Yanuarso A Saputra (1504285) Perencanaan Portal Gable
1
BAB I PENDAHULUAN 1.1 Latar Belakang
Dalam era globalisasi dan modernisasi seperti s eperti sekarang ini kalau tidak ditunjang oleh ilmu pengetahuan dan teknologi tentu akan tertinggal oleh kemajuan zaman, dan tentunya bangsa kita akan kalah bersaing dengan bangsa lainnya di dunia. Untuk itu kita harus dapat memanfaatkan arus informasi i nformasi dan komunikasi dengan Negara lain yang dalam teknologinya berada diatas negara kita. Kita harus senantiasa mencari ilmu pengetahuan dan teknologi yang sangat dibutuhkan misalkan pengetahuan tentang teknologi bangunan bangunan secara umum seperti bangunan gedung gedung dan perkantoran, perkantoran, rumah sakit, pabrik, sekolah, menara, dan lain-lain. Pada umumnya bangunan umum tersebut terbuat dari material baja dan beton. Untuk menghemat biaya pembangunan biasanya pemerintah atau masyarakat umum menggunakan suatu konstruksi yang kuat misalnya
konstruksi baja.
Semua
pelaksanaan yang menyangkut struktur tidak luput dari material baja. Bentuk-bentuk baja yang berada diperdagangan bebas yaitu dalam dala m bentuk batang-batang yang biasa , bilah-bilah, serta beraneka macam profil. Bentuk baja profil umumnya terbanyak dipakai dalam konstruksi baja.Profil – profil yang biasa digiling disemua negara yang umumnya produsen baja. Ukuranukuran penampang profil dari berbagai negara asalnya kadang-kadang berselisih sedikit. Kita mengenal empat golongan besar dari profil yaitu : profil-profil Eropa-Barat ; profil-profil Eropa-Tengah ; profil-profil Inggris dan profil-profil Amerika Profil – – profil Eropa-Barat Eropa-Barat digiling di Belgia, Luksemburg, Jerman, Perancis dan dan Belanda. Kebanyakan profil-profil ini adalah profil-profil J erman Normal. Profil-profil Eropa-Tengah digiling di Austria, Hongaria, dan Cekoslovakia, profil Inggris di Inggris dan profil Amerika di Amerika Serikat dan Kanada.
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
1.2 Maksud dan Tujuan
Maksud dari penyusunan laporan tugas ini adalah : 1. Merupakan salah satu persyaratan yang harus dipenuhi oleh mahasiswa yang mengontrak mata kuliah Struktur Baja II. 2. Merupakan suatu alat untuk mengukur kemampuan mahasiswa dalam menyerap ilmu yang diperoleh selama perkuliahan. Sedangkan tujuan dari penyusunan laporan ini adalah : 1. Untuk mengaplikasikan ilmu pengetahuan yang sudah diperoleh mahasiswa dalam perkuliahan. 2. Untuk melatih mahasiswa membuat suatu perencanaan konstruksi struktur baja yang lebih baik dengan cara membuat sistem perencanaan yang efektif dan efisien. 1.3 Ruang Lingkup Penulisan
Pokok permasalahan yang akan dibahas dalam Tugas ini meliputi perencanaan struktur konstruksi portal baja gable. Adapun ruang lingkup dalam perencanaan Konstruksi portal gable ini adalah sebagai berikut : 1. Perhitungan dimensi gording 2. Perhitungan trackstang 3. Perhitungan ikatan angin 4. Perhitungan pembebanan pada portal gable 5. Perhitungan gaya-gaya dalam 6. Perhitungan balok yang direncanakan 7. Perhitungan kolom 8. Perhitungan balok crane 9. Perhitungan sambungan 10. Perhitungan pondasi 11. Gambar Kerja 1.4 Pembatasan Masalah
Penulisan Laporan Tugas ini meliputi perencanaan konstruksi portal gable dengan perhitungan strukturnya dimulai dengan analisa pembebanan sampai dengan pendimensiannya.
2
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
3
BAB II DASAR PERENCANAAN
2.1 Uraian Umum
Tujuan utama dari struktur adalah memberikan kekuatan pada suatu bangunan .Struktur bangunan dipengaruhi oleh beban mati ( deadload ) berupa berat sendiri, beban hidup (liveload (liveload ) berupa beban akibat penggunaan ruangan dan beban khusus seperti,beban angin,pengaruh angin,pengaruh temperatur dan beban akibat gempa. gempa. Suatu beban yang bertambah dan berkurang menurut waktus ecara berkala disebut beban bergoyang,beban ini sangat berbahaya apabila periode penggoyangannya berimpit dengan dengan periode struktur dan apabila beban ini diterapkan pada struktur selama kurun waktu yang cukup lama, dapat menimbulkan lendutan. Lendutan yang melampaui batas yang direncanakan dapat merusak struktur bangunan tersebut. 2.2 Peraturan Perencanaan
Apabila kita akan merencanakan suatu struktur bangunan sudah tentu kita harus memperhatikan serta memperhitungkan segala aspek yang berhubungan dengan bangunan tersebut. Disamping segi teknis yang menjadi landasan utama dalam merencanakan suatu struktur bangunan, segi-segi lainnya tidak bisa kita tinggalkan atau kita abaikan begitusaja. Faktor fungsi,ekonomi, sosial,lingkungan,dan sebagainya tidak kalah pentingnya bila dibandingkan dengan segi teknis konstruksi dalam perencanaan perenc anaan suatu bangunan. Dengan kata lain,jika kita merencanakan suatu struktur bangunan, kita dituntut dalam hal kesempurnaan struktur bangunan itu sendiri. Untuk memenuhi hal tersebut, kita harus berpedoman pada syarat-syarat yang telah ditentukan baik dari segi teknis itu sendiri maupun dari segi lainnya.
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
2.3 Peraturan Perhitungan Konstruksi Portal Gable
a. Peraturan Perencanaan Bangunan Baja Indonesia (PPBBI 1984) b. Peraturan Pembebanan Indonesia (PPI 1981) c. SNI Baja 03-1729-2002 d. SNI Pondasi Telapak Beton 03-2847-2002 2.4 Tuntutan dan Ketentuan Umum Perencanaan
Tuntutan atau ketentuan umum dalam perencanaan konstruksi portal gable yang harus kita perhatikan antara lain: a. Konstruksi harusaman, kokoh,kuat,baik terhadap pengaruh cuaca,iklim maupun terhadap pengaruh lainnya. b. Konstruksi harus benar-benar dapat berfungsi menurut penggunaannya. c. Ditinjau dari segi biaya ,konstruksi harus seekonomis mungkin dengan catatan tidak boleh mengurangi kekuatan konstruksi, sehingga tidak membahayakan bangunan dan keselamatan pengguna bangunan. 2.5 Metode Perhitungan
Perhitungan konstruksiportal gable dianalisa dengan menggunakan bantuan program SAP untuk menentukan gaya-gaya yang bekerja pada setiap elemennya.
4
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
5
BAB III LANDASAN TEORI
3.1 Pengertian Baja
Baja adalah suatu jenis bahan bangunan yang berdasarkan pertimbangan ekonomi, sifat, dan kekuatannya, cocok untuk pemikul beban. Oleh karena itu baja banyak dipakai sebagai bahan struktur, misalnya untuk rangka utama bangunan bertingkat sebagai kolom dan balok, sistem penyangga atap dengan bentangan panjang seperti gedung olahraga, hanggar, menara antena, jembatan, penahan tanah, fondasi tiang pancang, bangunan pelabuhan, struktur lepas pantai, dinding perkuatan pada reklamasi pantai, tangki-tangki minyak, pipa penyaluran minyak, air, atau gas. Struktur baja terbagi atas 3 kategori:
Struktur rangka, dengan elemen-elemen tarik, tekan, dan lentur
Struktur cangkang (elemen tarik dominan)
Struktur tipe suspensi (elemen tarik dominan)
Gambar 3.1. Struktur Rangka Batang pada Jembatan
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
Gambar 3.2. Struktur Rangka Batang Kuda-Kuda
Gambar 3.3. Struktur Cangkang ( shell structure)
Gambar 3.4. Struktur Cangkang di Australia ( shell structure)
6
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
7
Gambar 3.5. Suspension Bridge
3.2 Baja Sebagai Bahan Struktur
Berdasarkan pertimbangan ekonomi, kekuatan, dan sifat baja, pemakaian baja sebagai bahan struktur sering dijumpai pada berbagai bangunan seperti gedung bertingkat, bangunan air, dan bangunan jembatan. Keuntungan yang diperoleh dari baja sebagai bahan struktur adalah: 1. Baja mempunyai kekuatan cukup tinggi dan merata. Kekuatan yang tinggi ini mengakibatkan struktur yang terbuat dari baja, umumnya mempunyai ukuran tampang relatif kecil, sehingga struktur cukup ringan sekalipun berat jenis baja tinggi. 2. Baja adalah hasil produksi pabrik dengan peralatan mesin-mesin yang cukup canggih dengan jumlah tenaga manusia relatif sedikit, sehingga pengawasan mudah dilaksanakan dengan seksama dan mutu dapat dipertanggungjawabkan. 3. Struktur baja mudah dibongkar pasang, sehingga elemen struktur baja dapat dipakai berulang-ulang dalam berbagai bentuk struktur. 4. Struktur dari baja dapat bertahan cukup lama. Baja sebagai bahan struktur mempunyai beberapa kelemahan/kekurangan, antara lain :
Pemeliharaan memerlukan biaya yang banyak.
Kekuatan baja dipengaruhi temperatur.
Bahaya tekuk ( buckling ) mudah terjadi.
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
3.3 Bentuk Profil Baja
Baja struktur diproduksi dalam berbagai bentuk profil. Bentuk profil yang sering dijumpai seperti : siku-siku, kanal, I atau H, jeruji, sheet piles, pipa, rel, plat , dan kabel. Disamping itu, ada profil yang bentuknya serupa dengan profil I tetapi sayapnya lebar, sehingga disebut profil sayap lebar (wide flange). Beberapa kelebihan dari wide flange, yaitu:
Kekuatan lenturnya cukup besar
Mudah dilakukan penyambungan
Adanya kelebihan menjadikan wide flange sering digunakan sebagai kolom dan balok pada bangunan gedung, gelagar dan rangka jembatan, dan bangunan struktur lainnya. Khusus untuk wide flange dengan perbandingan lebar sayap dan tinggi profil (b/h) sama dengan satu atau disebut juga profil H. Profil H ini, sangat cocok digunakan untuk struktur pondasi tiang pancang. 3.4 Sifat-sifat Baja
Sifat mekanis suatu bahan adalah kemampuan bahan tersebut memberikan perlawanan apabila diberikan beban pada bahan tersebut. Atau dapat dikatakan sifat mekanis adalah kekuatan bahan didalam memikul beban yang berasal dari luar. Sifat mekanis pada baja meliputi:
Regangan (e) : besar deformasi perpanjang awal (tanpa satuan)
Tegangan (s) : gaya per satuan luas dalam satuan Mpa.
Elongation : pertambahan panjang pada pengujian tarik (%).
Kekuatan tarik (tensile strength) : besar tegangan (gaya) yang diperlukan unutk
mematahkan atau memutuskan benda uji.
Kekuatan leleh (yield strength) : besar tegangan yang diperlukan untuk mencapai
regangan plastis 0.2%.
Keliatan (ductility) : besar regangan maksimal yang dapat terjadi pada saat benda
uji patah atau putus dalam satuan persen (%).
Kekerasan (hardness) : ketahanan bahan terhadap penetrasi dipermukaannya,
yang dinyatakan dalam Bilangan kekerasan Brinell (BHN), Vickers (DPH) dan atau
8
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
kekerasan Rockwell (R). BKB dihitung berdasarkan luas daerah lekukan yang ditimbulkan, sedangkan R dihitung berdasarkan dalamnya lekukan.
Keuletan (toughness) : daya tahan bahan terhadap lenturan dan puntiran – puntiran
berulang – ulang yang diukur dari besarnya energi yang diperlukan untuk mematahkan suatu benda uji yang dinyatakan dalam satuan joule. Penilaian keuletan dilakukan dengan tes Charpy atau Izod. 3.4.1 Sifat Metalurgi Baja
Sifat metalurgi baja berkaitan erat dengan fungsi dari unsur-unsur atau komponen kimia dalam baja. Baja struktur yang biasa dipakai untuk struktur rangka bangunan adalah baja karbon (carbon steel ) dengan kuat tarik sebesar 400 MPa, sedang baja struktur dengan kuat tarik lebih dari 500 Mpa sampai 1000 Mpa disebut baja kekuatan tinggi (high strength steel ). Sifat – sifat baja yaitu kekakuan baja dalam berbagai macam keadaan pembebanan atau muatan bergantung dari :
Cara peleburannya.
Jenis dan banyaknya logam campuran.
Proses yang digunakan dalam pembuatan. Berikut ini beberapa dalil yang menyangkut sifat-sifat baja :
Dalil I
Besi murni tidak mempunyai sifat-sifat yang dibutuhkan untuk dipergunakan sebagai bahan penanggung konstruksi. Dalil II
Peningkatan nilai dari sifat-sifat tertentu, lazim dengan tidak dapat dihindarkan senantiasa mengakibatkan pengurangan dari nilai sifat-sifat lain, misalnya baja dengan keteguhan tinggi, istimewa lazimnya kurang kenyal. Kekuatan Baja
Sifat penting pada baja adalah kuat tarik. Pada saat baja diberi beban, maka baja akan cenderung mengalami deformasi/perubahan bentuk. Perubahan bentuk ini akan
9
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
menimbulkan regangan/strain, yaitu sebesar terjadinya deformasi tiap satuan panjangnya. Akibat regangan tersebut, didalam baja terjadi tegangan/stress sebesar, dimana P = beban yang membebani baja, A = luas penampang baja. Pada waktu baja diberi beban, maka terjadi regangan. Pada waktu terjadi regangan awal, dimana baja belum sampai berubah bentuknya dan bila beban yang menyebabkan regangan tadi dilepas, maka baja akan kembali ke bentuk semula. Regangan ini disebut dengan regangan elastis karena sifat bahan masih elastis. Perbandingan antara tegangan dengan regangan dalam keadaan elastis disebut dengan “ Modulus Elastisitas/Modulus Young ”. Ada 3 jenis tegangan yang terjadi pada baja, yaitu:
tegangan , dimana baja masih dalam keadaan elastic
tegangan leleh, dimana baja mulai rusak/leleh
tegangan plastis, tegangan maksimum baja, dimana baja mencapai kekuatan maksimum.
Gambar 3.6. Diagram tegangan-regangan baja
Gambar 3.7. Diagram tegangan-regangan tipikal berbagai baja struktural
10
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
Gambar 3.8. Tipe kurva tegangan-regangan Tegangan Leleh
Tegangan leleh sering disebut sebagai perilaku baja dimana pada saat ditarik dengan tegangan tertentu, baja tersebut tidak dapat kembali ke panjang mula-mulanya pada saat sebelum ditarik. Oleh karena itu sering dipakai asumsi bahwa tegangan leleh adalah tegangan yang dapat menimbulkan regangan tetap sebesar 0,2%, sehingga tegangan leleh dapat ditentukan dengan menarik garis lurus sej ajar dengan kurva linier, melalui titik pada sumbu X yang menunjukkan regangan sebesar 0,2% (Gambar 1.4)
Gambar 3.9. Penentuan Tegangan Lelah
Mutu baja dapat digolongkan dalam beberapa tingkatan sesuai dengan kekuatan baja tersebut, berikut adalah mutu baja yang terdapat di pasaran :
11
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
12
Tabel 3.1. Tegangan putus dan tegangan leleh baja Jenis Baja
Tegangan putus
Tegangan leleh
Peregangan
minimum, fu
minimum, y f
minimum
(MPa)
(MPa)
(%)
BJ 34
340
210
22
BJ 37
370
240
20
BJ 41
410
250
18
BJ 50
500
290
16
BJ 55
550
410
13
3.4.2 Sifat-Sifat Mekanis Lainnya
Sifat-sifat mekanisme lainnya baja struktural untuk perencanaan adalah sebagai berikut : Modulus elastis
: E = 200.000 Mpa
Modulus geser
: G = 80.000
Nisbah poisson
: = 0,3
Koefisien pemuaian
: = 12 . 10 -6 / oC
Mpa
3.5 Bentuk-Bentuk Baja Dalam Perdagangan
Bahan baja yang dipergunakan untuk bangunan berupa baja batangan dan plat. Penampang dari bahan baja biasanya disebut profil. Dalam perdagangan baik profil maupun panjang batang sudah memiliki standarisasi. Mengingat terbatasnya panjang batang yaitu maksimal 18 meter, maka untuk keperluan batang konstruksi yang lebih dari itu perlu dibuatkan sambungan. Selain untuk menambah panjang konstruksi, sambungan diperlukan pula untuk menyatukan bagian-bagian konstruksi yang harus disatukan.
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
Macam-macam profil yang terdapat di pasaran antara lain sebagai berikut: 1. Profil baja tunggal
Baja siku-siku sama kaki
Baja siku tidak sama kaki (baja T)
Baja siku tidak sama kaki (baja L)
Baja I
Baja Canal
2. Profil Gabungan
Dua baja L sama kaki
Dua baja L tidak sama kaki
Dua baja I
3. Profil susun
Dua baja I atau lebih
SISTEM STRUKTUR RANGKA BATANG INDUSTRI
Gambar 3.10. Bentang < 20 m tanpa haunch dan Bentang > 20 m dengan haunch
13
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
14
Gambar 3.11 .Bentang 40 – 70 m
Gambar 3.12. Bentang > 70 m
Rangka Batang Ruang
Gambar 3.13. Panjang sampai 60-80 m
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
15
Gambar 3.14. Panjang melebihi 60-80 m
3.6 Macam-Macam Bentuk Kuda-Kuda Baja
1. Pratt Truss Kemiringan atap = tg
,
dimana h = tinggi kuda-kuda
L = bentang kuda-kuda 2. Hows Truss 3. Pink Truss 4. Modified Pink Truss 5. Mansarde Truss 6. Modified Pratt Truss 7.
Crescent Truss
3.7 Keuntungan dan Kerugian Penggunaan Baja
Keuntungan:
1.
Baja lebih ringan.
2.
Bahan baja akan lebih mudah untuk dipindahkan.
3.
Bila konstruksi harus dibongkar, baja akan dapat dipergunakan lagi.
4.
Pekerjaan
konstruksi
baja
dapat
dilakukan
di
bengkel
sehingga
pelaksanaannya tidak membutuhkan waktu lama. 5.
Bahan baja sudah mempunyai ukuran dan mutu tertentu dari pabrik.
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
Kerugian:
1.
Bila konstruksi terbakar, maka kekuatannya akan berkurang, pada batas yang besar juga dapat merubah konstruksi.
2.
Bahan baja dapat terkena karat, sehingga memerlukan perawatan.
3.
Memerlukan biaya yang besar.
4.
Dalam pelaksanaan konstruksi diperlukan tenaga ahli dan berpengalaman.
3.8 Jenis-Jenis Alat Penyambung Baja
a.
Baut Pemakaian baut diperlukan bila:
b.
1.
Tidak cukup tempat untuk pekerjaan paku keling
2.
Jumlah plat yang akan disambung > 5d (d diameter baut)
3.
Dipergunakan untuk pegangan sementara
4.
Konstruksi dapat dibongkar pasang
Paku Keling Sambungan paku keling dipergunakan pada konstruksi yang tetap. Jumlah
tebal pelat yang akan disambung tidak boleh > 6 d (diameter paku keling). Beberapa bentuk kepala paku keeling yaitu paku yang dipergunakan pada tiap pertemuan minimal menggunakan 2 paku dan maksimal 5 paku dalam satu baris. Penempatan paku pada plat ialah: jarak dari tepi plat el. c.
Las lumer Ada 2 macam las lumer menurut bentuknya, yaitu: 1.
Las tumpul
2.
Las sudut
16
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
17
BAB IV PERHITUNGAN PORTAL GABLE
290
6m
25m
Gambar 4.1 Rangka Portal Gable
Ketentuan :
Type Konstruksi
: Portal Gable
Jarak Antar Portal ( l )
: 4 meter
Bahan Penutup Atap
: Seng Gelombang
Bentang kuda – kuda (L)
: 25 meter
Tinggi Kolom (H)
: 6 meter
Kemiringan atap ()
: 290
Berat crane
: 25 ton
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
18
TekananAngin
: 55 kg/m2
Sambungan
: Baut dan Las
Pondasi
: Telapak beton
Berat penutup atap
: 11 kg/m2
Modulus elastisitas baja
: 2,1x105 Mpa = 2,1x106 kg/cm2
Tegangan ijin baja
: 1400 kg/cm2
4.1 Perhitungan Panjang Gording
290
12,5m
∝= 29°= 7 = 0,87746 CE = 14,29 m
∝= = 29° . =0,4848 .14,29
Gambar 4.2 Panjang Sisi Miring
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
19
EF = 6,93 m
4.2 Perhitungan Gording Perhitungan jumlah gording
Menggunakan Asbes ukuran 80 cm x 180 cm
ℎ ℎ = 14,0,829 =17,875 ℎ≈18 ℎ Jarak minimal antar gording =
= 80 cm = 0,8 m
Maka dengan menggunakan 18 buah gording, didapat jarak antar gording yang digunakan sebesar:
=,
(ambil jarak minimal)
Perhitungan dimensi gording
Untuk dimensi gording digunakan profil baja Cannal C14 dengan data sebagai berikut :
q
= 16 kg/m
Ix
= 605 cm4
Iy
= 62,7 cm 4
Wx
= 86,4 cm3
Wy
= 14,8 cm3
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
20
Ketentuan:
Jarak portal (l) = 4 m
Kemiringan atap (α) = 29o
Berat penutup atap
= 11 kg/m2 (seng gelombang )
Jarak antar gording
= 0,8 m
Jumlah trackstang
= 1 buah
Menghitung pembebanan
Pembebanan Pada Gording Terdiri Dari : a. Beban Mati (Dead Load)
= 0,8 m x 11 kg/m 2
Berat Penutup Atap
= 8,8 kg/m
Berat Sendiri Gording
= 16 kg/m
Berat baut + traksrang (10% BSG)
= 1,6 kg/m q DL = 26,4 kg/m
Y
X
q.sinα q.cosα α
q
Gambar 4.3 Distribusi Beban Mati Pada Gording Atap
qx
= q . sin 29
qy = q. cos 29
= 26,4. sin 29
= 26,4. cos 29
= 12,799 Kg/m
= 23,09 Kg/m
+
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
Momen akibat beban mati Karena dianggap sebagai balok menerus di atas beberapa tumpuan (continous beam) maka untuk memperoleh perhitungan dapat diasumsikan sebagai berat bertumpuan di ujung.
Mx1 = 1/8. qx . (l/2) 2 . = 1/8 . 12,799 (4/2) 2 = 6,4 Kg. m
My1 = 1/8 . qy . (l) 2 = 1/8 .23,09 .(4) 2 = 46,18 Kg.m
21
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
22
b. Beban Hidup (Live Load)
Beban hidup dianggap sebagai beban terpusat, yang bekerja di tengah-tengah bentang. Besarnya beban hidup diambil = 100 kg (PPURG 1987). Y
X
P.sinα
P.cos P
α
Gambar 4.4 Distribusi Beban Hidup Pada Gording Atap
Px = Px .sin 29 o
Py = Py .cos 29o
= 100 .sin 23o
= 100 .cos 23o
= 48,481 Kg
= 87,462 Kg
Momen akibat beban hidup Momen yang timbul akibat beban terpusat dianggap Continous Beam Mx2
= ¼ .Px . (l/2) .
My 2
= ¼ .Py .l
= ¼ .48,481. (4/2)
= ¼. 87,462 . 4
= 24,241 Kg m
= 87,462 Kg m
c. Beban Angin
Beban angin diperhitungkan dengan menganggap adanya tekanan positip (tiup) dan tekanan negatif (hisap), yang bekerja tegak lurus pada bidang atap. Dalam perencanaan ini, tekanan angin 65 kg/m. Wy X
Wx = 0 α
Y
Gambar 4.5 Distribusi Beban Angin Pada Gording Atap
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
Koefisien angin tekan ( c )
23
= (0,02 . ) -0,4 = (0,02 . 29).-0,4 = 0,2
Beban angin tekan (W)
=c.q.A = 0,2 . 55 . 0,8 = 7,92 kg/m
Koefisien angin hisap (c’)
= - 0,4
Beban angin hisap (W’)
= Chsp .q . A = -0,4 . 55 .0,8 = -17,6 kg/m
Momen akibat beban angin Wmax = 7,96 kg/m
Wx
= 0 (karena gaya yang bekerja tegak lurus pada bidang atap)
Wy
= 7,96 kg/m
= x Wx 1 4 =8 x 0 x2 =0 kg m = x Wx l =18 x 8,8 x 4=15,84 kg m
d. Akibat Beban Air Hujan
qair
= (40 – 0,8 (29) ) x A = 40 – 23,2 x A = 23,2 x 0,8 m = 13,44 kg/m
Menghitung beban akibat air hujan qx = q sin 29
qy = q cos 29
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
24
= 13,44 sin 29
= 13,44 cos 29
= 6,516 kg/m
= 11,755 kg/m
Momen akibat beban air hujan Mx1 = 1/8.qx.(l/2)2
My1 = 1/8 .qy . (l) 2
= 1/8.6,516.(4/2) 2
= 1/8 .11,755.(4)2
= 3,258 Kg.m
= 23,51 Kg.m
Tabel 4.1 Resume Pembebanan Beban
P (kg.m)
Px (kg.m)
Py (kg.m)
Mx (kg.m)
My (kg.m)
Beban Mati
26,4
12,799
23,09
6,4
46,18
Beban Hidup
100
48,481
87,46
24,24
87,462
Beban Angin
7,92
0
7,92
0
15,84
Beban Air Hujan
13,44
6,516
11,755
3,258
23,51
PEMBEBANAN DENGAN METODE LRFD 1) Mu= 1,4 D
Mux = 8,96 kgm Muy= 64,652 kgm 2) Mu= 1,2D + 0,5L
Mux= 19,801 kgm Muy= 99,147 kgm 3) Mu= 1,2D + 1,6L
Mux= 46,466 kgm Muy= 195,355 kgm 4) Mu= 1,2D + 1,6L + 0,8W
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
Mux= 46,466 kgm Muy= 211,195 kgm 5) Mu= 1,2D + 0,5L + 1,3W
Mux= 19.801 kgm Muy= 119.739 kgm 6) Mu= 0,9D + 1,3W
Mux= 5,76 kgm Muy= 62,154 kgm 7) Mu= 0,9D - 1,3W
Mux= 5,76 kgm Muy= 20,97 kgm Jadi
Mux= 46,466 kgm Muy= 211,195 kgm
Asumsikan penampang kompak : Mnx= Zx x f y = 86,4x10 3(240) = 18144000 Nmm Mny= Zy x f y = 14,8x10 3(240) = 3108000 Nmm
1) KONTROL PUNTIR
Untuk mengantisipasi masalah puntir maka M nx dapat dibagi 2 sehingga:
∅ + ∅/ ≤1 46, 4 6∗10000 469, 3 8∗10000 + 0,9181440000 0,93108000/2 =0,8119 <1 → OKE
25
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
26
2) KONTROL TEGANGAN
=55,840≤ =210 → 3) KONTROL LENDUTAN
= 2401 = 2401 400=1,7 -
-
Sumbu X
={3845 + }+ {481 } =0.0919 ={3845 + /2 + {481 /2} =0,1832 = + ≤ = + ≤ = 0,092 +0,1832 =0,205 ≤ =1,7 → Sumbu Y
4.3 Mendimensi Batang Tarik (Trackstang)
Batang tarik (trackstang) berfungsi untuk mengurangi lendutan gording pada arah sumbu x dan sekaligus untuk mengurangi tegangan lentur yang timbul pada arah sumbu x batang tarik dipasang satu buah. Qx = (Berat sendiri gording+berat yang didukunggnya) pd arah x Qx = 12,78 kg/m
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
27
Beban hidup / Beban berguna
Px = 48,48 Kg
Pts = Qx . jarak antar portal + Px = (12,78 . 4) + 48,48 = 99,677 Kg Karena batang tarik di pasang satu buah, maka : Pts
P ts
1
P
2100kg / cm
99,677
P
Fbr
99,677 kg
Fn
Fn
2100
2
0,047 cm2
=125% . Fn = 1,25 . 0,047 = 0,06 cm2 = ¼ п d2
Fbr
d2 =
0,06
Fbr 1 / 4
1 4
.3,14
d = 0,2741 cm = 6 mm Dalam tabel baja, nilai d yang paling kecil adalah 6 mm, jadi diambil nilai d = 6 mm. 4.4 Perhitungan Dimensi Ikatan Angin
Ikatan angin hanya bekerja menahan gaya normal atau gaya axial tarik saja. Cara kerjanya kalau yang satu bekerjanya sebagai batang tarik, maka yang lainnya
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
28
tidak menahan apa-apa. Sebaliknya kalau arah anginya berubah, maka secara berganti-ganti batang tersebut bekerja sebagai batang tarik. Perubahan pada ikatan angin ini datang dari arah depan atau belakang kudakuda. Beban angin yang diperhitungkan adalah beban angin terbesar yaitu 65 Kg/m.
N dicari dengan syarat keseimbangan, sedangkan P = gaya atau tekanan angin. Tg = 14,29/4 = 3,575
= arc tg 3,575 = 74,37 o
P = (55 kg/m 2 . 14,29 m) = 786,5 kg.m Beban yang terjadi karena angin adalah beban merata, tapi dianggap menjadi beban titik/terpusat. H = 0,
Nx = P N cos = P N =
Fn
2919,74
2100
786,5 cos 74,37
1,39cm
= 2919,74 kg
2
Fbr = 125% . Fn = 1,25 x 1,39 = 1,738 cm 2 Fbr = ¼ d2
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
d
4 Fbr
29
4.1,738
3,14
1,5cm
15mm
diambil diameter 15 mm
4.5 Perhitungan Pembebanan Portal Gable Peraturandan Standard Perencanaan
Tata cara perencanaan struktur baja untuk Bangunan Gedung SNI 03-1729-2002
Pedoman perencanaan pembebanan untuk rumah dan gedung (PPPURG 1987)
Tabel Profil baja Data teknis :
Penutup atap seng gelombang
= 11 kg/m 2
Bentang portal (L)
= 25 m
Jarak gording (A)
= 0,8 m
Berat Sendiri Gording
= 64 kg
Berat Sambungan gording
= 6,4 kg
Jarak antar portal (l)
=4m
Tegangan Putus minimum (fu)
= 340 MPa
Tegangan leleh minimum (fy)
= 210 MPa
Sudut kemiringan
= 29o
Sebelum mendimensi portal gabel, hal terpenting yang pertama dilakukan adalah mengidentifikasi beban yang bekerja pada konstruksi. Beban tersebut nantinya akan menentukan ekonomis atau tidaknya suatu dimensi portal. Distribusi pembebanan pada bangunan Gedung sebagai berikut : 1. Akibat Berat Sendiri
Pembebanan pada Balok Gable akibat beban-beban yang dipikul oleh 1 gording dengan jarak antar portal 6 m :
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
30
a. Berat penutup atap = 11kg/m 2 P
= berat penutup atap x jarak gording x jarak antar portal = 11 kg/m2. 0,8m .4m = 35,2 kg
b. Berat sendiri gording (C-20) Q
= berat sendiri gording x jarak antar portal = 64 kg/m. 4 m = 256 kg
c. Berat Sambungan gording (termasuk dengan trackstang dani katan angi n,10% berat gording) Q
= 10 % x berat sendiri gording = 10%. 256 kg/m
= 25,6 kg
Catatan:
Gording 1 (karena terletak di ujung balok maka menerima beban setengah jarak)
Gording 2 sampai gording 17 (menerima beban setengah 2x setengah jarak gording)
Tabel 4.2 Akibat Beban Sendiri Pembebanan
G1=G18 (kg)
G2 s/d G17 (kg)
PenutupAtap
17,6
35,2
Gording
32
64
Samb.Gording
3,2
6,4
ΣP
52,8
105,6
Beban Crane : Di tengah-tengah crane sebesar 25 ton = 25000 kg
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
31
2. Akibat Beban Hidup
Beban yang bekerja apabila terdapat orang yang sedang bekerja atau berada di atasnya sebesar 100 kg. Po = 100 kg Tabel 4.3 Akibat Beban Hidup Pembebanan
G1=G18 (kg)
G2 s/d G17 (kg)
50
100
Beban Hidup
3. Akibat Beban Air Hujan
P = ( 40 – ( 0,8 ) x Jarak Portal) = ( 40 – ( 0,8 . 29 0 ). 4 = 53,76 kg Beban Total 53,76 kg Tabel 4.4 Akibat Beban Air Hujan Pembebanan
G1=G18 (kg)
G2 s/d G17 (kg)
26,88
53,76
Beban Hidup
Dengan kondisi yang sama, maka G1 mempunyai pembebanan setengah beban total.
4. Akibat Beban Angin (Wind Load)
Ketentuan : Koefisien angin tekan (c) = (0.02 ) – 0.4
= (0.02 x 23) – 0.4 = 0.1
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
32
Koefisien angin hisap (c’) = -0.4 Beban angin
= 55 kg/m2
Jarak antar portal (l)
=4m
Jarak gording (A)
= 0,8 m
Angin tekan (W t):
Angin hisap (Wh) :
Wt
Wh
= C. q2 .A .l
= C. q2 .A .l
= 0,2 x 55 x 0,8 x 4
= -0,4 x 55 x0,8 x 4
= 31,68 kg
=-70,4 kg
Tabel 4.4 Akibat Beban Angin Pembebanan
G1 = G18 (kg)
G2 s/d 17 (kg)
Wt=
15,84
31,68
Wh=
-35,2
-70,4
Angin pada dinding
Koefesien angin tekan Ctk = 0,9, maka W t = 0,9 x 55 x 4 = 198 kg/m Koefesien angin hisap C hs = -0,4, maka W h = -0,4 x 55 x 4 = -88 kg/m
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
Kombinasi pembebanan
Berdasarkan beban-beban tersebut diatas maka struktur baja harus ma mpu memikul semua kombinasi pembebanan di bawah ini: Kombinasi I
1,4 D Kombinasi II
1,2 D + 0,5 L Kombinasi III
1,2 D + 1,6 L Kombinasi IV
1,2 D + 1,6 L + 0,8W
Kombinasi V
1,2 D +1,3W + 0,5L Kombinasi VI
0,9D + 0,3W Kombinasi VII
0,9 D – 0,3 W Keterangan: D
= adalah beban mati yang diakibatkan oleh berat konstruksi permanen,termasuk dinding, lantai, atap, plafon, partisi tetap, tangga, dan peralatan layan tetap
L
= adalah beban hidup yang ditimbulkan oleh penggunaan gedung, termasuk kejut,tetapi tidak termasuk beban lingkungan seperti angin,hujan, dan lain-lain
33
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
La
= adalah beban hidup di atap yang ditimbulkan selama perawatan oleh pekerja,peralatan, dan material, atau selama penggunaan biasa oleh orang dan benda bergerak
W
= adalah beban angina
E
= adalah beban gempa, yang ditentukan menurut SNI 03 – 1726 – 1989, atau penggantinya dengan, γL = 0,5 bila L < 5 kPa, dan γ L = 1 bilaL ≥ 5 kPa.
Kekecualian: Faktor beban untuk L di dalam kombinasi pembebanan pada persamaan 6.2-3, 6.2-4, dan 6.2-5 harus sama dengan 1,0 untuk garasi parkir, daerah yang digunakan untuk pertemuan umum, dan semua daerah di mana beban hidup lebih besar daripada 5 kPa.
34
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
35
4.6 Perhitungan Gaya-Gaya Dalam
Gambar 4.6 Pemodelan pada SAP
Perhitungan reaksi perletakan, joint displacement dan besarnya gaya batang dilakukan dengan menggunakan software Structure Analysis Program (SAP) 2000 Versi 15. Input dan output data dapat dilihat pada lampiran. 4.6.1 Perhitungan Balok
Tabel 4.5 Gaya-Gaya Dalam Pada Balok Frame
Station
OutputCase
CaseType
P
V2
M3
FrameElem
ElemStation
2
0
COMB2
Combination
-9841.35
-2366.03
-2253.44
2-1
0
2
0.8
COMB2
Combination
-9804.07
-2298.81
-387.5
2-1
0.8
2
0.8
COMB2
Combination
-9652.02
-2024.54
-387.5
2-1
0.8
2
1.6
COMB2
Combination
-9614.75
-1957.31
1205.24
2-1
1.6
2
1.6
COMB2
Combination
-9462.69
-1683.04
1205.24
2-1
1.6
2
2.4
COMB2
Combination
-9425.42
-1615.81
2524.78
2-1
2.4
2
2.4
COMB2
Combination
-9273.37
-1341.54
2524.78
2-1
2.4
2
3.2
COMB2
Combination
-9236.1
-1274.32
3571.12
2-1
3.2
2
3.2
COMB2
Combination
-9084.04
-1000.05
3571.12
2-1
3.2
2
4
COMB2
Combination
-9046.77
-932.82
4344.27
2-1
4
2
4
COMB2
Combination
-8894.72
-658.55
4344.27
2-1
4
2
4.8
COMB2
Combination
-8857.44
-591.32
4844.22
2-1
4.8
2
4.8
COMB2
Combination
-8705.39
-317.05
4844.22
2-1
4.8
2
5.6
COMB2
Combination
-8668.12
-249.82
5070.97
2-1
5.6
2
5.6
COMB2
Combination
-8516.06
24.45
5070.97
2-1
5.6
2
6.4
COMB2
Combination
-8478.79
91.67
5024.52
2-1
6.4
2
6.4
COMB2
Combination
-8326.74
365.94
5024.52
2-1
6.4
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
36
2
7.14624
COMB2
Combination
-8291.97
428.65
4728.04
2-1
7.14624
2
7.2
COMB2
Combination
-8289.47
433.17
4704.88
2-1
7.2
2
7.2
COMB2
Combination
-8137.41
707.44
4704.88
2-1
7.2
3
10.4
COMB2
Combination
-8919.31
702.92
4259.39
3-1
10.4
3
10.4
COMB2
Combination
-9071.37
977.19
4259.39
3-1
10.4
3
11.2
COMB2
Combination
-9108.64
1044.41
3450.75
3-1
11.2
3
11.2
COMB2
Combination
-9260.69
1318.69
3450.75
3-1
11.2
3
12
COMB2
Combination
-9297.97
1385.91
2368.91
3-1
12
Perhitungan Balok yang di Rencanakan Mmaks
=3221.75 kgm = 322175 kgcm ( output SAP – M3 )
Wperlu
=
∅ , =
= 533.82cm 3
Kontrol Terhadap Momen Tahanan (Wx)
∅
Wx
= Mmaks/
_ σ
Profil baja IWF 300.300.10.15 : = 1360 cm3
Wx Mmaks
= 10089.265 kgm
Wx
=
. ,
= 1008926.5 kgcm = 1464.75 cm 3
Profil baja IWF 300.300.10.15 dengan harga Wx hitung = 1464.75 cm 3 < Wx rencana = 1360 cm3, maka profil baja ini dapat digunakan..............(OK)
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
37
Balok aman terhadap Momen Tahanan
Profil baja yang digunakan adalah Profil baja IWF 300.300.10.15 dengan data-data sebagai berikut :
51
H
=
300
mm
B
=
300
mm
Tb
=
10
mm
Ts
=
15
Mm
q
=
94 kg/m
A
=
119,8
cm2
r
=
18
mm
. 0 1.
Tahanan Momen
00 3. 0
Wx =
03
1360
F WI
cm3
Wy =
450 cm3
Momen inersia Ix
=
20400
cm4
Iy
=
6750 cm4
=
3.75
Jari - jari inersia ix
=
6.39
cm
iy
Cm
Data Material : E = 210000 MPa = 2100000 Kg/cm 2 Fr = 70 Mpa = 700 Kg/cm 2
Fy = 210 Mpa = 2100 Kg/cm 2
Fu = 340 Mpa = 3400 Kg/cm 2
G = 80769,2 Mpa = 807692 Kg/cm 2
Tabel 4.6 Gaya-gaya maksimum dari hasil SAP 2000 Mu
=
10089.265
kgm
Vu
=
3497.608
kg
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
38
Kontrol kapasitas penampang :
1. Cek kelangsingan sayap a) Pelat sayap p
300
b
p
2tf
2.15
300
20
300
fy
20
44,16
210
p
44,16......................OK !!!
pelat sayap kompak b) Pelat badan p
h
tw
h = d – 2 tf = 300 – 2(15) = 270
h
270
tw
p
1680 fy
27
27
10
p
1680
210
44,164
44,164.......................OK !!!
pelat badan kompak Besaran penampang yang perlu dihitung :
Cw
Sx
Iy.(d tf ) 2
Ix 0,5.d
4 1360 cm
1370671.875 cm 4
3
Zx = bf.tf.(d – tf) + ¼ .tw. (d – 2 .tf)2
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
39
= 1464750 mm 3 = 1464.75cm 3 3
J
[2.bf .tf
3
(d tf ).tw ] 3
3
[2.150.10
(150 10).7
3
3
= 770000 mm 4 = 77 cm4 h = d – 2.tf - 2.r = 234 mm = 23.4 cm Momen Plastis : Mp = Zx.Fy = 3075975 Kgcm = 30759.75 Kgm = 307.598 KNm Faktor Cb (koefisien pengali momen tekuk torsi lateral) :
Cb =
12,5 M max 2,5 M max 3 Ma 4 Mb 3 Mc
= 2.316584
Jika Lb ≤ Lp maka perhitungan Cb tidak diperlukan Menghitung Lp dan Lr :
X 1
E .G. J . A
Sx
2
= 204315.952 Kg/cm 2
X 2
4Cw
Sx
2
Iy G. J
= 3.88.10 -9 Kg/cm2
r y
Lp
Iy
A
7.506 cm
1,76 .r y .
E Fy
4.178 m
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
Lr
40
r y .
EFGJ Iw Sx . 1 1 4.( Fy Fr ) ( ) 2 2 Sx( Fy Fr ) Iy GJ
5.755 m
Karena Lb < Lr = 4,178 < 5,755 ( bentang pendek ) tidak membutuhkan stiffner. Menghitung Mr :
Mr
= (Fy – Fr) .Sx = 1904000 Kgcm = 19040 Kgm = 190.400 KNm
Momen Nominal :
Mn = 244,204 KNm Kontrol : Faktor tahanan untuk lentur = Øb = 0,9 Mdesain
= Øb . Mn = 0,9 . 285.600 KNm = 257.040 KNm ≥ Mu = 100.892 KNm ...... OK !
Kontrol Kuat Geser Vertikal :
ØVn > Vu ØVn = ( 0,9 . 0,8 . 210 . 15 ) = 34020 kg > Vu = 3497.608 kg ……….OK ! Kontrol Terhadap Pengaruh Lateral :
L < Lp ............. tidak perlu pengaku Jumlah Sniffer = 5
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
41
Lb/(jumlah stiffner (trial and error) ) = 14,3 / (5-1) = 3.575 m ( jarak antar stiffner ) L
Tabel 4.7 Gaya-Gaya Dalam Pada Kolom Frame
Station
OutputCase
CaseType
P
V2
M3
1
0
COMB1
Combination
-40419.18
-5989.46
-5335.92
1
3
COMB1
Combination
-39938.01
-5989.46
12632.46
1
3
COMB2
Combination
-37584.39
-7459.88
9960.83
1
5
COMB2
Combination
-37309.44
-7459.88
24880.6
1
0
COMB3
Combination
-36200.64
-7606.53
-13320.42
1
0
COMB4
Combination
-35148.06
-7746.78
-14047.81
1
3
COMB4
Combination
-34735.63
-6974.58
8034.22
1
5
COMB4
Combination
-34460.68
-6459.78
21468.57
1
5
COMB5
Combination
-34854.41
-5756.16
22108.18
1
0
COMB6
Combination
-33748.23
-4511.48
-2474.66
1
3
COMB6
Combination
-33335.8
-4511.48
11059.78
1
3
COMB7
Combination
-25695.38
-5356.55
5451.97
1
5
COMB7
Combination
-25489.17
-4841.75
15650.27
1
0
COMB8
Combination
-25962.82
-1571.98
4915.52
4
1
COMB1
Combination
-39636.28
-5989.46
-24613.1
4
3
COMB1
Combination
-39957.06
-5989.46
-12634.18
4
6
COMB1
Combination
-40438.22
-5989.46
5334.19
a. Perhitungan Perencanaan Momen
Perhitungan momen dihitung dengan menggunakan SAP 2000, Dari hasil analisa SAP didapatkan nilai Pu adalah 37349.835kg, Dicoba dengan menggunakan Profil baja yang digunakan adalah IWF 350.350.12.19
H
=
350
Mm
B
=
350
mm
Tb
=
12
Mm
Ts
=
19
Mm
0
.
.0
21
q
=
137 kg/m
A
=
F
r
=
WI
53
53
.1
9
20
Mm Tahanan Momen
173,9 cm2
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
42
Wx =
2300
cm3
Wy =
776 cm3
Momen inersia Ix
= 40300
cm4
Iy
=
13600
cm4
5,13
Cm
Jari - jari inersia ix
=
8,83
Cm
Iy
=
25 ton
6m
Gambar 4.5 Pembebanan Crane pada kolom Batasan parameter kelangsingan batang tekan harus memenuhi persamaan berikut :
L/4
0,7L KL = L
KL = L/2
L
L L/4
K = 1,0
K = 0,5
K = 0,7
(a)
(b)
(c)
Gambar 4.8 Perhitungan koefisien pada perencanaan kolom
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
43
Dimana nilai kc pada kolom dengan asumsi ujung jepit-jepit Tinggi kolom = 6 m = 600 cm Lk = 0,7 x 600 = 420 cm Permodelan di SAP menggunakan Jepit-jepit r min ≥
420
L
250
250
1,68cm
Mencari luas bruto minimum
Min Ag =
Pu. . fy
dimana, Φ = 0,85
fy = 2100 kg/cm 2 Nilai c
berdasarkan nilai
1
Karena
x
Lk r min
c ≥
fy E
:
1
420
2`00
1,68
2,1.10
x
1,2 maka nilai
=1.
c
6
2
2,52
= 1,25 . (2,52) 2 = 7,91
Maka nilai Ag = 165,62cm 2 Besaran Penampang yang Perlu Dihitung
.(− ) = 4 =3725074 = 0,5 =2302.857 =..(−)+ 14 .. ( −2.) =2493182 =2493. 182 ). = 2.. +(− 3 =1791089.333 =179.1089333 ℎ=−2. −2.=27.2 = =15.223
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
44
= =8.843 Cek Kelangsingan Elemen Penampang
Sayap
. = . =6,5 ≤ 0,56 . =0,56 .
= 16.56 …. OK
Badan
= 20210 =20,2 ≤ 1,49 . =1,49 . 210000 240 =44,075 … Menghitung Kuat Rencana Aksial Kolom
Kl = 550 cm (tinggi kolom)
= 8,55083 =62,265 = 5,55013 =107,27 adalah maksimum antara dan ,maka =107,27 = . = 107,27 . 2,12400. 10 =1,15 ≤, =, . >1,5 = , . Karena ≤1,5 maka =0,658 . Karena ≤1,5 maka =0,658, . 2400=1374,03 / =0,85 . . > →0,85 . 71,34 . 1374,03>16086,78 . . > → 97743,76 >16086,78 … Kontrol :
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
45
. ≤0,2→ . . . ≤0,2 . ≤0,2→ 0,816086, 7 8 ≤0,2 5 .97743, 7 6 . ≤0, 2 → 0, 1 65≤0, 2 … e. Menghitung Kuat Lentur Rencana Kolom
=0,9 = . =628 . 2400=1507200 ≤1 → 10298,9 ≤1 . 0,9 .`15072 ≤1 → 0,759≤1… . + ≤1 → 16086,78 + 10298,9 ≤1 2 . . . 2 .0,85 .97793,76 0,9 .15072 + ≤1 → 0,842≤1… 2 . . . = 15072 kgm
Desain Kolom terhadap Beban Aksial dan Lentur
Maka, profi IWF 200.200.10.16 dapat digunakan sebagai kolom.
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
46
4.6.3 Perhitungan Crane
Tabel 4.8 Gaya-Gaya Dalam pada Crane
Frame
Station
OutputCase
CaseType
P
V2
M3
5
0 COMB1
Combination
0
-35203.1
-35101.55
5
0 COMB2
Combination
0
-30174.1
-30087.04
5
0.5 COMB2
Combination
0
-30087
-15021.76
5
0.5 COMB3
Combination
0
-30087
-15021.76
5
0 COMB4
Combination
0
-30174.1
-30087.04
5
0 COMB5
Combination
0
-30174.1
-30087.04
5
0.5 COMB5
Combination
0
-30087
-15021.76
5
0 COMB6
Combination
0
-30174.1
-30087.04
5
0.5 COMB6
Combination
0
-30087
-15021.76
5
0 COMB7
Combination
0
-22630.6
-22565.28
5
0.5 COMB7
Combination
0
-22565.3
-11266.32
5
0 COMB8
Combination
0
-22630.6
-22565.28
5
0.5 COMB8
Combination
0
-22565.3
-11266.32
6
0 COMB1
Combination
0
-35203.1
-35101.55
6
0.5 COMB1
Combination
0
-35101.6
-17525.39
6
0 COMB2
Combination
0
-30174.1
-30087.04
6
0.5 COMB2
Combination
0
-30087
-15021.76
6
0 COMB3
Combination
0
-30174.1
-30087.04
6
0.5 COMB3
Combination
0
-30087
-15021.76
6
0 COMB4
Combination
0
-30174.1
-30087.04
6
0.5 COMB4
Combination
0
-30087
-15021.76
6
0 COMB5
Combination
0
-30174.1
-30087.04
6
0.5 COMB5
Combination
0
-30087
-15021.76
6
0 COMB6
Combination
0
-30174.1
-30087.04
6
0.5 COMB6
Combination
0
-30087
-15021.76
6
0 COMB7
Combination
0
-22630.6
-22565.28
6
0.5 COMB7
Combination
0
-22565.3
-11266.32
6
0 COMB8
Combination
0
-22630.6
-22565.28
6
0.5 COMB8
Combination
0
-22565.3
-11266.32
Perhitungan Perencanaan Crane Mmaks
= 10544,39 kgm =1054439 kgcm ( output SAP – M3 )
Wperlu
=
, ∅ , =
= 488,17cm 3
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
47
Kontrol Terhadap Momen Tahanan (Wx)
∅
Wx
= Mmaks/
_ σ
Profil baja IWF 200.200.10.16 : Wx
= 628 cm3
Mmaks
= 10544,39 kgm
Wx
=
= 1054439 kgcm
, ,
Profil baja IWF
= 488,17 cm 3
200.200.10.16
dengan harga Wx hitung = 488,17 cm 3< Wx
rencana = 628 cm3, maka profil baja ini dapat digunakan.............. (OK) ->Balok aman terhadap Momen Tahanan
Profil baja yang digunakan adalah Profil baja IWF
200.200.10.16
dengan data-data
sebagai berikut :
0
H
=
588
mm
B
=
300
mm
Tb
=
12
mm
Ts
=
20
Mm
q
=
151 kg/m
A
=
192,5
cm2
r
=
28
mm
2. 21 .
Tahanan Momen
0
.
03
0 Wx =
6
0
4020
F WI
cm3
Wy =
601 cm3
Momen inersia Ix
= 118000
cm4
Iy
=
9020 cm4
=
6,85
Jari - jari inersia ix
=
24,8
cm
iy
Cm
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
48
Data Material : E = 210000 MPa = 2100000 Kg/cm 2 Fr = 70 Mpa = 700 Kg/cm 2
Fy = 240 Mpa = 2400 Kg/cm 2
Fu = 370 Mpa = 3700 Kg/cm 2
G = 80769,2 Mpa = 807692 Kg/cm 2
Tabel 4.9 Gaya-gaya maksimum dari hasil SAP 2000 Mu
=
10544,39
kgm
Vu
=
21088,79
kg
Pu
=
0
kg
Kontrol Terhadap Tahanan:
0,9.Mn ≥ Mu 0,9.Zx.Fy ≥ Mu
Zx
Mu 0,9. Bj37
10544,39 0,9.2400
488,17cm
Wperlu< W terseedia 488,17 < 628 cm 3
OK !
Kontrol kapasitas penampang :
2. Cek kelangsingan sayap c) Pelat sayap p
b tf
208 16
13
3
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
p
49
640
640
fy
41,312
240
13 p
41,312......................OK !!!
pelat sayap kompak d) Pelat badan p
h
tw
h = d – 2 tf = 208 – 2(16) = 176
h
176
tw
p
10
640 fy
17,6
17,6
640
p
240
41,312
41,312.......................OK !!!
pelat badan kompak Besaran penampang yang perlu dihitung :
Cw
Sx
Iy.(d
0,5.d
tf ) 2
4
Ix
6530.(20,2 1,6) 2
6530
0,5.20.2
646,53cm
4 3
Zx = bf.tf.(d – tf) + ¼ .tw. (d – 2 .tf)2 = 208.16. ( 202 – 16) + ¼ .10 . (202 – 2.16)2 = 691258 mm 3 = 691,258 cm 3
190278cm 4
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
3
J
[2.bf .tf
50
3
(d tf ).tw ] 3
3
[2.208.16
3
(202 16).10 3
= 62998 mm 4 = 62,998 cm 4 h = d – 2.tf - 2.r = 202 – 2.16 – 2.13 = 144 mm =14,4 cm Momen Plastis : Mp = Zx.Fy = 691,3.2400 = 165,902 KNm Cek apakah penampang ini memang kompak (kedua syarat berikut harus dipenuhi) :
bf 2.tf
h tw
208 2.16
144
10
170
6,5
170
fy
≤
1690
14,4
...... OK !
1690
fy
≤
10,973
240
240
108,444
..... OK !
Faktor Cb (koefisien pengali momen tekuk torsi lateral) :
Cb =
12,5 M max 2,5 M max 3 Ma 4 Mb 3 Mc
=
12,5(3221,75) 2,5(3221,75) 3(275,75) 4(191,74) 3(1010,13)
Jika Lb ≤ Lp maka perhitungan Cb tidak diperlukan Menghitung Lp dan Lr :
X 1
E .G. J . A
Sx
2
6
3,14
2,1.10 .807692.62,998.83,09
628
2
= 324919,15 Kg/cm 2
= 2, 14
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
X 2
4Cw
51
Sx
2
Iy G. J
4.1902786 2200
807692.62,998 628
2
= 0.56.10 -7 Kg/cm2
r y
Lp
Iy
A
2200
5,127cm
83,69
1,76.r y .
1,76.5,127.
E Fy
2,1.10
6
2400
2,669m
Lr
r y . X 1
( Fy Fr )
. 1 1 X 2 .( Fy Fr ) 2
5,127 . 324919,15 (2400 700) 1413,24cm
. 1 1 0,56.10 7.(2400 700) 2
14,13m
Karena Lb< Lp = 0,5 < 2,669 maka tidak diperlukan stiffner Menghitung Mr :
Mr
= (Fy – Fr) .Sx = (2400-700) .628 = 239,22 KNm
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
52
Menghitung momen nominal MnLTB berdasarkan panjang tak tertumpu Lb :
MnLTB = Mp .................................... if Lb ≤Lp
Cb.[ Mp ( Mp Mr ).
Cb.
Lb
. E . Iy.G. J (
tidak ada LTB
Lb Lp Lr Lp
.... if Lp < Lb ≤ Lr LTB inelastis
. E 2 ) . Iy.Cw Lb
.... if Lb > Lr
LTB elastis
Karena Lb ≤ L p = 0,5 m ≤ 2,669 m, maka digunakan rumus :
M nLTB
Mp
= 165,902 KNm Momen Nominal :
Mn = 165,902 KNm Kontrol : Faktor tahanan untuk lentur = Øb = 0,9 Mdesain
= Øb . Mn = 0,9 . 165,902 KNm = 149.312 KNm ≥ Mu = 105,44 KNm ...... OK !
Kontrol Kuat Geser Vertikal :
ØVn > Vu ØVn = ( 0,9 . 0,6 . 240 . 20,2 ) = 403,596 kN > Vu = 210,888 kN
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
53
Kontrol Lendutan Akibat Beban Tetap :
5
384 5
384
.
.
(q dl
qll ). L4
EIx (289,7 100).(1000^ 4).(0,5) 2
6530 x2100000
= 1,13 x 10 -5 cm< 4,2 x 10-2 cm……..OK Kontrol Terhadap Pengaruh Lateral :
L < Lp ............. tidak perlu pengaku 4.7.1
Perhitungan Sambungan Baut dan Las Perhitungan Sambungan di titik Bahul
Gambar. 4.9 Output SAP Mu dan Vu
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
54
Gambar. 4.10 Output SAP Pu
Mu = 10089 kgm = 1008900 kgcm Pu = 9841 kg Vu = 2634 kg Sambungan Baut
Digunakan baut A325 : Ø 25 mm Fub
: 825 Mpa
I
: 300 mm
Tp(Tf) : 15 mm Ag
= tp * I = 15 x 300
Au
= 4500 mm 2
= (4500 -2(35+3,2)) x 15 = 3654 mm 2
Max An
= 0,85x 3654
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
55
= 3105,9 mm 2 Ae
= 3654 mm2
Leleh øTn
= (0,9x240x4500)/10000 = 117,45 t
Fraktur øTn
= (0,75x240x3654) /10000 = 101,4 ton
Tahanan tumpu pada bagian web dari balok :
øRn
: 0,75.2,4.25.10.370/10000 : 24,975 ton/baut
Tahanan geser baut dengan dua bidang geser :
: 0,75.0,5.1035.(0,25.π.252)/1000
øRn
: 15,186 ton/baut Tahanan geser menentukan: n
= 101,4 / 15,186 = 6,68
Diambil n = 7 buah Jarak yang diambil
Syarat dalam penentuan jarak
1,5≤1 ≤15 200 = 1,5.25≤1 ≤ 200 =75 ≤1 ≤ 200 Diambil s = 75 mm
3≤ ≤4 +100 200 = 3.25≤ ≤ 200 =75 ≤1 ≤ 200 Diambil s = 225 mm
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
56
Syarat
⦤
S total S tersedia = 160 mm
⦤
300 mm .................... ok
Sambungan Las
Mmax
: 100,89 kNm
R max
: 26,34 kN
Fuw
: 490 Mpa
Perhitungan plat penyambung batang tarik Tu
= 100,89.103/202 = 336,3 kN
Ag
= 336,3.1000/0,9.240 = 1288,5 mm 2
Gunakan pelat ukuran 10mm dan 150 mm Ag
= 10.150 = 1500 mm2
Las sambungan gunakan las sudut ukuran 15 mm Las sudut
= 15 mm
Sudut
= 30o
øRn
= 0,75.sin 30.15.0,6.490 = 1653,75 N/mm
Panjang las yang diperlukan Panjang
= 336,36*1000/1635,75 = 203,36 mm
Diambil 100 mm
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
57
Maka untuk 1 sisi miring = 100/2 = 50 mm
Gambar 4.11 Sambungan balok-balok 4.7.2
Perhitungan Sambungan Balok – Kolom
Data gaya : Pu
= 6997 kg
a.
Sambungan Baut Data baut : Ø baut
= 13 mm
f u b
= 825 MPa
A b
= 132,732 mm 2
Untuk profil IWF 150.150.7.10, k = 21 mm, sehingga
P n
. fy.tw.( N 2,5k )
atau N
P u . f y .t w
2,5k
3166.14
1.240.7
2,5.(21)
33,654mm
Dengan =1 , f y= 240 Mpa , dan t w = 7 mm, maka diperoleh N = -33,654 mm. Karena disyaratkan bahwa Nmin = k , maka diambil N = 21 mm. Asumsikan k siku = 25 mm, sehingga momen pada penampang kritis adalah : Mu
= Pu (N/2 + 20 – k siku )
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
58
= 3166,14 ( 21/2 + 20 – 25 ) = 174137,7 Nmm
Dicoba seat angle dengan panjang 15 cm, sehingga kapasitas momen nominal dari seat angle adalah :
M × M =Mp = =fy. 4 174137, 7 × M =Mp = 0,9 =193492,1=fy. 4 / = 4×193492,1 =4,65 = 4× × 150×240
Sehingga,
Gunakan siku 60.60.6 ( k =21 mm, sesuai asumsi awal ) Selanjutnya kuat tekuk dukung balok gable juga harus diperiksa, dengan mengingat N = 21 mm , d = 150 mm , t f = 10 mm , tw = 7 mm, f yw=240 Mpa Serta N/d = 21/150 = 0,14 < 0,2 1, 5 E . f .t t N y f 2 w P n 0,75.0,39.t w .1 3. . . t w d t f
21 7 1,5 210000.240.10 0,75.0,39.7 .1 3. . . 150 7 10 2
= 151,529 kN > P u = 31,661 kN …OK Asumsikan sambungan baut tipe tumpu ulir di luar bidang geser, gunakan baut diameter 13 mm, f u b = 825 Mpa ΦR n
= 0,5 . Φ .ƒ u b. A b = 0,5. 0,75.(825).(132,732) = 41064,05 N
Maka jumlah baut, n = 31,661 / 41064,05 N = 0,8 = 2 buah
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
59
( sumber : buku Perencanaan Struktur baja dengan metode LRFD, hal 324, bag.13.2 )
b.
Sambungan Las Berikut ini adalah perhitungan sambungan las pada balok gable IWF 150.150.7.10 dengan kolom IWF 200.200.10.16 menggunakan mutu baja BJ37 dan mutu las ƒ u = 480 MPa. Untuk mencegah leleh dari web, maka panjang tumpuan ditentukan oleh
P n . fy.tw.( N 2,5k ) atau N
P u . f y .t w
2,5k
31661,4
1.240.7
2,5.(21)
33,65mm
Periksa terhadap kuat tekuk dukung balok, didapat 1, 5 E . f .t N t w y f P n 0,75.0,39.t w .1 3. . d t f t w 2
dengan : Pu = 31661,4 N ; d = 150 mm ; t f = 10 mm ; t w =7 mm, diperoleh N = 25,57 mm ≈ 26 mm Karena N/d = 25,57/150 = 0,173 < 0,2 Untuk seat plate digunakan pelat dengan ketebalan 10 mm (sama dengan tebal flens balok). Ukuran las minimum untuk pelat tebal 10 mm adalah 4 mm. W perlu = N + set back = 26 + 8 = 34 mm Ketebalan stiffner (ts) ditentukan sebagai berikut : a)
ts≥ tw = 7 mm
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
60
t s
b)
W
250
34
250
f y
2,107mm
240
es = W – N/2 = 34 – (26/2) = 21 mm t s
c)
Pu.(6.e s
2.W )
.(1,8. f y ).W 2
3166,1(6.21 2.34) 0,75.(1,8.240).34 2
4,903mm
Tebal stiffner diambil sebesar 8 mm, sehingga ukuran las efektif max dapat ditentukan sebagai berikut : p
a max eff
f u .t s 0,707. f u las
0,707.
370.10 480
4,36mm 5mm
Panjang las yang diperlukan (L), ditentukan dengan persamaan :
R
Pu. 2
2,4. L
. 16.e s
2
2
L
Untuk desain LRFD, maka : R = R n
= .(0,707a)(0,6.ƒu las) = 0,75.(0,707.7).(0,6.480) = 767,12 N/mm
Sehingga panjang las sekarang dapat dihitung sebagai berikut : R
Pu. 2
2,4. L
. 16.e s
2
2 L
diperoleh L = 39,5 ≈ 40 mm. Jadi, digunakan las ukuran 4 mm dengan panjang L = 40 mm ( sumber : buku Perencanaan Struktur baja dengan metode LRFD, hal 325, bag.13.3 )
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
61
Gambar 4.12 Sambungan Kolom-Balok
4.7.3
Perhitungan Sambungan Crane – Kolom
Gambar 4.9 Output SAP Mu
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
62
Gambar 4.10 Output SAP Pu
Data gaya : Pu
= 21996,26 kg
Mu = 8657,59 kg.m
a.Sambungan Baut Berikut ini adalah perhitungan sambungan crane dengan IWF 200.200.10.16 dengan kolom IWF 200.200.10.16 menggunakan mutu baja BJ37 dan baut A325 Ø13 mm dengan ulir pada bidang geser. Menghitung Tahanan Nominal Baut :
Geser : 1 Bidang geser :ϕR n
= 0,75.(0,4.ƒu b). A b = 0,75.(0,4).(825).(132,73)
2 Bidang geser :ϕR n
= 2.(32851,17)
= 65702,48 N
Tumpu : Web balok :ϕR n = 0,75.(2,4.ƒ u p).d b.t w = 0,75.(2,4).(370).(13).(10) = 60606 N
= 32851,17 N
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
63
Flens balok :ϕR n = 0,75.(2,4.ƒ u p).d b.t f = 0,75.(2,4).(370).(13).(16) = 95238 N Tarik : = 0,75. (0,75.ƒ u b). A b
ϕR n
= 0,75. (0,75).(825).(132,73) = 61596,078 N Perhitungan Siku Penyambung Atas dan Bawah : Dicoba dua buah baut pada masing-masing profil siku, sehingga : d
M
2T
10544,39.1000
2.61596,07
855,93 856mm
Jarak baut terhadap flens atas balok = ½ .(856 - 200) = 230 mm Gunakan profil siku 100.200.18, sehingga : a = 76-t siku – r siku =230 – 18 -15 = 197 mm dengan d = 856 mm, maka gaya yang bekerja pada profil siku adalah : T
M
d
10544,39.1000
856
123182,126 N
123,182kN
Gaya ini menimbulkan momen pada profil siku sebesar : M = 0,5 . T.a = 0,5 . 123182,126 . 100 = 12,133 kNm Kapasitas nominal penampang persegi adalah :
b.d 2 Mn 0,9. 4 . fy b
4.12,133 0,9.240.18
2
449,84mm
Gunakan siku 100.200.18 dengan panjang 4500 m pada flens kolom. Perhitungan Sambungan pada Flens Crane :
Gaya geser pada flens balok adalah
= ,× =266272,47
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
64
Baut penyambung adalah baut dengan satu bidang geser, sehingga :
4 7 = 266272, 32851 =8,11 9 ℎ
Perhitungan Sambungan Web Crane dengan Siku 100.200.18 : Tahanan dua bidang geser (65702,48 N) lebih besar dari pada tahanan tumpu (60606 N) sehingga tahanan baut ditentukan oleh tahanan tumpu, maka
=3,48 4 ℎ = ,
Sambungan Web Crane dengan Flens Kolom :
Baut yang menghubungkan balok dengan flens kolom adalah sambungan dengan satu bidang geser (ϕ Rn = 33851,17 N ), sehingga :
= , =6,42=8 ℎ Tabel 4.10 Jumlah baut pada sambungan crane - kolom Jenis
Baut (buah)
Sambungan pd Flens Crane
9
Sambungan Web Crane dg siku
4
Sambungan Web Crane dg Kolom
8
( sumber : buku Perencanaan Struktur baja dengan metode LRFD, hal 327, bag.13.4 )
b.Sambungan Las
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
65
Berikut ini adalah perhitungan sambungan las pada balok crane IWF 200.200.10.16 dengan kolom IWF 200.200.10.16 menggunakan mutu baja BJ37 dan mutu las ƒu = 480 MPa. Untuk mencegah leleh dari web, maka panjang tumpuan ditentukan oleh :
P n . fy.tw.( N 2,5k ) atau N
P u . f y .t w
2,5k
21088,79
1.240.7
2,5.(26)
58,03mm
Periksa terhadap kuat tekuk dukung balok, didapat 1, 5 E . f .t t N y f 2 w . P n 0,75.0,39.t w . 1 3. d t f t w
dengan : Pu = 21088,79 N ; d = 200 mm ; t f = 16 mm ; t w = 10 mm, diperoleh N = 537,93 mm ≈ 538 mm Karena N/d = 538/200 = 1,359> 0,2, maka harus diperiksa terhadap persamaan: 1, 5 t N w E . f y .t f 2 P n 0,75.0,39.t w . 1 4. 0,2 . . t t w d f
1, 5 538 10 210000.240.16 0,75.0,39.10 .1 4. 0,2 . . 200 10 16 2
= 466477,121 N > P u = 466477,121 N …OK Untuk seat plate digunakan pelat dengan ketebalan 16 mm (sama dengan tebal flens balok). Ukuran las minimum untuk pelat tebal 16 mm adalah 6 mm.
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
66
W perlu = N + set back = 538 + 8 = 546 mm Ketebalan stiffner (ts) ditentukan sebagai berikut : d)
ts≥ tw = 7 mm
t s
e)
W
250
546 250
f y
33,83mm
240
es = W – N/2 = 546 – (538/2) = 277 mm
f)
t s
Pu.(6.e s
2.W )
.(1,8. f y ).W
2
21088,79.(6.277 2.546)
0,75.(1,8.240).546 2
1,245mm
Tebal stiffner diambil sebesar 40 mm, sehingga ukuran las efektif max dapat ditentukan sebagai berikut : p
a max eff
0,707.
f u .t s f u las
0,707.
370.40 480
21,79mm 22m
Panjang las yang diperlukan (L), ditentukan dengan persamaan : R
Pu. 2
2,4. L
. 16.e s
2
2 L
Untuk desain LRFD, maka : R = R n
= .(0,707a)(0,6.ƒu las) = 0,75.(0,707.22).(0,6.480) = 3359,67 N/mm
Sehingga panjang las sekarang dapat dihitung sebagai berikut : R
Pu. 2
2,4. L
. 16.e s
2
2 L
diperoleh L = 170,5 mm ≈ 171 mm. Jadi, digunakan las ukuran 6 mm dengan panjang L =171 mm
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
67
( sumber : buku Perencanaan Struktur baja dengan metode LRFD, hal 325, bag.13.3 )
Gambar 4.15 Sambungan Kolom-Crane
4.8
Perhitungan Base Plate
Digunakan profil IWF 200.200.10.16 d = 202 mm bf = 208 mm tw = 10 mm tf = 16 mm r = 13 mm A = 83,69 cm 2 I x = 6530 cm4 I y = 2200 cm4
Data gaya : Mu
= 6668,52 kg.m
Vu
= 3471,58 kg
Pu
= 24743,26 kg
6668,52 =22228,4 = = 300/1000 = + + = 24743,26+22228,4 +3471,58 =83952,
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
Data baut : Ø baut
= 25 mm
f u b
= 825 MPa
A b
= 490,874 mm 2
Data pelat : f y p
= 240 MPa
f u b
= 370 MPa
Menghitung Tahanan Tumpu Bagian Flange Kolom
=0,75 .(2,4 .).∅ . =0,75 .2,4 .240.25 .16 =24975 /
Menghitung Tahanan Geser Baut dengan 1 Bidang Geser
=0,75 .0,45 .. . =0,75 .0,45 .825.490,874 .1 =13667,768 /
Menghitung Jumlah Baut
8 0894 = ℎ 1 = 83952, 13667,768 =6,142 ≈7 Menghitung Jarak Antar Baut
15 =15×25=37,5 3 =3×25=75 =2×75=150 =(0,8×)+ 2× =250 = 0,95× + 2× =300 = 0, 5 × +1.5 =187,5
68
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
=1. 5 +/2=50 =2×1.5 +=100 Cek Geser Flens IWF 200.200.10.16
=3×+=600 =× =9000 =−(2, 5 × +2)× =7987,5 =× =2250 =−4, 5 × +2× =427,5 =( × )=15817,5 =(0,6× ×)=177322,5 =(× ×)=231322,5 = 0,75× =173491,875 > =83952,80894 … =0,75×0,75×× =0,75×0,75×825×490,874 =22779, 6 15 / = 6668,52 =0,135 =134,731 = × 10×22779,615 ≈135 5 2 = = 6668, 111 0,135 =159139, =−{0, 5 ×+2}=150−{0,5×25+2}=135,5 =0,5× × =0,5×159139,111×0,1355 =10781,675 . ℎ = 4× 0,9×× 4 ×10781, 6 75×10 ℎ = 0,9×135×240 =38,457 ≈40 Menghitung Tebal Butuh Plate
69
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
70
Jadi, dimensi pelat yang didapat 250 x 300 x 40 mm.
Angker Baut Angker yang digunakan sebanyak 4 buah Akibat beban Gaya geser, tiap baut memikul beban
, =
= 1209,256 kg
Diameter angker baut d =
√ , . .
/4
= 1,6 cm = 16 mm Ambil baut Φ16 sebanyak 4 buah Fgs = 4 . ¼ . π . d 2 = 4 . ¼ . π . 1,6 2 = 8,0425 cm 2 Kontrol tegangan yang terjadi τ =
=
, ,
= 150 kg/cm2 < 1440 kg/cm2………..Aman
5.13.2. PERHITUNGAN PONDASI TELAPAK
Dalam perencanaan struktur portal ini menggunakan pondasi Telapak Vu Pu Mu df nilai conus φ ϒn c
7459.88 kg 38037.21 kg 12415.15 kgm 1m 20 kg/cm2 0 1.87 t/m3 10 t/m3 1 kg/cm2
Footing Dimension Width of footing BF
1m
Length of footing, LF
1m
Total thick. of footing, HF
0.3 m
Depth of footing, DF
1m
Area of footing, AF
1 m2
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
71
Pedestal Dimension Width of pedestal, Bp
0.3 m
Length of pedestal, Lp
0.3 m
Height of pede stal above ground, Gp
-
Total height of pedestal, Hp
0.7 m
Depth of pedestal, Dp
1m
Area of pedestal AP
0.09 m2
Width of footing BF
1000 mm
Length of footing LF
1000 mm
Thickness of footing HF
300 mm
concrete cover d'
70 mm
Effective depth d
222 mm
Reinforcing steel bar fy
400 mpa
Concrete compressive strength f c'
25 mpa
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
72
As
0.0009 900 18 254.571429 3.53535354 4
d n
Max. Vertical Load, SP Max. Horizontal Load, H Moment due to horizontal force at base, Mv Ultimate Load, Pu
Af, LF x BF Zx = Zy = 1/6 LF x BF2 L, BF/2 - BP/2
10.93 1.2 1.7 1.2 DL + 1.6 LL
15.036
1 0.166666667 0.35 25.236
4.836
equivalen 15.036 10.93 t/m2
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
73
as uniform load mu steel ratio m ru
10.93 t/m 5.465 tm 18.82352941 138.6098937 friksi 1.386098937 mpa
0. 0.8
0.003586297
b
0.85 0.02709375 0.002432432 0.020320313 0.0035 0.003125
D
0.003586297 oray 0.000796158 796.157934 3.95817155 4 16 s 185.3333 201.1428571 180
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
74
Dowel Design
As min = 0.5% Ap D a n as act dowellenght
0.00045 450 450 16 201.14 .1428571 2.23 .237215909 4 804.57 .5714286
178.9772 178.9772727 727 asmin/asact asmin /asact 0.55930 0.559304 4
320 320
256 256
320 320
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
75
BAB V KESIMPULAN
Dari perhitungan perencanaan yang telah dilakukan, dapat diketahui hasil perencanaan konstruksi portal baja dengan data-data sebagai berikut :
5.1 Deskripsi
Type Konstruksi
: Portal Gable
Jarak Antar Portal ( l )
: 4 meter
Bahan Penutup Atap
: Seng Gelombang
Bentang kuda – kuda – kuda kuda (L)
: 25 meter
Tinggi Kolom (H)
: 6 meter
Kemiringan atap ( ()
: 290
Berat crane
: 25 ton
TekananAngin
: 55 kg/m2
Sambungan
: Baut dan Las
Pondasi
: Telapak Beton
5.2 Pembebanan
Beban Mati a. Berat sendiri atap
: 11 kg/m
b. Berat sendiri gording
: 64 kg/m
c. Berat sendiri sambungan : 6,4 kg/m
Beban Hidup
: 100 kg
Tekanan Angin
: 55 kg/m
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
76
a. Angin Tekan
: 31,68 kg/m
b. Angin Hisap
:-70,4 kg/m
5.3 Dimensi Portal
Dimensi gording
: Profil C 14
Dimensi Batang Tarik
: Ø5 mm
Dimensi Ikatan Angin
: Ø14 mm
Dimensi Balok Gable
: IWF 300.300
Dimensi Kolom Gable
: IWF 350.350
Dimensi balok crane
: IWF 600.300
Dimensi base plate crane
: 10 mm
Dimensi pondasi
:1,2 m dengan kedalaman 1,2 m
5.4 Sambungan Baut dan Las
Jenis Las
: Las Sejajar
Tebal Las Maksimum
: mm
Sambungan di Balok-Balok
Dimensi Baut
: Ø10 mm
Banyak Baut
: 8 buah
Sambungan di Balok-Kolom
Dimensi Baut
: Ø13 mm
Banyak Baut
: 2 buah
Sambungan Kolom-Crane
Dimensi Baut
: Ø16 mm
Banyak Baut
: 12 buah
Yanuarso A Saputra (1504285) Perencanaan Portal Gable
77
DAFTAR PUSTAKA
Gunawan, Rudy.Ir. 1993. Tabel Profil Konstruksi Baja. Yogyakarta : Kanisius SNI 03-1729-2002 “Tata Cara Perencanaan Struktur Baja Untuk Bangunan Gedung” Peraturan Perencanaan Bangunan Baja Indonesia 1984. Sunggono kh, Ir. 1995. Buku Teknik Sipil.Bandung : Nova A.S.Arya dan J.L.Ajmani. 2001.Design Of Steel Structures.Roorke : New Chand
&
Bros. Setiawan,Agus. 2008. Perencanaan Struktur Baja dengan Metode LRFD (sesuai SNI 03-1729-2002).Jakarta:Erlangga.