RESOLUCION DE CASOS Método simplex
1. Un empresario tiene a su disposición dos actividades de producción lineales, mediante la contribución de tres insumos, fundición, ensamblaje y distribución de $18, $8 y $14 respectivamente. La distribución de los insumos a los productos se resume en la siguiente tabla:
Producto 1
Producto 2
Disponibilidad
1
3
18
1
1
8
2
1
14
1
2
Fundición Ensamblaje Distribución Beneficio Determinar la combinación a producir que maximice los beneficios.
Solver
2. En una granja de caballos se da una dieta "para tonificar" con una composición máxima de 15 unidades de una sustancia A y otras 15 de una sustancia B. En el mercado solo se encuentran dos clases de compuestos: el tipo I con una composición de una unidad de A y cinco de B, y el tipo II
con una composición de cinco unidades de A y una de B. El precio del tipo I es de 10 dólares y el del tipo II es de 30 dólares. Se pregunta: ¿Qué cantidades se han de comprar de cada tipo para cubrir las necesidades con un coste máximo?
Solver
3. . Un granjero posee 100 hectáreas para cultivar trigo y alpiste. El costo de la semilla de trigo es de $4 por hectárea y la semilla de alpiste tienen un coste de $6 por hectárea. El coste total de mano de obra es de $20 y $10 por hectárea
respectivamente. El ingreso esperado es de $110 por hectárea de trigo y $150 por hectárea de alpiste. Si no se desea gastar más de $480 en semillas ni más de $1500 en mano de obra. ¿Cuántas hectáreas de cada uno de los cultivos debe plantearse para obtener la máxima ganancia? Trigo Alpiste Disponibilidad
4
6
480
Mano de Obra
20
10
1500
Beneficio
110
150
Semillas
Solver
PROGRAMACION LINEAL PROGRAMA SOLVER CON SUS GRAFICOS Y DATOS DE ENTRADA SOLVER Y EL OTRO METODO ES OPCIONAL
1. La empresa W.W tiene solo tres empleados que hacen dos tipos de ventanas a mano:
con marco de madera y con marco de aluminio. La ganancia es de 60$ por cada ventana con marco de madera y de $30 por cada una con marco de aluminio. Doug hace marcos de madera y puede terminar 6 al dia. Linda hace 4 marcos de aluminio por dia. Bob forma y corta el vidrio y puede hacer 48 pies cuadrados de vidrio por dia. Cada ventana con marco de madera usa 6 pies cuadrados de vidrio y cada una de aluminio, 8 ´pies cuadrados. La compañía desea determinar cuantas ventanas de cada tipo debe producir al dia para maximizar la ganancia total.
2. El editor de producción de Rayburn Publishing Company tiene 1.800 páginas de
manuscrito que debe ser revisadas. Debido al poco tiempo involucrado, sólo hay dos revisores disponibles Erhan Mergen y Sue Smith. Erhan tiene diez días disponibles y Sue doce días. Erhan puede procesar 100 páginas de manuscrito por día, y Sue 150 páginas diarias. Rayburn Publishing Company ha desarrollado un índice para medir la calidad general de un revisor en una escala de 1 (peor) a 10 (mejor). La calidad de
Erhan es 9 y la de Sue es 6, además, Erhan cobra 3 dólares por página de manuscrito revisado, Sue cobra 2 dólares por página. Se ha asignado un presupuesto de $4.800 para la revisión, ¿cuántas páginas deben ser asignadas a cada revisor para complet ar el proyecto con la calidad más elevada posible?
3. English Motors, Ltd. (EML), ha desarrollado un nuevo vehículo deportivo de utilería, con
tracción en la cuatro llantas. Como parte de la campaña de mercadotecnia, EML ha desarrollado una presentación de ventas en video cinta que se enviará tanto a propietarios de vehículos de tracción en las cuatro ruedas EML actuales, como a
propietarios de vehículos utilitarios deportivos de cuatro ruedas ofrecidos por los competidores EML se refiere a estos dos mercados objetivo como mercado de clientes actual y mercado de clientes nuevo. Los individuos que reciban el nuevo video promocional también recibirán un cupón para un recorrido de prueba del nuevo modelo EML, durante un fin de semana. Un factor clave en el éxito de esta nueva promoción es la tasa de respuesta, es decir el porcentaje de individuos que reciban la nueva promoci ón y hagan el recorrido de prueba del nuevo modelo, EML estima que la tasa de respuesta para el mercado de clientes actual es de 25% y para el mercado de cliente nuevo es de 20%. La tasa de ventas es el porcentaje de individuos que reciba la nueva promoción, haga el recorrido de prueba y efectúe la compra. Los estudios de investigación de mercado indican que la tasa de ventas el de 12% para el mercado de clientes actual y de 20% para el mercado de clientes nuevo. El costo de cada promoción, excluyendo los costos de recorrido de prueba, es de 5 dólares por cada promoción enviada al mercado de clientes actual y de 4 dólares por cada promoción enviada al mercado de clientes nuevo. La administración también ha decidido que se deberá enviar la nueva promoción a un mínimo d 30.000 clientes actuales y a un mínimo de 10.000 clientes nuevos. Además, el número de clientes actuales que haga el recorrido de prueba del nuevo vehículo debe ser de por lo menos el doble del número de clientes nuevos que hagan recorrido de prueba del nuevo vehículo. Si el presupuesto de mercadotecnia, incluyendo los costos del recorrido de prueba, es de 1’200.000 dólares, ¿Cuántas promociones
deberán ser enviadas a cada grupo de clientes para maximizar las ventas totales?
4. Creative
Sports Designs (CSD) fabrica raquetas de tamaño estándar y extragrande. Las raquetas de la empresa son extremadamente ligeras, debido a uso de una aleación de magnesio y grafito inventada por el fundador de la empresa. Cada raqueta de tamaño estándar utiliza 0,125 kilos de aleación y cada raqueta extragrande utiliza 0,4 kilos; para el siguiente período de producción de dos semanas sólo hay disponibles 80 kilos de aleación. Cada raqueta de tamaño estándar ocupa 10 minutos de tiempo de fabricación y cada raqueta de tamaño extragrande ocupa 12 minutos. Las contribuciones a la utilidad son de 10 dólares por cada raqueta estándar y de 15 dólares por cada raqueta extragrande y están disponibles 40 horas de tiempo de producción por semana. La administración ha especificado que por lo menos 20% de la producción total debe ser de raqueta de tamaño estándar. ¿Cuántas raquetas de cada tipo deberá fabricar CSD en las dos semanas siguientes, a fin de maximizar la contribución a la utilidad? Suponga que, debido a la naturaleza única de sus productos, CSD puede vender tantas raquetas como pueda producir.
Solver
5. La administración de High Tech Service (HTS) desea desarrollar un modelo que le
ayude a asignar el tiempo de sus técnicos entre llamada de servicio por contrato a clientes tanto normales como nuevos. En el período de planeación de dos semanas hay disponible un máximo de 80 horas de tiempo de técnico. A fin de satisfacer los requisitos de flujo de caja, deben generarse por lo menos 800 dólares de ingresos (por técnico) durante el período de dos semanas. El tiempo de técnico para los clientes normales genera 25 dólares por hora, pero para clientes nuevos sólo genera un promedio de 8 dólares la hora, porque en muchos casos el contacto con el cliente no llega a generar servicios facturables. Para asegurarse de que se mantienen contactos nuevos, el tiempo de técnico utilizado en contactos con clientes nuevos
debe ser por lo menos 60% del tiempo utilizado en contactos con clientes normales. Para los requerimientos de ingresos y políticas enunciadas, HTS desearía determinar cómo asignar el tiempo de los técnicos entre clientes normales y nuevos, a fin de maximizar el número total de clientes en contacto durante el período de dos semanas. Los técnicos requieren un promedio de 50 minutos por cada contacto de cliente normal y de una hora por cada contacto con cliente nuevo. a. Desarrolle un modelo de programación lineal que le permita a HTS asignar el tiempo de los técnicos entre clientes normales y nuevos. b. Haga una gráfica de la región factible c. Resuelva las ecuaciones lineales simultáneas apropiadas para determinar los valores de X1 y X2 en cada punto extremo de la región factible. d. Encuentre la solución óptima
Solver
6. Como una ilustración de la asignación de recursos que usa la programación lineal,
considere el problema siguiente acerca de la planificación de producción en una tienda. La producción debe fijarse para dos tipos de máquinas, la maquina 1 y la máquina 2. Ciento veinte horas de tiempo enlatables pueden fijarse para máquina1, y 80 horas para máquina 2. La producción producción durante el periodo de planificación planificaci ón se limita a dos productos. A y B, cada unidad del producto A requiere 2 horas de tiempo del proceso en cada máquina. Cada unidad de producto que B requiere de 3 horas en la máquina 1 y de 1.5 horas en la máquina 2. El margen de la contribución es $4.00 por cada unidad de producto A y $5.00 por cada unidad de producto B. Ambos tipos de productos pueden comercializarse prontamente; por consiguiente, la producción debe fijarse con el objetivo de aumentar al máximo la ganancia.
Solver
7. Ozark Farms utiliza diariamente 800 libras de alimento especial. El alimento
especial es una mezcla de maíz y semilla de soya, con las siguientes composiciones:
Costo (/libra)
Maíz
Libra por libra de alimento para ganado Proteínas Fibra 0.09 0.02
Semilla de Soya
0.60
0.90
0.06
0.30
Los requerimientos dietéticos diarios del alimento especial estipulan que por lo menos un 30% de proteínas y cuando mucho un 5% de fibra. Ozark Farms desea determinar el costo mínimo diario de la mezcla de alimento.
8. John debe trabajar por lo menos 20 horas a la semana para completar su ingreso
mientras asiste a la escuela. Tiene la oportunidad de trabajar en dos tiendas al detalle: en la tienda 1 John puede trabajar entre 5 y 12 horas a la semana, y en la tienda 2 le permiten trabajar entre 6 y 10 horas. Ambas tiendas pagan el mismo salario por hora. De manera que John quiere basar su decisión acerca de cuántas horas debe trabajar en cada tienda en un criterio diferente: el factor del estrés en el
trabajo. Basándose en entrevistas con los empleados actuales, John calcula que, en una escala de 1 a 10, los factores des estrés son de 8 y 6 en las tiendas 1 y 2, respectivamente. Debido a que el estrés aumenta por hora, él supone que el estrés total al final de la semana es proporcional al número de horas que trabaja en la tienda. ¿Cuántas horas debe trabajar en cada tienda?
Solver
9. La Dumont Company, fabricante de equipo de pruebas, tiene tres departamentos
principales para la manufactura de sus modelos S-1000 y S- 2000. Las capacidades mensuales son las siguientes:
Departamentos
Requerimientos unitarios de tiempo (horas) Modelo Modelo S-
De Estructura principal De Alambrado eléctrico De Ensamble
S-1000 4 2.5 4.5
2000 2 1 1.5
Horas disponibles en el presente mes 1600 1200 1600
La contribución del modelo S-1000 es de $ 40 000 por unidad, y la del modelo S- 2000 es de $ 10 000 por unidad. Suponiendo que la compañía puede vender cualquier cantidad de cada uno de sus productos, debido a las condiciones favorables de mercado. Determínese la salida óptima para cada modelo, la contribución más alta posible para el presente mes y el tiempo sobrante en los tres departamentos.
Solver
10. El propietario de Sea Warf Restaurant desearía determinar cual es la mejor forma de
asignar un prosupuesto mensual de publicidad de 1.000 dólares entre periódicos y la radio. La administración ha decidido que por lo menos 25% del presupuesto debe utilizarse en cada uno de estos dos tipos de medios y que el monto del dinero gastado en publicidad en periódicos locales debe tener por lo menos el doble de los que se gaste en radio. Un asesor de mercadotecnia ha desarrollado un índice que mide la exposición del auditorio por dólar de publicidad en una escala de 0 al 100, donde valores más elevados del índice indican mayores exposiciones al auditorio. Si el valor del índice para publicidad en los periódicos locales es de 50, y para el anuncio de radio es de 80, ¿Cómo debería asignar la administración el presupuesto de publicidad, a fin de maximizar el valor de exposición total en el auditorio?
a) Formule un modelo de programación lineal que se pueda utilizar para determinar la manera en que la administración debe asignar el presupuesto de publicidad a fin de maximizar el valor de la exposición total del auditorio. b) Resuelva el problema utilizando el procedimiento de solución gráfica y por solver
Solver