Descripción: Utilización del input analizer con el simulador arena
Full description
Analisis Perancangan Sistem
manajemen
material on input outputFull description
Full description
sfhkja dskljg;dsFull description
JUKNIS SITTFull description
plcFull description
apotek bpjs onlineFull description
manajemen
ORGANISASI Input Dan OutputDeskripsi lengkap
Menjelaskan sub dalam permintaan input yaitu pengertian permintaan input, derived demand, comparative statics of input demand, dan derivasi matematis permintaan input yang disertai contoh soal dan ...
Full description
Como fazer um SHDB no SAPDescrição completa
Full description
Descrição: http://msxlivros.blogspot.com/
Full description
Deskripsi lengkap
Perangkat Input - Output
Saluran Transmisi
Molecular Dynamics
Molecular Dynamics Simulation For electrons we have to solve the quantum Schroedinger Equation For nuclei we only consider that they move classically
F
ma
d x 2
m
2
d t
m x
d V d x
Force on nuclei can be obtained from potential derivative
x t t x t
x
t t x t t x t x t t x
t
1 dV
m d x
x t
For example for harmonic oscillator
Initial Condition: You give starting geometry and velocity then you calculate the force from your potential energy surface. Using the force you calculate the velocity and position change, then continue on.
1 2 V x k x xeq 2 dV k x x
On the fly simulation At every time step solve the electronic Schrodinger equation Good Points 1. Accurate 2. Can describe reaction 3. Do not have to worry about fitting problems Bad Points 1. Computational time is great so can only be used for short time propagation 2. Can not perform detailed analysis
Gaussian 09 BOMD input
G09 BOMD output 1
G09 BOMD output 2
Method of Propagation1 Goal: dx
•
f x, t ; xt 0 x0 xt final in time step t
dt Euler method (first order method take gradient) xn 1 xn f xn , t n t
4th order Runge-Kutta propagation : add up contribution along the way 1 xn 1 xn k 1 2k 2 2k 3 k 4 t 6 k 1 f xn ,t n ; k 2 f xn 0.5k 1t , t n 0.5t •
k 3 f xn 0.5k 2 t , t n 0.5t ; k 4 f xn k 3t , t n t
Method of Propagation 2 •
Predictor Corrector : repeated Euler
x1n 1 xn f xn , t n t x
2 n 1
xn
x
3 n 1
xn
1 2 1 2
f x , t f x , t t n
n
1 n 1
n 1
f x , t f x n
2 n 1
f x , t f x
m 1 n 1
n
, t n 1 t
... x
m n 1
xn
1 2
n
n
stop if xnm1 xnm11 threshold
, t n 1 t
Method of Propagation 3 Symplectic Integrator: special integrator for classical mechanics made to satisfy Hamilton’s Equation dp dq H H ; q dt dt p Second order Symplectic assume H=T(p)+V(q) •
Intermolecular Interaction: Super Molecule Approximation
Super Molecule Approximation To obtain the interaction between two waters perform calculation of two waters
Two things to be careful Size Consistency Basis set super position erro • •
Size Consistancy •
Consider H2…H2 with CISD infinite far away result for H2…H2 is not equal to 2 H2!! Two electron excitation
H2A
H2A
H2B
H2B
H2A
H2B
Two electron excitation of two H2 has four electron excitation in H2…H2
Two electron excitation
H2A
;
H2A
H2A
H2B
Size Consistent Methods •
MP2
•
CCSD CCSD exp
T 1 T 2
D0
1 T 1 D0 T 2 D0 T 1T 1 D0 T 2T 2 D0 T 1T 2 D0 2 Pople et al. have defined an empirical estimation of the four electron excitation contribution MRSDCI had defined +Q so for bond dissociation and potential energy surface calculation people use MRSDCI+Q to approximately take care of the size consistancy problem
Basis Set Super Position Error •
When calculating the energy of a supermolecule we use the basis set of Molecule A and Molecule B together, when we calculate the separated products we calculate molecule A with basis of A, molecule B with basis of B
VS
Counter Poise Correction •
Boys Lanbardi method: use ghost atoms (no charge just position to put basis)and put the basis for the respective partner in the energy calculation for molecule A and B
VS
BSSE big for small basis sets
Gaussian CP Input
G09 CP output 1
G09 CP output2
G09 CP output3
G09 CP output4
G09 CP Output 5
G09 CP output 6
Optimized Geometry CP
W/O CP
with CP
Excited Electronic States Calculation
Method for Excited States •
•
Use more than one slater determinant •
CISD: Configuration Interaction Singles and Doubles