ÁREA Área es la extensión o superficie comprendida dentro de una figura (de dos dimensiones), expresada en unidades de medida denominadas superficiales. Para superficies planas el concepto es intuitivo. Cualquier superficie plana de lados rectos puede triangularse y se puede calcular su área como suma de sus triángulos. Sin embargo, para calcular el área de superficies curvas se requiere introducir métodos de geometría diferencial. Para poder definir el área de una superficie en general ±que es un concepto métrico±, se tiene que haber definido un tensor métrico sobre la superficie en cuestión: cuando la superficie está dentro de un espacio euclídeo, la superficie hereda una estructura métrica natural inducida por la métrica euclídea.
Historia La idea de que el área es la medida que proporciona el tamaño de la región encerrada en una figura geométrica proviene de la antiguedad. En el Antiguo Egipto, tras la crecida anual de río Nilo inundando los campos, surge necesidad de calcular el área de cada parcela agrícola para restablecer sus límites; para solventar eso, los egipcios inventaron la geometría, según Heródoto. 1 El modo de calcular el área de un polígono como la suma de las áreas de los triángulos, es un método que fue propuesto por primera vez por el sabio griego Antifón hacia el año 430 a. C. Hallar el área de una figura curva entraña más dificultad. El método de agotamiento consiste en inscribir y cincunscribir polígonos en la figura geométrica, aumentar el número de lados de dichos polígonos y hallar el área buscada. Con este sistema, que se conoce como método de exhaución de Eudoxo, consiguió hallar la fórmula para calcular el área de un círculo. Dicho sistema fue empleado tiempo después por Arquímedes para resolver otros problemas similares,2 así como el cálculo aproximado del número
Área de figuras planas Área de un triángulo El área de un triángulo se calcula mediante la siguiente fórmula: 3
donde b es la base del triángulo y h es la altura correspondiente a la base. (se puede considerar cualquier lado como base)
Si el triángulo es rectángulo, la altura coincide con uno de los catetos, y la fórmula quedaría de la siguiente forma:
donde a y b son los catetos. Si lo que conocemos es la longitud de sus lados aplicamos la fórmula de Herón.
donde a, b , c son los valores de las longitudes de sus lados s = ½ (a + b + c ) es el semiperimetro del triángulo. Si el triángulo es equilátero, de lado a, su área está dada por
Áreas.
Área de un cuadrilátero y
y
El rectángulo es un paralelogramo cuyos ángulos son todos de 90º; el área sería la multiplicación de dos de sus lados contiguos a y b:3
El rombo, cuyos 4 lados son iguales, tiene su área dada por el semiproducto de sus dos diagonales:
y
y
y
y
El cuadrado es el polígono regular de cuatro lados, es a la vez un rectángulo y un rombo, por lo que su área puede ser calculada de la misma manera que la de estos dos. En particular, dado que sus lados son iguales, se usa la fórmula:3
Los paralelogramos en general tienen su área dada por el producto uno de sus lados y su altura respectiva:3
El trapecio (que tiene dos lados paralelos entre sí y dos lados no paralelos) cuya área viene dada por la media aritmética de sus lados paralelos multiplicado por la distancia entre ellos (altura): 3
El trapezoide o cuadrilátero totalmente irregular que tiene sus cuatro ángulos diferentes y lados de longitudes desiguales. En este caso el área se puede obtener mediante triangulación siendo:
Siendo: el ángulo comprendido entre los lados el ángulo comprendido entre los lados
Área del círculo y la elipse
y y
. .
El área de un círculo, o la delimitada por una circunferencia, se calcula mediante la siguiente expresión matemática: 4
El área delimitada entre la gráfica de dos curvas puede calcularse mediante la diferencia entre las integrales de ambas funciones. El área delimitada por una elipse es similar y se obtiene como producto del semieje mayor por el semieje menor multiplicados por po r : 5
Área delimitada entre dos funciones Una forma para hallar el área delimitada entre dos funciones, es utilizando el cálculo integral:
El resultado de esta integral es el área comprendida entre las curvas: en el intervalo .
y
Ejemplo Si se quiere hallar el área delimitada entre el eje x y la función f ( x x ) = 4 x 2 en el intervalo [ 2;2], se utiliza la ecuación anterior, en este caso: g ( x x ) = 0 entonces evaluando la integral, se obtiene:
Por lo que se concluye que el área delimitada es
.
El volumen encerrado entre dos funciones también puede ser reducido al cálculo de una integral, similar.
Área de superficies curvas El área de una superficie curva es más complejo y en general supone realizar algún tipo de idealización o límite para medirlo. y
y
Cuando la superficie es desarrollable, como sucede con el área lateral de un cilindro o de un cono el área de la superficie puede calcularse a partir del área desarrollada que siempre es una figura plana. Una condición matemática necesaria para que una superificie sea desarrollable es que su curvatura gaussiana sea nula. Cuando la superficie no es desarrollable, el cálculo de la superificie o la fórmula analítica para encontrar dicho valor es más trabajoso. Un ejemplo de superficie no desarrollable es la esfera ya que su curvatura gaussiana coincide con el inverso de su radio al cuadrado, y por tanto no es cero. Sin embargo la esfera es una superficie de revolución.
Superficie de revolución
Una superficie de revolución generada por una tramo de la curva y =2+cos =2+cos x rotada alrededor del eje x . Cuando una superficie curva puede ser generada haciendo girar un curva plana o generatriz alrededor de un eje directriz, la superficie resultante se llama superficie de revolución y su área puede ser calculada fácilmente a partir de la longitud de la curva generatriz que al girar conforma la superficie. Si y =f ( x x ) es la ecuación que
define un tramo de curva, al girar esta curva alrededor del eje X se genera una superficie de revolución cuya área lateral vale:
Cálculo general de áreas
Mediante la geometría diferencial de superficies o más generalmente la geometría riemanniana puede calcularse el área de cualquier superficie curva finita. Si la superficie viene dada por la función explícita z = f ( x, x, y ) entonces, dada una región contenida en una superficie su área resultar ser:
De manera un poco más general si conocemos la ecuación paramétrica de la superficie en función de dos coordenadas cualesquiera u y v entonces el área anterior puede escribirse como:
Donde E , F y G son las componentes del tensor métrico o primera forma fundamental de la superificie en las coordenadas paramétricas u y v . Unidades de medida de superficies [editar] Sistema métrico ( SI)
Múltiplos: y y y
Kilómetro cuadrado: 10 6 metros cuadrados Hectómetro cuadrado o Hectárea: 10 4 metros cuadrados Decámetro cuadrado o Área: 102 metros cuadrados
Unidad básica: y
metro cuadrado: unidad derivada del SI
Submúltiplos: y
Decímetro cuadrado: 10 -2 metros cuadrados
y
Centímetro cuadrado: 10 í 4 metros cuadrados Milímetro cuadrado: 10 í 6 metros cuadrados
y
barn: 10í 28 metros cuadrados
y
Sistema inglés de medidas
Las unidades más usadas del sistema inglés son: y y y y
pulgada cuadrada pie cuadrado yarda cuadrada acre GEOMETRÍA
del or i igen g lar r a l a de l a Ar i itmét end o en de l a Geometría es muy si m i l a t mét ic ic a, si end eptos más ant i ig g os c onsec uenci a de l as v i id d sus c onc ep u as ac t t i iv ades prác t tic i c as. as. Los pr i im v ación de l a eros hombr es lleg aro aron a f ormas ormas geométr ic ic as as a part i ir r de l a obser v nat uralez lez a. a. E l l sabi o g r e Eudemo de R od as ento de l a r i ieg g o Eude as, atr ib ibuy ó a l os os eg p i i ci os os el desc ubr i im i en geometría, y a que, según él, nec esi ta d o taban med i ir r c onstant ement e sus t i ie rras debi d l o borraban c ont i in a que l as as i nund aci ones del N i il uament e sus f ro ront eras. Rec or demos que, pr eci sam e, l a pal abra geometría si gn gni f f ic d or de sament e, ic a med i id a de t i ie rras. stor i ia La hi stor
Los egipcios se centraron principalmente en el cálculo de áreas y volúmenes, encontrando, por ejemplo, para el área del círculo un valor aproximado de ( de 3'1605. Sin embargo el desarrollo geométrico adolece de falta de teoremas y demostraciones formales. También encontramos rudimentos de trigonometría y nociones básicas de semejanza de triángulos. También se tienen nociones geométricas en la civilización mesopotámica , constituyendo los problemas de medida el bloque central en este campo: área del cuadrado, del círculo (con una no muy buena aproximación de (=3), volúmenes de determinados cuerpos, semejanza de figuras, e incluso hay autores que afirman que esta civilización conocía el teorema de Pitágoras aplicado a problemas particulares, aunque no, obviamente, como principio general. No se puede decir que la geometría fuese el punto fuerte de las culturas china e india, limitándose principalmente a la resolución de problemas sobre distancias y semejanzas de cuerpos. También hay quien afirma que estas dos civilizaciones llegaron a enunciados de algunos casos particulares del teorema de Pitágoras, e incluso que desarrollaron algunas ideas sobre la demostración de este teorema. En los matemáticos de la cultura helénica los problemas prácticos relacionados con las necesidades de cálculos aritméticos, mediciones y construcciones
geométricas continuaron jugando un gran papel. Sin embargo, lo novedoso era, que estos problemas poco a poco se desprendieron en una rama independiente de las matemáticas que obtuvo la denominación de "logística". A la logística fueron atribuidas: las operaciones con números enteros, la extracción numérica de raíces, el cálculo con la ayuda de dispositivos auxiliares, cálculo con fracciones, resolución numérica de problemas que conducen a ecuaciones de 1 er y 2º grado, problemas prácticos de cálculo y constructivos de la arquitectura, geometría, agrimensura, etc... Al mismo tiempo ya en la escuela de Pitágoras se advierte un proceso de recopilación de hechos matemáticos abstractos y la unión de ellos en sistemas teóricos. Junto a la demostración geométrica del teorema de Pitágoras fue encontrado el método de hallazgo de la serie ilimitada de las ternas de números "pitagóricos", esto es, ternas de números que satisfacen la ecuación a 2+b2=c2. En este tiempo transcurrieron la abstracción y sistematización de las informaciones geométricas. En los trabajos geométricos se introdujeron y perfeccionaron los métodos de demostración geométrica. Se consideraron, en particular: el teorema de Pitágoras, los problemas sobre la cuadratura del círculo, la trisección de un ángulo, la duplicación del cubo, la cuadratura de una serie de áreas (en particular las acotadas por líneas curvas). .Paralelamente, al ampliarse el número de magnitudes medibles, debido a la aparición de los números irracionales, se originó una reformulación de la geometría, dando lugar al álgebra geométrica. Esta nueva rama incluía entre otros conceptos el método de anexión de áreas, el conjunto de proposiciones geométricas que interpretaban las cantidades algebraicas, división áurea, expresión de la arista de un poliedro regular a través del diámetro de la circunferencia circunscrita. Sin embargo, el álgebra geométrica estaba limitada a objetos de dimensión no mayor que dos, siendo inaccesibles los problemas que conducían a ecuaciones de tercer grado o superiores, es decir, se hacían imposibles los problemas que no admitieran solución mediante regla y compás. La historia sobre la resolución de los tres problemas geométricos clásicos (sobre la cuadratura del círculo, la trisección de un ángulo, la duplicación del cubo) está llena de anécdotas, pero lo cierto es que como consecuencia de ellos surgieron, por ejemplo, las secciones cónicas, cálculo aproximado del número pi, el método de exhaución como predecesor del cálculo de límites o la introducción de curvas trascendentes. Asimismo, el surgimiento de la irracionalidad condicionó la necesidad de creación de una teoría general de las relaciones, teoría cuyo fundamento inicial lo constituyó el algoritmo de Euclides. Las primeras teorías matemáticas que se abstrajeron de los problemas concretos o de un conjunto de problemas de un mismo tipo, crearon las condiciones
necesarias y suficientes para el reconocimiento de la autonomía y especificidad de las matemáticas. El carácter abstracto del objeto de las matemáticas y los métodos de demostración matemática establecidos, fueron las principales causas para que esta ciencia se comenzara a exponer como una ciencia deductiva, que a partir de unos axiomas, presenta una sucesión lógica de teoremas. Las obras en las cuales, en aquella época se exponían los primeros sistemas matemáticos de denominaban "Elementos". Se encuentran elementos pertenecientes a muchos autores, sin embargo todos ellos han quedado relegados a un segundo plano tras la obra matematica más impresionante de la historia: Los Elementos de Euclides. "Los Elementos", como denominaremos a esta obra a partir de ahora, están constituidos por trece libros, cada uno de los cuales consta de una sucesión de teoremas. A veces se añaden otros dos, los libros 14 y 15 que pertenecen a otros autores pero por su contenido, están próximos al último libro de Euclides. En "Los Elementos" de Euclides se recogen una serie de axiomas o postulados que sirvieron de base para el posterior desarrollo de la geometría. Es de especial interés, por la controversia que originó en épocas posteriores el quinto axioma, denominado "el de las paralelas", según el cual dos rectas paralelas no se cortan nunca. Durante siglos se asumió este axioma como irrebatible, hasta que en el siglo XIX surgieron las llamadas geometrías no euclídeas, que rebatieron este postulado. Con posterioridad a Euclides y Arquímedes, las matemáticas cambiaron fuertemente, tanto en su forma como en su contenido, haciendo el proceso de formación de nuevas teorías más pausado, hasta llegar a interrumpirse. Entre las nuevas teorías desarrolladas ocupa el primer lugar la teoría de las secciones cónicas, que surgió de las limitaciones del álgebra geométrica. El interés hacia las secciones cónicas creció a medida que aumentaban la cantidad de problemas resueltos con su ayuda. Sin duda, la obra más completa, general y sistemática de las secciones cónicas se debe a Apolonio de Perga. En la época del dominio romano destacan algunos recetarios en forma de reglas que permitían el cálculo de algunas áreas y volúmenes; y en especial la conocida fórmula de Herón para calcular el área del triángulo conocidos los tres lados. Durante el primer siglo del Imperio Musulmán no se produjo ningún desarrollo científico, ya que los árabes, no habían conseguido el impulso intelectual necesario, mientras que el interés por el saber en el resto del mundo, había desaparecido casi completamente. Fue a partir de la segunda mitad del siglo VIII,
cuando comenzó el desenfrenado proceso de traducir al árabe todas las obras griegas conocidas, fundándose escuelas por todo el Imperio. Destacaremos como avance anecdótico, pero no por ello carente de valor, la obtención del número pi con 17 cifras exactas mediante polígonos inscritos y circunscritos en la circinferencia realizada por Kashi (s. XV). Después de más de 150 años, en 1593, en Europa, Viète encontró sólo nueve cifras exactas. Hubo que esperar a fines del siglo XVI y comienzos del XVII para repetir el cálculo de Kashi. El rasgo característico más importante de las matemáticas árabes fue la formación de la trigonometría. En relación con los problemas de astronomía, confeccionaron tablas de las funciones trigonométricas con gran frecuencia y alto grado de exactitud, tanto en trigonometría plana como esférica. Entre las obras geométricas destacan las de Omar Khayyam (s. XVI) y Nasir Edin (s. XIII), directamente influenciadas por las obras clásicas, pero a las que contribuyeron con distintas generalizaciones y estudios críticos, como los relativos al axioma euclideano del paralelismo, que pueden considerarse como estudios precursores de la geometría no euclideana.
En el continente europeo , las matemáticas no tienen un origen tan antiguo como en muchos países del Lejano y Medio Oriente, alcanzando sólo éxitos notorios en la época del medievo desarrollado y especialmente en el Renacimiento. Podemos considerar la obra de Fibonacci "Practica Geometriae" como el punto de arranque de la geometría renacentista. Esta obra está dedicada a resolver determinados problemas geométricos, especialmente medida de áreas de polígonos y volúmenes de cuerpos. Otro contemporáneo, aunque no tan excepcionalmente dotado fue Jordano Nemorarius (1237-?) a quien debemos la primera formulación correcta del problema del plano inclinado. El profesor parisino Nicole Oresmes (1328-1382) llegó a utilizar en una de sus obras coordenadas rectangulares, aunque de forma rudimentaria, para la representación gráfica de ciertos fenómenos físicos. Ya en el siglo XV, época de las grandes navegaciones, la trigonometría fue separada de la astronomía, alzándose como ciencia independiente de la mano de Regiomontano (1436-1474), que trató de una manera sistemática todos los problemas sobre la determinación de triángulos planos y esféricos. Asimismo en esta obra se establece un notable cambio desde el álgebra literal al álgebra simbólica.
Fue François Viète (1540-1603) quien dio un sistema único de símbolos algebraicos consecuentemente organizado, estableciendo en todo momento, una fuerte conexión entre los trabajos trigonométricos y algebraicos, de forma que de igual manera que se le considera el creador del álgebra lineal, se le podría considerar como uno de los padres del enfoque analítico de la trigonometría, esto es, la goniometría. Para hacer más fáciles los cálculos, los matemáticos desarrollaron ciertos procedimientos en los que, el papel fundamental lo jugaban determinadas relaciones trigonométricas, lo que llevó a la confección de numerosas tablas trigonométricas. En la elaboración de tablas trabajaron, por ejemplo, Copérnico (1473-1543) y Kepler (1571,1630). Semejantes métodos se utilizaban tan frecuentemente que recibieron el nombre de "prostaferéticos". Ellos fueron utilizados por los matemáticos de Oriente Medio, Viète, Tycho Brahe, Wittich, Bürgi y muchos otros. Estos métodos siguieron utilizándose incluso después de la invención de los logaritmos a comienzos del siglo XVII, aunque sus fundamentos, basados en la comparación entre progresiones aritméticas y geométricas, comenzaron a fraguarse mucho antes. Durante el siglo XVII surgieron casi todas las disciplinas matemáticas, produciéndose en lo que a la geometría se refiere el nacimiento de la geometría analítica. Sin duda los dos grandes en esta materia y época fueron René Descartes (15961650) y Pierrede Fermat (1601-1655). La última parte de la famosa obra de Descartes "Discurso del Método" denominada "Géometrie", detalla en su comienzo, instrucciones geométricas para resolver ecuaciones cuadráticas, centrándose seguidamente en la aplicación del álgebra a ciertos problemas geométricos. Analiza también curvas de distintos órdenes, para terminar en el tercer y último libro que compone la obra, con la construcción de la teoría general de ecuaciones, llegando a la conclusión de que el número de raíces de una ecuación es igual al grado de la misma, aunque no pudo demostrarlo. Prácticamente la totalidad de la Géometrie está dedicada a la interrelación entre el álgebra y la geometría con ayuda del sistema de coordenadas. Simultáneamente con Descartes, Pierre de Fermat desarrolló un sistema análogo al de aquél. Las ideas de la geometría analítica, esto es, la introducción de coordenadas rectangulares y la aplicación a la geometría de los métodos algebraicos, se concentran en una pequeña obra: "introducción a la teoría de los lugares planos y espaciales". Aquellos lugares geométricos representados por rectas o circunferencias se denominaban planos y los representados por cónicas, especiales. Fermat abordó la tarea de reconstruir los "Lugares Planos" de Apolonio, describiendo alrededor de 1636, el principio fundamental de la geometría analítica: "siempre que en una ecuación final aparezcan dos incógnitas,
tenemos un lugar geométrico, al describir el extremo de uno de ellos una línea, recta o curva". Utilizando la notación de Viète, representó en primer lugar la ecuación Dx=B, esto es, una recta. Posteriormente identificó las expresiones xy=k2; a2+x2=ky; x2+y2+2ax+2by=c2; a2-x2=ky2 con la hipérbola, parábola circunferencia y elipse respectivamente. Para el caso de ecuaciones cuadráticas más generales, en las que aparecen varios términos de segundo grado, aplicó rotaciones de los ejes con objeto de reducirlas a los términos anteriores. La extensión de la geometría analítica al estudio de los lugares geométricos espaciales, la realizó por la vía del estudio de la intersección de las superficies espaciales por planos. Sin embargo, las coordenadas espaciales también en él están ausentes y la geometría analítica del espacio quedó sin culminar. Lo que sí está totalmente demostrado, es que la introducción del método de coordenadas deba atribuirse a Fermat y no a Descartes, sin embargo su obra no ejerció tanta influencia como la Géometrie de Descartes, debido a la tardanza de su edición y al engorroso lenguaje algebraico utilizado. El desarrollo posterior de la geometría analítica, mostró que las ideas de Descartes sobre la unificación del álgebra y geometría no pudo realizarse sino que siguieron un camino separado aunque relacionado. El surgimiento de la geometría analítica, aligeró sustancialmente la formación del análisis infinitesimal y se convirtió en un elemento imprescindible para la construcción de la mecánica de Newton, Lagrange y Euler, significanda la aparición de las posibilidades para la creación del análisis de variables. Ya en el siglo XVIII se completó el conjunto de las disciplinas geométricas y, excluyendo sólo las geometrías no euclideanas y la apenas iniciada geometría analítica, prácticamente todas las ramas clásicas de la geometría, se formaron en este siglo. Así además de la consolidación de la geometría analítica, surgieron la geometría diferencial, descriptiva y proyectiva, así como numerosos trabajos sobre los fundamentos de la geometría. Entre los diferentes problemas y métodos de la geometría, tuvieron gran significado las aplicaciones geométricas del cálculo infinitesimal. De ellas surgió y se desarrolló la geometría diferencial, la ciencia que ocupó durante el siglo XVIII el lugar central en al sistema de las disciplinas geométricas. Estudiemos por separado cada una de estas ramas: Geometría Analítica: Bajo esta denominación se considera aquella parte de la geometría donde se estudian las figuras y transformaciones geométricas dadas por ecuaciones algebraicas. Las puertas a esta rama fueron abiertas, ya en el siglo XVII por Descartes y Fermat, pero sólo incluían problemas planos. Hubo de ser Newton quien en 1704 diera un paso importante al publicar la obra, "Enumeración de las
curvas de tercer orden", clasificando las curvas según el número posible de puntos de intersección con una recta, obteniendo un total de 72 tipos de curvas, que se podían representar por ecuaciones de cuatro tipos. Si designamos ax3+bx2+cx+d=A, entonces las soluciones indicadas serán: xy2+ey=A ; xy=A ; y2=A ; y=A. Sin embargo, lo verdaderamente importante de esta obra fue el descubrimiento de las nuevas posibilidades del método de coordenadas, definiendo los signos de las funciones en los cuatro cuadrantes. Con posterioridad a Newton, las curvas de tercer orden fueron estudiadas por Stirling, Maclaurin, Nicolle, Maupertius, Braikenridge, Steiner, Salmon, Silvestre, Shall, Clebsch y otros. Fue Euler quien, en 1748, sistematizó la geometría analítica de una manera formal. En primer lugar expuso el sistema de la geometría analítica en el plano, introduciendo además de las coordenadas rectangulares en el espacio, las oblicuas y polares. En segundo lugar, estudió las transformaciones de los sistemas de coordenadas. También clasificó las curvas según el grado de sus ecuaciones, estudiando sus propiedades generales. En otros apartados de sus obras trató las secciones cónicas, las formas canónicas de las ecuaciones de segundo grado, las ramas infinitas y asintóticas de las secciones cónicas y clasificó las curvas de tercer y cuarto orden, demostrando la inexactitud de la clasificación newtoniana. También estudió las tangentes, problemas de curvaturas, diámetros y simetrías, semejanzas y propiedades afines, intersección de curvas, composición de ecuaciones de curvas complejas, curvas trascendentes y la resolución general de ecuaciones trigonométricas. Todo estos aspectos se recogen en el segundo tomo de la obra "Introducción al análisis..." que Euler dedicó exclusivamente a la geometría analítica. En la segunda mitad del siglo se introdujeron sólo mejoras parciales, pues en lo fundamental, la geometría analítica ya estaba formada. Destacaremos entre otros los nombres de G. Monge, Lacroix y Menier. Geometría diferencial: Esta disciplina matemática se encarga del estudio de los objetos geométricos, o sea, las curvas, superficies etc... Su singularidad consiste en que partiendo de la geometría analítica utiliza métodos del cálculo diferencial. A comienzos de siglo ya habían sido estudiados muchos fenómenos de las curvas planas por medio del análisis infinitesimal, para pasar posteriormente a estudiar las curvas espaciales y las superficies. Este traspaso de los métodos de la geometría bidimensional al caso tridimensional fue realizado por Clairaut. Sin embargo, su obra fue eclipsada, como casi todo en esta época, por los trabajos de Euler.
El primer logro de Euler en este terreno, fue la obtención de la ecuación diferencial de las líneas geodésicas sobre una superficie, desarrollando a continuación una completa teoría de superficies, introduciendo entre otros el concepto de superficie desarrollable. A finales de siglo, es desarrollo de esta rama entró en un ligero declive, debido principalmente a la pesadez y complejidad del aparato matemático. Geometría descriptiva y proyectiva: Los métodos de la geometría descriptiva surgieron en el dominio de las aplicaciones técnicas de la matemática y su formación como ciencia matemática especial, se culminó en los trabjos de Monge, cuya obra en este terreno quedó plasmada en el texto "Géometrie descriptive". En la obra se aclara, en primer lugar, el método y objeto de la geometría descriptiva, prosiguiendo a continuación, con instrucciones sobre planos tangentes y normales a superficies curvas. Analiza en capítulos posteriores la intersección de superficies curvas y la curvatura de líneas y superficies. El perfeccionamiento de carácter particular y la elaboración de diferentes métodos de proyección contituyeron el contenido fundamental de los trabjos sobre geometría proyectiva en lo sucesivo. La idea del estudio de las propiedades proyectivas de los objetos geométricos, surgió como un nuevo enfoque que simplificara la teoría de las secciones cónicas. Las obras de Desargues y Pascal resuelven este problema y sirven de base a la nueva geometría. Como acabamos de ver la geometría hacia comienzos del siglo XIX representaba ya un amplio complejo de disciplinas surgidas del análisis y generalizaciones de los datos sobre las formas espaciales de los cuerpos. Junto a las partes elementales, se incluyeron en la geometría casi todas aquellas partes que la conforman actualmente. La geometría analítica realizó un gran camino de desarrollo y determinó su lugar como parte de la geometría que estudia las figuras y transformaciones dadas por ecuaciones algebraicas con ayuda del método de coordenadas utilizando los métodos del álgebra. La geometría diferencial se caracterizó por la utilización de los conceptos y métodos del cálculo diferencial, lo que conllevó relaciones estables con el análisis matemático y con numerosos problemas aplicados. Una de las características principales de la geometría que se desarrolló durante la segunda mitad del siglo XIX, fue el entusiasmo con que los matemáticos estudiaron una gran variedad de transformaciones. De ellas, las que se hicieron más populares fueron las que constituyen el grupo de transformaciones que
definen la denominada geometría proyectiva. Los métodos aparentemente detenidos en su desarrollo desde la época de Desargues y Pascal, de estudio de las propiedades de las figuras invariantes respecto a la proyección, se conformaron en los años 20 del siglo XIX en una nueva rama de la geometría: la geometría proyectiva, merced sobre todo a los trabajos de J. Poncelet. Otro aspecto esencial durante este siglo fue el desarrollo de las geometrías no euclideanas. Podríamos considerar fundador de esta geometría al matemático ruso Nicolai Ivanovich Lobachevski (1792-1856). Su obra mostraba que era necesario revisar los conceptos fundamentales que se admitían sobre la naturaleza de la matemática, pero ante el rechazo de sus contemporáneos tuvo que desarrollar sus ideas en solitario aislamiento. El punto de partida de las investigaciones de Lobachevski sobre geometría no euclideana fue el axioma de las paralelas de Euclides, sin demostración durante siglos. Lobachevski, que inicialmente intentó demostrar dicho axioma, rápidamente se dio cuenta que ello era imposible, sustituyendo dicho axioma por su negación: a través de un punto no contenido en una recta se puede trazar más de una paralela que yace en el mismo plano que la primera. El año 1826 puede considerarse como la fecha de nacimiento de esta geometría no euclideana o lobachevskiana, siendo en ese año cuando el autor presentó muchos de los trabajos que avalaban la nueva teoría. En 1829 Janos Bolyai (1802-1860) llegó a la misma conclusión a la que había llegado Lobachevski. E incluso el mismo Gauss que apoyaba y elogiaba a escondidas, nunca de forma pública, los trabajos de Bolyai y Lobachevski, es posible que mantuviera los mismos puntos de vista pero los calló por temor a comprometer su reputación científica. La geometría no euclideana continuó siendo durante varias décadas un aspecto marginal de la matemática, hasta que se integró en ella completamente gracias a las concepciones extraordinariamente generales de Rieman. Cálculo de superficies
Triángulo Reconstrución del procedimiento egipcio para calcular el área del triángulo. Ese modo material de entender la ciencia se traduce en el modo en que los escribas del Imperio Medio plantean los problemas. Aparentemente, se basaban en la representación de un triángulo inscrito en un rectángulo para llegar a la conclusión: área = altura × base/2, y partían de este conocimiento para el cálculo de otras superficies como la del trapecio (Rhind, problema 52). Ejemplo: y
papiro Rhind, problema 51:
Ej em pl o del c ál c en: Un tr i iá 10 v aras c ul o de un c am am po tr i ia ng ul ar. ar. S i i t e d ic ic en: ng ul o de 10 v aras de mer y yt t ( al t t ura) y de y de 4 v aras f ici e? C al c aras de base; ¿c uál es su su per f ici e? cu l arás arás así : T omarás lo r ec tá omarás l a mi ta tad de 4, o sea 2, para hac er l táng ul o. o. M ul t t pl i i ic ic arás arás 10 por 2 . E s f ici su su per f ici e. Operaci ones:
1
400
1 1.000
1/2 200
2 2.000
S ol ución: S u su per f f ici ici e es de 2 .000 c od os os (es deci r r , 2 K ha) = 20 arad as. as. Círculo
El mayor éxito de los escribas egipcios fue el cálculo del área del círculo: el sistema empleado era sustraer 1/9 del diámetro y calcular la superficie del cuadrado correspondiente, lo que da un valor para de 3'1605, cuando el resto de los pueblos de la época usaban valor 3. Ejemplo: y
Papiro de Rhind, problema 50:
M éto étod o para c al c ar un troz o de t i ie cu l ar rra ¿C uál es l a su per f fici i ci e de t i ie rra ?
uy o r c ar c uy ci r c ul ar
d i iám á aras. metro es de 10 v aras.
Debes qui tar ena part e. Qued an 8: entonc es t i iene e tar de 1 su nov en nes que mul t t pl i i ic ic ar ar 8 f ici y 4 sehat. ocho v ec es, l o que hac e 64. M i ira r a, l a su per f ici e es 6 K ha y 4 e: H e aquí c omo omo se hac e:
1
9
1 de eso: 1
9 S ustraes de eso, r esto 8 .
1 8 2 16 4 32 /8 64 S u su per f f ici ici e de t i ie rra es 6 K ha (esc r r i ito t o 60 ), 4 sehat. Sobre la medida del círculo
Los geómetras de la época conocían que la razón entre la longitud de una circunferencia y su diámetro, era siempre un valor constante (al que actualmente llamamos pi). En el libro XII de los Elementos Elementos de Euclides, aparece la demostración de que la razón entre el área de un círculo y su diámetro al cuadrado, también es una constante. Arquímedes consiguió demostrar que la constante que aparece en este caso también tiene que ver con el (hoy llamado) número pi. El primer paso fue demostrar la siguiente: PROPOSICIÓN: El área de un polígono regular es (P*a)/2, donde P representa el perímetro y a la apotema del polígono. La demostración que hizo es la que todos conocemos actualmente, mediante descomposición del polígono en triángulos congruentes. A partir de este resultado preliminar consigue demostrar otro mucho más importante. PROPOSICIÓN: El área de cualquier círculo es igual a la de un triángulo rectángulo en el cual uno de los catetos es igual al radio y el otro a la circunferencia del círculo. Demostración:
Llamamos A al área del círculo y T a la del triángulo. C es la longitud de la circunferencia. Supongamos que A>T; es decir, A-T>0. Podemos inscribir un polígono en la circunferencia de forma que la diferencia entre sus áreas sea tan pequeña como queramos. Por tanto, existe un polígono inscrito en la circunferencia cuya área es S y tal que A-S
valor de pi lo más aproximado apr oximado posible. Su procedimiento fue muy ingenioso. Comienza inscribiendo y circunscribiendo un hexágono en una circunferencia cualquiera. Es fácil ver que el perímetro del hexágono inscrito es 6*r, y el del circunscrito 4*raíz(3)*r ~ 6'9282*r (usando el teorema teorema de Pitágoras). Dividiendo Dividiendo ambas expresiones entre 2*r (diámetro) obtenemos que pi está comprendido entre 3 y 3'4641. Pero no queda ahí la cosa. Utilizando las dos formulas siguientes, P2n = (2*pn*Pn)/(pn+Pn)
y
p2n = raíz(pn*P2n)
donde Pn = perímetro del polígono circunscrito de n lados, p n = perímetro del polígono inscrito de n lados, calcula los perímetros de los polígonos correspondientes de 12, 24, 48 y 96 lados, para obtener al final que, 6336/2017 < pi < 29376/9347 aproximadamente, 3'141298 < pi < 3'142826 aunque por motivos de comodidad usa los valores más sencillos de 3+10/71 y 3+1/7. Sorprende el hecho de que trabajara con valores tan precisos. Para la raíz de 3, por ejemplo, ejemplo, determinó que 265/153 < raíz(3) < 1351/780. Todos estos cálculos son un hecho sin precedentes, de gran dificultad y que nos llenan de admiración. ...l a " ...
det ermi nación del pe rímetro del d odec ág ono r equ equería obt ene ener un v al or or numér ic z c uad ra ic o de l a raí z rad a de 3. C on nuestras moder nas c al c cu l ad oras oras y denad or gni f f ic ngún obstác ul o, pe ro en t i ie or den or es, e sto no si gn ic a ni ngún m pos de A r químedes, no sól o eran i m pensables estos art i il l u g i ios o s si no que no ex i istía s tía ni si qui era un buen l i itara l l i iam si st st ema numér ic ic o que f aci l t ara estos c ál c c ul os. os." (W i ill a m Dunham, "V i ia j e a trav és és de l os os geni os os" )
No sé si desde entonces o quizás desde antes, el cálculo de pi ha ocupado a muchos eruditos, científicos y matemáticos. matemáticos. Los algoritmos de cálculo han mejorado con los siglos y la llegada de los ordenadores ha permitido calcular más cifras y con más rapidez. (Ver el número pi)
Geometría
(del griego geo, 'tierra'; metrein, 'medir'), rama de las matemáticas que se ocupa de las propiedades del espacio. En su forma más elemental, la geometría se preocupa de problemas métricos como el cálculo del área y diámetro de figuras planas y de la superficie y volumen de cuerpos sólidos. Otros campos de la geometría son la geometría analítica, geometría descriptiva, topología, geometría de espacios con cuatro o más dimensiones, geometría fractal, y geometría no euclídea. Geometría
demostrativa primitiva
El origen del término geometría es una descripción precisa del trabajo de los primeros geómetras, que se interesaban en problemas como la medida del tamaño de los campos o el trazado de ángulos rectos para las esquinas de los edificios. Este tipo de geometría empírica, que floreció en el Antiguo Egipto, Sumeria y Babilonia, fue refinado y sistematizado por los griegos.
Pitágoras
En el siglo VI a.C. el matemático Pitágoras colocó la piedra angular de la geometría científica al demostrar que las diversas leyes arbitrarias e inconexas de la geometría empírica se pueden deducir como conclusiones lógicas de un número limitado de axiomas, o postulados. Estos postulados fueron considerados por Pitágoras y sus discípulos como verdades evidentes; sin embargo, en el pensamiento matemático moderno se consideran como un conjunto de supuestos útiles pero arbitrarios.
Un ejemplo típico de los postulados desarrollados y aceptados por los matemáticos griegos es la siguiente afirmación: "una línea recta es la distancia más corta entre dos puntos". Un conjunto de teoremas sobre las propiedades de puntos, líneas, ángulos y planos se puede deducir lógicamente a partir de estos axiomas. Entre estos teoremas se encuentran: "la suma de los ángulos de cualquier triángulo es igual a la suma de dos ángulos rectos", y "el cuadrado de la hipotenusa de un triángulo rectángulo es igual a la suma de los cuadrados de los otros dos lados" (conocido como teorema de Pitágoras). La geometría demostrativa de los griegos, que se ocupaba de polígonos y círculos y de sus correspondientes figuras tridimensionales, fue mostrada rigurosamente por el matemático griego Euclides, en su libro "Los elementos". El texto de Euclides, a pesar de sus imperfecciones, ha servido como libro de texto básico de geometría hasta casi nuestros días.
Primeros Primeros problemas geométricos Los griegos introdujeron los problemas de construcción, en los que cierta línea o figura debe ser construida utilizando sólo una regla de borde recto y un compás. Ejemplos sencillos son la construcción de una línea recta dos veces más larga que una recta dada, o de una recta que divide un ángulo dado en dos ángulos iguales. Tres famosos problemas de construcción que datan de la época griega se resistieron al esfuerzo de muchas generaciones de matemáticos que intentaron resolverlos: la duplicación del cubo (construir un cubo de volumen doble al de un determinado cubo), la cuadratura del círculo (construir un cuadrado con área igual a un círculo determinado) y la trisección del ángulo (dividir un ángulo dado en tres partes iguales). Ninguna de estas construcciones es posible con la regla y el compás, y la imposibilidad de la cuadratura del círculo no fue finalmente demostrada hasta 1882. Los griegos, y en particular Apolonio de Perga, estudiaron la familia de curvas conocidas como cónicas y descubrieron muchas de sus propiedades fundamentales. Las cónicas son importantes en muchos campos de las ciencias físicas; por ejemplo, las órbitas de los planetas alrededor del Sol son fundamentalmente cónicas. Arquímedes, uno de los grandes científicos griegos, hizo un de considerable número de aportaciones a la geometría. Inventó Apolonio formas de medir el área de ciertas figuras curvas así como la Perga superficie y el volumen de sólidos limitados por superficies curvas, como paraboloides y cilindros. También elaboró un método para calcular una aproximación del valor de pi, la proporción entre el diámetro y la circunferencia de un círculo y estableció que este número estaba entre 3 10/70 y 3 10/71. Geometría
analítica
La geometría avanzó muy poco desde el final de la era griega hasta la edad media. El siguiente paso importante en esta ciencia lo dio el filósofo y matemático francés René Descartes, cuyo tratado "El Discurso del Método", publicado en 1637, hizo época. Este trabajo fraguó una conexión entre la geometría y el álgebra al demostrar cómo aplicar los métodos de una disciplina en la otra. Éste es un fundamento de la geometría analítica, en la que las figuras se representan mediante expresiones algebraicas, sujeto subyacente en la mayor parte de la geometría moderna.
Otro desarrollo importante del siglo XVII fue la investigación de las propiedades de las figuras geométricas que no varían cuando las figuras son proyectadas de un plano a otro. Un ejemplo sencillo de geometría proyectiva queda ilustrado en la figura 1. Si los puntos A, B, C y a, b, c se colocan en cualquier
posición de una cónica, por ejemplo una circunferencia, y dichos puntos se unen A con b y c, B con c y a, y C con b y a, los tres puntos de las intersecciones de dichas líneas están en una recta.
De la misma manera, si se dibujan seis tangentes cualesquiera a una cónica, como en la figura 2, y se trazan rectas que unan dos intersecciones opuestas de las tangentes, estas líneas se cortan en un punto único.
Este teorema se denomina proyectivo, pues es cierto para todas las cónicas, y éstas se pueden transformar de una a otra utilizando las proyecciones apropiadas, como en la figura 3, que muestra que la proyección de una circunferencia circunferencia es una elipse en el otro plano.
Modernos avances La geometría sufrió un cambio radical de dirección en el siglo XIX. Los matemáticos Carl Friedrich Gauss, Nikolái Lobachevski, y János Bolyai, trabajando por separado, desarrollaron sistemas coherentes de geometría no euclídea. Estos sistemas aparecieron a partir de los trabajos sobre el llamado "postulado paralelo" de Euclides, al proponer alternativas que generan modelos extraños y no intuitivos de espacio, aunque, eso sí, coherentes.
Carl
Fiedrich
Casi al mismo tiempo, el matemático británico Arthur Cayley Gauss desarrolló la geometría para espacios con más de tres dimensiones. Imaginemos que una línea es un espacio unidimensional. Si cada uno de los puntos de la línea se sustituye por una línea perpendicular a ella, se crea un plano, o espacio bidimensional. De la misma manera, si cada punto del plano se sustituye por una línea perpendicular a él, se genera un espacio tridimensional. Yendo más lejos, si cada punto del espacio tridimensional se sustituye por una línea perpendicular, tendremos un espacio tetradimensional. Aunque éste es físicamente imposible, e inimaginable, es conceptualmente sólido. El uso de conceptos con más de tres dimensiones tiene un importante número de aplicaciones en las ciencias físicas, en particular en el desarrollo de teorías de la relatividad.
János Bolyai También se han utilizado métodos analíticos para estudiar las figuras geométricas regulares en cuatro o más dimensiones y compararlas con figuras similares en tres o menos dimensiones. Esta geometría se conoce como geometría estructural. Un ejemplo sencillo de este enfoque de la geometría es la definición de la figura geométrica más sencilla que se puede dibujar en espacios con cero, una, dos, tres, cuatro o más dimensiones.
En los cuatro primeros casos, las figuras son los bien conocidos punto, línea, triángulo y tetraedro respectivamente. En el espacio de cuatro dimensiones, se puede demostrar que la figura más sencilla está compuesta por cinco puntos como vértices, diez segmentos como aristas, diez triángulos como caras y cinco tetraedros. El tetraedro, analizado de la misma manera, está compuesto por Arthur Cayley cuatro vértices, seis segmentos y cuatro triángulos. Otro concepto dimensional, el de dimensiones fraccionarias, apareció en el siglo XIX. En la década de 1970 el concepto se desarrolló como la geometría fractal.