING FOR PERSONAL COMPUTER
IF SU$="E" THEN GOTO 2950 PRINT TAS(1 0) "Cohesion (kPa): ";C PRINT LPRINT TAS(1 0) "Cohesion (kPa): ";C LPRINT GOTO 2955 2950 CEcC·(.145) CE=CE+.5 CE=INT(CE) PRINT T AB(1 0) "Cohesion (psi): ";CE PRINT LPRINT TAB(1 0) "Cohesion (psi): ";CE LPRINT 2955 PRINT TAB(10) "Angle of internal friction: ";FI; • degrees" LPRINT TAB(10} "Angle of internal friction: ";FI;" degrees" PRINT :LPRINT PRINT :LPRINT PRINT 19999 PRINT "Do you want another RUN "; INPUT RU$ IF RU$ = "YES" GOTO 10 ELSE GOTO 20000 20000 PRINT "u. END OF RUN ..... FOR pause=1 TO 5000 NEXT pause END
, S
237
Bibliography Being right is seldom enough. Even the best ideas must be packaged and soLd.
-Andrew Carnegie
This bibliography lists in chronological order all significant publications dealing with rock mass classifications. Although references.are provided in this book at the end of each chapter, this bibliography also contains entries not referred to in the text but which are given here for completeness as well as for the convenience of those readers who wish to undertake a search· of even the earliest references on the subject or are not sure of the :author but remember the year of publication. Terzaghi, K. (1946). "Rock Defects and Loads on Tunnel Support." Rock Tunneling with Steel Supports, ed. R. V. Proctor and T. White, Commercial Shearing Co., Youngstown, OH, pp. 15-99. Stini, I. (1950). TunnulbaugeoLogie, Springer-Verlag, Vienna, 336 pp. Lauffer, H. (1958). "Gebirgsklassifizierung ftir den Stollenbau." Geol. Bauwesen 74, pp. 46-51. Deere, D. U. (1963). "Technical Description of Rock Cores for Engineering Purposes." Rock Mech. Eng. Geol. 1, pp. 16-22. Coates, D. F. (1964). "Classification of Rock for Rock Mechanics." Int. 1. Rock Mech. Min. Sci. 1, pp. 421-429. Deere, D. U., ':lnd R. P. Miller. (1966). Engineering Classification and Index Properties of Intact Rock, Air Force Laboratory Technical Report no. AFNLTR-65-116, Albuquerque, NM. Deere, D. U., A. J. Hendron, F. D. Patton, and E. J. Cording. (1967). UDesign .of Surface and Near Surface Construction in Rock." Proc. 8th U.S. Symp. Rock Mech., AIME, New York, pp. 237-302.
239
240
BIBLIOGRAPHY
Rocha, M. (1967). HA Method of Integral Sampliog of Rock Masses." Rock Mech. 3,pp;1-12. Brekke, T: L. (1968). "Blocky and Seamy Rock in Tunneling." Bull. Assoc. Eng. Ceol. 5( 1), pp. 1.:....12. Deere, D.U. (1968). "Geological Considerations. " Rock Mechanics in Engineering Practice, ed. R. G. Stagg and D. C. Zienkiewicz, Wiley, New York, pp. 1-
20. Cecil, O. S. (1970). "Correlation of Rockbolts-Shotctete Support and Rock Quality Parameters in Scandinavian Tunnels," Ph.D. thesis, University of Illinois, Urbana, 414 pp. Coon, R. F., and A. H. Merritt. (1970). "Predicting In Situ Modulus of Deformation Using Rock Quality Indexes,'" Determination of the In Situ Modulus of Deformation of Rock, ASTM Special Publication 477, Philadelphia, pp. 154-173. ,. Deere, D. U., R. B. Peck, H. Parker, J. E. Monsees, a~d B. Schmidt. (1970). "Design of Tunnel Support Systems." High. Res. Rec., no. 339, pp. 26-33. Franklin, F. A. (1970). "Observations and Tests for Engineering Description and Mapping of Rocks." Proc. 2nd Int. Congo Rock Mech., ISRM, ,Belgrade, vol. 1, paper 1-3. Obert, L., and C. Ric~. (1971). "Classification of Rock for Engineering Purposes . " Proc. 1st Aust.-N.Z. Conf. Geomech., Australian GeomechanicsSociety, Melbourne, pp. 435~441. ,", Cording, E. J., a~d D.~ U. Deere. (1972). "Rock Tunnel Supports and Field.Measurements." 'Proc.' Rapfd Excav.. Tunneling' Can/. , 'AIME; New: York,pp. 601 - 622.' .: j : . Merritt, A. H. (1972). "Geologic Prediction for Underground Excavations. "Proc.· Rapid Excav. Tunneling Conf., AIME, New York, pp. 115:-:132 .. Rabcewicz, L., and T. GQlser. (Mar. 1972). uApplication of the NATM to the Underground Works arTarbela." Water Power, pp. 88-93. Sokal, R. R. (1972). uClassification: Purposes, Principles, Progress and Prospects." Science 185(4157), pp. 1115-1123. Wickham, G. E., H. R. Tiedemann, and E. H. Skinner. (1972). "Support Determination Based on Geologjc Predictions." Proc. Rapid Excav. Tunneling Conf, AIME, New York, pp. 43-64. Bieniawski, Z. T. (1973). "Engineering Classification of Jointed Rock Masses." Trans. S. Afr. Inst. Civ. Eng. 15, pp. 335-344. Bieniawski, Z. T. (1974). "Estimating the Strength of Rock Materials." 1. S. Afr. Inst. Min. Meta II. 74(8), pp. 312-320. Dearman ,We R., an~ P. G. Fookes. (1974). "Engineering Geological Mapping for Ci:vil Engineering Practice." Q. 1. Eng. Geol. 7, pp. 223-256. Franklin, J. A., C. Louis, and P. Masure. (1974). "Rock Material Classification." Proc. 2nd Int. Congr. Eng. Geol., IAEG, Sao Paulo, pp. 325-341. Louis, C. (1974). '·Reconnaissance des Massifs Rocheux par Sondages et Classifications . Geotechniques des Roches." Ann. Inst. Tech. Paris, no. 108, pp. 97-122.
;
,
BIBLIOGRAPHY
241
Pacher, F., L. Rabcewicz, and J. Golser. (1974). HZum der seitigen Stand der Gebirgsklassifizierung in Stollen-und Tunnelbau." Proc. XXII Geomech. Colloq., Salzburg, pp. 51-58. Protodyakonov, M. M. (1974). HKlassifikacija Gomych Porod." Tunnels Ouvrages Souterrains 1, pp. 31-34. Wickham, G. E., H. R. Tiedemann, and E. H. Skinner. (1974). HGround Support Prediction Model, RSR Concept." Proc. Rapid Excav. Tunneling Conf., AIME, New York, pp. 691- 707. Bieniawski, Z. T., and R. K. Maschek. (1975). HMonitoring the Behavior of Rock Tunnels during Construction." Civ. Eng. S. Afr. 17, pp. 255-264. Franklin~, J. A.
(1975). "Safety and Economy in Tunneling." PrOC.l 10th Can. Rock Mech'. Symp., Queens University, Kingston, pp. 27-53. ,. Kulhawy~ F. H. (1975). "Stress-Defonnation Properties of Rock and;.Discontinuities." E~g.Geol. 9, 'pp. 327-350. " . Weaver, J. M. (Dec. 1975). HGeological Factors Significant in the.:Assessment of" Rippability." eiv. Eng. S.Afr. 17, pp. 313-316. :;; ,', . Barton, N. (1976). "!tecent 'Experiences with the Q-System:'ofTunnel Support ' Design." Explorationfor Rock Engineering, ed. Z. T. Bieniawski; A.' A. Balkema,. Johannesburg, pp. 107-115 . . ' ,',' Bieniawski, Z. T. (1976). HElandsberg Pumped Storage Scheme~'RoCk ,Engineering Investigations." Exploration for Rock Engineering, ed. Z. T ..,Bieniawski, A.- A. Bafkema, Johannesburg, pp; 273~289. ~~:-;;;;"c_ . ' , .. ":' Bieni~wski, Z. T. '(1976): "Rock M~ss Classifications in Rock, Engineering.!" Ei.!'·' ploration for Rock Engineering, ed. Z. T. Bieniawski, A .. 'A'.'-,Balkema, Joharinesburg, pp. 97~ 106:.' ,. " '" Bieniawski, Z. T., and C. M. Orr. (1976). "Rapid Site Appraisal for Dam Foundations by'the Geomechanics Classification." Proc. 12th Congo Large Dams, ICOLD, MeXICO City, pp. 483-501. ·,:~,1.: : Davies~ 'P. H. (1976). "Instrumentation in Tunnels to Assist in Economic Lining."
Exploration for Rock Engineering, ed. Z. T. Bieniawski,,:A. A. Balkema, Jo- .: ~annesburg, pp. 243-252. Franklin, J. A. (1976). HAn Observational Approach to the Selection and Control of Rock Tunnel Linings." Proc. Con! Shotcrete Ground Control, ASCE, Easton, MA, pp. 556-596. Kendorski, F. S., and J. A. Bischoff. (1976). 4'Engineering Inspection and Appraisal of Rock Tunnels." Proc. Rapid Excav. Tunneling Conf., AIME, New York, pp. 81-99. McDonough, J. T. (1976). "Site Evaluation for Cavability and Underground Support Design at the Climax Mine." Proc. 17th U.S. Synlp. Rock Mech., University of Utah, Snowbird, pp. 3A2-3AI5. Ferguson, G. A. (1977). The Design of Support Systems/or Excavations in Chrysolile Asbestos Mines, M. Phil. thesis, University of Rhodesia, Salisbury, 261 pp.
242
.
BIBLIOGRAPHY
Laubscher, D. H. (1977). "Geomechanics Glassification of Jointed Rock Masses. Mining Applications." Trans. Instn. Mill. Metall. 86, pp. A-l-A-7. Spa~n, G. (1977). "Contractual Evaluation of Rock Exploration in Tunnelling."
Exploration for Rock Engineering, ed. Z. T. Bieniawski, A. A. Balkema, Johannesburg, vol. 2, pp. 49-52. Bieniawski, Z. T. (1978). "Determining Rock Mass Deformability-Experience from Case Histories." Int. J. Rock Mech. Min. Sci. IS, pp. 237 -247. Dowding, C. D., ed. (1978). Site Characterization and Exploration, ASCE, New York, 321 pp. Fisher, P., and D. C. Banks. (1978). "Influence of the Regional Geologic Setting on Site Geological Features." Site Characterization and Exploration,~ed,: C. E. Dowding, ASCE, New York, pp. 302-321. Haimson, B. ~C~' (1978). "The Hydrofracturing Stress Measuring Methodjlnd Field Results." Int. J. Rock Mech. Min. Sci. 15, pp. 167-:-178. /.:. Hwong, T. (191-8). "Classification of the Rock Mass Structures and Determination of Rock Mass Quality." Bull. Int. Assoc. Eng. Geol., no. 18, pp. 13.9~ 142. Muller, L.(-Feb: 1978). "Removing Misconceptions on the New Austrain,T~Iirielling Method.'~ TunJ:lels Tunnelling 10, pp. 667 - 6 7 1 . > ;;.-; <-, Rutledge, J. C.,- and R. L. Preston. (1978). "Experience with EngineeringCla'ssifications;ofRock." Proc. lri,t. Tunneling Symp . , Tokyo, pp. A3.I-AJ·.7 ... ".' Bienia wski,: Z·~ '-"T; (,1979). "The. Geomechanics Classification: in Rock Engineering Applications;",Proc. 4th Int. Cong.- Rock Mech. , ISRM, Mo~treux,"voe'2~' ,pp. 41-48 .. '; .... : Bieniawski, Z. T.- (l979). Tunnel Design-by Rock Mass Classifications, lU .S.·:Arrily . Corps of Engineers Technical' Report GL-799-19, WateIWays' Experiment:Statioil, .' Vicksburg"MS, pp. 50-62. '._ .. ' ;.:. , -, Black~y,
E. A. -( 1979). HPark River Auxiliary Tunnel. J. Constr. Div.:ASCE lOS (C04), pp. 341-349. '" < H
Einstein, H. H." W. Steiner, and G. B. Baecher. (1979). "Assessment of Empirical Design Methods for Tunnels in Rock." Proc. Rapid Excav. Tunneling Conf., AIME, New York, pp. 683- 706. Golser,1. (Mar. 1979). "Another View of the NATM." Tunnels Tunnelling 11, pp. 41-42. Jaeger, J. C., and N. G. W. Cook. (1979). Fundamentals of Rock Mechanics, Chapman & Hall, London, 3rd ed., 593 pp. Kidybinski, A. (1979). "Experience with Rock Penetrometers for Mine Rock Stability Predictions." Proc. 4th Int. Congr. Rock Mech., ISRM, Montreux, pp. 293- '. 301. Olivier, H. J. (1979). "A New Engineering-Geological Rock Durability Classification." Eng. Geol. 14, pp. 255-279. Olivier, H. J. (1979). "Applicability of the Geomechanics Classification to the Orange-Fish Tunnel Rock Masses." Civ. Eng. S. Afr. 21, pp. 179-185.
243
BIBLIOGRAPHY
Baczynski, N. (1980). "Rock Mass Characterization and Its Application to Assessment of Unsupported Underground Openings," Ph.D. thesis, University of Melbourne , 233.pp. Barton, N., F. Loset, R. Lien, and J. Lunde. (1980). "Application of Q-System in Design Decisions." Subsurface Space, ed. M. Bergman, Pergamon, New York, pp. 553-561. Goodman, R. E. (1980). Introduction to Rock Mechanics, Wiley, New York, 478 pp. Hoek, E., and E. T. Brown. (1980). HEmpirical Strength Criterion for Rock Masses." 1. Geotech. Eng. ASCE 106(GT9), pp. 101:3-1035. Hoek, E., and E. T. Brown.,(1980). Underground Excavations in Rock, Institution of Mining and Metallurgy, :London, 527 pp. John, M. (Apr. 1980). "Investigation and Design for the Arlberg Expressway Tunnel." , ~. ;~(~ Tunnels Tunnelling 12, pp. 46-51. Williamson, D. A. (1980)~,J'Unifonn Rock Classification for Geotechnical Engineering, : -~j~!r<" Purposes." Trans. Resl :-R'eci',' no. 783, pp. 9-14. " ,>,,_ Bieniawski, Z. T. (1981)J:i 't,Rock,Classifications: State of the Art and Prospects for:' :,'~~,:!.~ J.: Standardization." Transp.>Res. Rec., no. 783, pp. 2 - ' - 8 - . . : " " Brown, E. T. (Nov. 1981}.~"Putting the NATM in Perspective. "Tunnels Tunnelling:~' ;",,:'<; ';, 13,pp. 13-17. "'r:,.~ ~ ,,' t:
l
i
'Cameron-Clark; 1. S., andSrBud'avari.' (1981). "Correlation of Rock Mass Clas~';'~l ,'\ sifica'tionParameters' obhlined ffom Borehole and In Situ.~Observations." Eng. 1,',,,:-,-:'; ',:: Geol. 17, pp. 19-53. =
I
l'
,
, Da~gherty~ C.' W. (198 f). ""'Loggili:g, of Geologic Discont~nuities in Boreholes;and. Rock Cores.'~ ProC. ShoilCourseSubsur! Explor., George Washington University, 'J"",:, Washington, DC. . ~
• "
: " , ' , "
....., ' ,
::',' ,r
,'
'
,
Engels, J. G., J. T. Cahill, and E.-'A. Blackey. (1981). HGeot~chnical Performance' ofa Large Machined-Bored Prec'ast Concrete Lined TunneL'~·Proc. Rapid Excav. ' Tunneling Con!, AIME, New York, pp. 1510-1533. Ghose, A. K., and N. M. Raju. (1981). "Characterization of Rock Mass vis-a-vIs: Application of Rock Bolting in Indian Coal Measures." Proc. 22nd U.S. Symp. : Rock Mech., MIT, Cambridge, MA, pp. 422-427. International Association of Engineering 'Geology. (1981). "Guidelines for Site Investigations." Bull. Int. Assoc. Eng. Geol., no. 24, pp. 185-226. International Association of Engineering Geology. (1981). "Rock and Soil Description for Engineering Geological Mapping," Bull. Int. Assoc. Eng. Geol., no. 24, pp. 235-274. ' International Society for Rock Mechanics. (1981). "Basic Geotechnical Description of Rock Masses. n Int. J. Rock Mech. Min. Sci. 18, pp. 85-110. International Society for Rock Mechanics. (1981). Rock Characterization, Testing , and Monitoring-ISRM Suggested Methods, Pergamon, London, 211 pp.
:
'~
.
244
BIBLIOGRAPHY
Laubscher, D. H. (1981). "Selection' of Mass Underground Mining Methods." Design and Operation of Caving and ~ub-Level Storing Mines, ed. D. R. Stewart, AIME, New York, pp. 23-38. Cummings, R. A., F. S. Kendorski, and Z. T. Bieniawski. (1982). Caving Rock Mass Classification and Support Estimation, U.S. Bureau of Mines Contract Report #JO 100103, Engineers International, Inc., Chicago, 195 pp. Fowell, R. J., and S. T. Johnson. (1982). "Rock Classifications for Rapid Excavation Systems." Proc. Symp. Strata Mech., Elsevier, Amsterdam, pp. 241-244. Hoek, E. (1982). ~'Geolechnical Considerations in Tunnel Design and Contract Preparation." Trans. Inst. Min. Metall. 91, pp. AIOI-A 109. Jethwa, J. L., A. K. Dube? B. Singh, and R. S. Mithal. (1982). "Evaluation of Methods for Tunnel Support Design: ill Squeezing Rock Conditions." Proc. 4th Int. Congr. bu. Assoc. Eng. Ceol., Delhi, vol. 5, pp. 125-134. Kidybinski, A. (1982). "Classification of R,ock for Longwall Cavability." State-o/the-Art of Ground Control in LongwaII'Mining,AIME, New York, pp. 31~38 . . )
.,
'Kirsten, H. A. D. (1982). "A Classification System for'Excavation in Natural , ,., Mat'erials." Ctv. Eng. S. Afr. 24; pp~·'293-308. . t,: Moreno Tallon, E. (1982). "'Compafison and Application :'of the Geomechan'iCs ,~ Classification'Schemes in Tunnel' Construction." Proc. Tunneling' 82, Iri~~titute of Mining and 'Metallurgy, London, pp. 241-246. - . Palmstrom,A. (19:82). "~The Volumetri~ 'Joint Count-a Useful and Simple'M~'asure " . "'of the Degree"ofR6ckJointing~" p/~~. 4th I~t. Congr.'ln't.Assoc. Eng-;" Delhi, vol. 5, pp. 221-228. ' -
Geo/::
Abad, J., B. Ce'lada, E.Cha~on,V. Gutie:rrez, and E. Hidalg6>(1983)~':Applit'ation , of Geomechanical Classification to 'Predict the Convergence of Coal Mine Ga11eries and to Design Their Supports." Proc. 5th Int. Congr. Rock Mech., ISRM, Melbourne,vQl. 2, pp. E15-EI9:' '-I.: Abdullatif, O. M., and D. M. Cruden. (1983). '"The Relationship betweeh Rock Mass Quality and Ease of Excavation." Bull. Int. Assoc. Eng. Geol., no. 28, pp. 184-87. , Barton, N. (1983). "Application of Q-System and Index Tests to Estimate Shear Strength and Deformability of Rock Masses." Proc. Int. Symp. Eng. Ceol. Underground Constr., A. A. Balkema, Rotterdam, pp. 51-70. Bieniawski, Z. T. (1983). "The Geomechanics Classification (RMR System) in Design Applications to Underground Excavations." Proc. Int. Symp. Eng. Ceol. Underground Constr., A. A. Balkema, Rotterdam, pp. 1.33-1.47. Einstein, H. H., A .. S. Azzouz, A. F. McKnown, and D. E. Thompson. (1983). "Evaluation of Design and Performance-Porter Square Transit Station Chamber Lining." Proc. Rapid Excav. Tunneling Conf. , AIME, New York, pp. 597 -620. Gonzalez de Vallejo, L. 1. (1983). HA New Rock Classification System for Underground' Assessment Using Surface Data." Proc. Int. Symp. Eng. Geol. Underground Constr., A. A. Balkema, Rotterdam, pp. 85-94.
BIBLIOGRAPHY
245
Kendorski, F., R. Cummings, Z. T. Bieniawski, and E. Skinner. (1983). "Rock Mass Classification for Block Caving Mine Drift Support." Proc. 5th Int. Congr. Ro~k Mech., ISRM, Melbourne, pp. B51-B63. Kendorski, F. S., R. A. Cummings, Z. T. Bieniawski, and E. Skinner. (1983). "A Rock Mass Classification Scheme for the Planning of Caving Mine Drift Supports." Proc. Rapid Excav.. Tunneling Conf., AIME, New York, pp. 193-223. Kirsten, H. A. D. (1983). "The Combined Q/NATM System-The Design and Specification of Primary Tunnel Support." S. Afr. Tunnelling 6" pp. 18-23. Lokin, P., R. Nijajilovic, and M. Vasic. (1983). "An Approach to Rock Mass Classification for Underground Works." Proc. 5th Int. Congr. Rock Mech .• ISRM, Melbourne, vol. 1, pp. 887-B92. Mellis, L. M. J., and A. G.Dell. (1983). "Primary S~pport Assessment with the Q/NATM System and Rock-Lining Interaction Considerations f{)f Permanent Support Design." Proc. Symp. Rock Mech. Design Tunnels, SANGORM, Jo' ' " , hannesburg, pp. 15- 32. '. . Nakao, K., S. Iihoshi, and So. Koyama. (1983). ~'Statistjcal Reconsiderations on .. '. the Parameters for Geomechanics Classificatio'n.;' 5th Int. Congr." Rock Mech .. , ISRM, Melboume,,'vo]. 1, pp. BI3-B16. . ..,'
Proc.
. Oliveira; R., C. Costa, and J :'·Davis. (1983). "Engineering Geological ,Studies and' -Design of Castelo Do' Bode Tunnel." Proc.Int.:Symp.:Eng. Geol. Vndergroun'd : . "Constr~ ,1\., A. Bqlkema, Rotterdam,: vol. 1,pp.' 11.69-1L84."" , '.:; , .:-" . " . Priest, S. D.', and E. T. Brow'n.'.,:(1983). '~Probabilistic StabiTit:y'An~lysis·ofVariable:"~ '" Rock Slopes." Trans. Inst., Min. Metall. London 92, pp. Al ~'A:12~~ , Serafim; ,J. ·L~" ,and J. P.. Pereira. (1983) .. HConsidera.tions of the Geomechanics:" ~ '~' " , "Classificar'ioh of Bienia~skL'"\ Proc. Int. Symp.Eng. Geol. Underground Constr., ' _ ,A. A. Balkema', Rotter4;:tm, vol. 1, pp. II.33-II.42. Unal, E. (1983). "Design Guidelines and Roof 'Control Standards for Coal Mine Roofs," Ph.D. thesis, PeQ~sylvania State Universi,ty, University Park, 355 pp. Unrug, K., and T. B. Szwilski. (1983). HStrata Cavability in Longwall Mining." Proc. 2nd Int. Con! Stability Underground Mine, AIME, New York, pp. 131-147. Weltman, A. J., and J. M. Head. (1983). Site Investigation Manual, Construction Industry Research and Information Association, London, Special Publication no. 25, 144 pp. Whitney, H. T., and G. L. Butler. (1983). HThe New Austrian Tunneling Method-a Rock Mechanics Philosophy." Proc. 24th U.S. Symp. Rock Mech., Texas A&M University, College Station, TX, pp. 219- 226. Yudhbir. (1983). "An Empirical Failure Criterion for Rock Masses." Proc. 5th Int. Congr. Rock Mechanics, ISRM, Melbourne, pp. 81-88. Bieniawski, Z. T. (1984). Rock Mechanics Design in Mining· and Tunneling, A. A. Balkema, Rotterdam, pp. 97-133. Boniface, A. A. (1984). "Commentary on Three Methods of Estimating Support Requirements for Underground Excavations." Design and Construction of Large
246
BIBLIOGRAPHY
. un~l!-rground Openings, ed. E. L. Giles and·N. Gay, SANCOT, Johannesburg, pp~ 33-39. Laubscher, D. H. (1984). "Design Aspects and Effectiveness of Support Systems in Different Mining Conditions." Trans. I nsf. Min. M etall. 93, pp. A70- A8l. Peck, R. B. (1984). Judgment in Geotechnical Engineering, Wiley, New York, 332 pp. U.S. National Committee on Tunneling Technology. (1984). Geotechnical Site Investigationsfor ur.zderground Projects. National Academy Press, Washington, DC, 182 pp. Williamson, D. A. (1984). "Unified Rock Classification System." Bull. Assoc. Eng. Geol.· 21(3), pp. 345-35~. ' Boniface., A. (1985). uSupportRequirements for Machine DrivenTQnnels." S. Afr.. Tunne.L.~ing 8, p. 7,; :, . ::~ : Brool\, c:N., and P. G. R. Dharmaratne. (1985). "Simplified 'Rock Mass Rating System for Mine Tunnel Support." Trans. [nst. Min. Meiall.~94, .pp~ A148Al.54,~:. ; ..- . , Fairhurst; C., and D. Lin. ( 1985). "Fuzzy Methodology in Tun:n-el'Support Design. "J. . Proc. 26th U.S. Symp. Rock Mech., A. A. Balkema, Rdtterdam~"vol. 1. pp.:' .269~278~ , . Newma.n, D., ,A. (19.85). "The Design of Coal Mine Roof,·Support for Longwall ~~n~~.jll the Appalachian Coalfield," Ph-.D. thesis, Pennsylyariia~'State.·Univetsity,:· Unh:er.s~tyPark,;~Ol.pp. " .;.... J.,',:::/::; :.l ~.' (
~
•
I
-.~
_
Nguyen,.y.U., and E~ Ashworth. (1985). HRock -Mass Classifi·catiori.'by Fuz.zy ,Syts·.'~ Prqc. 26th u··.s..,Symp. Rock Mech., A; A .. Balkema;~~Rotterdam, voL 2,·) pp. :937-.946.... ; .. , . · · - i . , ' ~~-. Romana,' . M. (1985). "New Adjustment Ratings for Application of Bieniawski' Classification to Slopes." Proc. Int. $ymp. Rock Mech. Exciiv~ ·Min. 'C.iv. Works, I~RM, Mexico City,',pp. 59-68. ;:·'-,L· Sandbak, L. A. (1985). "Roadheader Drift Excavation and Geomechanics Rock Classification." Proc. Rapid Excav. Tunneling Con!, AIME, New York, vol. 2, pp. 902-916. She9rey, P. R. (1985). "Support Pressure Estimation in Failed Rock Conditions. " Eng. Geol. 22, pp. 127-140. '/
Brosch, F. J. (1986). "Geology and Classification of Rock Masses-Examples from Austrian Tunnels." Bull. Int. Assoc. Eng. Geol., no. 33, pp. 31-37. Farmer,1. W. (1986). "Energy Based Rock Characterization. Application of Rock Characterization Techniques in Mine Design, ed. M. Karmis,AIME, New York, ' pp. 17-23 . . Franklin, J. A. (1986). ~4Size-Strength System for Rock Characterization." Application of Rock Characterization Techniques in Mine Design, ed. M. Karmis, AIME, New York, pp. 11-16. Grainger, G. S. (1986). "Rock Mass Characteristics of the Rocky Mountain Pumped Storage Project Hydrolelectric Tunnel and Shaft." Proc. 27th U.S. Symp. Rock Mech., AIME, New York, pp. 961-967. H
BIBLIOGRAPHY
247
Kaiser, P. K., C. MacKay, and A. D. Gale. (1986). "Evaluation of Rock Classifications at B.C. Rail Tumbles Ridge Tunnels." Rock Mech. Rock Eng. 19, pp. 205-
234: Newman, D. A., and Z. T. Bieniawski. (1986). "Modified Version of the Geomechanics Classification for Entry Design in Underground Coal Mines." Trans. Soc. Min. Eng. AlME 280, pp. 2134-2138. Nicholson, G. A., and Z. T. Bieniawski. (1986). HAn Empirical Constitutive Relationship for Rock Mass." Proc. 27th U.S. Symp. Rock Mech .. , AIME, New York, pp. 760- 766. Singh, R. N., B. 'Denby, I. Egretli, and A. G. Pathon. (1986). "Assessmen.fof· Ground Rippability in Opencast Mining Operations." Min. Dept. Mag. Univ. Nottingham 3~~ pp~ 21- 34. ~'~~;' Singh, R. N., A. M~: Elmherig, and M. Z. Sunu. (1986). "Application of Rock Mass Characterizatjon to tne Stability 'Assess~ent and Blast Design iri;:Hard Rock Surface:!y1ining Excavations." Proc. 27th U.S. Symp. Rock Mech., AIME, . New York, pp. 471-478. . "1. >i ~ Smith, H. J. (J.:98.6) •. ::'/Estimating Rippability by Rock Mass Classificatioh}?-'Proc; 27th U.S. Symp:, Roc.k Mech. ".AIME, New York, pp. 443-448. .'.I·ri.: .,~. ,'. Unal, E. (1986). HEm'pirical Approach to Calculate Rock Loads in Coal 'Mine: Roadways.",Procj,5th-Con! Ground Control Coal Mines, West Virginia University:; :, . '. Morgantown, . ,pp.~;:·234-241. ,,",. ..'~. ~:' .:.;' ~~.:,:;:-. Venkateswarlu, V. (1986). ";'Geomechanics Classification of Cocll Measure','Rocks;" vis-a~vis Roof ,Supports, "Ph~D·. thesis, Indian School of Mine's, Dhanbad,~25r " . pp .. Bieniawski, Z. T. (1987). ~trata Control in Mineral Engineering,' Wiley,~ew York, 212 p'p. . Klaassen, M. J., C.'·H. MacKay, T. J. Morris, and D. G. Wasyluk. (1987r- -"'Engineering GeologiChl Mapping and Computer Assisted Data Processing for Tunn'els at the Rogers Pass' Project, B.C." Proc. Rapid Excav. Tunneling Con!, AIME, New York, pp. 1309-1322. LeBel, G., and C. O. Brawner. (1987). "An Investigation on Rock Quality Index." Min. Sci. Tech. 5, pp. 71-82. ' Schmidt, B. (1987). "Learning from Nuclear Repository Design: The Ground Control Plan. Proc. 6th Aust. Tunneling Conf., Australian Geomechanics Society, Melbourne, pp. 11-19. H
Singh, R. N., B. Denby, and 1. Egretli. (1987). "Development of a New Rippability Index for Co,lI Measures." Proc. 28th U.S. Symp. Rock Mech., A. A. Balkema, Boston, pp. 935 -943. Smith, H. J. (1987). "Estimating the Mechanical Dredgeability of Rock." Proc. 28th U.S. Symp. Rock Mech., A. ·A. Balkema, Boston, pp. 935-943. Stevens, C. R., L. A. Sandbak, and J. J. Hunter. (1987). "LHD Production and Design Modifications at the San Manuel Mine." Proc. 28th U.S. Symp. Rock Mech., A. A. Balkema, Boston, pp. 1175-1185.
248
BIBLIOGRAPHY ·
.
Barton,N. (1988). "Rock Mass Classification and Tunnel Reinforcement Selection .using ·the Q-System." Proc. SYlnp. Rock Class. Eng. Purp., ASTM Special Te'chnical Publication 984, Philadelphia, pp. 59-84. Bieniawski, Z. T. (July 1988). "Rock Mass Classification as a Design Aid in Tunnelling." TunneLs TunneLing 20, pp. 19-22. Brown, E. T., and E. Hoek. (1988). "Discussion on Shear Failure Envelope in Rock Masses." 1. Geotech. Eng. ASCE 114, pp. 371-373. Deere, D. U., and D .. W. Deere. (1988). "The RQD Index in Practice." Proc. Symp. Rock CLass. Eng. Purp., ASTM Special Technical Publication 984, Philadelphia, pp. 91-101. Faria Santos, C. (1988). HAnalysis of Coal Mine Floor Stability," Ph.D. thesis, Pennsylvania State University., University Park, 189 pp. Ghose, A. H., and D. Gupta. O ( 1988). "A Rock Mass Classification Model for Caving Roofs." Int. J. Min;:Geol. Eng. 5, pp. 257-271. Hanna, K., and D. P. Conovei<:,(f988). "Design of Coal Mine Entry Intersection." AlME-SME Ann. Meet., Phoenix, AZ, preprint #88-39. Kirkaldie, L., D. A. Williarhs'orl~':and P. V. Patterson. (1988). ~4Rock Material Field Classification Procedure:'" Rock':Classification Systems fo" Rock Engineering, ASTM STP 984, ASTM,!Philadelphia, pp. 133-167. , K-irsten,H .. A.D. (1988)J~'Ca:se: Histories of .Groundmass 'Chanicterization for Excavatability." Proc. Sym'p?RockClass. Eng. Purp., ASTM Special Technical Publication 984,. 'Philadelphia,' 'pp.,'102-120. '! ~~,,:.
'.i"
'-,,'
Nicholson; G .. A; (1988),. '''A:-':Case' History Review' from a ·perspective of Design by Rock Mass Classification . Systems." Proc. Symp. Rock:Class~ Eng~ Purp." ASTM Special.Technical Publication 984, Philadelphia, pp. 121~129. Robertson, A. M~ (1988). "Estimating Weak Rock Strength." AlME-SME Ann. Meet., Phoenix, AZ, preprint:;#88-145. Rodrigues, J. D. (1988). "Propo~~d Geotechnical Classification of-Carbonate Rocks Based on Portuguese and Algerian Examples." Eng. Geol. 25, :pp. 33-43. Sandbak, L. A. (1988). "Rock Mass Classification in LHD Mining ,at San Manuel. AlME-SME Ann. Meet., ,Phoenix, AZ, preprint #88-26. Skinner, E. H. (1988). "A Ground Support Prediction Concept-the RSR Model." Proc. Symp. Rock CLass. Eng. Purp., ASTM Special Technical Publication 984, Philadelphia, pp. 35-51.
Zhou, Y., C. Haycocks, and W. Wu. (1988). "Geomechanics Classification for Multiple Seam Mining." AlME-SME Ann. Meet., Phoenix, AZ, preprint #88-11. Deere, D. U. (1989). Rock Quality Designation (RQD) after Twenty Years, U. S. Army Corps of Engineers Contract Report GL-89-1, Waterways Experiment Station, Vicksburg, MS, 67 pp.
"
Index ;
'\:',
A .Abutment loads" 151 Analytical design methods, 25 Authors referenced, 239 ..
_
.
"
/.
•
i
,',:::
.
~r
•
""I
;:.,
.",
Blasting damage,' L51;~ 195 ;' ,Borehole data, 19; '1',13: 123
c Case histories, 205-'~i.l9 Cavability, 196 Chambers, 123 Classifcation: input data form, 20 parameters, 9, 54, 76 procedures, 52, 74, 118 systems, see specific systems under Lauffer, Q, Rock Mass Rating (Geomechanics Classification), Rock Quality Designation, Rock Structure Rating, and Terzaghi Classification Society, 1 Coal mining applications, 162, 169
.:'Co·mparisons, '11 T, 124 "Condition of discontinuities, 22, 58, 140 :", "Core logging, ,17 ;'J '::':"rCorrelations, 68, 82, 89 :",' :;'Critical! energy: release, 6 '",Cuttability, 194 ' , ..
D
,
.';J"
.
Data base, 66, 89, 207-217 Deformation modulus, 64, 130, 185 Design aids, 2 Design methodologies, 23 Discontinuities, 9, 22,57,58, 102 Dredgeability, 191 Drift support, 150, 155 'Drilling investigations, 15
E Empirical design methods, 26 Engineering design, 24 Entry support, 163 Excavatability, 191 Excavation guidelines for tunnels, 62
249
250
INDEX
F Factors of safety, ,134 Failure criterion: rock mass, 177 rock material, 185 Faults, 20 adjustment for, 60, 160
G Geological data presentation, 19 Geological mapping, 16 Geomechanics Classification, 51, 107, 137, 170, 182. See also Rock Mass Rating system (RMR) Geophysical investigations, 18 Geotechnical core log, 17 Groundwater conditions, 23, 54, 81
H, Hard-rock mining, 137? 143 Hoek~ Brown failure criterion; 177,',;:; ,17fJ Hydrofracturing, 21
Identification, 1 I~ situ ~odulus, 64, 130, 185 Input data: form, 20, 114, 145~ 158 requirements, 21 Intact rock classifications, 7 International Society for Rock Mechanics (lSRM) classification, 101
J Joints, see Discontinuities Joint surveys, see Geological mapping
L Laboratory tests, 6 Large underground chambers, 123
Lauffer classifcation, 33 Lloyd's Register of Shipping, 2
M Maximum spans, 131 MBR Classification, 143 Mining applications, 60 coal, 162, 169 hard-rock, 137, 143 Modulus in situ, 64, 130, 185
N NATM cla~sification,,91, 96 New Austrian Tunneling Method' (NATM},:9L 96
o Observational,qesign methods, 25 Overvaal Tunnel, 121 ,", TOO.
:-
.'
~:
~.
•
p
", "
.'
1
,,',
Park River Tunnel,: 1,07 Point-load strertgtll'Uidex, 13,20' . Program for p~~sonal computer, 226 Q
to- r "· I
Quality indexe:s,' see' Classification, l!j'.l systems Q-System, 73
R Record-keeping, 206 Rippability, 187 Rock: bolting, 62, 75 caving, 197 cutting, 195 Rock load classification, 32, 36 Rock load determination, 61 Rock mass classifications, 30 benefits, 3
'
251
INDEX
correlations, 68, 82, 89 earl):', 29 in pu t data form, 20 modem, 51, 73 objectives, 3 parameters, 9, 54, 76 procedures, 52, 74, 118 systems, see specific systems under Lauffer, Q, Rock Mass Rating (Geomechanics, Classifications), Rock Quality Designation, Rock Structure Rating, and Terzaghi Rock Mass Rating (RMR) System, 51" 107,137,170,177,185. See also Geomechanics Classification Rock mass', strength, 65, 177 Rock material classifications, 7 Rock slopes applications, 182, 186 Rock Stru~tureR~ting (RSR), 4,0 Rock Qua~hy :be's~g[}ation (RQD), 21, 37 '
s Safety factors, :)3~ ~ " Site characteiiz~tion:, 10 requirements, ,21 ' Size- strength classification, 95 Stand-up time' chart, 61, 63 Stand-up time classification, 33 Strength -defor~ation classification, 8 Strength of rock mass, 65 Stress adjustment, 60, 79
Stress-s~rain
curve, 7 Structural features, 9 Structural regions, 21, 52 Support pressure, 61, 82 Support requirements, 39,47,62,83, 132, 142, 150, 155, 163 Surface exposures, 123
T Taxonomy, Terzaghi classification, 32, 3q' , Tunnel boring machine adjust,n?~nt, 44,
63, 195
' .; . --;
I. . . •
Tunneling applications, 10.7.. ', ~: Tunnel support guidelines ,'6~. \~;.. , :'.,.': . i"j
u Uniaxial compressive strength, .10,,20,
56, 102
~ :':_ ',,' .. :,'
Unified Rock Classification System .(UReS), 198
v
'
,~
...
~r
:' ,-; .
Velocity index;: 19
w
.. 1
Water, see Groundwater .condi'tions,
z Zones, see Structural regions