Pdfs of an article on Dr Paurassinh Aniruddhasinh Joshi . This article covers his Geriatrics achievement. page 2
Full description
RangertiDeskripsi lengkap
makalah perancangan simulasi sistem pemantauan pintu perlintasan kereta api menggunakan sensor infra merah dan mikrokontroller beerbasis arduino.Full description
pvc
Full description
UNI22Descripción completa
quimica organica te 1) Calcula la concentración molar de una disolución preparada mezclando 50 ml de ácido sulfúrico 0,136 M, con 70 mL de agua. Supón que los volúmenes son aditivos. …Descripción completa
Front PageFull description
Descripción completa
Pdfs of an article on Dr Paurassinh Aniruddhasinh Joshi . This article covers his Geriatrics achievement. page 1
iop liberman cap 22Descripción completa
ReadDeskripsi lengkap
MAPM
Exercises 1.3
Differential Equations as Mathematical Models
20 . From Pr oblem 19. w ithout a damping force, force, the differ differ ential equation is is rnd2x rnd2x /dt 2 = —kx . With a damping force proportional to velocity, the differential equation becomes d2x d2x , ,.dx rn — rn —7T = —kx —p — dt 2 ’ dt
d2x d2x dt/
m ~37> ~37> +
or
A x dt
f t—
+
k'x
=
0.
2 1 . From g — k / R 2 2 we find k = gli2. gli2. Using a = d2r/d,t 2 and the fact that the positive direction is
upward wc get
___k
cfr= _
dt2
a
g R2
d2r
or
r2
gR?
r2 *5+1^ =a
i 1f
-----------
—I—
----
22. T he gr av itational force force on m is F = —kMr m /r2. /r2. Since Mr = 4irSr ^/3 and M = 47r5 i ?3/3 wc have M r = i : iM iM j R 3 and F = -k
Mrm
= - k
- k
=
m.M
r.
R*
Now from F = rria rria = d?7'/dt ?7'/dt2 2 we have d-r d- r , rnM m —w = —w = —k —k — ——r- r dt 2 R*
or
d~r —=• dt 2
kM
r.
dA 23. T he differential differe ntial equation is —- = k(M —A). dt dA 24. T he differential differe ntial equation is = ki(M —A) —k^A. dt 25. T he differential differe ntial equation is x'(t) = r —kx(t ) whore k > 0 . 26. By the the Pv thagorcan T heorem heorem the the slope slope of the tangent line is is y — ,— 27. We see see from fr om the figure tha t 29 + a = tt. tt. T hus V 2 tan ta n 9 —- = tan ta n a = tan( 7r —29) = —tan 2$ = - - - - - - . 1 —tan 2 9 - x v ; Sincc the slope of the tangent line is ?/
- tan 0 we have y have y /x = 2y '/[ '/[ l —{yr)2] —{yr)2]
or y —y(y —y (y ')‘2 = 2xy', xy', which is the quadratic equation y(y ')'2 ')'2 + 2xy' —y —i) in y '. Using the quadr quadratic atic formul for mula, a, we get f
—2 x ± ^4 x 2 + 4y 2
—x ± i j x 2 + y 2
2y
y
V
Since dy/dx > 0 , the differential equation is dy _ - x + + ^ x 2 + y 2 dx
or
y
dy dx
.lie differential equation is dP/dt = kP, kP, so from Problem 41 in Exercises 1.1, P ~ eki, and a e- param paramcter cter family of solutions solutions is P = cekt. 19