Biological Warfare Another BIOS project focuses on engineering new molecular pathways that result in pigment changes in bacteria upon exposure to a variety of bacterial and viral pathogens. A separate project seeks to engineer biological circuits in the E. coli bacterium for sensing biological agents based on the well-known lac and mal operons as models.
❚
FURTHER READING: ELECTRONIC:
Defense Advanced Research Projects Agency, Defense Sciences Office (March 11, 2003).
SEE ALSO Biodetectors Bio-Engineered Tissue Constructs Biological and Biomimetic Systems Biological Warfare Biological Warfare, Advanced Diagnostics Bio-Optic Synthetic Systems (BOSS) Biosensor Technologies
Biological Warfare ❚ JUDYTH SASSOON
Biological warfare, as defined by the United Nations, is the use of any living organism (e.g. bacterium, virus) or an infective component (e.g., toxin), to cause disease or death in humans, animals, or plants. In contrast to bioterrorism, biological warfare is defined as the “statesanctioned” use of biological weapons on an opposing military force or civilian population. Biological weapons include pathogenic viruses, bacteria, and biological toxins. Of particular concern are genetically altered microorganisms, which are engineered to target a specific group of people.
Early History of Biological Warfare Examples of the use of biological weapons exist in ancient records. In the sixth century B.C., Assyrians poisoned enemy wells with ergot, a toxin derived from mold that grows on rye. Other records of battles document the use of diseased corpses to poison wells. In 1346, plagueinfected corpses and carcasses were catapulted into Kaffa, a city in current day Crimea, by the Tartar army. The epidemic that resulted may have eventually led to the great Black Plague that afflicted Europe. In 1710, the Russian army used a similar military strategy when it invaded Sweden. The Spanish are reported to have contaminated French wine with blood taken from people suffering from
Encyclopedia of Espionage, Intelligence, and Security
Chemical/biological warfare agent R400 aerial bombs, destroyed by the United Nations weapons inspectors after the 1991 Persian Gulf War, are seen at the Muthanna State Establishment in Iraq in 1998. AP/WIDE WORLD PHOTOS.
leprosy in the mid-1400s. In the seventeenth century, a Polish general filled artillery shells with the saliva from rabid dogs. Smallpox was used as a biological weapon several times during the colonization of the Americas. The Spanish explorer Pizarro gave blankets infested with the virus to natives in South America in the fifteenth century. Sir Jeffery Amherst presented blankets contaminated with the smallpox virus to native Americans during the French and Indian war between 1754 and 1767. The epidemic that followed resulted in the surrender of a strategic fort to the English. A Southern doctor is reported to have sold clothing contaminated with smallpox to the Union Army during the Civil War.
Modern History of Biological Warfare During the twentieth century, modern scientific methods led to the development, refinement, and stockpiling of weapons of biological warfare by governments throughout the world. During World War I, Germany developed a 115
Biological Warfare biological warfare program based on the bacterium Bacillus anthracis and a strain of Pseudomonas known as Burkholderia mallei, which causes glanders disease in cattle. Dr. Anton Dilger, a German agent living in Washington D.C., reportedly grew anthrax and glanders bacteria in his home and then inoculated thousands of horses and cattle that were shipped to Allied troops in Europe. Many of the animals perished and hundreds of the troops exposed to these animals were secondarily infected by the diseases. During World War II, prisoners in German Nazi concentration camps were infected with pathogens, such as Hepatitis A, Plasmodia spp., and two types of Rickettsia bacteria, during studies allegedly designed to develop vaccines and antibacterial drugs. A large reservoir in Bohemia was poisoned with sewage by the German army in 1945. Between 1918 and 1945, the Japanese government conducted extensive biological weapon research at Unit 731 in occupied Manchuria, China. Prisoners of war were infected with a variety of pathogens, including Neisseria meningitis (meningitis), Bacillus anthracis (anthrax), Shigella spp. (shigellosis), and Yersinia pestis (black plague). Estimates are that over 3,000 prisoners died as a result of infection by these biological pathogens or execution following such infections. In 1941, the Japanese released an estimated 150 million potentially plague-infected fleas from aircraft over cities in China and Manchuria. After these infectious agents were released, outbreaks of plague occurred in many Chinese villages. In addition, approximately 10,000 illnesses and 1,700 deaths occurred among Japanese troops. Driven by reports of Japanese and German programs to develop biological weapons, the Allies embarked on vigorous efforts to develop their own biological weapons during World War II. Britain produced five million anthrax cakes at the UK Chemical and Biological Defense Establishment at Porton Down with the intent of dropping them on Germany to infect the food chain. These weapons were never used. British open-air testing of anthrax weapons in 1941 on Gruinard Island in Scotland rendered the island inhabitable for five decades. The United States government’s biological warfare facility was headquartered at Fort Detrick in Maryland beginning in 1942. Weapons were also tested and produced in Colorado, Arkansas and Utah. Many different agents were studied including the bacteria that cause anthrax, plague, botulism, Q fever, and staphylococcal infections. Several viruses were also included in the research. The U.S. Army conducted a study in 1951–1952 called “Operation Sea Spray” to study wind currents that might carry biological weapons. As part of the project design, balloons were filled with Serratia marcescens (then thought to be harmless, but easily identifiable) and exploded over San Francisco. Shortly thereafter, there was a corresponding dramatic increase in reported pneumonia and urinary tract infections in the region. 116
The former Soviet Union was implicated in several incidents involving the development and release of biological agents. In 1979, an accidental release of a small amount of anthrax spores occurred at a bioweapons facility near the Soviet city of Sverdlovsk. At least 77 people were sickened and 66 died. All the affected people were some 4 kilometers downwind of the facility. Sheep and cattle up to 50 kilometers downwind became ill. Immediately following the incident, the Soviet government declared that the cause of the illnesses was contaminated meat. However, in 1992 Russian President Boris Yeltsin took responsibility, stating that the accident was the result of military research at the microbiology facility. Between 1975 and 1983, Soviet forces allegedly used “yellow rain” in military operations in Laos, Cambodia and Afghanistan. This substance, T2 toxin or trocothecene mycotoxin, is derived from the Fusarium fungi and is extremely damaging to the intestinal tract. The Soviet government has denied the use of T2 toxins, claiming that the yellow rain was the result of defecating bees. In 1991, the Iraqi government admitted the existence of a biological weapons program within their military. They built bombs containing the botulinum toxin, anthrax and aflatoxins. Iraqi scientists also studied the uses of wheat cover smut, ricin and the toxins produced by Clostridium perfringens for biological weapons.
Diplomacy and biological warfare. The first diplomatic effort to limit biological warfare was the Geneva Protocol for the Prohibition of the Use in War of Asphyxiating, Poisonous or Other Gases, and of Bacteriological Methods of Warfare. This treaty, ratified in 1925, prohibited the use of biological weapons; however, it was not effective as Germany, the United States, Britain, and the Soviet Union all had biological weapons programs up to the 1960s. More than 140 countries, including the United States, signed the Convention on the Prohibition of the Development Production, and the Stockpiling of Bacteriological (Biological) and Toxin Weapons and on Their Destruction, also called the Biological Weapons Convention (BWC) in 1972, with limited success. Although the United States formally stopped biological weapons research in 1969 (by executive order of then President Richard M. Nixon), the Soviet Union carried on biological weapons research until its demise. Despite being a signator to the BWC, the Iraqi government allegedly continued its buildup of biological weapons into the twenty-first century. Following the Iraqi war, however, anticipated stockpiles of biological weapons were not immediately found.
❚
FURTHER READING: ELECTRONIC:
Rhode Island Department of Health: Bioterrorism Preparedness Program “History of Biological Warfare and Current Threat” (March 12, 2003).
Encyclopedia of Espionage, Intelligence, and Security
Biological Weapons, Genetic Identification Arizona Department of Health Services: Epidemiology and Surveillance “History of Biowarfare and Bioterrorism” (March 12, 2003).
SEE ALSO Anthrax Weaponization Biological and Toxin Weapons Convention Bioterrorism Chemical Warfare Infectious Disease, Threats to Security Viral Biology Weapons of Mass Destruction
blood cells provides a very quick indication of the presence of a biological threat. The second method involves the development of a wearable, non-invasive diagnostic device that detects a broad-spectrum of biological and chemical agents.
❚
FURTHER READING: ELECTRONIC:
Advanced Diagnostics (DARPA) (March 13, 2003). Defense Advanced Research Projects Agency, Defense Sciences Office (March 13, 2003).
Biological Warfare, Advanced Diagnostics The Advanced Diagnostics Program is funded by the Defense Advanced Research Projects Agency of the United States government (DARPA). Its objective is to develop tools and medicines to detect and treat biological and chemical weapons in the field at concentrations low enough to prevent illness. Challenges to this task include minimizing the labor, equipment, and time for identifying biological and chemical agents. One area of interest includes development of field tools that can identify many different agents. To accomplish this goal, several groups funded under the advanced diagnostics program have developed field-based biosensors that can detect a variety of analytes including fragments of DNA, various hormones and proteins, bacteria, salts, and antibodies. These biosensors are portable, run on external power sources, and require very little time to complete analyses. A second focus of the advanced diagnostics project is the identification of known and unknown or bioengineered pathogens and development of early responses to infections. Many viruses act by destroying the ability of cells to replicate properly. One group funded under the advanced diagnostics program is studying the enzyme 5’monophosphate dehydrogenase (IMPDH), which produces products that are required for synthesizing nucleic acids, such as RNA and DNA, both of which are essential for proper cell replication. This group seeks to develop novel drugs based on IMPDH, which can cross into cells and thwart viral infection. A final goal is to develop the ability to continuously monitor the body for evidence of infection. Researchers are addressing this goal in two ways. The first involves engineering monitoring mechanisms that are internal to the body. In particular, groups funded under the initiative are developing bioengineered white blood cells to detect infection from within the body. Often genetic responses to infection occur within minutes of infection so analysis of
Encyclopedia of Espionage, Intelligence, and Security
SEE ALSO Biodetectors Biological Warfare Biomedical Technologies Biosensor Technologies Bioterrorism Bioterrorism, Protective Measures
Biological Weapons, Genetic Identification Biological weapons are weapons whose payload consists of microorganisms that can cause infections, or the toxic components of the microorganisms. Examples of microorganisms include viruses (e.g., smallpox, Ebola, influenza), bacteria (e.g., Bacillus anthracis, Clostridium botulinum, Yersinia pestis) and protozoa. The most prominent example of a toxic component is the variety of toxins produced and released from bacteria (e.g. neurotoxins produced by Clostridium). Genetic technologies can be useful in the detection of biological weapons. Of particular note is the polymerase chain reaction, or PCR, which uses select enzymes to make copies of genetic material. Within a working day, a target sequence of genetic material can be amplified to numbers that are detectable by laboratory tests such as gel electrophoresis. If the target sequence of nucleotides is unique to the microorganism (e.g., a gene encoding a toxin), then PCR can be used to detect a specific microorganism from among the other organisms present in the sample. Hand-held PCR detectors that have been used by United Nations inspectors in Iraq during their weapons inspections efforts of 2002–2003 purportedly can detect a single living Bacillus anthracis bacterium (the agent of anthrax) in an average kitchen-sized room. 117