This watermark does not appear in the registered version - http://www.clicktoconvert.com
A10
- Optimização
Í NDICE
1. Derivada de uma função função------------------------------------------------------------------------------------------------------------------------ 2 1.1. Introdução ao conceito de derivada------------------------------------------------------------------------------------ 2 1.2. Definição de derivada de uma função num ponto---------------------------- 3 1.3. Interpretação geométrica da derivada de uma função num ponto ---------- 4 1.4. Derivadas laterais-------------------------------------------------------------- 9 deriváveis----------------------------------------------------------------------------------------- 10 1.5. Funções deriváveis-----------------------------continuidade ------------------------------------------------ 12 1.6. Derivabilidade Derivabilidade e continuidade-----------------------------------------------2. Derivadas de algumas funções------------------------------------------------------ 13 3. Regras de derivação-------------------------derivação--------------------------------------------------------------------------------------------------------- 16 4. Aplicação das derivadas--------------derivadas------------------------------------------------------------------------------------------------------------ 18
--------------------------------------------------------- 18 4.1. Sinal da derivada e sentido de variação-------------------------------------------------- 19 4.2. Extremos relativos e absolutos de uma função------------------------------------------------------------------------------------------------------- 23 4.3. Segunda derivada de uma função-----------------4.4. Concavidade de uma função e segunda derivada ----------------------------- 25
Ensino Profissional
1
Professora Maria Daniel Silva
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
This watermark does not appear in the registered version - http://www.clicktoconvert.com
A10
- Optimização
1. DERIVADA DE UMA FUNÇÃO 1.1. I NTRODUÇÃO AO CONCEITO DE TAXA DE VARIAÇÃO (DERIVADA) A recta secante a uma curva é uma recta que tem com essa curva dois pontos em comum.
A recta tangente a uma curva num ponto é uma recta que tem com essa curva um único ponto em comum. Por exemplo
Como determinar uma equação da recta tangente a uma curva num ponto ( x 0 , f ( x 0 ) ) ?
Para responder a esta questão, considere-se um número muito pequeno h, diferente de zero, e sobre a curva assinala-se assinala-se o ponto ( x 0 + h, f ( x 0 + h) ) . h>0
h<0
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
This watermark does not appear in the registered version - http://www.clicktoconvert.com
A10
- Optimização
O declive da secante é dado por:
f ( x 0 + h) - f ( x 0 ) h O declive da recta tangente é dado por:
f ( x 0 + h) - f ( x 0 ) h h®0 lim
1.2.
TAXA MÉDIA DE VARIAÇÃO NUM INTERVALO
Exemplo
Para a empresa X, o rendim ento, em euros, da venda de x unidades é dado por: R ( x ) = 10x - 0,01x 2 , 0 £ x £ 1000 ® Construindo a tabela
200
400
600
- 200
2400
2400
x
R(x)
R (200 ) = 10 ´ 200 - 0,01 ´ 200 2 = -200 R ( 400 ) = 10 ´ 400 - 0,01 ´ 400 2 = 2400
R (600 ) = 10 ´ 600 - 0,01 ´ 600 2 = 2400 ® Calculando R ( 400 ) - R (200 ) = 2400 - ( - 200 ) = 2600 , verifica- se que houve um aumento do
rendimento em 2600 euros. ® Determine- se a taxa média de variação do rendimento por unidade se x varia de 200 para
400 unidades. GRAf pag 10 1.3.
DEFINIÇÃO DE DERIVADA DE UMA FUNÇÃO NUM PONTO PONTO
Considere- se a função real de variável real y = f ( x ) , definida no intervalo ]a, b[ , a ¹ b e seja x 0 um ponto desse intervalo.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
This watermark does not appear in the registered version - http://www.clicktoconvert.com
A10
- Optimização
Chama-se derivada de uma função f no ponto x 0 e representa-se por f ' ( x 0 ) ao limite, quando existir, da razão
f ( x 0 + h) - f ( x 0 ) e representa-se por h f ( x 0 + h) - f ( x 0 ) h h® 0
f ' ( x 0 ) = lim
Se x = x 0 + h então h = x - x 0 e como h ® 0 temos que x - x 0 ® 0 , ou seja, x ® x 0 . Sendo assim, a expressão para f ' ( x 0 ) pode ser escrita da seguinte forma
f ( x) - f ( x 0 ) x ® x0 x - x 0
f ' ( x 0 ) = lim
Exemplo
Considere-se a seguinte função f ( x ) = x 2 e determine-se f ' (2 ) Resolução
Usando a definição, tem-se que:
f ( x ) - f (2) x ®2 x - 2 x 2 - 22 = lim x ®2 x - 2 ( x - 2) ( x + 2 ) = lim x ®2 x-2 = lim ( x + 2)
f ' (2) = lim
x ®2
=2+2 = 4
Então f ' (2 ) = 4
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
This watermark does not appear in the registered version - http://www.clicktoconvert.com
A10
- Optimização
Calcule, aplicando a definição, a derivada da função f ( x ) = 2x + 3 nos pontos x 0 = -1 e x0 = 3 .
1.4.
I NTERPRETAÇÃO GEOMÉTRICA DA DERIVADA DE UMA FUNÇÃO NUM P ONTO
Exemplo
Considere a função f ( x ) = x 2 e calcule, aplicando a def inição, inição, f ' (1) e f ' (3) . Resolução
f ( x ) - f (1) x ®1 x - 1 x 2 - 12 = lim x ®1 x - 1 ( x - 1)( x + 1) = lim x -1 x ®1 = lim ( x + 1)
f ( x ) - f (3) x ®3 x - 3 x 2 - 32 = lim x ®3 x - 3 ( x - 3) ( x + 3 ) = lim x-3 x ®3 = lim ( x + 3)
f ' (1) = lim
f ' (3) = lim
x ®1
x ®3
=1+1 = 2
=3+3 = 6
Ao obterobter- se para a derivada da função no ponto x = 1 o valor 2, e no ponto x = 3 o valor 6, ficou a sabersaber- se que o declive da recta tangente ao gráfico da curva no ponto de abcissa x = 1 é 2 e o declive da recta tangente ao gráfico da curva no ponto de abcissa x = 3 é 6,
portanto a tangente no pon ponto to x = 3 aproxima-se mais da vertical.
J J
Tangentes a curvas (significado da derivada aplicado essencialmente na geometria)
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
This watermark does not appear in the registered version - http://www.clicktoconvert.com
A10
- Optimização
A derivada de uma função num ponto x 0 é o declive da recta tangente ao gráfico da função no ponto de abcissa x 0 .
Exercício Na figura seguinte representou-se graficamente uma função
f e
desenhou-se tangentes à
curva em alguns dos pontos.
Por observação do gráfico e relativamente aos pontos considerados, o que pode dizer acerca: a) Do sinal da derivada?
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
This watermark does not appear in the registered version - http://www.clicktoconvert.com
A10
J J
- Optimização
Taxas de variação (significado da derivada aplicado em física, economia, engenharia,
etc.) A taxa de variação média (velocidade
média) de uma
função f num intervalo [a, b] é dada por: f ' ( x 0 ) = t.m.v [a,b]
f (b) - f ( a) b-a
A taxa de variação (velocidade instantânea) da função no ponto x = a é dada por: f ( a + h) - f ( a) h h®0 lim
A taxa de variação da função no ponto x = a é a derivada da função no ponto x = a .
Observe- se a seguinte representação gráfica de uma função f
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
This watermark does not appear in the registered version - http://www.clicktoconvert.com
A10
- Optimização
Exemplo
Um objecto foi lançado na vertical de um ponto P e passados alguns instantes caiu de novo no ponto P.
A distância d do objecto ao ponto P em função do tempo t, em segundos, com início no momento do lançamento é dado por: d( t ) = 16 t - 4t 2
a) Calcule a taxa de variação média (velocidade média) nos intervalos [0,1] , [1,2] e [2,3] e comente os resultados. b) Calcule a taxa de variação da função (velocidade instantânea) para t = 1 .
Resolução
[0,1]
d(1) - d(0 ) 16 - 4 - 0 = = 12 1-0 1
v.m. = [1,2]
d(2 ) - d(1) 16 ´ 2 - 4 ´ 2 2 - 16 ´ 1 - 4 ´ 12 = = 32 - 16 - 16 + 4 = 4 2 -1 1
v.m. = [2,3]
d(3) - d(2 ) 16 ´ 3 - 4 ´ 3 2 - 16 ´ 2 - 4 ´ 2 2 = = 48 - 36 - 32 + 16 = -4 3-2 1
a) v.m. =
(
(
A velocidade média é positiva nos dois primeiros intervalos e no intervalo [0,1] é maior do que no intervalo [1,2] . Significa que o objecto vai a subir mas que a taxa de variação média no primeiro intervalo, ou seja, a velocidade média é maior.
No intervalo [2,3] a velocidade média é negativa, o que significa que o objecto vem a descer.
Em valor absoluto a velocidade nos intervalos [1,2] e [2,3] é a mesma.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
This watermark does not appear in the registered version - http://www.clicktoconvert.com
A10
lim
d(1 + h) - d(1)
h® 0
h
= lim
- Optimização
(
16(1 + h) - 4(1 + h) 2 - 16 ´ 1 - 4 ´ 12
h
h®0
)
( 16 + 16h - 4(1 + 2h + h2 ) ) - (16 - 4) = lim h (16 + 16h - 4 - 8h - 4h2 ) - 16 + 4 = lim h h®0 2 8h - 4h = lim h h®0 (8 - 4h)h = lim h h®0 = lim (8 - 4h) h®0
h®0
= 8- 4´0 = 8
A velocidade instantânea para t = 1 é 8m/s. Exercício 3 Um objecto move-se ao longo do eixo dos xx `s. A sua posição no tempo t ³ 0 é dada por d( t ) = -t 2 + 3t + 4
(d em cm e t em segundos) a) Determine a posição do móvel para t = 1 e t = 2 . b) Qual é a velocidade do móvel para t = 1 e t = 2 ?
c ) Calcule a taxa de variação média (velocidade média) nos intervalos [0,1] , [1,2] e [2,3] e comente os resultados.
2. DERIVADAS DE ALGUMAS FUNÇÕES
A função afim definida por f ( x ) = mx + b tem por derivada f ' ( x ) = m
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
This watermark does not appear in the registered version - http://www.clicktoconvert.com
A10
- Optimização
Prova
Usando a definição tem-se que f ( x + h) - f ( x ) h h ®0 ( x + h) - ( x ) = lim h®0 h x + h - xb = lim h®0 h h = lim =1 h®0 h
f ' ( x ) = lim
A função constante definida por f ( x ) = k tem por derivada f ' ( x ) = 0 Prova
Usando a definição tem-se que f ( x + h) - f ( x ) h h ®0 k -k = lim h®0 h 0 = lim h®0 h =0
f ' ( x ) = lim
Exemplos
A derivada da função f ( x ) = 2x + 3 é a função f ' ( x ) = 2 .
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
This watermark does not appear in the registered version - http://www.clicktoconvert.com
A10
- Optimização
f ( x + h) - f ( x ) h h®0 ( x + h) 2 - x 2 = lim h h® 0 x 2 + 2xh + h2 - x 2 = lim h h® 0 2xh + h2 = lim h h® 0 (2x + h)h = lim h h® 0 = lim (2x + h) = 2x
f ' ( x ) = lim
h® 0
A derivada da função f ( x ) = x 3 é a função f ' ( x ) = 3x 2 . A derivada da função f ( x ) = 2x 3 é a função f ' ( x ) = 2 ´ 3x 2 = 6x 2 .
A derivada da soma de duas funçãoé igual à soma das derivadas das funções
( f +g ) ' ( x=)
f '( +x) g (' )x
Exemplos Determine uma expressão para a derivada das seguintes funções
a) g ( x) =2 x+
g (')x =
b) h ( x) =3 x+ 2 +x
h ( ' ) x= 6 +x
2
Exercício 6
Determine uma expressão para a função derivada de f.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
This watermark does not appear in the registered version - http://www.clicktoconvert.com
A10
- Optimização
A derivada da função f ( x) =
k x
k
a função f ( ' )x= - 2 x
Exercício 8 Determine uma expressão para a função derivada de f.
a) f ( x) =
2 x
)x=
1 2
d) f ( )x= 2 + x
x
b) f ( x) = 4 -x
c) f (
4
7
-
3 x
x2
5 x
2
x
1 +
+
e) f (
1 0 1 5
) =x - 3 + +0 x
x
x 2
Exercício 9 Complete a seguinte tabela f ( x) f (' )x
6
x
7
4
8 x
-
-2 x 1
3 02x
x
3
4
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
This watermark does not appear in the registered version - http://www.clicktoconvert.com
A10
e) f (
) =x
3 x2
- Optimização
+2
3. REGRAS DE DERIVAÇÃO J
Derivada Derivada do produto de duas funções
Se as funções f e g têm derivada finita num ponto a então a função produto f ´ g também é derivável em a e:
( f ´g ) =' f ´' g+ g ´' Exemplo
Determine uma expressão para a derivada de ( 7 - 2 )x´ ( 5 +x
)
éë( 7 -2 x)´ (5ùû +x 3) =' 7( - 2 x´) ' ( 5+ x )+3 ( 5 + x 3)´ '( 7- 2 ) = - ( ´ + ) + ´( 25x3572x - ) = =
-
- +10x63510x +20x29
Exercício 12 Determine uma expressão para a derivada de: a) f ( x) = (2 +3
)x´ ( 5- x)
c) f ( x ) = ( 2 + x2 )´ (3 - x)
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
This watermark does not appear in the registered version - http://www.clicktoconvert.com
A10
- Optimização
x ´' ( 2 +x ) 1- ( 2 +x 1) ´' é x ù = 2 êë 2 +x úû 1 ( 2 +x )1 '
= =
( 2 +x ) 1- 2´ 2 ( 2 +x )1
x
1 2 ( 2 +x )1
Exercício 13 Determine uma expressão para para a derivada das seguintes funções: a) f ( x) = b) f ( x) =
J
1
c ) f ( x) =
x+ 3 x
d) f ( x) =
x2 + 4
Derivada da potência de uma função
'
é( f ) n ù n= ë û Exemplo
-
f´ n f1´
x2 + 7 1- 2 x2 2 - x3
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
This watermark does not appear in the registered version - http://www.clicktoconvert.com
A10
- Optimização
a) Complete, recorrendo à observação do gráfico, o seguinte quadro:
-
x
Sinal de f ('
)
Variação de f ( x)
-1
1
+
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
This watermark does not appear in the registered version - http://www.clicktoconvert.com
A10
- Optimização
R ecorda: ecorda: ü
O ponto E de coordenadas ( 5 -,
)
é o ponto mais baixo da curva, o que significa que a
sua ordenada é o menor valor do contradomínio de f . Diz-se que ü
-3 é o mínimo absoluto da função f quando x = 5.
O ponto F de coordenadas ( 7 , ) é o ponto mais alto da curva, o que significa que a
sua ordenada é o maior valor do contradomínio de f . Diz-se que 4 é o máximo absoluto da função f quando x ü
Se se restringir a função ao intervalo
]
2
= 7.
[ , o ponto mais baixo da curva é B ( 1 )
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
This watermark does not appear in the registered version - http://www.clicktoconvert.com
A10
- Optimização
2. Observe-se o gráfico anterior e estude- se a monotonia da função no intervalo ] 6 ,[ 7
x
Sinal de f ('
)
Variação de f ( x)
+
0
-
f ( 7)
Verifica-se que f’ passa de positiva a negativa então f tem um máximo relativo para x
Isto é, se num ponto
c do
= 7.
seu domínio, uma função f é contínua e f muda de sinal então f
tem um extremo relativo nesse ponto.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
This watermark does not appear in the registered version - http://www.clicktoconvert.com
A10
- Optimização
Elabore- se um quadro para estudar o sinal da função derivada e o sentido de variação da
função
-
x
-2
+
2
Sinal de f ('
)
0
+
-
0
Variação de f ( x)
f ( -2 ) = 3
Um máximo relativo da função f é 39 quando x = 2- . Um mínimo relativo da função f é -2 Repare que:
quando x = 2.
f ( 2) = 2 -
+
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
This watermark does not appear in the registered version - http://www.clicktoconvert.com
A10
- Optimização
As questões que na realidade se colocam estão muitas vezes relacionadas com a determinação de valores óptimos (maximizar o lucro, minimizar o material a utilizar, …).
Para responder a algumas destas questõ es aplica- se o conceito de taxa de variação e em particular a determinação dos extremos da função no domínio da variável independente.
Exemplo Um agricultor tem 810 euros para gastar na vedação de duas cercas contíguas, rectangulares
e iguais, junto a um rio, como se ilustra na figura seguinte. Fig pag 22 A vedação dos três lados perpendiculares ao rio custa 9 € o metro, enquanto que vedar o lado
paralelo ao rio custa 8€ o metro. Quais devem ser as dimensões das cercas de modo que a área destas seja máxima ?
Resolução
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
This watermark does not appear in the registered version - http://www.clicktoconvert.com
A10
® Traçar o gráfico da função A(x)
® Traçar o gráfico da derivada, A’(x)
- Optimização
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
This watermark does not appear in the registered version - http://www.clicktoconvert.com
A10
- Optimização
® Determine-se a dimensão y
Sendo x=15 temos que: y =
810 - 27 ´ 15 = 25,3125 16
Logo as dimensões da cerca que conduzem à área máxima são:
x = 15m
e
y » 25,3m
Exercícios
Resolver os exercícios da ficha
DOMÍNIOS PLANOS. LINGUAGEM DE PROGRAMAÇÃO LINEAR ECTA EQUAÇÃO REDUZIDA DA R ECTA
As rectas horizontais têm equação do tipo y = b e as rectas verticais têm equações do tipo
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
This watermark does not appear in the registered version - http://www.clicktoconvert.com
A10
- Optimização
Exercícios 1. Representa graficamente a recta de equação
a) 2x - 3y = -6 b) 3x - y =
1 2
2. Escreve uma equação para cada uma das rectas representadas na figura ao lado. A recta t
passa nos pontos A(1,0 ) e B(3,2 ) . Graf 45
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
This watermark does not appear in the registered version - http://www.clicktoconvert.com
A10
- Optimização
æ 7 è 3
2 ö 3 ø
As rectas intersectam-se no ponto de coordenadas ç ,- ÷ Resolução gráfica
Representam-se as rectas graficamente determinando- se, assim, o seu ponto de intersecção. Pag 47
x + 2y = 1 Û 1 x Ûy = 2 2
x
y
0
1 2
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
This watermark does not appear in the registered version - http://www.clicktoconvert.com
A10
- Optimização
D E INEQUAÇÕES COM DUAS INCÓGNITAS ESTUDO GRÁFICO DE
Recorda que, por exemplo, a inequação x ³ 0 representa o semiplano que contém todos os pontos com abcissa maior ou igual a zero.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
Trusted by over 1 million members
Try Scribd FREE for 30 days to access over 125 million titles without ads or interruptions! Start Free Trial Cancel Anytime.
This watermark does not appear in the registered version - http://www.clicktoconvert.com
A10
ü
- Optimização
Desenha-se a recta de equação y = -
x + 2 usando dois dos seus pontos (pontos de 2
intersecção com os eixos coordenados, preferencialmen te). ü
Observa- se onde fica colocado um ponto que não pertença à recta, por exemplo a
origem do referencial (0,0) Para x=0 e y=0, temtem- se 0 + 2 ´ 0 - 4 £ 0 Û -4 £ 0 verdade Logo, o ponto de coordenadas (0,0) pertence ao semiplano definido pela condiç ão.