Home
Add Document
Sign In
Register
DISTRIBUSI BETA (Menentukan Varian)
Home
DISTRIBUSI BETA (Menentukan Varian)
VarianFull description...
Author:
yantiaya
5 downloads
219 Views
73KB Size
Report
DOWNLOAD .PDF
Recommend Documents
DISTRIBUSI BETA (Menentukan Varian)
VarianFull description
Distribusi Beta
Dist.BetaDeskripsi lengkap
Distribusi Beta
Contoh SoalDeskripsi lengkap
Distribusi Beta
Dist.Beta
Varian microeconomia
Descripción: microeconomía intermedia
Resumen Varian
Descripción: Resumen varían Microeconomía Intermedia
Manual Varian
MANUAL VARIANDescripción completa
varian AA240
Descripción: absorcion atomica
Resumen Capítulo 12 Varian
útil para finanzas
Varian - Microeconomic Analysis
Book of Microeconomy by Varian
Beta Glucanos Y Beta Glucanasas
Hal R. Varian - Microeconomia.pdf
Full description
Distribusi Peluang Poisson · Distribusi
Riassunti Microeconomia Dal Varian
Analisis Varian 1
Full description
Manual fast SpectrAA varian
manual de uso para el espectrofotometro de absorción atomica, a prueba de diputadosDescripción completa
Aa Varian 240 Fs
Descripción: Documento ténico
varian sistem struktur
Sebaran Beta
Full description
Pengertian Beta
Full description
La Beta
Es un indicador que se utiliza para estimar cuál es la volatilidad de un grupo de acciones
Manual Beta
Descripción completa
Beta Blocker
Deskripsi lengkap
BETA BLOCKER.docx
Deskripsi lengkap
DISTRIBUSI BETA BETA Menentukan Varian Varian : E
E
•
2
( x − µ)
=
2
( x − µ)
αβ 2
( α + β ) (α + β + 1 )
Pembuktian : E ( x − µ)2 = E( x 2 ¿ −[ E ( x )]2 Langkah pertama mencari E( x 2 ¿ ∞
E( x
2
∫
¿ =
x f ( ( x ) dx 2
−∞ 0
=
∫ x f ( ( x ) dx
+∫ x f ( ( x ) dx +∫ x f ( ( x ) dx 2
−∞
x
2
2
0
.0 dx
+¿
1
∞
1
Γ ( α + β ) α −1 x x ( ) Γ α Γ β ( ) 0
∫
0
=
∞
1 2
∫¿
β −1
2
( 1− x )
dx +
∫ x .0 dx 2
1
−∞
1
Γ ( α + β ) 2 α −1 x . x 0+ Γ ( α ) Γ ( β ) 0
∫
=
( 1− x ) β − dx +0 1
1
Γ ( α + β ) 2 α − 1 x . x ( 1− x ) β −1 dx = Γ ( α ) Γ ( β ) 0 Γ ( α + β ) Γ ( α + 2 ) Γ ( β ) = Γ ( α ) Γ ( β ) Γ ( α + β + 2 ) Γ ( α + β ) Γ ( α + 2 ) = Γ ( α ) Γ ( α + β + 2) Γ ( α + β ) ( α + 2 −1 ) Γ ( α + 2 −1) = Γ ( α ) ( α + β + 1) Γ ( α + β + 1) Γ ( α + β ) ( α + 1 ) Γ ( α + 1) = Γ ( α ) ( α + β + 1)( α + β ) Γ ( α + β ) Γ ( α + β ) ( α + 1 ) α Γ (α ) = Γ ( α ) ( α + β + 1)( α + β ) Γ ( α + β ) α ( α + 1 ) = (α + β )( α + β + 1) x Langkah selanjutnya yaitu memasukkan nilai E ( ¿ ¿ 2 ) dan E( x ) ke dalam rumus varian
∫
•
¿
E
2
= E( x ¿ −[ E ( x )] α ( α + 1 )
2
( x − µ)
2 2
−[ α ] = ( α + β )( α + β + 1) ( α + β ) α ( ¿¿ 2 + α ) ( α + β ) −α 2 ( α + β + 1 ) =
2
( α + β + 1)( α + β ) ¿
α (¿ ¿ 3 + α + α β + αβ )− α 3 −α 2 β −α 2 2
=
2
¿ ( α + β + 1)( α + β )
2
=
αβ 2
(α + β + 1 )( α + β )
TERBUKTI !!!
×
Report "DISTRIBUSI BETA (Menentukan Varian)"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
×
Sign In
Email
Password
Remember me
Forgot password?
Sign In
Our partners will collect data and use cookies for ad personalization and measurement.
Learn how we and our ad partner Google, collect and use data
.
Agree & close